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Abstract
Spin textures with nontrivial topology, such as vortices and skyrmions, have attracted attention
as a source of unconventional magnetic, transport, and optical phenomena. Recently, a new
generation of topological spin textures has been extensively studied in itinerant magnets; in
contrast to the conventional ones induced, e.g., by the Dzyaloshinskii–Moriya interaction in
noncentrosymmetric systems, they are characterized by extremely short magnetic periods and
stable even in centrosymmetric systems. Here we review such new types of topological spin
textures with particular emphasis on their stabilization mechanism. Focusing on the interplay
between charge and spin degrees of freedom in itinerant electron systems, we show that
itinerant frustration, which is the competition among electron-mediated interactions, plays a
central role in stabilizing a variety of topological spin crystals including a skyrmion crystal
with unconventional high skyrmion number, meron crystals, and hedgehog crystals. We also
show that the essential ingredients in the itinerant frustration are represented by bilinear and
biquadratic spin interactions in momentum space. This perspective not only provides a unified
understanding of the unconventional topological spin crystals but also stimulates further
exploration of exotic topological phenomena in itinerant magnets.

Keywords: skyrmion crystal, topological magnetism, itinerant magnet, itinerant frustration,
multiple-Q magnetic order, RKKY interaction, biquadratic spin interactions
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1. Introduction

Noncollinear and noncoplanar spin textures have drawn con-
siderable interest in condensed matter physics, since they often
give rise to topologically nontrivial quantum states and asso-
ciated unconventional phenomena. Such intriguing aspects
are brought by chirality degrees of freedom consisting of

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

multiple-spin products: the spin vector chirality defined by a
vector product of spins, Si × S j, and the spin scalar chirality by
a triple scalar product, Si · (S j × Sk) [1–3]. The noncollinear
and noncoplanar spin configurations with nonzero vector and
scalar chiralities can result in unconventional electronic struc-
tures and transport properties through the spin Berry phase
[4–9]. The quantum topological Hall effect is one of such
unconventional phenomena, directly reflecting the nontrivial
topology in the electronic band structure modified by non-
coplanar spin textures; notably, the Hall coefficient can be
quantized at an integer value when the system becomes a
topologically nontrivial Chern insulator [10–12].

Theoretically, various noncollinear and noncoplanar spin
textures can be engineered by taking superpositions of spin
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Figure 1. Schematic pictures of various topological spin crystals given by the superposition of the proper-screw spirals, cycloidal spirals,
and sinusoidal waves on square, triangular, and cubic lattices. SkX, VX, and HX stand for the skyrmion crystal, vortex crystal, and hedgehog
crystal, respectively. The leftmost panels represent the wave vectors for each superposition. In the right three columns, the color of the
arrows represents the z component of spins.

density waves, which are called multiple-Q magnetic states
[3, 13–16]. We present several examples in figure 1. In the
two-dimensional case, a superposition of proper-screw spirals
can constitute a periodic array of the Bloch-type skyrmions,
which is called the Bloch skyrmion crystal (SkX) [17–19],
while a superposition of cycloidal spirals can lead to a Néel
SkX [20, 21], as shown in figure 1. Meanwhile, multiple-Q
sinusoidal waves can give rise to a vortex crystal (VX) with
a periodic array of coplanar spin vortices and another type of
the SkX with the skyrmion number of two (nsk = 2) [22, 23].
In each case, square- and triangular-lattice-type spin super-
structures are obtained by superpositions of two orthogonal
and three 120◦ waves, respectively. On the other hand, in the
three-dimensional case, multiple-Q magnetic states may give

rise to periodic arrays of another topological objects, the mag-
netic hedgehogs [24–30]. In the bottom of figure 1, we dis-
play three examples of such hedgehog crystals (HXs) com-
posed of three proper-screw, cycloidal, and sinusoidal waves.
Reflecting the noncollinear and noncoplanar spin configura-
tions, all these spin textures exhibit unusual multiferroic phe-
nomena and quantum transports through the spin Berry phase
mechanism [31–38]. In this review, we call such multiple-Q
magnetic states with nontrivial topology as ‘topological spin
crystals’ [39] 1.

1 We use the term ‘topological’ in a broader sense in the following to include
the magnetic spin textures in which the spin chirality is nonzero locally but
the integrated value over the whole system is canceled out.
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Several stabilization mechanisms have been proposed for
such topological spin crystals. A famous one is based on the
Dzyaloshinskii–Moriya (DM) interaction in noncentrosym-
metric magnets where spatial inversion symmetry is broken
in the lattice structure [40, 41]. As the DM interaction has
a form of Di j · (Si × Sj), where Di j is the DM vector set by
the lattice structure, it tends to twist the spin configurations.
Indeed, competition between the DM and ferromagnetic inter-
actions gives rise to instabilities toward the SkXs in an external
magnetic field [42–50]. Besides, the topological spin crystals
are also stabilized by various other mechanisms, such as the
long-ranged magnetic dipole interactions [51–55], frustrated
exchange interactions [56–59], and multiple-spin interactions
[60–63]. These mechanisms have been discussed to unveil
the microscopic origin of a variety of topological spin crys-
tals discovered in experiments [64], such as the SkXs in B20
compounds [17, 18, 65–67], other intermetallic compounds
[68–72], oxides [19, 21, 73, 74], sulfides [20], and monolay-
ers [62, 75], antiskymions in Heusler compounds [76, 77], and
meron crystals in a magnetic alloy [78].

In this article, we give an overview on yet another mecha-
nism, itinerant frustration, which is partly related to the frus-
trated exchange interactions and the multiple-spin interactions.
This is a mechanism inherent to itinerant magnets where the
spin and charge degrees of freedom of electrons are coupled
by electron correlations. In such spin-charge coupled systems,
the itinerant electrons induce effective magnetic interactions
which tend to twist the spin configurations. The most well-
known interaction is the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction derived by the perturbation in terms of
the spin-charge coupling [79–81]. The RKKY interaction is
long-ranged and oscillating with a period set by the character-
istic Fermi wave number in itinerant electrons; thus, it favors
a single-Q spiral state characterized by the Fermi wave num-
ber. Nonetheless, since there are in general several symmetry-
related Fermi wave vectors according to the symmetry of the
Fermi surface, the instability toward the single-Q spiral state
may occur at the multiple wave vectors simultaneously. This
is a kind of frustration characteristic of itinerant electron sys-
tems, in the sense that the electron-mediated interaction leads
to the degeneracy between different single-Q spirals states. We
call this the itinerant frustration. In this situation, higher-order
contributions beyond the RKKY interaction, which are given
in a form of multiple-spin interactions, lift the degeneracy and
may stabilize multiple-Q spin states. Among many contribu-
tions, it has been unveiled that an effective positive biquadratic
(four-spin) interaction plays an important role in stabilizing
topological spin crystals [23, 82–88]. As the underlying mech-
anism is generic in itinerant magnets and is irrespective of
lattice structures, it has garnered attention for understanding
the microscopic origins of various topological spin crystals,
especially the recently discovered ones that are hard to under-
stand by the conventional scenarios because of the extremely
short magnetic periods and the centrosymmetric lattice struc-
tures. Indeed, the itinerant frustration has been intensively
discussed, e.g., for the VXs in MnSc2S4 [89, 90], CeAuSb2

[91–93], and Y3Co8Sn4 [94], the SkXs in Co–Zn–Mn
alloys [71], EuPtSi [95–97], Gd2PdSi3 [98–105], Gd3Ru4Al12

[106, 107], and GdRu2Si2 [108, 109], and the HXs in
MnSi1−xGex [27–29, 110] and SrFeO3 [111–114].

The purpose of this article is to review the theoretical find-
ings of topological spin crystals in itinerant magnets. A key
concept is the itinerant frustration arising from the itinerant
nature of electrons. Starting from the definition of the itinerant
frustration in comparison with the conventional frustration in
the short-range exchange interactions in insulating magnets,
we review a variety of the multiple-Q instabilities caused by
the itinerant frustration. Our emphasis is laid on the importance
of the effective long-range biquadratic interaction which lifts
the degeneracy at the level of the bilinear interaction and sta-
bilizes noncollinear and noncoplanar spin textures. We discuss
that the effective bilinear–biquadratic spin model in momen-
tum space provides a canonical model for understanding the
multiple-Q instabilities in itinerant magnets. Furthermore, we
show that the model and its extensions successfully explain
the origins of multiple-Q topological spin crystals recently dis-
covered on various lattice structures, both centrosymmetric
and noncentrosymmetric, and with unusually short magnetic
periods.

The organization of this paper is as follows. In section 2,
after reviewing the frustration in insulating magnets, we intro-
duce the concept of itinerant frustration inherent to itiner-
ant magnets. We discuss their similarities and differences by
exemplifying the magnetic interactions in real and momen-
tum spaces. We also present the expressions of the effec-
tive multiple-spin interactions derived from the perturbation
expansion in terms of the spin-charge coupling in itinerant
magnets, which are relevant to the multiple-Q topological
spin crystals. In section 3, we review the multiple-Q topo-
logical spin crystals found in the Kondo lattice model by
focusing on three types of the Fermi surface instabilities:
the perfect nesting, the nesting by the multiple connections
of the Fermi surfaces in the extended Brillouin zone, and a
more generic situation where the bare susceptibility has multi-
ple maxima connected by the lattice symmetry. In section 4,
we present the effective spin model with the bilinear and
biquadratic interactions in momentum space, which repro-
duces well the multiple-Q topological spin crystals discov-
ered in the Kondo lattice model. We show that the effective
spin model provides a powerful framework not only to under-
stand the microscopic origin of the multiple-Q topological spin
crystals found in experiments but also to encourage a further
exploration of exotic topological states, since it enables us to
investigate a wide parameter region systematically by smaller
computational costs than those for the original itinerant elec-
tron problems. We also present a plethora of the multiple-Q
topological spin crystals by incorporating various additional
interactions, such as the anisotropic interaction, single-ion
anisotropy, and the DM interaction, in the effective spin mod-
els in section 5. Section 6 is devoted to the summary and
future perspective.

2. Localized versus itinerant frustration

Frustration is a conflict of competing interactions, which
has often been discussed in insulating magnets on
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geometrically-frustrated lattice structures [115–118]. There,
the frustration arises from the competing short-range exchange
interactions. Meanwhile, the concept of frustration can also
be introduced in itinerant magnets, where the conflict occurs
between long-range interactions mediated by itinerant elec-
trons. This is termed as the itinerant frustration in this article.
In the following, we discuss similarities and differences
between the localized and itinerant frustration, by describing
the essence of the frustration in insulating magnets in section
2.1 and in itinerant magnets in section 2.2. In section 2.3, we
outline the derivation of the effective multiple-spin interac-
tions which play an important role in lifting the degeneracy in
the itinerant frustration.

2.1. Frustration in insulating magnets

Before introducing the itinerant frustration, let us start by
briefly reviewing the frustration in insulating magnets. A sim-
ple model for the insulating magnets is given by the Heisen-
berg Hamiltonian as

HHeis =
∑

i j

Ji jSi · S j, (1)

where Si denotes the localized spin at site i and Ji j is the
exchange coupling constant between i and jth spins. For sim-
plicity, we treat the spins as the classical vectors normalized
as |Si| = 1. The Fourier transform of the Hamiltonian in (1) is
expressed as

HHeis =
∑

q

JqSq · S−q, (2)

where
Jq =

∑
i j

Ji je−iq·(ri−r j), (3)

and Sq is the Fourier transform of Si; ri is the position vector
for site i.

In the model in (2), owing to the constraint
∑

q |Sq|2 = N,
the minimization of Jq gives the ground state. We consider two
examples on the square and triangular lattices, as shown in
figures 2(a) and (b), respectively. In both cases, we assume the
nearest- and third-neighbor exchange interactions, J1 and J3,
respectively. For the square lattice case, Jq is explicitly written
as

Jq = 2J1(cos qx + cos qy) + 2J3(cos 2qx + cos 2qy), (4)

while for the triangular lattice case, it is written as

Jq = 2J1

[
cos qx + cos

(
qx

2
+

√
3qy

2

)

+ cos

(
qx

2
−

√
3qy

2

)]

+ 2J3

[
cos 2qx + cos

(
qx +

√
3qy

)
+ cos

(
qx −

√
3qy

)]
,

(5)

where the lattice constant is taken to be unity for each lattice.

Figure 2(c) shows the contour plot of Jq by taking J1 = −1
and J3 = 0 on the square lattice. In this case, Jq has the min-
imum at q = 0, indicating that the ground state of the sys-
tem becomes ferromagnetic. When the sign of J1 is reversed
to be positive, the sign of Jq is also reversed, and hence,
Jq has the minimum at the Brillouin zone edge, q = (π, π).
Thus, in this case, the ground state is given by a collinear
antiferromagnetic state with staggered spin order. In these
two situations, the interaction energy is optimized for all
the bonds simultaneously, and as a result, the ground state
is unique (without degeneracy), i.e., there is no frustration
in the system.

In the triangular lattice case, while the situation is the same
for the ferromagnetic case with J1 = −1 as shown in figure
2(d), it is impossible to optimize the energy on all the bonds
simultaneously for the antiferromagnetic case with J1 = 1. In
this case, the conflict of the interaction is relieved by three-
sublattice ordering with 120◦ noncollinear spin configuration.
This corresponds to the ordering vector at the Brillouin zone
edges, q = (4π/3, 0), where the reversed Jq is minimized in
figure 2(d). In this situation, therefore, the ground state is also
unique and there is no frustration in the system.

