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Description of quantum coherence in
thermodynamic processes requires constraints
beyond free energy
Matteo Lostaglio1, David Jennings1 & Terry Rudolph1

Recent studies have developed fundamental limitations on nanoscale thermodynamics, in

terms of a set of independent free energy relations. Here we show that free energy relations

cannot properly describe quantum coherence in thermodynamic processes. By casting time-

asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an

additional, independent set of thermodynamic constraints that naturally extend the existing

ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not

extend automatically to quantum coherences, but instead only relational coherences in a

multipartite scenario can contribute to thermodynamic work. We find that coherence

transformations are always irreversible. Our results also reveal additional structural parallels

between thermodynamics and the theory of entanglement.
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W
e are increasingly able to probe and manipulate the
physics of micro- and nanoscale systems. This has led
to an explosion of work in the field of nano-

technology, with a myriad of applications to areas in industry,
information technology, medicine and energy technologies. With
operating scales between 1 and 102 nm, there has been remarkable
progress in the development of molecular information ratchets,
molecular motors, optical thermal ratchets and artificial bipedal
nanowalkers inspired by naturally occurring biomolecular walk-
ers1–5. There is also increasing evidence for the role of quantum
effects within biological systems6–8.

Towards the lower-end of the nanoscale, quantum mechanical
effects such as quantum coherence and entanglement increasingly
make their presence felt. Electrical conductance of molecular-
scale components no longer obey Kirchhoff’s laws and phase
coherence can provide both destructive as well as constructive
interference effects on electrical transport9. Such coherence has
been shown to play important roles in thermal to electrical power
conversion, heat dissipation in atomic-scale junctions and the
engineering toolkit of quantum dots10. Conversely, dissipative
quantum thermodynamics offers the possibility of on-demand
generation of quantum information resources essential for future
quantum technologies (communication, encryption, metrology
and computing)11. Within quantum information science, the
question of thermodynamically robust quantum memories, and
thermodynamic constraints on quantum computation are still
only partially understood and provide deep questions in the
overlap between thermodynamics and quantum theory12,13. In a
similar way, the phenomenon of thermality due to entanglement
and the thermodynamics of area laws reveal deep connections
between thermodynamics and the theory of entanglement14,15.

The physics of these remarkable small-scale systems, displaying
coherence or entanglement, constitute extreme quantum regimes.
As such, a crucial question is: to what degree do traditional
thermodynamic formulations and techniques encapsulate this
regime? This is a broad, foundational question about thermo-
dynamics. It is increasingly apparent that the traditional entropic
formulation that emerges as an essentially unique description of
the irreversibility of classical, macroscopic systems, will only place
necessary, but not sufficient, constraints on the physics of
small-scale systems manifesting coherence or quantum
correlations.

The textbook treatments of classical, macroscopic equilibrium
thermodynamics are typically based on notions such as Carnot
cycles, with the entropy function generically defined via an
integral in terms of heat flow16. This thermodynamic entropy
function is then assumed (but often not proved) to completely
describe the irreversible constraints on the system at hand.
Alternative approaches follow a statistical mechanical treatment
of the system based on underlying microstates, and provide an
explanation of the thermodynamics in terms of microscopic
degrees of freedom.

However, more rigorous derivations of the entropic form of the
second law exist, such as by Carathéodory17, Giles18 and more
recently by Lieb and Yngvason19. Of central importance is the
partial order of thermodynamic states, from which an entropy
function can then be derived in a rigorous manner. The existence
of an essentially unique entropic form of the second law is found
to be equivalent to assumptions that fail to hold in small-scale
systems or high correlation quantum environments. For example,
a scaling hypothesis is required, which is no longer valid for small
systems. In addition a ‘Comparison Hypothesis’18,19 is required
to hold (or derived from other axioms), which in itself
makes a highly non-trivial assumption on the structure of the
thermodynamic partial order. Outside of the macroscopic
classical regime, quantum systems will generically possess

coherence or entanglement, and the ordering of states typically
displays a much richer structure20.

A unique additive entropic function implies that such
assumptions must hold19. Therefore, their inapplicability in the
quantum realm means that no single entropic function can
suffice. To fully describe the thermodynamic directionality of
nanoscale, non-equilibrium systems, more than one entropy
function is required. The results of ref. 21 provide a clean
characterization of non-asymptotic, thermodynamic inter-
conversions of quantum states with zero coherence between
energy eigenspaces. The necessary and sufficient conditions for
such state inter-conversions are in terms of a set of entropic free
energy functions (here denoted DFar0).

The present work goes beyond these conditions, showing that
even these fail to be sufficient for thermodynamic transforma-
tions involving non-zero quantum coherence. Exploiting recent
results in asymmetry theory22,23, we show that thermodynamics
can be viewed as being determined by at least two independent
resources: the first is quantified by known free energies and
measures how far a state is from being thermal; the second, a
missing ingredient of previous treatments, measures how much
a quantum state breaks time-translation invariance, that is,
the degree of coherence in the system. This removes the
‘zero coherence’ assumption made in numerous recent works,
for example see refs 21,24–26. This shift in perspective allows
us to extend the free energy relations to a parallel set of
thermodynamic constraints for quantum coherence, which take
the form DAar0, where Aa are measures of time-translation
asymmetry. These constraints characterize the tendency of any
quantum system to ‘equilibrate’ towards a time-symmetric state.
The new laws, irrelevant for a system composed of many,
uncorrelated bodies, become essential for the thermodynamics of
small/correlated quantum systems. As an application, we show
that in certain regimes the free energy splits into two components,
one measuring the amount of classical free energy and the other
measuring the quantum contribution coming from coherence.
We show that coherence is not directly distillable as work, but
does admit activation as a relational degree of freedom. We
uncover a second form of fundamental irreversibility that
parallels the one stressed in ref. 25, but involves coherence
transformations. Finally, we shed light on new connections
between thermodynamics and entanglement theory.

