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“Remember to look up at the stars and not down at your feet. Try to make sense
of what you see and wonder about what makes the universe exist. Be curious.”

Stephen Hawking





Abstract

Quantum information tools have yielded crucial insights into quantum gravity, particularly within
the framework of anti-de Sitter spacetime, where the AdS/CFT correspondence is well-established.
The assumption has intensified that this connection can be extended to a broader context of
quantum gravity. Bridging the knowledge gap from anti-de Sitter to de Sitter spacetime has
been a significant pursuit in recent decades. This thesis takes a step in advancing our compre-
hension of quantum gravity in the context of low-dimensional de Sitter spacetime using holography.

To achieve this, we develop a holographic toy model to describe the dS/CFT correspondence. This
model is defined as a tensor network associated with the tessellation of de Sitter spacetime, which
is interpreted as a propagator from de Sitter’s past to its future boundary. Notably, the symmetry
action on the boundaries of this holographic model is fully characterized using Thompson’s group
T ; with this, we provide a dynamical toy model for the dS/CFT correspondence. By extending
the holographic models to various curvatures of de Sitter, we establish a correlation between the
curvature of spacetime and the quantum capacity of the channel defined by the tensor network,
which is reminiscent of the Λ-N correspondence. Another key property of the holographic model
is that it captures an isometric time evolution in expanding spacetime, which is in contrast to a
unitary time evolution established in standard quantum mechanics.

To relate the holographic model to the language of quantum mechanics, we define Hilbert spaces
at the holographic boundaries and physical quantum states living in these Hilbert spaces. It is
crucial to emphasize that the properties of tensors within the holographic model significantly
influence the characteristics of permissible states and with that the model’s physical significance.
Unlike in the anti-de Sitter case, using quantum error correction here only yields a trivial theory.

To further motivate more concrete properties of the tensors, we investigate how a local observer
experiences the expansion of de Sitter spacetime. For this, we suggest a de Sitter vacuum state
with quantum fluctuations as a globally defined initial state of de Sitter spacetime. We derive
how its evolution is perceived by a local observer who experiences proper acceleration due to the
spacetimes expansion. We refer to this as an Unruh channel in de Sitter spacetime. The obtained
channel exhibits properties of an optimal cloning channel, which establishes another connection
between aspects of quantum information theory and the expansion of spacetime.

One central principle that sets quantum physics apart from classical physics is quantum super-
position. At the end of this thesis, we extend our studies of the Unruh effect to allow for the
detector to be in a quantum superposition of trajectories. For this, we consider trajectories in a
de Sitter static patch with a constant distance from one another and analyze the resulting state
of the detector. We find that the state of the detector is not only a mixture of thermal states
known from a well-defined trajectory, but we find interference terms between different trajectories
in the excited state of the detector. These coherences can be associated with the properties of
the particles absorbed by the detector.

Keywords: dS/CFT, holography, Thompson’s group, Unruh effect, optimal cloning, superposition
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Kurzzusammenfassung

Methoden aus der Quanteninformationstheorie haben entscheidende Einblicke in die Quanten-
gravitation geliefert, insbesondere im Rahmen der Anti-de Sitter (AdS) Raumzeit, wo sie dazu
beigetragen haben die AdS/CFT-Korrespondenz zu verstehen. Es wird vermutet, dass Quantenin-
formationstheorie auch außerhalb von Anti-de Sitter Raumzeiten zu einem besseren Verständnis
von Quantengravitation beitragen kann. In den letzten Jahren war es ein zentrales Ziel, die
Wissenslücke von der Anti-de Sitter zur de Sitter (dS) Raumzeit zu überbrücken.

Dazu entwickeln wir ein vereinfachtes holographisches Modell zur Beschreibung der dS/CFT-
Korrespondenz. Dieses ist als Tensornetzwerk definiert, das mit der Kachelung der de Sitter-
Raumzeit assoziiert und als Propagator zwischen den zeitlichen Grenzen der de Sitter-Raumzeit
interpretiert wird. Die Wirkung der Symmetrie an den Grenzen dieses holographischen Modells
wird vollständig durch die Thompson-Gruppe T charakterisiert. Indem wir die holographischen
Modelle auf de Sitter Raumzeiten mit verschiedene Krümmungen verallgemeinern, stellen wir eine
Korrelation zwischen der Raumzeitkrümmung und der Quantenkapazität des Modells her. Eine
weitere zentrale Eigenschaft des holographischen Modells besteht darin, dass es eine isometrische
Zeitentwicklung in der expandierenden Raumzeit beschreibt, welche im Gegensatz zu der in der
Standard-Quantenmechanik etablierten unitären Zeitentwicklung steht.

Um das holographische Modell mit der Sprache der Quantenmechanik zu verbinden, definieren wir
Hilbert-Räume an den Grenzen des Modells und die zugehöriogen physikalischen Quantenzustände.
Es ist wichtig zu betonen, dass die Eigenschaften der Tensoren innerhalb des holographischen
Modells die Eigenschaften der zulässigen Zustände und die physikalische Bedeutung des Modells
wesentlich beeinflussen. Die Verwendung der Quantenfehlerkorrektur, die im AdS-Fall sehr erfolg-
reich war, führt hier nur zu einer trivialen Theorie.

Um weitere konkrete Eigenschaften der Tensoren zu motivieren, untersuchen wir, wie ein lokaler
Beobachter die Expansion der de Sitter-Raumzeit erlebt. Dazu betrachten wir einen globalen
Anfangszustand der de Sitter-Raumzeit als Vakuumszustand mit Quantenfluktuationen. Wir
leiten ab, wie seine Entwicklung von einem lokalen Beobachter wahrgenommen wird. Aufgrund
der Expansion der Raumzeit erfährt der lokale Beobachter eine Eigenbeschleunigung, weshalb
wir von einem Unruh Effekt in der de-Sitter-Raumzeit sprechen. Der erhaltene Kanal weist
Eigenschaften eines optimalen Klonkanals auf, was eine weitere Verbindung zwischen Aspekten
der Quanteninformationstheorie und der Expansion der Raumzeit herstellt.

Ein zentrales Prinzip, das die Quantenphysik von der klassischen Physik unterscheidet, ist die
Quantenüberlagerung verschiedener Zustände. Am Ende dieser Arbeit erweitern wir unsere
Untersuchungen des Unruh-Effekts so, dass sich der lokale Detektor in einer Quantenüberlagerung
von Trajektorien befindet. Dazu betrachten wir Trajektorien in der de Sitter Raumzeit mit
konstantem Abstand zueinander und analysieren den resultierenden Zustand des Detektors, der
sich in einer Überlagerung dieser Trajektorien befindet.

Schlagwörter: dS/CFT, Holografie, Thompson’s Gruppe, Unruh Effekt, optimales Klonen, Super-
position
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C h a p t e r 1

Introduction

Quantum gravity is an important field in theoretical physics with the goal of unifying general
relativity and quantum mechanics. General relativity is the theory that provides a thorough under-
standing of gravity, characterizing it as a geometric property of spacetime, and quantum mechanics
is a fundamental theory in physics that describes physical principles at a microscopic scale. To
this day, the unification of these two theories and, with that, a general understanding of quantum
gravity is vastly out of reach. As a first step in gaining a deeper understanding of quantum gravity
in general, the focus lies on understanding the fundamental properties of quantum gravity for
comparatively simple solutions of Einstain’s field equation in general relativity. Two examples that
stand out due to their constant curvature and with that hyperbolic structure are de Sitter (dS)
and anti-de Sitter (AdS) spacetime introduced by de Sitter in 1917 [dS17a, dS17b]. In the past,
there has been great progress in understanding the relationship between quantum gravity theories
in the semiclassical limit and strongly interacting conformal field theories (CFTs) for anti-de Sitter
spacetimes. This duality is formulated as the AdS/CFT correspondence in [Mal98, Mal99]. This
original work was followed by a multitude of studies exploring this holographic correspondence in
a variety of settings in the field of high energy physics, starting with early works from Susskind
in [Sus95], Gubser, Klebanov, and Polyakov in [GKP98] and Witten in [Wit98]. This correspon-
dence has provided many insights into the fundamental structure of quantum gravity. In this
context, quantum information tools have provided valuable insights for a better understanding
of quantum gravity. There are profound reasons to believe there is a deep connection between
quantum gravity and quantum information theory beyond the AdS/CFT correspondence [Bou02b].

In the past decades, there has been an active interest in exploring the connection between
quantum gravity and quantum information further, where the use of holographic principles took
a central role. In particular, holographic properties manifested in the relation between quantum
entanglement of a boundary region and the corresponding minimal surface area of the bulk
characterized by Ryu and Takayanagi in [RT06], which was further discussed in [RT17]. The use
of quantum entanglement in this context has developed from there: Van Raamsdonk suggested
in [Raa10] that classically connected spacetimes, in general, are directly related to the quantum
entanglement on the boundary. Maldacena and Susskind have proposed in [MS13] that two
distant black holes connected via a wormhole (which is a solution to the field equations in general
relativity) can be interpreted as a maximally entangled state of two black holes. This work was
the starting point for relating quantum entanglement and Hamiltonian complexity theory to the
quantum physics of black holes [Har16, BRS+16, HNQ+16].

One highly relevant tool from quantum information theory (also well-known in many-body physics)
to implement holographic principles is tensor networks. In particular, tensor networks have pro-
vided a valuable tool to define holographic toy models in the context of anti-de Sitter spacetime.
Two important examples of toy models capturing the AdS/CFT correspondence are the one pro-
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Chapter 1. Introduction

posed by Swingle in [Swi12a] and another one from Pastawski, Yoshida, Harlow, and Preskill sug-
gested in [PYHP15], which both model a discretized spatial slice of anti-de Sitter. In [Swi12a], this
correspondence was established by linking the Multi-Scale Entanglement Renormalization Ansatz
(MERA) to anti-de Sitter spacetime. This work was an important motivation for the toy model
presented in [PYHP15] describing the holographic duality and giving a discretized description of
the AdS/CFT correspondence. This duality is often referred to as the holographic code, which is
built from special tensors coming from quantum error correction (QEC) known as perfect tensors.
This toy model was the starting point to further investigate and generalize holographic codes
in the context of the AdS/CFT correspondence [HNQ+16, BCC+15, YHQ16, BGHL16, May17]
and perfect tensors [GAL+15, EWŻ16, RGRA18, LHGZ17, PR17, DMMW17]. In holographic
tensor network models, the relation between QEC and bulk locality in the AdS/CFT correspon-
dence initially pointed out by Almheiri, Dong, and Harlow in [ADH15] has taken a central role
in understanding the bulk-boundary correspondence in anti-de Sitter. The upgrade to a full
dynamical toy model of the AdS/CFT correspondence was possible using powerful results of
Jones [Jon14, Jon17] stating that Thompson’s group T [CFP96, Bel04] is a unitary representation
of a discretization of the conformal group. Tensor networks have proven to be a valuable tool in
capturing the holographic correspondence, which goes beyond the geometry of the spacetime but
greatly helped in characterizing the bulk boundary correspondence in particular in anti-de Sitter
spacetime.

For the past decades, many observations such as [RFC+98, SSP+98, PAG+99, Car01, PKV+03]
have strongly supported the idea that we live in a universe that is asymptotically de Sitter.
Arguably, de Sitter is the spacetime with more physical relevance to us than anti-de Sitter.
There has been progress in the past years in developing a dS/CFT correspondence with key
works including [Ban01, Bou99a, Bou99b, Bou00, Wit01, BHM01, HMS01, Mal03, HS11]. One
remarkable result, which has attracted lots of attention and has been quite counter-intuitive
for years, is that global de Sitter spacetime only exhibits a finite number of degrees of freedom
depending on the curvature of spacetime. This conjecture is referred to as the Λ-N correspondence
and was first argued by Banks and Bousso [Ban01, Bou99a, Bou99b, Bou00] and further refined
in the coming years by Witten [Wit01]. Despite this significant progress in understanding the
properties of the dS/CFT correspondence, to this day, the insights gained in de Sitter do not
match those in anti-de Sitter spacetime. The main objective of this thesis is to learn more about
quantum gravity in the context of de Sitter spacetime. The goal is to develop a holographic
toy model capturing properties of the dS/CFT correspondence by transferring knowledge about
quantum gravity in anti-de Sitter spacetime to de Sitter and adapting properties of holographic
models describing the AdS/CFT correspondence. In the upcoming work, we develop a holographic
model for de Sitter and relate its quantum information properties to the Λ-N correspondence.

Many obstacles arise in directly transferring results from anti-de Sitter to de Sitter spacetimes, as
they have fundamentally different physical properties. One difference that needs to be highlighted
is that de Sitter spacetime has two spatially disconnected temporal boundaries, which lie in the far
past and future, respectively. In contrast, anti-de Sitter spacetime has one spatial boundary. The
drastic difference in the boundaries highly affects the holographic model where the boundary of
spacetime characterizes the properties in the bulk. Another striking difference is the fundamental
difference in time: in AdS, time is periodic; this is not the case in dS. Also, a local observer in de
Sitter can only have access to part of the spacetime, which makes it difficult to define one correct
set of observables in de Sitter spacetime rigorously. These profound differences have far-reaching
consequences and impose challenges in transferring formulations of quantum gravity models of
the AdS/CFT correspondence to the de Sitter case.

In spite of these difficulties, Strominger has introduced ideas to study the holographic duality
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captured by the dS/CFT correspondence in [Str01a, Str01b] and many other papers built on
these ideas and generalized the models such as [BdBM02, AHS16]. Tensor networks are the
primary tool in implementing holographic models. The work from Kunkolienkar and Banerjee in
[KB17] was an attempt to use a tensor network to describe the dS/CFT correspondence with a
generalization of MERA, which had already been successful in the AdS/CFT case. Different from
the anti-de Sitter case, which models one spatial slice, this tensor network captures the entirety
of de Sitter spacetime, where time is defined along the direction between the two boundaries, and
each constant time slice contains information about the entanglement structure at the boundary.
MERA exhibits the useful property that it is possible to define a notion of causality on the
tensor network as shown in [Bén13]. This model is a holographic model where observables of de
Sitter live on timelike infinity. This model captures the kinematical properties of the dS/CFT
correspondence but cannot describe dynamics. To this day, a complete quantum gravity in
(3 + 1)-dimensional de Sitter spacetime is still beyond reach, but there has been considerable
progress in the low dimensional case. Jackiw and Teitelboim provided a formulation of low
dimensional gravity often referred to as JT gravity in [Jac85, Jac92, Tei83], which provided the
foundation for understanding the structure of the Hilbert space and the quantum theory of gravity
in (1 + 1)-dimensional de Sitter spacetime as discussed in [CJM20, CS23]. These low-dimensional
theories of gravity have no propagating degrees of freedom. They still share the property that all
observables live on the temporal boundaries.

The centerpiece of this thesis is the development of a holographic model that captures properties
of de Sitter spacetime, which was published in [NO22]. For constructing this holographic model,
we employ techniques known for the construction of holographic codes from [PYHP15]. This
holographic model is largely motivated by the underlying tree-tensor structure in the MERA
tensor network discussed in [KB17], which is why the resulting fundamental structure of our
tensor network is reminiscent of MERA in terms of its boundaries and causality relations. This
structure is a natural consequence of expanding spacetimes with Λ > 0. Similar discussions
in the context of the spacetimes geometry and its relation to holography can also be found in
[Swi12b, CLMS15, CLMS16, Qi13, BCCCD17, MV18a]. Our holographic model is set apart from
previous models in two main aspects: With the holographic model developed in this thesis, we
can describe de Sitter spacetimes with different curvatures and with a full characterization of
the discretized isometry group, also describe dynamics. This model provides a powerful tool to
analyze the properties of quantum gravity in de Sitter spacetime in a low-dimensional setting.

In contrast to the anti-de Sitter case, this holographic model can be interpreted as a propagator
from the past to the future infinity, more precisely as a partial isometry. As such, it exhibits
some crucial properties that capture previous conjectures of the dS/CFT correspondence in a
novel way: the partial isometry effectively acts on a finite-dimensional physical Hilbert space
whose dimension depends on the curvature of dS. The dimension of the physical subspace and,
with that, the curvature of spacetime is associated with the channel capacity of the holographic
model, which is directly related to the Λ-N correspondence. Another property of the holographic
model is that the time evolution of de Sitter spacetime is captured by the tensor network and is
encoded in isometries. Different from many typical fields of research in quantum mechanics, time
evolution in de Sitter spacetime accordingly is always isometric and not necessarily unitary. This
non-unitarity of time evolution was further investigated in a broader context not directly related
to the tensor network in [CS22, CJ23]. The isometric time evolution is directly related to the
expansion of spacetime, where more degrees of freedom are added as time evolves.

To describe the dynamical properties of the holographic model, we need a discretized isometry
group of the de Sitter boundaries. For this, we employ results of Jones [Jon14, Jon17] on represen-
tations of Thompson’s group T , which have been helpful in characterizing the discretized isometry
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group in the anti-de Sitter case. Elements from Thompson’s group T are discretized versions of
diffeomorphisms on the temporal boundaries. A subgroup of Thompson’s group T , which can be
identified with the modular group PSL(2,Z), is precisely the group to describe isometry transfor-
mations on the boundary. This description is reminiscent of the approach for constructing p-adic
numbers in the anti-de Sitter case due to the tree structure in [GKP+17, Gub17] or the symmetry
proposal of a model for eternal inflation from [HSSS12], but the underlying symmetry groups differ.

We formulate a concrete relation from the holographic model to objects known in quantum
physics: physical quantum states and local operators. The holographic model is interpreted as a
propagator between two boundary Hilbert spaces, which both contain quantum states. These
states have treelike structures, and we refer to them as physical states. The vacuum state is
invariant under all isometry transformations, and the other physical states can be generated from
the vacuum state by applying allowed transformations. For the allowed transformations, we can
apply operators at the future de Sitter boundary. These operations propagate through the tensor
network and can be interpreted at finite times. This way, we can generate local transformations
in the bulk by only accessing the boundary. The way the transformations manifest at finite
times is highly dependent on the properties of the tensors. In the AdS/CFT case, quantum
error-correcting codes have been the best candidates for the tensor networks, as presented in
[PYHP15]. This is why we try choosing random unitaries to capture the encoding of the quantum
error correcting codes (QECC) for the tensor network modeling de Sitter spacetime. With
that, we want to transfer the knowledge we already gained in the anti-de Sitter case. We find
that – different to the anti-de Sitter case — QECC are not compatible with local operators in
de Sitter spacetime in the sense that it is impossible to simulate different physical states in the bulk.

De Sitter spacetime is characterized by its expansion and freely falling particle detectors in expand-
ing spacetimes register particles, even if the global state is a vacuum state. This phenomenon is
known as cosmological particle creation, which Parker initially discussed in [Par67, Par68, Par69]
and Sexl and Urbantke in [SU69]. By now, this part of the standard literature such as [BD82].
Mottola first studied cosmological particle creation with de Sitter as a cosmological background
[Mot85]. Cosmological particle creation in de Sitter spacetime bears close similarities to the Unruh
effect in flat spacetime, as a local observer in de Sitter spacetime experiences proper acceleration
due to the spacetimes expansion. The Unruh effect is characterized by the key statement that
an accelerated observer perceives the vacuum state as a thermal bath and was first studied in
Minkowski spacetime [Hig87, Ful73, DFU76]. With that, it characterizes the relation between
quantum reference frames and the measured particles in quantum field theories. Different from
the accelerated observer in the Unruh effect, the acceleration of a local observer in de Sitter is a
fundamental property of the spacetime. Even though these two effects are physically very different,
the underlying mathematical properties have fundamentally the same structure and are unified by
the acceleration the local observer experiences. Over the years, there has been significant research
on the thermal properties of de Sitter as an expanding spacetime, using the Unruh effect as a
framework. The thermal nature of de Sitter spacetime, which is directly related to its expansion,
has been widely studied in the literature: Gibbons and Hawking were the first to associate a
temperature to the cosmological horizon in [GH77b]. Numerous works have continued in assigning
thermal properties to de Sitter spacetime such as [BDD+19, CCO+11, GP04, JTJ15, DL99, DL97,
SUFK21, Kim16, Jac98, Jen05, Lap78, KKVV22, DZ01, ACT+11, AFR23, Mar18, Yu11].

In the context of the Unruh effect in flat spacetime, the Unruh channel was studied in a slightly
different setting in [BHP09, BHTW10, BHP12]. In this paper series, they considered an encoded
logical qubit instead of the vacuum as an initial state of the Unruh effect. The result was that
they found properties of cloning channels in the structure of the resulting Unruh channel. In
this thesis, we consider a similar setup in de Sitter spacetime, which follows the work in [NO24].
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We study a channel in de Sitter spacetime, where we consider an initial state, which is a de
Sitter vacuum state with quantum perturbations realized as some excited particles. With this,
as an initial state of de Sitter spacetime, we derive how a local observer perceives the global
expansion of spacetime. The Unruh channel in the framework of de Sitter spacetime has similar
mathematical properties to the one in flat spacetime and, in particular, also has properties of a
cloning channel. In the context of de Sitter spacetime, this arguably is even more intriguing, as
the cloning property can be directly associated with the expansion of spacetime. On a physical
level, this provides a new understanding of how the initial state of the universe is perceived by
a local observer associated with a static patch. With this channel, we also get a description of
how quantum information is transmitted through the holographic model as spacetime expands
and how this expansion affects the evolution and entanglement properties of the initial state.
This description of how a local observer perceives the global expansion of spacetime can not
only give more insights into quantum gravity in the context of de Sitter spacetime but also can
characterize the properties of the tensor network further. The cloning properties of the channel
characterize the expansion of de Sitter and shed light on the possibility that the tensor network
is comprised of optimal cloners. The relationship between thermal properties and holography
has been explored in several papers, such as [CG17], where it was postulated that field theory
observables acquire thermal properties from the bulk.

In formulating a theory of quantum gravity, quantum superposition plays a crucial role in describ-
ing the possible states of gravitational fields and spacetime geometry. One fundamental difference
between classical and quantum physics is that quantum mechanics allows for the concept of
superposition, where particles can exist in multiple states simultaneously. As a formulation of
quantum gravity is expected to contain characterizations of (semiclassical) spacetime geometry
in quantum superposition, we can improve our understanding of quantum gravity by improving
our understanding of how quantum superposition manifests in the context of gravity. One can
consider different semiclassical quantum superposition scenarios involving gravity, such as the
superposition of observer trajectories or the superposition of spacetime geometries. The first
experimental proposals that study the gravitationally-induced entangling of two particles in a
spatial superposition state were suggested in [BMM+17, MV17, CR19]. Examples where the
superposition of observer trajectories was considered are [FOZ20], where the interaction of the
detector with a massless scalar field is characterized. The scenario where the observer follows a
quantum superposition of trajectories with different proper acceleration instead of a well-defined
classical trajectory is studied in the paper [BCRAvB20] in the context of the Unruh effect and
the work [PB23] in measuring Hawking radiation. The superposition of conformally equivalent
spacetimes was discussed in [KdlHCRB22], and other aspects of quantum superpositions of
spacetime have recently been studied in [FAZM23, FZ23, FMZ23].

Recent studies [FMZ20] have considered semiclassical spacetime geometries in quantum superpo-
sitions in the context of de Sitter spacetime. This work considered an Unruh-de Witt detector as
introduced in [DeW80], which follows quantum superpositions of trajectories in different scenarios.
The response function of the detector is evaluated, and it is found that the superposition of
trajectories from spacetimes with different curvatures is not equivalent to the superposition of
spatially translated trajectories within one spacetime geometry. In the final part of the thesis, we
want to generalize this approach where we follow the work [NB24]. We focus on the setting where
the detector follows a quantum superposition of trajectories in one de Sitter static patch. Local
observers associated with these trajectories individually would all experience different proper
accelerations as we consider the superposition of uniquely distinguishable trajectories following
the Killing field. As a generalization, we use a multi-level particle detector instead of the original
Unruh-de Witt detector with two energy levels. We derive the final state of the detector after
the interaction with the background field. The generalization to consider a multi-level particle
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detector allows for a more detailed discussion of the final state of the detector. In the excited
state of the detector, we find interference terms from the different trajectories. The state of the
detector accordingly entails more than a mixture of thermal states corresponding to the individual
trajectories. Studying a detector in superposition in the context of the Unruh effect [BCRAvB20]
or in measuring Hawking radiation [PB23], similar terms of coherent interference were found.

In this thesis, we developed a holographic toy model for the dS/CFT correspondence. Key
properties of this model are the Λ-N correspondence in de Sitter and its isometric time evolution.
Different from preexisting models, we have fully characterized the discretized isometry group
and, with that, captured the dynamic properties of this model. We require the tensors in the
holographic model to be perfect tensors, but further properties of the tensors, which would enable
us to determine the allowed set of physical states fully, remain to be characterized rigorously. To
gain further insights into that, we have taken a look at the properties of quantum gravity in the
context of de Sitter spacetime from a different angle. The derivation of the Unruh channel, which
characterizes how a local observer experiences the global expansion of spacetime, has properties
of a cloning channel. This might indicate that this is also true for tensors in the holographic
model. The quantum superposition of trajectories considered in the final part of the thesis is
also directly related to the holographic toy model, as the holographic model we developed in this
thesis can be interpreted as a quantum superposition of all possible world lines. Insights found in
this context may also help in further characterizing properties of the tensors in the holographic
model in the future.

Outline

This thesis is organized into three parts: As it covers an interdisciplinary field, part I covers
fundamental material relevant to the rest of the project. These chapters can be skipped based
on the prior knowledge of the reader. In chapter 2, we review classical properties of de Sitter
spacetime, including the parametrization in different coordinate systems, some fundamental
properties of classical gravity with a focus on low dimensions, and the discussion of Killing
fields and geodesics in de Sitter spacetime. Chapter 3 reviews the Unruh effect, which is an
effect from quantum field theory relevant to the rest of this thesis and puts light on different
quantizations of de Sitter spacetime and the corresponding vacuum states in the context of
quantum field theory in curved spacetime. Some fundamental properties from quantum infor-
mation theory, including a short introduction to quantum error correction and optimal cloning,
are discussed in chapter 4. In this chapter, we also review the toy model characterizing the
AdS/CFT correspondence, which served as a motivation for the holographic model from this thesis.

The holographic toy model capturing properties of the dS/CFT correspondence is featured in part
II is the heart of this thesis. In chapter 5, we characterize the discretized symmetry properties
in de Sitter spacetime. The construction of the holographic model is described in chapter 6. In
chapter 7, we discuss the relation between properties of the tensors in the holographic model
and allowed physical states; in particular, we consider QECC for characterizing the tensor network.

Part III of the thesis comprises two different approaches to consider the Unruh effect in de Sitter
spacetime. In chapter 8, the Unruh channel for an initial de Sitter global vacuum state with
quantum perturbations is calculated, which shines a light on how the expansion of spacetime
is experienced inside a static patch. In chapter 9, we consider the Unruh effect in de Sitter
spacetime, where the detector follows a quantum superposition of trajectories instead of one
well-defined classical one. Finally, chapter 10 concludes our results, and we discuss potential
further directions for future directions. Detailed supplementary calculations can be found in the
appendix.
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Preliminaries
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C h a p t e r 2

de Sitter spacetime as a classical
gravitational background

De Sitter spacetime (dS) is a maximally symmetric solution of Einstein’s field equations with a
constant positive curvature. It was reported as a solution to Einstein’s field equations in 1917
alongside anti-de Sitter spacetime (AdS), which has constant negative curvature by Willem de
Sitter [dS17b, dS17a]. For many years, de Sitter spacetime has gotten special attention because
many calculations are greatly simplified compared to other cases due to the same degree of sym-
metry as Minkowski spacetime and the constant curvature of the spacetime. Due to observations
(such as [SSP+98]), it has been hypothesized that the cosmological constant Λ of our universe is
small and positive. This makes de Sitter spacetime even more interesting to study since we can
draw a comparison to the universe we live in. It has been suggested in [Sun02] that de Sitter is
the natural limiting spacetime for our universe. This highly motivates us to try to understand
more about quantum gravity in the setting of de Sitter spacetime.

Since de Sitter spacetime is a fundamental building block of this entire thesis, we will spend
some time reviewing some of its basic properties in this chapter. In this chapter, we focus on the
classical description of the spacetime. In section 2.1, we review some basic properties in general
relativity, including a short discussion of low dimensions. We introduce different coordinate
systems relevant to this work in section 2.2. This is followed by a detailed discussion of the Killing
fields in de Sitter spacetime in 2.3 where the main result is that there is no globally timelike
Killing field in de Sitter spacetime. The chapter is concluded by the investigation of different
trajectories and geodesics with their respective properties in section 2.4. In this chapter, the
description of de Sitter spacetime is largely based on [HE75], and concepts of general relativity
follow [Wal84].

For the rest of this paper, we focus on the (1 + 1)-dimensional case if not stated differently. For
many aspects, it is straightforward to generalize this to higher dimensions. Even if the two-
dimensional case does not allow for some physical behavior (such as propagation of gravitational
waves), this low-dimensional approach captures many of the properties we want to analyze. The
two-dimensional de Sitter spacetime, the spacetime we focus on throughout this thesis, is depicted
in figure 1 as a single-sheeted hyperboloid in Minkowski spacetime. Readers familiar with the
basic properties of de Sitter may safely skip this chapter.

2.1. Introduction to general relativity

General relativity relates the geometry of spacetime to its gravitational properties, whose principles
follow the basic idea: spacetime tells matter how to move, and matter tells spacetime how to
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curve. We will review some basic properties of general relativity which are relevant to the rest of
the thesis. This review largely follows [Wal84], which also contains more details on the theoretical
background of general relativity. One important building block in general relativity is Einstein’s
field equations, which take the role of equations of motion. The field equations take the general
form.

Gab + Λgab = Rab −
1

2
Rgab + Λgab = 8πTab.

Here Gab is the Einstein tensor defined by the curvature of the spacetime characterized by the Ricci
tensor Rab and Ricci curvature R, the cosmological constant Λ, and Tab is the energy-momentum
tensor. The metric tensor gab is the solution to Einstein’s field equations. It defines spacetime as
a manifold and is related to the distribution of matter in the field equations.

The solution that we focus on in this thesis is de Sitter spacetime, which is a solution to the
field equations characterized by a constant positive curvature, which also manifests in a positive
cosmological constant Λ. We largely focus on de Sitter spacetime as a classical background for
investigating quantum gravity, which is why, for the most part, we consider its vacuum field
equations where the energy-momentum tensor Tab vanishes identically.

One crucial aspect is the curvature of spacetime. The curvature of spacetime can be visualized
by parallel transporting a vector along a closed curve. Different from parallel transport in flat
spacetime, the direction of the vector before and after being transported along a closed curve can
change and is dependent on the curve. This relation between curvature and parallel transport
along a curve is characterized through affine connections. The parallel transport of a vector
along a curve is defined with the covariant derivative where the Christoffel symbols are chosen
as affine connections. To parallel transport a vector va along a curve γ with tangent ta, the
following condition with the covariant derivative ∇a has to be fulfilled: ta∇av

b = 0. The covariant
derivative is a derivative operator directly associated with the metric tensor gab and, therefore, to
the intrinsic structure of spacetime. For a tensor V ν

µ a covariant derivative is defined as follows:

∇λV
ν
µ = ∂λV

ν
µ + Γν

λκV
κ
µ − Γκ

λµV
ν
κ

Christoffel symbols are chosen as the affine connections in the covariant derivative because the
covariant derivative of the metric vanishes in this case. In coordinate form, Christoffel symbols

t

Figure 1.: Schematic depiction of two dimensional de Sitter spacetime embedded as
a hyperbolic sheet in Minkowski spacetime
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can be expressed as

Γσ
µν =

1

2
gσκ
(
∂gνκ
∂xµ

+
∂gµκ
∂xν

− ∂gµν
∂xκ

)
=

1

2
gσκ(∂µgνκ + ∂νgµκ − ∂κgµν)

The Riemann curvature tensor Rabc
d (often referred to as Riemann tensor) fully characterizes the

curvature of spacetime. Its definition is directly related to the difference between vectors before
and after they are parallel transported around a small closed loop. The Riemann tensor acting
on a vector field wc is defined as

Rabc
dwc = (∇a∇b −∇b∇a)w

d

In coordinate expression, the components of the Riemann tensor are expanded as follows:

Rµνρ
σ = ∂νΓ

σ
µρ − ∂µΓ

σ
νρ + Γα

µρΓ
σ
αν − Γα

νρΓ
σ
αµ

The Riemann tensor can be decomposed into its trace and trace-free part with the Ricci tensor
Rab. The Ricci tensor is defined as the trace over the second and fourth index1 of the Riemann
tensor which is also referred to as the contraction with the metric

Rab = Racb
c = gcdRacbd = Rba

The Ricci scalar is the scalar curvature, which is defined as the trace of the Ricci tensor

R = gabRab = Ra
a

For the case of constant curvature, Ricci scalar R is constant, and all information of the Riemann
tensor is contained in the Ricci tensor.

This curvature intrinsic to the spacetime needs to be contrasted with its extrinsic curvature,
which is defined as the change of the normal vector:

K = ∇an
a

For calculations in general relativity, we will use abstract index notation (we follow the convention
introduced in [Wal84, p. 24]), which is coordinate-independent and uses Latin letters. The use of
Greek letters indicates the introduction of an explicit coordinate basis.

In low dimensional spacetime, in particular, 1 + 1 dimensional spacetime, this reduces to an
almost trivial theory. The restriction to two dimensions directly affects the physical effects in
spacetime. The Einstein tensor Gµν vanishes identically, and there are no propagating degrees of
freedom (sometimes referred to as gravitons) in two-dimensional spacetime. Notably, this also
excludes the existence of gravitational waves. One way this shows is that all 1 + 1 dimensional
spacetimes are conformally equivalent to the Minkowski spacetime as their metric tensor can
always be transformed in the form gµν(x) = Ω(x)2ηµν as described in [BD82, 3.7]. Even though
the gravitational theory in two dimensions in many aspects is almost trivial, this simplified setting
is very helpful in understanding fundamental properties.

A natural generalization of two-dimensional gravity which avoids these difficulties is furnished
by the Jackiw-Teitelboim (JT) model [Jac85, Jac92, Tei83]. The properties of gravity in the
two-dimensional setting are described with a scalar field ϕ, often referred to as the dilaton field.

1equivalently the first and third index, the trace over the first and second as well as the third and fourth index
vanish
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Chapter 2. de Sitter spacetime as a classical gravitational background

This framework allows for more possibilities and has nearly-dS solutions. In the context of de
Sitter spacetime, the constant curvature condition is required:

R− 2Λ = 0 (2.1)

The corresponding action in the bulk of 1 + 1 dimensional de Sitter spacetime was also analysed
in [CJM20] and is given by (see appendix A.1 for more details)

S =
1

16πG

∫
d2x

√−g
(
R− 2

ℓ2

)
ϕ(x)

where G is the gravitational constant and the de Sitter radius ℓ is directly related to the
cosmological constant. The field equations can be derived requiring that the variation of the
action with respect to the metric vanishes, which was derived initially in [GH77a]. They read

(∇µ∇ν + gµν)ϕ(x) = 0

Although JT gravity does not have bulk gravitons, it does have boundary gravitons arising from
fluctuations in the asymptotic boundaries. These manifest in the following way: In this framework,
the gravitational path integral reduces to a boundary path integral, which is easier to study. This
is often referred to as Schwarzian theory [CJM20] in the literature often studied in the context
of AdS spacetime [EMV16, Jen16, MSY16]. It needs to be noted that the contributions of the
fluctuating spacetime boundaries as described in [CJM20] need to be included when carefully
formulating JT gravity in a de Sitter background. Later in the thesis, we will describe boundary
actions derived from this different approach.

2.2. Coordinates de Sitter

There are numerous ways to parametrize de Sitter spacetime using different coordinate systems,
all of which have advantages and disadvantages in different cases. Different ways to parametrize
de Sitter spacetime with various coordinate systems have been discussed at length in the literature
(see for example [BD82, HE75, Rip13, SSV03]). Here, we will introduce the de Sitter coordinates
primarily used in the rest of the thesis. The most intuitive way to parametrize d-dimensional
de Sitter spacetime dSd, which has one temporal and d− 1 spatial dimensions, is by describing
it as a hypersurface embedded in (d + 1)-dimensional Minkowski spacetime: de Sitter is then
represented by a single-sheeted hyperboloid in Minkowski spacetime. The points of d-dimensional
de Sitter spacetime fulfill the hyperboloid condition:

− x20 + x21 + · · ·+ x2d = ℓ2. (2.2)

where the parameter ℓ is the de Sitter radius. The de Sitter radius characterizes the size of the
bottleneck area of the spacetime and is directly related to its curvature. We parametrize the
temporal coordinate x0 so that the size of the spacetime is smallest at x0 = 0. If not otherwise
specified, we assume the de Sitter radius is given by ℓ = 1. The metric of d-dimensional de Sitter
spacetime is given by

ds2 = −dx20 + dx21 + · · ·+ dx2d.

For the different coordinate systems, we are interested in the induced metric of de Sitter metric
from the embedding Minkowski metric, which is defined as

gαβ =
∂xµ

∂yα
∂xν

∂yβ
ηµν

where xµ are the coordinates embedding de Sitter in Minkowski space and yα are the new de
Sitter coordinates.

The only coordinate system to cover the entire de Sitter spacetime in one coordinate chart is
called global coordinates. They globally describe the entire spacetime without any singularities.

12



2.2. Coordinates de Sitter

t

Figure 2.: Depiction of constant time slices (blue) and lines of constant angle (gray)
in global coordinates

Definition 2.1 (Global coordinates in d-dimensional de Sitter spacetime)
In d-dimensional de Sitter spacetime global coordinates are defined as

x0 = ℓ sinh(τ/ℓ)

xj = ℓωj cosh(τ/ℓ), j = 1, 2, . . . , d,

where τ ∈ R is the temporal variable and the angular variables ωi are defined according to

ω1 = cos(θ1),

ω2 = sin(θ1) cos(θ2),

...
ωd−1 = sin(θ1) · · · sin(θd−2) cos(θd−1),

ωd = sin(θ1) · · · sin(θd−2) sin(θd−1),

where 0 ≤ θj < π for 1 ≤ j < d− 1 and 0 ≤ θd−1 < 2π.

In the two-dimensional case, which will be important for the majority of this thesis, this simplifies
to a description with one temporal coordinate τ and one spatial coordinate θ:

x⃗G(τ, θ) =




ℓ sinh(τ/ℓ)
ℓ cos(θ) cosh(τ/ℓ)
ℓ sin(θ) cosh(τ/ℓ)




The constant time slices and lines of constant angle embedded in 2 + 1 dimensional Minkowski
spacetime are depicted in figure 2. The (induced) metric of dS2 in global coordinates is

ds2 = −dτ2 + ℓ2 cosh2(τ/ℓ)dθ2 gµν =

(
−1 0
0 ℓ2 cosh2(τ/ℓ)

)
(2.3)

Conformal coordinates directly follow from global coordinates by rescaling the temporal coordinate.
The corresponding metric is conformally equivalent to the Minkowski metric. Two conformally
equivalent metrics gµν and hµν have to satisfy the relation

hµν = Ω2gµν

13



Chapter 2. de Sitter spacetime as a classical gravitational background

where Ω is a real-valued smooth function often referred to as the conformal factor. Conformal
transformations are angle-preserving but can highly distort distances, which is why conformal
coordinates are often very practical to work with but counterintuitive when it comes to length
scales.

The intuition for visualizing conformal coordinates is that we take global coordinates, rescale the
time to a finite interval, and cut the spacetime open along one angle as depicted in figure 3. This
way, we can describe the entire spacetime in a coordinate frame of finite size, which we can mold
into a rectangular shape. It is important to remember that this depiction is highly distorted,
which affects the interpretation of distances and is less intuitive than the global coordinate
setting. Since we can work in this rectangular frame and without further restrictions due to the
hyperboloid condition, these coordinates are often easier to work with than global coordinates.

0 2π
−π

2

0

π
2

θ

T

0 2π
−π

2

0

π
2

θ

T

Figure 3.: Depiction of constant time slices (blue) and lines of constant angle (gray)
in conformal coordinates

Definition 2.2 (Conformal coordinates)
Conformal coordinates have the same spatial coordinate(s) as the global coordinates defined in
2.1. The temporal coordinate T in conformal coordinates is rescaled with respect to the temporal
coordinate τ from global coordinates such that it is defined on a finite interval −π

2 ≤ T ≤ T
2 as

follows:

cosh(τ/ℓ) =
1

cosT

The metric takes the following form in conformal coordinates:

ds2 =
ℓ2

cos2 T
(−dT 2 + dθ2) gµν =

ℓ2

cos2 T

(
−1 0
0 1

)
(2.4)

We can directly see that this is conformally equivalent to the Minkowski metric with a conformal
factor Ω = ℓ

cosT .

The third coordinate system we will introduce is static coordinates. We are interested in this
coordinate frame because the physics accessible to a local observer can be best described in static
coordinates, as recently argued in [Wit23]. The physics of a local observer in a static patch follows
similar rules we are familiar with from flat spacetime. The time evolution of a local observer in de

14



2.2. Coordinates de Sitter

Sitter is (locally) captured by static coordinates. The reason a static patch captures the physics
of a local observer best is that there is no globally timelike Killing field in de Sitter but a timelike
Killing field in one static patch. Killing fields are the infinitesimal generators of isometries, in
this case, time translation. We will go into further detail on that in section 2.3.