Figures 2(e) and (f) show the results when we introduce
J3 = 0.5 for the square and triangular lattice cases, respec-
tively. In these cases, Jq show the minimum at the mul-
tiple wave vectors: Q1 = (π/3, π/3) and Q2 = (π/3,−π/3)
for the square lattice case, and Q1 = (2π/5, 0), Q2 =
(−π/5,

√
3π/5), and Q3 = (−π/5,−

√
3π/5) for the triangu-

lar lattice case. The momenta are related with each other by
the rotational symmetry of the square and triangular lattices.
In these cases, therefore, the spiral state with one of the wave
vectors, Qν , has the same energy with that with other Qν′

(ν, ν ′ = 1, 2 for square and 1, 2, 3 for triangular), leading to
the degeneracy in the ground state. This is an example of the
frustration in insulating magnets2.

In this circumstance, there is a chance to stabilize a
multiple-Q state by taking into account additional other inter-
actions to the model in (1), such as the magnetic anisotropy
[24, 25, 57–59, 119–122], bond-dependent interactions in the
form of compass and Kitaev type [123–130], and higher-order
multiple-spin interactions derived by higher-order exchange
processes beyond the Heisenberg one [60, 131–135]. Also,
thermal fluctuations [56, 136, 137], quantum fluctuations
[138–141], and disorder by impurities [142–146] play a role in
stabilizing such multiple-Q states. We note that some of these
attempts have been devoted to understanding of the multiple-
Q instability in itinerant magnets by taking the localized spin
models as effective models; see also section 2.3.5.

2.2. Frustration in itinerant magnets

In contrast to the insulating case, itinerant magnets naturally
have the instability toward multiple-Q topological spin crystals

2 We note that the frustration is often used for the cases with a macroscopic
number of degenerate ground states in the classical systems. We, however, use
it in a broader sense here by including the cases with the degeneracy associated
with the lattice rotational symmetry, for illustrating the analogy to the itinerant
frustration in section 2.2.
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Figure 2. (a) Square and (b) triangular lattice structures. J1 and J3 represent the nearest- and third-neighbor exchange interactions,
respectively. (c)–(f) The contour plots of Jq for the square lattice model with (c) J3 = 0 and (e) J3 = 0.5, and the triangular lattice model
with (d) J3 = 0 and (f) J3 = 0.5. In all the cases, we take J1 = −1; see (4) and (5). The squares in (c) and (e) and the hexagons in (d) and
(f) represent the first Brillouin zone. Qν in (e) and (f) are the wave vectors where Jq is minimized.

even without additional interactions, fluctuations, and so on
(several examples will be shown in section 3). The instability
is understood from effective multiple-spin interactions rooted
in the kinetic motion of itinerant electrons. In this section, we
introduce the concept of itinerant frustration and show how
such an instability arises from it.

To illustrate the situation, it is convenient to introduce a
model in which itinerant electrons are coupled with localized
spins via the exchange coupling. The model is called the s–d
model or the Kondo lattice model, whose Hamiltonian is given
by

HKLM = −
∑
i, j,σ

ti jc
†
iσc jσ + JK

∑
i,σ,σ′

c†iσσσσ′ciσ′ · Si, (6)

where c†iσ (ciσ) is a creation (annihilation) operator of an itin-
erant electron at site i and spin σ. The first term represents the
kinetic motion of itinerant electrons with the transfer integral
ti j between sites i and j; the nearest-neighbor hopping t1 = 1 is
set as an energy unit. The second term represents the exchange
coupling between itinerant electron spins and localized spins;
σ = (σx , σy, σz) is the vector of Pauli matrices, Si is a local-
ized spin at site i, and JK is the exchange coupling constant. As
in the previous section, we treat Si as the classical spin with
|Si| = 1, for which the sign of JK is irrelevant. The Fourier
transform of the model in (6) is expressed as

HKLM =
∑
k,σ

εkc†kσckσ +
JK√

N

∑
k,q,σ,σ′

c†kσσσσ′ ck+qσ′ · Sq, (7)
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Figure 3. (a) and (c) The contour plots of the bare susceptibility χ0
q as a function of q for (a) the square lattice model with t3 = −0.5 and

μ = 0.98 and (c) the triangular lattice model with t3 = −0.85 and μ = −3.5; we take t1 = 1. The maxima of χ0
q are located at Q1 and Q2 in

(a), while Q1, Q2, and Q3 in (c). In both cases, Qν are connected with each other by the rotational symmetry of the lattice structure. The
white square in (a) and hexagon in (c) represent the first Brillouin zone. (b) and (d) Display the Fermi surfaces corresponding to (a) and (c),
respectively. Qν are the nesting vectors giving the maxima of χ0

q in (a) and (c). Reprinted figure with permission from [23], Copyright (2017)
by the American Physical Society.

where εk is the energy dispersion of the electrons given by

εk = −
∑

i j

ti je
−ik·(ri−r j), (8)

and c†kσ and ckσ are the Fourier transform of c†iσ and ciσ , respec-
tively. In the second term in (7), Sq is the Fourier transform
of Si and N is the number of sites. This term represents the
scattering of itinerant electrons by the localized spins with
momentum transfer q.

The model in (6) and (7) is one of the fundamental mod-
els to describe the electronic and magnetic properties in rare-
earth compounds [147–149]. It is, however, also relevant to a
wider range of itinerant magnetism, e.g., in transition metal
compounds which are described by the Hubbard-type mod-
els [150–153], when the mean-field approximation for the
Coulomb interaction is justified [12].

Although the instability toward multiple-Q topological spin
crystals in (6) has been studied in both strong-coupling regime
(JK � ti j) [154–160] and weak-coupling regime (JK � ti j)
[12, 23, 82–85], we focus on the latter in the following. In
the weak-coupling limit, the ground state can be elucidated by
deriving effective magnetic interactions by the perturbation in

terms of the second term in (7). As will be detailed in the next
section 2.3, the lowest-order contribution is written in the form
of

HRKKY = −J2
K

∑
q

χ0
qSq · S−q, (9)

where χ0
q is the bare susceptibility of itinerant electrons [see

(16) for the expression]. This is called the RKKY interaction
[79–81]. It is noteworthy that the lowest-order effective spin
Hamiltonian in (9) is formally equivalent to (2) by reading the
coupling constant −J2

Kχ
0
q as Jq. This correspondence harbors

frustration similar to that discussed in section 2.1, as shown
below.

The magnetic ground state to optimize the RKKY interac-
tion in (9) is obtained by maximizing χ0

q. Hence, the ordering
vector is set by the peak position of χ0

q, which depends on
the dispersion εk in (8) and the electron density. For example,
when we consider the third-neighbor hopping t3 in addition to
the nearest-neighbor t1, εk for the square lattice case is given
by

εk = −2
∑
l=1,2

(t1 cos k · el + t3 cos 2k · el), (10)

6
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where e1 = x̂ = (1, 0) and e2 = ŷ = (0, 1), and for the triangu-
lar lattice case,

εk = −2
∑

l=1,2,3

(t1 cos k · el + t3 cos 2k · el), (11)

where e1 = x̂, e2 = −x̂/2 +
√

3ŷ/2, and e3 = −x̂/2 −√
3ŷ/2. Here, we also set the lattice constant a = 1 as the

length unit for both cases. Figures 3(a) and (c) show χ0
q

on the square lattice with t3 = −0.5 and μ = 0.98 and the
triangular lattice with t3 = −0.85 and μ = −3.5, respec-
tively, where μ represents the chemical potential [23]. The
corresponding Fermi surfaces are shown in figures 3(b) and
(d). The bare susceptibility shows multiple peaks at the
wave vectors for which the Fermi surfaces are nested, and
the maxima are related by the rotational symmetry of the
system: fourfold (sixfold) rotational symmetry of the square
(triangular) lattice. In the square lattice case, the peaks are
found at Q1 = (π/3, π/3) and Q2 = (π/3,−π/3), while
those in the triangular lattice case are found at Q1 = (π/3, 0),
Q2 = (−π/6,

√
3π/6), and Q3 = (−π/6,−

√
3π/6). Thus,

the situation is similar to the case of the model for insulating
magnets in figure 2; the RKKY interaction in (9) leads to
the degeneracy between different single-Q spiral states with
the wave vector Qν (see also section 2.3.2). We call this the
itinerant frustration, in analogy with the frustration in the
insulating case.

There is, however, a difference from the insulating case
in the mechanism of lifting the degeneracy. In the insulating
case, not only the original Heisenberg interactions but also the
additional interactions which lift the degeneracy are usually
short-ranged. In particular, further-neighbor interactions decay
exponentially in distance, since they are derived by the pertur-
bation in terms of the hopping of localized electrons. Also,
higher-order multiple-spin interactions become small, as they
are proportional to 1/Un−1, where U is the onsite Coulomb
repulsion and n is the order of the interaction. On the other
hand, in the itinerant case, additional higher-order contribu-
tions are also long-ranged, similar to the lowest-order RKKY
interactions in (9). Moreover, they are not necessarily small;
the coefficients can be large depending on the electronic state
since they are given by the products of Green’s functions of the
itinerant electrons; see section 2.3. Indeed, several theoretical
studies have shown that the ground state in the Kondo lattice
model in (6) is not given by the single-Q spiral state but by
noncoplanar multiple-Q topological spin crystals. The promi-
nent example was obtained at a particular electron filling where
the Fermi surface has perfect nesting [12]. Similar attempts
have been performed for the situations where the Fermi sur-
face has multiple connections in the extended Brillouin zone
[82–84] and more generic situations where the Fermi surface
has no special property except for the rotational symmetry
[23, 85]. These considerations have brought about theoretical
findings of a plethora of multiple-Q topological spin crystals
in hexagonal systems [12, 22, 82, 161–170], tetragonal sys-
tems [85, 171–177], trigonal systems [178], and cubic systems
[30, 179–182]. We will review some of these studies in section
3. The fundamental mechanism common to this itinerant frus-
tration is that the system tends to lift the degeneracy with

respect to the rotational symmetry of the lattice struc-
ture through the higher-order multiple-spin interactions, as
described in the following sections.

2.3. Multiple-spin interactions in itinerant magnets

In this section, we discuss the effective multiple-spin inter-
actions in itinerant magnets. We briefly review a systematic
derivation by the perturbative expansion with respect to the
exchange coupling term in the Kondo lattice model in (7).
After presenting the general framework of the perturbative
expansion in section 2.3.1, we present the second-order contri-
bution in section 2.3.2, the fourth-order ones in section 2.3.3,
and the higher-order ones in section 2.3.4. In section 2.3.5, we
remark on some related studies of the effective multiple-spin
interactions.

2.3.1. Perturbation expansion. Suppose the exchange cou-
pling JK is small enough compared to the bandwidth of itin-
erant electrons in (7), one can expand the free energy of the
system with respect to JK:

F − F(0) = −T log

〈
T exp

(
−
∫ β

0
H′(τ )dτ

)〉
con

= − T
2!

∫ β

0
dτ1

∫ β

0
dτ2〈T H′(τ1)H′(τ2)〉con

− T
4!

∫ β

0
dτ1 . . .

×
∫ β

0
dτ4〈T H′(τ1) . . .H′(τ4)〉con − · · ·

= F(2) + F(4) + · · · , (12)

where H′ represents the second term of (7), T is the time-
ordering operator, τ is the imaginary time, T is the temper-
ature, and β is the inverse temperature where the Boltzmann
constant is set as unity. 〈. . .〉con stands for the averaged value
over the connected Feynman diagrams. F(0) represents the free
energy from the first term of (7). Note that there are no odd-
order terms in the expansion due to the time-reversal symmetry
in the system3.

The 2nth-order contribution to the free energy can be
expressed in the general form [23, 184]

F(2n) =
T
n

(
JK√

N

)2n∑
k,ωp

∑
q1,...,q2n,l

GkGk+q1 . . .

× Gk+q1+···+q2n−1δq1+q2+···+q2n,lG

×
∑
{P}

(−1)λP
∏
ν,ν′

Sqν · Sqν′ , (13)

where Gk(iωp) =
[
iωp − (εk − μ)

]−1
is noninteracting spin-

independent Green’s function, ωp is the Matsubara frequency,
μ is the chemical potential, δ is the Kronecker delta, and G is

3 The odd-order terms can appear when the time-reversal symmetry is broken,
e.g., by an external magnetic field [23, 183].
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the reciprocal lattice vector (l is an integer). Here and here-
after, the Matsubara frequency dependence of Green’s func-
tion is not explicitly written for notational simplicity. The sum
of {P} is taken for all the combinations of ν and ν ′ [the num-
ber of the combinations is 2nC2·2n−2C2. . .2C2/(n!)], and λP is
+1 (−1) for an even (odd) permutation. The product is taken
for 1 � ν ′ < ν � 2n.

Figure 4 represents the Feynman diagrams for n = 1, 2, and
3 in (13) [23]. F(2n) in (13) gives the effective multiple-spin
interaction at the 2nth order of JK. In the following, we dis-
cuss the specific form of such interactions at the second order
(section 2.3.2), fourth order (section 2.3.3), and higher orders
(section 2.3.4) of JK.

2.3.2. Second-order RKKY interaction. The lowest-order
contribution in (13) is given by the second-order one in terms
of JK (n = 1), which is expressed as

F(2) = T
J2

K

N

∑
k,q,ωp

Gk+q GkSq · S−q. (14)

By taking the summation of ωp, (14) turns into (9) in section
2.2, which is reexpressed as

F(2) = −J2
K

∑
q

χ0
qSq · S−q, (15)

where χ0
q is the bare susceptibility of itinerant electrons,

χ0
q = − T

N

∑
k,ωp

Gk+qGk =
1
N

∑
k

f (εk) − f (εk+q)
εk+q − εk

. (16)

Here, f (εk) is the Fermi distribution function. Thus, the
second-order free energy gives a pairwise interaction between
the localized spins, which is called the RKKY interaction
[79–81]. The coefficient of this bilinear interaction depends
on the band structure and the electron density through (16), as
mentioned in section 2.2.