Results
Free energy second laws. The approach most suited to our needs
in this work is the one followed in refs 21,25,27,28, which has
emerged from the theory of entanglement20. Thermodynamic
transformations (also called thermal operations) are defined as
the set of all energy-preserving interactions between an arbitrary
quantum system and a Gibbsian bath at a fixed temperature (see
Methods).

One can allow additional, auxiliary systems to be used
catalytically and consider thermodynamic transformations
r � waux ! s � waux, where an auxiliary system begins and
ends in the same state waux, yet enables the otherwise forbidden
thermodynamic transformation r-s. For this broad setting, it
was recently proven21 that a continuum of quantum second laws
govern the allowed thermodynamic transformations. Specifically,
the generalized free energies given by Fa(r)¼ kTSa(r||g)�
kT log ZH, ZH¼Tr[e� bH], must all decrease:

DFa � 0; 8a � 0: ð1Þ
Here g is the thermal state of the system with Hamiltonian H,
g¼ e� bH/ZH, b¼ (kT)� 1 and Sa (sometimes denoted Da) are
information-theoretic generalizations of the standard relative
entropy, called a-Rényi divergences29 (see Methods). For a-1,
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Sa(r||s) is simply the quantum relative entropy30 and the
constraints of equation (1) reduce to DFr0, where
F(r)¼Tr[rH]� kTS(r). When applied to isothermal
transformations between equilibrium states these conditions
reproduce the traditional bound on work extraction21,25 (see
Methods). However, these conditions turn out to be also sufficient
for characterizing the states accessible through thermodynamic
transformations with the aid of a catalyst, when no coherence is
present. For a system of many, uncorrelated particles only a-1
matters, so that the family of second laws collapse to the
traditional constraint of non-increasing free energy21,28.

Previous work considered either an asymptotic scenario or
assumed the states to be block-diagonal in the eigenbasis of the
Hamiltonian. Both these assumptions are insensitive to the role of
coherence. Indeed, the free energy relations are no longer
sufficient for the single-shot thermodynamics of correlated and
coherent quantum systems. As we shall see now, additional
conditions are required due to the breakdown of time-translation
invariance.

Beyond conservation laws. The idea of symmetry is powerful and
wide-reaching, and finds countless applications across physics.
However, recent work has brought the concept of asymmetry to the
fore, and shown it to be a valuable, consumable resource23,31–35.
An evolution is said to be symmetric if it commutes with the action
of a symmetry group, that is, it does not matter if the symmetry
transformation is applied before or after the dynamics takes place.
Similarly, a state is symmetric if it is invariant under symmetry
transformations and asymmetric otherwise (see Methods).
Asymmetric states, in analogy with entangled states, constitute a
resource that makes possible transformations otherwise impossible
under the constraint of a symmetry group.

It has been found that symmetry constraints for closed system
dynamics of pure quantum states (not mixed) are encoded by the
conservation of all moments of the generators of the symmetry
transformations. However, this is not the case for open quantum
system dynamics, or for mixed quantum states, and asymmetry
monotones, that is, functions that do not increase under
symmetric evolution32, can impose further, non-trivial
constraints on the dynamics22 (see Methods for a brief
discussion of the connections between the present approach
and fluctuation theorems).

Time-asymmetry and thermodynamics. Noether’s theorem tells
us that if a system has time-translation invariance then its energy
is conserved. However, in general thermodynamic scenarios, we
have no time-translation invariance, either for the thermo-
dynamic process on the system or for the quantum state of the
system. The thermodynamics of a system generally involves
irreversible dynamics and mixed quantum states out of equili-
brium, and heat can flow into and out of the thermal reservoir.

One might therefore think that the unitary group generated by
the free Hamiltonian H of the system should not play any
particular role. However, this is not the case, and from a
perspective of asymmetry we find that:

Theorem 1: The set of thermal operations on a quantum system
is a strict subset of the set of symmetric quantum operations with
respect to time-translations.

The proof of this is provided in the Methods. See also Fig. 1.
The implication of this result is that no thermodynamic process
can generate additional time-translation asymmetry in the
quantum system. A general picture emerges, where thermo-
dynamics is governed by distinct abstract resources. The
‘thermodynamic purity’ resource component, p, quantifies how
ordered the state of the system is in the presence of a thermal
bath, and its evolution is constrained by a set of free energy
differences21 (see Methods). If no quantum coherence is present
then consideration of p suffices, however more generally,
quantum thermodynamics is governed by the interplay of at
least two fundamental resources, denoted by (p, a). Free energy
relations quantify the former, whereas asymmetry theory
provides the tools to quantify the latter.

Coherence second laws. We now present thermodynamic con-
straints that go beyond free energy relations. In particular, we find
that the core measures, used to define the generalized free energy
relations21, can be extended in a natural way that provides
asymmetry measures. We introduce the following:

Definition 1: for any aZ0, the free coherence of a state r with
respect to a Hamiltonian H is

Aa rð Þ :¼ Sa r jj DH rð Þð Þ;

where DH is the operation that removes all coherence between
energy eigenspaces. Sa are the quantum Rényi divergences as
defined in the Methods.

In the same way in which free energies measure ‘how far’ a
state is from being thermal, free coherences measure ‘how far’ a
state is from being incoherent in energy, that is, time-translation
invariant (see Fig. 2). For a-1, we have A1(r)�A(r), which is
the asymmetry measure introduced in refs 33,36,37. With these
definitions on board, and from Theorem 1, we immediately have
the following result:

t = 0 t = 0
H H

t = 1 t = 1

=

e –�Hb e –�Hb 

Figure 1 | Time-translation symmetry. Connecting a thermal bath, with

Hamiltonian Hb, to a quantum state before or after free time evolution does

not make any difference to the resultant state. This simple symmetry

implies laws that constrain the approach of a state to time-translation

invariance.