Definition 2.3 (static coordinates)
In (1 + 1)-dimensional de Sitter spacetime, static coordinates are defined as follows:

x⃗S(r, t) =




√
ℓ2 − r2 sinh(t/ℓ)

±
√
ℓ2 − r2 cosh(t/ℓ)

r


 (2.5)

Static coordinates have a singularity at r2 = ℓ2, which divides the spacetime into four different
regions, as seen in figure 4. This coordinate singularity corresponds to the event horizon of an
observer located at r = 0 whose trajectory follows a Killing vector field and is identified with
the boundary of the corresponding static patch. The boundaries of the static patches at r2 = ℓ2

are horizons that are a natural product of the expansion of de Sitter. A static patch is the part
covered by static coordinates that describes the region causally accessible to a local observer in
de Sitter and, later in this thesis, is also referred to as a causal diamond. The static coordinates
for r2 < ℓ2 describe the static patches, and the sign in x⃗S(r, t) determines the choice of the static
patch. The expansion of spacetime also leads to two remaining regions outside the static patches,
which we refer to as future (t > 0) and past (t < 0). To describe the entire spacetime, the static
coordinates for different regions in de Sitter must be patched across the coordinate singularities.
This can be found in the literature (e.g., [BMS01]) and will be further investigated in section 3.7.
In the conformal coordinate setting, we can describe de Sitter without an embedding space. The
direct relation between these settings for static coordinates is derived in appendix A.2:

T =± arcsec

(
±
√
r2 − (−1 + r2) sec2 T̃

)

θ =± arccos


± sec(T̃ )√

sec2(T̃ )− r2

r2−1




This can be inverted to
r =± secT sin θ

T̃ =± arcsec

(
± cos θ√

cos2 T − sin2 θ

)

The metric of static coordinates (for both static patches) is

ds2 =

(
−1 +

r2

ℓ2

)
dt2 +

ℓ2

ℓ2 − r2
dr2 gµν =

(
−1 + r2

ℓ2
0

0 ℓ2

ℓ2−r2

)
(2.6)

It needs to be noted that the choice of the static patches is not unique due to the rotational
symmetry. The two static patches are always located at opposing sides of the spacetime, but
both can shifted to a different location. If a local observer is considered, they are usually chosen
in a fashion that the observer is located at r = 0 in one static patch.

Any static spacetime has a global timelike Killing field and Cauchy surfaces Σ, which define
constant time slices, which are hypersurfaces of the spacetime. The domain of dependence of the
Cauchy surface has to be the entire spacetime manifold:

D(Σ) = {p ∈M : every inextendible causal curve through p intersects Σ} =M
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Chapter 2. de Sitter spacetime as a classical gravitational background
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Figure 4.: Depiction of static coordinates inside the static patches in the setting of
(a) global and (b) conformal coordinates: constant time slices (blue) and
lines with constant r (gray).

We can obtain the metric intrinsic to the Cauchy surface by a restriction of the metric of the
spacetime. The induced metric of the hypersurface is a scalar function in the 1 + 1 dimensional
case. For static coordinates, it follows the induced metric is (more details can be found in appendix
A.3)

hrr = grr =
ℓ2

ℓ2 − r2
(2.7)

The last coordinates we introduce are flat spacetime coordinates.

Definition 2.4 (flat spacetime coordinates)
In the 3 + 1 dimensional case (which is the case usually covered in the literature), flat spacetime
coordinates are defined as

x0F =ℓ sinh(t/ℓ) +
1

2ℓ
exp(t/ℓ)(x2 + y2 + z2)

x1F =exp(t/ℓ)x
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2.3. Killing fields in two-dimensional de Sitter spacetime

x2F =exp(t/ℓ)y

x3F =exp(t/ℓ)z

x4F =ℓ cosh(t/ℓ)− 1

2ℓ
exp(t/ℓ)(x2 + y2 + z2)

These coordinates only cover half of the de Sitter hyperboloid. Moreover, they satisfy the
hyperboloid condition. The metric induced in the de Sitter hyperboloid is known as the spatially
flat Friedman-Lemaitre-Robertsen-Walker (FLRW) metric

ds2 = −dt2 + (et/ℓ)2
(
dx2 + dy2 + dz2

)
(2.8)

This FLRW metric has scale factor a(t) = exp(Ht) with the Hubble constant H = ȧ/a = 1/ℓ.
We can introduce the conformal time η = −ℓ exp

(
− t

ℓ

)
to obtain a metric that is conformally

equivalent to the Minkowski metric with a conformal factor Ω = ℓ
η :

ds2 =
ℓ2

η2
(
−dη2 + dx2 + dy2 + dz2

)

The coordinate time η runs from −∞ to 0 with a coordinate singularity at η = 0. In these
coordinates, a trajectory with constant spatial coordinates (x, y, z) is a geodesic.

The Christoffel symbols, as well as the Ricci tensor and Ricci scalar for the coordinate systems
introduced in this section, are calculated in appendix A.4. In all cases, the Ricci curvature takes
the constant positive value of R = 2

ℓ2
, which is necessary for de Sitter spacetime.

2.3. Killing fields in two-dimensional de Sitter spacetime

A Killing vector field ξa is an infinitesimal generator of a one-parameter group of isometries. An
isometry on a spacetime is a distance preserving diffeomorphism that leaves the metric of the
spacetime invariant [Wal84, p. 438]. As a generator of isometries, Killing fields also generate time
translations and thus define the notion of time. For Minkowski spacetime, we consider the "time
direction" for some global family of inertial observers to correspond to the Killing field ξa = ∂at .
The Killing time is defined by the Killing field and defines the notion of time for a local observer.
Accordingly, the notion of time can differ for different Killing fields.

A solution of Einstein’s equations is invariant under translations along the Killing field if and
only if the Killing equation is true. This is particularly interesting because de Sitter spacetime
(unlike Minkowski) does not have a globally timelike Killing field. To find the Killing fields, we
need to solve the Killing equation

∇aξb +∇bξa =0 (2.9)

which takes the following coordinate form (the equivalence is shown in appendix A.5.1):

gαβ,µξ
µ + gδβξ

δ
,α + gαδξ

δ
,β = 0. (2.10)

In a maximally symmetric d dimensional spacetime, there exist d
2(d+ 1) Killing fields, which is

the case for both Minkowski and de Sitter spacetime. In 3 + 1 dimensional Minkowski spacetime,
the 10 Killing fields are one temporal and three spatial translations, three spatial rotations, and
three Lorentz boosts. For the 1+ 1 dimensional case, this reduces to a total of three Killing fields,
which are a temporal and spatial translation as well as a boost, which is depicted in figure 5.
The major difference between de Sitter to Minkowski spacetime is that there is no globally timelike
Killing field in de Sitter spacetime. The striking consequence is that there is no global positive

17



Chapter 2. de Sitter spacetime as a classical gravitational background
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Figure 5.: Killing fields in 1 + 1 dimensional Minkowski spacetime
(a) time translation, (b) space translation, and (c) boost
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Figure 6.: Killing fields in 1+1 dimensional de Sitter spacetime

conserved energy quantity and no corresponding global Hamilton operator as discussed in [Wit01].

In the following, we calculate the Killing fields in 1 + 1 dimensional de Sitter spacetime. For the
de Sitter metric in conformal coordinates , we get the three Killing equations

∇T ξT +∇T ξT =0 (2.11)
∇T ξθ +∇θξT =0 (2.12)
∇θξθ +∇θξθ =0 (2.13)

These are solved by the following linear combination of Killing fields (as shown in appendix
A.5.2):

ξ(T, θ) =ξT∂T + ξθ∂θ

ξT =(a cos θ + b sin θ) cosT

ξθ =(−a sin θ + b cos θ) sinT + c

This corresponds to the linear combination of the three Killing fields depicted in figure 6. The
Killing field generating a translation in the angle (resulting in a rotation of the hyperboloid) is
similar to the Killing field of Minkowski generating a rotation (or spatial translation, depending
on the point of view). In de Sitter, we do not have a globally timelike Killing field, which is a
striking difference from the flat spacetime case. We can see that things evolving with the Killing
time are pushed forward in one part of the spacetime and pushed back in the antipodal region.
It is important to note that de Sitter is not a static spacetime as the metric has an explicit time
dependence [Wal84]. The only part of de Sitter spacetime that is static is the static patches.
Accordingly, the notion of time generated by Killing vector fields differs on opposing parts of the
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Figure 7.: Killing field de Sitter: the different notion of time in the two static patches

spacetime and, therefore, in static patch I and II. While the time runs forward in one patch,
it runs backward in the other, as described in [Wit23]. This leads to the phenomenon that the
notion of time in de Sitter depends on the position in spacetime. Time running in different
directions in different parts of spacetime does not cause conflict for a local observer because both
static patches are causally disconnected.

Since the static patches take this special role, we will look at the timelike Killing fields in one
static patch in static coordinates. The Killing fields in static coordinates are

ξt(t, r) =c− ℓ2r√
r2 − ℓ2

(
aet/ℓ + be−t/ℓ

)

ξr(t, r) =
√
r2 − ℓ2

(
aet/ℓ + be−t/ℓ

)

which is derived in appendix A.5.3. The Killing field for a = b = 0 is only pointing in the time
direction and does not change the spatial coordinate r:

ξ(t, r) = ξt∂t + ξr∂r = c∂t

Accordingly, trajectories with constant r are Killing trajectories.

2.4. Three spacetime trajectories and their geodesic properties

It is interesting to look at different trajectories of observers in different situations. Here, we will
emphasize three different choices of trajectories. The first is the null geodesics, and the remaining
two originate from global and static coordinates by fixing the spatial coordinate, respectively. We
will describe the different properties and check which of these trajectories is a geodesic.
A free particle that does not experience any proper acceleration moves on a geodesic, which
satisfies the geodesic equation of motion [Wal84, eq. (4.3.1)]

ua∇au
b = 0

Geodesics can be interpreted as the straightest possible lines in spacetime and are, therefore, an
important tool to describe and analyze its structure. The geodesic equation can be expressed in
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Chapter 2. de Sitter spacetime as a classical gravitational background

a coordinate basis [Wal84, eq. (3.3.5)] as follows

d2xµ

dt2
+
∑

σ,ν

Γµ
σν
dxσ

dt

dxν

dt
= 0

2.4.1. Null geodesics

Null geodesics describe the propagation of light rays, which is a limiting factor for the propagation
of information. The main reason we are interested in null geodesics is that they are an important
tool for understanding causal properties of spacetime.

The null geodesics in d dimensional de Sitter spacetime may be constructed from null geodesics
in (d + 1)-dimensional Minkowski spacetime by imposing the hyperboloid constraint from eq.
(2.2). In Minkowski spacetime, null geodesics are straight lines. In 1 + 1 dimensional de Sitter
spacetime with de Sitter radius ℓ = 1, the null geodesics embedded in Minkowski spacetime can
be parametrized as follows:

x(s) =



x0
x1
x2


 =




s
u± vs
v ∓ us


, s ∈ R, u2 + v2 = 1.

The explicit relation between the embedding coordinates and the parameters u and v is derived in
appendix A.6.1. The condition u2 + v2 = 1 is obtained from applying the hyperboloid condition,
which can be done in matrix form:

xT ηx = 1, with η = diag(−1, 1, · · · , 1). (2.14)

We now see that the constraint u2 + v2 = 1 on the parameters of the null geodesic x(s) arises as
follows:

xT (s)ηx(s) = −s2 + (u± vs)2 + (v ∓ us)2

= −s2 + (u2 + v2) + s2(u2 + v2) = 1.

Since we obtained the null geodesics from a restriction from the Minkowski spacetime, we know
that the null geodesics in de Sitter are also straight lines. In each point in two-dimensional de
Sitter spacetime, there are two possible null geodesics: the left-moving and the right-moving null
geodesic. Therefore, each null geodesic is specified by its intersection point with the time slice
x0 = 0 and a sign. The sign distinguishes between the two different classes of null geodesics,
which we call anticlockwise- and clockwise-pointing null geodesics, respectively (sometimes also
referred to as left- and right-moving null geodesics). This is depicted in Fig. 8, where one
observes the direction of propagation around the spatial coordinate of the null geodesic on the
hyperboloid either clockwise or anticlockwise. These null geodesics rule the two-dimensional de
Sitter hypersurface. Because the parameters for the clockwise and anticlockwise pointing null
geodesics only differ by a sign, in the sequel, we usually only consider the anticlockwise case as a
representative of null geodesics in general. The calculations are very similar for clockwise-pointing
null geodesics and yield identical results. It is also possible to derive the geodesics directly in the
different parametrizations of the de Sitter metric.

2.4.2. Zero momentum geodesics

We consider a family of trajectories with a fixed angle in global coordinates:
(
τ(s)
θ(s)

)
=

(
τ(s)
θj

)
(2.15)
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2.4. Three spacetime trajectories and their geodesic properties

t

Figure 8.: dS2 embedded in Minkowski spacetime where gray lines are null geodesics
and blue circles are constant time slices

The gray lines in figure 2 are some representatives of this family of trajectories. It is shown in
appendix A.6.2 that these trajectories satisfy the geodesic equation. These trajectories are the
zero momentum geodesics.

In this parametrization of global coordinates, the coordinate time already equals the proper time,
which can be directly seen with the tangent vector of the trajectory Tµ = (1, 0) and the time
component of the metric gττ = −1. When looking at the proper distance of trajectories with
different constant angles, we need to calculate the respective proper distance for an (arbitrary)
equal time slice where the tangent vector pointing along this equal time slice is Sµ = (0, 1):

l =

∫ θB

θA

√
gabSaSbdθ =

∫ θB

θA

√
gθθdθ =

∫ θB

θA

ℓ cosh(τ/ℓ)dθ = ℓ cosh(τ/ℓ)(θB − θA)

Even for small displacements in the angle, we can see that the proper distance between the
trajectories diverges for τ → ∞, which is an effect of the expansion of spacetime. Despite the
fact that the proper distance increases with time, the proper acceleration vanishes. As a result,
these trajectories are zero-momentum geodesics.

2.4.3. Killing trajectories

The timelike Killing trajectories in one static patch (derived in appendix A.5.3) are trajectories
in static coordinates with constant spatial coordinate r:

(
t(s)
r(s)

)
=

(
t(s)
rj

)
0 < s < π (2.16)

These trajectories are only geodesics for rj = 0 (as elaborated in appendix A.6.3). This is
a fundamental difference from the flat spacetime scenario, where the Killing field generating
time translations also follows geodesics. With its proper time τ , this family of geodesics can be
expressed as

xr(τ) =

(
τ/
√
1− r2j/ℓ

2

rj

)

This trajectory has a proper acceleration

aµa
µ =

ℓ2

ℓ2 − r2j

r2j
ℓ4
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Chapter 2. de Sitter spacetime as a classical gravitational background

We can interpret this as a family of trajectories which all have a constant r coordinate, which we
will call rj . This family of trajectories is important to look at because these trajectories follow
the Killing field, which generates the time evolution in this static patch. We can directly see that
the proper acceleration vanishes only for rj = 0, which is also the only member of this family of
trajectories that is a geodesic. In general, the proper acceleration of a particle in a static patch
on a trajectory of this family is non-vanishing. The closer the trajectory is to the boundary of the
static patch, the larger the acceleration becomes. In the limit of rj → ±ℓ, the acceleration diverges.

We can evaluate the proper distance between two members of this family of geodesics at the same
(but arbitrary) time. For this, we need the vector, which is tangent to the constant time slice,
which is Sµ = (0, 1). The proper distance is

l =

∫ √
gabSa

rS
b
rdr =

∫ rB

rA

√
grrSr

rS
r
rdr =

∫ rB

rA

√
ℓ2

ℓ2 − r2
dr

=ℓ


arctan


 rB√

ℓ2 − r2B


− arctan


 rA√

ℓ2 − r2A






We can see that this distance (even though the expression is somewhat lengthy) remains constant
at all times. This is one of the reasons why we refer to these as static trajectories, where
the proper acceleration of a local observer on the trajectory compensates for the effect of the
expansion of spacetime. Some of these Killing trajectories are depicted as gray lines in figure 4.
Due to the exponential growth of de Sitter spacetime, the local observer sees a cosmological horizon.

With this fundamental knowledge of classical gravitational properties in de Sitter spacetime,
chapter 3 puts focus on different quantizations of a quantum scalar field on a de Sitter background.
For this, we use the coordinates introduced in this chapter for the quantizations of the field.
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C h a p t e r 3

Quantum scalar fields and vacuum
states of de Sitter spacetime

In this chapter, we will focus on the quantization of the scalar field in de Sitter spacetime. A
pivotal distinction in the quantization of scalar fields between curved spacetime and the flat
spacetime scenario is the absence of a universally preferred method for defining a vacuum state
in curved spacetime [Ful73]. Consequently, the appropriate vacuum state can vary for different
settings. Bogoliubov transformations serve as a mechanism to connect and relate these diverse
quantizations. In this chapter, we will introduce different vacuum states that correspond to
different quantizations of spacetime.

In Minkowski spacetime, and more broadly in static spacetimes, a natural set of modes exists
that gives rise to a preferred vacuum state. This preference stems from the spacetime’s symmetry
properties, which have the following effect: For any inertial observer, we can unambiguously
divide the mode functions into their positive and negative frequency parts and, with this, define
a vacuum state as a state of lowest energy of the positive frequency solutions. The notion of
positive and negative frequency is, as a result of this, defined with respect to the Killing time t
as described in more detail in [Wal94]. The resulting state is regarded as the preferred vacuum
state, with the annihilation operators for all frequencies annihilating in this state. Moreover,
this vacuum state exhibits invariance under the Poincaré group. The concept of a particle is
directly associated with the corresponding creation operators. In curved spacetime, the choice
of coordinate changes the distribution into positive and negative modes and, therefore, also the
chosen vacuum state and the interpretation of particles. This is a striking difference from the
theory of general relativity, where the principles are formulated in a coordinate-independent way.

In curved spacetime, symmetries typically do not completely determine the vacuum state. While
the group of isometry transformations in de Sitter spacetime aids in identifying a suitable state
vector, as detailed in [PT09], a two-parameter ambiguity characterizes the determination of
the vacuum state in de Sitter space. This ambiguity corresponds to a family of distinct de
Sitter invariant vacua, as initially demonstrated in [Mot85, All85]. De Sitter spacetime is the
maximally symmetric solution to the vacuum Einstein field equations with a positive cosmological
constant. The symmetries in de Sitter spacetime are generated by the Killing fields derived in
chapter 2.3. The resulting symmetry group comprised of rotations and Lorentz transformations
is often referred to as the de Sitter symmetry group. For two-dimensional de Sitter spacetime,
this is the symmetry group SO(1, 2). The de Sitter symmetry group’s role in defining a pre-
ferred vacuum state can be compared to the role the Poincaré group takes in the Minkowski setting.

In the following sections, we will derive the quantum scalar field of two-dimensional de Sitter
spacetime in various coordinate settings and relate this to corresponding vacuum states. The
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

different Fock representations are related by Bogoliubov transformations which we will also review
in this chapter.

3.1. Quantization of scalar fields and Bogoliubov transformations

The quantization of scalar fields in curved spacetime is described in the standard literature
numerous times and is performed in close analogy to the Minkowski case (see, for example,
[Wal94, MW07, PT09]). In this section, we will only cover the basic material that is relevant for
the following chapters and largely follow [BD82]; for further information, the interested reader is
referred to the literature. A quantum scalar field is expanded as

ϕ̂(x) =

∫ ∞

−∞
dω
(
âωϕω(x) + â†ωϕ

∗
ω(x)

)
(3.1)

where the mode functions ϕω(x) are solutions of the Klein-Gordon equation. The Klein-Gordon
equation can be directly derived similar to the Lagrangian in flat spacetime. We consider the
following generalized version of the Lagrangian

L =
1

2

√−g
(
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

)

with g = det(g). The additional term ξR is added for renormalization as suggested in numerous
references such as [CT68, Tug69, CCJ70, Par73]. Another reason for considering this additional
term is that we obtain conformal invariance in the massless case m = 0 of an n dimensional
spacetime for ξ = n−2

4(n−1) . In four dimensions, we get ξ = 1
6 , and in the two-dimensional case, we

get ξ = 0. Since big parts of this thesis focus on the two-dimensional case, we will often neglect
the additional term ξR. Another way to get a Klein-Gordon equation similar to the flat case is
to introduce an effective mass meff =

√
m2 + ξR, which absorbs the additional term. We derive

the Klein-Gordon equation with the variational principle

δS = 0 with S =

∫
dnxL(ϕ,∇ϕ, gµν)

which for arbitrary m and ξ leads to the following equation of motion1 which is derived in
appendix B.1

(
□−m2 − ξR

)
ϕ̂ = 0 (3.2)

where □ is the d’Alembert operator defined with covariant derivatives

□ = gµν∇µ∇ν =
1√−g∂µ

(√−g∂µ
)

(3.3)

The equivalence of the two expressions in eq. (3.3) is demonstrated in appendix B.2. To determine
solutions to the field equations, we must address the equation of motion (3.2). The initial step
involves selecting a coordinate system. The chosen coordinates should facilitate the separation of
the field equation using a product ansatz, enabling the solution for the field modes ϕω(x). These
mode functions need to be normalized with respect to the Klein-Gordon inner product , as defined,
for instance, in [BD82, PT09]

(ϕ, ψ)g = i

∫

Σ
dΣ

√
h(ϕ∗(x)∇aψ(x)− ψ(x)∇aϕ

∗(x))na (3.4)

1The sign arises from the metric’s signature, with the convention of a negative time signature commonly used in
General Relativity. This choice differs from the majority of Quantum Field Theory references.
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3.1. Quantization of scalar fields and Bogoliubov transformations

where we integrate over a spacelike hypersurface Σ with na being a future directed unit vector
orthogonal to Σ and dΣ being the volume element of the hypersurface. In a globally hyperbolic
spacetime, we use a Cauchy surface as the hypersurface Σ. The value of the inner product eq. (3.4)
is independent of the explicit choice of Σ, which was shown in [HE75] using the Gauss divergence
theorem. To be a complete set of normalized solutions, the mode functions ϕω have to satisfy

(ϕω, ϕω̃)g = δω,ω̃. (3.5)

The corresponding creation and annihilation operators are time-independent and have to satisfy
the usual commutation relations

[
âω, â

†
ω̃

]
= δω,ω̃, [âω, âω̃] = 0,

[
â†ω, â

†
ω̃

]
= 0. (3.6)

With the conditions from eq. (3.5) and eq. (3.6), we ensure that the quantum scalar field follows
the equal time commutation relations

[
ϕ̂(t, x⃗), π̂(t, y⃗)

]
= iδ(x⃗− y⃗),

[
ϕ̂(t, x⃗), ϕ̂(t, y⃗)

]
= 0 and [π̂(t, x⃗), π̂(t, y⃗)] = 0

where π̂(x) is the conjugate momentum field defined as π̂(x) = ∂τ ϕ̂(x). From this, we can directly
define the corresponding vacuum state, which is the state annihilated by all positive frequency
modes

âω |Ω⟩ = 0 ∀ω.

There is no unique or preferred way to quantize a scalar field: different choices of coordinates
lead to different quantization and different creation and annihilation operators. This then results
in different representations in Fock space as well as physically different vacuum states. The
transformation between the different Fock representations of a scalar field is performed with a
Bogoliubov transformation, which is described in the standard literature such as [BD82]. Consider
the scenario where the field from eq. (3.1) has an alternative valid quantization:

ϕ̂ =

∫ ∞

−∞
dω
(
âωϕω(x) + â†ωϕ

∗
ω(x)

)
=

∫ ∞

−∞
dω
(
b̂ωψω(x) + b̂†ωψ

∗
ω(x)

)

The relationship between the creation and annihilation operators âω and b̂ω as well as the mode
functions ϕω and ψω is described through the Bogoliubov transformation as follows:

âω =

∫
dσ
(
ασω b̂σ + β∗σω b̂

†
σ

)
b̂ω =

∫
dσ
(
α∗
ωσâσ − β∗ωσâ

†
σ

)

ϕω =

∫
dσ(α∗

σωψσ − βσωψ
∗
σ) ψω =

∫
dσ(αωσϕσ + βωσϕ

∗
σ).

(3.7)

The Bogoliubov coefficients α and β are defined by

ασω =(ψσ, ϕω)

βσω =− (ψσ, ϕ
∗
ω).

These coefficients possess the following properties
∫

dσ(αµσα
∗
νσ − βµσβ

∗
νσ) =δµν

∫
dσ(αµσβνσ − βµσα

∗
νσ) =0.
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

The different creation and annihilation operators define (in general) different vacuum states for
the different representations of the quantum scalar field, which we label with the corresponding
index

âω |0a⟩ = 0

b̂ω |0b⟩ = 0.

This not only results in physically distinct vacuum states but also gives rise to a different
conceptualization of particles, which is intricately linked to the creation and annihilation operators.
By definition, there are no "a-particles" in the vacuum state |0a⟩. However, this vacuum state
encompasses "b-particles." The quantification of the number of "b-particles" in the ω-mode of
the "a-vacuum" can be determined through the following procedure:

⟨0a| b̂†ω b̂ω |0a⟩ =
∫

dν |βν,ω|2.

In the quantization of scalar quantum fields, the Killing time serves as a fundamental tool
for constructing quantum scalar fields within a stationary spacetime. The Hilbert space is
intentionally selected as a subspace comprising solutions, which exhibit positive frequency when
Fourier analyzed along the orbits of the timelike Killing field ξa, aligning with the Killing time t.
The classification of mode functions into positive and negative frequency modes is accomplished
with respect to a chosen timelike Killing field ξ responsible for generating the time evolution.
Positive frequency mode functions ϕω satisfy the following relation with respect to the Lie
derivative:

Lξϕω = −iωϕω, ω > 0.

The Lie derivative evaluates the change of ϕω along the Killing field ξ. The positive frequency
mode functions ϕω annihilate the corresponding vacuum state âω |0a⟩. For the sets of positive
frequency solutions ψω to also annihilate the same vacuum state, they must be linear combinations
of the mode functions ϕω (excluding their conjugates). Consequently, different sets of mode
functions share a common vacuum state only if they are linear combinations of one another.
From eq. (3.7), it is evident that the modes are linearly independent only when βωσ ≠ 0. In such
cases, it is also feasible to express the annihilation operators as linear combinations of one another.

Distinct notions of vacuum states also exist in flat spacetime, with a key distinction being the
consensus on a preferred vacuum state, known as the Minkowski vacuum. All inertial observers
universally measure this preferred vacuum state. The agreement on the Minkowski vacuum is
possible because both the set of all inertial observers and the Minkowski vacuum state remain
invariant under the Poincaré group. In curved spacetime, one is forced to accept the absence of a
preferred vacuum state in the general setting. The acknowledgment of this absence necessitates
an acceptance that there is no unique definition of particles, given that the definition of a particle
is inherently linked to the vacuum state. Depending on the specific context, exploring different
vacuum states can prove useful. It is crucial to bear in mind that the vacuum states discussed in
the following chapters represent deliberate choices arising from the process of quantization.

3.2. Unruh effect in flat spacetime: Accelerated observer

In this section, we will consider the fundamental properties of the Unruh effect originally published
in [Unr76]. Due to its close relation to publications by Davies [DFU76] and Fulling [Ful73], it
is sometimes also referred to as the Fulling–Davies–Unruh effect. The central result is that a
uniformly accelerated observer in quantum field theory perceives a vacuum state as a thermal
bath of particles with a temperature depending on the acceleration. This result can be explained
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3.2. Unruh effect in flat spacetime: Accelerated observer

through different Fock representations related to the Bogoliubov transformation of an inertial
and accelerated observer, which leads to different notions of particles.

The Unruh effect describes how an accelerated observer perceives a state that has been prepared
in an inertial frame in Minkowski spacetime. This effect has been widely studied in the literature
and we will give a review in this section. Results on the Unruh effect were first published in
[Unr76] and presented in a mathematically rigorous way in [Wal94]. A more intuitive approach
can be found in [BD82, CHM08]. Here, we will find a middle ground between these approaches.

The acceleration of the observer has two major consequences: The Killing field, which describes
the trajectory of the accelerated observer and thus characterizes its time evolution, is no longer
globally timelike, and the Rindler horizon restricts the events the observer can see. The most
famous Unruh effect result is that the accelerated observer perceives the Minkowski vacuum as a
thermal state. In the following, we will sketch the fundamental properties of the Unruh effect and
go over concepts that are important for the following work. For calculating the Unruh effect, we
basically need two steps: the Bogoliubov transformation, which changes the Fock representation
from the inertial Minkowski spacetime to the accelerated frame, and then the partial trace, which
implements the restriction to the area causally accessible to the accelerated observer. Preliminary
material of quantum scalar fields and Bogoliubov transformations are covered in chapter 3.2 as
well as in the standard literature.

We start out in Minkowski spacetime with the metric ηµν = −dt2 + dx2 with the corresponding
d’Alembert operator

□ = −∂2t + ∂2x.

The quantum scalar field in Minkowski spacetime is expanded as follows in the 1 + 1 dimensional
case2:

ϕ̂ =

∫ ∞

−∞
dk
(
âkϕk(t, x) + â†kϕ

∗
k(t, s)

)
(3.8)

with the mode functions

ϕk =
1√
4πωk

eikx−iωt =
1√
4πωk

eikx−i|k|t.

This field can be separated into the left- and right-moving parts of the field, which do not interact
with one another: ϕ−(u) which is only dependent on u = t+x and ϕ+(v) which is only dependent
on v = t− x.

ϕ̂ =

∫ ∞

0

dk√
4π|k|

(
â−ke

−i|k|t−ikx + (â−k)
†ei|k|t+ikx + âke

−i|k|t+ikx + (âk)
†ei|k|t−ikx

)

=

∫ ∞

0

dk√
4π|k|

ϕ−k (u) +

∫ ∞

0

dk√
4π|k|

ϕ+k (v)

=ϕ̂−(u) + ˆϕ+(v)

This way, we can separate the scalar field into its left- and right-moving parts, which can be
discussed separately. We will proceed to discuss the Unruh effect only for ϕ+k (v), which is the
left-moving part of the field. This discussion can easily be generalized to the right-moving part,
which behaves identically. The field is divided into the positive and negative frequency part,

2The typical signature of the metric used in the standard literature differs in the context of general relativity and
quantum field theory. Throughout the thesis, we remain consistent with the signature of the metric, which is
why we deviate slightly from the convention in QFT.
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

Rindler
x

t

Minkowski

Figure 9.: Trajectory of Minkowski and Rindler observer in Minkowski spacetime

which is characterized with respect to the Killing time. The mode functions ϕk are of positive
frequency with respect to the timelike Killing field ∂t. These are the frequencies to annihilate a
Minkowski vacuum state:

âp |ΩM ⟩ = 0 ∀p (3.9)

We consider an inertial observer in Minkowski spacetime preparing the Minkowski vacuum state.
A second observer with uniform acceleration is often referred to as the Rindler observer . The
Rindler observer often plays the role of the detector and is depicted in figure 9. We introduce
co-moving coordinates η and ξ to describe the Rindler observer with acceleration a:

t =
eaξ

a
sinh(aη)

x =
eaξ

a
cosh(aη)

ds2 =− dt2 + dx2 = e2aξ
(
−dη2 + dξ2

)
.

Accordingly, the metric corresponding to the co-moving coordinates of the Rindler observer is
conformally equivalent to the Minkowski metric, and the field equation is solved by the following
mode function:

χk =
1√
4πωk

eikξ±iωη ω = |k| > 0, −∞ < k <∞ (3.10)

where the "+"-case corresponds to the left and the "−"-case to the right Rindler wedge. Similar
to the Minkowski case, this can be separated into the left- and right-moving parts.
The Killing fields generating time in the Minkowski and Rindler setting are depicted in figure 10.
The Killing field generating time evolution in the Rindler setting is a Lorentz boost

ba = α[X(∂/∂T )a + T (∂/∂X)a].

A stationary observer in this setting follows the orbits of ba corresponding to the accelerated
Minkowski observer, where the acceleration varies from orbit to orbit. This Killing field is timelike
in a globally hyperbolic region3 with |t| < x which is often referred to as the Rindler wedge as
depicted in figure 11. The Rindler wedge is the area causally accessible to the Rindler observer.
The left and right Rindler wedges are considered separately; we can construct a quantum scalar

3A globally hyperbolic region is defined by having a Cauchy surface as characterized for example in [Wal84, p.
201] or [Wal94, p. 56].
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3.2. Unruh effect in flat spacetime: Accelerated observer

xx

t

(a)

xx

t

RL

(b)

Figure 10.: Killing field generating time evolution
(a) as time translation in Minkowski spacetime and
(b) as a Lorentz boost in Rindler spacetime

field with the time imposed by the Killing field in the Rindler wedges as they each have a (negative)
globally timelike Killing field. The Hilbert spaces corresponding to the left and right wedge are
considered separately, and their respective Fock spaces are constructed.

This different notion of time manifests in the Rindler modes χk in eq. (3.10) and the sign change
in the time coordinate. The Rindler modes are of positive frequency with respect to the co-moving
coordinate time η. We can define these mode functions in the left and right Rindler wedge:

χR
k =

{
1√
4πωk

eikξ−iωη in Rindler wedge R

0 in Rindler wedge L

χL
k =

{
0 in Rindler wedge R

1√
4πωk

eikξ+iωη in Rindler wedge L

These sets of mode functions are complete in the left and right Rindler wedge, respectively,
but not in the entire Minkowski spacetime. However, they can be analytically continued to be
extended to the other wedge. This way, they also describe the future and past where a then
becomes imaginary. The mode functions can be used to expand the Rindler quantum scalar field
as

ϕ̂ =

∫ ∞

−∞
dk
(
b̂Lkχ

L
k + (b̂Lk )

†(χL
k )

∗ + b̂Rk χ
R
k + (b̂Rk )

†(χR
k )

∗
)

(3.11)

The field expansions in eq. (3.8) and eq. (3.11) are quantizations for the same field. However, the
different Fock expansion yields a Rindler vacuum state, which is different from the Minkowski
vacuum state defined in eq. (3.9):

b̂Lk |ΩR⟩ = b̂Rk |ΩR⟩ = 0 ∀k.

These vacuum states are different because the Rindler modes also contain negative frequency
Minkowski modes, and the mixing of positive and negative frequency modes changes the vacuum
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

xx
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Figure 11.: Schematic representation of left and right Rindler wedge

state. Following [Unr76], we can write down the linear combinations of Rindler mode functions
from eq. (3.10) to obtain mode functions that are analytic and bounded in Minkowski spacetime:

ϕ̃
(1)
k =χR

k + e−πω/a(χL
−k)

∗

ϕ̃
(2)
k =(χR

−k)
∗ + eπω/aχL

k

(3.12)

which can be inverted to

χL
k =

1

2 sinh(πω/a)

(
ϕ̃
(2)
k − (ϕ̃

(1)
−k)

∗
)

χR
k =

1

2 sinh(πω/a)

(
eπω/aϕ̃

(1)
k − e−πω/a(ϕ̃

(2)
−k)

∗
)
.

The modes ϕ̃(1,2)k share the same positive frequency properties and accordingly also define the
same Minkowski vacuum state. These modes are referred to as Unruh modes to provide an
intermediate step between Minkowski and Rindler mode expansions. We can expand the scalar
quantum field in terms of these Unruh modes ϕ̃(1,2)k :

ϕ̂ =

∫ ∞

−∞
dk
(
ϕ̃
(1)
k d̂

(1)
k + ϕ̃

(2)
k d̂

(2)
k + (ϕ̃

(1)
k )∗(d̂

(1)
k )† + (ϕ̃

(2)
k )∗(d̂

(2)
k )†

)

with

d̂
(1)
k |ΩM ⟩ = d̂

(2)
k |ΩM ⟩ = 0

The Bogoliubov transformation relating the creation and annihilation operators corresponding to
the Rindler and Unruh modes, as calculated in appendix B.3, is

b̂Lk =
1√

2 sinh(πω/a)

(
eπω/(2a)d̂

(2)
k + e−πω/2a(d̂

(1)
k )†

)

b̂Rk =
1√

2 sinh(πω/a)

(
eπω/(2a)d̂

(1)
k + e−πω/2a(d̂

(2)
k )†

)
.

The Rindler observer measures the following particles when seeing the Minkowski vacuum state:

⟨ΩM | (b̂Lk )†b̂Lk |ΩM ⟩ = e−πω/a

2 sinh(πω/a)
=

1

e2πω/a − 1
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and similarly

⟨ΩM | (b̂Rk )†b̂Rk |ΩM ⟩ = 1

e2πω/a − 1
.

The expectation value of measuring Rindler particles in the Minkowski vacuum equals that of a
thermal bath with temperature T = a/2π where the particle number measured in the left and
right Rindler wedge is identical.

(
(b̂Lk )

†b̂Lk − (b̂Rk )
†b̂Rk

)
|ΩM ⟩ = 0 (3.13)

In order to see that the Minkowski vacuum state perceived by the Rindler observer in the right
Rindler wedge is a thermal state, we need to express the Minkowski vacuum state in terms of
Rindler modes (see appendix B.4)

|ΩM ⟩ =
∏

k



√

1− e−2πωk/a

∞∑

nk=0

e−πnkωk/a |nk, R⟩ ⊗ |nk, L⟩




The density matrix associated with a Rindler observer in the right wedge is obtained as follows:

ρR =trL(|ΩM ⟩ ⟨ΩM |) =
∏

k

(
1− e−2πωk/a

) ∞∑

nk=0

e−2πnkωk/a |nk, R⟩ ⟨nk, R| . (3.14)

For comparison, the density matrix for free bosons with temperature T = 1/β is

ρthermal =
∑

i

e−βEi |ψi⟩ ⟨ψi| = e−βH.

This result matches the form of the thermal density matrix in eq. (3.14) of the Rindler observer
in the right wedge with a temperature

T =
a

2π

where a is the acceleration of the Rindler observer, and the boost generator is the Hamiltonian.

3.3. Quantization of the massless scalar field: flat spacetime
coordinates and the conformal vacuum state

In this chapter, we exploit that de Sitter spacetime can be expressed using the metric of a spatially
flat FLRW metric introduced in eq. (2.8) where we largely follow [PT09]:

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2)

with the scale factor

a(t) = exp

(
t

ℓ

)
. (3.15)

We consider the 3 + 1 dimensional case here since this is the most relevant case for our universe
and the most commonly studied case in the literature. It is straightforward to reduce this to the
two-dimensional case we use in large parts of the rest of this thesis, but this indicates that many
calculations can equally be performed in four dimensions. The calculations for the intermediate
steps are detailed in appendix B.5. Firstly, we will provide a concise overview of the general
spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) case. Later in this chapter, we will
substitute the scale factor from de Sitter spacetime. To comprehend the behavior of the scalar
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

field, we examine the equation of motion from eq. (3.2). We specifically consider the conformally
invariant case with the massless scalar field (m = 0) and ξ = 1

6 . In the spatially flat FLRW
spacetime, the Ricci curvature scalar R is given by

R = 6

(
ȧ2

a2
+
ä

a

)
=

12

ℓ2
..

The d’Alembert operator is defined in eq. (3.3). When expanded in FLRW coordinates, we
obtain4

□ϕ̂(t, x⃗) =− a−3∂t
(
a3∂tϕ(t, x⃗)

)
+ a−2(∂2x + ∂2y + ∂2z )ϕ̂(t, x⃗). (3.16)

With this, the field equation from eq. (3.2) takes the form

−a−3∂t
(
a3∂tϕ(t, x⃗)

)
+ a−2(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
ȧ2

a2
− ä

a

)
ϕ(t, x⃗) = 0. (3.17)

We introduce the conformal time η which is related to the physical time t as:

η(t) =

∫ t dt′

a(t′)
. (3.18)

The introduction of this new temporal coordinate transforms the metric such that it is conformally
equivalent to the Minkowski metric:

ds2 = a(η)2
(
−dη2 + dx2 + dy2 + dz2

)
. (3.19)

The field equation with the conformal time η is

1

a2

[
∂2η + 2

a′

a
∂η − (∂2x + ∂2y + ∂2z ) +

a′′

a

]
ϕ(η, x⃗) = 0. (3.20)

The metric and scalar field can be obtained directly by a conformal transformation of the
Minkowski metric with the conformal factor Ω = a(η)−1 and the known scalar field in Minkowski
spacetime we denote as χ(x):

ηµν =Ω2(x)gµν = a−2(η)gµν

χ(x) =Ω−1ϕ(η, x⃗) = a(η)ϕ(η, x⃗).
(3.21)

The conformally transformed field equation is the well-known field equation for flat Minkowski
spacetime, which in the massless case reads ηµν∂µ∂νχ(x) = 0. The conformal invariance implies
that ϕ(t, x⃗) is a solution to the field equation from eq. (3.19) given that χ(x) is a valid solution
to the field equation in Minkowski spacetime, which is detailed in the appendix (proof 4).

The massless quantum scalar field in Minkowski spacetime is well known. We use its representation
in the Schrödinger picture with time-independent creation and annihilation operators:

χ̂(η, x⃗) =

∫
d3k
(
â
k⃗
fM
k⃗
(η, x⃗) + (â

k⃗
)†fM

k⃗
(η, x⃗)∗

)

with the positive frequency mode functions

fM
k⃗
(η, x⃗) =

1

(2π)3
√
2k
ei⃗k·x⃗−ikη.

4As expected, this expression of the d’Alembert operator simplifies to the known case of flat spacetime for the
scale factor a = 1.

32



3.4. Quantization of the massive scalar field: flat spacetime coordinates and the Bunch Davies vacuum state

The mode functions of the quantum scalar field ϕ can be directly obtained with the conformal
factor:

f
k⃗
(η, x⃗) = ΩfM

k⃗
(η, x⃗) = a−1(η)fM

k⃗
(η, x⃗).

With this the quantum scalar field ϕ̂ can be expanded as

ϕ̂(η, x⃗) =

∫
d3k
(
â
k⃗
f
k⃗
(η, x⃗) + (â

k⃗
)†f

k⃗
(η, x⃗)∗

)
.

Since the mode functions f
k⃗
(η, x⃗) and fM

k⃗
(η, x⃗) which are related by a conformal transformation

are both positive frequency solutions, they generate the same vacuum state. This vacuum state
is called the conformal vacuum state. The conformal vacuums state is defined as

â
k⃗
|Ωk⟩ = 0 ∀k⃗

This typically also is the chosen vacuum state for a massless de Sitter field.

3.4. Quantization of the massive scalar field: flat spacetime
coordinates and the Bunch Davies vacuum state

We can now take a look at the massive quantum scalar field for de Sitter spacetime, which again
follows [PT09]. First, we take a closer look at the scale factor from eq. (3.15). We will also
explore how this scale factor transforms upon the introduction of conformal time η, which runs
from −∞ < η < 0, as given in eq. (3.18).

η(t) =

∫ t dt′

exp
(
t′

ℓ

) = −ℓ exp
(
− t
ℓ

)
⇔ t(η) = −ℓ log

(
−η
ℓ

)

For the scale factor, it follows that

a = exp

(
t

ℓ

)
= exp

(
− log

(
−η
ℓ

))
= − ℓ

η
.