The magnetic state that optimizes the RKKY energy in (15)
is a single-Q spiral state, whose spin structure is represented
by

Si = (cos Q · ri, sin Q · ri, 0). (17)

Here, Q is the ordering vector defining the pitch and direction
of the spiral, which is dictated by the peak of χ0

q in (16). This
is because the state with |SQ|2 = |S−Q|2 = N/2 and Sq = 0 for
q 
= ±Q gives the lowest energy of (15) under the constraint∑

q |Sq|2 = N; any spiral with other q or any superpositions of
spirals with different wave vectors, i.e., multiple-Q states, lead
to an energy cost. Therefore, at the lowest order, the system
has the degeneracy between the different single-Q spiral states
when there are several Qν which maximize χ0

q, as discussed in
section 2.2. The free energy for the degenerate states is given
by

F(2) = −2J2
Kχ

0
Qν

SQν
· S−Qν

. (18)

This is represented by the Feynman diagram in the left panel of
figure 4 with replacing q1 and q2 by Qν and −Qν , respectively.

2.3.3. Fourth-order interaction. The fourth-order contribu-
tion in (13) is given by

F(4) =
T
2

J4
K

N2

∑
k,ωp

∑
q1,q2,q3,q4,l

GkGk+q1Gk+q1+q2

× Gk+q1+q2+q3δq1+q2+q3+q4,lG
[
(Sq1

· Sq2
)

× (Sq3 · Sq4 ) + (Sq1 · Sq4 )(Sq2 · Sq3 )

− (Sq1
· Sq3

)(Sq2
· Sq4

)
]
. (19)

The corresponding Feynman diagram is shown in the middle
of figure 4. This gives four-spin interactions, which may lift
the degeneracy between the single-Q spiral states mentioned
above. Specifically, the relevant contributions arise from the
wave vectors Qν where the bare susceptibility shows the max-
ima. For the case satisfying q1 + q2 + q3 + q4 = 0 (l = 0), the
fourth-order free energy is given by the sum of five types of the
four-spin interactions:

F(4)
1 =

J4
K

N

∑
ν

(2A1 − A2)(SQν
· SQν

)(S−Qν
· S−Qν

), (20)

F(4)
2 =

J4
K

N

∑
ν

(2A2)(SQν
· S−Qν

)2, (21)

F(4)
3 = 4

J4
K

N

∑
ν,ν′

(B1 + B2 − B3)

× (SQν
· S−Qν

)(SQν′ · S−Qν′ ), (22)

F(4)
4 = 4

J4

N

∑
ν,ν′

(−B1 + B2 + B3)

× (SQν
· SQν′ )(S−Qν

· S−Qν′ ), (23)

F(4)
5 = 4

J4

N

∑
ν,ν′

(B1 − B2 + B3)

× (SQν
· S−Qν′ )(S−Qν

· SQ′
ν
), (24)

where the sums in (22)–(24) are taken for ν > ν ′. The coeffi-
cients are given by

A1 =
T
N

∑
k,ωp

(Gk)2Gk−Qν
Gk+Qν

,

A2 =
T
N

∑
k,ωp

(Gk)2(Gk+Qν
)2,

(25)

B1 =
T
N

∑
k,ωp

(Gk)2Gk+Qν
Gk+Qν′ ,

B2 =
T
N

∑
k,ωp

(Gk)2Gk+Qν
Gk−Qν′ ,

B3 =
T
N

∑
k,ωp

GkGk+Qν
Gk+Qν′ Gk+Qν+Qν′ . (26)

8



J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

Figure 4. Feynman diagrams in the perturbative expansion of the free energy for n = 1, 2, and 3 in (13) from left to right. The vertices with
wavy lines denote the scattering by localized spins and the solid curves represent Green’s functions of itinerant electrons, Gk. Reprinted
figure with permission from [23], Copyright (2017) by the American Physical Society.

The sign and amplitude of the coefficients depend on the band
structure and electron, but their dependences are different from
that in the RKKY interaction. Similarly, the free energy can
be derived for the cases with q1 + q2 + q3 + q4 = G to satisfy
2Qν = G [12, 82–84, 172] (see section 3.2) and 4Qν = G (ν =
1, 2, 3) [86].

When the bare susceptibility has multiple peaks at
symmetry-related Qν as exemplified in figures 3(a) and (c),
the coefficient A2 takes a positive value and becomes dom-
inant among the contributions in (25) and (26) at low tem-
perature [23, 83, 85]. This indicates that F(4)

2 in (21), which
is the biquadratic interaction in momentum space with the
positive coefficient, is the most important contribution among
the fourth-order multiple-spin interactions. In the following
sections, we will show that the positive biquadratic interaction
plays a crucial role in stabilizing multiple-Q topological spin
crystals.

2.3.4. Higher-order interactions. The higher-order 2nth con-
tributions describe the scattering processes by 2n localized
spins in (13). Extending the fourth-order argument straight-
forwardly, one may expect the dominant contribution as

F(2n)
(Q,−Q) =

2nT
n

(
JK√

N

)2n ∑
k,ωp,ν

(Gk)n(Gk+Qν
)n

× (SQν
· S−Qν

)n. (27)

This indicates that the (4m + 2)th-order terms with
G2m+1

k G2m+1
k+Qν

< 0 tend to favor a single-Q spiral state as
the lowest-order RKKY interaction in (14), while the 4mth-
order ones with G2m

k G2m
k+Qν

> 0 tend to favor a multiple-Q
state as the fourth-order biquadratic interaction in (21) (m is
an integer). This suggests that the higher-order contributions
in (27) can be renormalized into the lower-order bilinear and
biquadratic interactions; see (36) in section 4.1.

Meanwhile, the higher-order contributions also include
qualitatively different interactions from the bilinear and
biquadratic interactions. For instance, the sixth-order contribu-
tion may include the term proportional to [SQ1 · (SQ2 × SQ3 )]2

when Q1 + Q2 + Q3 = 0. Recently, the authors and the collab-
orator pointed out that this scalar-chirality-type interaction can
drive a phase shift among the constituent waves of multiple-Q
topological spin crystals [185].

2.3.5. Remark. Similar multiple-spin interactions in itiner-
ant magnets have been discussed also in a different context.

For instance, many studies based on the first-principles cal-
culations were made to explain the origin of noncollinear
and noncoplanar magnetic textures in bulk, surfaces, and
heterostructures, which indicated the relevance of a vari-
ety of effective multiple-spin interactions, such as the four-
spin interactions as (Si · S j)(Sk · Sl) [61–63, 87, 186–192],
the chiral biquadratic interaction as (Si × S j)(Si · S j) [87,
187, 189, 193, 194], and the chiral–chiral interaction as
[Si · (S j × Sk)]2 [195, 196]. Note that all these multiple-spin
interactions in the literatures are basically short-ranged in
real space, in contrast to the long-ranged ones in the previ-
ous sections derived by the perturbation theory in momentum
space.

3. Multiple-Q topological spin crystals in itinerant
magnets

In this section, we review the instabilities toward the multiple-
Q topological spin crystals discovered in the Kondo lattice
model, which indicate the importance of the itinerant frus-
tration and the inherent multiple-spin interactions originat-
ing from the spin-charge coupling discussed in the previ-
ous section. We here discuss three categories from the view-
point of the nesting property of the Fermi surfaces. The
first one is the perfect nesting case in section 3.1, and the
second one is the case with multiple connections of the
Fermi surfaces in the extended Brillouin zone in section 3.2.
These two cases occur for particular electronic band struc-
tures and at particular electron fillings. The last one in section
3.3 is a more generic situation where the bare susceptibil-
ity has multiple maxima according to the symmetry of the
system.

3.1. Perfect nesting

The nesting property of the Fermi surfaces is fundamental
to understand the instabilities in itinerant electron systems
[197–199]. For instance, instabilities toward electronic order-
ing, such as charge and spin density waves, occur predomi-
nantly at the nesting wave vector. In the case of the perfect
nesting, in which all the points on the Fermi surface are con-
nected with others by a single nesting vector, the magnetic
susceptibility χ0

q in (16) has a delta-functional peak at the
nesting vector. In this case, the system is unstable against
an infinitesimal perturbation since the electronic state gains
an energy by gap opening on the entire Fermi surface. For

9
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Figure 5. Perfect nesting of the Fermi surfaces and the magnetic instabilities toward multiple-Q topological spin crystals in the (a) and (b)
triangular and (c) and (d) pyrochlore lattice systems. (a) The Brillouin zone (black hexagons) and the Fermi surface (shaded hexagons) at 3/4
filling of the tight-binding model with nearest-neighbor hopping on the triangular lattice. Qa, Qb, and Qc are the nesting wave vectors, while
G is the reciprocal lattice vector. (b) Schematic picture of the four-sublattice noncoplanar order stabilized by the perfect nesting in (a). (c)
The Brillouin zone in the pyrochlore case. The red, green, and blue lines show the Fermi surfaces at 1/4 filling, which are connected by three
wave vectors (one of them is shown by Q3). (d) Schematic picture of the sixteen-sublattice noncoplanar order stabilized by the perfect
nesting in (c). The left panel shows a projection from the [001] direction of the pyrochlore lattice, while the right one is a [111] slice on the
kagome layer. Reprinted figure with permission from [12], Copyright (2008) by the American Physical Society. Reprinted figure with
permission from [179], Copyright (2010) by the American Physical Society.

example, in the tight-binding model with nearest-neighbor
hopping on a square lattice at half filling where the square-
shaped Fermi surface is perfectly nested, a Néel order with
the (π, π) wave vector is induced and the system becomes an
insulator immediately when the Coulomb interaction is turned
on.

The perfect nesting also leads to multiple-Q topological
spin crystals when the Fermi surface is nested by more than a
single wave vector and χ0

q is divergent at the multiple nesting
vectors. An example was found in a two-dimensional trian-
gular lattice system at 3/4 filling [12]. In this case, the Fermi
surface is perfectly nested by three wave vectors, as shown in
figure 5(a). This special nesting leads to an instability toward
triple-Q magnetic ordering by gap opening on the entire Fermi
surface. Interestingly, this state composed of a superposition
of three spin denstiy waves has the noncoplanar magnetic tex-
ture in figure 5(b), which exhibits a nonzero net scalar chi-
rality. Consequently, the system becomes a magnetic Chern
insulator showing a quantized anomalous Hall effect and a
chiral edge state in the bulk gap. Another example was found
in a three-dimensional pyrochlore lattice system at 1/4 filling
[179]. In this case, the Fermi surface consists of lines on the
Brillouin zone boundaries, which are perfectly nested by three
wave vectors, as shown in figure 5(c). This line-type perfect
nesting also leads to an instability toward complicated triple-
Q noncoplanar spin ordering shown in figure 5(d). We note
that the perfect nesting on the checkerboard lattice also leads

to a double-Q state, but in this case, the spin configuration
is coplanar [200].

3.2. (d − 2)-dimensional connections of Fermi surfaces

A different type of the multiple-Q instability, which is more
nontrivial than the perfect nesting case, was found at partic-
ular electronic states. This occurs when (d − 2)-dimensional
portions of the Fermi surfaces are connected by the multiple-
Q wave vectors in the d-dimensional extended Brillouin zone.
This is a weaker nesting compared to the perfect nesting
in section 3.1 which is regarded as a (d − 1)-dimensional
connection of the Fermi surfaces in general4.

A representative of such multiple-Q instabilities was found
for the Kondo lattice model on the triangular lattice [82]. As
shown in the phase diagram in figure 6(a), the same non-
coplanar triple-Q state as that by the perfect nesting at 3/4
filling in figure 5(b) was found to be stabilized near 1/4 fill-
ing. This state also becomes a magnetic Chern insulator at
1/4 filling, showing a quantized anomalous Hall effect and
a chiral edge state. A similar triple-Q state was also found
for the periodic Anderson model [172]. Notably, this non-
coplanar state is stable in a much wider region in the phase
diagram compared to that by the perfect nesting. It also

4 The pyrochlore case in figure 5(c) is special since the Fermi surfaces are
the (d − 2)-dimensional lines. Their connections are also (d − 2)-dimensional
ones, but we categorize it to the perfect nesting case since the entire portions
of the Fermi surfaces are connected.
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Figure 6. Instabilities toward multiple-Q topological spin crystals in the (a) triangular and (b) cubic lattice systems. (a) Ground-state phase
diagram of the Kondo lattice model with nearest-neighbor hopping on the triangular lattice obtained by variational calculations. The
horizontal and vertical axes are the electron filling n and the spin-charge coupling JH ≡ −JK in (6), respectively. The lower panels display
several representative magnetic orders. The phases represented by (4a) (red areas) show the triple-Q noncoplanar magnetic order. The large
area near 1/4 filling is the one induced by the (d − 2)-dimensional connections of the Fermi surfaces, while the small one near 3/4 filling is
by the perfect nesting in figures 5(a) and (b). The area near n = 0.57 is replaced by a single-Q state when long-period spirals are included in
the variational calculations [201]. (b) Ground-state phase diagram in the cubic lattice case (nc ≡ n and J ≡ JK). The phase 4 in red represents
the noncoplanar triple-Q state induced by the (d − 2)-dimensional connections. Reproduced with permission from [82]. Copyright 2010 by
the Physical Society of Japan. Reprinted figure with permission from [81], Copyright (2014) by the American Physical Society.

remains robust against thermal fluctuations (as a quasi-long-
range order) [161] and quantum fluctuations [202]. Later, a
different noncoplanar triple-Q state was found also for the
cubic lattice case near 1/4 filling, as shown in figure 6(b) [181].
Besides, a variety of multiple-Q states were obtained on vari-
ous lattice structures, such as honeycomb [164, 203], kagome
[165, 166], square [154, 172], face-centered-cubic (fcc) [11],
and Shastry–Sutherland lattices [157]. These topological spin
crystals have common features: they appear at a particular
electron filling far from that for perfect nesting, and the periods
of the magnetic structures are very short. These results suggest
an underlying common mechanism despite the lack of perfect
nesting.