D(�)

�

γ
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a

Figure 2 | Quantum thermodynamics as the combination of asymmetry

and thermodynamic purity. The blue oval represents the convex set of all

quantum states. To any state r, we can associate a ‘thermal cone’ (in red),

the convex set of states thermally accessible from it. Any state r
contributes in terms of thermodynamic purity p, which corresponds to the

deviation of DH rð Þ from the thermal state g—as measured by {Fa}—and

asymmetry a, which corresponds to the deviation of r from the manifold of

time-symmetric states (the grey region)—as measured by {Aa}.
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Theorem 2: For all aZ0, we necessarily have DAar0 for any
thermal operation.

These laws characterize the depletion of coherence and the
tendency to equilibrate onto the manifold of time-translation
invariant states. In particular, they also hold for catalytic thermal
operations where the catalyst is block-diagonal in the energy
eigenbasis and can be extended to time-dependent Hamiltonians
(see Methods). Importantly, these provide constraints that are
independent of any free energy relations.

The free energy for a-1, the relevant measure of average
work yield38, naturally splits into a classical and a quantum
contribution

F rð Þ ¼ FcðrÞþ kTA rð Þ ð2Þ
where A(r)¼ S(r||DH(r)) measures the amount of coherence in
the system and Fc rð Þ ¼ F DH rð Þð Þ is the classical free energy.
These results, together with the existing free energy relations,
allow us to say that for a-1 the classical and quantum
contributions to the quantum free energy must independently
decrease under any thermodynamic process. Notice that a similar
result, although differently interpreted, was found in the context
of quantum reference frames39.

The incompleteness of existing second laws. We now establish
that the above asymmetry relations are both independent of
the free energy relations, and provide additional non-trivial
constraints that must be obeyed in any thermodynamic process
r-s.

To this end, it suffices to consider a qubit system with
Hamiltonian H¼ |1ih1|, and choose an initial state r¼ |1ih1|,
together with the target final state

s ¼ 1� Eð Þgþ E þj i þh j:
As Sa is monotonically decreasing in a, it suffices to choose

E40 sufficiently small so that SN(s||g)rS0(r||g) to ensure all of
the free energy conditions are obeyed. However, as the initial state
is a symmetric state, and Aa(s)40 for any E40, it follows that
such a transformation is impossible to achieve via a thermo-
dynamic transformation. Thus, the free energy relations are
necessarily incomplete.

Another way of seeing that the free energy relations only
provide an incomplete description of thermodynamics is through
the notion of work. Specifically, work is taken to be an ordered
state of elevated energy. This idealized ‘work bit’ is a two-level
system with Hamiltonian Hw¼w|wihw| (ref. 25). In its simplest
form, it can be thought of as a perfectly controlled atom that gets
excited (de-excited) when energy is extracted from (pumped into)
a quantum system through a thermodynamic operation, for
example,

r � wj i wh j ! s � 0j i 0h j: ð3Þ
Given any two states, r and s, one can readily show there exists a
w40 such that for all aZ0 the free energy conditions DFar0 are
satisfied by equation (3). Thus, adding enough work, any state
transformation is possible (at least catalytically) between block-
diagonal states. In this sense, work is a universal resource
classically. However, it is easy to see that Theorem 2 implies that
for the transformation of equation (3) to be possible we need
Aa(r)ZAa(s), for all aZ0. In quantum thermodynamics, both
the energetic and the coherent properties must be considered
together.

Emergence of classicality. The constraints of Theorem 2 are not
only relevant for nanoscale thermodynamics, but also at the
macroscopic scale in the presence of correlated quantum systems
able to sustain coherence. The regime in which the coherence

second laws may be neglected is for systems composed of many,
non-interacting bodies. We formalize this question and answer it,
by showing that the free coherences per particle in a system of n
non-interacting qubits vanish in the n-N limit:

lim
n!1

Aa r� nð Þ=n ¼ 0; 8a � 0: ð4Þ

This generalizes the result found in ref. 33 for a-1 and describes
an emergent classical scenario in which states become effectively
time-symmetric. This is the reason why only the free energy
governs the asymptotic behaviour studied in ref. 28. In particular,
the following bound holds (see Methods):

0 � Aa r� nð Þ � log nþ 1ð Þ: ð5Þ
We will use equation (5) shortly to study work extraction at the
classical-quantum boundary.

Quantum Szilárd. The notions of work and heat are the primary
concerns of thermodynamics, and with the advent of nanoscale
technologies it has been necessary to revisit these time-honoured
concepts (see for example refs 24,40–44 and references therein).
The analysis of Szilárd45 showed that the information one has
about a system has an energetic value in terms of the ordered
work one can obtain from a disordered thermal reservoir3.
Specifically, the possession of a single bit of information can be
‘burnt’ to obtain kTlog2 Joules. More generally, standard
thermodynamic arguments imply that given a state r of a
d-dimensional system, in contact with a thermal reservoir at a
fixed temperature, we can obtain an amount of work
W(r)¼ kT(log d� S(r)). Previous works24,25 have shown how
to extend this result to deterministic and probabilistic work
extraction from single-quantum systems with zero coherence
across energy eigenspaces. However, when we encounter
quantum states containing coherences we must necessarily take
into account the asymmetry constraints. One might think that the
work relations extend without alteration, but this is not the case—
quantum coherences cannot be simply converted into ordered
energy, and so the standard Szilárd result must be modified.

Theorem 3: for a general work extraction:

r � 0j i 0h j ! s �
X
w

pðwÞ wj i wh j;

the work distributions p(w) that can be obtained from the
states r and DH rð Þ through time-translation symmetric opera-
tions coincide.