These coordinates only cover half of de Sitter spacetime. We can cover the other half of the
spacetime by extending the conformal time to positive η (with a coordinate singularity at η = 0).
The line element of the metric takes the form

ds2 =
ℓ2

η2
(
−dη2 + dx2 + dy2 + dz2

)
.

We take the general form of the field equation from eq. (3.2), where we substitute the known
d’Alembert operator and scale factor. We obtain the following equation of motion for the massive
de Sitter case:

−∂2t ϕ(t, x⃗)−
3

ℓ
∂tϕ(t, x⃗) + e−2t/ℓ(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
m2 +

2

ℓ2

)
ϕ(t, x⃗) = 0. (3.22)

We introduce a new parameter which acts as the effective mass that absorbs the curvature term:

M2 = m2 +
1

6
R = m2 +

2

ℓ2
. (3.23)

The quantum scalar field is expanded using mode functions and creation/annihilation operators:

ϕ̂(t, x⃗) =

∫
d3k
(
â
k⃗
f
k⃗
(t, x⃗) + (â

k⃗
)†f

k⃗
(t, x⃗)∗

)
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For the mode functions, we make the following product ansatz where we introduce the scale factor
a(t) in the normalization:

f
k⃗
(t, x⃗) =

1

(2π)3
√

2a(t)3
exp
[
i⃗k · x⃗

]
vk(t).

The equation of motion from eq. (3.22) has to be valid for all mode functions. We introduce a
new time coordinate, which increases as t decreases to transform the differential equation to a
known form:

τ = kℓ exp(−t/ℓ).

Upon substitution of the new time coordinate, we get the following equation of motion:

τ2∂τvk(τ) + τ∂τvk(τ) + (τ2 − ν2)vk(τ) = 0 (3.24)

with

ν =

√
17

4
−m2ℓ2 =

√
9

4
−M2ℓ2

where M is the effective mass from eq. (3.23). This is solved for vk(τ) by the Bessel equation of
first and second kind:

vk(τ) = akJν(τ) + bkYν(τ)

The normalization of the mode functions and the asymptotic behavior is discussed in detail in
the appendix (proof 7 and proof 8). We can write the mode functions as

vk(τ) =

√
πℓ

2
(Jν(τ) + iYν(τ)) =

√
πℓ

2
H(1)

ν (τ),

, which can be expressed with the Hankel function of the first kind. With respect to the time t,
this results in the following solution for the mode functions:

f
k⃗
(t, x⃗) =

1

2

√
πℓ ei⃗k·x⃗

(2π)3
√
a(t)3

H(1)
ν (kℓ exp(−t/ℓ)). (3.25)

These mode functions determine the creation and annihilation operators that define a vacuum
state known as the Bunch-Davies vacuum.

â
k⃗
|0BD⟩ = 0 ∀k⃗

Due to the restrictions on the mode functions, this vacuum state is derived by considering the
high-frequency asymptotic behavior of the quantum scalar field and imposing de Sitter invariance.
It is worth noting that while the Bunch-Davies vacuum is not de Sitter invariant in the specific
characterization of de Sitter invariance found in [All85], where a certain class of space- and
time-reflections must map the full de Sitter group into itself, it is still often regarded as the most
natural vacuum state for de Sitter spacetime. We cannot claim full invariance under the de Sitter
group, as only seven out of the ten local isometry transformations are used to characterize this state.

It is interesting to highlight that when the Bunch-Davies state is restricted to the massless case,
it is identical to the conformal vacuum state from the previous section. A detailed derivation of
this equivalence can be found in [PT09].

34



3.5. Euclidean coordinates and the Hartle Hawking state

>
time

Figure 12.: Schematic depiction of the Hartle-Hawking state where the dashed circles
mark τ = 0.

3.5. Euclidean coordinates and the Hartle Hawking state

For many years, physicists have tried to find the wave function of the universe, which is often
considered to be the solution to understanding quantum gravity. In 1983, Hartle and Hawking
suggested a wave function that describes the quantum state of a spatially closed universe as
a functional on the geometries of compact three-manifolds which obeys the Wheeler-DeWitt
second-order functional differential equation [HH83]. The ground state of this wave function
is called the Hartle-Hawking state and can be derived using path integral methods. Finding
the wave function of the universe as the solution of the Wheeler-DeWitt equation and rig-
orously defining the Hartle-Hawking state as its ground state has many intricacies. It has
been discussed in detail by Hartle and Hawking and in many follow-up publications such as
[AHM21, BCT21, BH99, GH93, GS16, HHH19, HHH14, KPY22, Wal88]. We restrict our atten-
tion to a simplified definition of the most natural interpretation of the Hartle-Hawking state.
In the original paper [HH83], the Hartle-Hawking state is defined by a path integral over the
class of paths whose action vanishes in the far past. This is made more rigorous by a rota-
tion to Euclidean time. One important physical property is that the Euclidean region of the
HH state has no notion of time as we know it. Since time in its original sense did not exist
then, it is not possible to answer the question of what happened before the big bang in this context.

For a more detailed discussion of the definition of Hartle-Hawking states, the reader is referred to
the literature [HH83]. For our purposes, we consider a vacuum state where the Wick rotation of
the time coordinate in the past is the defining property. The Wick rotation τ → −iβ transforms
the Lorentzian geometry of the hyperbolic spacetime in the past to Euclidean geometry as
schematically depicted in figure 12. Due to the transformation to the Euclidean geometry, we
will refer to the vacuum state defined by this Wick rotation as the Euclidean vacuum state. The
resulting vacuum state acts on de Sitter spacetime at τ = 0 (the bottleneck area).

Due to the geometry after the Wick rotation, we can construct the Euclidean vacuum state |ΩE⟩
on the basis of spherical modes where we consider positive frequency modes to be the modes
that are regular when analytically continued to the lower Euclidean hemisphere. The positive
frequency Euclidean modes annihilate the Euclidean vacuum state. The explicit construction of
these modes can be found in [BMS01], where we choose the regular solutions of the Klein-Gordon
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

equation on Euclidean de Sitter space. Here, we will sketch the basic idea of the construction.

For the construction of the modes annihilating the Euclidean vacuum state, we start with the
two-dimensional de Sitter metric in global coordinates

ds2 = −dτ2 + ℓ2 cosh2(τ/ℓ)dθ2

and perform the Wick rotation τ → −iβ. The resulting metric is equivalent to the metric of a
two-sphere in spherical coordinates with a constant radius ℓ:

ds2 = −d(−iβ)2 + ℓ2 cosh2(−iβ/ℓ)dθ2 = dβ2 + ℓ2 cos2(β/ℓ).dθ2

The positive frequency Euclidean modes are the modes that are regular when analytically continued
to the lower Euclidean hemisphere as described above. The explicit expression of the mode
functions is derived in appendix B.6. In order to argue that the Euclidean vacuum state can be
considered a state, we look at the time evolution of the system with Hamiltonian H:

Uτ = e−iHτ 7→ e−βH

under the Wick rotation τ → −iβ. We get an exponential function with a real exponent, which
resembles the partition function from statistical mechanics. The imaginary time β appears in the
same way as it does in statistical mechanics, where it is interpreted as the inverse temperature
(where we set the Boltzmann constant kB = 1). This makes it plausible that the vacuum state
has thermal properties, which will be employed further later on in this thesis.

It was shown in [BMS01] that the Euclidean vacuum state and rescaled vacua acting at the
past boundary of de Sitter spacetime are related via a Bogoliubov transformation. It was shown
in [All85] that a family of de Sitter-invariant vacuum states, often referred to as α vacua, can
be obtained from the Euclidean vacuum state. These α vacua are all related via Bogoliubov
transformations, which yield physically equivalent vacuum states.

3.6. Quantization scalar field in static patch

The physics accessible to a local observer is best described in a static patch because there exists
a Killing field in a static patch which is completely timelike. We consider static patches, which
we call static patches I and II, which lie on opposing sites of the spacetime and therefore cover
the entire spacetime at t = 0. Due to the rotational invariance, there is no preferred set of static
patches. To obtain a description that is best suited for a local observer, we consider the static
patch with the observer located at r = 0 as static patch I and the static patch on the antipodal
side of the spacetime as static patch II. This allows for a description that is very well suited for
a local observer rather than for global de Sitter spacetime. In this section, we will derive the
quantum scalar field in the de Sitter static patches I and II. The metric tensor for de Sitter in a
static patch is (see eq. (2.6))

gµν =

(
−1 + r2

ℓ2
0

0 ℓ2

ℓ2−r2

)
.

The field equation of a quantum scalar field is given as
(
□−m2

)
ϕ̂ = 0

where the d’Alembert operator in static coordinates can be expanded as

□ = − ℓ2

ℓ2 − r2
∂2t −

2r

ℓ2
∂r +

(
1− r2

ℓ2

)
∂2r .
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3.6. Quantization scalar field in static patch

This gives us the field equation in static coordinates:
(
− ℓ2

ℓ2 − r2
∂2t −

2r

ℓ2
∂r +

(
1− r2

ℓ2

)
∂2r −m2

)
ϕ̂ = 0. (3.26)

This equation of motion has to be satisfied for all mode functions ϕω(t, r). The solutions to this
field equation are derived using the product ansatz ϕω(t, r) = e−iωtfω(r) in appendix B.7. There
are two linearly independent solutions to the radial field equation:

f1ω(r) =P
n
l (r/ℓ) = P±iℓω

−h±
(r/ℓ)

f2ω(r) =Q
n
l (r/ℓ) = Q±iℓω

−h±
(r/ℓ)

where we introduced the parameter

h± =
1

2
±
√

1

4
− ℓ2m2.

For the two linearly independent solutions it follows that

ϕ1ω(t, r) = Ne−iωtf1ω(r) =Ne
−iωtP iℓω

−h±

(r
ℓ

)

ϕ2ω(t, r) = Ne−iωtf2ω(r) =Ne
−iωtQiℓω

−h±

(r
ℓ

)
.

(3.27)

The hypergeometric functions are a generalization of Legendre functions where we have imaginary
orders. Especially for higher dimensions, the Hypergeometric functions are necessary to describe
the de Sitter mode functions in static patches. Legendre functions and Hypergeometric functions
can be related using identities from [AS64]. A substitution to transform the associated Legendre
equation to the Hypergeometric equation is described in appendix proof 9. This allows us to
express the mode functions as

ϕω(t, r) = Ne−iωt

(
1− r2

ℓ2

)iℓω/2

2F1

(
1

2
(h+ + iℓω),

1

2
(h− + iℓω),

1

2
,
r2

ℓ2

)
(3.28)

up to the normalization constant N . The normalization constant can be determined with the
Klein-Gordon inner product.

To include the simplest possible case, we also look at the massless scalar field. For the massless
scalar field, the radial equation of motion reduces to

((
1− r2

ℓ2

)
∂2r −

2r

ℓ2
∂r +

ℓ2

ℓ2 − r2
ω2

)
fω(r) =0

which is solved by the two linearly independent solutions f1ω(r) and f2ω(r) which leads to the
following solutions of mode functions:

ϕ1ω(t, r) = Ne−iωtf1ω(r) =γe
−iωt exp(iℓω arctanh(r/ℓ))

ϕ2ω(t, r) = Ne−iωtf2ω(r) =γe
−iωt exp(−iℓω arctanh(r/ℓ)).

These also need to be normalized with respect to the Klein-Gordon inner product.

The field equation is identical in different static patches, which is why we have a quantization
with the same mode functions in different static patches. To distinguish these, we add a label to
denote in which patch the mode function lives. Following basic rules of quantizing scalar fields,
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

we introduce creation and annihilation operators that satisfy the usual canonical commutation
relations

[
âIn, (̂a

I
m)†
]
= δmn

[
âIIn , (̂a

II
m)†
]
= δmn

to fully quantize the scalar field in the static patches I and II:

ϕ̂I(t, r) =

∫ ∞

0
dω
[
âIωϕω(r, t) + (âIω)

†ϕ∗ω(r, t)
]

ϕ̂II(t, r) =

∫ ∞

0
dω
[
âIIωϕω(r,−t) + (âIIω )

†ϕ∗ω(r,−t)
]
.

It needs to be noted that the time direction is imposed by the Killing field, which has opposite
signs in two static patches on opposite sides of the spacetime. This is why we need to take into
account that the time in the mode functions of static patch I and II has a relative negative sign.
For the static patches, we define vacuum states with the following condition:

âIn |ΩI⟩ =0

and âIIn |ΩII⟩ =0 ∀n.

It must be pointed out that these vacuum states, which are the vacuum states naturally associated
with the static patches, are not de Sitter invariant, as described in [CT68]. In [BD82], it is even
shown that the expectation value of the quantum field stress-tensor in this vacuum state diverges
at the static patch boundary at ℓ = r. This makes it necessary to associate a vacuum state to
each observer in de Sitter such that the observer is located at r = 0.

3.7. Euclidean vacuum as linear combination of static patch modes

One compelling reason for utilizing the Euclidean vacuum stems from the convenience of express-
ing its modes as linear combinations of those derived in section 3.6 from the static patches I and
II. In this section, we will review the construction of a linear superposition of the static patch
modes, which covers the global de Sitter spacetime and can be identified with the Euclidean
modes. For this, we follow the approach presented in [BMS01] (here, we simplify dS3 to dS2

and the generalization to arbitrary de Sitter radii ℓ). The intermediate steps are elaborated
in appendix B.9. This expression of the vacuum state can also be found in [HY18], where the
vacuum state is referred to as the Bunch-Davies vacuum.

To construct a solution across the entire spacetime, we need to match static patch solutions across
the horizons between the regions inside and outside the static patches. To do this, we need to
match the mode functions across the horizons. This is easiest done in Kruskal coordinates where
we have no coordinate singularity. In the static patches, the relation between static and Kruskal
coordinates is defined as

r

ℓ
=

1 + UV

1− UV
t

ℓ
=

1

2
log

(
−U
V

)
.

An overview of the different regions and the respective values and signs the Kruskal coordinates
take is depicted in figure 13. The most crucial regions for combining different solutions are the
horizons of the static patch at r2 = ℓ2 (which in Kruskal coordinates implies UV = 0). We can
directly calculate the metric inside the static patch in Kruskal coordinates (see proof 12)

ds2 = −4ℓ2
dUdV

(UV − 1)2
. (3.29)
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U > 0, V < 0 U < 0, V > 0

U < 0, V < 0

U > 0, V > 0
I II

U = 0 V = 0

Figure 13.: Overview on different regions and the corresponding values of the Kruskal
coordinates U and V inside the static patches (r < ℓ), at the horizon
(r2 = ℓ2) and in the future (includes I+) and past (includes I−) region

We will now express the static patch mode functions from eq. (3.28) in Kruskal coordinates:

ϕω(U, V ) =N

(
−U
V

)−iωℓ/2(
− 4UV

(UV − 1)2

)iℓω/2

2F1

(
1
2(h+ + iℓω), 12(h− + iℓω),

1

2
,
(
1+UV
1−UV

)2)

=N

(
−U
V

)−iωℓ/2

fω(UV ) (3.30)

The modes in static patch I and II are related by

ϕIω(U, V ) = ϕIIω (−U,−V ).

As the signs of U and V cancel, the mode functions of the different static patches have the same
form, but their area of support is different.

This section aims to write the Euclidean modes as a linear combination of modes from static
patches I and II. For this, we need to define a linear combination of functions with different
support regions, which can be related through an analytic continuation. One condition is that
the positive frequency mode function is analytic in the lower complex U and V planes; this way,
we get modes that are regular on the lower Euclidean hemisphere as shown in [BMS01]. This is
achieved by analytically continuing the modes ϕIω(U, V ) to the static patch II along the following
contour:

U →e−iγU,

V →eiγV

where γ runs from 0 to π. We can plug this into the mode functions from eq. (3.30) to get a
continuation of the mode ϕIω(U, V ). It needs to be noted that the product UV is independent of
γ and, therefore, independent of the continuation performed above. We get

ϕω(U, V ) =N

(
−e

−iγU

eiγV

)−iωℓ/2

fω(UV ) = Ne−γωℓ

(
−U
V

)−iωℓ/2

fω(UV ).

Using this analytic continuation where γ runs from 0 to π, the mode functions from the different
static patches can be combined as follows to obtain mode functions with support in the same
static patch, which are analytic in the lower Euclidean hemisphere:
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

ϕE1
ω =ϕIω + e−πωℓ(ϕIIω )

∗

ϕE2
ω =ϕIIω + e−πωℓ(ϕIω)

∗.

These are both positive frequency Euclidean mode functions for ω > 0, even though this is a linear
combination of the positive frequency mode functions from one static patch and the negative
frequency mode functions from the other patch. The reason for this is the different notions of time
in the different static patches. These mode functions can be used to write down the expansion of
the quantum scalar field

ϕ̂ =

∫ ∞

0
dω
[
âE1
ω ϕE1

ω + âE2
ω ϕE2

ω + (âE1
ω )†(ϕE1

ω )∗ + (âE2
ω )†(ϕE2

ω )∗
]

(3.31)

where the Euclidean annihilation operators are related to the static patch operators via a
Bogoliubov transformation as follows (this relation also is derived in [FPST94, (A.10)] for ℓ = 1):

âE1
ω =

1√
1− e−2πωℓ

(
âIω − e−πωℓ(âIIω )

†
)

âE2
ω =

1√
1− e−2πωℓ

(
âIIω − e−πωℓ(âIω)

†
)
.

(3.32)

The annihilation operators âE1
ω and âE2

ω as well as the mode functions ϕE1
ω and ϕE2

ω are identical
except for the exchange of the labels for static patch I and II. Together with the corresponding
creation operators (âE1

ω )† and (âE2
ω )† these operators satisfy the usual commutation relations (see

proof 14)
[
âE1
ω , (âE1

ω′ )†
]
= δω,ω′ ,

[
âE2
ω , (âE2

ω′ )†
]
= δω,ω′ (3.33)

with all other commutators vanishing.

The Euclidean vacuum state can be expressed as a linear combination of static patch modes as
follows:

|ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩ =

∞∏

ω=0

Uω |ΩI⟩ ⊗ |ΩII⟩ (3.34)

where Uω is a two-mode transformation acting on the modes ω in the static patches I and II.
This vacuum state is also referred to as the Bunch-Davies vacuum state in [HY18, eq. (88)] (with
some restrictions as we considered a lower dimensional case). It is shown that the Euclidean
annihilation operators annihilate the Euclidean vacuum state in proof 15:

âE1
ω |ΩE⟩ = âE2

ω |ΩE⟩ = 0.

The generator of time evolution for a Euclidean vacuum state is easiest written down in terms of
static patch creation and annihilation operators since the time runs forward in static patch I and
backward in static patch II:

HE =

∫ ∞

0
dω ω

[
(âIω)

†âIω − (âIIω )
†âIIω

]
.

The Hamiltonian generating time translations can be expressed (see proof 16) using the Euclidean
creation and annihilation operators as follows:

HE =

∫ ∞

0
dω ω

[
(âE1

ω )†âE1
ω − (âE2

ω )†âE2
ω

]
. (3.35)
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3.8. Wightman function

When the Hamiltonian acts on the Euclidean vacuum state, we get the known relation for
Hamiltonians acting on the ground state:

HE |ΩE⟩ = 0 (3.36)

In this form, it is easy to see that the Euclidean vacuum has thermal properties as described
in numerous references such as [EL03, BMS01]. We obtain a thermal density matrix in static
patch I when taking the trace over the Hilbert space of static modes in patch II of the Euclidean
vacuum state.

3.8. Wightman function

Wightman functions are correlation functions fundamental to QFT. An introduction can be found
in [BD82]. The Wightman function is a tool to describe the propagation of field disturbances due
to boundary conditions. One area where Wightman functions are of particular relevance to us is
to see how well a vacuum state agrees with the no-particle state of a co-moving detector. We
are interested in the Wightman function because it represents the bath of ’particles’ that the
detector effectively experiences as a result of its motion.

We want to derive the Wightman function, which is the positive frequency part of the Green’s
function given by

G+(x, y) =W (x, y) = ⟨Ω| ϕ̂(x)ϕ̂(y) |Ω⟩

where the entire Green’s function iG(x, y) and the Feynman propagator iGF (x, y) are defined as

iG(x, y) = ⟨Ω|
[
ϕ̂(x), ϕ̂(y)

]
|Ω⟩ = G+(x, y)−G−(x, y)

iGF (x, y) = ⟨Ω| T
(
ϕ̂(x)ϕ̂(y)

)
|Ω⟩ = Θ(tx − ty)G

+(x, y)−Θ(ty − tx)G
−(x, y)

with T being the time ordering operator and Θ the Heaviside function.As we consider the confor-
mal vacuum state, we are interested in the massless case, where the Green functions are denoted
by D instead of G. The Wightman function is obtained by inserting the mode decomposition for
the quantum scalar field into the vacuum expectation value.

For a conformally coupled massless scalar field with the conformal vacuum state from section 3.3,
the positive frequency Wightman function is evaluated to (see [BD82, eq. (3.59)])

D+(x, x′) = − 1

4π2
1

(x0 − (x′)0 − iε)2 − |x⃗− x⃗′|2 (3.37)

where x⃗ refers to the spatial part. The Wightman function up to first-order perturbations in ε of
two observers following Killing trajectories is derived in appendix B.10:

Wm,n(s) =− κmκn
16π2

1

sinh2(s/2− iε)− bmn

with the new time variable s = κmτ̃ − κnτ , the proper acceleration κi = 1/
√
ℓ2 − r2i and the

parameter

bmn =− 1

2

(
1 + κmrmκnrn − κmκnℓ

2
)
=

1

2

(
κmκnl

2 −
√
κ2mℓ

2 − 1
√
κ2nℓ

2 − 1− 1
)

(3.38)
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Chapter 3. Quantum scalar fields and vacuum states of de Sitter spacetime

The Wightman function takes the following form when expressed in terms of its Fourier modes
(as derived in the appendix B.11):

Wm,n(s) =
1√
2π

∫ ∞

−∞

∼Wm,n (ω)eiωsdω = −
∫ ∞

−∞

2a sin
(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

eiλsdλ (3.39)

Wightman functions are correlation functions between field operators at different points in space-
time. Using Bogoliubov transformations, the calculation of Wightman functions can be simplified
by changing the Fock representation of the quantum scalar field and then calculating the correla-
tion function of an easier (maybe trivial) quantum scalar field. Depending on the particular setup,
it can have advantages to use either Bogoliubov transformations to relate different Fock represen-
tations or Wightman functions to calculate the correlation function between field operators directly.

In this chapter we reviewed the quantization of the scalar field in de Sitter spacetime and
the corresponding vacuum state whose different Fock quantizations are related by Bogoliubov
transformations. Together with the Wightman function, this provides a basis for part III of this
thesis, where we discuss several aspects of the Unruh effect in the setting of de Sitter spacetime.
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C h a p t e r 4

Quantum Information methods

In this chapter, we will introduce some quantum information properties that will be relevant for
the rest of this thesis. First, we review some basic material on tensors and tensor network notation
in section 4.1 where we largely follow Bridgeman and Chubb [BC17]. In section 4.2, we review
a holographic toy model that captures the AdS/CFT correspondence introduced by Pastawski,
Yoshida, Harlow, and Preskill introduced in [PYHP15]. This toy model largely motivates the
construction of the holographic toy model in de Sitter spacetime discussed in chapter 6. We also
give a short review on quantum error correction and approximate cloning in sections 4.3 and 4.4.

4.1. Basics on tensor network notation

This section provides a brief review of tensors, tensor networks, and tensor network notation,
which largely follows the paper by Bridgeman and Chubb [BC17]. A tensor is a fundamental
building block of any tensor network. One important defining property of any tensor is its rank:
The basic examples are a d-dimensional vector v ∈ Cd which is a rank-1 tensor and a m × n
matrix M ∈ Cm×n which is a rank-2 tensor. These motivate a more general definition of a rank-r
tensor:

Definition 4.1 (tensor of rank r)
A tensor with dimensions d1 × · · · × dr which is element of Cd1×···×dr is a rank-r tensor.

The rank of a tensor equals the number of indices of that tensor in index notation. In tensor
network notation a single tensor is represented by some shape with legs sticking out the tensor.
Each leg is associated with an index. Accordingly, the number of legs of the tensor also corresponds
to the rank of the tensor. We will illustrate this with an example of a rank-4 tensor Xρ

σµν which
has the following representation in tensor network notation:

=Xρ
σµν X

ρ

σ

µ

ν

Here, we distinguish between lower and upper tensor legs similarly as we distinguish co- and
contravariant indices in the Einstein index notation. We interpret lower tensor legs as incoming
and upper tensor legs as outgoing tensor legs, which implies that the direction of time in tensor
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network notation is upwards. The incoming and outgoing tensor legs are now associated with
different Hilbert spaces, which we denote as hin and hout. Each tensor is proportional to a map
from hin to hout.

This way, we can also interpret a linear map T : HA → HB as a tensor, which we can express
both in index notation and tensor network notation. The linear map T takes the following form
in index notation

T : |a⟩ 7→
∑

b

Tba |b⟩

where {|a⟩} is a complete orthonormal basis of HA and {|b⟩} is a complete orthonormal basis of HB .

In the rest of the chapter, we will introduce some basic properties and tensor operations relevant
to the construction of the holographic network.

Definition 4.2 (Adjoint tensor)
A tensor X† is adjoint to the tensor X and can be expressed in tensor network notation as follows:
The upper and lower legs are flipped, such that the tensor is mirrored along the constant time
slice it sits on.

=(Xρ
σµν)

† = Xσµν
ρ X†

ρ

σ

µ

ν

Definition 4.3 (Isometry)
An isometry is a linear map V : HA → HB between the Hilbert spaces HA and HB which
preserves the inner product. A linear map is an isometry if and only if

∑

b

V †
a′bVba = δa′a

Graphically, this can be expressed as

V

V †

=b

a

a′

a

a′

Definition 4.4 (Unitary)
A unitary is a linear map U : HA → HB between the Hilbert spaces HA and HB which is an
isometry that satisfies the following condition:

U †U = UU † = 1
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Definition 4.5 (Perfect tensor)
Perfect tensors are a special class of isometric tensors. A tensor Ta1···an with n indices is a perfect
tensor if it is proportional to an isometric tensor from A to AC for any bipartition of its indices
into a set A and its complementary set AC with |A| ≤ |AC |. This way, a perfect tensor is a
special type of tensor with maximal entanglement along any bipartition. On an intuitive level,
perfect tensors capture a discrete version of rotation invariance.

Definition 4.6 (Tensor product)
The tensor product is defined as the element-wise product of the values of each tensor component:

[A⊗B]i1,··· ,ir,j1,··· ,js := Ai1,··· ,ir ·Bj1,··· ,js

This is a generalization of the outer product of vectors. In tensor network notation, the tensor
product is represented by placing two tensors next to each other:

A

a

a′

B

b

b′

= A⊗B

a

a′

b

b′

Definition 4.7 (Trace)
The (partial) trace is a joint summation over two indices of a given tensor that have the same
dimension. The following example shows the trace operation for a tensor T where the dimensions
dx and dy are equal:

[trx,y(A)]i1,··· ,ix−1,ix+1,···ir,j1,··· ,jy−1,jy+1,···js

=

dx∑

α

Ai1,··· ,ix−1,α,ix+1,···ir,j1,··· ,jy−1,α,jy+1,···js

In tensor network notation, this is represented by joining the corresponding tensor legs:

i

i

j

k

Atri





 =

∑
i

i

i

j

k

A





 =

j

k

A

i

i

j

j

Atr





 =

∑
i,j

i

i

j

j

A





 = A
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Definition 4.8 (Contraction)
A contraction is a tensor product followed by a trace between corresponding indices of the two
tensors. In tensor network notation, this can be represented as follows:

∑
i,j i j

i j
=

For the rest of this thesis, two particular tensors are most relevant for us: a 3-leg tensor V βγ
α and

a 4-leg perfect tensor Uγδ
αβ :

V βγα ≡ V

α

β γ

=

α

β

Uγδαβ ≡ U =

α β

γ δ

β

γ

We require the 4-leg tensor to be a unitary transformation

U†U =

U†

U

= = I. (4.1)

and the 3-leg tensor to be an isometry

V †V =

V †

V

= = I. (4.2)
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For simplicity, we assume that the indices of both U and V run over a set of size d. Thus, U and
V are the following two maps:

U : Cd ⊗ Cd → Cd ⊗ Cd, and V : Cd → Cd ⊗ Cd.

Indeed, this assumption does not imply a loss of generality: It is possible (with a small amount
of work) to allow for the dimension d of the tensor legs to vary for different spacetime locations.

In the following, the tensor-network labels U and V , as well as the index labels for the legs, are
suppressed to keep the notation clean.

In the context of tensor network models, tensors or tensor networks are sometimes interpreted as
quantum states. If tensor networks cannot be interpreted directly as quantum states, they often
describe the time evolution of a quantum state.

4.2. Review: Toy model of AdS/CFT correspondence

In this section, we want to review a family of toy models, which is an exact model of the AdS/CFT
correspondence. The holographic toy model was introduced by Pastawski, Yoshida, Harlow, and
Preskill [PYHP15] and is here referred to as the AdS toy model. This toy model largely motivates
the construction of our holographic model in the de Sitter setting. Accordingly, we will review
some basic properties of anti-de Sitter spacetime as well as the corresponding tessellations and
the basic construction of the toy model in this section.

Anti-de Sitter spacetime is the constant curvature solution to Einstein’s field equations with
constant negative curvature schematically depicted in figure 14. AdS2+1 can be embedded in
four-dimensional flat space with the following coordinates [Hol95]

X =sinh r cosϕ

Y =sinh r sinϕ

Z =cosh r cos t

T =cosh r sin t

which results in the following metric

ds2 = dX2 + dY 2 − dZ2 − dT 2 = − cosh2 rdt2 + dr2 + sinh2 rdϕ2

The coordinates r and ϕ are interpreted as polar coordinates, and t is the time coordinate. It
needs to be noted that the time t is 2π periodic in AdS spacetime. For a fixed timeslice, we obtain
the two-dimensional hyperbolic plane, which can be identified with the Poincaré disc [And07].
The Poincaré disc is a model of the hyperbolic plane where all points of the hyperbolic plane are
identified with points inside the unit disk D. In this setting, straight lines are circular arcs that
are perpendicular to the boundary ∂D (which includes the diameter of the disk).

4.2.1. Uniform tessellations in flat and hyperbolic space

Tessellations are coverings of a surface with geometric shapes (tiles) that are not allowed to
overlap or have gaps. A uniform tiling is a tessellation that has to satisfy the following additional
conditions. All tiles are regular polygons, the pattern around all vertices has to be identical (up
to a mirror image), and the tiling has to be vertex-transitive [Max23]. In particular, it follows
that there are no preferred tiles of the uniform tessellation. A polygon in flat space is defined
as a closed convex set that is bounded by Euclidean line segments. A polygon is regular if the
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>time

Figure 14.: Schematic depiction of 2 + 1 dimensional anti-de Sitter spacetime

(a) (b) (c)

Figure 15.: Uniform tilings in the Euclidean plane using triangles (a), squares (b), or
hexagons (c)

sides have equal length and the interior angles are equal. Uniform tessellations are well known
from flat spacetime, for example, in the form of mosaics; examples of uniform triangular and
hexagonal tessellation are depicted in figure 15. Tilings reduce the symmetry group from a
continuous translation and rotation symmetry to their discrete equivalents: uniform tilings are
vertex-transitive and only rotation invariant for discrete angles.

Such uniform tilings can also be defined for hyperbolic space where a hyperbolic tiling is the tessel-
lation of a Poincaré disc D. The definition of polygons can be translated directly to the hyperbolic
setting. Hyperbolic polygons are bounded by hyperbolic line segments, which are segments of
circular arcs. Hyperbolic tessellations are less common in our everyday lives but make their
appearances in a series of artworks of the Dutch artist Maurits Cornelis Escher called circle limits1.

Hyperbolic tessellations are made of tiles, which are hyperbolic polygons. They are often referred
to as (p, q) tessellations, which are made of tiles that are regular hyperbolic polygons with p sides
where q polygons are adjacent to each vertex. This is a generalization to the Euclidean tiling,
where the choice of polygon uniquely characterizes the number of tiles adjacent to each vertex. In
hyperbolic geometry, the angle sum of a regular polygon with p sides is smaller than (p− 2) · π
(which would be the exact angle sum for a regular Euclidean polygon). For a (p, q) tessellation

1M.C Escher: Circle Limit with Butterflies (1950), Circle limit I (1958), Circle Limit II (1959), Circle Limit III
(1959), Circle Limit IV Heaven and Hell (1960)
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Figure 16.: tessellation of the Poincaré disc using ideal triangles

with hyperbolic polygons with inner angle α we get the following relation:

2π = α · q < (p− 2) · π
p

· q

The more the inner angle α differs from (p− 2) · π/p, the bigger the curvature in the hyperbolic
plane. This allows for a large family of hyperbolic tessellations , hyperbolic (p, q) tessellations can
be constructed interactively on the web page [Chr] which also describes the explicit construction2.
We mostly refer to tessellations using ideal triangles bounded by geodesics where all vertices lie
on the boundary of the Poincaré disc as depicted in figure 16.

The hyperbolic tilings are discretely scale-invariant, and there exists a graph isomorphism that
maps any point of the graph to its center while preserving the local structure of the tiling.

4.2.2. AdS toy model

Here, we describe the construction and fundamental properties of the family of AdS toy models
introduced in [PYHP15]. The AdS toy model acts on the Poincaré disc, which is a constant time
slice of anti-de Sitter spacetime. It models a connection between bulk locality in AdS/CFT and
quantum error correcting codes, which has been proposed in [ADH15]. The language of quantum
error correction gives a natural interpretation to local bulk operators of the Poincaré disc as
logical operators on certain subspaces in the CFT. The model combines this with the suggestion
of Swingle [Swi12b, Swi12a] to implement the holographic model using tensor networks, which
have been used as a tool to represent quantum many-body states [VCM09].

The foundation of the AdS toy models are uniform tilings of the Poincaré disc. Different choices
of tilings result in different models, which is why we get a family of toy models. We will consider
the model based on a tessellation comprised of ideal triangles, which also can be referred to as the
standard dyadic tessellation of the Poincaré disc shown in figure 14(b), which was also considered
in [OS20]. For the construction of an AdS toy model, the fundamental building blocks are perfect
tensors, which are placed at each tile. The open legs of the perfect tensors are contracted with
the legs of tensors placed at neighboring tiles (which have shared edges), which gives rise to a
tensor network . As perfect tensors, in general, are not symmetric under all permutations of tensor
legs, the ordering of the tensor legs needs to be specified in the construction. Physical spins are
associated with the uncontracted tensor legs at the boundary of the tiling.

The resulting tensor network, which only has uncontracted legs at the boundary, is called a
holographic state (see figure 17(a)) and corresponds to a pure state of these boundary spins. The

2Constructions or transformations of such tessellations can be visualized in [Wee] which is an open source software.
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(a) (b)

Figure 17.: Depiction of holographic state (a) and holographic code (b) for the
standard dyadic tessellation of the Poincaré disc. Uncontracted tensor
legs represent physical legs on the boundary, and black dots in the tensor
represent logical input legs associated with each perfect tensor in the
bulk.

physical degrees of freedom of the holographic state are associated with the uncontracted tensor
legs at the boundary of the Poincaré disc.

The code corresponding to the AdS toy model is obtained by a generalization of the holographic
state, which is called holographic quantum code in the original paper. The construction is similar
to the holographic state, but a tensor with one additional leg is placed at each tile such that
each tensor has an uncontracted leg in the bulk. This additional uncontracted bulk leg can
be interpreted as a logical input for the tensor network (see figure figure 17(b)). The tensor
network is referred to as a holographic code if this tensor network generates an isometry from the
uncontracted bulk legs to the uncontracted boundary legs. For the construction described above,
the tensor network generates an isometry from the logical indices in bulk to the physical indices
on the boundary because each perfect tensor is an isometry. Due to the construction with the
underlying tessellation, it cannot have more input than output legs. The tensor network is an
isometry as we can apply the perfect tensors layer by layer, and we know that the product of
isometries again is an isometry. This isometry then can be viewed as the encoding transformation
of a quantum error-correcting code. The choice of tessellation, perfect tensor, and the shape
of the cutoff3 determine which code from the family of codes corresponding to the AdS toy
model is constructed. Tensor networks with uncontracted bulk legs have been considered before
[Vid08, Qi13]. What was new in the AdS toy model is that the states are protected against
erasure due to the implementation of quantum error correction.

The code of the AdS toy model comprises the following desirable properties: It provides an exactly
solvable toy model for the AdS/CFT correspondence with an exact prescription for the map from
bulk to boundary operators. AdS toy models are quantum error-correcting codes and, therefore,
realize the proposal from [ADH15] to characterize the AdS/CFT correspondence using quantum
error correction. The models also have bulk uniformity since the tensor networks are supported
on hyperbolic tessellations, which have no preferred direction if extended to an infinite system.

The holographic states constructed above also reproduce other important properties of the

3The concept of taking a cutoff of a tessellation is made precise in the construction of the holographic model in
de Sitter spacetime.
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AdS/CFT correspondence. One important duality between geometry and entanglement captured
by the AdS toy model is that the corresponding code reproduces the relation between the
entanglement entropy of a boundary and the corresponding minimal area in the bulk described
by the Ryu-Takayanagi formula [RT06]. In AdS, the minimal area can be obtained directly with
the minimal bulk geodesic, which encloses the boundary area. The boundary of this minimal
area is modeled with a certain cut through the tensor network where one of the disjoint sets of
perfect tensors is identified with minimal area.

4.3. Basics on quantum error correction

For many areas in quantum physics, quantum error correction (QEC) is a crucial concept to
reduce the effect of quantum noise and errors. In classical computing, error correction is usually
achieved through redundant bits and error-detection codes. However, the quantum realm presents
a more complex landscape. The qubits can not be copied directly due to the no-cloning theorem
[WZ82]. A continuum of different errors can occur on a single qubit, and the measuring process
disturbs a quantum state. Despite these difficulties, many protocols can successfully perform
quantum error correction. One of many other areas in physics where QEC is used is holographic
quantum gravity, where quantum error correction is a tool used for bulk reconstruction [PYHP15].

There exists a wide variation of QEC protocols which often are referred to as quantum error
correction codes (QECC). The fundamental idea is that logical qubits, abstract representations of
quantum information, are encoded into larger sets of physical qubits. This creates a redundancy
in the quantum information, making it possible to detect errors without disturbing the quantum
state. QEC only works up to certain bounds imposed by quantum error-correction conditions that
depend on the particular protocol and error operators. A more general introduction to quantum
computing can be found in [NC00].

A quantum error correction follows a systematic three-phase process: The initial phase involves
encoding, where the quantum information is encoded using a specific protocol that introduces
redundancy with additional physical qubits. In the second phase, syndrome measurement is
performed which identifies if errors have occurred. This phase requires additional ancillary qubits,
which are entangled with the logical qubits. The syndrome measurement can determine the type
and location of errors in the encoded quantum state. The number of detectable errors depends
on the protocol used. The final phase, recovery, involves error correction based on the syndrome
measurement.

One way to describe the protocols for encoding, syndrome measurement, and recovery is to use a
quantum circuit, which is comprised of quantum gates and unitary operations. These quantum
circuits can also be expressed in terms of one isometry.

For the encoding of the original state, this isometry can also be chosen to be a random isometry
as described in [FNA+20]. This is referred to as randomized quantum error correction. The
well-defined circuits from more traditional quantum error correction codes are replaced with
randomized encoding schemes. Random isometries are used to map the initial quantum state to
a higher-dimensional space. The use of random isometries simplifies the encoding process and
mitigates certain types of errors. The simplification of the encoding process does not translate
to the computational cost, but they provide a universal approach that can be applied to a wide
range of scenarios.
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4.4. Optimal cloning

In general, cloning refers to the process of creating identical copies of an arbitrary unknown
state. When translating this to quantum mechanics, we are faced with the difficulty that it
is fundamentally impossible to create a perfect copy of an arbitrary unknown quantum state
due to the no-cloning theorem, which was initially presented by Wootters and Zurek [WZ82].
It is, however, possible to make imperfect quantum copies of quantum states. This was first
shown by Bužek and Hillery in [BH96], where a transformation was introduced, which created
two approximate copies of an arbitrary input state of a two-level system. The transformation is
generally known as a quantum cloning machine and was shown to be optimal in the following
years [GM97, BDE+98]. A quantum cloning machine acts on an unknown quantum state and
generates identical, approximate copies of that state. As we know, perfect cloning is impossible
in quantum mechanics; we always refer to optimal cloning when talking about cloning channels
that map from the input state to the approximated copies.

Cloning machines have been generalized in [BH98], which allowed for higher dimensional systems
as input states. The cloning machine is an additional quantum system that interacts with the
unknown input state and the (approximate) copy, which is specified by the following conditions:

1. The state of the original system and its copy are identical after applying the cloning machine.

2. All pure states have to be copied equally well. The quality of the copy is specified by the
distance between the density operators of the input state and one output (note: this does
not depend on the choice of the measure).

3. To obtain an optimal result, the output copies should be as close to the initial state as
possible, which means that the distance from 2 has to be minimized.