The mechanism was first discussed for the triple-Q state on
the triangular lattice [83]. By using the perturbation expan-
sion in section 2.3.1, it was pointed out that the positive
biquadratic interaction in the fourth-order contribution is crit-
ically enhanced at the particular electron filling n � 0.225, as
shown in figure 7(a). At this filling, the Fermi surface is almost

circular but has a special property: six points on the Fermi sur-
face are multiply connected by the three wave vectors Qa, Qb,
and Qc in the extended Brillouin zone, as shown in figure 7(b).
This is the (d − 2)-dimensional connections of the Fermi sur-
faces (d − 2 = 0 in this two-dimensional case, namely, zero-
dimensional point connections). At this filling, χ0

q shows mul-
tiple peaks at the three wave vectors which are divergent in the
limit of zero temperature. This leads to the critical enhance-
ment of the biquadratic interaction and the instability toward
the triple-Q noncoplanar spin state with a local gap formation
in the electronic state at the connected points on the Fermi
surface5.

5 This is a lifting of the degeneracy at the second-order RKKY level. In this
case, however, the degeneracy appears not only among the single-Q states but
also including the double- and triple-Q states [83]. The situation is different
from the general case in section 3.3 where the degeneracy by the RKKY inter-
action appears only among the single-Q states and the multiple-Q states have
higher energies.
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Figure 7. (a) Coefficients of different contributions to the fourth-order free energy as functions of the electron filling n. The most enhanced
B corresponds to the coefficient for the positive biquadratic interaction. (b) The Fermi surfaces at n = 0.225 in the extended Brillouin zone
scheme. The triangular lattice is defined as the square lattice with diagonal bonds. The six points on the Fermi surfaces (the hatched small
squares) are multiply connected by the wave vectors Qa = (π, 0), Qb = (0, π), and Qc = (π,π). Reprinted figure with permission from [83],
Copyright (2012) by the American Physical Society.

The idea was generalized to other lattices and the (d − 2)-
dimensional connections are shown to be a universal mech-
anism for stabilizing the multiple-Q states [84, 204]. To
establish the multiple connections of the Fermi surfaces, we
need commensurate and rather large wave vectors, like (π, 0),
(0, π), and (π, π). Table 1 summarizes such wave vectors for
several lattice structures. Note that these wave vectors satisfy
the condition 2Qν = G (i.e., q1 + q2 + q3 + q4 = G) in the
fourth-order free energy discussed in section 2.3.3. Indeed, at
the particular electron fillings where the Fermi surfaces are
multiply connected by these wave vectors as shown in the
right panels of figure 8, the fourth-order multiple-spin interac-
tions derived by the perturbation in section 2.3.1 are critically
enhanced ubiquitously in the different lattice systems as shown
in the left panels of figure 8. Such multiple-Q instabilities are
indeed found in the variational ground state of the Kondo lat-
tice model, as shown in the bottom strips in the left panels of
figure 8 and as mentioned above.

3.3. General case

In this section, we discuss general cases with neither per-
fect nesting nor (d − 2)-dimensional connections of the Fermi
surfaces. Surprisingly, even in such seemingly featureless
cases, the system has an instability toward multiple-Q non-
coplanar spin states. In section 3.3.1, we illustrate the mecha-
nism by taking an example of the double-Q noncoplanar state
discovered in the Kondo lattice model on a square lattice [85].
In section 3.3.2, we introduce other examples, two types of
the SkXs with the skyrmion number of one and two, which are
stabilized on the triangular lattice [22].

3.3.1. Double-Q chiral stripe. For a generic form of the Fermi
surfaces, the RKKY interaction in (9) favors a single-Q spi-
ral state with the wave vector maximizing χ0

q, rather than
multiple-Q states, as the multiple-Q superpositions inevitably
have the higher harmonics, e.g., at Q1 + Q2 and 2Q1, and

Table 1. Some representative examples of the lattice structures,
multiple-Q wave vectors, and the symmetries relevant to the
multiple-Q topological spin crystals induced by the
(d − 2)-dimensional connections of the Fermi surfaces. The lattice
constant is set to be unity in all the cases. Corresponding
multiple-Q spin patterns are schematically shown in figure 5(b) for
the triangular lattice case and in the insets of the right panels in
figure 8 for the other cases. Reprinted table with permission from
[84], Copyright (2014) by the American Physical Society.

Lattice Multiple-Q wave vectors Symmetry

square (π, 0),(0,π) C4

triangular (π, 0),(0,π),(π,π) C6

cubic (0,π,π),(π, 0,π),(π,π, 0) C3

fcc (π, 0, 0),(0, π, 0),(0, 0, π) C3

lead to the energy loss compared to the single-Q state. Nev-
ertheless, it was discovered by numerical simulations of the
Kondo lattice model on a square lattice that a noncoplanar
spin state is stabilized in the weak JK regime [85]. The typical
spin and scalar chirality configurations are presented in figures
9(a) and (b); the spins form a two-dimensional periodic array
of noncoplanar vortices, and the scalar chirality shows a one-
dimensional stripe in a diagonal direction. Owing to the stripe
modulation of the scalar chirality, this state has no net scalar
chirality in the whole system, and thus, leads to no topologi-
cal Hall effect. The magnetic period changes with the electron
filling, that is, the size of the Fermi surface.

The spin configuration found in the simulation is well
approximated by a double-Q state given by [85]

Si =

⎛
⎝
√

(1 − b2) + b2 cos2(Q2 · ri) cos(Q1 · ri)√
(1 − b2) + b2 cos2(Q2 · ri) sin(Q1 · ri)

b sin(Q2 · ri)

⎞
⎠

T

, (28)

where Q1 and Q2 are symmetry-related wave vectors at which
χ0

q shows peaks [C4 rotational symmetry in the square lattice
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Figure 8. Enhancement of the coefficient of the effective biquadratic interaction (left panels) and the Fermi surfaces multiply connected
by the wave vectors in table 1 (right panels) for the (a) square, (b) cubic, and (c) fcc lattice cases. B stands for the biquadratic interaction
corresponding to (21). The inset of the left panel of (c) shows the enlarged plot near n = 0.14. The bottom strip in each left panel represents
the variational ground state at JK = 0.1; 1, 2, and 3 denote the single-, double-, and triple-Q states, respectively. The schematic figures of
the multiple-Q states are presented in the insets of the right panels. The red lines and the blue arrows in the right panels represent the Fermi
surfaces and the connecting vectors, respectively, at the electron fillings where B is critically enhanced; the dashed lines are the Brillouin zone
boundaries. (b) and (c) show the slices at kz = 0 and kz = π/2, respectively; the three-dimensional Fermi surfaces in the first Brillouin zone
are presented in each inset. Reprinted figure with permission from [84], Copyright (2014) by the American Physical Society.

case; see figures 3(a) and (b)], and b represents the ampli-
tude of the Q2 component; the superscript T denotes the
transpose of the vector. Note that the spin configuration is
continuously connected to the single-Q spiral state by taking
b → 0. The real-space spin configuration in (28) is shown in
figure 9(c) with Q1 = (π/12, π/12) and Q2 = (π/12,−π/12)
for b = 1. This indicates that the spin configuration is given by
a periodic array of vortices and antivortices. Interestingly, the
spins in each vortex and antivortex are noncoplanar and wrap
half of a sphere. These half-skyrmion and half-antiskyrmion
are called meron and antimeron, respectively [205], and

hence, the spin configuration in (28) can be viewed as a
meron–antimeron crystal. This state is termed as the double-Q
chiral stripe (CS) state owing to the stripe pattern in the scalar
chirality [85] 6.

Figure 9(d) presents the variational energy (grand potential)
of the spin state in (28) measured from that for the single-
Q state with b = 0 for several values of JK. In all cases, the

6 A similar but different double-Q state with chiral stripe has also been dis-
cussed in reference [171], although it has not been confirmed in numerical
simulations.

13



J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

Figure 9. (a) and (b) Real-space spin and chirality configurations in the double-Q CS state obtained from numerical simulations for the
Kondo lattice model at different electron fillings with t1 = 1, t3 = −0.5, and JK = 0.1; the chemical potential is taken as (a) μ = 0.98 and
(b) 1.26. The arrows represent the in-plane spin component and their colors indicate the out-of-plane spin component. The gray-scale
background shows the striped modulation of the spin scalar chirality. (c) The double-Q CS state in (28) with Q1 = (π/12, π/12) and
Q2 = (π/12,−π/12) for b = 1. The spin frame is rotated to better visibility. The solid and dashed circles show vortex (meron) and
antivortex (antimeron). (d) Grand potential of the double-Q CS state in (28) measured from that of the single-Q helical state for JK = 0.1,
0.2, 0.3, and 0.4; we take t1 = 1, t3 = −0.5, and μ = 0.98. (e) The Fermi surfaces connected by the ordering vectors Q1 and Q2 [the same as
figure 3(b)]. The color contour plots the energy in (11). The right panel is the schematic of the Fermi surface near the hot spot in the
cylindrical coordinate (R0, θ0). Reproduced with permission from [85]. Copyright 2016 by the Physical Society of Japan.

energy is lowered by introducing the second Q2 component,
and optimized at relatively large value of b. The optimized
energy agrees well with those obtained by the numerical sim-
ulations, indicating that (28) describes well the spin states
obtained numerically [85].

The mechanism of the instability toward this double-Q CS
state was again discussed by using the perturbation in terms of
JK presented in section 2.3.1. Assuming (28) with b � 1, the
free energy up to the fourth order in (15) and (19) gives the
energy gain by forming the double-Q CS state as [85]

ΔFCS(b) = α1J2
Kb4 − α2J4

Kb2, (29)

where

α1 =
1

32

(
χ0

Q1
− χ0

Q1+2Q2

)
,

α2 =
1
2

(
AQ1

− 2BQ1,Q2 + WQ1,Q2

)
, (30)

and

AQ1
= T

∑
k,ωp

G2
kG2

k+Q1
,

BQ1,Q2 = T
∑
k,ωp

GkG2
k+Q1

Gk+Q1+Q2 ,

WQ1,Q2 = T
∑
k,ωp

GkGk+Q1 Gk+Q2Gk+Q1+Q2 .

(31)

(29) indicates that there is energy competition between the
second-order RKKY contribution∼ J2

Kb4 and the fourth-order
one ∼ J4

Kb2 in the small b limit. The coefficient α1 for the
former is always positive because χ0

q is maximized at q =
Q1 and Q2. Hence, when α2 for the latter is positive, the
optimal value of b to minimize ΔFCS(b) is given by bopt =√
α2/(2α1)JK. Indeed, after explicit evaluation of the coeffi-

cients AQ1
, BQ1,Q2 , and WQ2,Q2 , one can find that α2 →+∞

in the low-temperature limit. While this indicates the break-
down of the perturbative expansion, it suggests that the sys-
tem has an instability toward the double-Q CS state and the
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amplitude b of the second component can be in the order of
one even for very small JK, seemingly supporting the results
in figure 9(d).

The breakdown of the perturbative expansion can be
avoided by taking the local reference frame for the itinerant
electron spins along the localized spins in one of the single-
Q spiral states [85]. Skipping the details of the derivation, the
most dominant contributions arising from the regions around
the Fermi surface points connected by Q1 and Q2 (hot spots)
can be summarized into the energy cost ΔE1 and the energy
gain ΔE2 given by [85]

ΔE1 = −Δk
4π2

J2
Kb2

16vF
ln

⎡
⎢⎢⎣

x +

√(
JK
2vF

)2
+ x2

k0 + x +

√(
JK
2vF

)2
+ (k0 + x)2

⎤
⎥⎥⎦ ,

(32)

ΔE2 =
Δk
4π2

J2
Kb2

16vF
ln

⎡
⎢⎢⎣

x +

√(
JKb
4vF

)2
+ x2

k0 + x +

√(
JKb
4vF

)2
+ (k0 + x)2

⎤
⎥⎥⎦ ,

(33)

respectively, where vF is the Fermi velocity at the hot spot,
Δk and k0 define the circular rectangle of integration around
the hot spots, and x = Δk2/8R0; see figure 9(e). Note that,
in this rotated local frame, the divergence at the fourth order
in the original frame is renormalized and incorporated in the
second-order contributions. The results in (32) and (33) indi-
cate that ΔE1 +ΔE2 < 0 for b � 1, which explains the insta-
bility toward the double-Q CS state in the weak coupling limit
of JK → 0. Indeed, the perturbative arguments were confirmed
quantitatively by careful comparison with the variational cal-
culations with (28) [85].