See Methods for a proof. This phenomenon may be called
work-locking, because coherence contributes to the free energy
(see equation (2)), but cannot be extracted as work (see also refs
38 and 25). This also sheds light on the origin of the irreversibility
noticed in ref. 25. On one hand, the work necessary to form a
state, measured by FN, is bigger than the work that we can draw
from it, given by F0, because F0oFN. This first irreversibility is
not an intrinsically quantum phenomenon, as it is a sole
consequence of the free energy constraints of ref. 21. Indeed,
this same irreversibility is present even for diagonal states
(probability distributions) undergoing thermal operations
(particular stochastic processes), a classical—albeit not
deterministic—theory. However, quantum coherence adds
another layer of irreversibility, as the work necessary to generate
the coherent part of a quantum state cannot be extracted later,
due to the fact that thermodynamic operations are time-
translation symmetric quantum maps.

In the thermodynamic limit, the work-locking phenomenon
is undetectable. From equations (2) and (5), we have
F r� nð Þ � FðDP

i
Hi

r� nð ÞÞ, when n44log n. The free energy

is effectively classical, and the maximum extractable work per
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system approaches the quantum free energy. Equation (5)
provides a bound on the rate of this suppression, and we find
for n qubits,

A r� nð Þ
F r� nð Þ �

logðnþ 1Þ
n log 2

;

independently of the temperature. For example, a naive
application of this result to the case of 5 qubits shows that up
to 50% of the free energy could be locked in coherences, whereas
this number falls to 1% for a system of 1,000 qubits.

Coherent activation of work. We have established that one must
associate to a state both purity and asymmetry, abstractly denoted
(p, a), and have shown that coherences in isolation do not con-
tribute to thermodynamic work. Schematically, if (p, a)-W, then
(p, 0)-W too. It might appear that quantum coherences have no
effect on the work output of a thermodynamic process, but this is
not the case.

In the case of states block-diagonal in energy eigenspaces, any
state that cannot be prepared under thermal operations can
be converted into mechanical work. In the fully quantum-
mechanical setting, this is no longer the case. There are states that
cannot be prepared through thermal operations from which it is
impossible to draw any useful work. These are precisely the states
r with coherence for which DH rð Þ ¼ g. An extreme case is the
pure state

ccj i ¼ Z� 1=2
H

X
k

e�bEk=2 Ekj i; ð6Þ

where |Eki are the eigenstates of H and ZH is the partition
function of H. However, although (0, a)-(W¼ 0), it turns out
coherence can be activated in the presence of other quantum
systems with coherence:

0; a1ð Þþ 0; a2ð Þ ! W 6¼ 0ð Þ: ð7Þ
By AþB-C, we mean it is possible to transform A and B jointly
into C, using thermal operations only. One might expect,
following Szilárd, that any pure state should yield kT log d of
work, but if this pure state has aa0, this is impossible.
Equation (7) tells us the only way to get kT log d is to smuggle
in coherent resources. Only if we allow the use of an external
source of coherence does this extraction of work become
possible46.
The way in which coherence in a state r can be utilized to

obtain mechanical work is readily seen from asymmetry theory
and the theory of quantum reference frames31. Having shown
that thermal operations commute with time-translation, all the
results concerning work extraction under the presence of a
superselection rule (for example, see ref. 47) can be immediately
applied to thermodynamics. If we have two quantum systems in
states r1 and r2, respectively, for which DH1 r1ð Þ ¼ g and
DH2 r2ð Þ ¼ g, then individually no mechanical work can be

obtained in the presence of a thermal reservoir. However, the two
systems can instead encode relational coherence that is accessible.
Specifically, the introduction of the second system gives
D�H r1 � r2ð Þ ¼ s12 6¼ g � g, where �H ¼ H1 � 1þ 1 � H2.
This is also why collective actions on multiple copies can
extract work in a situation in which operations on single copies
would be useless38.

Alternatively, we can distinguish one of the systems as being
the dominant reference. This perspective admits a different
physical interpretation. We take the dimension of H2 to be much
larger than H1, and the state r2 to be highly asymmetric
compared with r1. The function of r2 is now to allow the
simulation of a non-symmetric operation ~E on the first system:

~E r1ð Þ ¼ Tr2 E r1 � r2ð Þ½ � ð8Þ

A catalytic property in the use of the reference has been recently
pointed out in ref. 46 and shown to be a consequence of the fact
that time-translations are an abelian group.

Discussion
In refs 21,25, the authors showed that the work needed to create a
state r is measured by FN(r) and the work extractable is given by
F0(r). This revealed an inherent irreversibility of thermodynamic
transformations. We can now show that a similar irreversibility
characterizes the thermodynamic processing of coherence.
Although normally one wishes to distill out ordered energy via
a thermodynamic process, we could equally ask to obtain a high
degree of coherence in the final output state under the allowed
quantum operations. One could wish to obtain a d-dimensional
uniform superposition of energy states, |1(d)i:¼ d� 1/2P

k|ki.
Conversely, we may want to know how much coherence is needed
to create a quantum state. If ssym is some incoherent quantum
state, Theorem 2 requires

r ! ssym � 1 doutð Þj i 1 doutð Þh j ) log dout � A0 rð Þ
1 dinð Þj i 1 dinð Þh j � ssym ! r ) log din � A1 rð Þ;

which shows that a further, fundamental irreversibility affects
coherence processing as at least AN(r)�A0(r) amount of
coherence is lost in a cycle.

Shortly after the present work, results appeared48 on the
reduction of quantum coherence under thermal maps, including
tight bounds for qubits. Going beyond this, the work in ref. 49
applies the framework developed here to obtain both upper and
lower bounds on coherence evolution for general quantum
systems. In particular, it highlights that the structure of the
bounds in ref. 48 is symmetry based, and that coherence in
thermodynamics admits a broader mode-decomposition in terms
of spectral analysis.

Our results also shed light on the structural relationships
between entanglement theory and thermodynamics14,15,50 (see
Table 1). Beyond structural parallels, this work paves the way for

Table 1 | Structural parallels.