This transformation is explicitly given for an d dimensional quantum system. The cloning
machine is prepared in the state |X⟩c with respect to the orthonormal basis {|xi⟩c} and the
original quantum state is |ψi⟩a. The cloning transformation acts as a unitary transformation
on the product space of the original quantum system |ψi⟩a, the quantum cloner |X⟩c and a
d-dimensional quantum system prepared as |0⟩b which will become the copy. The transformation
acts as follows (see [BH98, eq. (9)])

|ψi⟩a |0⟩b |X⟩c
U−→ α |ψi⟩a |ψi⟩b |xi⟩c + β

d∑

j ̸=i

(
|ψi⟩a |ψj⟩b + |ψj⟩a |ψi⟩b

)
|xj⟩c

The output states ρ̂(out)
a and ρ̂

(out)
b after applying the cloning transformation are identical and

take the following form (see [BH98, eq. (11)]):

ρ̂(out)
a =

d∑

i=1

|γi|2
(
α2 + (d− 2)β2

)
|ψi⟩ ⟨ψi|+

d∑

i,j=1
i ̸=j

γiγ
∗
j

(
2αβ + (d− 2)β2

)
|ψi⟩ ⟨ψj |+ β21

The condition α2 + 2(d − 1)β2 = 1 on the real coefficients α and β directly follows from the
unitarity of the transformation. The cloning transformation satisfies this relation and the required
optimality condition for the following choice of parameters:

α2 =
2

d+ 1
β2 =

1

2(d+ 1)
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With these parameters, the cloning channel takes the following form:

ρ̂(out)
a =

1

d+ 1




d∑

i=1

|γi|2
2 + d

2
|ψi⟩ ⟨ψi|+

d∑

i,j=1
i ̸=j

γiγ
∗
j

d− 2

d+ 1
|ψi⟩ ⟨ψj |+

1

2
1


 (4.3)

The independence of the copies from the input states is determined by the scaling factor s and
the following relation [BH98, eq. (8)]:

ρ̂
(out)
a,b = sρ̂(in)a +

1− s

d
1

Where the scaling factor determines the quality of the clones. For this transformation, the scaling
factor is

s = α2 + (d− 2)β2 =
2 + d

2(d+ 1)

With that, it is easy to see that the quality of the clones decreases with higher dimensional
quantum systems. For the two-dimensional cases, this reproduces known results [BH96, Wer98]
of s = 2

3 . For increasingly large dimensions, the scaling factor approaches a finite bound of s = 1
2

for infinite dimensional systems.

A further generalization of quantum cloning machines was introduced with the 1 → N cloning
channel suggested in [GM97], which was able to create N as opposed to two copies of the original
state. This 1 → N cloning channel can then be interpreted as an approximated N -fold tensor
product of the original state. Optimal cloning is of great interest in various areas of quantum
information, including quantum communication and quantum key distribution [Wol21] and cryp-
tography [DKSW07, SIGA05]. Achieving optimal cloning has practical implications for secure
communication protocols and understanding the limits of manipulating quantum information.
As a result, it has been subject to research in a variety of contexts: A generalization unifying
various cloning machines is published in [WSX+11], continuous-variable optimal cloning in infinite
dimensions has been studied in [CDPC05] and in the context of quantum information optimal
cloning of unitary transformations instead of qubits [CDP08] as well as relation between quantum
cloning and quantum state estimation [CY14] has been studied. Optimal cloning also has a
wide range of applications in quantum optics, such as in the optimal cloning of coherent states
presented in [BCI+01, LLCJ21]. A broad review on optimal cloning can be found in [FWJ+14].

Quantum information properties discussed in this chapter will provide a foundation for the
holographic toy model we develop in chapter 6. Later in this thesis, optimal cloning channels will
be relevant when studying the channel describing the expansion of de Sitter in chapter 8. There,
we will identify properties of an optimal cloning channel in the channel we derive to characterize
how a local observer experiences the global expansion of spacetime.
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C h a p t e r 5

Symmetry groups of de Sitter
spacetime

In this chapter, we discuss the symmetries of de Sitter spacetime. Symmetries are isometric
transformations mapping the space to itself, which leaves the space invariant. The ultimate
goal is to apply isometric transformations to the holographic model, which we develop in the
following chapter. Here, we focus on understanding isometries on the Hilbert spaces associated
with the temporal past and future boundaries of dS2 which we refer to as Hin and Hout. To
make the isometry transformations compatible with the holographic toy model, we consider the
discretization of the isometry actions at the de Sitter boundaries. This chapter is a combination of
a review of well-known symmetry properties of de Sitter spacetime and a more detailed elaboration
on the results from [NO22]. We start with a general introduction of the de Sitter symmetry group
SO(2, 1) and null geodesics in section 5.1. In section 5.2, we introduce an isomorphism to relate
the de Sitter symmetry group with the modular group PSL(2,R). Next, we identify the modular
group with the Möbius group acting on the de Sitter future boundary in section 5.3. The rest of
the chapter focuses on the discretization of the isometry group, which starts in section 5.4. Next,
we introduce Thompson’s group F and T , which are groups of piecewise linear homeomorphisms
in section 5.5. A subgroup of Thompson’s group T is identified with the discretized isometry
group PSL(2,Z) in section 5.6. We relate this discussion to the de Sitter past boundary in section
5.7. The chapter is concluded by a discussion of the asymptotic symmetry group in section 5.8.

5.1. de Sitter symmetry group and null geodesics

The de Sitter symmetry group SO(1, 2) whose isometries are generated by the Killing fields derived
in 2.3. We can also derive the isometries of dS2 by considering its embedding in three-dimensional
Minkowski spacetime R1,2. We know that the transformations generated by the Lorentz group
O ∈ O(1, 2) preserve the three-dimensional Minkowski metric [Nom82]:

η = OT ηO.

The transformations O ∈ O(1, 2) also induce a symmetry transformation in dS2 because it
preserves the hyperboloid condition (its matrix form can be found in eq. (2.14)) of the embedding
coordinates:

xT ηx = xTOT ηOx = (Ox)T ηOx = yT ηy = 1.

The action of isometries generated by the Lorentz group SO(1, 2) can also be specified in terms
of its action on the null geodesics in de Sitter. In section 2.4.1, null geodesics are defined with
respect to the parameters u and v. Null geodesics allow us to characterize the isometry action of
every point in dS2 for the following reason: Every point in de Sitter is uniquely determined by
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the intersection of one left-moving and one right-moving geodesic. In turn, geodesics are specified
by a point on the boundary when remembering the corresponding direction of the geodesic. An
isometry action applied to the boundary accordingly can fully specify the isometry action in the
entire bulk of the spacetime.

To simplify the discussion below, we restrict our attention to the subgroup SO(1, 2) of proper
isometries preserving orientation, which also is called proper Lorentz group (or indefinite special
orthogonal group in a more mathematical setting).

5.2. Isomorphism between proper Lorentz group and special linear
group

In this section, we will describe the relation between the de Sitter symmetry group SO(1, 2) and
the special linear group SL(2,R). The special linear group SL(2,R) is the group of all 2 × 2
matrices over the real numbers R with determinant 1, with the group operations being matrix
multiplication and matrix inversion. We characterize the relation between the proper Lorentz
group and the special linear group with a sporadic 2-to-1 homomorphism following [Gar15].1 We
characterize an element from the special linear group as

g =

(
a b
c d

)
, g ∈ SL(2,R),

where the parameters satisfy ad− bc = 1. We map this to the isometry group SO(1, 2) via

h : SL(2,R) → SO(1, 2) (5.1)

This homeomorphism h characterises the relation between the groups SL(2,R) and SO(1, 2). For
defining this homomorphism, we introduce an auxiliary vector space V defined by the space of
real-valued 2× 2 matrices with vanishing trace and the symmetric bilinear form

⟨x, y⟩ = 1

2
tr(xy) with x, y ∈ V.

This vector space is equivalent to the Minkowski spacetime R1+2 whose metric has the matrix
representation η = diag(−1, 1, 1) if we choose the basis vectors of V to be the following Pauli-like
matrices: e1 = iσy, e2 = σx and e3 = σz. This, as well as an explicit matrix representation of
h(g), is explicitly detailed in appendix C.1.

The action of SL(2,R) on the vector space V for an element x ∈ V is defined by

V : V → V, x 7→ g · x = gxg−1

, which is preserved by the bilinear form since the trace is cyclic and the product of g with its
inverse yields the identity:

⟨x, y⟩ = 1

2
tr(xy) 7→ 1

2
tr
(
gxg−1gyg−1

)
= ⟨g · x, g · y⟩ = ⟨x, y⟩.

Every x ∈ V can be expressed as a linear combination of the basis vectors e1, e2 and e3. The
explicit matrix representation can be derived by applying the action V on the basis elements as

ej 7→ gejg
−1 ≡ h1j e1 + h2j e2 + h3j e3

1Note that the difference between SO(1, 2) and SO(2, 1) in [Gar15] is just a change of the metric signature.
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(the explicit derivation can be found in the appendix). As a result, the special linear group
SL(2,R) is a double cover of the special orthogonal group SO(1, 2) through the homomorphism
h : SL(2,R) → SO(1, 2).

The kernel of this action is characterized as follows:

kerV = {g ∈ SL(2,R) : g · x = x} = {1,−1}

This condition is equivalent to gxg−1 = x, which is the set of all matrices g commuting with all
element x ∈ V which is only true for g = ±1. This way, we have a double covering, which means
that this correspondence is 2 to 1: the element g′ = −g yields the same transformation as g. To
compensate for this, we take the set difference with the elements of the kernel. In this way, the
projective special linear group

PSL(2,R) = SL(2,R) \ {±I} (5.2)

emerges as the natural subgroup to identify with the isometries of dS.

In order to analyze the action of the isometry group SO(1, 2) in dS, we use that an isometry is
completely specified by its action on the null geodesics. The action on a null geodesic can be
obtained by applying the action imposed by the homeomorphism h to a null geodesic x(s) (which
is explicitly done in appendix C.2):

x(s) =




s
u+ vs
v − us


 h−→ x′(s′) = h(g)x(s) =




s′

u′ + v′s′

v′ − uss′


 =



x′0
x′1
x′2




With the asymptotic limit of large times (s′ → ∞), we obtain the isometry action imposed by
the homeomorphism h on the temporal future boundary:

x′(s)

s′
s′→∞−−−−→




1
v′

−us




where the parameter u′ and v′ defining the transformed geodesic are derived in appendix C.2.

5.3. Identify PSL(2,R) with the Möbius group

In n+ 1 dimensional de Sitter spacetime, the temporal boundaries are n-spheres, which reduce to
circles in the 1 + 1 dimensional case. Accordingly, it can be helpful to describe the symmetry
action of an isometry O on the boundary using the Möbius transformation, which is a linear
fractional transformation of the complex plane that maps straight lines to straight lines and circles
to circles. In section 5.2, we argued that PSL(2,R) is a natural group that can be identified with
the isometries of dS. In this section, we will elaborate on the identification between elements of
PSL(2,R) and elements of the Möbius group. The Möbius transformation is given by

f : C → C, z 7→ αz + β

γz + δ
, (5.3)

where α, β, γ and δ are complex coefficients satisfying the condition αδ − βγ = 1. We will
focus on real Möbius transformations where the domain and range, as well as the parameters,
are real numbers. The set of all Möbius transformations forms the Möbius group as both the
composition of two Möbius transformations as well as the inverse of a Möbius transformation
yields a Möbius transformation. The group of real Möbius transformations can be identified with
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Figure 18.: Schematic depiction of Cayley transformation

the group PSL(2,R). It can accordingly be identified with the action of SO(1, 2) on the temporal
boundaries I±. In the following, we will elaborate on this.

We can identify a temporal boundary of de Sitter spacetime with a circle which can be rescaled
to the unit circle S1. This can be understood as the boundary of the unit disk

D = {z ∈ C : |z| ≤ 1}

in the complex plane. The Cayley transform is a conformal transformation that maps points from
the upper half of the complex plane H+

H+ = {z ∈ C : Im(z) > 0}

to the unit disk D. The following function describes the Cayley transform:

w : H+ →D, z 7→ i
z − i

z + i
(5.4)

w−1 : D →H+, z 7→ z + i

1 + iz
.

For the boundary case, this reduces to a map from the real numbers to the unit circle w : R →
S1 = ∂D as depicted in figure 18.

We now use the Cayley transform to describe the action of a boundary point of de Sitter spacetime.
The boundary action is obtained by identifying a de Sitter boundary point with a complex number

z = u+ iv where u, v ∈ R.

with the condition u2 + v2 = 1, we ensure that it lies on a circle embedded in the complex plane.
Using the Cayley transform and its inverse, we can define the action induced by the Möbius
transformation on the temporal boundary I+ as

t = w ◦ f ◦ w−1 : D → H+ → H+ → D.

The induced image of a point z on the temporal boundary under f is thus

z′ = t(z) = u′ + iv′ ⇒ u′ = Re p(z)
v′ = Im p(z)

.

An explicit computation yields:

u′ =
4αδu+ 2βδ(1− v)− 2u+ 2αγ(v + 1)

2u(αβ + γδ) + (α2 + γ2)(v + 1)− (β2 + δ2)(v − 1)

60



5.4. Discretization of the isometry group: PSL(2,Z)

v′ =
4αβu+ 2α2(v + 1)− 2β2(v − 1)

2u(αβ + γδ) + (α2 + γ2)(v + 1)− (β2 + δ)2(v − 1)
− 1

These transformed parameters are identical to the parameters of the action of null geodesics on
the temporal boundary derived in appendix C.1 using the matrix representation.

5.4. Discretization of the isometry group: PSL(2,Z)

In the next chapter, we will introduce a tessellation for 1 + 1 dimensional de Sitter spacetime.
One fundamental principle to selecting a tessellation is the aim to preserve as much of the
isometry group of the spacetime to be tessellated as possible. General isometries are, in general,
incompatible with a grid because they send points from the tessellation to points lying outside the
tessellation. A natural thing to do is to look at the discretized version of the isometry group. The
discretized isometry group is a subgroup of the isometry group compatible with the tessellation in
the sense that it leaves the set of boundary points invariant. In the following, we will consider
the group PSL(2,R) characterized in the previous sections as a subgroup of the isometry group:

PSL(2,Z) ≃ PSL(2,Q)

Both groups are the groups generated by Möbius transformations where the parameters are
integer in PSL(2,Z) and rational in PSL(2,Q). It is easy to see that these groups are equivalent:

f(z) =
a1
a2
z + b1

b2
c1
c2
z + d1

d2

=
a1b2c2d2 z + a2b1c2d2
a2b2c1d2z + a2b2c2d1

.

Here the parameters a1, a2, b1, b2, c1, c2, d1 and d2 as well as their product are integers. Thus
any transformation in PSL(2,Q) is equivalent to a corresponding transformation in PSL(2,Z).
This justifies only considering PSL(2,Z) as the group of isometries for the rest of this section.
The projective special linear group PSL(2,Z) has the following presentation:

⟨a, b|a2 = b3 = 1⟩,

The image of the following 2× 2 matrices

a =

(
0 −1
1 0

)
and b =

(
−1 1
−1 0

)
. (5.6)

can be chosen as these generators when considering the equivalence relation from eq. (5.2).

5.5. Thompson’s group F and T

Both Thompson’s group F and T are groups of piecewise linear homeomorphisms. They are
finitely presented as infinite groups, where T is a simple group. The review in this chapter
is largely based on [CFP96] as well as the theses [Bel04] and [Sti19]. The group elements are
characterized as follows:

Definition 5.1 (Thompson’s group F )
Thompson’s group F is the group of piecewise linear homeomorphisms on the unit interval. The
homeomorphisms are differentiable except at finitely many points which lie at dyadic rational
numbers. When the functions are differentiable, the derivatives are powers of two.
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Figure 19.: Graphs of Thompson group elements A, B and C which are generators
of Thompson’s group F and T

Thompson’s group T , which is the circular version of Thompson’s group F, is comprised of
homeomorphisms of the circle. Elements of Thompson’s group F can directly be identified with
elements of Thompson’s group T via a map from the unit interval to the unit circle where the
endpoints are identified.

Definition 5.2 (Thompson’s group T )
Thompson’s group T is the group of piecewise linear homeomorphisms from S1 to itself (which
can be represented as the unit interval with the endpoints identified). The homeomorphisms are
differentiable except at finitely many points which lie at dyadic rational numbers. When the
functions are differentiable, the derivatives are powers of two.

The dyadic rational numbers are defined as

Z1/2 =
{ a

2n
: a ∈ Z and n ∈ Z+

}

We denote dyadic rational numbers restricted to the unit interval as Z[0,1]
1/2 . It is shown in [CFP96]

that Thompson’s groups T is generated with the elements A(x), B(x), and C(x) which have to
satisfy the following relations (with [x, y] = xyx−1y−1):

1)
[
AB−1, A−1BA

]
= 1

2)
[
AB−1, (A−1)2BA2

]
= 1

3) C = B(A−1CB)

4) (A−1CB)(A−1BA) = B((A−1)2CB2)

5) CA = (A−1CB)2

6) C3 = 1

The graphs of the generators A, B, and C are depicted in figure 19. For a presentation of
Thompson’s group F, the first two conditions suffice.

The elements of Thompson’s group can be understood as dyadic rearrangements, which are
mappings between dyadic subdivitions of the unit interval or circle. The fundamental concept is
identical for elements of Thompson’s group F, and T. We will illustrate the concept of dyadic
subdivisions and rearrangements for unit intervals. A dyadic subdivision of a unit interval is
obtained by taking the interval [0, 1] and applying the only allowed operation repeatedly: cut the
interval in half and then again cut (some) of the resulting intervals in half. One example of a
dyadic subdivision is
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1
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1
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which can be mapped to a different dyadic subdivision, such as

7
8

1
2

3
4

5
8

with a dyadic rearrangement.

There are three different ways to define this dyadic rearrangement, which will be introduced
in this chapter: The piecewise linear function as depicted in figure 19 for A(x), B and C(x),
rectangle diagrams and tree diagrams. We will illustrate these for the Thompson group elements
S(x) = (C−1 ◦ A−1)(x) and C, which generate a subgroup of Thompson’s group T which is
equivalent to the group PSL(2,Z) as shown in [Fos10] and further discussed in the next section.

In a rectangle diagram, we identify the top of the rectangle with the initial dyadic subdivision,
which is the domain of the function, and the bottom of the rectangle with the final subdivision
which is identified to the functions range [CFP96].2 A straight line indicates which point is
mapped to which element of the dyadic subdivision. The areas in between are interpolated
linearly. The use of rectangle diagrams makes it easy to look at compositions of functions, which
are represented as stacked rectangle diagrams read from top to bottom. The elements S and C
are represented by the following rectangle diagrams:

S(x) =

C(x) =

For the composition of several functions we can stack different rectangle diagrams. This way, we
can see that S can be generated with the inverses of Thompson group elements A and C:

S(x) =C−1(A−1(x))

=

=

For the representation with tree diagrams , we need to associate a tree to both the initial and final
subdivision [Bel04, Sti19]. For this, we start with the standard dyadic intervals from a binary
tree:

2Note, that the direction of time is different here with respect to the rest of the thesis (usually we read diagrams
from bottom to top). We stick to this, nevertheless, to follow the standard notation in the literature.
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[0, 1]

[0, 12 ] [ 12 , 1]

[0, 14 ] [ 14 ,
1
2 ] [ 12 ,

3
4 ] [ 34 , 1]

. . . . . . . . . . . .

Dyadic subdivisions then correspond to finite rooted subtrees of the infinite binary tree where each
leaf of the tree represents an interval of the subdivision. To describe a dyadic rearrangement that
corresponds to an element of Thompson’s group F, we need a pair of finite binary trees, which we
refer to as a pairs of tree diagrams or fraction of binary trees . The tree at the top represents the
initial and the tree at the bottom the final subdivision corresponding to a Thompson’s group
element. Both trees must have the same number of leaves. For a description of elements of
Thompson’s group T , we need to associate the trees with a circle. The resulting circular trees are
usually referred to as annular binary trees where the circle at one of the leaves indicates which
leaves belong together according to the cyclic permutation. The tree diagrams of the elements
S(x) and C(x) are depicted below:

S(x) = C(x) =

We denote two pairs of tree diagrams to be equivalent if one can be generated from the other by
removing a pair of opposite carets as depicted in bold below:

∼

The fractions of binary trees can be extended or reduced by adding or removing opposing carets
to both trees in the fraction. This way, every equivalence class of fractions of binary trees has a
reduced fraction representative, where no pairs of carets can be removed without changing the
equivalence class.

Thompson’s group is of high relevance to this problem because its elements can be used to
approximate diffeomorphisms on the circle arbitrarily well [BS14, Sti18, Zhu07]. A diffeomorphism
on the circle diff(S1) is a bijective map from the circle to itself where both the function and its
inverse are continuously differentiable. Even though Thompson’s group T cannot be identified
with diff+(S1) directly as its elements are not differentiable, there always exists an element g ∈ T
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Figure 20.: Graphs of Thompson group elements S and C which are generators of
PSL(2,Z)

which approximates an arbitrary diffeomorphism f ∈ diff+(S1) arbitrarily well such that the
following holds with arbitrary ε > 0:

||f − g|| < ε

As a result, Thompson’s group T is considered to be the discretized analog of diff(S1) as emphasized
by Jones [Jon14].

5.6. Identify PSL(2,Z) with a subgroup of Thompson’s group T

Thompson’s group T has been studied to create algebraic quantum field theories on the circle
[Jon14] as they can be considered to be the discretized analog of the diffeomorphisms diff(S1) on
the circle. Thompson’s group T proved to be an important tool in characterizing the AdS/CFT
correspondence [OS19, OS20]. Following these proposals, we introduce Thompson’s group in the
de Sitter context.

We can identify PSL(2,Z) with a subgroup of Thompson’s group T by identifying the generators
of PSL(2,Z) with elements of Thompson’s group: the two piecewise functions S(x) and C(x)
depicted in figure 20:

S(x) =

{
x+ 1

2 , x <
1
2

x− 1
2 ,

1
2 ≤ x

C(x) =





1
2 x+ 3

4 , x ≤ 1
2

2x− 1, 1
2 ≤ x ≤ 3

4

x− 1
4 ,

3
4 ≤ x

(5.7)

The functions S and C are elements of Thompson’s group F . It is straightforward to see that
the functions S(x) and C(x) satisfy the relations the generators in the presentation of PSL(2,Z)
have to satisfy using the rectangle diagrams:

(S ◦ S)(x) =

= = x
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(C ◦ C ◦ C)(x) =

= = x

As a result, the generators S(x) and C(x) generate a subgroup of Thompson’s group T , which is
isomorphic to PSL(2,Z).

We want to directly identify the generators of PSL(2,Z) as 2 × 2 matrices as introduced in
eq. (5.6) with the elements of Thompson’s group T introduced in eq. (5.7). We achieve this by
identifying both expressions with the Möbius functions from eq. (5.3). First, we directly identify
the parameter from the 2× 2 matrix and the Möbius function as follows:

g =

(
α β
γ δ

)
∈ SL(2,Z) ⇔ f(x) =

αx+ β

γx+ δ

Here, we consider the parameters α, β, γ, and δ to be integer numbers in order to stay in the
discretized regime of PSL(2,Z).

The remaining task is to relate these Möbius functions to the elements of Thompson’s group. To
do this, we need to perform two steps: We need to map the rational numbers from the Möbius
function to the unit interval and then map the resulting points to dyadic rational numbers.

In the remainder of this section, we will look at the Möbius functions a(x) and b(x) associated
with the generators a and b given in eq. (5.6) as 2× 2 matrices:

a(x) =− 1

x

b(x) =− 1− x

x

Mapping the rational numbers to the dyadic rational numbers is achieved by applying the
Minkowski question mark function ?(x) — a homeomorphism of S1, which is introduced in more
detail in [VPB98]. First, we look at the unit interval, where the question-mark function can be
defined recursively with the following base cases:

?(0) = 0 =
0

1
and ?(1) = 1 =

1

1
.

This definition is recursively extended to all rational numbers p+r
q+s in the unit interval which

satisfy |ps− qr| = 1 following the rule

?

(
p+ r

q + s

)
=

1

2
?

(
p

q

)
+

1

2
?
(r
s

)
. (5.8)

This defines a correspondence between the rational numbers on the unit interval and the dyadic
rational numbers, which is illustrated for the first generations:
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Figure 21.: Different symmetry transformations (?◦f ◦?−1)(x) with Möbius functions
f , which act on the dyadic rational numbers of the real axis.
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The Minkowski question mark function can be extended to Q as

?(x+ 1) =?(x) + 1 (5.9)

In order to map the Möbius function to the dyadic rational numbers, we need to apply the
Minkowski question mark function ? and its inverse to the Möbius function as follows:

f 1
2
=? ◦ f◦?−1 : Z1/2 → Q → Z1/2

The easiest way to realize this is to apply the Minkowski question mark function both to the
domain and the range of the Möbius transformation to avoid working with the inverse Minkowski
question mark function. Mapping the domain of the function to the dyadic rational numbers
with ? effectively applies the inverse Minkowski question mark function to the dyadic rational
numbers:

Q

Z1/2
?

Qf Z1/2
?

? ◦ f◦?−1

The result is depicted in figure 21. Mapping the dyadic rational numbers to the unit interval is
achieved with the function ψ. First, we define ψ for the integer input values:

ψZ : Z → Z[0,1]
1/2 , n 7→





1

2|n|+1
, n < 0

1

2
, n = 0

2n+1 − 1

2n+1
, n > 0,
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Figure 22.: depiction of the function ψ(x) which maps dyadic rational numbers from
the real axis to the unit interval and its inverse.
(a) definition of the mapping from integer to rational numbers
(b) ψ(x) as the generalization to a continuous piecewise linear function
(c) inverse function ψ−1(x) mapping the unit interval to Q

where we refer to the dyadic rational numbers on the unit interval with Z[0,1]
1/2 . The definition of

the function ψ(x) can easily be generalized to all dyadic rational numbers by requiring that the
function interpolates linearly between the points defined by ψZ:

ψ : Z1/2 → Z[0,1]
1/2 , x→ ψZ(⌊x⌋) +

ψZ(⌈x⌉)− ψZ(⌊x⌋)
⌈x⌉ − ⌊x⌋ (x− ⌊x⌋) (5.10)

where ⌈x⌉ is the smallest integer number greater and ⌊x⌋ is the greatest integer numbers smaller
than x. The function ψ(x) resulting from this definition is plotted in figure 22.

In order to identify the Möbius transformation with the elements of Thompson’s group, we need
to map the Möbius function at dyadic rational numbers defined by (? ◦ f◦?−1)(x) to the dyadic
rational numbers on the unit interval using the piecewise-linear function ψ. The resulting function
is

(ψ◦? ◦ f◦?−1 ◦ ψ−1)(x).

The result is plotted in figure 23. The transformations considered in this section correspond
precisely to the generators of PSL(2,Z). By composing these two functions (and their inverses),
we hence obtain a representation of the action of PSL(2,Z) on the circle via piecewise-linear
functions compatible with the dyadic rationals.
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Figure 23.: Symmetry transformations (? ◦ f ◦ ?−1)(x) for different Möbius functions
f mapped to the unit interval using ψ(x): (a) f(x) = −1/x and (b)
f(x) = (x− 1)/x.
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Figure 24.: Symmetry action f− on the past boundary I− of dS2

5.7. Action on past boundary

The action of an isometry on the (discretized) future boundary I+ of de Sitter spacetime is given
by elements of the group PSL(2,Z) as discussed in depth in the previous sections. We can use
this to immediately obtain an action on the past boundary I−. In order to do so, we identify a
point x in I− with a point x+ ∈ I+ by transporting it along a null geodesic.3 The symmetry
action is applied to x+ and the result transported back to I− via a null geodesic. This action is
well defined because null geodesics traveling in either direction between I+ and I− transport a
past boundary point to the same future boundary point. Explicitly, the maps θ±π : I∓ → I±

transporting points between the temporal boundaries are given by θ±π(x) = x± π. Hence, we
obtain for an isometry f+ : I+ → I+ on the future boundary the induced action on the past
boundary I−, depicted in figure 24, via

f− : I− → I−, x→ (θ−π ◦ f+ ◦ θπ)(x)

When we identify the boundary with the unit interval, the maps θ±θ are precisely given by
Thompson’s group element S(x). Accordingly, the action on the de Sitter past boundary rescaled
to a unit interval is given by

f− : I−
[0,1] → I−

[0,1], x 7→ (S ◦ f+ ◦ S)(x) (5.11)

5.8. Asymptotic symmetry group

Here, we describe how to extend the action of PSL(2,Z) described above to an action of Thomp-
son’s group T . Since Thompson’s group T is the discretized analog to the diffeomorphisms on the
circle, we propose that it should be thought of as the discretized symmetry group of asymptotic
de Sitter spacetime.

The definition of an asymptotic symmetry of a spacetime, such as dS2, is nontrivial. Heuristically,
we can interpret asymptotic symmetries as maps that preserve the intrinsic geometric structure
of the asymptotic spacetime. For a definition, we broadly follow [Jäg08, Wal84] who provide a
more detailed discussion. As we use their description merely as a motivation for our definition,

3As the points are transported along the null geodesics from the past to the future infinity it gets transported to
the antipodal point of space and we get the same result for both left- and right-moving geodesics.
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the reader is referred to the literature for more details.

Diffeomorphisms determine one important property of asymptotic symmetries of nearly dS2

ψ : I± → I±

of the boundaries, which are conformal with respect to the induced boundary metric hab. As
detailed in [Jäg08], the conformality condition requires that the induced boundary metric only
changes up to a conformal factor under the diffeomorphism4:

ψ∗hab = Ω2hab

This condition is trivial in our case since the boundary manifolds are one-dimensional. Accordingly,
we understand the asymptotic symmetries as diffeomorphisms of the past and future boundaries.
We find the group of asymptotic symmetries by taking the set difference with PSL(2,Z), which is
the group of isometries:

diff(S1)× diff(S1)/PSL(2,R)

The isometries induced by PSL(2,Z) leave the metric invariant but act non-trivially on the
boundary, which is why we obtained the asymptotic symmetries that are truly nontrivial.

The main result of this chapter is that we can use the group PSL(2,Z) to describe the discretized
isometry group of the boundaries in de Sitter spacetime. The modular group PSL(2,Z) can be
identified with a subgroup of Thompson’s group T . This will be of importance in chapter 6,
where we use results from this chapter to derive isometry transformations of the holographic toy
model of de Sitter.

4Here ψ∗ denotes, that this is the pullback by ψ.
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C h a p t e r 6

Holographic Network for de Sitter
spacetime

Holographic models have proven very valuable in gaining more insights into the quantum theory
of gravity in the AdS case. The fundamental idea is that the information about spacetime
can be encoded in its lower-dimensional boundary, which is often referred to as the bulk-
boundary correspondence. There are profound reasons to believe that holography can be a
tool to also gain insights into some principles in quantum gravity in a more general setting
[Raa16]. In the literature, this is known as the holographic principle, which was first discussed in
[Bou02b, Hoo93, Sus95] and further investigated in the literature in a wide variety of settings
such as [BKSS22, CD18, GGK+22, Sal19, Yan17]. In the setting of anti-de Sitter spacetime,
toy models of quantum gravity are well established, such as the AdS model described in 4.2.
Our goal in this chapter is to further investigate toy models of holographic formulations in the
context of de Sitter. We want to transfer some of the ideas and properties of the known AdS
toy model to the de Sitter setting to explore its holographic formulations further. The approach
which is presented in this chapter is to develop a tensor network that is associated with a de
Sitter tessellation, which we interpret as a holographic toy model for two-dimensional de Sitter
spacetime. It should be noted, however, that the model we construct here differs drastically from
the AdS model reviewed in section 4.2 because de-Sitter spacetime has two temporal boundaries,
as opposed to anti-de Sitter spacetime, which only has one temporal boundary. The fundamental
difference in boundaries induces profound changes in the physical setup. It is the main reason
the toy model we constructed does not directly fit the definition of either a holographic code or
state, which is why we tentatively denote it as a holographic network. We ultimately interpret the
network as the propagator from the past boundary of de Sitter spacetime to its future boundary.
The construction of the holographic network presented in this chapter largely follows [NO22].

First, we discuss the causal structure of de Sitter spacetime in section 6.1 and introduce causal
diamonds. Next, we construct a tessellation in section 6.2, which provides the foundation of
our toy model. In section 6.3, we construct the holographic model as a tensor network and
associate corresponding Hilbert spaces. The construction of the holographic model is generalized
in section 6.4 for different curvatures of de Sitter spacetime. In section 6.5, we consider isometry
transformations of the holographic model and check the invariance of the vacuum state. The
chapter is concluded in section 6.6 by a short discussion of the manipulation of the spacetime
achieved by applying transformations, which are discrete approximations of diffeomorphisms but
no isometry transformations.
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Figure 25.: A causal diamond is the intersection of the causal future of point p and
the causal past of point q. It encloses all non-spacelike worldlines from p
to q where one of these is depicted here exemplary.

6.1. Causal structure and causal diamonds

Causality and the accessibility of information are important physical properties of any spacetime.
In this section, we will discuss causality relations in de Sitter spacetime and introduce a special
subset of de Sitter spacetime we refer to as causal diamonds. The relevance of such a causal
diamond can be seen when considering an experiment moving along a worldline that starts at a
spacetime location p and terminates at location q. The subset of spacetime, which both can be
influenced by an experiment starting at p and influence an experiment ending at q, will from now
on be referred to as a causal diamond. A more detailed review can be found in [HE75]. In a more
mathematical sense, this can be translated to two restrictions a point has to fulfill to lie inside a
causal diamond spanned by the two points p and q. A point lies in the causal diamond C(p, q) if

1. The point lies in the causal future J +(p) of point p.

2. The point lies in the causal past J −(q) of point q.

With this, a causal diamond is defined only using the endpoints p and q of the experiment without
knowing anything about the experiment’s worldline:

C(p, q) = J +(p) ∩ J −(q).

This causal diamond determines everything an observer following the experiment can do and
observe and comprises all possible worldlines between the points p and q. A graphical illustration
of this can be found in figure 25. Such a causal diamond encloses all continuous non-spacelike
world lines from spacetime location p to q.

The area causally related to a local experiment in de Sitter spacetime can be maximized when
sending its start and endpoint to the temporal infinities:

p→ x− ∈ I− q → x+ ∈ I+.

Such a causal diamond is of maximal size if the defining points have the same spatial coordinate
(in this case, θ). These causal diamonds are a central building block in section 6.2, where a
tessellation for a two-dimensional de Sitter spacetime is constructed. The static patches we
discussed when introducing static coordinates (see definition 2.3) are also causal diamonds of
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maximal size.

It is noteworthy that even with a causal diamond of maximal size, it is impossible to cover the
entirety of de Sitter spacetime with just one causal diamond. Consequently, no single observer
can acquire information about any arbitrary point in de Sitter spacetime, even in principle! This
is different in flat Minkowski spacetime, where any local experiment, in principle, is causally
connected with any (spatial) point within the spacetime.

Accordingly, everything an observer can do and observe is determined by just these two points x±
lying within the temporal boundaries which define the causal diamond C(x−, x+). The conclusion
is that the observables of quantum gravity in dS live on the temporal boundaries I±. The fact
that observables live on the temporal boundaries marks a striking difference from the AdS case,
where the observables live on the spatial boundary, which we can identify with observables of a
conformal field theory on the holographic boundary. This stark contrast makes reasoning about
quantum gravity in dS very different from its AdS counterpart.

One crucial feature of the causal structure of de Sitter spacetime manifests in the fact that there
is no globally timelike Killing field in de Sitter spacetime (we derived all allowed Killing fields of
dS2 in section 2.3), which is why there is no global generator of time translation symmetry. It was
already emphasized by Witten [Wit01] that there is no global conserved positive energy quantity
in de Sitter. The result is that it is impossible to define a global quantum gravity Hamilton
operator, which generates a unitary time evolution. Not having a globally defined Hamilton
operator is the main reason we focus on the quantum mechanics of the boundary of de Sitter
spacetime. The model we construct is defined on a Hilbert space attached to temporal past
infinity and describes the (non-unitary) evolution to the temporal future infinity. Working on the
boundaries is a key feature of a holographic model. As a result, our model gives us only indirect
insight into events within de Sitter spacetime at finite times, which must be holographically
reconstructed.

6.2. A tessellation for de Sitter spacetime

The foundation of the holographic network we construct in the remaining chapter is a tessellation.
A tessellation breaks the spacetime up into smaller pieces, while a good tessellation preserves the
isometry group of the spacetime as much as possible. Note that, unlike uniform tessellations of
the Euclidean or hyperbolic space as introduced in section 4.2.1, this tessellation is not invariant
under a discrete subgroup of the group of spacetime isometries. In particular, not all the tiles of
the tessellation are identical, and we have two distinguished tiles we will refer to as fundamental
regions. We will work with the tessellation proposed by Aicardi [Aic07b, Aic07a] and describe its
construction in this section. The tessellation is comprised of causal diamonds whose endpoints lie
on the temporal infinities. These points defining the causal diamonds define the entire tessellation.
The set of all these endpoints defining the tessellation is identified with the circle S1 ⊂ C. Due to
the construction rules of the tessellation, tiles will only be defined on rational numbers on the
boundary, which is why we can identify the boundary of the tessellation with Q. To provide a
visual representation, figure 26 depicts the resulting tessellation.

The tessellation is defined recursively, starting with two distinguished tiles defining the fundamental
regions and adding the other tiles recursively. The fundamental tiles are distinguished in the
sense that these are the only tiles that extend all the way between the temporal boundaries. Also,
the two fundamental tiles cover the entire space at the bottleneck of the spacetime (t = 0). We
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Figure 26.: Recursive construction of a Farey tessellation of dS2 with causal diamonds.

define the two fundamental tiles, which we denote D0
1 and D0

2 as follows:

D0
1 = C

((
π
2 + γ,−π

2

)
,
(
π
2 + γ, π2

))

D0
2 = C

((
3π
2 + γ,−π

2

)
,
(
3π
2 + γ, π2

)) (6.1)

The endpoints of these two fundamental regions lie on the temporal infinities I+ and I− and
have to be on opposite spatial parts of the spacetime. Due to de Sitter’s symmetry properties,
there is no preferred position for the fundamental regions, which is captured in the parameter γ
(which can also be absorbed by a re-definition of the coordinates). For the rest of the construction,
we will consider the case γ = 0. As all causal diamonds are defined by one spatial coordinate
(i.e., the angle θ) and have one defining point on I± respectively, we will focus on the spatial
coordinate for the rest of the construction.

We use the Cayley transform to identify the temporal boundaries (which are circles S1) with the
rational numbers. The Cayley transform is a conformal transformation that maps points from
the upper half of the complex plane H+ to the unit disk D, which was introduced in eq. (5.4).
For the boundary case, this reduces to a map from the axis of the rational numbers to the unit
circle w : Q ∪ {±∞} → S1 = ∂D.

With the argument function, we can map the elements of the circle to the interval [0, 2π), which
we identify with the θ coordinate. This way, we can express the fundamental regions defined in
eq. (6.1) as follows:

D0
1 =C

[(
arg
(
w(±1

0)
)
,−π

2

)
,
(
arg
(
w(±1

0)
)
, π2
)]

D0
2 =C

[(
arg
(
w(01)

)
,−π

2

)
,
(
arg
(
w(01)

)
, π2
)]

The following generations of tiles are defined recursively by adding in more tiles. The position of
the new tiles is generated with the Farey mediant of the points defining the tiles of the previous
tessellations. The Farey mediant is an operation to generate all rational numbers, which is defined
as

p

q
⊕ r

s
=
p+ r

q + s
.

The rational numbers induce the new boundary points on S1 via the Cayley transformation.
To illustrate the construction of new generations of tiles in the tessellation, we will describe
this construction in detail for the first generation of tiles; this procedure is similar for higher
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generations. The existing tiles are associated with the rational numbers 0/1 and ±1/0, which are
taken as base cases to construct the new points via the Farey mediant:

− 1

0
⊕ 0

1
= −1

1
and

0

1
⊕ 1

0
=

1

1
.

With the Cayley transform, we can map these rational numbers to points on the circle (or to the
interval corresponding to the angle θ). These points define the new causal diamonds necessary to
construct the tiles of the first generation:

C1
1 = C

((
arg(w(1)),−π

2

)
,
(
arg(w(1)), π2

))
= C

((
3π
2 ,−π

2

)
,
(
3π
2 ,

π
2

))

C1
2 = C

((
arg(w(−1)),−π

2

)
,
(
arg(w(−1)), π2

))
= C

((
π
2 ,−π

2

)
,
(
π
2 ,

π
2

))

The tiles for the first generation are defined as the set difference from the causal diamonds C1
1

and C1
2 defined above and the tiles of previous generations:

D1 =
(
C1
1 ∪ C1

2

)
\
(
D0

1 ∪D0
2

)
= D1

1 ∪D1
2 ∪D1

3 ∪D1
4.

The first generation is comprised of four tiles where each tile D1
k can be interpreted as an individual

causal diamond. This procedure is repeated recursively to define tiles of higher generations.
For higher generations, we need to take the set difference of the new causal diamonds and all
pre-existing tiles. The tiles below are the Farey numbers describing the first three generations of
tiles (the black numbers correspond to new tiles, and gray numbers represent tiles of previous
generations):

F1

F2

F3

F4

- 10
0
1

1
0

- 10
0
1

1
0

- 10
0
1

1
0
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0
1

1
0

- 11
1
1

- 11
1
1

- 11
1
1

- 21 - 12
1
2

2
1

- 21 - 12
1
2

2
1- 31 - 32 - 23 - 13

1
3

2
3

3
2

3
1

The recursive application of the Farey mediant generates the Farey sequence Fn, which is a
sequence of completely reduced rational numbers. Two fractions p

q and r
s which are neighboring

Farey numbers in a Farey sequence, satisfy |ps− qr| = 1, which is equivalent to their difference
being equal to 1

qs . Eventually (in the limit of very high generations), the Farey series generates
the entire set of rational numbers Q.

Each Farey number defines a causal diamond by mapping it onto the circle with the Cayley
transformation. The points on the future and past boundary associated with the Farey number
then define the new causal diamond. Due to the identification with the Farey series, the temporal
boundaries of the tessellation can be identified with the rational numbers. The tiles of the new
generation are obtained by taking the set difference of the new causal diamond with the tiles of
previous generations. The causal diamonds of the nth generation are constructed as

Cn
j ≡ C

((
arg(w(F̃n[j])),−π

2

)
, arg(w(F̃n[j],

π
2 ))
)
.

where we denote F̃n[j] to be the jth element of F̃n = Fn \ Fn−1 which are the Farey numbers
new to the nth generation Farey sequence. The tiles of the nth generation are defined as follows:

Dn ≡




2n⋃

j=1

Cn
j



∖(n−1⋃

k=1

Dk

)
=

2n+1⋃

j=1

Dn
j ,

An important aspect in choosing the Farey numbers to generate the tessellation is that it naturally
admits the action of the modular group PSL(2,Z). The group PSL(2,Z) is the group of isometries
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Figure 27.: Dyadic tessellation of dS2 (colors indicate the generation tiles belong to)

best compatible with this tessellation. We discussed this group of linear fractional transformations
in detail in 5.4 and 5.6.