3.3.2. Triple-Q skyrmion crystal. In the square lattice case
above, there are two wave vectors related with the C4 rota-
tional symmetry, and the system becomes unstable toward the
double-Q CS state by making a superposition of the two com-
ponents. Under the hexagonal symmetry, however, there are
three wave vectors related by C3. In this case also, similar
instability toward a double-Q state composed of two wave vec-
tors out of three occurs in the Kondo lattice model in the weak
JK region for 0 < JK � 0.11, but in addition a different insta-
bility was found in the larger JK region [22, 23]. Figure 10(a)
shows the spin configuration obtained by numerical simula-
tion of the Kondo lattice model on the triangular lattice with
t1 = 1, t3 = −0.85, JK = 0.5, and μ = −3.5 for which χ0

q has

the peaks at Q1 = (π/3, 0), Q2 = (−π/6,
√

3π/6), and Q3 =
(−π/6,−

√
3π/6), as shown in figure 3(c). The spin structure,

which preserves the C3 rotational symmetry, turns out to be a
SkX with high skyrmion number of two in the magnetic unit
cell [206], and hence, termed as the nsk = 2 SkX7 [22]. The

7 The sign of nsk is irrelevant owing to the continuous rotational symmetry
in spin space in the Kondo lattice model: the SkXs with ±2 are energetically

spin configuration is well approximated by a superposition of
three sinusoidal waves as

Si ∝ (cos Q1 · ri, cos Q2 · ri, cos Q3 · ri). (34)

This is a triple-Q state, where the spin structure factor has the
peaks at Q1, Q2, and Q3 with equal intensity. It has a periodic
array of vortices with vorticity v = −2 centered at downward
spins and merons with v = +1.8 A nonzero nsk indicates a
nonzero net spin Berry phase in momentum space, which gives
rise to the topological Hall effect.

In contrast to the double-Q CS state in section 3.3.1, the
emergence of the nsk = 2 SkX is not simply understood from
the perturbation expansion with respect to JK in section 2.3.
Indeed, as mentioned above, the double-Q CS state is sta-
bilized in the weak JK limit, and it is taken over by the
nsk = 2 SkX when JK is increased. Nevertheless, the stabi-
lization mechanism of the nsk = 2 SkX is well explained by
the effective four-spin interactions derived by the perturbation
expansion in section 2.3.3, as we will detail in the following
section 4.

Interestingly, by applying an external magnetic field to the
present system, the nsk = 2 SkX turns into the SkX with nsk =
1 [22]. The effect of the magnetic field is introduced by adding
the Zeeman coupling,

HZ = −H
∑

i

Sz
i , (35)

to (6), where the magnetic field H is applied only to the local-
ized spins for simplicity. The spin configuration obtained by
the numerical simulation for H = 0.005 is shown in figure
10(b). This is again viewed as a periodic array of vortices
with v = −2 and merons with v = 1, but in a different man-
ner from the nsk = 2 SkX. Indeed, the skyrmion number is
reduced to one. This is also a triple-Q state with the same
intensity at q = Q1, Q2, and Q3 in the spin structure factor.
Hence, this state is called the nsk = 1 SkX. For a larger mag-
netic field, the spin state becomes topologically trivial, i.e.,
nsk = 0, whose spin structure is shown in figure 10(c). Figure
10(d) summarizes the changes of |nsk| and the magnetiza-
tion in localized spins per site M = |

∑
i Si|/N in an applied

magnetic field H [22]. The result indicates that the system
exhibits two successive transitions with the changes in the
skyrmion number nsk from 2 to 1, and to 0, while increasing the
magnetic field.

4. Effective spin model for itinerant frustration

In the previous section, we have reviewed that a variety of
topological spin crystals appear in the weak spin-charge cou-
pling regime of the Kondo lattice model. Some of them sug-
gest that the perturbation in terms of the spin-charge coupling

degenerate. The degeneracy is lifted, e.g., by the DM interaction and the bond-
dependent anisotropic interaction in the magnetic field (see section 5.1.2 for
the latter case). This holds also for the nsk = 1 case in the magnetic field.
8 We note that this state is a relative of the triple-Q state in figure 5(b) with a
longer magnetic period.
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Figure 10. Spin textures in (a) the nsk = 2 SkX at H = 0, (b) the nsk = 1 SkX at H = 0.005, and (c) the nsk = 0 state at H = 0.008 obtained
by numerical simulations for the Kondo lattice model on the triangular lattice with t1 = 1, t3 = −0.85, JK = 0.5, and μ = −3.5. The gray
hexagons represent the magnetic unit cell. (d) H dependences of the skyrmion number |nsk| and the magnetization of the localized spin per
site, M. Reprinted figure with permission from [22], Copyright (2017) by the American Physical Society.

can account for the instabilities toward the multiple-Q states.
In this section, we present that an effective spin model with
the bilinear and biquadratic interactions in momentum space,
which is constructed on the basis of the perturbation expan-
sion, reproduces well not only the multiple-Q phases in the
weak coupling limit like the double-Q CS state in section 3.3.1
but also those in the intermediate coupling regime like the
SkXs in section 3.3.2. This indicates that the effective spin
model provides a powerful framework to study the itinerant
frustration in a wide range of parameters. Indeed, as demon-
strated in section 5, the effective model and its extensions have
been shown to be useful for the comprehensive study of the
phase diagram in a wide parameter range and the exploration
of further exotic topological spin crystals, since the computa-
tional cost is much cheaper compared to that for the models
including itinerant electrons explicitly. After introducing the
Hamiltonian in section 4.1, we demonstrate that the model can
reproduce the multiple-Q topological spin crystals discovered
in the original Kondo lattice model in section 4.2.

4.1. Bilinear–biquadratic model in momentum space

The perturbation expansion in section 2.3 indicates that many
different types of effective spin interactions can contribute
to the magnetic ordering in itinerant magnets. The compar-
ison between different terms, however, gives an insight that
the positive biquadratic interaction may play an important
role, in addition to the primary RKKY interaction, as dis-
cussed in section 2.3.3. Based on this observation, an effective
spin model for the itinerant frustration was proposed in the
form [23]

HBBQ = 2
∑
ν

[
−JSQν

· S−Qν
+

K
N

(
SQν

· S−Qν

)2
]

, (36)

where the sum is taken for a set of Qν giving the multiple
peaks in the bare susceptibility χ0

q; J is set to be an energy
unit and K is taken to be positive. The first term originates
from the second-order RKKY interaction in (18) and the sec-
ond one is from one of the fourth-order contributions in (21).
Therefore, in the sense of the perturbation, J is proportional
to J2

K and dominant over K proportional to J4
K. However,
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Figure 11. Instability toward the double-Q CS state in the effective spin model in (36) on the square lattice. K dependences of the
Q1 = (π/3, π/3) and Q2 = (π/3,−π/3) components of (a) the squared magnetization and (b) the squared scalar chirality obtained by the
simulated annealing for the model in (36). Reprinted figure with permission from [23], Copyright (2017) by the American Physical Society.

the coefficients include Green’s functions of itinerant elec-
trons, which depend on the band structure and the electron
filling. In addition, the model can be regarded to include a
series of all the higher-order contributions, as discussed in
section 2.3.4. In the following, we therefore do not limit our-
selves to J � K and discuss the instabilities toward multiple-
Q topological spin crystals in a wide range of parameters
of J and K.

The model in (36) has the bilinear and biquadratic inter-
actions defined in momentum space, which is in contrast
to the bilinear–biquadratic model with short-range interac-
tions in real space used for magnetic insulators [131, 132,
134]. The difference arises from the different origin of the
effective interactions; the effective spin interactions in the
magnetic insulators are derived by the perturbation in terms
of the electron hopping of localized electrons, and hence,
they decay exponentially in real space (see section 2.1), but
those for the itinerant magnets with weak spin-charge cou-
pling are caused by the Fermi surface instability in momen-
tum space, and hence, they can be long-ranged in nature.
Reflecting such a difference, the coupling constant K for
the biquadratic interaction becomes positive in the present
case, while it is negative in most cases for the magnetic
insulators.

4.2. Multiple-Q magnetic instability

In this section, we present that the effective spin model in
(36) well reproduces the instabilities toward the multiple-Q
states found in the Kondo lattice model, following reference
[23]. In section 4.2.1, we discuss the double-Q CS state on
the square lattice, and in section 4.2.2, we discuss the double-
Q CS and the SkXs with nsk = 1 and 2 on the triangular
lattice.

4.2.1. On the square lattice. First, we discuss the result for
the effective bilinear–biquadratic model in (36) on the square
lattice by assuming the maxima in the bare susceptibility
at Q1 = (π/3, π/3) and Q2 = (π/3,−π/3) [23]. Figure 11
shows the spin and scalar chirality as functions of K obtained

by simulated annealing: the Qν components of (a) the magne-
tization,

mQν
=

1
N

√∑
i, j

Si · S jeiQν ·(ri−r j), (37)

and (b) the scalar chirality,

χsc
Qν

=
1
N

√∑
i, j

χsc
i χ

sc
j eiQν ·(ri−r j), (38)

where ν = 1 and 2. χsc
i in (38) is the local scalar chirality

at site i calculated by χsc
i = Si · (S

i+
̂

x
× S

i+
̂

y
) + Si · (S

i−̂

x
×

S
i−̂

y
) − Si · (S

i−̂

x
× S

i+
̂

y
) − Si · (S

i+
̂

x
× S

i−̂

y
), where x̂ and ŷ

denote the shifts by the lattice constant in the x and y direc-
tions, respectively. At K = 0, the RKKY interaction stabilizes
the single-Q spiral state with Q1, but the introduction of K
induces the double-Q state by mixing the Q2 component, as
shown in figure 11(a) 9. In this state for K > 0, the scalar chi-
rality becomes nonzero only for the Q2 component, as shown
in figure 11(b). This noncoplanar double-Q state is basically
the same as the double-Q CS state found for the Kondo lattice
model in section 3.3.1.

In a similar manner to (29), the energy difference between
the single-Q spiral and the double-Q CS states is evaluated for
the model in (36) in the limit of b � 1 as [23]

E2Q − E1Q ∼ Jb4

32
− Kb2

2
, (39)

where E1Q = −J + K/2 is the energy per site for the single-Q
spiral state. Thus, the condition to stabilize the double-Q CS
state, i.e., E2Q < E1Q, reads

0 < b2 <
16K

J
. (40)

This means that an infinitesimal K makes the single-Q spiral
state unstable by introducing the second component with the
amplitude b.

9 The state with interchanging Q1 and Q2 is energetically degenerate as
expected from the symmetry. Here and hereafter, the wave vectors are ordered
appropriately for better visibility.
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Figure 12. (a) and (b) K dependences of the Q1 = (π/3, 0), Q2 = (−π/6,
√

3π/6), and Q3 = (−π/6,−
√

3π/6) components of (a) the
squared magnetization and (b) the squared scalar chirality obtained by the simulated annealing for the model in (36). (c) H dependences of
mz

0 and (χsc
0 )2, (mxy

Qν
)2, (mz

Qν
)2, and (χsc

Qν
)2 for K = 0.3 from top to bottom. 3Q and FP represent the nsk = 0 triple-Q and fully polarized

states, respectively. Reprinted figure with permission from [23], Copyright (2017) by the American Physical Society. Reprinted figure with
permission from [207], Copyright (2021) by the American Physical Society.

The above argument is generic and applicable to any lat-
tices, such as the triangular and cubic lattices [23]. Thus,
the effective bilinear–biquadratic model in (36) well repro-
duces the instability toward the double-Q CS state in the weak
coupling limit of the Kondo lattice model.

4.2.2. On the triangular lattice. Next, we introduce the results
on the triangular lattice, by choosing Q1 = (π/3, 0), Q2 =
(−π/6,

√
3π/6), and Q3 = (−π/6,−

√
3π/6). The spin and

scalar chirality are shown in figures 12(a) and (b), respec-
tively [23]. The scalar chirality at Qν components on the tri-
angular lattice is defined in a similar manner to (38) with
the summation over the local scalar chirality χsc

R = S j · (Sk ×
Sl), where R is the position vector at the center of trian-
gle and j, k, l are three sites on the triangle in the counter-
clockwise order. Similar to the square lattice case in section
4.2.1, the single-Q state at K = 0 turns into the double-Q CS
state by introducing K. While increasing K, however, a phase
transition from the double-Q CS state occurs at K � 0.19.
At the transition, the magnetic moment changes discontinu-
ously, as shown in figure 12(a); all mQν

become nonzero with
equal intensity for K � 0.19. In the scalar chirality sector, the

uniform (q = 0) component is induced, while the Qν com-
ponents all vanish, as shown in figure 12(b). This noncopla-
nar triple-Q state is the nsk = 2 SkX obtained in the Kondo
lattice model in section 3.3.2. Thus, the effective model in
(36) reproduces the phase sequence from the double-Q CS
state to the triple-Q nsk = 2 SkX found in the Kondo lattice
model, which indicates that the increase of K mimics the
increase of JK.

Next, we present the effect of the magnetic field applied
along the z direction for nonzero K by considering the model
Hamiltonian HBBQ +HZ [23, 207]. Figure 12(c) shows the
magnetic field dependence of the spin and chirality compo-
nents at K = 0.3. In this case, to distinguish the magnetization
perpendicular and parallel to the magnetic field, the squared
magnetizations are plotted by decomposing into the xy and z
components,

mxy
Qν

=
1
N

√∑
i, j

(
Sx

i Sx
j + Sy

i Sy
j

)
eiQν ·(ri−r j), (41)

mz
Qν

=
1
N

√∑
i, j

Sz
i S

z
je

iQν ·(ri−r j), (42)
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respectively, in addition to the uniform component mz
0 =

|
∑

iS
z
i |/N. We also evaluate the uniform component of the

scalar chirality (χsc
0 )2, which is related to the appearance of

the topological Hall effect. While increasing the magnetic field
from zero, the nsk = 2 SkX changes into a triple-Q state at
H � 0.2, where (χsc

0 )2 vanishes. This triple-Q state has double-
Q peaks in the xy component and a single-Q peak in the
z component of the magnetic moments, while it accompa-
nies the single-Q chirality density wave with Q3. This state
resembles the high-field triple-Q state with nsk = 0 in the
Kondo lattice model in figure 10(c) in section 3.3.2. While
further increasing H, this state turns into the nsk = 1 SkX
at H � 0.4 with a finite jump of (χsc

0 )2. For larger H, the
system undergoes a phase transition to a triple-Q state with
nsk = 0 at H � 1, which is similar to the state for 0.2 �
H � 0.4. This triple-Q state turns into the fully polarized
state at H = 2.