Quantum thermodynamics Entanglement theory

Asymptotic conversion
r� n ! s�m

Rel. entropy28

F(r)¼ kTS(r||g)� kT log ZH

Rel. entropy15

infsAS S(r||s)
W-(p,0)-W0oW Non-cyclicity25 Ent. formationaEnt. distillation
(p, a)-W’(p, 0) Work locking Bound entanglement65

(0, a1)þ (0, a2)-W Coherence activation Entanglement activation66

Quantum thermodynamics and entanglement (Ent.) manipulations present many structural parallels67. The asymptotic interconversion of states are governed by relative (Rel.) entropy to the Gibbs
states g and the relative entropy to the manifold of separable states S, respectively. The work necessary to create a state is bigger than the work extractable from it; this similarly happens with entangled
state creation and distillation. There are states that cannot be created under thermal (LOCC) operations from which no work (entanglement) can be extracted, but the resource can be activated.
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an explicit unification of the resource theories presented here, and
of the now well-developed theory of entanglement.

The resource-theoretic perspective is just one recent approach
to the thermodynamics of quantum systems, however, we argue
that this framework presents an elegant and compact perspective
on quantum thermodynamics in terms of the interconversion and
quantification of two abstract properties: thermodynamic purity
and time-asymmetry. These seem to be necessary components in
any unified framework that seeks to describe coherent processes
and generic quantum thermodynamic phenomena with no
classical counterpart.

Methods
Thermal operations. They are all quantum operations E of the form27,28:

E rð Þ ¼ Tr2 U r � gbð ÞUyh i
ð9Þ

where gb ¼ e� bHb=Tr e�bHb
� �

; b ¼ kTð Þ� 1; U ;H � 1þ 1 � Hb½ � ¼ 0 and U is a
joint unitary on system and environment. H is the Hamiltonian of the system and
Hb the Hamiltonian of the environment. The more traditional formulation of
thermodynamic processes involves time-dependent Hamiltonians. However, as
already noted in refs 21,25, this framework can encompass such scenarios through
the inclusion of a clock degree of freedom. No restrictions are imposed on the
initial and final state of the system, which are in general far from equilibrium, or on
the properties of bath or its final state. The interaction is required to preserve total
energy, so differently from traditional treatments all external sources of energy
(for example, a work source) must be included in the picture and described
quantum-mechanically.

Quantum Rényi divergences. There are two non-commutative extensions of the
notion of a�Rényi divergence30,51. They enjoy operational significance in the
regimes a41 and ao1, respectively, and coincide with the traditional quantum
relative entropy for a-1 (ref. 52). This suggests to follow ref. 52 and define

Sa r jj sð Þ ¼
1

a� 1 logTr r
as1� a½ �; a 2 ½0; 1Þ

1
a� 1 logTr s

1� a
2a rs

1� a
2a

� �ah i
; a41

(

The limit for a-1 is given by S1(r||s)¼Tr[r(log r� log s)].

Consistency with equilibrium thermodynamics. When a system undergoes an
isothermal transformation from an equilibrium state with respect to Hamiltonian
H1 to an equilibrium state with respect to Hamiltonian H2, in absence of work, then

F H1ð Þ � F H2ð Þ; ð10Þ
where F(H)¼ � kT log ZH is the thermodynamic free energy and ZH is the
partition function. The above relation is recovered within the present framework,
which shows consistency with the traditional account.

In ref. 21, it is shown that the necessary and sufficient condition for a
transformation to be possible between two incoherent quantum states r and s
while the Hamiltonian is changed from H1 to H2 is

Fa r;H1ð Þ � Fa s;H2ð Þ 8a � 0; ð11Þ
where Fa(r,H)¼ kTSa(r||gH)� kT log ZH, gH¼ e� bH/ZH and ZH¼Tr[e� bH]. For
any a, Fa(gH,H)¼ � kT log ZH and therefore if the initial and final states are
thermal, r ¼ gH1

and s ¼ gH2, all the conditions of equation (11) are equivalent to
equation (10), which fully characterizes the transformation gH1

! gH2
between

equilibrium states. However, under a broader class of non-equilibrium operations,
the conditions of equation (11) are necessary and sufficient to characterize
thermodynamic transformations between two non-equilibrium quantum states,
provided that no coherence is present.

The notion of work in the present approach is given by the notion of a work
bit25, as explained in ‘The incompleteness of existing second laws’. We can recover
another traditional bound by looking at how much work one can extract in the
transformation between two equilibrium states:

gH1
� 0j i 0h j ! gH2

� wj i wh j ð12Þ
Then all equation (11) collapse to the condition

w � F H1ð Þ� F H2ð Þ ð13Þ
as expected from traditional treatments.

Symmetric operations. Let G be a Lie group representing a symmetry, and
consider a representation of G on a Hilbert space H given by U : g 7!UðgÞ, where
g A G and U(g) is a unitary on H. A quantum operation EG : BðHÞ ! BðHÞ is
called symmetric if 22,23,31:

EG U gð ÞrUy gð Þ
� �

¼ UðgÞEG rð ÞUy gð Þ; 8r;8g 2 G: ð14Þ

A state is called symmetric if it is invariant under symmetry transformations,
U(g)rUw(g)¼ r. An intuitive example is for the SU(2) representation of the
rotation group in three dimensions. The group action defines rotations of quantum
states, and those that are invariant (such as the singlet state on two spins) are
rotationally symmetric, while all others are asymmetric.

Connection to fluctuation theorems. We can compare our framework with well-
established results in non-equilibrium thermodynamics. Specifically, we compare
with fluctuation theorem approaches53–56 that supply powerful descriptions of
systems far from equilibrium. The approach of such fluctuation theorems has
significant limitations that are not present in the approach taken here. First,
although fluctuation theorems can be written down for quantum systems, they only
capture stochastic effects, which are ‘effectively classical’ in nature. More
specifically, the requirement of destructive measurements on the initial state
unavoidably kills any coherence between energy eigenspaces, and unavoidably kills
entanglement between systems. Attempts to generalize to positive operator valued
measures (POVMs) quickly hit obstacles when it comes to the pairing of time-
reversed trajectories. As such, only a limited set of quantum mechanical features
can ever be addressed through fluctuation theorems.