Even though the Farey tessellation constructed above is best suited to analyze the group of
isometries, it is more convenient to work with a tessellation where the tiles are evenly distributed
across the boundary. This has no mathematical or physical reasons and is purely done because the
human brain prefers working with apparently evenly distributed tiles. We can evenly distribute
the tiles by identifying the Farey numbers with the dyadic rational numbers using the Minkowski
question mark function introduced in eq. (5.8). The dyadic rational numbers define the boundary
points of the dyadic tessellation in the same way the Farey numbers did before. For this, we
apply the Minkowski question mark function ?(x) to the boundary points of the tessellation,
which maps the Farey numbers to the dyadic rational numbers.

The numbers defining the dyadic tessellation lie on the real axis (and accordingly are distributed
from −∞ to ∞), which is naturally identified with the unit circle. We can identify the points
defining the Farey tessellation with those defining the dyadic tessellation with the generalization
of the Minkowski question mark function from eq. (5.9). We can then map the dyadic rational
numbers distributed over the real axis to the unit interval using the piecewise linear function ψ
introduced in eq. (5.10). The dyadic tessellation, again, is only defined with points on the boundary
of spacetime. The points defining the tiles of generations 0 and 1 in the dyadic tessellation are
identical to the Farey generation, and the points defining tiles of higher generations are defined as

Pn =

{
2πj

2n+1

∣∣∣j ∈ {1, ..., 2n+1}
}∖{2πj

2n

∣∣∣j ∈ {1, ..., 2n}
}

The tessellation is constructed in a similar way to the Farey case, where we construct causal
diamonds and take the set difference with tiles of previous tessellations to get the new tiles. The
resulting tessellation is depicted in figure 27.

It should be noted that (unlike in the Farey tessellation) the endpoints p and q of the tiles of
the same generation Dn

j ≡ C(p, q) (after taking the set difference with pre-existing tiles) lie on
constant time slices which depend on the generation as depicted in figure 28. We denote the
timeslice Tn to be the timeslice which cuts all tiles of generation n:

Tn = sgn(T )
π

2

2n − 1

2n

The timeslices Tn have an additional interesting interpretation: In the limit of large times, the size
of de Sitter spacetime doubles between Tn and Tn+1. The doubling of spacetime for consecutive
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Figure 28.: Dyadic tessellation of dS2 with constant time slices (blue)

timeslices in the asymptotic limit is explicitly derived in appendix D.1. As a result, in the limit of
large times, both the number of tiles and the size of spacetime doubles for consecutive generations.
Accordingly, the width of the tiles in the tessellation close to the boundary is approximately
constant. This is most clearly observed in the tessellation when embedding de Sitter in Minkowski
spacetime as shown in figure 29.

Any tessellation of a given area needs to cover this area with tiles without overlaps or gaps. In
order to tessellate the entire 1 + 1 dimensional de Sitter spacetime, we need infinitely many
generations of tiles to avoid gaps close to the temporal boundaries of the spacetime. To avoid
always working with infinitely many tiles, we introduce cutoffs of the tessellation, which are
defined by a finite set of tiles. The definition of cutoffs will be made mathematically rigorous in
the next section.

6.3. Construction of a holographic toy model

In this section, we construct a holographic toy model corresponding to (1+1)-dimensional de Sitter
spacetime with de Sitter radius ℓ = 1. For the construction of the holographic toy model, we use a
family of tensor networks, which is why we also refer to the holographic toy model as a holographic
network. On a technical level, the basic idea follows the tensor network constructions in the
anti-de Sitter setting presented in [PYHP15], where the basic ideas relevant to our construction
are described in section 4.2.

However, there are some fundamental differences as de Sitter spacetime has, unlike AdS, no
spatial but two temporal boundaries. The fundamental structure of de Sitter spacetime is
characterized by an initial contraction (for T < 0) and a subsequent expansion (for T > 0).
With the holographic network, we want to model these epochs at a microscopic quantum level.
Intuitively, we directly associate these epochs with a fundamental behavior of quantum in-
formation: A contracting spacetime should imply the reduction of quantum information as
there is less volume and, thus, fewer quantum degrees of freedom to store information. At the
same time, we expect the creation of new quantum degrees of freedom for the expanding spacetime.

There are many ways to model processes of loss or deletion as well as creation in quantum
mechanics. The strategy employed here is to model the processes as an isometry . This way,
we obtain an isometric time evolution with the consequence that we have to accept that the
time evolution is non-unitary. The idea of time evolution being "only" isometric was established
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(a)

(b) (c)

Figure 29.: Tessellations of dS2 on the hyperbolic sheet embedded in Minkowski
spacetime. Depiction of the dyadic tessellation (a) from the side and the
dyadic (b) and Farey tessellation (c) from the top.

when we first published the tensor network model in [NO22] and discussed further by Cotler
and Strominger in [CS22]. An alternative option that would preserve unitary time evolution
is to model the process using completely positive maps (CP-maps), which gives rise to a new
question: Where does the lost information go, and who can access it? For the construction of
the holographic model, we model the time evolution using isometries. The time evolution then
manifests in a branching of the spacetime characterized by the type of isometry.

To construct our holographic tensor network M for de Sitter spacetime with radius ℓ = 1, we
adapt the tensor network construction known from the AdS case [PYHP15] and associate tensors
with the corners of the tiles as depicted in figure 30. The tensor network structure is obtained by
contracting the legs of tensors corresponding to consecutive generations of tiles along their edges.
Note that the rank of a tensor placed at the corner of a tile corresponds to the number of neighbor-
ing tensors. In this way, we have associated 4-leg tensors with only the initial generation and 3-leg
tensors everywhere else. Later, we consider the construction of holographic tensor networks corre-
sponding to de Sitter spacetimes with radius ℓ > 1, which feature a greater number of 4-leg tensors.
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Figure 30.: Holographic tensor network M corresponding to the dyadic tessellation
of dS2(ℓ = 1). This network should be understood as an infinite network
extending between the temporal boundaries.

The only uncontracted legs of the resulting infinite tensor network are associated with the
temporal boundaries of the tensor network. The uncontracted legs are equivalent to the physical
degrees of freedom of the model we can access directly. The tensor network can be interpreted as
a propagator or channel between the Hilbert spaces associated with the temporal boundaries.

With the tensor network M , we have not constructed a quantum gravity solution. Rather, we
provide a toy model for quantum gravity in de Sitter spacetime that relates quantum gravity
in de Sitter spacetime to quantum information theory. This way, we can learn more about
the properties of de Sitter spacetime and have a tool to describe a microscopic realization of a
dS1+1/TN1 correspondence.

6.3.1. Kinematical Hilbertspaces

One of the most important features of de Sitter spacetime is that all the observables live on the
temporal boundaries I±. We associate the degrees of freedom at the boundaries with Hilbert
spaces: the Hilbert space Hin for the degrees of freedom at I− and the Hilbert space Hout for the
degrees of freedom at I+. The Hilbert spaces are associated with the uncontracted tensor legs at
the boundary, where we again assume the dimension d of the Hilbert spaces associated with the
individual tensor legs. We define a Hilbert space of an uncontracted leg at the boundary to be
h = Cd. This way, the Hilbert spaces at the boundaries are

Hin = h⊗∞ Hout = h⊗∞

The kinematical states, which determine the expectation values of the observables, are also
associated with the temporal boundaries and thus also live in the boundary Hilbert spaces:

|ψin⟩ ∈ Hin |ψout⟩ ∈ Hout

We can reduce the description to finite-dimensional Hilbert spaces by introducing a cutoff for
the tessellation, which directly relates the tensor network to a finite-dimensional one in the way
described below.

Definition 6.1 (Cutoff)
The cutoff c of a tessellation is a rule to produce a tessellation with only finitely many tiles. Since
de Sitter has two boundaries, we consider a cutoff both for the past and the future boundary.
The cutoff of a tessellation is defined by the n-tuple of boundary points associated with the tiles
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Figure 31.: Cutoff of the dyadic tessellation depicted as the gray area defined by
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included in the cutoff. For the dyadic tessellation, these points need to be dyadic rational numbers.
The boundary is associated with the unit interval where the endpoints are identified. We will
refer both to the rule defining the cutoff as well as the area covered by the finite tessellation as a
cutoff.

The cutoff generates a tessellation that does not cover the entire spacetime close to the boundary
and restricts the system to a finite size. An example of a cutoff is depicted in figure 31. We
denote by C to be the set of all cutoffs, which is a directed set with a partial order c ≤ c′ imposed
by the inclusion of cutoff areas. We can directly associate a tensor network and, with this, a
boundary Hilbert space to each cutoff:

Hc−
in = h⊗2| c− | Hc+

out = h⊗2| c+ |

| c± | is the number of tiles on the respective boundary included in the cutoff, and 2| c± | is the
number of uncontracted legs for a given cutoff on that boundary. The number of uncontracted
legs determines the dimension of the boundary Hilbert space.

Any kinematical state |ψin/out⟩ ∈ Hc
in/out can be conceptualized as a vector represented with

a tensor network with 2| c | uncontracted legs. To make physical sense of the states with the
imposed cutoff, each kinematical state must be equivalent to the state on a larger cutoff. This
equivalence relation to compare states from different Hilbert spaces is characterized below. For
this, we need an operation to relate different cutoffs with one another.

The partial ordering of the set of all cutoffs C allows for a fine graining operation: we can always
find a cutoff to cover a larger part of the spacetime than the previous cutoff. This has the
consequence, that for any two cutoffs c and c′ there always exists a cutoff c′′ which covers an area
larger than both initial cutoffs:

c ≤ c′′ and c′ ≤ c′′

In particular, it is always possible to find such a cutoff c′′ where the boundary points match a
regular dyadic subdivision as depicted in figure 32. In practice, we will work with this class of
cutoffs. We define the set of all cutoffs producing a standard dyadic tessellation to be Cd.

We now define the fine graining operation as a linear map between the cutoff-Hilbert spaces,
which relates different cutoffs without adding any further information

T c
c′ : Hc → Hc′ (6.2)
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Hc3
out = h⊗2| c3 |

Hc3
in = h⊗2| c3 |

Figure 32.: Hilbert spaces of the future and past boundary associated to the cutoff
c3 of the dyadic tessellation, the dimension of the Hilbert spaces is
determined by | c3 | = 24 which equals the number of uncontracted legs
at the boundary

The fine-graining operation has to satisfy the following properties to be well-defined:

– The fine-graining operation between two identical cutoffs is the identity: T c
c = 1

– The fine-graining operation is transitive: T c
c′′ = T c′

c′′T
c
c′

With this method, we can compare states from different Hilbert spaces: both states are fine-
grained to a common Hilbert space and compared in that mutual Hilbert space. The overlap
between different states can be determined as follows:

⟨ϕc| (T c
c′′)

†T c′
c′′ |ψc′⟩

We use this fine-graining operation to define an equivalence relation between kinematical states
from Hilbert spaces associated with different cutoffs.

Lemma 6.2
Two states |ψc⟩ ∈ Hc

in and |ψc′⟩ ∈ Hc′
in are physically equivalent |ψc⟩ ∼ |ψc′⟩ if there exists a cutoff

c′′ such that the following fine graining operations are equal:

T c
c′′ |ψc⟩ = T c′

c′′ |ψc′⟩

With this equivalence relation, we can characterize if two states are physically equal even if they
are different on a mathematical level. We can now define a Hilbert space representing all states
from Hilbert spaces with different cutoffs:

Ĥ =
⊎

c∈C
Hc =

⋃

c∈C
{(x, c) : x ∈ Hc}

Here, ⊎ is the disjoint union defined as the union of subsets where each subset is indexed with its
original set. With that, we define the semicontinuous limit as the space of equivalence classes of
physical states with finite cutoff:

H = lim
→

Hc =

(⊎

c∈C
Hc

/
∼
)∥·∥
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The semicontinuous limit is the disjoint union of Hilbert spaces with different cutoffs modulo the
equivalence relation completed with respect to the standard norm.

With the Hilbert spaces at the cutoffs Hc
in and Hc′

out, we can relate the infinite tensor network
M to a finite tensor network representing an operator acting between the finite cutoff Hilbert
spaces at the boundaries. With the equivalence relation, we can directly see that the finite tensor
network is physically equivalent to the infinite tensor network. The tensor network defined by
our tessellation induces a family of linear maps, which is defined by drawing the tensor network
up to the given cutoffs

Mc,c′ : Hc
in → Hc′

out

The open legs act on the respective input and output spaces Hc
in and Hc′

out. Due to the equivalence
relation and the semicontinuous limit, we can interpret the tensor network to act in the limit
where the boundary Hilbert spaces have infinite size. Effectively, we work in the smallest Hilbert
space necessary to represent a state from a certain equivalence class and can use the physical
equivalence to all other Hilbert spaces, including Hin and Hout.

6.3.2. Physical Hilbertspace

We also introduce a Hilbert space H0, which is associated with the bottleneck (T = 0) of the
spacetime. As argued above, we model the contraction process with an isometry A† and the
expansion process by an isometry B.

A† : Hin → H0 B : H0 → Hout

Consequently, the evolution of the entire spacetime is represented by the following operator:

W = BA† : Hin → Hout.

This operator W, which captures the evolution of de Sitter spacetime, can be described with the
tensor network M . We can directly see that this is not a unitary operator:

M †M = =

= ̸=M

Compositions of isometries such as W are partial isometries. Partial isometries can be defined in
several equivalent ways. Here, we define a partial isometry as a bounded linear transformation
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C : H1 → H2 where P = C†C is a projection. It is straightforward to see that W †W =
AB†BA† = AA† is a projection, which implies that W is a partial isometry. This can be directly
translated to the tensor network M where we exploit the identities (4.2) and (4.1):

(M †M)2 = = =M †M

Since M †M is a projection, the tensor network, indeed, is a partial isometry. As a result, we
can identify the operator W with the tensor network M . We can see that the tensor network
M fails to be a unitary propagator, as W †W is a projection and not the identity that would be
required for a unitary operation. Consequently, we interpret the operator W as well as the tensor
network M as a kind of restricted propagator from the Hilbert space Hin to the Hilbert space Hout.

One important resulting physical feature is that the projection P =M †M arising from the tensor
network singles out a particular subspace of Hin. We denote this subspace to be the physical
Hilbertspace

Hphys ≡ (M †M)Hin ⊂ Hin

which is the subspace comprised of physical states. A physical state |ϕphys⟩ ∈ Hphys hereby is
interpreted to be a state which propagates through the network, simulating spacetime without
loss of norm.

One fundamental property of the tensor network M is, that the physical Hilbert space Hphys ≡
(M †M)Hin which is a subspace of Hin is finite dimensional . The finite dimensionality can be
interpreted as an information bottleneck at T = 0. A finite-dimensional quantum Hilbert space
in de Sitter spacetime was already suggested by Witten [Wit01]. This tensor network model
and, in particular, the subspace Hphys can be thought of as a microscopic realization of the
nonperturbative finite-dimensional Hilbert space introduced by Witten in 2001. Further, we
can interpret the tensor network M , which is a partial isometry, as a microscopic realization of
the matrix M constructed by Witten. The fact that a finite-dimensional subspace canonically
emerges from an infinite dimensional ambient Hilbert space is quite counter-intuitive and easiest
to grasp in the tensor network representation. We later connect this observation with the Λ-N
correspondence, which characterizes the relation between the curvature of the spacetime and
the dimension of the Hilbert space. To do this, we will generalize the here constructed tensor
networks from de Sitter radius ℓ = 1 to larger de Sitter radii.

In the AdS setting, fundamental building blocks of the tensor network are perfect tensors, which
are useful because they are isometric encoding maps of quantum error-correcting codes [PYHP15].
Also, they ensure that the microscopic quantum tensor network inherits a residual rotation
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invariance. The fact that perfect tensors are used for the construction of holographic models
in the AdS case creates the motivation to use them here as well. We will see that for most of
our observations, we do not actually need our tensors to obey all of the conditions required of a
perfect tensor. Indeed, only the condition that they are isometries in the usual sense is necessary
for a majority of our results.

Tensor network models, in general, often have the drawback that they are limited to low-
dimensional settings, as it is often difficult to define the underlying tessellation in higher dimensions
properly. This is also true for the tessellation presented in this context. This abstract structure,
which makes use of isometries to describe the evolution, is not necessarily restricted to (1 + 1)
dimensions.

6.4. Holographic networks for different curvatures

We have, so far, only considered tessellations and tensor networks corresponding to a (1 + 1)-
dimensional de Sitter spacetime with de Sitter radius ℓ = 1. The size of the physical Hilbert
space is directly related to the number of legs in the bottleneck area of the tensor network. The
size of this physical subspace Hphys limits the information capacity of the tensor network.

In this section, we introduce a generalization of the construction of the holographic model to
describe de Sitter spacetime in (1 + 1) dimensions for various de Sitter radii ℓ > 1, which yields a
correspondence between the curvature of the spacetime and the quantum information capacity of
the network. According to this definition, one obtains a correspondence between the quantum
information capacity Q of the network and the cosmological constant Λ, which is directly related
to the de Sitter radius ℓ. This can be interpreted as a model of the Λ-N correspondence introduced
by Banks [Ban01] and Bousso [Bou99a, Bou99b, Bou00]. Ultimately, we get a description of the
continuous and infinite de Sitter spacetime with a finite-dimensional physical Hilbert space. At
the time, this was a striking and counter-intuitive result. This tensor network model captures the
finite dimensionality of the Hilbert space in a way that is much more approachable on both a
mathematical and intuitive level.

The argument of the Λ-N correspondence builds on the observation that the area of the cor-
responding causal diamond bounds the total entropy perceived by an observer. This can be
understood in the context of associating a local laboratory with an experiment starting at p and
ending at q to the observer where the observer can only perform local unitary operations. When
assuming that the observer O initializes their laboratory in a pure state |ϕ⟩ at the beginning of
the experiment, O can create entropy by losing halves of entangled pairs before the experiment
ends. This creation of entropy is limited by the number of qubits that cross the boundary of the
causal diamond C(p, q) before the experiment ends. This way, the flux of qubits through the
boundary of the causal diamond limits the total amount of entropy that can be created. The
direct relation to the boundary area motivates the use of holographic models. The covariant
entropy bound introduced by Bousso in [Bou99a] characterizes an upper bound for the amount of
information that can pass a causal diamond. With this, it was argued in [Bou00] that the entropy
of a causal diamond is bounded by its area, which is proportional to 1/Λ. This imposes a direct
correlation between the cosmological constant Λ and the number of quantum degrees of freedom N .

Here, we describe how the construction of the holographic model directly generalizes to models
corresponding to de Sitter spacetimes where the de Sitter radius doubles and construct a description
for all de Sitter radii ℓ = 2n with n ∈ N. We illustrate this in detail for de Sitter radii ℓ = 2 and
ℓ = 4. With the generalization of the construction, we want to preserve the causal structure of
the tensor network for de Sitter spacetime with ℓ = 1. For the de Sitter radius ℓ = 2, this can
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Figure 33.: Tessellation and holographic network M2 for dS2 with ℓ = 2. The blue
lines divide the initial causal diamonds of M1 and are added to the new
tensor network.

be achieved by dividing the two fundamental tiles at the bottleneck into four smaller tiles each,
which only modifies the tensor network in the bottleneck area. This is plausible from a physical
perspective, as the finiteness of the de Sitter radius is most relevant in this part of the spacetime.
On the basis of this modified tessellation, the tensor network is constructed in the same way as
the original tensor network. The resulting tensor network M2 is shown in figure 33. Similar to
the original tensor network M , the generalized tensor network M2 is a partial isometry which
also implies a finite dimensional physical Hilbert space. It is shown in appendix D.2 that the
tensor network corresponding to de Sitter spacetime with de Sitter radius ℓ = 2 and ℓ = 4 also
are partial isometries. From this, we can directly see that M †

2M2 is a projection of the input
Hilbert space Hin to the physical Hilbert, which is a subspace with the dimension

dim(H2
phys) = dim(h)8.

For spacetimes with de Sitter radii ℓ = 4 and larger, the construction proceeds iteratively: tiles in
the bottleneck area are divided into smaller tiles, and a tensor network is associated with the new
tessellation. For each doubling of the de Sitter radius (i.e., each iteration step for the construction
of a network with a large de Sitter radius), one more generation of tiles is divided into smaller
pieces. In the tessellation, this is all the tiles that only cover a finite time interval, plus the
first generation of tiles that extend to a temporal boundary. The tessellation corresponding to
ℓ = 4 has four times as many tiles in the bottleneck area compared to the original tessellation M
(ℓ = 1). The corresponding tensor network is depicted in figure 34. The resulting network is also
a partial isometry. The partial isometry M †

4M4 is a projection from Hin to the corresponding
physical Hilbert space with dimension

dim(H4
phys) = dim(h)16.

An analogous calculation can be carried out for larger values of ℓ. For all these tensor networks
constructed this way, which are associated with de Sitter spacetimes with ℓ ̸= 1, it holds that
they are partial isometries. The corresponding physical Hilbert spaces have the dimension

dim(Hℓ
phys) = dim(h)4ℓ = d4ℓ.

For increasing de Sitter radii, we get a tensor network, which is comprised of a regular grid of
unitary operators around the bottleneck area and tree tensor networks in the past and future. In
the limiting case of ℓ→ ∞, the regular grid of unitary operators gets larger, and with this, the
tensor network approaches that of Minkowski spacetime. The regular grid of unitary operators
describing Minkowski spacetime is called a quantum cellular automaton (QCA), which is widely
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Chapter 6. Holographic Network for de Sitter spacetime

Figure 34.: Tessellation and holographic network M4 for dS2 with ℓ = 4. The blue
(edges of D1) and light blue (edges of D2) lines divide the initial causal
diamonds from M1 and M2.

discussed in the literature (see, for example, [AP03, ABF20, BDBD+15, BDP17, Deb19, SW04]).
Since QCA has a natural causal structure where information propagates along light rays, they
are a natural candidate for a tensor network description of Minkowski spacetime as argued in the
literature in various settings [Bén13, dBHMN16, CHQY19, CLMS16, KB17, MV18b, YBC+19].
The emergence of a tensor network structure of Minkowski spacetime in the limit ℓ→ ∞ further
supports this construction and the tensor network as a microscopic model of de Sitter spacetime.

With the dimension of the physical Hilbert space Hℓ
phys for de Sitter radii ℓ > 1, we can directly

derive a fundamental relation between the cosmological constant Λ and the quantum information
capacity Qℓ of the corresponding tensor network Mℓ. The tensor network Mℓ is a partial
isometry and, with that, directly generates a corresponding completely positive map (which is
not necessarily trace-preserving!) in the following way:

Eℓ(ρ) ≡MℓρM
†
ℓ .

This CP-map acts as a global operator on the temporal boundary of the spacetime and takes
density operators from the Hilbertspace Hin to density operators in the Hilbertspace Hout. One
way to interpret a CP-map is that it represents a communication process between two observers
taking the roles of sender and receiver. The question arising here is what the corresponding
quantum capacity of the communication process is. In other words, How many qubits of quantum
information can be stored in the CP map in a single use and without error? This can be directly
answered using the tensor network. In the physical Hilbert space Hℓ

phys we can encode 2Q
(1)
ℓ

qubits, which directly gives us the number of qubits which we denote as quantum capacity

Q
(1)
ℓ = ⌊log2(dim(Hℓ

phys))⌋.

with the dimension of the physical Hilbert space being Hℓ
phys = d4ℓ. We obtain this quantum

capacity because Mℓ is a partial isometry, and it is possible to directly encode 2Q
(1)
ℓ qubits into

the subspace Hphys which is then transmitted noiselessly. Note that

Q
(1)
ℓ ≲ 4ℓ log2 d.

The physical interpretation of this quantity is the number of qubits that can be sent through
the bottleneck of the tensor network without disturbance. The quantum capacity is directly
proportional to the vertices in the tensor network depicted in figure 35. The direct relation between
the de Sitter radius and the quantum information capacity directly implies a correspondence
between the cosmological constant Λ and the quantum information capacity of the tensor network:
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(a)

(b)

Figure 35.: Visual interpretation of the quantum information capacity of the tensor
networks related to the number of tensors at the bottleneck which is
directly proportional to the dimension of Hℓ

phys for (a) M2 with ℓ = 2
and (b) M4 with ℓ = 4

Q(1) ∝ 1√
Λ
. (6.3)

In the case of two-dimensional de Sitter spacetime and Jackiw-Teitelboim gravity, the relation
between the scalar curvature R and the cosmological constant is characterized in eq. (2.1):

Λ =
R

2
=

1

ℓ2

For 3+1 dimensional de Sitter spacetime, which is the dimension usually studied in the literature,
the relation between de Sitter radius and cosmological constant is the same up to a proportionality
factor (see for example [Bou02a]):

ℓ√
3
=

√
1

Λ

From the correspondence in eq. (6.3), we can conclude that a positive cosmological constant
sets an upper bound on the information capacity of a spacetime. We can also make the reverse
statement: a spacetime with finite quantum capacity implies that a spacetime has a positive
cosmological constant. This relation also illustrates how the entire spacetime can be characterized
with a finite-dimensional Hilbert space. Still, it needs to be noted that this result needs to be
treated with some caution: It is presently not clear how a negative cosmological constant (AdS)
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Chapter 6. Holographic Network for de Sitter spacetime

influences the quantum capacity. We will not go further into this here, also because the structure
of observables in AdS spacetimes is radically different to the dS case.

Holographic models have been studied in the context of de Sitter spacetime, and one well-known
tensor network that needs to be mentioned is MERA: the multiscale entanglement renormalization
ansatz. The fundamental idea of MERA is to disentangle the system at various length scales and,
with that, perform a type of coarse-graining, which is introduced in detail in [Hau13]. MERA
tensor network representations have been introduced in [MV18a, MV18b] where a correspondence
between path integrals in de Sitter geometries and Lorentzian MERA tensor networks has been
established. As MERA implements an entanglement evolution, it is naturally equipped with a
causal structure [Vid07, Vid08]. MERA tensor networks have been used successfully to capture
dualities in the AdS/CFT correspondence [Swi12b]. There have been attempts to explore gener-
alizations of MERA in the context of de Sitter, such as [KB17] where MERA was constructed
on a thermal state instead of a pure state as in the initial formulation. This generalization of
MERA captures causality relations in de Sitter spacetime. It has a notion of time evolution and
is comprised of unitaries and isometries. Within the framework given by the generalization of
MERA, it is possible to calculate local observables in the ground state. However, it is not possible
yet to fully describe dynamics in this framework. There have been similar works on holographic
models in de Sitter spacetime, such as [BCCM17]. The causal structure can be confirmed in a
more rigorous manner using various notions of quantum causal influence as it was discussed in
[Bén13, CHQY19] and references therein. One way to recover the causal structure of de Sitter
spacetime is to use the notion of pure causality introduced by Bény in [Bén13]. A tensor network,
which can be interpreted as a channel, is defined to be purely causal if it can be expressed in terms
of a unitary map, which is causal where auxiliary input or output systems can be introduced to
get a unitary map.

In the limiting case of small curvature ℓ → ∞, which we can consider with the construction
performed in this chapter, we obtain the structure of a quantum cellular automaton. Together
with the connection to Lorentzian MERA models, the QCA structure provides further evidence
that our tensor network is a microscopic model for de Sitter spacetime.

If we consider a local observer in de Sitter spacetime, its worldline evolves from the past boundary
of the spacetime to its future boundary. We can interpret the tensor network M to be a
superposition of all possible world lines of local observers.

6.5. Isometry transformations of the holographic model

The isometry group of de Sitter can be reduced to its action on the degrees of freedom on the
future and past boundary. One way to characterize the quality of a tessellation is that it is
invariant under the actions of transformations from the isometry group as much as possible. One
restriction we inevitably have to make when considering a tessellation is that continuous isometries
reduce to their discrete analogs. The discretized isometry actions of the de Sitter boundaries are
described by PSL(2,Z), which is a subgroup of Thompson’s group, which is described in section
5.6. In this section, we will describe how to apply the isometry action to the tessellation and
eventually to the tensor network.

6.5.1. Transformation of the tessellation

The isometry action of the tessellation is generated by applying the action to all the causal
diamonds defining out tessellation on the defining points on the future and past boundary (see
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(a)

(b)

Figure 36.: Tessellations after the action of transformations from the subgroup
PSL(2,Z) with its generators: (a) tessellation transformed with S(x)
and (b) tessellation transformed with C(x).

eq. (5.11)):

f+ : I+ → I+, x+ 7→ f+(x+) with f+ ∈ PSL(2,Z)
f− : I− → I−, x− 7→ (S ◦ f+ ◦ S)(x−)

In this section, we will focus on the action of S and C, which generate the group PSL(2,Z). The
tessellations after applying the isometry action imposed by S and C are shown in figure 36. The
full action of PSL(2,Z) is obtained analogously. Although the generator S(x) seemingly does not
affect the initial tessellation, this is not the case: it acts as an involution by mapping each point
to the opposite side of the spacetime.

The action of the generator C(x) on our tessellation is depicted in figure 36b, where we have
restricted the tessellation to a certain cutoff. The resulting tessellation is distorted in the direction
of the null geodesics because the actions at the temporal boundaries I+ and I− are not identical.
This distortion leads to a translation and distortion along the null geodesics of the diamonds.
This distortion also seems to affect the cutoff, but it is always possible to consider an equivalent
standard dyadic cutoff using fine graining. This way, one can see that the tiles close to the
boundary are left (physically) invariant, and the transformation only distorts a finite number
of tiles. The remaining tiles are left invariant, which is why the tessellation is almost invariant
under the isometry action. For our criteria, that a good tessellation should be invariant under
isometry actions this is as good as we can get.
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Chapter 6. Holographic Network for de Sitter spacetime

We interpret the tessellation itself as the foundation of the description of information propagating
along null geodesics through dS2 from the past to the future boundaries. This process can be
modeled as a function M

M : I− → I+.

This characterization of the process helps us to understand how applying the isometry changes
the propagation of the function. We denote M to be the entire propagation process and M ′ the
process only induced by the transformed tensor network:

x− x′− x′+ x+
f− M ′ f+

M = (f+)−1 ◦M ′ ◦ f−

It directly follows that the isometry action on the tessellation can be described with the following
function:

M 7→M ′ =f+ ◦M ◦ (S ◦ (f+)−1 ◦ S) (6.4)

In the case f+ = S, the transformation of the function from eq. (6.4) is trivial. However, in
general (and in particular for f+ = C), the transformation is non-trivial.

As a finite amount of tiles is distorted under the isometry action, we have a residual action when
comparing the propagation of information of the tesselation with or without isometry transforma-
tion. This residual action has consequences for the construction of the physical Hilbertspace. It
imposes additional constraints on the model we construct to ensure the resulting quantum system
is invariant under the full isometry group PSL(2,Z).

We use that the group of diffeomorphisms on the circle diff(S1) can be approximated arbitrarily
well with Thompson’s group T . With this, the asymptotic symmetry group of the tessellation
can be described as

G ≡ (T × T )/PSL(2,Z).

This group acts as follows. We consider f and g to be elements of Thompson’s group T and
h ∈ PSL(2,Z). Given a representative (f, g) ⋆ (h, S ◦ h ◦ S), where the group operation ⋆ is
elementwise composition we obtain a new tessellation by applying f ◦ h to the future boundary
and S ◦ g ◦ h ◦ S to the past boundary:

(f, S ◦ g ◦ S) ⋆ (h, S ◦ h ◦ S) ≡ (f ◦ h, S ◦ g ◦ h ◦ S),

This operation generates a new tessellation by shifting the endpoints of causal diamonds. With the
original tessellation and this group of actions, we generate a family of tessellations corresponding to
the elements of the asymptotic symmetry group, which directly translates to the tensor networks.

6.5.2. Isometric transformations of holographic networks

Given a symmetry-transformed tessellation, one can directly construct the corresponding holo-
graphic network: tensors are placed at the corners, and legs from neighboring generations are
contracted to build a tensor network. We write Mf for the tensor network arising in this way
from the action of f ∈ PSL(2,Z). We will see, that the tensor network after the isometric
transformation is not invariant. This has important consequences for the interpretation of our
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tensor network as will be discussed later.

We illustrate the construction of the transformed tensor network Mf for the example f = C ∈
PSL(2,Z). Remember that each tensor network is representative of an equivalence class of
physically equivalent tensor networks with different cutoffs. We refer to this equivalence class
as a family of tensor networks that represent linear operators Mcm,cn from the standard dyadic
cutoff at timeslice Tm to the standard dyadic cutoff at timeslice Tn. We consider the explicit
example of the tensor network with de Sitter radius ℓ = 2.

Mc−3,c3 =

The input and output Hilbert space both have 25 uncontracted legs: Hin/out = h⊗25 . After the
isometry transformation of the tessellation with C ∈ PSL(2,Z) and constructing the corresponding
tensor network, we get the following operator:

C
(
Mc−3,c3

)
=

While this isometry transformation does not change the number of input and output legs, the
distortion induced by C pushed the legs closer together in some places and further apart in
others. This way, we no longer have a standard dyadic cutoff. We can change to a physically
equivalent input and output state by applying the fine-graining operation at the future and
past Hilbert space. This way, we obtain a tensor network from the infinite family of physically
equivalent operators, which acts on standard dyadic cutoffs. This modification of the cutoff can
be interpreted as a partial UV completion.
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MC
c−4,c4 =

This way we get the input Hilbert space Hc−4

in and the output Hilbert space Hc4
out. It is always

possible to reduce the tensor network to the smallest possible cutoff, which results in a physically
equivalent network. In this case this would be MC

c−2,c2 . Also, we can obtain the infinite tensor
network, which describes the entire system by taking the semicontinuous limit, which shifts the
cutoffs into the far past and future.

An alternative way (see also section 4.4 in [OS20]) to formally express the symmetry transformed
operator Mf is to write it with the unitary operator U(f):

Mf ≡ U(f)MU †(S ◦ f ◦ S),

Intuitively, the operator U(f) : Hin → Hin is an operator that shifts around the qudits comprising
Hin according to the function f . To formally describe the action of U(f) we consider a physical
state |ψc⟩ ∈ Hc

in. To describe the transformation explicitly we consider the transformation f = C

and the cutoff c = c−1 which results in the cutoff Hilbertspace Hc
in = h⊗23 . The initial state |ψc⟩

is interpreted as a quantum spin system where the 8 spins corresponding to uncontracted legs
evenly distributed around the circle:

|ψc⟩ =

The action of U(f) can be constructed for both boundary Hilbert spaces and all elements PSL(2,Z)
in the same fashion. Here, we detail the example of the action C on the past boundary. The
application of the isometry action C moves the spins around on the boundary: they are contracted
in some places and dilated in others. This new state is the cyclically permuted version of the
physical state |ψc⟩.

|ψ′
c⟩ =

This new state |ψ′
c⟩ needs to be assigned to spins on a nonregular grid. The dyadic subdivision of

this grid corresponds to the following tree diagram:

|ψ′
c⟩ =

[0, 14 ] [ 14 ,
1
2 ]

[ 12 ,
5
8 ] [ 58 ,

3
4 ]

[ 34 ,
13
16 ] [ 1316 ,

7
8 ] [ 78 ,

15
16 ] [ 1516 , 1]
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We can find an equivalent state using the fine-graining operation introduced in eq. (6.2):

|ψ⟩ U(C)−−−→ T c
c′ |ψ′

c⟩ = |ψ′
c′⟩

The fine-graining operation can be written down explicitly using the V tensor:

|ψ′
c′⟩ = [(V ⊗ V )V ⊗ (V ⊗ V )V ⊗ V ⊗ V ⊗ 1⊗ 1⊗ 1⊗ 1] |ψ′

c⟩

In tensor network language, this can be depicted as follows:

|ψ′
c⟩ =

|ψ′
c⟩

T c
c′

The fine-grained state then is associated with a grid, which equals a standard dyadic subdivision
with 16 intervals:

|ψ′
c′⟩ =

The isometry action induced by U(f) is, in general, not trivial which can be seen by computing
the overlap of the initial and cyclically permuted state. To do this, we need to look at the
physically equivalent fine-grained states that live in the same cutoff Hilbert space:

⟨ψc′ |ψ′
c′⟩ =

(
⟨ψc| (V †)⊗8

)(
[(V ⊗ V )V ]⊗2 ⊗ V ⊗2 ⊗ 1⊗4U(C) |ψc⟩

)

= ⟨ψc|
(
V ⊗ V ⊗ 1⊗ 1⊗ V † ⊗ V †

)
|ψ′

c⟩ (6.5)

In tensor network notation, the isometries describing the fine-graining simplify as follows:

=

The overlap from eq. (6.5) depends on the initial state |ψc⟩ and the tensor V . It is straightforward
to see that this overlap need not be trivial. For a non-trivial overlap, the action also is non-trivial.
This way, we obtained a unitary representation of Thompson’s group T on the boundary Hilbert
spaces. With this unitary representation, we can write the transformation of the tensor network
with the action f ∈ T as follows:

Mf ≡ U(f)MU(S)†U(f)†U(S)†.

where we used, that U(f ◦ g) = U(f)U(g). With this representation, we can easily see that the
transformed tensor network is also a partial isometry from Hin to Hout (see appendix D.3). For
arbitrary tensors U and V , which make our building blocks of the tensor network, we get a family
of projections that are, in general, not identical:

Pf ≡ (Mf )†Mf

95



Chapter 6. Holographic Network for de Sitter spacetime

(a)

(b)

Figure 37.: Identical quantum information capacity for the tensor networks (a) M2

and (b) MC
2

One crucial consequence is that this also affects the physical subspaces the boundary Hilbert
space Hin are projected into:

Hf
phys = PfHin

We will interpret this as a gauge degree of freedom in the sense that we consider the different
physical subspaces to be gauge equivalent. This equivalence is also true for the corresponding
quantum information capacity as depicted in figure 37. An alternative approach would be to
demand that the different physical subspaces are mathematically equal for all f ∈ PSL(2,Z).
This equality would impose further conditions on the tensors U and V , which are currently not
formulated in detail.

In the following, we will consider the conditions imposed by asking that the tensors V and U are
perfect. This way, the tensor V as a rank-3 tensor has to satisfy the pivotality condition

= (6.6)

which can be interpreted as some rotational invariance of the tensor, and the rank-4 tensor U has
to satisfy the braiding operation

= (6.7)
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This choice of perfect tensors for the tensor network results in a class of tensor networks where
the physical subspaces corresponding to different transformations have non-vanishing overlap:

H′
phys ≡

⋂

f∈PSL(2,Z)

Hf
phys ̸= ∅.

We show below that this set is non-empty by showing that the vacuum state is invariant under
the action of the tensor network as well as the tensor network transformed with f ∈ PSL(2,Z).

6.5.3. Vacuum state

In this section, we construct a vacuum state |Ω⟩ ∈ Hin which is invariant under all Mf . We use
the class of tensor networks where the tensors U and V satisfy the conditions in eq. (6.6) and
eq. (6.7). This vacuum state is the infinite regular binary tree (or the regular binary tree with a
certain cutoff that is physically equivalent)

|Ω⟩ =

The invariance of |Ω⟩ under the tensor network M follows directly from the isometry conditions
for U and V and the pivotality condition for V . To show the vacuum state is invariant under all
Mf with f ∈ PSL(2,Z) we show that it is invariant under the generators S and C:

M |Ω⟩ =
M

= = |Ω⟩
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The initial simplification steps are detailed in appendix D.4. The same invariance holds for
MS |Ω⟩ = |Ω⟩ since the action of S does not change the shape of the tensor network. To show the
invariance of the vacuum state under the action of C, we need both the pivotality and braiding
conditions:

MC |Ω⟩ =
C(M)

=

= = |Ω⟩

6.6. Manipulation of the spacetime

It is also possible to apply transformations to the tensor network, which are elements of Thompson’s
group T , but not in PSL(2,Z). Thompson’s group elements are approximating diffeomorphisms
on the circle arbitrarily well, but in the case where they are not elements of PSL(2,Z), they are
not isometries of the spacetime. One such candidate is B(x), which is one of the generators of
Thompson’s group T but not in its subgroup PSL(2,Z). The other generators of Thompson’s
group T are also elements of PSL(2,Z). The tessellation after the transformation with Thompson’s
group element B is depicted in figure 38. The transformation of the tessellation is performed
following the procedure described in section 6.5.1 where the future boundary is On the basis of
this transformed tessellation, we can construct the tensor network MB.

We can see that the vacuum state is not invariant under diffeomorphisms, which are no isomor-
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Figure 38.: Symmetry transformation B(x) of the tensor network M .

phisms using the representative B:

MB |Ω⟩ =

B(M)

=

=

The resulting state MB |Ω⟩ is not equal to the vacuum state, as there is no possibility to eliminate
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the loop in the state.

The fact that the vacuum state is not invariant under MB can be interpreted in a way that
the resulting state MB |Ω⟩ corresponds to a different spacetime. Since B is not an isometry, it
distorts the underlying spacetime. With the tensor network M and the family of tensor networks
Mf with f ∈ PSL(2,Z), we have constructed a tensor network that describes the spacetime with
a vanishing energy-momentum tensor. We suggest that the transformation of the tensor network
with B and the corresponding distortion of the tensor network can be interpreted as a change in
the energy-momentum tensor of the underlying spacetime.

In this chapter, we have developed a holographic toy model that captures the dS/CFT correspon-
dence. In the following chapter, we will relate the language used to characterize this holographic
toy model to quantities known from quantum mechanics. In particular, we will discuss properties
of physical states that live in the boundary Hilbert space Hin and allow transformations to
generate new physical states from the vacuum state. This discussion is intimately tied to further
characterizing the properties of the tensors forming the holographic model.

100



C h a p t e r 7

States of the kinematical Hilbertspace

In this section, we attempt to characterize further the allowed set of physical states in the
kinematical Hilbert space constructed in the previous section. We already have a vacuum state
|Ω⟩ of the Hilbertspace and interpret physical states to be all states |ψ⟩ ∈ Hin that can be
generated with feasible transformations of the vacuum state. Only the vacuum state is necessarily
invariant under isometry transformations. All other physical states can be affected by isometry
transformations of the tensor network. We describe how to generate a physical state from the
vacuum state in section 7.1. The way in which the physical states are affected by the tensor
network characterizes the dynamical Hilbertspace, which captures the time evolution of the states.