Thus, the phase sequence from the nsk = 2 SkX to the
nsk = 1 SkX, and to the triple-Q state found in the Kondo
lattice model in figure 10 is reproduced in the results for
the effective spin model in (36), except for the narrow win-
dow of the triple-Q state appearing between the nsk = 2
and nsk = 1 SkXs. The difference might be attributed to the
factors omitted in the effective model, such as the inter-
actions at wave vectors other than Qν and other types of
magnetic interactions dropped off in the perturbation expan-
sion. The good agreement again indicates that the instabil-
ities toward the multiple-Q topological spin crystals in the
Kondo lattice model are well captured by the effective spin
model.

5. Extensions of the effective spin model

In the previous section, we have reviewed the previous stud-
ies showing that the effective spin model with the bilinear and
biquadratic interactions in momentum space well reproduces
the instabilities toward multiple-Q topological spin crystals
found in the Kondo lattice model. It opens the way for fur-
ther exploration of exotic spin states by smaller computational
costs than those for the original itinerant electron problems.
Indeed, a plethora of topological spin crystals have been found
in extensions of the effective model by additionally includ-
ing, e.g., anisotropic interactions, single-ion anisotropy, and
the DM interaction, and some of them are shown to be rele-
vant to experiments. In this section, we introduce a collection
of such recent theoretical studies for centrosymmetric lattice
systems in section 5.1 and noncentrosymmetric lattice systems
in section 5.2.

5.1. Centrosymmetric systems

In this section, we review the topological spin crystals stabi-
lized in the presence of the magnetic anisotropy in two cen-
trosymmetric lattice systems. One is the square SkX in a square
lattice system, which is stabilized by synergy between the pos-
itive biquadratic, bond-dependent anisotropic, and easy-axis
anisotropic interactions [208] (section 5.1.1). The other is the
triangular SkXs and the meron crystals in a triangular lattice
system, which appear in the presence of the bond-dependent

anisotropic interaction and the single-ion anisotropy [207]
(section 5.1.2).

5.1.1. Square lattice. An extension of the effective model in
(36) was studied by including the effect of spin–orbit cou-
pling on a centrosymmetric square lattice. The spin–orbit cou-
pling brings the anisotropy in the magnetic interactions that
satisfies the fourfold rotational symmetry of the system [23,
109, 175, 176, 207, 208]. In the bilinear–biquadratic model,
such bond-dependent anisotropy is incorporated by adding the
Hamiltonian given by

HBA = 2
∑
ν

⎡
⎣−J

∑
αβ

Γαβ
Qν

Sα
Qν

Sβ
−Qν

+
K
N

⎛
⎝∑

αβ

Γαβ
Qν

Sα
Qν

Sβ
−Qν

⎞
⎠

2⎤
⎦ , (43)

where Γαβ
q is a q-dependent dimensionless form factor. The

precise form of Γαβ
q is set by the relativistic spin–orbit cou-

pling under the crystalline electric field and the details of
the electronic band structure [94, 175, 209]. This type of
anisotropy is present even in the system with inversion symme-
try, in contrast to the DM interaction which is active only when
the inversion symmetry is broken. Similar bond-dependent
anisotropy has been discussed for short-range interactions in
magnetic insulators, such as the compass and Kitaev interac-
tions [129, 210–215]. In the following, we discuss the case
with the relevant wave vectors along the x and y directions:
Q1 = (Q, 0) and Q2 = (0, Q). In this case, Γαβ

Qν
has the form of

ΓQ1
=

⎛
⎝−IBA 0 0

0 IBA 0
0 0 Iz

⎞
⎠ ,

ΓQ2 =

⎛
⎝IBA 0 0

0 −IBA 0
0 0 Iz

⎞
⎠ .

(44)

This anisotropy prefers a specific spiral plane according to
the sign of IBA: a positive (negative) IBA favors the spiral
plane perpendicular (parallel) to Qν . In the following, we intro-
duce the result for Q = π/3, IBA > 0, and Iz = 0.2; similar
results are obtained for IBA < 0 by exchanging the x and y spin
components.

Figure 13(a) shows the zero-field magnetic phase diagram
of the model Hamiltonian given by HBBQ +HBA +HZ while
varying IBA and K, obtained by the simulated annealing [208].
There are three magnetic phases: the single-Q state for small
IBA and K denoted as 1Q, the double-Q state for large IBA

and K denoted as 2Q-I, and the other double-Q state for the
large IBA and small K denoted as 2Q-II. The 1Q state is a
simple proper-screw spiral whose spiral plane is perpendic-
ular to Qν . On the other hand, the 2Q-I state is given by a
superposition of the proper-screw spiral and the sinusoidal
wave, whose real-space spin configuration is represented in
figure 13(c); the xy spin component has a double-Q structure
with different intensities, leading to a periodic array of vor-
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Figure 13. (a) Magnetic phase diagram at zero magnetic field for the model given by HBBQ +HBA +HZ obtained by the simulated
annealing. The parameters are set as Q1 = (Q, 0) and Q2 = (0, Q) with Q = π/3 and Iz = 0.2. 2Q-I and 2Q-II stand for two different
double-Q states, while 1Q is for the single-Q state. The hatched area shows the parameter region where the system undergoes a phase
transition to a double-Q state with nonzero scalar chirality including the square SkX in an applied magnetic field. (b) Magnetic field
dependences of the magnetizations m0 and (mλ

Qν
)2 (λ =‖,⊥, z) at IBA = 0.1 and K = 0.2; the other parameters are common to (a). The

green region indicates the state with nonzero scalar chirality, which is identified as the square SkX. (c)–(e) Snapshots of the spin
configurations in (c) the 2Q-I state at H = 0, (d) the square SkX at H = 0.78, and (e) the 2Q-IV state at H = 1. The arrows and the contour
show the xy and z components of the spin moment, respectively. Reprinted figure with permission from [208], Copyright (2021) by the
American Physical Society.

tices. This state exhibits a chirality density wave along the
Q1 direction, similar to the double-Q CS state discussed in
sections 3.3.1 and 4.2.1. Meanwhile, in the 2Q-II state, both xy
and z spin components have the single-Q sinusoidal structures.
This state also exhibits a chirality density wave along the Q1

direction.
Although these three states at zero field show no net scalar

chirality χsc
0 , the system undergoes a phase transition to a

double-Q state with χsc
0 
= 0 under the magnetic field in the

hatched area in figure 13(a), lying across the 2Q-I and 2Q-II
states [208]. Figure 13(b) exemplifies such behavior by plot-
ting the magnetic field dependences of the squared magneti-
zations at IBA = 0.1, K = 0.2, and Iz = 0.2 [208]. Here, m‖

Qν

and m⊥
Qν

are the in-plane parallel and perpendicular compo-
nents of the magnetization with Qν , respectively [cf (41) and
(42)]. Three double-Q states are obtained while increasing H,
in addition to the fully polarized state above H � 2.2. The
low-field state below H � 0.775 corresponds to the 2Q-I state
connected to that at H = 0, while the high-field state before

entering the fully polarized state corresponds to a different
double-Q state dubbed 2Q-IV, whose spin structure is charac-
terized by a superposition of two sinusoidal waves along the Q1

and Q2 directions as shown in figure 13(e). The intermediate-
field state, which appears in the narrow region between the
2Q-I and 2Q-IV states, shows nonzero χsc

0 , as shown in figure
13(b). The spin structure of the intermediate state is shown
in figure 13(d), which represents the square SkX with nsk = 1
satisfying fourfold rotational symmetry with the equal weights
for Q1 and Q2 in both xy and z spin components [208]. The
nonzero (χsc

0 )2 indicates that this intermediate state exhibits
the topological Hall effect. Note that this SkX is energetically
degenerate with the antiskyrmion counterpart in the present
model; the degeneracy can be lifted by taking into account
the contributions from higher harmonics, as discussed in the
reference [177].

The parameter region of IBA and K where the square SkX
is stabilized by the magnetic field is drastically extended
down to small K by taking into account IBA, as shown by

20



J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

the hatched region in figure 13(a) 10; the region is limited
to K � 0.58 at IBA = 0, whereas the boundary comes down
to K � 0.07 for IBA � 0.05. This indicates that the bond-
dependent anisotropic interaction IBA plays an important role
in the stabilization of the square SkX. Recently, the effect
of similar bond-dependent interactions including the dipo-
lar interaction on the square SkX has been discussed in the
literature [216, 217].

It is noteworthy that the phase sequence against H in figure
13(b) well reproduces the experimental results for a cen-
trosymmetric material GdRu2Si2, which was recently discov-
ered to host the square SkX [108, 109]. GdRu2Si2 is a layered
material with square lattices of the localized Gd moments
which couple with the itinerant electrons. In this compound,
three distinct phases were observed besides the fully polarized
state at high fields through the resonant x-ray scattering
and Lorentz transmission electron microscopy measurements
[108]. From the detailed comparison between experiment
and theory, it was concluded that the three phases are well
explained by the 2Q-I, the square SkX, and 2Q-IV obtained for
the effective spin model. Interestingly, the magnetic period of
the square SkX in this compound is extremely short compared
to those in noncentrosymmetric materials, which also supports
the importance of the itinerant frustration. The importance of
the spin-charge coupling was also confirmed by the obser-
vation of the charge density wave in the scanning tunneling
microscopy experiment [109].

5.1.2. Triangular lattice. Next, we discuss multiple-Q topo-
logical spin crystals found in the effective spin model on the
triangular lattice [207]. In this case, respecting the sixfold rota-
tional symmetry and the mirror symmetry of the triangular
lattice, Qν are set as Q1 = (π/3, 0, 0), Q2 = (π/6,

√
3π/6, 0),

and Q3 = (−π/6,−
√

3π/6, 0), and the form factor in the
bond-dependent anisotropy described by (43) is taken as

ΓQ1
=

⎛
⎝−IA 0 0

0 IA 0
0 0 0

⎞
⎠ , ΓQ2

=

⎛
⎜⎜⎜⎜⎝
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2

√
3IA

2
0

√
3IA

2
− IA

2
0

0 0 0

⎞
⎟⎟⎟⎟⎠ ,

ΓQ3 =

⎛
⎜⎜⎜⎜⎝

IA

2
−
√

3IA

2
0

−
√

3IA

2
− IA

2
0

0 0 0

⎞
⎟⎟⎟⎟⎠ . (45)

This interaction prefers a specific spiral plane according to the
sign of IA, similar to that in the square lattice case in (43)
and (44). In addition, we discuss the effect of the local single-
ion anisotropy, which also arises from the spin–orbit coupling,
given by

HSIA = −A
∑

i

(
Sz

i

)2
, (46)

10 In the narrow window for large IBA, a meron crystal or a topologically trivial
double-Q state with nonzero χsc

0 but vanishing nsk appears to be stabilized,
instead of the square SkX [208].

where the positive (negative) A represents the easy-axis (easy-
plane) anisotropy.

Similar to the square lattice case in section 5.1.1, the effects
of magnetic anisotropy have been investigated theoretically
for the triangular lattice systems. For the bond-dependent
anisotropy, the instabilities toward multiple-Q states by short-
range anisotropic interactions of Kitaev type were discussed in
the Mott insulators with strong spin–orbit coupling [123, 126]
and in the Ni-halide monolayer [130]. On the other hand, the
effect of the single-ion anisotropy has been discussed for frus-
trated [57–59] and itinerant magnets [169, 170]. In the follow-
ing, we introduce the results for these two types of magnetic
anisotropy in the context of the itinerant frustration.

Single-ion anisotropy. We first discuss the effect of the
single-ion anisotropy, by taking the model Hamiltonian
HBBQ +HSIA +HZ. Figure 14(a) shows the zero-field mag-
netic phase diagram while varying A and K, obtained by the
simulated annealing [207]. There are six phases in the phase
diagram. Three of them are single-Q states: the 1Q cycloidal
(helical) state for A < 0 (A > 0) has a spin spiral in the xy (xz
or yz) plane, while in the 1Q collinear state for large positive
A, all the spins are aligned along the ±z direction. The rest
three are multiple-Q states appearing in the presence of the
biquadratic interaction K. One is the double-Q CS state in the
small |A| region, which is a relative of that found for A = 0 in
section 4.2.2, with the spiral plane is fixed depending on the
sign of A similar to the single-Q states. The second one is the
triple-Q state appearing in the larger K region of the double-
Q CS state, which is the nsk = 2 SkX with an anisotropic spin
structure depending on A: the xy spin component always shows
the double-Q structure, and becomes larger (smaller) than the
single-Q z spin component for A < 0 (A > 0). By increasing
A, the xy spin component vanishes, and then the nsk = 2 SkX
turns into the 1Q collinear state continued from the smaller
K region. Meanwhile, by decreasing A, the z spin component
vanishes and the nsk = 2 SkX changes into the third multiple-Q
state, the double-Q coplanar state.