Another issue is the focus on the expectation values of random variables—for
example, the moments of work-gain. For small systems, the distributions involved
can be quite broad and structured and so it is arguably more natural to analyse it in
finer terms, such as those developed within ‘single-shot’ regimes42,57. More
significantly, it has been shown recently that even if you knew all the moments
Ôk
� 	

of a quantum observable Ô, this is insufficient to describe the mixed state

quantum mechanics of a system in the presence of a conservation law on Ô
(ref. 22). In our case, the consequences of energy conservation are not fully
captured by energy measurements, the reason being that coherence properties must
be also taken into account. Our work is a first step in this direction.

The common feature of these points is that the traditional approaches, when
applied to more and more extreme quantum systems, hit against a range of
obstacles. The single-shot thermodynamics that has recently emerged has been
shown to be consistent with existing thermodynamics, but nevertheless does not
suffer from any of the above points. Indeed, as it has been developed from
entanglement theory and the theory of quantum information, the framework is
ideally suited to describe such phenomena.

Proof of Theorem 1. We need to prove (see equation (14)):

8t; E e� iHtreiHt
� �

¼ e� iHtEðrÞeiHt : ð15Þ

For any bath system, gb / e�bHb . From equations (9) and (15) follows using
[Hb, gb]¼ 0 and [U, HþHb]¼ 0. That these operations form a proper subset is
seen from the fact that transforming an energy eigenstate into any other energy
eigenstate is a symmetric operation, but not a thermally allowed operation.

Thermodynamic purity. Our main result shows that a fundamental resource for
the thermodynamics of coherent quantum states is time-translation asymmetry.
Previous work28 has already identified the ‘thermodynamic purity’ p of a quantum
state as a resource for thermodynamics. We speak of ‘thermodynamic purity’
because, as we shall see, purity in the thermodynamic framework appears within an
embedding that takes the Gibbs state to the maximally mixed state. The mapping is
effectively the same as that between the canonical and microcanonical ensembles in
textbook treatments. While our main results show that thermodynamics is a special
resource theory of asymmetry, the ideas that we briefly summarize here show that
thermodynamics is a special theory of purity (see Appendix D of ref. 21 for details).
The need for two sets of second laws arises from this duality.

The problem solved in ref. 21 is to give necessary and sufficient conditions for
the existence of a stochastic operation Lth that maps a probability distribution p to
p0 through the aid of a catalyst and leaves the thermal state unchanged:

Lth p � qð Þ ¼ p0 � q; Lth g � Zcð Þ ¼ g � Zc; ð16Þ
where g is the thermal state of the system (for simplicity, take initial and final
Hamiltonian to coincide). Notice that the catalyst can be taken to have a trivial
Hamiltonian21, so that the thermal state of the catalyst is a uniform distribution,
denoted by Zc. Here q acts as a catalyst and as such must be given back unchanged.
Notice that this approach is limited to quantum states diagonal in the energy basis.
An important observation is that operations that leave the thermal state unchanged
are equivalent (in terms of interconversion structure) to thermal operations as
defined in refs 25,27,28 only if we limit ourselves to initial and final states diagonal
in energy (see also ref. 58).

A problem similar to equation (16) was solved in ref. 59 for stochastic maps
having the uniform distribution (rather than the thermal distribution) as a fixed
point. This was done through an extended notion of majorization, called trumping.
Given two probability distributions p and p0 we say that p can be trumped into p0 if
and only if there exists a probability distribution q (the catalyst) such that p � q
majorizes p0 � q. From the Birkhoff-von Neumann theorem, this is equivalent to
the existence of a stochastic map L such that

L p � qð Þ ¼ p0 � q; L Z � Zcð Þ ¼ Z � Zc; ð17Þ
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where Z and Zc are uniform distributions. Notice that stochastic maps which
leave the maximally mixed state unchanged give rise to an interconversion
structure that is essentially the same as the resource theory of purity studied
previously60. A necessary and sufficient condition for equation (17) to hold was
given in ref. 61:

Sa p k Zð Þ � Sa p0 k Zð Þ; 8a ð18Þ
Here Sa( 	 ||Z) are relative Rényi divergences w.r.t. the uniform distribution Z. They
measure how pure (that is, far from uniform) a distribution is. To exploit these
results to solve problem (16), we need a map embedding the thermal state into the
uniform distribution. Given integers d¼ {d1,...,dn},

P
idi¼N, the authors of ref. 21

defined an embedding map Gd as

Gd pð Þ ¼ 
 ipiZi; ð19Þ

where Zi is the uniform distribution of dimension di. Gd is a map from a space of
n-dimensional distributions, which could be called canonical space, to a space of
N-dimensional probability distributions, which could be called microcanonical
space. The reason for these names is as follows. Let us assume for simplicity
that the thermal distribution g is rational. Then it is easy to see that there
exists d:

Gd gð Þ ¼ Z; ð20Þ

where Z is the N-dimensional uniform distribution.
Crucially, it is possible to show that

Sa pkgð Þ ¼ Sa Gd pð ÞkZð Þ; ð21Þ
Because Fa(r)¼ kTSa(r||g)� kT log ZH, this shows that the free energy and the
purity measures are mapped one into the other by Gd and its inverse G�

d . For this
reason, the generalized free energy differences can be considered measures of
thermodynamic purity within the thermodynamic setting. As a consequence of
equation (21) and the definition of Fa, if all Fa decrease the purity measures in the
embedding space will decrease as well:

Fa pð Þ � Fa p0ð Þ , Sa Gd pð Þ jj Zð Þ � Sa Gd p0ð Þ jj Zð Þ
Using the necessary and sufficient conditions for trumping (that is, that equations
(17) and (18) are equivalent), this implies that the condition of decreasing Fa is
equivalent to the existence of a stochastic map L that preserves Z � Zc and maps
Gd(p) to Gd(p0) through a catalyst q. The map Lth ¼ G�

d � 1
� �

L Gd � 1ð Þ is a
stochastic map from the canonical space to itself. As required,

Lth p � qð Þ ¼ G�
d � 1

� �
L Gd pð Þ � qð Þ ¼

¼ G�
d � 1

� �
Gd p0ð Þ � qð Þ ¼ p0 � q:

Moreover, Lth g � Zcð Þ ¼ g � Zc , so it is thermal. The embedding map shows a
duality between a theory of purity in the microcanonical space and
thermodynamics in the canonical space. This proves the decreasing of all
generalized free energies Fa is equivalent to the existence of Lth and q satisfying
equation (16) (with the catalyst having a trivial Hamiltonian).

The embedding maps carry zero coherence deviation from equilibrium into the
consideration of the purity resource theory on a larger space. Hence, it is not
possible to handle coherence in this construction. As a consequence, it is necessary
to go beyond free energy relations to capture the role of quantum coherence in
thermodynamics.

Beyond free energy constraints. Proof of Theorem 2: By assumption, there exists
some thermal operation E such that s ¼ E rð Þ. Since E is a thermal operation, then
it is symmetric (Theorem 1). Integrating equation (15) over t gives31

E;DH½ � ¼ 0: ð22Þ
Using equation (22) and the data processing inequality for quantum Rényi
divergences52,62–64, we deduce the coherence second laws.

The coherence second laws presented in Theorem 2 hold also for a broader set
of operations, which allow the aid of a catalyst block-diagonal in energy, as in
ref. 21:

Definition 2: We say that a state r in H is transformed into state s through a
catalytic thermal operation

r�!cat s; ð23Þ
if there are a quantum state rc in a Hilbert space Hc with Hamiltonian Hc and a
thermal operation E on H � Hc:

E ¼ r � rcð Þ ¼ s � rc: ð24Þ
Theorem 4: Catalytic thermal operations with a block-diagonal catalyst are

symmetric operations, that is, if H is the system’s Hamiltonian and C is a catalytic
thermal operation,

C e� iHtreiHt
� �

¼ e� iHtC rð ÞeiHt ð25Þ
Proof: A state r is sent to r0 through a catalytic thermal operation with

diagonal catalyst if there exists a state s, s.t. [s, Hc]¼ 0, and a thermal
operation E : E r � sð Þ ¼ r0 � s. We show that the quantum map
C rð Þ ¼ Tr2E r � sð Þ ¼ r0 is symmetric. Define Htot¼HþHcþHb,

sum of the Hamiltonians of system, catalyst and bath. Notice that
s ¼ e� iHc tse� iHc t ; gb ¼ e� iHb tgbe

� iHb t . It follows

C e� iHtreiHt
� �

¼Tr2E e� iHtreiHt � s
� �

¼Tr23 Ue� iHtreiHt � s � gbU
yh i

¼Tr23 e� iHtot tUr � s � gbU
ye� iHtot t

h i
¼e� iHtTr2 E r � sð Þ½ �eiHt

¼e� iHtC rð ÞeiHt :
Theorem 5: If [rc, Hc]¼ 0,

r�!cat s ) Aa sð Þ � Aa rð Þ; 8a � 0: ð26Þ
Proof: Follows from Theorem 4 in the same way in which Theorem 2 follows

from Theorem 1.

Coherence second laws for time-dependent Hamiltonians. In many thermo-
dynamic applications, Hamiltonians are time-dependent. As shown in refs 21,25,
we can deal with these situations introducing a classical degree of freedom
representing a clock system. This classical degree of freedom can be thought of as a
switch for changing the Hamiltonian (for example, the knob tuning a magnetic
field). Hence, we might interpret the transformation

r � 0j i 0h j ! s � 1j i 1h j ð27Þ
as the transformation sending r with initial Hamiltonian H0 to s with Hamiltonian
H1, once we formally define the Hamiltonian

H ¼ H0 � 0j i 0h j þH1 � 1j i 1h j ð28Þ
which can be interpreted as a Hamiltonian H0 that changes into H1 as
the switch goes from 0 to 1. Then Theorem 2 admits the following natural
extension:

Theorem 6: for all aZ0, we necessarily have DAar0 for any thermal operation
between r and s in which the Hamiltonian is switched from H0 to H1. Here we
defined

DAa ¼ Aa s;H1ð Þ�Aa r;H0ð Þ; ð29Þ
where Aað	;HiÞ ¼ Sa 	 jj DHi ð	Þð Þ.

Proof: From Theorem 2 applied to the Hamiltonian of equation (28), we get

Aa r � 0j i 0h j;Hð Þ � Aa s � 1j i 1h j;Hð Þ:
But DH r � 0j i 0h jð Þ ¼ DH0 � 0j i 0h j r � 0j i 0h jð Þ ¼ DH0 rð Þ � 0j i 0h j. Hence,
Aa r � 0j i 0h j;Hð Þ ¼ Aa r;H0ð Þ, and similarly for H1. The result follows.