Fully characterizing the set of physical states is a very challenging task because the characteriza-
tion is directly linked to the properties of the tensors. Accordingly, we need to fully characterize
the properties of the tensors comprising the tensor network to characterize the set of physical
states. In this chapter, we will elaborate on this and consider different properties of the tensors
and the effects this has on the set of physical states.

Depending on the concrete properties of the tensor network, different things could characterize
the set of physical states and influence under which transformations they are invariant. In the
AdS toy model described in section 4.2, which motivated the construction of our tensor network
model, the tensor network comprised properties of a quantum error correcting code [PYHP15]
where the bulk and boundary legs of the tensor network respectively correspond to the input and
outputs of the encoding quantum circuit. We transfer this idea to the de Sitter setting and want
to answer the following question in section 7.2:

Are quantum error correction codes compatible with local operators in de Sitter spacetime?

In section 7.3, we will discuss some aspects of the interpretation of local quantum mechanics in
the context of the holographic model. Here, the focus lies on the allowed application of operators
at the boundary and how the information propagates through the tensor network. We also briefly
comment on some properties of entropy in de Sitter spacetime, which will not be made rigorous
in this thesis.

7.1. Physical states: Manipulate the boundary

We have seen in the previous chapter that de Sitter spacetime can be modeled with a tensor
network M comprised of isometries and unitaries. We denote |ψ⟩ to be a global state in the
boundary Hilbertspace of the far past:

|ψ⟩ ∈ Hin
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This state gets transported to the Hilbert space of the future boundary with the tensor network:

M |ψ⟩ ∈ Hout

With the cutoff introduced in 6.1, we can find physically equivalent states that are defined on a
different Hilbert space, which is associated with a finite timeslice if we choose a standard dyadic
cutoff. This way, states in the boundary Hilbert spaces corresponding to that cutoff effectively
lie in the bulk of the spacetime but are physically equivalent to the corresponding states on the
boundary:

|ψ⟩ ∼ |ψc⟩ ∈ Hc
in =

n⊗

j=1

hj

The cutoff Hilbertspace Hc
in as well as Hout is comprised of many subsystems hj which can be

interpreted as local laboratories where the observables live. The partial trace over all other
subsystems of the Hilbert space obtains the reduced density matrix corresponding to the subsystem
hj

ρj = trĵ(|ψ⟩ ⟨ψ|) (7.1)

The state |ψc⟩ lies in Hc
in which is the Hilbertspace associated with a certain timeslice and lies in

the bulk of dS for a finite cutoff. Therefore, |ψc⟩ cannot be accessed directly. In order for |ψc⟩ to
be a valid physical state, we require that we can generate the state by only accessing/modifying
the boundaries.

In the following, we consider |ψc⟩ to be an arbitrary valid initial state and analyze if it is
possible to generate a different state by modifying the boundary. In the easiest case, we start
with the vacuum state, which we know to be a valid physical state. The boundary on which
we apply the local operator is associated with Hilbert space Hout where we again introduce
a cutoff. Since the equivalence between states was made precise in the previous chapter, we
will sometimes not explicitly mention that we always work at a finite cutoff at the future boundary.

We consider an operator W : Hout → Hout that acts on a local subsystem on the boundary:

W = 11 ⊗ · · · ⊗ 1j−1 ⊗Wj ⊗ 1j+1 ⊗ · · · ⊗ 1n

where we consider the local operator Wj to be unitary. For the arbitrary state |ψ⟩ ∈ Hin, the
spacetime dynamics that describe the evolution of the state from the far past to the far future is
modeled by the tensor network M . The question of the initial state |ψ⟩ can be transformed to a
different state |ψ′⟩ ∈ Hc

in only by modifying the boundary can be formulated as follows:

WM |ψ⟩ =M |ψ′⟩ (7.2)

We want to evaluate if it is possible to simulate a valid state |ψ′⟩ ∈ Hc
in by applying a local

operator at the future boundary. This way, we want to find a state which satisfies the following
two conditions:

1. The state |ψ′⟩ is a valid state that satisfies the condition from eq. (7.2).

2. The state |ψ′⟩ is normalized and therefore satisfies ⟨ψ′|ψ′⟩ = 1.

The possibility to simulate a state |ψ′⟩ in such a way depends on the properties of the tensor
network.
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7.2. Simulate a physical state using quantum error correction?

In this section, we specify the properties of the tensor network and consider quantum error
correction as it has been used in the toy model for the AdS/CFT correspondence. We evaluate
if it is possible to simulate a physical state |ψ′⟩ starting with a physical state |ψ⟩ only manip-
ulating the boundary of a tensor network, which has the properties of an encoding map of a
quantum error correcting code. We choose the isometries in the tensor network to be isome-
tries characterizing the encoding operation of quantum error correction as described in section
4.3. On a local scale, we are interested in how these individual subsystems from eq. (7.1) can evolve.

It is possible to consider three different cases that model parts of de Sitter spacetime: The past,
which is a contraction of spacetime; the future, which is an expansion; and the limiting case,
which is a small curvature that is almost flat. For our purposes, we are primarily interested in
the expanding and the flat case as we apply the operators to manipulate the physical states at
the future boundary.

A flat spacetime is the limit of de Sitter spacetime with very small curvature. For a flat spacetime,
the universe has constant size, and thus the dimensions of Hin = h⊗n and Hout = h⊗n and
accordingly also the number of input and output legs of the tensor network are identical. We
again consider the dimension of one tensor leg to be h = Cd. The tensor network M is a regular
grid of unitaries in the flat spacetime limit, which we can describe as one unitary operator1

U : Hin → Hout = h⊗n → h⊗n

For any unitary operator U , we can choose the state |ψ′⟩ ∈ Hin such that it is a valid normalized
state which satisfies the condition (7.2) in the following way:

|ψ′⟩ =U †WU |ψ⟩
U |ψ′⟩ =UU †WU |ψ⟩ = WU |ψ⟩
⟨ψ′|ψ′⟩ =

(
⟨ψ|U †W†U

)(
U †WU |ψ⟩

)
= ⟨ψ|ψ⟩ = 1

This shows that it is possible to generate a physical state in Hin by applying a local operator at
the boundary Hout. Hin is physically equivalent to a state on a chosen cutoff, which corresponds
to any timeslice of flat spacetime that can lie within the bulk. The same thing would hold in
contracting spacetime as detailed in appendix D.5.

For an expanding universe, the spacetime dynamics can be described and identified with the
encoding map of a quantum error correction code. As discussed in section 4.3, we can characterize
this encoding map with a random isometry V , which captures the encoding of randomized quantum
error correction. The dimension of Hin = h⊗k is smaller than the dimension of Hout = h⊗n such
that more physical qubits are used to encode the quantum state:

V

h⊗k

h⊗n

V : Hin → Hout = h⊗k → h⊗n with k < n

We have seen that it is possible to modify a valid physical state by applying a local operator
at the future boundary to obtain a new valid physical state in the case of flat and contracting

1Note that this unitary operator is not the encoding of a QECC, as it does not map the physical state into a
bigger space. It is also considered here for completeness.
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spacetime. In expanding spacetime, the condition from eq. (7.2) is solved by the following state:

|ψ′⟩ =V †WV |ψ⟩
It remains to be checked if this is a valid state. This is the case if it is normalizable:

⟨ψ′|ψ′⟩ =
(
⟨ψ|V †W†V

)(
V †WV |ψ⟩

)
= ⟨ψ|V †W†V V †WV |ψ⟩ (7.3)

Different from the previous cases, it is not trivial to evaluate this expression. In order to evaluate
this expression further, we express the random isometry V as a random unitary U by adding
ancillary qubits in the following way:

· · ·

· · ·

|ψ⟩

V

= · · ·

· · ·

· · ·

|ψ⟩

U

|0⟩ |0⟩

V : h⊗k → h⊗n

U : h⊗k ⊗ |0⟩⊗(n−k) → h⊗n

To evaluate the expression eq. (7.3) and check if the state is normalized, we express it in tensor
network notation:

1 = ⟨ψ′|ψ′⟩ = ⟨ψ|V †W†V V †WV |ψ⟩ =

|ψ⟩

V

W

V †

V

W†

V †

⟨ψ|

=

|ψ⟩ |0⊗(n−k)⟩

U

W

U†

⟨0⊗(n−k)|

|0⊗(n−k)⟩

U

W†

U†

⟨ψ| ⟨0⊗(n−k)|

(7.4)

This can be solved by calculating the Haar integral over the group of random unitaries.

In mathematics, measures are a tool studied in a wide variety of contexts. One familiar example
of a measure is the probability measure, which characterizes the distribution of a set of given
objects. The measure needed to evaluate eq. (7.4) is the Haar measure, which is used to transfer
results from measure theory to group theory [Die14]. For a matrix-valued function f(U) on the
unitary group U , we can write the integral with respect to the Haar measure as

I =

∫
dUf(U). (7.5)
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A discussion of the unitary group in more detail than necessary in this context can be found in
[Dui00]. The defining property of the Haar measure is left- or right-invariance with respect to
shifts via multiplications with a fixed unitary operator V ∈ U(d):

∫
dUf(UV ) =

∫
d(U ′V †)f(U ′) =

∫
dU ′f(U ′)

The right-invariance of the Haar measure imposes a similar condition. The Haar measure allows
us to sample unitary operations and, with that, check if the new physical state |ψ′⟩ is normalized.
The approach presented here to calculate Haar measures was inspired by Aram Harrow and Matt
Hastings and was also described in [PBO20].

In order to calculate the Haar Integral over the random unitaries, we rearrange the expression in
eq. (7.4) in the following way:

⟨ψ′|ψ′⟩ =

|ψ⟩|0⟩⊗(n−k)

⟨0|⊗(n−k)

U

W

U†

U

W†

U†

⟨ψ| |0⟩⊗(n−k)⟨0|⊗(n−k) (7.6)

To solve this, we need the Haar integral identity, which is derived in the appendix D.6:

∫
dU

U†

U

U†

U

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)
(7.7)

Using this identity, we can directly calculate the Haar integral corresponding to eq. (7.6), which
is detailed in appendix D.7. We obtain the following result:

⟨ψ′|ψ′⟩ = | tr(W )|2
(
1− dkd−n

)

d2(1− d−2n)
+
d−n

(
dk − d−n

)

1− d−2n
. (7.8)

If it were possible to generate a new state |ψ′⟩ by applying a local operator on the boundary, the
state |ψ′⟩ would have to be normalized. In order to simplify (7.8) we use, that the following holds
for any d-dimensional unitary operator W (see appendix D.8) where the equality only holds if W
is the identity:

| trW |2 ≤ d2 (7.9)
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⟨ψ′|ψ′⟩ ≤d
2
(
1− dkd−n

)

d2(1− d−2n)
+
d−n

(
dk − d−n

)

1− d−2n

We can now relate these considerations to the tensor network for de Sitter spacetime. The local
operator is applied to Hout, which can be identified with the temporal future boundary for the
expanding case. At the temporal boundaries, spacetime has infinite size, and therefore, the
number of sites goes towards infinity:

lim
n→∞

⟨ψ′|ψ′⟩ = | trW |2
d2

≤ 1

As the equality only holds if the local operator W is the identity, we can conclude that the only lo-
cal operator that can be applied to the tensor network comprised of random unitaries is the identity.

Similar results directly transfer to local operators ρj at a subsystem j and how their properties
are influenced by applying an operator W at the future boundary. It is shown in appendix D.9
that for non-trivial W, the operator ρj is maximally mixed. This translates to the fact that any
local operator we could model by applying W as a super-operator at the boundary would be
very close to the boundary, and no local operations would be possible. This only allows for one
physical state, which is identical to the vacuum state. This does not lead to a reasonable physical
theory. Therefore, it is not reasonable to describe the de Sitter tensor network with random
isometries, although this approach was very successful for anti-de Sitter spacetime.

7.3. Various aspects of local quantum mechanics

With the given tensor network construction, we still need to describe the local quantum mechanics
of an observer at finite time. What we discussed so far is the application of an operator acting
globally at the future infinity. We will refer to this as a super-operator . In local quantum
mechanics, an observer is not able to apply such a super-operator. However, this is the only
allowed operation in the context of holography. Here, we will look into how the application of a
super-operator can simulate the application of local operators at finite times.

We start with considering the application of a super-operator W, which is comprised of many
operators acting locally on the open tensor legs at the boundary. For our considerations, the
super-operator acts as the identity except for one boundary leg where it applies the local operator
W :

W = 1⊗ · · · ⊗ 1⊗W

In the depiction below where the operator W is identified with the rectangle W = . We look at
the action of the super-operator W on the physical state |ψ⟩:

W |ψ⟩ =

ψ

The properties of the tensors highly influence how the operator W and the information it carries
propagates through the tensor network corresponding to the evolution of the physical state and
influences the state for finite times. Accordingly, different properties of the tensors in the tensor
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network generate different sets of allowed local operations, which can be simulated with the
application of super-operators. We consider the local algebra of observables at a finite time is
interpreted to be the algebra of all allowed local operations. The local algebra of observables
in de Sitter spacetime has recently been discussed by Chandrasekaran, Longo, Penington, and
Witten in [CLPW23] in a different setting.

This relationship between the vacuum state, the algebra of observables, and the properties of
the tensors is reminiscent of the Reeh-Schlieder theorem in quantum field theory, which was
originally published in [RS61]. The theorem characterizes the structure of the vacuum state
and the algebra of observables in a quantum field theory. Entanglement properties in quan-
tum field theory are studied to this day. Witten emphasized in [Wit18] that entanglement
in quantum field theory is often a property of the algebra of observables and not only of the
quantum states. In the following, we will investigate some approaches to describe the algebra of
observables; it needs to be noted that this still needs to lead to a final characterization at this point.

In analogy to the AdS toy model from [PYHP15], we choose that the tensor network is comprised
of perfect tensors (introduced in definition 4.5). These are tensors with maximal entanglement
along any bipartition. A review of various properties of maximally entangled states can be found
in [EWŻ16]. For us, the following definition will suffice:

|ψAB⟩ =
1√
d

d∑

j=1

|j⟩A |j⟩B

We can push W past tensors in this tensor network if the tensors represent maximally entangled
states as shown in appendix D.10:

(M ⊗N) |ψAB⟩ = (MN−1 ⊗ 1) |ψAB⟩

The tensor product structure we obtain through the tensor network can be interpreted as a choice
of a basis. This way we can push the local operator past the perfect tensors as follows where
W−1 = :

ψ

=

ψ

= · · · =

ψ

If the physical state |ψ⟩ is maximally entangled, we can push the operator W through the entire
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network:

ψ

=

ψ

(7.10)

It remains an open question if this is a desirable property. Thinking of quantum physics on a
local scale, the property from eq. (7.10) seems unphysical because it contradicts the rules of
causality. Various aspects of quantum causal influence in the context of quantum states which
encode spacetime dynamics are discussed in [CHQY19]. From this point of view, we must require
that the physical state |ψ⟩ is not maximally entangled.

On the other hand, we already established that the application of a super-operator at the temporal
boundary is not an action allowed to any local observer, which is why causality relations might
not be a crucial physical property in this case. The relation displayed in eq. (7.10) is reminiscent
of optimal cloning in quantum mechanics. In the following chapter, we will investigate cloning
properties of the tensor network further.

Another prominent research topic that is closely related is the de Sitter entropy. Attempts
to characterize the entropy in de Sitter spacetime range from discussions in early publications
[BHM01, Bou01] and is not fully resolved to this day: "It seems fair to say that although black
hole entropy remains highly enigmatic to this day, the entropy of a cosmological horizon, such
as the de Sitter horizon, is only more mysterious” [CLPW23, p. 2]. It is understood that the
entropy of a black hole can be related to its horizon [Bek72, Haw75] which was soon generalized
to a wider context with a positive cosmological constant [GH77b]: the event horizon perceived
by a local observer is directly tied to the entropy. It needs to be noted that the horizon now is
observer-dependent, and thus, the entropy can vary locally. The possible variation of entropy
does not affect de Sitter spacetime, where all observers perceive the same entropy since de Sitter
spacetime is maximally symmetric. To this date, there exists a wide variety of definitions of
entropy in de Sitter space, and work has to be done to unify these in one rigorous definition.
Balasubramanian and Hořava have provided a list of various possible interpretations of entropy in
de Sitter spacetime in [BHM01, 2.2]. The main interpretations of entropy in de Sitter spacetime
are the following: dS entropy is related to the degrees of freedom which are associated with the
horizon, hidden behind the horizon or arise from the quantization of gravity in general. Another
interpretation is that dS entropy corresponds to the number of initial conditions that can evolve
into empty de Sitter space, or dS entropy is correlated to the finite size of the physical Hilbert space.

We argue that entropy can also be considered in the context of the holographic tensor network
model we developed in chapter 6. Qualitatively, we can directly characterize de Sitter entropy in
this context:

De Sitter entropy corresponds to the number of operators we can locally apply in a static patch
corresponding to a local observer.

This way, the upper bound on entropy is directly imposed by the number of tensor legs cutting
the boundary of the static patch. The local algebra of observables can impose further restrictions
on the number of allowed local operations, and this reduces the entropy. This way, we need a
full characterization of the local algebra of observables to characterize the entropy in de Sitter
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rigorously. It remains an open question how the entropy perceived this way by a local observer
is related to the finite dimension of the physical Hilbert space. A direct relation between the
entropy characterized by the number of allowed local operations and the finite dimension of the
Hilbert space seems likely (but has not been proven at this point).
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C h a p t e r 8

Unruh effect in de Sitter spacetime

The Unruh effect has been studied in a wide variety of settings and was originally formulated
in flat spacetime as reviewed in section 3.2. A result of the Unruh effect, which is less known,
was presented in the paper series [BHP09, BHTW10, BHP12] where the vacuum state of the
original formulation from the Unruh effect was replaced with a different state. This new state is
referred to as the multi-rail state, which is the Minkowski vacuum state with some excited modes.
The multi-rail state is interpreted as one possible method to encode a logical qubit. The Unruh
channel hereby is the channel mapping the initial state to the state perceived by the accelerated
observer. In this framework, the Unruh channel has properties of a cloning channel as described
in [BHTW10]. It needs to be clarified how to interpret this result in flat spacetime physically. We
argue that the physically more interesting setting to consider a similar setup is de Sitter spacetime.

The reason for that is that the acceleration central to the Unruh effect is a fundamental prop-
erty of de Sitter spacetime. The Unruh effect in de Sitter spacetime bears close similarities to
cosmological particle creation, which describes the effect that freely falling particle detectors in
expanding spacetime still register particles even if the global state is a vacuum state. Initially, this
phenomenon was discussed by Parker in [Par67, Par68, Par69] and Sexl and Urbantke in [SU69];
now, it is part of the standard literature such as [BD82]. One important paper where cosmological
particle creation was studied in de Sitter spacetime is [Mot85]. The intrinsic acceleration makes
de Sitter spacetime a natural place to study the Unruh effect, which has already been done in the
past: De Sitter space was assigned a characteristic temperature in [FHKN75] and in [GH77a] the
temperature of a cosmological horizon in de Sitter was calculated. It was shown in [BB99] that
the global structure of algebras of observables has a similar structure in de Sitter spacetime and
their Minkowski counterpart. The Unruh effect in the context of de Sitter spacetime was early
discussed in [Laf89, DL97, NPT96] and still finds interest in more recent publications such as
[CCO+11, GP04, SUFK21]. One key feature that is employed is that curved spacetimes inherit
the thermal properties known from flat spacetime through appropriate embeddings [DL99]. More
examples of the Unruh effect being studied in the context of de Sitter spacetime are by Jennings
in the context of de Sitter as a brane universe [Jen05, Jen10] or by Padmanabhan with more focus
on the cosmological horizon and an explicit value for the cosmological constant [Pad03, Pad05].
We will review the basics of the Unruh effect in the context of de Sitter spacetime in section 8.1.

In this chapter, we combine these fields of study and introduce an alternative initial state for
the Unruh effect in de Sitter spacetime. For this alternative initial state, which we interpret as
the initial state of de Sitter spacetime, we derive the corresponding Unruh channel by following
the computations outlined in [BHP12]. From a mathematical perspective, these calculations
bear close similarities to those previously undertaken in the Minkowski setting. The noteworthy
aspect lies in their execution within the framework of de Sitter spacetime and the new physical
interpretation that comes with that. This setting is more natural for this consideration than

113



Chapter 8. Unruh effect in de Sitter spacetime

xx

t

RL

(a)

θθ

T



(b)

Figure 39.: Comparision of Killing fields
(a) Lorentz boost in Minkowski spacetime and
(b) de Sitter Killing field which is timelike in one static patch

Minkowski spacetime, given the intrinsic connection between the cloning properties of the channel
and the fundamental nature of the expansion of spacetime. The relation between the Unruh
channel and the cloning channel allows for a meaningful relationship to be established between
the cloning properties and the spacetime’s expansion features. In section 8.1, we give a short
review of the Unruh effect in de Sitter spacetime and characterize the notions of acceleration and
temperature. This is followed by an introduction of the initial state of de Sitter spacetime in
section 8.2. The chapter is concluded by section 8.3 where we derive the Unruh channel in de
Sitter spacetime and relate this to properties of cloning channels introduced in section 4.4. The
content of this chapter largely follows [NO24]. To follow the rest of the thesis, we perform the
calculations in 1 + 1 dimensional de Sitter spacetime. This calculation can easily be generalized
to a higher dimensional de Sitter spacetime. In [NO24], we perform the calculations in the 2 + 1
dimensional case, which gives rise to an extra quantum number but does not change the essence
of the result.

8.1. Unruh effect in de Sitter

Similar to the Unruh effect in flat spacetime, thermodynamic properties can be assigned to cosmo-
logical models in curved spacetimes. It was already argued in [GH77b] that there is a connection
between event horizons in spacetimes, which are asymptotic de Sitter, and thermodynamics.
This way, the thermal nature of de Sitter spacetime is intimately connected to its expansion,
which gives rise to a horizon and a temperature associated with it. This relation manifests in the
fact that a freely falling detector indeed measures a background from thermal radiation coming
from the cosmological event horizon. This effect is also referred to as cosmological particle creation.

On a more technical level this can be explained by the fact that there does not exist a globally
timelike Killing field in de Sitter spacetime. The possible Killing fields for de Sitter are derived
in section 2.3. There is a Killing field in de Sitter, which is timelike in one static patch that
exhibits close similarities with the Lorentz boost in flat spacetime as shown in figure 39. The
similarity in the Killing field induces properties in de Sitter spacetime that are similar to the
accelerated frame in the Unruh effect in flat spacetime without adding an external acceleration.
Rather, acceleration is a fundamental component of spacetime in the de Sitter setting. As we are
interested in the experience of a local observer and the Killing field in one static patch is timelike,
we use static coordinates.
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In flat spacetime, the Killing field generating time translations in inertial frames is always identical
to geodesics. An observer following a Killing field accordingly experiences no proper acceleration.
This is different in the de Sitter case, where the proper acceleration of Killing trajectories (see
appendix eq. (A.9)) is

aµa
µ =

1

ℓ2
r2

ℓ2 − r2

The proper acceleration only vanishes for the trajectory following the radial variable r = 0, which
is the trajectory identified by a local observer. Any detector that is in the same static patch
following the Killing trajectory r ̸= 0 experiences a proper acceleration. As a result, local observers
following different Killing trajectories keep a finite distance between each other. This acceler-
ation compensates for the expansion of the spacetime, which is different for each Killing trajectory.

We can study the thermal properties of de Sitter spacetime by embedding it in a higher dimensional
Minkowski spacetime as described by Deser and Levin [DL98, DL99]. The proper acceleration in
embedding static coordinates is derived in appendix eq. (A.10):

κµκ
µ =

1

ℓ2 − r2
(8.1)

The proper acceleration of the Killing trajectory with respect to the embedded space never
vanishes. It takes its minimal value κµκµ = 1/ℓ for the radial variable r = 0. This proper
acceleration is used to characterize the de Sitter temperature:

TdS = lim
r→0

κ

2π
= lim

r→0

1

2π
√
ℓ− r2

=
1

2πℓ
(8.2)

As mentioned in [HY18], thermal properties that appear in vacuum states in curved spacetime
are interpreted as the result of the entanglement of states in causally disconnected regions. The
Unruh effect is used to make sense of the expansion from a physical perspective. The relation
between the expansion of spacetime and its thermal properties manifests in the Euclidean vacuum
state from eq. (3.34), which is a vacuum state invariant under the full de Sitter group acting
globally on de Sitter spacetime expressed with a linear combination of static patch modes:

|ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

Even though there is an ambiguity in the choice of vacuum states in de Sitter spacetime, it is
reasonable to work with the Euclidean vacuum state as its response to a de Sitter Unruh detector
is thermal. This vacuum state takes the role of the Minkowski vacuum state expressed with
Rindler modes in flat spacetime. The density matrix perceived by a local observer in static patch
I matches the following thermal density matrix:

ρI = trII[|ΩE⟩ ⟨ΩE |] =
∞∏

ω=0

(
1− e−2πωℓ

) ∞∑

nω=0

e−πωnωℓ |nω, I⟩ ⟨nω, I| .

Here, we can see that changing the Fock representation to capture the properties of the static
patch also changes the interpretation of particles. With the new Fock representation, we obtain
thermal properties perceived by a local observer.
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8.2. Initial state of de Sitter universe

We consider the initial state of de Sitter spacetime to be the global Euclidean vacuum state
defined in eq. (3.34) with added quantum perturbations. The vacuum state is referred to as
the Bunch-Davies vacuum state in [HY18]. The quantum fluctuations are modeled as d excited
particles with different frequencies, which are created globally in the vacuum state. This initial
state is also referred to as a multi-rail state, which is a state with d distinguishable excited modes.
The paper [BHP09, BHP12, BHTW10] follows a similar approach in flat spacetime where they
use an encoded logical qubit instead of the vacuum as an initial state to calculate the Unruh
channel, which also takes the form of the multi-rail state. The initial state of de Sitter spacetime
takes the following form:

|ψ⟩ =
d∑

j=1

cj(â
E
ωj
)† |ΩE⟩ (8.3)

The relation between the static patch creation and annihilation operator and the Euclidean ones,
which act globally on de Sitter, is described in eq. (3.32):

âE1
ω =

1√
1− e−2πωℓ

(
âIω − e−πωℓ(âIIω )

†
)

âE2
ω =

1√
1− e−2πωℓ

(
âIIω − e−πωℓ(âIω)

†
)

The creation (and annihilation) operators âE1
ω and âE2

ω are obtained by swapping the static
patches. Here, we will only consider the operators âE1

ω , the operators âE2
ω yield similar results.

In the next section, we derive how a local observer who, in principle, cannot access the entire
spacetime perceives the global expansion of de Sitter. To study this, we express the entire initial
state of the universe |ψ⟩ only with static patch modes. The initial state of the universe takes the
following form (see appendix E.1):

|ψ⟩ =
d∑

j=1

cj
√
1− e−2πωj (âIj)

† |ΩE⟩ (8.4)

It needs to be noted that the Euclidean vacuum state entails an infinite product, which is why the
transformation from the global description with Euclidean modes to the description with static
patch modes is not unitary in a mathematically rigorous sense [Wal94]. This is similar to the
Minkowski vacuum state expressed in Rindler modes. To get a unitary transformation, we use the
approximation with the two-mode unitary transformation Uω which is detailed in appendix E.2:

|ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩ =

∞∏

ω=0

Uω |ΩI⟩ ⊗ |ΩII⟩

The two-mode transformation can be expanded as

Uω =exp
[
θ
(
(âIω)

†(âIIω )
† − âIωâ

I
ω

)]
with 1/cosh θ =

√
1− e−2πω

=
√
1− e−2πωee

−πω(âIω)
†(âIIω )†e

1
2
ln(1−e−2πω)((âIω)

†âIω+(âIIω )†âIIω )e−e−πω âIω â
II
ω (8.5)

The last exponentials in eq. (8.5) are absorbed in the static patch vacuum states with âI(,II)ω |ΩI(,(II))⟩
which is how we obtain the initial form of the Euclidean vacuum state. In appendix E.3, the
transformation between the expressions of the initial state of de Sitter spacetime from eq. (8.3)
and eq. (8.4) is derived using the two-mode transformation. For this calculation, the introduction
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8.3. de Sitter Unruh channel with cloning properties

of the two-mode transformation is a generalization that is not necessary. For more general cases
with fewer simplifications where the vacuum state annihilates terms, this provides a detailed
mathematical foundation. The calculation with the two mode transformation also shows, more
explicitly, that the different modes do not influence each other in the transformation. The fact
that only a finite number of modes take an active part in the transformation justifies that we
restrict the infinite product to a finite number of modes to obtain a unitary transformation. When
considering the transformation of a d-rail state, we only allow for d input modes and restrict our
attention to d output modes. Physically, this can be interpreted as if the detector is tuned to this
finite number of output modes, and only the excited modes participate in the transformation.
Mathematically, we have restricted the size of the input and output Fock space such that they
are finite and unitarily equivalent. This approach is also well known when transforming states
from the Minkowski to the Rindler setting.

The expression of the state |ψ⟩ can be further simplified by expressing the initial state of de Sitter
spacetime we obtained with multi-index notation and using the multinomial theorem (for more
details, see appendix E.4). For this, we introduce the abbreviation z = e−πω.

|ψ⟩ =
d∑

k=1

ck

√
1− z2k

∞∑

n=0

(∏

ω

√
1− z2zn

)
·
∑

Ln

√
lk + 1 |L(k)⟩I |L⟩II

The multi-index notation we used here is defined as follows:

|L⟩ = |l1l2 . . . ld⟩

|li⟩ =
1√
li!
(â†ωi

)li |Ω⟩

|L(i)⟩ = 1√
li + 1

(âIωi
)† |L⟩

∑

Ln

=
∑

l1+···+ld=n

Under the assumption that we consider sufficiently large frequencies, we can consider the z in the
product of frequencies to be equal. Together with the restriction to d frequencies contributing to
the transformation, the expression simplifies as follows:

|ψ⟩ ≈
(
1− z2

) d+1
2

d∑

k=1

ck

∞∑

n=0

zn
∑

Ln

√
lk + 1 |L(k)⟩I |L⟩II (8.6)

8.3. de Sitter Unruh channel with cloning properties

In this section, we derive the channel that describes how the evolution of the initial state of global
de Sitter spacetime, and with that, the expansion of spacetime is perceived by a local observer in
a static patch. We choose the observer to be located in static patch I. In the previous section, we
have derived the initial state of the universe |ψ⟩ expressed with static modes. For the derivation
of the density matrix of the global state we need to restrict the density of the global state to the
static patch accessible to a local observer. To restrict the density matrix to the space accessible
to a local observer in static patch I, we trace out all modes from static patch II. Static patch II
is the region that is causally disconnected from static patch I. Therefore, these are the modes
that cannot influence what an inertial observer in this static patch perceives. To calculate the
Unruh channel , we take the initial state from eq. (8.6). The resulting channel is

E(ψ) = trII(|ψ⟩ ⟨ψ|) = trII[ρ] = ρI ⊗ ρresidual
I . (8.7)
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Chapter 8. Unruh effect in de Sitter spacetime

We will put our focus on ρI and neglect the residual part ρresidual
I of the cloning channel. The

residual part ρresidual
I satisfies the following condition: ω ̸= ωk and with that is composed of

all modes which do not take an active part in the transformation from global to static modes.
Neglecting the residual part is equivalent to only considering a finite number of modes. The
density operator ρI is the main part of the Unruh channel, which comprises all modes participating
in the transformation. The detailed calculated of ρI is detailed in appendix E.5:

ρI =(1− z2)d+1
∞⊕

n=0

z2nσ
(n)
I

with

σ
(n)
I =

d∑

k=1

|ck|2(lk + 1)
∑

Ln

|L(k)⟩ ⟨L(k)|I +
d∑

k,k̃=1

k ̸=k̃

ckck̃

√
lk + 1

√
lk̃ + 1

∑

Ln

|L(k)⟩ ⟨L(k̃)|I (8.8)

The structure of σ(n)I is that of a n-dimensional optimal cloning channel introduced in eq. (4.3)
which is of the following form:

ρ̂(out)
a =

1

n+ 1




n∑

i=1

|γi|2
2 + n

2
|ψi⟩ ⟨ψi|+

n∑

i,j=1
i ̸=j

γiγ
∗
j

n− 2

n+ 1
|ψi⟩ ⟨ψj |+

1

2
1




The identity from the d-dimensional cloning channel ρ̂(out)
a is contained in the diagonal part of

ρ
(n)
I . The explicit factors to identify ρ(n)I with an n-dimensinal cloning channel can be obtained

by rewriting the multi-index notation. The Unruh channel ρ(n+1)
I and the d-dimensional cloning

channel ρ̂(out)a are of the same form. The coefficients of the respective diagonal and off-diagonal
parts are explicitly compared in appendix E.6 and match up to the leading order.

A similar result was obtained in Rindler spacetime for the Unruh channel [BHTW10, BHP12].
The resulting channel is also a block diagonal density matrix where each block can be interpreted
as an instance of a 1 → n cloning channel. Both in the Rindler setting studied in [BHTW10] as
well as in the de Sitter framework studied in this thesis, the cloning channel and its properties
are a result of the acceleration. While the same phenomenon can be studied in flat spacetime,
one needs to keep in mind that acceleration is always added as an external acceleration because
we choose to study an accelerated observer. The mathematical aspects of the calculation are very
similar in both cases, but we would like to highlight the novelty of the physical interpretation.
We argue that de Sitter is the more natural place to study this because, here, acceleration is a
fundamental property that is not to be avoided. With that, the result that the Unruh channel
has properties of a cloning channel is even more compelling in the de Sitter framework, where
cloning properties can be directly associated with the spacetimes expansion.

At the current stage it needs to be clarified what implications this has. However, the connection
between the expansion of spacetime and the properties of a cloning channel is a novel result
that opens many opportunities to gain a deeper understanding of quantum mechanics in de
Sitter spacetime. In particular, the cloning properties of this channel can be used to further
characterize the properties of the tensors in the holographic model discussed in part II of this
thesis. Furthermore, the general setup using the Unruh effect opens many possibilities to study
the evolution of local observers in de Sitter spacetime. In the next section, we will focus on the
Unruh effect, where the detector follows a quantum superposition of trajectories.
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C h a p t e r 9

Superposition of static trajectories in
de Sitter spacetime

In the study of quantum field theory in curved spacetime, the particle content of a field is usually
determined with a particle detector which probes the particle content perceived as by a local
observer [DeW80, BD82]. A particle detector hereby is considered to be a localized system that
has internal degrees of freedom that couple to the background field. This way, the state of the
detector provides information on what particles are perceived by a local observer following the
trajectory of the detector in a given spacetime geometry. It is well-established that reading out
the state of these degrees of freedom provides information about the particle perception by the
observers following the trajectory of the detector. Typically, we consider particle detectors that
follow well-defined classical trajectories. This can be generalized to consider a detector that
follows a quantum superposition of trajectories.

Different scenarios of a detector following a quantum superposition of trajectories have been
considered in the past [FOZ20, WVCZ21, GZ22, FAZM23, FZ23, FMZ23]. In the context of de
Sitter spacetime different scenarios of quantum superposition of trajectories have been considered
recently in [FMZ20] where a Unruh-de Witt detector which followed a quantum superposition
of trajectories was studied. The authors considered both the superposition of different spatially
translated trajectories in one de Sitter geometry as well as the superposition corresponding to de
Sitter spacetime with different curvatures. The main result of the work is that the response func-
tions of the detectors for these setups are calculated, which is considered to provide information
about the particle detection rate of a detector. They find that the setups are not diffeomorphic
to each other. In expanding spacetimes, local observers whose trajectories follow the timelike
Killing vector field in one de Sitter static patch keep a fixed distance from one another. We refer
to these trajectories as static trajectories. Keeping a fixed distance from one another is only
possible because local observers following the Killing field experience proper acceleration.

In this chapter, we follow our work from [NB24], where we generalize the approach from [FMZ20] by
considering the particle detector to be a multi-level particle detector as introduced in [BCRAvB20].
As this detector can be in more than two energy states, we can perform a more in-depth discussion
of the final state of the detector. We consider the setup, where the multi-level particle detector
follows a quantum superposition of static trajectories. This setup is detailed in section 9.1
including the interaction between the detector, its trajectories, and the background field. This
follows an approach which already been employed to study the quantum superposition of the
detector’s trajectories in other contexts of quantum field theory in curved spacetime: the Unruh
effect in flat spacetime [BCRAvB20] and in measuring Hawking radiation [PB23].

The main result of this chapter is the derivation and discussion of the final state of the detector
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Chapter 9. Superposition of static trajectories in de Sitter spacetime

in section 9.2. We find that there is interference between the different trajectories in quantum
superposition, therefore the resulting state of the detector goes beyond being a thermal mixture
of states. We relate these additional coherence terms to the properties of the particle absorbed
by the detector. This is a novel result in the context of cosmological particle creation in de Sitter
spacetime. A similar effect was detected in the flat spacetime Unruh effect [BCRAvB20] and in
measuring Hawking radiation [PB23] when considering a quantum superposition of trajectories.
We discuss the physical interpretation of the final state of the detector in section 9.3.

9.1. Description of the initial state

In this section, we fully characterize the initial state of the considered problem. This includes
the state of the background field, the initial state of the detector, the characterization of the
quantum superposition of trajectories and how they interact.

We consider the global background field ϕ̂(x̂r(τ)) to be initiated in the Euclidean vacuum state
introduced in eq. (3.34) which is expressed as a linear combination of static patch modes

|0⟩F =

∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩ .

Here, |ΩI⟩ and |ΩII⟩ are the vacuum states of the static patches I and II respectively. The positive
frequencies of the background field ϕ̂(x̂r(τ)) are annihilated by the vacuum state |0⟩F. As the
field is constructed from modes in the static patches as described in section 3.7, its quantization
is based on static coordinates.

We also use static coordinates to characterize the trajectories, where each trajectory has a fixed
spatial coordinate r. These trajectories follow the de Sitter Killing vector field and keep a fixed
distance from one another (see section 2.4.3). We can express the trajectory directly in static
coordinates with respect to the proper time τ (derived in appendix eq. (A.8)):

xr(τ) =

(
t(τ)
r(τ)

)
=

(
τ/
√
1− r2i /ℓ

2

ri

)

We need to note here that the relation between the coordinate time t and the proper time τ
differs for different ri and thus different trajectories. We interpret this relation as an operator
that acts on the basis states |i⟩T of trajectories, as the proper time is dependent on the choice of
trajectory and with that elevate the coordinates describing the trajectory to an operator. Each
trajectory corresponds to a state of the set {|1⟩T , |2⟩T , . . . } and we require that the trajectories
are fully distinguishable. As a result the set of states of trajectories forms an orthonormal basis
of the Hilbert space corresponding to the external degrees of freedom of the detector and we have
⟨i|k⟩T = δik. We express the relation between the proper time and the different trajectories with
the following operator:

x̂r(τ) |i⟩T =

(
τ/
√
1− r2i /ℓ

2, ri

)
|i⟩T

To describe the coupling between the state of the field ϕ̂(x̂r(τ)) and the detector we use the
interaction picture:

ĤI(τ) = χ(τ)m̂(τ)ϕ̂(x̂r(τ)), (9.1)

where the switching function χ(τ), m̂ is the monopole moment characterizing the evolution of the
detector and ϕ̂(x̂r(τ)) is the background field. The switching function controls the intensity of
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9.2. Final state of the detector after the interaction

the coupling between the field and the detector. On an intuitive level, this can be interpreted as
turning the detector on and off. The switching function is a Gaussian function with interaction
time T defined as

χ(τ) =
1

(2π)1/4
e−τ2/(4T 2).

The Gaussian function itself is not normalized in order to capture the duration of the interaction.
Under the assumption that we have an adiabaticity condition between the field and the detector,
we impose the following condition for the interaction time T and the energies ωi:

T ∼ 1

εω1
>>

1

ω1
≤ 1

ωi
(9.2)

With this condition we ensure, that the interaction time characterizing the switching function is
large enough, that no additional transitions in the detector are excited.

The evolution of the multi-level particle detector with the free Hamiltonian is characterized by
the monopole moment m̂(τ). The normalization of the state is fixed by the coupling amplitudes
ζi in the monopole moment. The monopole moment is defined as

m̂(τ) =
∑

i

ζi e
iωiτ |ωi⟩ ⟨0|D + h.c.

where the coupling amplitudes ζi characterize how different excitations of the detector are coupled
to its ground state.

We now have all the tools to define the initial state we want to study. We prepare the detector in
its ground state |0⟩D and the background field in the Euclidean vacuum state |0⟩F. We consider
a quantum superposition of different trajectories where An are the normalization amplitudes for
the different trajectories. The trajectories |n⟩T all follow the constant spatial coordinate rn:

|Ψ(τ → −∞)⟩ = |0⟩D |0⟩F

(∑

n

An |n⟩T

)
,

With the interaction model with the Hamiltonian in eq. (9.1), we know how the state evolves and
can calculate the state at late times. We consider the evolution of the state describing the field
and the detector up to the first order in ε:

|Ψ(τ → ∞)⟩ =
(
Î + iε

∫ ∞

−∞
dτ ĤI(τ)

)
|Ψ(τ → −∞)⟩ (9.3)

= |0⟩D |0⟩F

(∑

n

An |n⟩T

)
+ iε

∫ ∞

−∞
dτ χ(τ)m̂(τ)ϕ̂(x̂r(τ)) |0⟩D |0⟩F

(∑

n

An |n⟩T

)

9.2. Final state of the detector after the interaction

In this section, we explicitly calculate the state of the field and the detector from eq. (9.3) after
the interaction at late times. The monopole moment m̂ describing the evolution of the detector
takes the following form:

m̂(τ) |0⟩D =

(∑

i

ζi e
iωiτ |ωi⟩ ⟨0|D + h.c.