When introducing the magnetic field, a further variety of the
multiple-Q states are obtained [207]. As an example, the result
for the magnetic field along the [001] direction is presented in
figure 14(b) for several parameter sets of A and K. In the small
K region where the single-Q or double-Q CS state is stabilized
at H = 0, the nsk = 1 SkX is stabilized in the intermediate field
region in the presence of the easy-axis anisotropy A > 0,11 in
addition to the topologically trivial triple-Q states, as shown in
the results for K = 0 and 0.1 in figure 14(b). On the other hand,
in the large K region, the nsk = 2 SkX at zero field remains sta-
ble against both easy-axis and easy-plane anisotropy as shown
in figure 14(b). These behaviors of the nsk = 1 and nsk = 2
SkXs are qualitatively consistent with those obtained for the
Kondo lattice model [169]. Interestingly, there are two variants
of the nsk = 2 SkX depending on A and H: one is a super-
position of the magnetic vortices in the xy spin component
and the sinusoidal wave in the z spin component, which breaks

11 The nsk = 1 SkX appears also for the easy-plane anisotropy A < 0, but it is
much more fragile against the anisotropy compared to the easy-axis case.
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Figure 14. (a) and (e) Magnetic phase diagrams at zero field for (a) HBBQ +HSIA and (e) HBBQ +HBA obtained by the simulated annealing.
(b) and (f) Phase diagrams for several values of (b) K and A, and (f) K and IA in the [001] magnetic field H. 1Q, 2Q, 3Q, SkX-1, SkX-2,
MX-1, MX-2, Ch, and FP stand for the single-Q state, double-Q state, triple-Q state, nsk = 1 SkX, nsk = 2 SkX, nsk = 1 meron crystal,
nsk = 2 meron crystal, multiple-Q states with nonzero uniform scalar chirality, and the fully polarized state, respectively. (c) and (d) Real-
space spin configurations of the nsk = 2 skyrmion crystals at (c) H = 0.1 and (d) H = 0.2 for K = 0.3 and A = −0.1. (g) and (h) Real-space
spin configurations of (g) the nsk = 1 meron crystal at H = 0.1 and (h) the nsk = 2 meron crystal at H = 0.3 for K = 0 and IA = 0.4. In (c),
(d), (g), and (h), the contour shows the z component of the spin moment, and the arrows represent the xy components. Reprinted figure with
permission from [207], Copyright (2021) by the American Physical Society.

threefold rotational symmetry as shown in figure 14(c), and the
other retains the symmetry in both xy and z spin components
as shown in figure 14(d).

Bond-dependent anisotropy. Next, we discuss the effect
of the bond-dependent anisotropy IA for the model Hamilto-
nian HBBQ +HBA +HZ. Figure 14(e) shows the zero-field
magnetic phase diagram obtained by the simulated anneal-
ing [207]. The result is drastically different from that for the
single-ion anisotropy A in figure 14(a). The difference appears
already at K = 0; the single-Q states for A are all replaced
by the double-Q states for IA. The double-Q CS state for

0 < IA � 0.37 is given by a superposition of the proper-screw
spiral and the sinusoidal wave similar to that in section 4.2.2.
Meanwhile, the double-Q helical state for 0.37 � IA � 0.47
and the double-Q coplanar state for IA � 0.47 are given by
a superposition of the two proper-screw spirals and two in-
plane sinusoidal waves, respectively12. All the double-Q states

12 The double-Q coplanar state for IA � 0.47 is further classified into two
types: the isotropic one with (mQ1 )2 = (mQ2 )2 for 0.47 � IA � 0.58 and the
anisotropic one with (mQ1 )2 > (mQ2 )2 for IA � 0.58, denoted as 2Q coplanar
and 2Q′ coplanar in figure 14(e), respectively.
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change into the nsk = 2 SkX while increasing K, as shown in
figure 14(e). It is worthy to note that, in contrast to the case with
the single-ion anisotropy, the nsk = 2 SkX for IA > 0 exhibits a
uniform magnetization along the z direction even at zero field.
This means that the degeneracy between the skyrmion with
nsk = +2 and the antiskyrmion with nsk = −2 is lifted under
the magnetic field.

In the presence of the magnetic field, further intriguing
topological spin crystals are stabilized, as shown in figure
14(f). When the bond-dependentanisotropy is relatively weak,
as exemplified in the results for IA = 0.2, the nsk = 1 SkX
is stabilized irrespective of K, while the nsk = 2 SkX and a
noncoplanar state with net scalar chirality but zero skyrmion
number [denoted as Ch in figure 14(f)] are stabilized by intro-
ducing K. The interesting feature is found in the nsk = 1 SkXs:
the bond-dependent anisotropy lifts the degeneracy between
the skyrmion and the antiskyrmion similar to the nsk = 2 case
above, and furthermore, the positive (negative) IA stabilizes
the Bloch(Néel)-type SkX (see figure 1). This is because the
bond-dependentanisotropy under the magnetic field breaks the
chiral symmetry of the system, and selects a particular vorticity
and helicity13. In addition to these SkXs, while increasing the
bond-dependentanisotropy, the other topological spin crystals,
meron crystals, are stabilized in the weak field region, as exem-
plified in the results for IA = 0.4 in figure 14(f). There are
two types of meron crystals with different skyrmion number
per magnetic unit cell, nsk: one is the nsk = 1 meron crystal
composed of the periodic array of one meron-like and three
antimerion-like spin textures as shown in figure 14(g), the
other is the nsk = 2 one with four moron-like textures as shown
in figure 14(h).

The above results indicate that the interplay between the
biquadratic interaction and the magnetic anisotropy gives
rise to a plethora of topological spin crystals. Owing to
the small computational cost, the extended effective spin
model is useful for a comprehensive study of the multiple-
Q instabilities in a wide parameter region. Indeed, it was
found that the above model with a fine balance between
the easy-plane anisotropy and the bond-dependent anisotropy
accounts for the SkX with nanometer size in Gd3Ru4Al12

[107]. Furthermore, it predicts new topological spin crys-
tals which have never been observed in experiments, such
as the nsk = 1 and nsk = 2 meron crystals, as shown above.
The findings would encourage further exploration of exotic
topological states.

5.2. Noncentrosymmetric systems

In the centrosymmetric systems discussed above, the
spin–orbit coupling gives rise to the anisotropic interactions
which are symmetric with respect to the spin components. In
the noncentrosymmetric systems where the spatial inversion
symmetry is broken, antisymmetric interactions can also
arise from the spin–orbit coupling. Such antisymmetric
interactions are derived by the perturbation expansion for

13 There remains the degeneracy between the Bloch(Néel)-type SkX with the
helicity ±π/2 (0 and π).

the Kondo lattice Hamiltonian in (7) with the antisymmetric
spin–orbit coupling described by

HASOC =
∑
k,σ,σ′

gk · c†kσσσσ′ckσ′ , (47)

where gk is the antisymmetric vector with respect to k. By
similar procedure to section 2.3.1, the DM-type antisymmet-
ric interactions, which are described by the outer products of
two spins, are obtained in the first order of HASOC.14 In the
following, we review the topological spin crystals stabilized
in the presence of the DM-type interactions by focusing on the
square lattice system with asymmetry (polarity) perpendicular
to the plane in section 5.2.1 [175] and the chiral cubic lattice
system in section 5.2.2 [30].

5.2.1. Square lattice. We first review the multiple-Q topo-
logical spin crystals on a square lattice with polarity perpen-
dicular to the plane15, where the antisymmetric spin–orbit
coupling in (47) has the form of the Rashba-type spin–orbit
coupling as gk = (gx

k, gy
k) ∝ (sin ky,− sin kx) [175]. In this

case, the effective spin model is given by

Hp−SL = −2
∑
ν

⎡
⎣∑

αβ

Jαβ
ν Sα

Qν
Sβ
−Qν

+ iDν ·
(
SQν

× S−Qν

)⎤⎦
− H

∑
i

Sz
i , (48)

where Jαβ
ν and Dν are the coupling constants for the sym-

metric and antisymmetric exchange interactions in momen-
tum space (α, β = x, y, z); the biquadratic interaction K is
ignored for simplicity. Below, we discuss the results for
Q1 = (0, π/4) and Q2 = (π/4, 0), for which Jαβν and Dν can
be taken as Jxx

1 = Jyy
2 ≡ Jxx , Jyy

1 = Jxx
2 ≡ Jyy, Jzz

1 = Jzz
2 ≡ Jzz,

and Dx
1 = −Dy

2 ≡ D without loss of generality (all other
components are zero).

Figure 15(a) shows the magnetic phase diagram of the
effective spin model in (48) by performing the simulated
annealing for Jxx + Jyy + Jzz = 1, Jxx = Jyy, and D = 0.3
[175]. Besides the single-Q (1Q) helical state for large Jzz

and the fully polarized state for large H, the square Néel-
type SkX is stabilized in the small Jzz and H region. This
state is given by a superposition of the two cycloidal spi-
rals, forming a periodic array of magnetic vortices. At H =
0, the spatial regions of the vortices with Sz

i > 0 and the
antivortices with Sz

i < 0 have the same size and shape as
shown in figure 15(b), resulting in the cancellation of the
scalar chirality. Thus, this spin state is regarded as a Néel-
type VX (Néel VX) or meron–antimeron crystal. While
introducing H, the vortex regions are extended and the antivor-
tex regions are shrunk, which turns the state into the Néel-
type SkX with nsk = 1, as shown in figure 15(c). This is

14 The second-order contribution leads to symmetric interactions, which
include the bond-dependent interactions discussed in section 5.1.
15 The situation is realized by the asymmetric environment between the upper
and lower sides of the square plane, such as on surfaces or in heterostructures.
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Figure 15. (a) Magnetic phase diagram of the model in (48) while changing Jzz and H at D = 0.3 with Jxx = Jyy (Jxx + Jyy + Jzz = 1). 1Q
helical and N-SkX represent the single-Q spiral the Néel-type skyrmion crystal, respectively. (b) and (c) Real-space spin configurations of
(b) the Néel VX at H = 0 (see the main text) and (c) the Néel SkX at H = 0.3 for Jzz = 0 and D = 0.3. The arrows and contour denote the
xy and z components of the spin moments, respectively. (d) Magnetic phase diagram while changing Jxx and D at H = 0 with Jyy = Jzz.
B-VX represents the Bloch-type VX state. (e) and (f) Real-space spin configurations of (e) the Bloch VX at H = 0 and (f) the Bloch SkX at
H = 0.235 for Jxx = 0.5625 and D = 0.3. Reprinted figure with permission from [175], Copyright (2018) by the American Physical Society.

reasonable since the Rashba-type DM interaction is known
to favor a similar Néel-type SkX also in the Heisenberg
model with the short-range DM interaction for polar insulating
magnets [33].

Interestingly, however, a Bloch-type SkX can also be stabi-
lized in the effective spin model (48) by tuning the symmet-
ric anisotropic interaction. Figure 15(d) shows the zero-field
phase diagram in the plane of Jxx and D with Jyy = Jzz. In
the intermediate region between the single-Q helical state for
small Jxx and large D (denoted as 1Q helical and 1Q helical
II) and the double-Q state for large Jxx and small D (denoted
as 2Q coplanar), double-Q noncoplanar states are stabilized by
the competition between the DM interaction and the symmet-
ric anisotropic interaction. One of them in the red region in
figure 15(d) has the spin configuration with a periodic array
of vortices as exemplified in figure 15(e), where the spins near
the vortex core rotate in the tangential planes when moving
from the core to periphery; this corresponds to the Bloch-type
VX or meron–antimeron crystal. Similar to the Néel-type VX
and SkX in figures 15(b) and (c), this Bloch-type VX evolves
into a Bloch-type SkX by introducing H, as shown in figure
15(f). The result indicates that the itinerant frustration can sta-
bilize the Bloch-type SkX even in the presence of the Rashba-
type DM interaction, contrary to the conventional wisdom

that such Bloch-type SkXs are stabilized by the chiral-type
DM interaction [33, 42].

Thus, the above results show that the types of the SkXs
can be controlled by not only the spin–orbit coupling but also
the electronic band structure. The former would be designed
by making surfaces and heterostructures, and controlled by
an external electric field, while the latter would be changed
by chemical doping and an external pressure. Such systematic
studies will give an insight into the origin of topological spin
crystals in bulk, thin films, and heterostructures of magnetic
metallic systems.

5.2.2. Cubic lattice. Finally, let us discuss three-dimensional
topological spin crystals, HXs (see figure 1), in a noncen-
trosymmetric chiral system on the cubic lattice. The HXs are
found to be stabilized by the itinerant frustration with the
interplay between the biquadratic interaction and the DM-type
interaction [30]. The effective spin Hamiltonian is given by

Hc−CL =
∑
ν

[
− JSQν

· S−Qν
+

K
N

(
SQν

· S−Qν

)2

− iDν ·
(
SQν

× S−Qν

) ]
− H

∑
i

Sz
i . (49)
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Figure 16. (a) and (b) Phase diagrams of the model in (49) at zero field for the (a) 4Q and (b) 3Q cases obtained by the variational calculations.
HX, NC, VX, CS, and H represent the hedgehog crystal, the nonchiral, the vortex crystal, the chiral stripe, and the helical states, respectively.
Spin textures of the 4Q and 3Q HXs are shown in the insets of (a) and (b), respectively, where the color of the arrows represents the z component
of spins and the magenta (cyan) balls represent the (anti)hedgehogs corresponding to the (anti)monopoles in terms of the emergent magnetic
field. (c) H dependences of the magnetization m, the magnetic susceptibility χ, the magnetization with wave vector Qν , mQν

, the number of
monopoles and antimonopoles, Nm, and the net scalar chiralityχsc in the 4Q case with D = 0.3 and K = 0.6. The magnetic field is applied in the
[001] direction. The black-dashed vertical lines represent the topological transitions by pair annihilation of monopoles and antimonopoles,
while the gray ones represent other nontopological phase transitions. The inset shows the minimum distance between the monopoles and
antimonopoles, dm. (d)–(g) Positions of monopoles and antimonopoles in the magnetic unit cell at (d) H = 0.00, (e) 0.57, (f) 0.60, and (g)
1.39. The arrows at the bottom show the slice of the spin texture on the plane just below some of the monopoles and antimonopoles. Reprinted
figure with permission from [30], Copyright (2020) by the American Physical Society.

where J and K are taken to be symmetric for simplicity; Dν

is parallel to Qν by assuming gk ∝ (sin kx , sin ky, sin kz) in
(47). This model realizes the HXs composed of multiple-Q
helices, as shown below: the HX composed of a superposition
of four spin helices (4Q HX) is stabilized by taking four tetra-
hedral Qν as Q1 = (Q,−Q,−Q), Q2 = (−Q, Q,−Q), Q3 =

(−Q,−Q, Q), and Q4 = (Q, Q, Q) in (49), and the HX com-
posed of three helices (3Q HX) is stabilized by taking three
cubic Qν as Q1 = (Q, 0, 0), Q2 = (0, Q, 0), and Q3 = (0, 0, Q).