Proof of equation (5). We show that for any qubit state r and aZ0,

0 � Aa r� nð Þ � log nþ 1ð Þ: ð30Þ
Proof: without loss of generality we can fix the Hamiltonian of the system to be

the Pauli Z. Assume we are able to prove the result for every pure qubit state cj i.
Then for every r there exists p and cj isuch that

r ¼ p cj i ch j þ 1� pð Þ1=2 :¼ Emix cj i ch jð Þ ð31Þ
Mixing with the identity is a time-translation symmetric operation:

Emix e� iHtseiHt
� �

¼pe� iHtseiHt þ 1� pð Þ1=2
¼e� iHtEmixðsÞeiHt

Hence, we can map cj i ch j� n! r� n by means of symmetric operations.
However, it is easy to see that Theorem 2 holds, more generally, for any
symmetric operation, so

Aa cj i ch j� n� �
� Aa r� nð Þ; 8a � 0: ð32Þ

We conclude that we need to prove the bound only for pure states and from
equation (32) the result will follow for any state. Because rotations about
Z are symmetric operations, we can assume cj i to lie on the xz plane of the
Bloch sphere:

r ¼ cj i ch j ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p
p

� �
ð33Þ

We will use the notation DPn

i¼1
Zi

� D. Expanding in the computational basis,

D r� nð Þ ¼ 
 n
h¼0p

n� h 1� pð Þh 1hj i 1hh j; 1hj i ¼ ð1; :::; 1Þ|fflfflfflffl{zfflfflfflffl}
n
h

� �
elements

: ð34Þ

It is useful to introduce a vector |vni whose components are grouped in blocks as

follows: 1 component equal to
ffiffiffiffiffi
pn

p
;

n
1

� �
components equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pn� h 1� pð Þ
p

; . . . ;
n
h

� �
components equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn� h 1� pð Þh

q
; . . . ; 1
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component equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pð Þn

p
. Then we can compactly rewrite

r� n ¼ vnj i vnh j ð35Þ
Define

P ¼ D r� nð Þ
1� a
2a vnj i vnh jD r� nð Þ

1� a
2a :

From the definition of Aa,

Aa r� nð Þ ¼ 1
a� 1

log Tr Pa½ �; ð36Þ

From 1h j 1hh i ¼ n
h

� �
, for all a40 we have

1hj i 1hh jð Þ
1� a
2a ¼ n

h

� � 1� a
2a � 1ð Þ

1hj i 1hh j;

so that from equation (34),

D r� nð Þ
1� a
2a ¼ 
 n

h¼0
n
h

� �1� 3a
2a

pn� h 1� pð Þh
h i1� a

2a
1hj i 1hh j:

Define wnj i ¼ D r� nð Þ
1� a
2a vnj i. Then P¼ |wnihwn| and

wnj i ¼ 
 n
h¼0

n
h

� �1� 3a
2a

pn� h 1� pð Þh
h i1� a

2a
1hj i 1hh j vnj i:

The vector |wni is also grouped in blocks h¼ 0,1,..., n, each of
n
h

� �
equal

elements. One of the elements of the h-block can be found as follows: the block of

ones |1hih1h| sums the elements in the h-block of |vni (which are
n
h

� �
and

identical), getting
n
h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pn� h 1� pð Þh

q
). Adding the prefactors, we see that the

elements of the h-block of |wni look like:

n
h

� �1� 3a
2a

pn� h 1� pð Þh
h i1� a

2a n
h

� �
p
n� h
2 1� pð Þ

h
2:

We conclude

wnh j ¼ 1; . . . ;
n
h

� �1� a
2a

pn� h 1� pð Þh
h i 1

2a

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n
h

� �
elements

; . . . ; 1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Assume a 2 N. Then

Tr Pa½ � ¼ wnh jwnið Þa: ð37Þ
But

wn j wnh i ¼
Xn
h¼0

n
h

� �1=a

p
n� h
a ð1� pÞ

h
a
: ð38Þ

Combining this and equation (37) we obtain

Tr Pa½ � ¼ xðnÞk k1=a; ð39Þ

with

xðnÞ :¼ n
0

� �
pn; :::;

n
h

� �
pn� h 1� pð Þh; ::::; n

n

� �
1� pð Þn

� �
;

and we used the usual definition of ‘p-norm

xk kp¼
X
i

xij jp
 !1

p

:

Assume a41. The monotonicity of ‘p-norms

q4r40 ) xðnÞk kq� xðnÞk kr ð40Þ

implies

xðnÞk k1=a� xðnÞk k1¼
Xn
h¼0

n
h

� �
pn� h 1� pð Þh¼ 1:

Now, because

Aa r� nð Þ ¼ 1
a� 1

log xðnÞk k1=a ð41Þ

this means that for a41 any upper bound on ||x(n)||1/a gives an upper
bound on Aa.

Fix a41. We can now use the following identity concerning p-norms (that
follows from Hölder inequality): for all p4r40, if y is a sequence of k elements,

yk kr� k
1
r � 1

p

� �
yk kp:

Choose p¼ 1, r¼ 1/a:

xðnÞk k1=a� nþ 1ð Þa� 1: ð42Þ

Hence, substituting in equation (41),

Aa r� nð Þ � 1
a� 1

log ðnþ 1Þa� 1� �
¼ logðnþ 1Þ;

for all integers a41. From the monotonicity in a of Aa (ref. 30), it is easy to see
that this implies the result for every aZ0, as required. The other inequality, AaZ0,
follows immediately from the properties of Sa.

Work-locking. Proof of Theorem 3: The state DH rð Þ can be obtained from
r through dephasing in energy, which is easily shown to be a time-translation
symmetric operation. Hence, any work distribution that can be obtained from
DH rð Þ can be obtained from r as well. Conversely, suppose it is possible to obtain
from r a work distribution p(w) through a time-symmetric operation E:

E r � 0j i 0h jð Þ ¼ s �
X
w

pðwÞ wj i wh j: ð43Þ

If we apply E to DH rð Þ, it is easy to see from equation (22) and (43)

E DH rð Þ � 0j i 0h jð Þ ¼ DHðsÞ �
X
w

pðwÞ wj i wh j: ð44Þ

Hence, any work distribution that can be extracted from r can be obtained from
DH rð Þ as well through the same E.
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relative entropy. Comm. Math. Phys. 331, 593–622 (2014).

52. Mosonyi, M. & Ogawa, T. Quantum hypothesis testing and the operational
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