)
|0⟩D =

∑

i

ζi e
iωiτ |ωi⟩D

With that, we get the following expression for the state |Ψ⟩ at late times:

|Ψ(τ → ∞)⟩ = |0⟩D |0⟩F

(∑

n

An |n⟩T

)
+ iε

∑

i,n

ζiAn |ωi⟩D |ωi, n⟩F |n⟩T
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Chapter 9. Superposition of static trajectories in de Sitter spacetime

with |ωi, n⟩F =

∫ ∞

−∞
dτχ(τ)eiωiτ ϕ̂(x̂r(τ)) |0⟩F

The state |ωin⟩F describes the state of the field and how it is influenced by different trajectories
|n⟩T. It is the state in which the field is left when the detector follows the trajectory |n⟩T and
gets excited to the state |ωi⟩D. We will focus on this in the upcoming calculations. The state can
be expressed in the following equivalent ways:

|ωi, n⟩F =

∫ ∞

−∞
dτχ(τ)eiωiτ ϕ̂(x̂r(τ)) |0⟩F

=
1

iεζiAn
⟨ωi|D ⟨n|T |ψ(τ → ∞)⟩

=
1

ζi
⟨ωi|D ⟨n|T

∫ ∞

−∞
dτĤI(τ) |0⟩D |0⟩F |n⟩T

To obtain the final state of the detector related to the superposition of trajectories, we consider
the density matrix where we trace out the background field and its degrees of freedom:

ρDT =trF(|ψ(τ → ∞)⟩ ⟨ψ(τ → ∞)|)

=

(∑

m,n

A∗
mAn |n⟩ ⟨m|T

)
|0⟩ ⟨0|D + ε2

∑

i,j,m,n

ζ∗j ζiA
∗
mAn |ωi⟩ ⟨ωj |D ⟨ωj ,m|ωi, n⟩F |n⟩ ⟨m|T

(9.4)

The first term, which is the term of zeros order in ε, corresponds to the case where we have
no detected perticles and describes the state without interaction between the detector and the
field. The characterizing quantity of the term describing the interaction is the scalar product
⟨ωj ,m|ωi, n⟩F, which is calculated in detail in appendix F.1. Here, we can distinguish between
terms we refer to as diagonal and off-diagonal terms: the diagonal terms contain the scalar
product of identical trajectories and the off-diagonal terms relate different trajectories. For
the diagonal terms, we have shown in appendix F.2 that the scalar product for two identical
trajectories reduces to the known result: We get a thermal spectrum described by a Planckian
probability distribution with de Sitter temperature weighted with the excitation frequency ωi of
the detector. The off-diagonal terms can be expressed with the normalized inner product Λij

nm

derived in appendix F.3. With that, the state after the interaction takes the following form:

ρDT =

(∑

m,n

A∗
mAn |n⟩ ⟨m|T

)
|0⟩ ⟨0|D + ε2

T

2π

∑

j,n

ζ∗j ζjA
∗
nAn |ωj⟩ ⟨ωj |D

ωj

e2πqjn − 1
|n⟩ ⟨n|T

+ ε2
T

2π

∑

i,j
i ̸=j

∑

m,n
m̸=n

ζ∗j ζiA
∗
mAn |ωi⟩ ⟨ωj |D Λij

nm

√
ωiωj

e2πqjn − 1
|n⟩ ⟨m|T (9.5)

where the normalized inner product is

Λmn
ij =

√
κmκn sin

(
2qin arcsinh

(√
bmn

))
√
2qin

√
κ2n + κ2m

√
bmn(bmn + 1)

(9.6)

with

bmn =
1

2

(
(1− xmxn)√
1− x2m

√
1− x2n

− 1

)
.
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Figure 40.: The normalized inner product Λij
nm for different values of qin plotted for

two trajectories characterized by the radial coordinates rm and rn

Here, we introduced the rescaled spatial coordinate xi = ri/ℓ and the auxiliary parameter bmn.
The parameter qin is an auxiliary parameter characterized by the ratio between the energy ωi

and acceleration κn (introduced in eq. (8.1)):

qin =
ωi

κn
(9.7)

The value of the normalized inner product is plotted in figure 40 for different values of qin. The
value of qin = 0 is included to describe the limiting behaviour of the normalized inner product
for small frequencies. We derived in the appendix eq. (F.3) that the off-diagonal terms up to
first order in ε are only non-vanishing if the parameter qin and qjm for the two trajectories in the
scalar product satisfy the following condition:

qin ≈ qjm

We obtain this relation because of a product of two sharp Gaussian functions in the calculation of
the scalar product. The Gaussians are centered around qin and qjm respectively, and this product
vanishes if the peaks are too far apart from one another.

We have derived the state ρDT, which captures the final state of the detector and the trajectories
(eq. (9.5)). Now, we want to explicitly study the internal state of the detector independent of the
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Figure 41.: Values for the normalized inner product Λij
nm where the radial coordinate

of one trajectory is fixed to rn = 0. This restriction allows us to visualize
the oscillations of the value of Λij

mn close to the boundaries, which increase
for larger values of qin. (a) shows the entire range of the spatial variable
r of the second trajectory, and (b) only shows the area very close to one
boundary. The case qin = 0 is the only one without oscillations.

trajectories. With that, we want to associate a temperature with its internal energy levels, as
we did for a detector with one well-defined trajectory. For deriving the state of the detector, we
need to take a partial trace over the trajectories. By tracing out the trajectories, we eliminate
all off-diagonal terms, which decoheres the resulting state completely. As a result, we lose all
interference terms between the different trajectories. The resulting state after taking the partial
trace over the trajectories would be

ρD =trT(ρDT) = |0⟩ ⟨0|D + ε2
T

2π

∑

j,n

ζ∗j ζjA
∗
nAn |ωj⟩ ⟨ωj |D

ωj

e2πqjn − 1
(9.8)

The resulting state is a mixture of thermal states with different temperatures depending on the
trajectories. The different trajectories correspond to different temperatures, as we required the
trajectories to be fully distinguishable. This result is compatible with the standard result for a
detector following a well-defined trajectory, but we have lost all interfering properties between
the trajectories in superposition.

One option to keep the interfering property in the resulting state of the detector is to measure its
final state on a different basis that does not belong to the well-defined trajectories before taking
the partial trace. We construct a new basis |ñ⟩T :=

∑
nBn |n⟩T in which we measure the state of

the detector and get the following result up to first order:

ρmeasure
D =trT(|ñ⟩ ⟨ñ|T ρDT)

=

(∑

m,n

B∗
mA

∗
nBnA

∗
m

)
|0⟩ ⟨0|D + ε2

T

2π

∑

j,n

|ζj |2|An|2|Bn|2 |ωj⟩ ⟨ωj |D
ωj

e2πqjn − 1

+ ε2
T

2π

∑

i,j
i ̸=j

∑

m,n
m̸=n

ζ∗j ζiA
∗
mB

∗
nAnBm |ωi⟩ ⟨ωj |D Λij

nm

√
ωiωj

e2πqjn − 1
(9.9)

This result captures the final state of the detector and its excited internal energy levels.

124



9.3. Physical interpretation

9.3. Physical interpretation

In this section, we comment on the physical interpretation of the theoretical result of the final
state of the detector after the interaction. First, we consider the state ρDT including both the
trajectory and the detector from eq. (9.5). Here, we distinguish the different orders of pertur-
bation: The zeroth order in ε describes the case without interaction between the detector and
the field. The first order in ε (note, that the term with ε2 is in fact of order ε, since T ∼ 1/ε)
describes the interaction between the field and the detector and is comprised of diagonal and
off-diagonal terms. The diagonal terms reproduce the known result for detectors following one
well-defined trajectory, which is a thermal spectrum with respective temperature described by a
Planckian probability distribution weighted with the coupling amplitude ξi for each frequency.
The temperature T = κ/(2π) = 1/(2π

√
ℓ2 − r2) is defined by the de Sitter radius ℓ and the

proper acceleration κ introduced in eq. (8.1). The diagonal terms, therefore, are the incoherent
combination of the contributions of all individual trajectories. With this, the original result that
a detector following a trajectory with constant acceleration perceives a thermal bath is contained
in our result. In our case, the constant acceleration refers to static trajectories following the
Killing field in a de Sitter static patch.

The more interesting result is contained in the off-diagonal terms. The off-diagonal terms are
primarily characterized by the normalized inner product Λmn

ij whose behavior is plotted in fig-
ure 40. The normalized inner product characterizes transitions between different energy levels
of the detector depending on the trajectories and we can see, that the value of Λij

nm decays to
zero the more the trajectories differ. This way, the normalized inner product can be interpreted
as the product of two states describing the detector and its trajectory where the particle is
absorbed in the state corresponding to one or the trajectory to excite the detector. The value
of the normalized inner product has an oscillatory behavior when considering trajectories close
to the boundary of the static patch, which characterizes the coherence of particles absorbed by
detectors on different trajectories. We only get this coherent behavior if the condition eq. (9.7)
holds, which means that the ratio between the excitation level ω and the proper acceleration κ
has to be similar for different trajectories in quantum superposition. This oscillatory behaviour
can best be seen in figure 41, where we have fixed one trajectory to r = 0 and plotted the value
of the normalized inner product depending on the other trajectory. Here we can see, that the
oszillations get more pronounced for higher values of qin and the only case where we have no
oscillations at all is the limiting case of small frequencies (qin = 0). From this, we can deduce
some dispersion relation for a delocalized particle. The off-diagonal terms are characterized by
the product of the square root of the thermal spectra for the respective trajectories multiplied
with the normalized inner product from eq. (9.6).

During the time of interaction, the detector absorbs particles from the thermal bath perceived by
the vacuum state. These absorbed particles are almost delocalized along the interaction period.
As a result, the absorbed particles have very little dispersion in frequency due to uncertainty
relations. This justifies the condition in eq. (9.7), which is a manifestation of the Tolman factor
from a physical perspective: it requires that the particles absorbed along different trajectories are
fine-tuned in frequency such that they can still be distinguished, and we would get no off-diagonal
terms.

We also considered the state ρD of the detector independent of the trajectories in eq. (9.8). Here,
the first order in ε only has diagonal terms which again directly correspond to the thermal
contributions. When measuring the state in a different basis as done in eq. (9.9) the weights
of the different temperature terms are modified depending on the new choice of basis. The
more important difference is, that we keep the off-diagonal terms characterizing the interference
between trajectories in ρmeasure

D . Consequently, the state ρmeasure
D is not just a mixture of thermal
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Chapter 9. Superposition of static trajectories in de Sitter spacetime

states with well-defined energy. The coherences from the interference terms in the resulting state
are the main result of this chaoter.

There is one special case we want to emphasize: We can choose the new basis such that the state
of the trajectory measured in the new basis |ñ⟩T is orthogonal to the initial state of the trajectory.
When choosing the new basis in this way, we get, similar to considering a well-defined trajectory,
a vanishing off-diagonal term |0⟩ ⟨0|D. Different from the case with a well-defined trajectory, this
still is a valid state, as we have additional off-diagonal terms that do not vanish. Physically,
this scenario is only possible if the entanglement of the initial trajectory gets entangled with
the internal energy levels of the detectors through the background field. Even after taking the
partial trace over the trajectories, this entanglement remains in the state of the detector. From
this, it is possible to consider the trajectory as a quantum degree of freedom that interacts with
the background field and can be influenced by the interaction. This is possible even after the
background field is traced out. The only case where the quantum degree of freedom collapses is
when we choose a well-defined trajectory. The result bears close similarities to the one of the
final state of the detector following a superposition of trajectories in the flat-spacetime Unruh
effect discussed in [BCRAvB20].

In this chapter, we have studied the final state of the multi-level particle detector following a
quantum superposition of trajectories with a fixed distance in a de Sitter static patch after its
interaction with the background field. The result bears close similarities to the Unruh effect
in Minkowski spacetime for a quantum superposition of trajectories with fixed distance. For
future research, it would be interesting to generalize the setup to also consider a quantum
superposition of different de Sitter spacetime geometries. The superposition of conformally
equivalent spacetime metrics has already been studied in [KdlHCRB22], which also can be applied
to de Sitter geometries with different curvatures. With this and the generalization of a multi-level
particle detector considered in this chapter, the results from [FMZ20] where different scenarios of
a detector following a quantum superposition of trajectories can be further generalized in the
future.
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C h a p t e r 10

Conclusion

In this thesis, we investigated different aspects of quantum gravity in de Sitter spacetime with a
focus on using holographic models and methods from quantum information theory to characterize
the dS/CFT correspondence. Here, we summarize our results and point out ideas for future
research questions.

As the centerpiece of this thesis, we developed a holographic toy model for 1 + 1 dimensional
de Sitter spacetime, which is a discrete model that can describe both kinematical as well as
dynamical properties of de Sitter spacetime and the dS/CFT correspondence. Part II of this
thesis puts focus on the holographic toy model: It was developed in chapter 6, and its properties
were studied in this and the following chapter. The holographic toy model is defined as a family of
tensor networks associated with a tessellation of de Sitter spacetime, which acts as a propagator
from the de Sitter past to the future boundary. The tensor networks can be interpreted as a map
from an infinite dimensional kinematical Hilbertspace Hin associated with the past boundary to
the infinite-dimensional kinematical Hilbertspace Hout associated to the future boundary and
takes the form of a partial isometry.

From a physical viewpoint, the holographic toy model has two key properties. First, we find that
the time evolution of de Sitter spacetime captured by the holographic toy model is isometric
and not unitary. This is plausible as the isometry captures that degrees of freedom are added in
expanding spacetimes such as de Sitter. Second, we find a direct relation between the effective
degrees of freedom allowed by the holographic toy model and the curvature of de Sitter. This
manifests as follows: As a partial isometry, the tensor network maps the infinite-dimensional
Hilbert space Hin to a finite-dimensional subspace we refer to as the physical Hilbert space
Hphys. The dimension of the physical Hilbertspace is directly related to the de Sitter radius ℓ
and, with that, to the de Sitter curvature. The dimension of Hphys limits the capacity of the
channel implemented by the tensor network, which implies a direct relation between the quantum
information capacity of the holographic toy model and the curvature of de Sitter spacetime.
The quantum information capacity is directly related to the effective degrees of freedom of the
holographic model. As a result, we can see Λ-N correspondence, which was already postulated in
the early 2000s, as a property in this holographic toy model.

What primarily sets this holographic toy model apart from previous tensor network models is that
we get a dynamical model since the action of the discretized isometries on the boundary Hilbert
spaces is fully characterized as described in chapter 5 of this thesis. To describe the asymptotic
de Sitter symmetry group, we have characterized the discretized isometry group at the de Sitter
boundaries as a subgroup of Thompson’s group T , which we identified with the modular group
PSL(2,Z). With the characterization using Thompson’s group T , we were able to identify the
circular boundary of 1 + 1 dimensional de Sitter spacetime with a conformal field theory (CFT)
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and, with that, obtain a notion of a dS/CFT correspondence. We have shown that there is a
vacuum state in the physical Hilbertspace which is invariant under isometry transformations when
choosing the tensors in the tensor network to be perfect tensors. The existence of a vacuum state,
other physical states, and a well-defined notion of dynamics gives rise to a reasonable physical
model.

We develop the holographic toy model further by characterizing allowed physical states and
operations in chapter 7 to generate them from the vacuum state. A central result is that the
properties of the physical states of this model highly depend on the properties of the tensors
that make up the tensor network. In models capturing the AdS/CFT correspondence, quantum
error correcting codes have been the best candidates for the tensor networks. We found that
adapting this result to the dS/CFT model does not work because the model gets trivial in this
scenario: only the vacuum state is permitted as a physical state, and only the identity is an
allowed operation. Even though we were not able to fully characterize the properties of the
tensors to produce reasonable physical states, we have provided a formalism to generate physical
states from the vacuum state using allowed operations. For the allowed operations, we apply
operators at the future boundary, and depending on the tensor properties, this generates different
local operations in the bulk and thus also generates different physical states.

Finally, in part III of the thesis, we looked at properties of quantum gravity in de Sitter spacetime
from a different point of view. The aim is to gain more insights into the physical properties of
the holographic toy model to help further characterize the properties of the tensors in the future
and consequently improve our understanding of the dS/CFT correspondence. We follow two
different approaches, which are both generalizations of the Unruh effect in the context of de Sitter
spacetime. Similar to Minkowski spacetime, there is a global vacuum state in de Sitter, which
is perceived as a thermal state whose temperature depends on the de Sitter radius by a local
observer following the Killing field. The expansion of spacetime and the acceleration of a Rindler
observer have a similar effect, as the local observer experiences a proper acceleration in both
cases.

In the first project detailed in chapter 8, we made the generalization that we replaced the vacuum
state with a vacuum state with quantum fluctuations. We model the quantum fluctuations with
d excited particles with different frequencies and consider this state to be the initial state of the
de Sitter universe. We derive how this initial state manifests in a static patch accessible by a
local observer. This way, we get an understanding of how a local observer experiences the global
expansion of spacetime. We find that the channel mapping the initial state of the universe to the
state perceived by the local observer has the properties of an optimal cloning channel. It needs to
be clarified what implications this has. On an intuitive level, it makes sense that an expanding
spacetime is associated with a cloning property, as new spacetime regions need to be created as
the spacetime expands. One possible interpretation is that the tensors in the holographic toy
model should also have properties of optimal cloning channels. This hypothesis needs further
clarification in future works.

The second project, which is presented in chapter 9, generalizes the study of the Unruh effect
in de Sitter spacetime in a different way. Here, we consider a multi-level particle detector that
takes the role of the local observer, which follows a quantum superposition of trajectories with
a fixed distance. Superposition of trajectories in de Sitter spacetime was already studied in
[FMZ20]; here, we generalized this approach by considering a multi-level particle detector opposed
to a particle detector with two energy levels. In this thesis, we consider the superposition of
trajectories, which each follow the Killing field in the de Sitter static patch, and each experiences
a different proper acceleration. The focus lies on the derivation of the final state of the excited
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particle detector after its interaction with the background field. We find that this final state
of the detector contains a coherent superposition of energy levels that correspond to different
trajectories. These coherences do not appear when considering a well-defined trajectory of the
detector or a two-energy level Unruh-de Witt detector. Similar coherent behavior was found in
the context of measuring the Unruh effect [BCRAvB20] or Hawking radiation [PB23], but the
result is novel in the context of de Sitter spacetime.

The work in this thesis provides a broad foundation to study the dS/CFT correspondence further
using a holographic toy model, but there remain many open questions for future research. Here,
we primarily focus on open questions arising directly from the work in this thesis. The arguably
most central open problem is a rigorous characterization of the properties of tensors and, with
that, a full characterization of the allowed physical states and algebra of observables. From what
we found in this thesis in chapter 8, a natural next step for further characterizing the allowed
physical states would be to consider tensors with cloning properties for the holographic toy model
and clarify how the set of allowed physical states is affected by that. There have been recent
studies on the local algebra of observables in de Sitter spacetime in [Wit23], but it needs to be
clarified in future studies if that description is compatible with the holographic model studied in
this thesis and how it would affect the explicit properties of the tensors.

As the tensor network defining the holographic model can be interpreted as a quantum superposi-
tion of all possible world lines in de Sitter spacetime, it seems plausible that results from studying
the superposition of trajectories have effects on tensor network properties. This opens many
opportunities for new research questions. On the one hand, it is interesting to relate findings
from this thesis, such as the interference properties between different trajectories evident in the
state of the excited detector, to properties of the tensor network. On the other hand, there is
huge potential in studying the superposition of de Sitter geometries with different curvatures
as suggested in [FMZ20]. Again, this can be related to the holographic model, where we have
different tensor networks for different de Sitter curvatures such that it is possible to consider
a quantum superposition of these different tensor networks corresponding to different de Sitter
radii and relate this to findings from quantum field theory in curved spacetime.

We are still far from having a completely understood theory of quantum gravity. However, we
believe that holography and methods from quantum information theory are central to developing
our understanding further in the future.
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A p p e n d i x A

de Sitter basics - calculations

A.1. Action in Jackiw Teitelboim gravity

The general action with a dilaton field looks as follows (see, for example, [CJM20, eq. (2.1)]):

S =
1

16πG

∫
d2x

√−g(φR+ U(φ)) + boundary term

In order to find the potential U(φ) that describes de Sitter spacetime, we need to vary the
Lagrangian in terms of the scalar dilaton field capturing properties of the low dimensional
spacetime:

0 =
∂L

∂φ
− d

dt

∂L

∂φ̇
=
∂L

∂φ
=

∂

∂φ

√−g(φR+ U(φ)) =
√−g

(
R+ U ′(φ)

)

We know that de Sitter spacetime has constant curvature. Accordingly, R is constant. For the
potential follows:

U ′(φ) = −R ⇒ U(φ) = −Rφ+ c

There are two different lines of argument:

1. We know the constant curvature equation for 1+1 dimensional gravity and use for the
potential, that R− 2Λ = 0.

2. We know the action with the potential and can derive the constant curvature equation from
this.

Here, we choose the first line of argument in order to rewrite the potential such that it only depends
on the dilaton field and the cosmological constant. For de Sitter spacetime the cosmological
constant is Λ = 1

L2 where L is the de Sitter radius:

U(φ) = −2Λφ+ c = − 2

L2
φ+ c

In order to get rid of the integration constant, we express the dilaton field as φ = φ0 + φ̄ where
φ0 is a constant satisfying U(φ0) = 0:

U(φ0) =− 2

L2
φ0 + c = 0 ⇒ c =

2

L2
φ0

U(φ) =U(φ0 + φ̄) = U(φ0) + U(φ̄) = U(φ̄)

=− 2

L2
(φ0 + φ̄) + c = − 2

L2
φ0 − 2

L2
φ̄+

2

L2
φ0 = − 2

L2
φ̄
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For the action in the bulk, we get

S =
1

16πG

∫
d2x

√−g
(
φR− 2

L2
φ̄

)
+ boundary term

=
1

16πG

∫
d2x

√−g
(
φ0R+ φ̄R− 2

L2
φ̄

)
+ boundary term

=
1

16πG

∫
d2x

√−gφ0R

︸ ︷︷ ︸
=S0

+
1

16πG

∫
d2x

√−gφ̄
(
R− 2

L2

)

︸ ︷︷ ︸
=S̄

+ boundary term

The resulting S̄ is the same as in [Jac85], eq. (3.4) and [CJM20] eq. (2.4).

A.2. Static coordinates embedded in Minkowski space and on the
cylinder

Here, we derive the direct relation between the settings of de Sitter spacetime as a hyperboloid
embedded in Minkowski spacetime and represented in the conformal setting for static coordinates.
We use T as the conformal time for global coordinates and T̃ as the rescaled time for static
coordinates:

x⃗G(τ, θ) =




ℓ sinh(τ/ℓ)
ℓ cos(θ) cosh(τ/ℓ)
ℓ sin(θ) cosh(τ/ℓ)


 =



ℓ(1 + secT ) tan(T/2)

ℓ cos(θ) sec(T )
ℓ sin(θ) sec(T )


 = x⃗G(T, θ)

x⃗S(r, t) =




√
ℓ2 − r2 sinh(t/ℓ)

±
√
ℓ2 − r2 cosh(t/ℓ)

r


 =



√
ℓ2 − r2(1 + sec T̃ ) tan(T̃ /2)

±
√
ℓ2 − r2 sec(T̃ )

r


 = x⃗S(r, T̃ )

x⃗G(T, θ) =



ℓ(1 + secT ) tan(T/2)

ℓ cos(θ) sec(T )
ℓ sin(θ) sec(T )


 =



√
ℓ2 − r2(1 + sec(T̃ )) tan(T̃ /2)

±
√
ℓ2 − r2 sec(T̃ )

r


 = x⃗S(r, T̃ )

This can be solved for T and θ to express the static coordinates in the conformal setting:

T =± arcsec

(
±
√
r2 − (−1 + r2) sec2 T̃

)

θ =± arccos


± sec(T̃ )√

sec2(T̃ )− r2

r2−1




This can be expressed as

T (θ) = ± arcsec
(
±
√
r2 csc(θ)2

)

This can be inverted to

r =± secT sin θ

T̃ =± arcsec

(
± cos θ√

cos2 T − sin2 θ

)
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A.3. Induced metric of Cauchy hypersurface

A.3. Induced metric of Cauchy hypersurface

We can obtain the metric intrinsic to the Cauchy surface from eq. (2.7) by a restriction of the
metric of the spacetime. This is often referred to as the induced metric of the hypersurface [Poi04].
To do so, we first need the unit normal vectors of Σ (na) and the vectors tangent to the curves
contained in Σ (eba).

na =γ

(
1
0

)
, gabn

anb = gttn
tnt =

(
−1 +

r2

ℓ2

)
γ2 = −1 ⇒ γ =

ℓ√
ℓ2 − r2

na =
ℓ√

ℓ2 − r2

(
1
0

)

nt =gtbn
b =

(
−1 +

r2

ℓ2

)
ℓ√

ℓ2 − r2
= −

√
ℓ2 − r2

l

For the tangent vector, we need the parametric description of the manifold xa and the hypersurface
ya. In the case of the de Sitter static patches, this is almost trivial because the parametrization
ya of the hypersurface t is fixed and r unchanged. We get

eαµ =
∂xα

∂yµ

err =1

etr = ett = ert =0

The induced metric of the hypersurface is obtained as follows:

hµν = gαβe
α
µe

β
ν

For static coordinates it follows, that

hrr = grre
r
re

r
r =

ℓ2

ℓ2 − r2

A.4. Curvature properties in different coordinates

In global coordinates with metric g = −dτ2 + ℓ2 cosh2(τ/ℓ)dθ2 from eq. (2.3) the only non-
vanishing Christoffel symbols are

Γτ
θθ =ℓ cosh(τ/ℓ) sinh(τ/ℓ)

Γθ
τθ =Γθ

θτ = tanh(τ/ℓ)/ℓ

The Ricci tensor and scalar are

Rµν =

(
− 1

ℓ2
0

0 cosh(τ/ℓ)2

)

R =
2

ℓ2

In conformal coordinates with metric g = ℓ2

cos(T )2

(
−dT 2 + dθ2

)
from eq. (2.4) the only non-

vanishing Christoffel symbols are

ΓT
TT = ΓT

θθ = Γθ
Tθ = Γθ

θT = tan(T )
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The Ricci tensor and Ricci scalar are

Rµν =

(
− sec(T )2 0

0 sec(T )

)

R =
2

ℓ2

In static coordinates with metric g = ℓ2

cos(T )2

(
−dT 2 + dθ2

)
from eq. (2.6) the only non-vanishing

Christoffel symbols are

Γt
tr =Γt

rt =
r

−ℓ2 + r2

Γr
tt =

−ℓ2 + r2

ℓ4
r

Γr
rr =

r

ℓ2 − r2

The Ricci tensor and Ricci scalar are

Rµν =

(
− ℓ2+r2

ℓ4
0

0 1
ℓ2−r2

)

R =
2

ℓ2

In FLRW coordinates with metric g = −dt2 + e2t/ℓ
(
dx2 + dy2 + dz2

)
from eq. (2.8) the only

non-vanishing Christoffel symbols are

Γt
ii =

1

ℓ
e2t/ℓ i ∈ {x, y, z}

Γi
it =Γi

ti
1

ℓ

The Ricci tensor and Ricci scalar are

Rtt =− 3

ℓ2

Rii =
3

ℓ2
e2t/ℓ i ∈ {x, y, z}

R =
12

ℓ2

Note that the difference in the scalar curvature only depends on the dimension.
For a d-dimensional de Sitter spacetime the scalar curvature is

R =
d(d− 1)

ℓ2

A.5. Killing fields

This appendix covers all supplementary calculations for deriving the Killing fields in de Sitter
spacetime.

A.5.1. Equivalence of Killing equation with covariant derivatives and in
coordinate form

We want to show that the Killing equation can be expressed in its coordinate form as follows:

ξα;β + ξβ;α = 0 (2.9)
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⇔ gαβ,µξ
µ + gδβξ

δ
,α + gαδξ

δ
,β = 0. (2.10)

First, we write out the covariant derivatives and use that the covariant derivative of the metric
vanishes:

ξα;β =∇βξα = ∇β(gαγξ
γ) = gαγ∇βξ

γ = gαγ

(
∂βξ

γ + Γγ
βδξ

δ
)

it then follows, that

0 =ξα;β + ξβ;α = gαγ

(
∂βξ

γ + Γγ
βδξ

δ
)
+ gβγ

(
∂αξ

γ + Γγ
αδξ

δ
)

=gαγ∂βξ
γ + gβγ∂αξ

γ + gαγΓ
γ
βδξ

δ + gβγΓ
γ
αδξ

δ

=gαγ∂βξ
γ + gβγ∂αξ

γ + ∂δgαβξ
δ

=gαγξ
γ
,β + gβγξ

γ
,α + gαβδξ

δ

Where we used that

gαγΓ
γ
βδξ

δ + gβγΓ
γ
αδξ

δ

=
1

2
gαγg

γλ(∂βgλδ + ∂δgβλ − ∂λgβδ) +
1

2
gβγg

γλ(∂αgλδ + ∂δgαλ − ∂λgαδ)ξ
δ

=
1

2

[
δλα(∂βgλδ + ∂δgβλ − ∂λgβδ) + δλβ(∂αgλδ + ∂δgαλ − ∂λgαδ)

]
ξδ

=
1

2
[∂βgαδ + ∂δgβα − ∂αgβδ + ∂αgβδ + ∂δgαβ − ∂βgαδ]ξ

δ

= (∂δgαβ)ξ
δ

A.5.2. de Sitter Killing fields in conformal coordinates

We have shown above that the Killing eq. (2.9) and (2.10) are equivalent. We plug the metric
into the Killing eq. (2.10) for the different possible choices of indices:

2.11 −∂T
(

ℓ2

cos2 T

)
ξT − ℓ2

cos2 T
∂T ξ

T − ℓ2

cos2 T
∂T ξ

T =0

⇔ −2
ℓ2 tanT

cos2 T
ξT − 2

ℓ2

cos2 T
∂T ξ

T =0

⇔ tanTξT + ∂T ξ
T =0

2.12
ℓ2

cos2 T
∂T ξ

θ − ℓ2

cos2 T
∂θξ

T =0

⇔ ∂T ξ
θ − ∂θξ

T =0

2.13 ∂T

(
ℓ2

cos2 T

)
ξT + 2

ℓ2

cos2 T
∂θξ

θ =0

⇔ 2
ℓ2 tanT

cos2 T
ξT + 2

ℓ2

cos2 T
∂θξ

θ =0

⇔ tanTξT + ∂θξ
θ =0

First we want to solve 2.11:

tanTξT + ∂T ξ
T = 0 ⇒ ξT = c1(θ) cosT

We can use this to plug ξT into 2.12:

∂T ξ
θ − ∂θξ

T = 0 ⇒ ∂T ξ
θ − ∂θ(c1(θ) cosT ) = ∂T ξ

θ − c′1(θ) cosT = 0

⇒ ξθ = c′1(θ) sinT + c2(θ)
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Now look at 2.13 and plug in the results from above:

tanTξT + ∂θξ
θ = 0 ⇒ tanTc1(θ) cosT + ∂θ

(
c′1(θ) sinT + c2(θ)

)
= 0

⇔ sinTc1(θ) + c′′1(θ) sinT + c′2(θ) = 0

⇔ sinT
(
c1(θ) + c′′1(θ)

)
+ c′2(θ) = 0 (A.1)

To solve eq. (A.1) we need to find time independent solutions for c1(θ) and c2(θ). When we
require this equation to be solvable for all times T , this simplifies to

c1(θ) + c′′1(θ) =0 (A.2)
c′2(θ) =0 ⇒ c2(θ) = const

We look at possible solutions to eq. (A.2):

c1(θ) =a cos θ + b sin θ

c2(θ) =c

For the Killing fields, it follows that

ξT (T, θ) =(a cos θ + b sin θ) cosT

ξθ(T, θ) =(−a sin θ + b cos θ) sinT + c

With the parameters a, b, and c, this is a linear combination of the three independent Killing
fields for de Sitter spacetime in conformal coordinates.

A.5.3. de Sitter Killing fields in static coordinates

The Killing equation in coordinate form reads

gαβ,µξ
µ + gδβξ

δ
,α + gαδξ

δ
,β = 0.

We use that the de Sitter metric in static coordinates is diagonal with gtt = −1 + r2

ℓ2
and

grr =
ℓ2

ℓ2−r2
.

α=β=t gtt,tξ
t + gtt,rξ

r + gttξ
t
,t + gttξ

t
,t = gtt,rξ

r + 2gttξ
t
,t = 0

α=β=r grr,tξ
t + grr,rξ

r + grrξ
r
,r + grrξ

r
,r = grr,rξ

r + 2grrξ
r
,r = 0

α=t,β=r gtr,µξ
µ + grrξ

r
,t + gttξ

t
,r = grrξ

r
,t + gttξ

t
,r = 0

when we plug in the metric, we get the following three equations:

2r

ℓ2
ξr + 2

(
−1 +

r2

ℓ2

)
ξt,t = 0 ⇔ rξr + (r2 − ℓ2)ξt,t = 0

2ℓ2r

(ℓ2 − r2)2
ξr + 2

ℓ2

ℓ2 − r2
ξr,r = 0 ⇔ rξr + (ℓ2 − r2)ξr,r = 0 (A.3)

ℓ2

ℓ2 − r2
ξr,t +

(
−1 +

r2

ℓ2

)
ξt,r = 0 ⇔ ℓ2

ℓ2 − r2
ξr,t −

ℓ2 − r2

ℓ2
ξt,r = 0

We can solve (A.3) since it is only dependent on ξr and r with

ξr(t, r) =
√
r2 − ℓ2f(t)

138



A.6. Properties of different trajectories

For the remaining two equations, it follows that

r
√
r2 − ℓ2f(t) + (r2 − ℓ2)ξt,t = 0 ⇔ rf(t) +

√
r2 − ℓ2ξt,t = 0

ℓ2√
r2 − ℓ2

f ′(t) +
ℓ2 − r2

ℓ2
ξt,r = 0 ⇔ ℓ2√

r2 − ℓ2
f ′(t) +

ℓ2 − r2

ℓ2
ξt,r = 0

We obtain the following general solution of a Killing field:

ξt(t, r) =c− ℓ2r√
r2 − ℓ2

fab(t)

ξr(t, r) =
√
r2 − ℓ2fab(t)

with fab(t) =ae
t/ℓ + be−t/ℓ

A.6. Properties of different trajectories

In this section, we further characterize the different properties of the trajectories discussed in
section 2.4.

A.6.1. Null geodesics: relation between embedding coordinates and parameters

Here we derive an explicit expression for the parameters s, u, and v defining a null geodesic in
terms of the embedding coordinates of the null geodesic (we consider both anticlockwise pointing
null geodesics xac(s) and clockwise pointing null geodesics xc(s)):

xac(s) =




s
u+ vs
v − us


 ⇒

xac,0 = s
xac,1 = u+ vs
xac,2 = v − us

Hence we find
u =

xac,1 − xac,0xac,2

1 + x2ac,0
, and v =

xac,2 + xac,0xac,1

1 + x2ac,0
.

Similarly, for clockwise pointing null geodesics

xc(s) =




s
u− vs
v + us


 ⇒

xc,0 = s
xc,1 = u− vs
xc,2 = v + us

we have
u =

xc,1 + xc,0xc,2

1 + x2c,0
, and v =

xc,2 − xc,0xc,1

1 + x2c,0
.

A.6.2. Zero momentum geodesics

Here, show that the following family of trajectories with fixed angles are geodesics:
(
τ(s)
θ(s)

)
=

(
τ(s)
θj

)

In order to show this, we need to show that this is a valid solution to the geodesic equation.
To calculate the geodesic equation in global coordinates, we need the non-vanishing Christoffel
symbols in global coordinates:

Γτ
θθ =ℓ cosh(τ/ℓ) sinh(τ/ℓ)
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Γθ
τθ =Γθ

θτ =
1

ℓ
tanh(τ/ℓ)

We can write down the geodesic equation for the temporal variable τ

d2τ(s)

ds2
+ Γτ

θθ
dθ(s)

ds

dθ(s)

ds
= 0 ⇒ τ ′′(s) + ℓ cosh(τ/ℓ) sinh(τ/ℓ)

(
θ′(s)

)2
= 0 (A.4)

and the spatial variable θ

d2θ(s)

ds2
+ 2Γθ

τθ
dθ(s)

ds

dτ(s)

ds
= 0 ⇒ d2θ(s)

ds2
+

2

ℓ
tanh(τ/ℓ)

dθ(s)

ds

dτ(s)

ds
= 0 (A.5)

It can directly be shown that (2.15) is a geodesic by plugging it into the geodesic equations:

(A.4) =τ ′′(s) + ℓ cosh(τ/ℓ) sinh(τ/ℓ)(0)2 = τ ′′(s) = 0

(A.5) =0 +
2

ℓ
tanh(τ/ℓ) · 0 · τ ′(s) = 0

This is a valid geodesic for any linear function for τ :

τ(s) = λ1s+ λ2

As expected, the proper acceleration along these geodesics vanishes. To see this we need the
non-vanishing Christoffel symbols in global coordinates which are Γτ

θθ = ℓ cosh(τ/ℓ) sinh(τ/ℓ)
and Γθ

τθ = Γθ
θτ = tanh(τ/ℓ)/ℓ.

uµ =
∂xµ

∂τ
=

(
λ1
0

)

aµ =
∂uµ

∂τ
+ Γµ

λνu
λuν = Γµ

λνu
λuν

aτ =Γτ
θθu

θuθ = 0

aθ =2Γθ
τθu

τuθ = 0

|a|2 =aµaµ = gµνa
µaν = 0

A.6.3. Proper acceleration of Killing trajectories

To calculate the geodesic equation in static coordinates (2.5) we need the non-vanishing Christoffel
symbols:

Γt
rt =Γt

tr =
r

r2 − ℓ2

Γr
tt =

r

ℓ4
(r2 − ℓ2)

Γr
rr =− r

r2 − ℓ2

We can write down the geodesic equation for the temporal coordinate t

d2t(s)

ds2
+ 2Γt

tr
dt(s)

ds

dr(s)

ds
= 0

⇒ t′′(s) + 2
r

r2 − ℓ2
t′(s)r′(s) = 0 (A.6)

and the spatial coordinate r

d2r(s)

ds2
+ Γr

tt
dt(s)

ds

dt(s)

ds
+ Γr

rr
dr(s)

ds

dr(s)

ds
= 0
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⇒ r′′(s) +
r

ℓ4
(r2 − ℓ2)to(s)2 − r

r2 − ℓ2
r′(s)2 = 0 (A.7)

When we plug in the trajectory (2.16) with a constant radial coordinate into the geodesic equation,
we get the following differential equation:

(A.6) =t′′(s) + 2
ri

r2i − ℓ2
t′(s) · 0 = t′′(s) = 0

(A.7) =0 +
ri
ℓ4
(r2i − ℓ2)

(
t′(s)

)2 − ri
r2i − ℓ2

(0)2 =
ri
ℓ4
(r2i − ℓ2)

(
t′(s)

)2
= 0

The only trajectory which yields a valid geodesic is the trajectory for ri = 0.

This family of trajectories is not (in general) a geodesic, as the proper acceleration of a particle
following this trajectory does not vanish for all trajectories. We consider the following trajectory,
where we interpret the time component to be the coordinate time, which we denote as s:

xr(s) =

(
t(s)
r(s)

)
=

(
s
ri

)

First, we calculate the proper time of the trajectory where the tangent vector to this trajectory is

Tµ =

(
1
0

)
:

τ =

∫ √
−gabT aT bds =

∫ √−gttds =
∫ √

1− r2i
ℓ2
ds =

√
1− r2i

ℓ2
s (A.8)

The trajectory with constant r = ri expressed with its proper time τ is

xr(τ) =

(
τ/
√

1− r2i /ℓ
2

ri

)

We can now directly calculate the proper velocity and acceleration:

uµ =∂τx
µ =

(
1/
√

1− r2i /ℓ
2

0

)

aµ =∂τu
µ + Γµ

λνu
λuν

at =2Γt
tru

tur = 0

ar =Γr
ttu

tut + Γr
rru

rur =
ri
ℓ4
(r2i − ℓ2)

1

1− r2i /ℓ
2
= − ri

ℓ2

For the absolute value of the proper acceleration, it follows that

|a|2(r) =aµaµ = gµνa
µaν = grra

rar =
ℓ2

ℓ2 − r2
r2

ℓ4
(A.9)

We can look at the proper acceleration of the same set of trajectories from the embedding space
(where all Christoffel symbols vanish identically):

xµi (τ) =




√
ℓ2 − r2i sinh(τ/

√
ℓ2 − r2i )√

ℓ2 − r2i cosh(τ/
√
ℓ2 − r2i )

ri



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uµi (τ) =



cosh(τ/

√
ℓ2 − r2i )

sinh(τ/
√
ℓ2 − r2i )

0




aµi (τ) =
1√

ℓ2 − r2i



sinh(τ/

√
ℓ2 − r2i )

cosh(τ/
√
ℓ2 − r2i )

0




aµa
µ =ηµνa

µ
i a

ν
i =

1

ℓ2 − r2i
(A.10)
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A p p e n d i x B

Quantization of scalar fields

B.1. Principle of least action

Here, we derive eq. (3.2) using the principle of least action.

We have the action S =
∫
dnL with the generalized Lagrangian

L =
1

2

√−g
(
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

)

From the variational principle, it follows (as can be found in any standard literature)

0 = δS =

∫
dnδL =

∫
dn
[
∂L
∂ϕ(x)

− ∂µ
∂L
∂(∂µ)

]
δϕ(x)

We can plug in our Lagrangian and obtain the following equation of motion:

0 =
∂L
∂ϕ(x)

− ∂µ
∂L
∂(∂µ)

=
√−g

(
m2ϕ+ ξRϕ

)
− ∂µ

[√−ggµν∂νϕ
]

=−√−g
[

1√−g∂µ
(√−g∂µ

)
−m2 − ξR

]
ϕ(x)

with the identity for the d’Alembert operator shown in appendix B.2

□ = ∇µ∇µ =
1√−g∂µ

(√−g∂µ
)

it directly follows
[
∇µ∇µ − (m2 + ξR)

]
ϕ(x) = 0

B.2. d’Alembert operator in curved spacetime

We want to show that the two expressions for the d’Alembert operator in eq. (3.3) are equivalent:

□ =gµν∇µ∇ν = gµν∇µ∂ν = gµν∂µ∂ν − gµνΓλ
µν∂λ

=gµν∂µ∂ν − gµν
1

2
gλκ(∂µgκν + ∂νgµκ − ∂κgµν)∂λ

=gµν∂µ∂ν −
gµνgλκ

2
(gκν,µ∂λ + gµκ,ν∂λ − gµν,κ∂λ)
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=gµν∂µ∂ν +
1

2
gµνgλκ(−2gµκ,ν∂λ + gµν,κ∂λ)

=gµν∂µ∂ν − gµνgλκgµκ,ν∂λ +
1

2
gµνgλκgµν,κ∂λ

=gµν∂µ∂ν + (∂νg
νλ)∂λ +

1

2
gλκgµν(∂κgµν)∂λ

with ∂αgβγ = gβγ,α.