The spin textures of the 4Q and 3Q HXs are shown in the insets
of figures 16(a) and (b), respectively. Experimentally, simi-
lar 4Q and 3Q HXs were discovered in the B20 compound
MnSi1−xGex [27–29, 110]. In the following, we discuss the
results with Q = π/4.

Figures 16(a) and (b) display the magnetic phase diagrams
at zero field for the 4Q and 3Q cases, respectively, obtained
by the variational calculations while changing D = |Dν | and
K [30]. In both 4Q and 3Q cases, the HXs in figures 16(a) and
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(b) are stabilized in the wide parameter range of nonzero D
and K, which indicates the importance of the interplay between
the biquadratic interaction from the spin-charge coupling and
the DM-type interaction from the spin–orbit coupling for the
stabilization of the HXs.

Both the 4Q- and 3Q-HXs have a periodic array of the
topological defects where the spin length vanishes16. The
spins around the defects form hyperbolic hedgehogs and anti-
hedgehogs, whose noncoplanar spin textures are the sources
and sinks of the fictitious magnetic field emergent from the
spin Berry phase mechanism, respectively. Hence, the hedge-
hogs and antihedgehogs are regarded as magnetic monopoles
and antimonopoles, respectively [218]. The monopoles and
antimonopoles are characterized by the topological num-
bers called the monopole charges calculated by the solid
angles of the spins around the defects [26, 182]. The 4Q-
HX has eight pairs of monopoles and antimonopoles in the
magnetic unit cell so as to form two interpenetrating body-
centered-cubic lattices, while the 3Q-HX has four pairs of
monopoles and antimonopoles, which comprise spirals run-
ning in the [100], [010], and [001] directions. The positions
of monopoles and antimonopoles in each HX are schemat-
ically shown as the magenta and cyan balls in the insets of
figures 16(a) and (b).

When the magnetic field is applied, the spin textures of
the HXs are modulated, and accordingly, the monopoles and
antimonopoles move and may cause pair annihilation, which
results in the topological phase transition. Figure 16(c) shows
such behavior in the case of the magnetic field applied along
the [001] direction for the 4Q case obtained by the simulated
annealing [30]. The field dependences of the magnetization m
and the magnetic susceptibility χ in the top panel of figure
16(c) indicate that the system exhibits four phase transitions
at H � 0.575, 0.595, 1.395, and 2.335. The magnetizations
with wave vector Qν , mQν

, plotted in the second panel of
figure 16(c) have the equal amplitudes for the four components
ν = 1–4 except for the fully polarized state for H � 2.335,
indicating that the three phases below H � 2.335 are 4Q
states. The phase transitions at H � 0.575 and 1.395 are
the topological transitions characterized by the pair annihi-
lation of monopoles and antimonopoles, where the number
of monopoles and antimonopoles, Nm, decreases from 16, to
8 and to 0 successively, as shown in the bottom panel of
figure 16(c) 17. The motions of the monopoles and anti-
monopoles while increasing H are shown in figures 16(d)–(g);
the minimum distance between the monopoles and anti-
monopoles, dm, is plotted in the inset of the bottom panel
of figure 16(c). The change of dm is related to the behavior
of the net scalar chirality χsc leading to the topological Hall
effect, which is plotted in the bottom panel of figure 16(c):
the rapid changes of |χsc| when approaching the topological

16 On the discrete lattice, the defects were found to prefer the interstitial
positions to avoid the singularities [30].
17 The other phase transition at H � 0.595 is non-topological, where the
higher-harmonic spin components show small changes [30].

transition at H � 0.575 and 1.395 are owing to the decrease
of dm.18

The above results indicate that the long-range biquadratic
and DM-type interactions are key ingredients for the stabi-
lization of the HXs. This implies the importance of itinerant
frustration for understanding the origin of the HXs recently
discovered in MnSi1−xGex [27–29]. The short period of the
magnetic textures in experiments also supports the relevance
of itinerant frustration. In experiments, the 3Q HX in MnGe is
turned into the 4Q HX by Si doping [29], suggesting a change
in the electronic structure and the Fermi surfaces that lead to
the switching of the relevant wave vectors. We note that a dif-
ferent mechanism has been suggested based on a short-range
chiral–chiral interaction [192, 195]. For deeper understanding,
it is desired to clarify the electronic structure in each material,
especially the doping dependence, by, e.g., the angle-resolved
photoemission spectroscopy, the de Haas–van Alphen effect,
and the first-principles calculations. It was recently shown that
the sample thickness modulates the spin textures of the HX
in MnGe [219]. In addition, a similar but different type of
modulation was found in an external magnetic field [110].
Such modulations have also been studied theoretically [220,
221]. The effective spin model based on the itinerant frustra-
tion and its extensions would be useful for understanding the
experimental results.

6. Summary and perspective

To summarize, we have reviewed recent progress in theoreti-
cal understanding of the topological spin crystals in itinerant
magnets. The central concept is the itinerant frustration, that
is the competition between the effective long-range magnetic
interactions mediated by itinerant electrons. It has an analogy
with the conventional frustration for the short-range exchange
interactions in insulating magnets: the degeneracy at the level
of bilinear interactions is lifted by long-range multiple-spin
interactions inherent to the itinerant nature of electrons, in
a similar manner to the conventional frustration where the
degeneracy for the two-spin exchange interactions can be lifted
by multiple-spin ones. The difference lies in the range of inter-
actions; the itinerant frustration arises in the long-range inter-
actions which are better described in momentum space, while
the conventional one is in the exponentially short-range inter-
actions in real space. This leads to a further variety of the
topological spin crystals than ever. In addition, it is noteworthy
that the itinerant frustration may give rise to topological spin
crystals with very short periods down to a few lattice sites, as
it is set by the inverse of the relevant Fermi wave numbers;
the other conventional mechanisms like the DM interaction
hardly realize such short periods within the realistic model
parameters.

As reviewed in this article, the importance of the itin-
erant frustration has been suggested from the careful anal-
ysis of the origin of multiple-Q topological spin crystals

18 Whether χsc increases or decreases depends on the directions of the flows
of local scalar chirality connecting the monopole–antimonopole pairs [30].

26



J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

discovered in the numerical calculations for a fundamen-
tal model for itinerant magnets, the Kondo lattice model.
It was shown that the effective spin model with long-range
bilinear and biquadratic interactions, which is constructed
based on the perturbation in terms of the spin-charge cou-
pling, well reproduces the multiple-Q instabilities found in
the Kondo lattice model. Furthermore, several extensions of
the effective spin model, e.g., by including the anisotropic
interactions, single-ion anisotropy, and the DM interaction,
uncovered more exotic multiple-Q topological spin crys-
tals. These findings are relevant to understanding of a new
generation of the multiple-Q topological spin crystals with
unusually short magnetic periods, experimentally discovered
e.g., in GdRu2Si2, Gd3Ru4Al12, and MnSi1−xGex . Thus, the
recent progress shows that the effective bilinear–biquadratic
model in momentum space is a canonical model to dis-
cuss the itinerant frustration. It paves the way for further
exploration of exotic topological spin crystals and associated
quantum phenomena, since the computational cost is much
cheaper than that for the models including itinerant electrons
explicitly.

There remain a number of interesting issues to be clari-
fied from the concept of itinerant frustration. First of all, it is
desired to construct the framework to evaluate the multiple-
spin interactions in momentum space in a systematic way
beyond the perturbative regime. Although the effective spin
model with the bilinear and biquadratic interactions captures
the instability toward the multiple-Q states even for a rela-
tively large spin-charge coupling, it is still unclear whether the
other higher-order interactions can be dropped off or not in
such a regime. More importantly, it should be clarified how
the multiple-spin interactions as well as the anisotropic inter-
actions are related with the electronic band structure. In par-
ticular, it would be intriguing to establish a guiding princi-
ple to enhance such interactions from the viewpoint of the
band structure. This will give an insight to not only the explo-
ration for further exotic topological spin crystals in experi-
ments but also computational bottom-up engineering based on
the electronic structure calculations.

The theoretical search for other topological spin crystals is
also an intriguing issue. For example, it is an open question
whether antiferromagnetic SkXs [90, 222–226], which consist
of multiple interpenetrating SkXs, are stabilized or not by the
itinerant frustration. A hopfion, which is a three-dimensional
topological soliton, is another interesting topological spin tex-
ture [227–231]. It would be interesting to explore a periodic
hopfion crystal based on the itinerant frustration, as it could be
described as a multiple-Q magnetic state.

It is also interesting to investigate the possibility of
multiple-Q topological spin crystals arising from the compe-
tition and cooperation between the itinerant frustration in the
long-range interactions and the conventional frustration in the
short-range interactions. Some magnets including both itin-
erant and localized electrons may have short-range exchange
interactions between the localized moments, in addition to
the effective long-range interactions mediated by the itiner-
ant electrons. As the conventional frustration can give rise to
exotic magnetic ordered states, such as the partial disorder

[232–236], the competition and cooperation with the itinerant
frustration would lead to more exotic states with multiple-Q
modulations.

Another important issue is to construct the effective spin
models for the materials hosting the multiple-Q topological
spin crystals. Although it was shown that the effective bilinear
and biquadratic model and its extensions well explain the SkXs
observed in GdRu2Si2 [108, 109], and Gd3Ru4Al12 [106, 107],
and the HXs in MnSi1−xGex [27–29, 110], there remain vari-
ous topological spin crystals whose mechanisms are still miss-
ing, e.g., the SkXs in EuPtSi [95–97], and Gd2PdSi3 [98–105],
and the HX in SrFeO3 [111–114]. The 4 f -electron compound
EuPtSi with the chiral lattice structure, which belongs to the
same space group as MnSi, exhibits the SkX with extremely
short magnetic period in the wide range of the temperature
and the magnetic field [95, 96]. The characteristic feature is
fragility of the SkX depending on the field direction [97],
which suggests the importance of the magnetic anisotropy.
Thus, it is expected that an extension of the effective spin
model for the chiral cubic system discussed in section 5.2.2
by including other anisotropic interactions might be relevant
to reproduce the experimental behaviors [237]. Meanwhile,
in the case of the 3d perovskite SrFeO3, because of the cen-
trosymmetric lattice structure, it might be sufficient to take
into account the cubic anisotropic interaction and omit the
DM-type interaction for understanding the complicated phase
diagram including the HX. In this case, however, the orbital
degree of freedom, i.e., the hybridization between the Fe 3d
and O 2p orbitals, might play an important role in stabilizing
the multiple-Q states [158]. In such a situation, the extension of
the effective spin model to the multi-orbital system is required.
Furthermore, the effect of thermal fluctuations would also be
important, as the HX is stabilized only at finite temperature in
this system, in contrast to MnSi1−xGex [111, 112]. The SkX in
the 4 f -electron compound Gd2PdSi3 is also worth studying
based on the effective spin model with itinerant frustration,
since the nesting of the Fermi surfaces has been suggested
by the angle-resolved photoemission spectroscopy [238, 239].
As this compound has the centrosymmetric lattice structure,
the effective spin model in section 5.1.2 will be a good start-
ing point to understand the origin of the SkX in this com-
pound. After all, it is desired to carefully design the effective
spin model compatible with the symmetry and the electronic
structure of each material.

Last but not least, it is worth examining the effect of the
coupling with the other degrees of freedom in solids, such
as charge, orbital, and lattice. As the spin textures may cou-
ple with the charge and orbital degrees of freedom in itin-
erant magnets, the charge and orbital in electrons can also
exhibit the multiple-Q density waves. Indeed, as mentioned
in section 5.1.1, the charge density waves in the double-Q
square SkX as well as the other multiple-Q states around it
have been observed in GdRu2Si2 by the scanning tunneling
microscopy experiment [109]. Furthermore, the lattice dis-
creteness can affect the stability of the topological spin crys-
tals. For example, the cores of the HXs prefer the interstitial
positions of the lattice structure so as to avoid the singular-
ity in the spin length, as discussed in section 5.2.2. This in
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turn means that the topological spin crystals can couple with
the lattice degree of freedom: their formation can lead to lat-
tice distortions, and vice versa. It also suggests the possibility
to control the topological spin crystals not only by the elec-
tric and magnetic fields but also the lattice distortions and
vibrations, the shape of samples, and the impurities and dis-
locations. The understanding of these couplings among the
multiple degrees of freedom at the microscopic level will open
the way to the Berry phase engineering of further intriguing
quantum transports and multiferroic responses.
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