In order to simplify the second expression we use g = det gµν and ∂µg = ggab∂µgab:

∂µ
√−g =− ∂µg

2
√−g = −gg

σρ∂µgσρ
2
√−g

=
−g

2
√−g g

σρ∂µgσρ =
1

2

√−ggσρ∂µgσρ

we can plug this in and get

□ =
1√−g∂µ

(√−ggµν∂ν
)

=
(∂µ

√−g)gµν√−g ∂ν +

√−g(∂µgµν)√−g ∂ν +

√−ggµν√−g ∂µ∂ν

=
1

2
(gσρ∂µgσρ)g

µν∂ν + (∂µg
µν)∂ν + gµν∂µ∂ν

This directly results in the equality to be shown.

B.3. Bogoliubov transformation from Rindler to Unruh modes

We start with the expansion of the scalar field in Rindler modes χR,L
k . We plug in the inverted

relations from eq. (3.12) to translate the expression to Unruh modes:

ϕ̂ =

∫ ∞

−∞
dk
(
b̂Lkχ

L
k + (b̂Lk )

†(χL
k )

∗ + b̂Rk χ
R
k + (b̂Rk )

†(χR
k )

∗
)

=

∫ ∞

−∞
dk

coth(πω/a)− 1

2

(
b̂Rk e

2πω/aϕ̃
(1)
k + (b̂Rk )

†e2πω/a(ϕ̃
(1)
k )∗ + b̂Lk e

πω/aϕ̃
(2)
k

+(b̂Lk )
†eπω/a(ϕ̃

(2)
k )∗ − (b̂Lk )

†eπω/aϕ̃
(1)
−k − b̂Lk e

πω/a(ϕ̃
(1)
−k)

∗ − (b̂Rk )
†ϕ̃

(2)
−k − b̂Rk (ϕ̃

(2)
−k)

∗
)

=

∫ ∞

−∞
dk

coth(πω/1)− 1

2

{(
b̂Rk e

2πω/a − (b̂L−k)
†eπω/a

)
ϕ̃
(1)
k +

(
b̂Lk e

πω/a − (b̂R−k)
†
)
ϕ̃
(2)
k

+
(
(b̂Rk )

†e2πω/a − b̂L−ke
πω/a

)
(ϕ̃

(1)
k )∗ +

(
(b̂Lk )

†eπω/a − b̂R−k

)
(ϕ̃

(2)
k )∗

}

With the following relation, we can express the Unruh annihilation operators with Rindler creation
and annihilation operators:

d̂
(1)
k =

1

2 sinh(πω/a)

(
b̂Rk e

πω/a − (b̂L−k)
†
)

d̂
(2)
k =

1

2 sinh(πω/a)

(
b̂Lk − e−πω/a(b̂L−k)

†
)
.

The relation between Unruh and Rindler creation operators can be inverted as follows:

b̂Lk =
1√

2 sinh(πω/a)

(
eπω/(2a)d̂

(2)
k + e−πω/2a(d̂

(1)
k )†

)
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b̂Rk =
1√

2 sinh(πω/a)

(
eπω/(2a)d̂

(1)
k + e−πω/2a(d̂

(2)
k )†

)
.

We can express this in matrix form as follows:

(
b̂Rk

(b̂Lk )
†

)
=

1√
2 sinh(πω/a)

(
eπω/(2a) e−πω/(2a)

e−πω/(2a) eπω/(2a)

)(
d̂
(1)
k

(d̂
(2)
k )†

)

=

(
cosh r sinh r
sinh r cosh r

)(
d̂
(1)
k

(d̂
(2)
k )†

)

where the auxiliary variable r and the frequency ω are related as

cosh r =
eπω/(2a)√

2 sinh(πω/a)
=

eπω/(2a)√
eπω/a − e−πω/a

=

√
eπω/a

eπω/a − e−πω/a

sinh r =
e−πω/(2a)

√
2 sinh(πω/a)

=
e−πω/(2a)

√
eπω/a − e−πω/a

=

√
e−πω/a

eπω/a − e−πω/a

This satisfies the relation cosh2 r − sinh2 r = 1. The inverse Bogoliubov transformation is
(

d̂
(1)
k

(d̂
(2)
k )†

)
=

(
cosh r − sinh r
− sinh r cosh r

)(
b̂Rk

(b̂Lk )
†

)

B.4. Minkowski vacuum state as thermal state perceived by
Rindler observer

This derivation follows [CHM08]. We know that the particle number measured in the left and
right Rindler wedge is identical such that we can write (see eq. (3.13)):

(
(b̂Lk )

†b̂Lk − (b̂Rk )
†b̂Rk

)
|ΩM ⟩ = 0

Since this is the case for all frequencies k, we know that the Minkowski vacuum state is proportional
to the following expression:

|ΩM ⟩ ∝
∏

k

∞∑

nk

Knk

n!

(
(b̂Rk )

†(b̂Lk )
†
)nk |ΩR⟩

We can derive the relation Knk
has to satisfy knowing that the Unruh modes annihilate the

Minkowski vacuum state:

d̂
(1)
k |ΩM ⟩ = 1

2 sinh(πω/a)

(
b̂Rk e

πω/a − (b̂L−k)
†
)
|ΩM ⟩ = 0

d̂
(2)
k |ΩM ⟩ = 1

2 sinh(πω/a)

(
b̂Lk − e−πω/a(b̂L−k)

†
)
|ΩM ⟩ = 0

From this, we directly get the recursion formula

Kni+1 − e−πωi/aKni = 0

from which we can derive

Kni = e−πωini/aK0
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and with that, the expression of the Minkowski vacuum in Rindler modes:

|ΩM ⟩ =
∏

k


Ci

∞∑

nk=0

e−πnkωk/a

nk!

(
(b̂Rk )

†(b̂Lk )
†
)nk


 |ΩR⟩

with the normalization constant Ci =
√

1− e−2πωk/a. This can also be expressed as follows:

|ΩM ⟩ =
∏

k



√

1− e−2πωk/a

∞∑

nk=0

e−πnkωk/a

nk!

(
(b̂Rk )

†(b̂Lk )
†
)nk


 |ΩR⟩

=
∏

k



√

1− e−2πωk/a

∞∑

nk=0

e−πnkωk/a |nk, R⟩ ⊗ |nk, L⟩




=
∏

k

1

cosh r

∞∑

m=0

tanhm r |ΩL
R⟩ |ΩR

R⟩

B.5. Field equation in spatially flat FLRW coordinates

This appendix section is a collection of proofs to give a detailed description and derivation of the
intermediate steps in section 3.3.
Proof 1: d’Alembert operator in spatially flat FLRW spacetime, eq. (3.16)

□ϕ =gµν
(
∂µ∂νϕ− Γλ

µν∂λϕ
)

=∂µ∂µϕ−
∑

i∈{x,y,z}

giiΓt
ii∂tϕ− 2

∑

i∈{x,y,z}

gitΓi
ti∂tϕ

=∂µ∂µϕ−
3∑

i=1

(a−2)aȧ∂tϕ

=∂µ∂µϕ− 3
ȧ

a
∂tϕ

=
(
−∂2t + a−2(∂2x + ∂2y + ∂2z )

)
ϕ− 3

ȧ

a
∂tϕ

=

(
−∂2t − 3

ȧ(t)

a(t)
∂t + a(t)−2(∂2x + ∂2y + ∂2z )

)
ϕ

=− a−3∂t
(
a3∂tϕ

)
+ a−2

∑

i∈{x,y,z}

∂2i ϕ

Proof 2: Transformation of metric to conformal time, eq. (3.19)

We want to introduce the conformal time

η(t) =

∫ t dt′

a(t′)
.

to transform the spatially flat FLRW metric:

ds2 =− dt2 + a(t)2
(
dx2 + dy2 + dz2

)

dη
dt

= d
dt

∫ t dt′
a(t′)=

1
a(t)

⇔ dt=a(t)dη
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=− a(t)2dη2 + a(t)2
(
dx2 + dy2 + dz2

)
= a(η)2

(
−dη2 + dx2 + dy2 + dz2

)

Proof 3: Transformation of field equation using conformal time, eq. (3.20)

We now need to calculate the coordinate transformation from physical to conformal time (3.18)
of the above field eq. (3.17). To do this, we first evaluate the temporal derivatives of the scalar
field and the scale factor. We use the shortened notation that ∂ηa = a′:

ϕ̇ =∂tϕ =
∂η

∂t
∂ηϕ =

1

a
∂ηϕ

ϕ̈ =∂2t ϕ =

(
∂η

∂t
∂η

)(
∂η

∂t
∂η

)
ϕ =

(
1

a
∂η

)(
1

a
∂η

)
ϕ =

(
1

a2
∂2η −

a′

a3
∂η

)
ϕ

ȧ =∂ta =
1

a
∂ηa =

a′

a

ä =∂2t a =

(
1

a2
∂2η −

a′

a3
∂η

)
a =

1

a

(
a′′

a
− (a′)2

a2

)

Plug everything in:

−a−3∂t
(
a3∂tϕ(t, x⃗)

)
+ a−2(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
ȧ2

a2
+
ä

a

)
ϕ(t, x⃗) = 0

−∂2t ϕ(t, x⃗)− a−3
(
3a2∂ta

)
∂tϕ(t, x⃗) + a−2(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
ȧ2

a2
+
ä

a

)
ϕ(t, x⃗) = 0

[
− 1

a2
∂2η +

a′

a3
∂η + a−2(∂2x + ∂2y + ∂2z )− 3

a′

a2
1

a
∂η −

(a′)2

a4
− 1

a2

(
a′′

a
− (a′)2

a2

)]
ϕ = 0

1

a2

[
−∂2η +

a′

a
∂η + (∂2x + ∂2y + ∂2z )− 3

a′

a
∂η −

(a′)2

a2
− a′′

a
+

(a′)2

a2

]
ϕ = 0

1

a2

[
−∂2η − 2

a′

a
∂η + (∂2x + ∂2y + ∂2z )−

a′′

a

]
ϕ = 0

Proof 4: Conformal transformation of the field equation from eq. (3.21)

Due to the conformal transformation, we can introduce the following relation between the scalar
field in FLRW spacetime ϕ and Minkowski spacetime χ:

χ(x) =a(η)ϕ(x)

This changes the equation of motion as follows (where both χ and a depend on η - we drop the
arguments to have things less cluttered):

∂ηϕ = ∂η
χ

a
=
χ′

a
− χa′

a2

∂2ηϕ = ∂η

(
χ′

a
− χa′

a2

)
=
χ′′

a
− 2

χ′a′

a2
+ 2

a′2

a3
χ− a′′

a2
χ

We start with the field equation from eq. (3.20)

1

a2

[
−∂2η − 2

a′

a
∂η + (∂2x + ∂2y + ∂2z )−

a′′

a

]
ϕ = 0
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⇔ 1

a2

[
−
(
χ′′

a
− 2

χ′a′

a2
+ 2

a′2

a3
χ− a′′

a2
χ

)
− 2

a′

a

(
χ′

a
− χa′

a2

)
+ (∂2x + ∂2y + ∂2z )

χ

a
− a′′

a

χ

a

]
= 0

⇔ 1

a2

[
−χ

′′

a
+ (∂2x + ∂2y + ∂2z )

χ

a

]
= 0

⇔ 1

a3
(
−∂2η + ∂2x + ∂2y + ∂2z

)
χ = 0

Accordingly, the axillary field χ is a solution to the field equation in Minkowski spacetime.

Proof 5: Equation of motion of massive scalar field (dS, FLRW coordinates), eq. (3.22)

We start with the field equation from eq. (3.2) and use the expanded d’Alembert operator derived
earlier and the scale factor a(t) = exp(t/ℓ) (where we used ∂ta = ȧ = a/ℓ, ä = a/ℓ2):

(
□− (m2 + ξR)

)
ϕ(t, x⃗) = 0

− a−3∂t
(
a3∂tϕ(t, x⃗)

)
+ a−2(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
m2 + ξR

)
ϕ(t, x⃗) = 0

− ∂2t ϕ(t, x⃗)− a−3
(
3a2ȧ

)
∂tϕ(t, x⃗)︸ ︷︷ ︸

(i)

+ a−2(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)− ( m2 +
ȧ2

a2
+
ä

a︸ ︷︷ ︸
(ii)

)ϕ(t, x⃗) = 0

(i) = a−3
(
3a2ȧ

)
∂tϕ(t, x⃗) = exp(−3t/ℓ)(3 exp(2t/ℓ) exp(t/ℓ)/ℓ)∂tϕ(t, x⃗) =

3

ℓ
∂tϕ(t, x⃗)

(ii) =
ȧ2

a2
+
ä

a
=

(exp(t/ℓ)/ℓ)2

exp(t/ℓ)2
+

exp(t/ℓ)/ℓ2

exp(t/ℓ)
=

2

ℓ2

⇒ − ∂2t ϕ(t, x⃗)−
3

ℓ
∂tϕ(t, x⃗) + e−2t/ℓ(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
m2 +

2

ℓ2

)
ϕ(t, x⃗) = 0

where we have again chosen ξ = 1
6 which results in ξR = 2

ℓ2
.

Proof 6: Equation of motion for massive scalar field, derive Bessel eq. (3.24)

We start with the mode function from eq. (3.22)

−∂2t ϕ(t, x⃗)−
3

ℓ
∂tϕ(t, x⃗) + e−2t/ℓ(∂2x + ∂2y + ∂2z )ϕ(t, x⃗)−

(
m2 +

2

ℓ2

)
ϕ(t, x⃗) = 0

We make the following ansatz for the mode function with the scale factor a(t) = exp(t/ℓ):

f
k⃗
(t, x⃗) =

1

(2π)3
√
2e3t/ℓ

exp
[
i⃗k · x⃗

]
vk(t)

We first look at the spatial derivatives to reduce this to a differential equation only dependent on
time. These only act on the exponential function as ∂2xei⃗k·x⃗ = −k2x which leads to:

(∂2x + ∂2y + ∂2z )fk⃗ =− k2xfk⃗ − k2yfk⃗ − k2zfk⃗ = −k2f
k⃗

For the equation of motion, it directly follows

−∂2t fk⃗(t, x⃗)−
3

ℓ
∂tfk⃗(t, x⃗)− e−2t/ℓk2f

k⃗
(t, x⃗)−

(
m2 +

2

ℓ2

)
f
k⃗
(t, x⃗) = 0

We then introduce a new time coordinate:

τ = kℓ exp(−t/ℓ) ⇔ t = ℓ log

(
kℓ

τ

)

148



B.5. Field equation in spatially flat FLRW coordinates

The equation of motion after the substitution of the new time coordinate looks as follows:
[(

−τ
2

ℓ2
∂2τ −

τ

ℓ2
∂τ

)
+ 3

τ

ℓ2
∂τ −

τ2

ℓ2
+

(
2

ℓ2
−m2

)]
f
k⃗
(τ, x⃗) =0

⇔
[
−τ

2

ℓ2
∂2τ + 2

τ

ℓ2
∂τ −

τ2

ℓ2
+

(
2

ℓ2
−m2

)]
f
k⃗
(τ, x⃗) =0

When we plug in the mode function with the new time variable, we need to consider the derivatives
(two factors in the mode function are time-dependent):

f
k⃗
(τ, x⃗) =

1

(2π)3
√
2
(
kℓ
τ

)3 exp
[
i⃗k · x⃗

]
vk(τ) = c

k⃗
(x⃗)τ3/2vk(τ)

∂τfk⃗(τ, x⃗) =ck⃗(x⃗)

(
τ3/2∂τ +

3

2

√
τ

)
vk(τ)

∂2τfk⃗(τ, x⃗) =ck⃗(x⃗)

(
τ3/2∂2τ + 3

√
τ∂τ +

3

4
√
τ

)
vk(τ)

We can plug this in and obtain
[
−τ

2

ℓ2
c
k⃗
(x⃗)

(
τ3/2∂2τ + 3

√
τ∂τ +

3

4
√
τ

)
+ 2

τ

ℓ2
c
k⃗
(x⃗)

(
τ3/2∂τ +

3

2

√
τ

)

−τ
2

ℓ2
c
k⃗
(x⃗)τ3/2 +

(
2

ℓ2
−m2

)
c
k⃗
(x⃗)τ3/2

]
vk(τ) = 0

⇔
[
−τ2

(
τ3/2∂2τ + 3

√
τ∂τ +

3

4
√
τ

)
+ 2τ

(
τ3/2∂τ +

3

2

√
τ

)
− τ2τ3/2 +

(
2− ℓ2m2

)
τ3/2

]
vk(τ) = 0

⇔
[
τ2∂2τ + τ3∂τ − 2τ∂τ +

3

4
− 3 + τ2 − 2 + ℓ2m2

]
vk(τ) = 0

⇔
[
τ2∂2τ + τ∂τ + τ2 −

(
17

4
− ℓ2m2

)]
vk(τ) = 0

This can be identified with the Bessel equation

τ2∂τvk(τ) + τ∂τvk(τ) + (τ2 − ν2)vk(τ) = 0

with

ν =

√
17

4
−m2ℓ2

Proof 7: Normalization of mode function in eq. (3.25)

f
k⃗
(t, x⃗) =

exp
[
i⃗k · x⃗

]

(2π)3
√
2e3t/ℓ

(akJν(kℓ exp(−t/ℓ)) + bkYν(kℓ exp(−t/ℓ)))

vk(t) =akJν(kℓ exp(−t/ℓ)) + bkYν(kℓ exp(−t/ℓ))
vk(τ) =akJν(τ) + bkYν(τ)

with τ = kℓe−t/ℓ. In order to find conditions for the parameters ak and bk, we need to calculate
the Wronskian

W [vk, v
∗
k] = v′kv

∗
k − vk(v

∗
k)

′ = 2i Im(v′kv
∗
k)
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where the normalization condition imposes

Im(v′kv
∗
k) = −1

where′ denotes the derivative with respect to t. The Bessel functions have the properties [AS64]

J∗
n(x) =Jn(x

∗)

J ′
n(x) =Jn−1(x)− Jn+1(x)

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x)

W [vk, v
∗
k] =v

′
kv

∗
k − vk(v

∗
k)

′ =
∂τ

∂t
(∂τvk)v

∗
k − vk

∂τ

∂t
(∂τv

∗
k)

∂τ

∂t
= −ke−t/ℓ = −τ

ℓ

=− τ

ℓ
(∂τvk)v

∗
k +

τ

ℓ
vk(∂τv

∗
k)

=
τ

ℓ

[
(akJν(τ) + bkYν(τ))

(
a∗kJ

′
ν(τ) + b∗kY

′
ν(τ)

)
−
(
akJ

′
ν(τ) + bkY

′
ν(τ)

)
(a∗kJν(τ) + b∗kYν(τ))

]

=− τ

ℓ
(akb

∗
k − a∗kbk)

(
J ′
ν(τ)Yν(τ)− Jν(τ)Y

′
ν(τ)

)

=− τ

ℓ
(akb

∗
k − a∗kbk)

(
Jν−1(τ)Yν(τ)−

2ν

τ
Jν(τ)Yν(τ) + Jν−1(τ)Yν(τ)− Jν(τ)Yν−1(τ)

+
2ν

τ
Jν(τ)Yν(τ)− Jν(τ)Yν−1(τ)

)

=− τ

ℓ
(akb

∗
k − a∗kbk)(Jν−1(τ)Yν(τ)− Jν(τ)Yν−1(τ))

With the identity of Bessel functions

Jn(x)Yn−n(x)− Jn−n(x)Yn(x) =
2

πx

this simplifies to the following expression

W [vk, v
∗
k] =− τ

ℓ
(akb

∗
k − a∗kbk)

2

πτ
= − 2

πℓ
(akb

∗
k − a∗kbk) = −2i

With the normalization condition, we obtain the following relation for the parameters ak and bk:

akb
∗
k − a∗kbk = iπℓ (B.1)

Proof 8: Asymptotic properties Bessel functions

The Bessel functions of the first and second kind have the following asymptotic properties [AS64]:

Jn(x) ∼
1

Γ(n+ 1)

(x
2

)n
x→ 0, n ̸= −1,−2, . . .

Yn(x) ∼ −Γ(n)

π

(x
2

)−n
x → 0, Re(n) > 0

In the following, we will briefly study the asymptotic form of these mode equations. We focus
on the asymptotic behavior of the Bessel functions vk(τ). For large times t → ∞, the time
coordinate τ , which is the argument of the Bessel function, approaches 0. We are interested in
the time-dependent part of the mode functions

vk(τ) =akJν(τ) + bkYν(τ)
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B.6. Euclidean modes in global coordinates

In the limiting case τ → 0 we can neglect Jν(τ) and get the following late time asymptotic
behaviour:

vk(τ) ∼
bk
π
2ντ−νΓ(ν)

As these modes do not oscillate, the regular notion of a particle is not well-defined.
We look at the asymptotic behavior at early times, which is captured by τ → ∞:

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

3

)
|x| → ∞

Yn(x) ∼
√

2

πx
sin
(
x− nπ

2
− π

3

)
|x| → ∞

For the mode function, it follows that

vk(τ) =ak

√
2

πτ
cos
(
τ − νπ

2
− π

3

)
+ bk

√
2

πτ
sin
(
τ − νπ

2
− π

3

)

This can be further simplified by considering the physical wavelength: In the limit of early times
(τ → ∞), the physical wavelength

λ ∼ a(τ) ∼ kℓ

τ

is much smaller than the curvature scale ℓ, which is why mode functions are almost not affected
by the curvature. This is why they should behave as they do in flat spacetime. To achieve this,
we choose

bk = −iak

With the results from the normalization condition from eq. (B.1), we get

akb
∗
k − a∗kbk = akia

∗
k + a∗kiak = 2i|ak|2 = iπℓ ⇒ ak =

√
πℓ

2

With this, we get the following mode functions (up to first order):

vk(τ) ∼
√
πℓ

2

√
2

πτ

[
cos
(
τ − νπ

2
− π

3

)
+ i sin

(
τ − νπ

2
− π

3

)]

∼
√
ℓ

τ
exp
[
iτ − i

νπ

2
− i

π

3

]

With the scale factor a(τ) = kℓ
τ we get the form familiar from Minkowski spacetime up to a phase

factor:

vk(τ) ∼
1√
a(τ)k

exp
[
iτ − i

νπ

2
− i

π

3

]

B.6. Euclidean modes in global coordinates

In global coordinates, the field equation is

(□−m2)ϕ(τ, θ) =

(
ℓ∂2τ + tanh(τ/ℓ)∂τ +

∂2θ
cosh(τ/ℓ)2

+ ℓm2

)
ϕ(τ, θ) = 0
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With the product ansatz ϕ(τ, θ) = f(τ)h(θ), we get the following decoupled and simplified form
of the differential equation:

ℓ cosh(τ/ℓ)2

f(τ)

(
ℓm2 + tanh(τ/ℓ)∂τ + ℓ∂2τ

)
f(τ)− ∂2θh(θ)

h(θ)
= 0

In a more general case considering higher dimensions, the function h(θ) would be the spherical
harmonic functions on a (d− 1) dimensional sphere. Since this is only a circle, in our case, this
reduces to Fourier modes (where ω is a non-negative integer).

h(θ) = e−iωθ

which satisfy the following relation:

∂2θh(θ) = −ω2h(θ)

For the temporal part of the equation of motion, it follows that
(
ℓ2∂2τ + ℓ tanh(τ/ℓ)∂τ + ℓ2m2 +

ω2

cosh(τ/ℓ)2

)
f(τ) = 0

we perform the substitution σ = −e2τ/ℓ and get the following equation of motion:

2σ

(
2σf ′′(σ) + f ′(σ)

(
tanh

(
log(−σ)

2

)
+ 2

))
+ f(σ)

(
ℓ2m2 − 4σω2

(σ − 1)2

)
= 0

We can perform another substitution to the variable z = 1− σ and obtain:

2(z − 1)
(
2(z − 1)zf ′′(z) + (3z − 2)f ′(z)

)
+ f(z)

(
ℓ2m2z +

4ω2(z − 1)

z

)
= 0

This is solved by the two linearly independent solutions involving the Hypergeometric functions
2F1(a, b, c, z):

f1(z) =
c2(−1)2ωzω(z − 1)

1
4(

√
1−4ℓ2m2+2)

2F1

(
ω + 1

2 , ω + 1
2

√
1− 4ℓ2m2 + 1

2 ; 2ω + 1; z
)

4
√
1− z

f2(z) =
c1z

−ω(z − 1)
1
4(

√
1−4ℓ2m2+2)

2F1

(
1
2

(
−2ω +

√
1− 4ℓ2m2 + 1

)
, 12 − ω; 1− 2ω; z

)

4
√
1− z

We want to choose a solution that is analytic on the continuation of the Euclidean sphere. For
this, we look at the Euclidean pole, which is at z = 0− iε. We consider the easiest case where
ℓ = 1, m = 0 and ω = 1 and get the following behaviour:

f1(−iε)
ε→0−→ 0

f2(−iε)
ε→0−→ ∞

We choose the solution f1(z) as the other one is singular at the Euclidean pole. The resulting
mode functions are

f(τ) =
(−1)2ω

(
e

2τ
ℓ

) 1
4(

√
1−4ℓ2m2+2)(

e
2τ
ℓ + 1

)ω

4

√
−e 2τ

ℓ
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· 2F1

(
ω +

1

2
, ω +

1

2

√
1− 4ℓ2m2 +

1

2
; 2ω + 1; 1 + e

2τ
ℓ

)

=(−1)2ω−
1
4 e

1
2(2+

√
1−4ℓ2m2−2ω)τ/ℓ coshω

(τ
ℓ

)

· 2F1

(
ω +

1

2
, ω +

1

2

√
1− 4ℓ2m2 +

1

2
; 2ω + 1; 1 + e

2τ
ℓ

)

The normalization is fixed by demanding that these modes are orthonormal with respect to
the Klein-Gordon inner product. The inner product is easiest evaluated on the temporal past
boundary. The exact normalization is not necessary in this context, more details can be found in
[BMS01]. The following identity from [AS64, (15.1.20)] is useful

2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

B.7. Quantum scalar field in a static patch

The field equation from eq. (3.26) has been solved in the literature before numerous times with
slight changes in the definition of coordinates and dimensions [LP78, Pol89a, Pol89b, BMS01].
We make the following product ansatz for the positive frequency mode functions:

ϕω(r, t) = fω(r)e
−iωt

With this ansatz, we obtain the following radial de Sitter field equation
(
− ℓ2

ℓ2 − r2
(−iω)2 − 2r

ℓ2
∂r +

(
1− r2

ℓ2

)
∂2r −m2

)
fω(r) =0

((
1− r2

ℓ2

)
∂2r −

2r

ℓ2
∂r +

ℓ2

ℓ2 − r2
ω2 −m2

)
fω(r) =0

with the substitution x = r
ℓ we can identify this with the associated Legendre differential equation

((
1− x2

)
∂2x − 2x∂x +

ℓ2

1− x2
ω2 − ℓ2m2

)
fω(x) =0

This equation can be identified with the associated Legendre differential equation
[(
1− x2

) d2
dx2

− 2x
d

dx
+

(
l(l + 1)− n2

1− x2

)]
Pn
l (x) = 0

The equation of motion is solved by Legendre functions Pn
l (r/ℓ) and Qn

l (r/ℓ) where the orders l
and n have to satisfy

l =−
(
1

2
±
√

1

4
− ℓ2m2

)
= −h±

n =± iℓω

Proof 9: Relation associated Legendre equation and Hypergeometric equation

The associated Legendre equation is
[(
1− x2

) d2
dx2

− 2x
d

dx
+

(
λ(λ+ 1)− µ2

1− x2

)]
f(x) = 0
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, which is solved by the first (or second) order Legendre function f(x) = Pµ
λ (x). We perform the

substitution

f(x) = (1− x2)µ/2w(x2)

, which gives us the following differential equation:

(
1− x2

)µ/2
[
4
(
x2 − 1

)
x2

d2

dx2
+
(
(4µ+ 6)x2 − 2

) d
dx

− (λ− µ)(λ+ µ+ 1)

]
w(x2) = 0 (B.2)

The hypergeometric equation is

(1− z)zf ′′(z) + f ′(z)(c− z(a+ b+ 1))− abf(z) = 0

we can identify the parameters as follows

a =
1

2
(1 + µ+ λ)

b =
1

2
(µ− λ)

c =
1

2

to get this form of the Hypergeometric equation:

−4(z − 1)zf ′′(z)− ((4µ+ 6)z − 2)f ′(z) + f(z)(λ− µ)(λ+ µ+ 1) = 0 (B.3)

We can directly identify the Hypergeometric equation in eq. (B.3) with eq. (B.2) which is a
direct result of the Legendre equation. Accordingly, the function w(x2) in eq. (B.2) is a function
that solves the Hypergeometric equation, and the Legendre function f(x) can be expressed in
terms of the Hypergeometric function as follows:

f(x) = Pµ
λ (x) = (1− x2)µ/2w(x2) = (1− x2)µ/2 2F1

(
1

2
(1 + µ+ λ),

1

2
(µ− λ),

1

2
, x2
)

With the parameter from the mode functions of the static patch in eq. (3.27) we get the following
mode functions in terms of the Hypergeometric function:

f(x) = (1− x2)iℓω/2 2F1

(
1

2
(h+ + iℓω),

1

2
(h− + iℓω),

1

2
, x2
)

A similar relation between Legendre functions and Hypergeometric functions, including normal-
ization, is described in [AS64, eq. (15.4.23)].

In order to calculate the normalization of the mode functions, we need to calculate the Klein-
Gordon inner product from eq. (3.4). This is easiest done on a constant time slice of the mode
function. As this is not directly relevant to this thesis and has already been done in the past
(the normalization is, for example, characterized in [Bou02a]), we will skip this calculation in this
context.

B.8. Commutators with exponentials

In this appendix section, we will review the proofs for some commutator identities where the
operators are arguments of exponential functions. These will be relevant for upcoming sections in
the appendix.

[
eλ1âb̂, â†

]
=λ1b̂e

λ1âb̂ (B.4)
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[
eλ2â†â, â†

]
=(1− e−λ2)eλ2â†ââ† (B.5)

[
eλ3â†b̂† , â†

]
=0 (B.6)

[
eλ1âb̂, â

]
=0

[
eλ2â†â, â

]
=
(
1− eλ2

)
eλ2â†ââ (B.7)

[
eλ3â†b̂† , â

]
=− λ3b̂

† eλ3â†b̂† (B.8)

Proof 10: show identity (B.4) and (B.8)

[A, eB] =

∫ 1

0
ds e(1−s)B [A,B] esB

We use the above identity to prove (B.4). It directly follows, that

[
â†, eλâb̂

]
=

∫ 1

0
ds e(1−s)λâb̂ [â†, λâb̂] esλâb̂

=

∫ 1

0
ds e(1−s)λâb̂ λ(−b̂) esλâb̂

=− λb̂

∫ 1

0
ds e(1−s)λâb̂ esλâb̂

=− λb̂

∫ 1

0
ds eλâb̂

=− λb̂ eλâb̂

For (B.8) we get

[
â, eλâ

†b̂†
]
=

∫ 1

0
ds e(1−s)λâ†b̂† [â, λâ†b̂†] esλâ

†b̂†

=

∫ 1

0
ds e(1−s)λâ†b̂† λb̂† esλâ

†b̂†

=λb̂†
∫ 1

0
ds e(1−s)λâ†b̂† esλâ

†b̂†

=λb̂†
∫ 1

0
ds eλâ

†b̂†

=λb̂† eλâ
†b̂†

Proof 11: show identity (B.5) and (B.7)
We want to calculate the commutator

[
eλâ

†â, â
]

(B.5). To do this, we first expand the expression

and left-multiply with e−λâ†â:
[
eλâ

†â, â†
]
= eλâ

†ââ† − â†eλâ
†â =x(λ)â†

e−λâ†âeλâ
†ââ† − e−λâ†ââ†eλâ

†â =e−λâ†âx(λ)â†
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e−λâ†ââ†eλâ
†â

︸ ︷︷ ︸
=f(λ)

=− e−λâ†âx(λ)â† + â† =
(
1− e−λâ†âx(λ)

)
â†

︸ ︷︷ ︸
=g(λ)

This also needs to be a valid equation after taking the derivative of λ.

f ′(λ) =e−λâ†â(−â†â)â†eλâ†â + e−λâ†ââ†eλâ
†â(â†â) = e−λâ†â

[
â†, a†â

]
eλâ

†â = −f(λ)

g′(λ) =e−λâ†ââ†â x(λ)â† − e−λâ†â x′(λ)â† = e−λâ†â
(
â†â x(λ)− x′(λ)

)
â†

It is necessary that g(λ) satisfies the same relation as f(λ). It follows:

g′(λ) = e−λâ†â
(
â†â x(λ)− x′(λ)

)
â† =−

(
1− e−λâ†â x(λ)

)
â† = −g(λ)

e−λâ†ââ†â x(λ)â† − e−λâ†âx′(λ)â† =− â† + e−λâ†â x(λ)â†

â†â x(λ)− x′(λ) =− eλâ
†â + x(λ)

(
â†â− 1

)
x(λ) + eλâ

†â =x′(λ)

The following function solves this first-order differential equation:

x(λ) =
(
1− e−λ

)
eλâ

†â

The initial values f(0) = â† and g(0) = â† are identical. The solutions to first-order linear
differential equations are unique. Accordingly, we found that the commutator is

[
eλâ

†â, â†
]
=(1− e−λ)eλâ

†ââ†

The commutator
[
eλâ

†â, â
]

from (B.7) is calculated similarly:

[
eλâ

†â, â
]
= eλâ

†ââ− âeλâ
†â =x(λ)â

e−λâ†âeλâ
†ââ− e−λâ†ââeλâ

†â =e−λâ†âx(λ)â

e−λâ†ââeλâ
†â

︸ ︷︷ ︸
=f(λ)

=− e−λâ†âx(λ)â+ â =
(
1− e−λâ†âx(λ)

)
â

︸ ︷︷ ︸
=g(λ)

This also needs to be a valid equation after taking the derivative of λ.

f ′(λ) =e−λâ†â(−â†â)âeλâ†â + e−λâ†ââeλâ
†â(â†â) = e−λâ†â

[
â, a†â

]
eλâ

†â = f(λ)

g′(λ) =e−λâ†ââ†â x(λ)â− e−λâ†â x′(λ)â = e−λâ†â
(
â†â x(λ)− x′(λ)

)
â

It is necessary that g(λ) satisfies the same relation as f(λ). It follows:

g′(λ) = e−λâ†â
(
â†â x(λ)− x′(λ)

)
â =

(
1− e−λâ†â x(λ)

)
â = g(λ)

e−λâ†ââ†â x(λ)â− e−λâ†âx′(λ)â =â− e−λâ†â x(λ)â

â†â x(λ)− x′(λ) =eλâ
†â − x(λ)

(
â†â+ 1

)
x(λ)− eλâ

†â =x′(λ)

This first-order differential equation is solved by

x(λ) =
(
1 + c eλ

)
eλâ

†â
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The initial values f(0) = â and g(0) = â are identical. It follows, that x(0) = 0 which is true
for c = −1. The solutions to first-order linear differential equations are unique. Accordingly, we
found that the commutator is

[
eλâ

†â, â
]
=
(
1− eλ

)
eλâ

†ââ

B.9. Express Euclidean modes with static patch modes

In this appendix, we collect calculations and detailed descriptions of intermediate steps from
section 3.7.

Proof 12: Metric in Kruskal coordinates (3.29)

The metric in static coordinates which describes one static patch is

ds2 =

(
−1 +

r2

ℓ2

)
dt2 +

ℓ2

ℓ2 − r2
dr2

The Kruskal coordinates in static patch I are defined as

rI
ℓ
=

1 + UV

1− UV
tI
ℓ
=

1

2
log

(
−U
V

)

Substituting this into the metric yields the following metric in Kruskal coordinates:

ds2 =

(
−1 +

r2

ℓ2

)(
∂t

∂U
dU +

∂t

∂V
dV

)2

+
ℓ2

ℓ2 − r2

(
∂r

∂U
dU +

∂r

∂V
dV

)2

=− 4ℓ2
dUdV

(UV − 1)2

The horizon of the static patch I is at rI = 0 which imposes the following condition on the
coordinates U and V :

1 =
1 + UV

1− UV
⇔ 1− UV = 1 + UV

which is true for U = 0 or V = 0. For the time this has the following implications:

lim
U→0

tI
ℓ
= lim

U→0

1

2
log

(
−U
V

)
= ∞

lim
V→0

tI
ℓ
= lim

U→0

1

2
log

(
−V
V

)
= −∞

Proof 13: Mode expansion Euclidean modes as linear combination static patch modes

We check that the mode expansion from eq. (3.31) yields the same quantum scalar field as the
expansion with static patch modes:

ϕ̂E =

∫ ∞

0
dω
[
âE1
ω ϕE1

ω + âE2
ω ϕE2

ω + (âE1
ω )†(ϕE1

ω )∗ + (âE2
ω )†(ϕE2

ω )∗
]
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=

∫ ∞

0
dω

1

1− e−2πωℓ

[(
âIω − e−πωℓ(âIIω )

†
)(
ϕIω + e−πωℓ(ϕIIω )

∗
)

+
(
âIIω − e−πωℓ(âIω)

†
)(
ϕIIω + e−πωℓ(ϕIω)

∗
)
+
(
(âIω)

† − e−πωℓâIIω

)(
(ϕIω)

∗ + e−πωℓϕIIω

)

+
(
(âIIω )

† − e−πωℓâIω

)(
(ϕIIω )

∗ + e−πωℓϕIω

)]

=

∫ ∞

0
dω
[
âIωϕ

I
ω + âIIωϕ

II
ω + (âIω)

†(ϕIω)
∗ + (âIIω )

†(ϕIIω )
∗
]

Proof 14: Euclidean creation/annihilation operators satisfy canonical commutation relations

We check that the commutation relations from eq. (3.33) are satisfied:
[
âE1
ω , (âE1

ω )†
]
=

1

1− e−2πωℓ

[
âIω − e−πωℓ(âIIω )

†, (âIω)
† − e−πωℓâIIω

]

=
1

1− e−2πωℓ

(
1 + e−2πωℓ(−1)

)
= 1

[
âE1
ω , (âE2

ω )†
]
=

1

1− e−2πωℓ

[
âIω − e−πωℓ(âIIω )

†, (âIIω )
† − e−πωℓâIω

]
= 0

[
âE1
ω , âE2

ω

]
=

1

1− e−2πωℓ

[
âIω − e−πωℓ(âIIω )

†, âIIω − e−πωℓ(âIω)
†
]

=
1

1− e−2πωℓ

([
âIω, â

II
ω

]
− e−πωℓ

[
âIω, (â

I
ω)

†
]
− e−πωℓ

[
(âIIω )

†, âIIω

]
+
[
(âIIω )

†, (âIω)
†
])

=
1

1− e−2πωℓ

(
−e−πωℓ − e−πωℓ(−1)

)
= 0

The static patch operators can be expressed with the Euclidean ones as follows:

âIω =
1√

1− e−2πωℓ

(
âE1
ω + e−πωℓ(âE2

ω )†
)
, (âIω)

† =
1√

1− e−2πωℓ

(
(âE1

ω )† + e−πωℓâE2
ω

)

âIIω =
1√

1− e−2πωℓ

(
âE2
ω + e−πωℓ(âE1

ω )†
)
, (âIIω )

† =
1√

1− e−2πωℓ

(
(âE2

ω )† + e−πωℓâE1
ω

)

Proof 15: Annihilation of Euclidean vacuum state

We want to show that

âEω |ΩE⟩ =0

for the Euclidean annihilation operators

âE1
ω =

1√
1− e−2πωℓ

(
âIω − e−πωℓ(âIIω )

†
)

âE2
ω =

1√
1− e−2πωℓ

(
âIIω − e−πωℓ(âIω)

†
)

and the Euclidean vacuum state

|ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

âE1
ω̃ |ΩE⟩ =

1√
1− e−2πω̃ℓ

(
âIω̃ − e−πω̃ℓ(âIIω̃ )

†
) ∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

158



B.9. Express Euclidean modes with static patch modes

=
∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ



e

e−πωℓ(âIω)
†(âIIω )† âIω︸ ︷︷ ︸

=0

−
[
ee

−πωℓ(âIω)
†(âIIω )† , âIω̃

]

−ee−πωℓ(âIω̃)
†(âIIω )†e−πω̃ℓ(âIIω̃ )

†



 |ΩI⟩ ⊗ |ΩII⟩

(B.8)
=

∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ

{
−
[
−e−πωℓ(âIIω )

†δ(ω − ω̃)ee
−πωℓ(âIω)

†(âIIω̃ )†
]

−ee−πωℓ(âIω̃)
†(âIIω )†e−πω̃ℓ(âIIω̃ )

†
}
|ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ

{
e−πωℓ(âIIω )

†δ(ω − ω̃)− e−πω̃ℓ(âIIω̃ )
†
}
ee

−πωℓ(âIω̃)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

=0

similarly, it follows for the second Euclidean annihilation operator

âE2
ω̃ |ΩE⟩ =

1√
1− e−2πω̃ℓ

(
âIIω̃ − e−πω̃ℓ(âIω̃)

†
) ∞∏

ω=0

√
1− e−2πωℓee

−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ

{
ee

−πωℓ(âIω)
†(âIIω )† âIIω −

[
ee

−πωℓ(âIω)
†(âIIω )† , âIIω̃

]

−ee−πωℓ(âIω̃)
†(âIω)

†
e−πω̃ℓ(âIIω̃ )

†
}
|ΩI⟩ ⊗ |ΩII⟩

(B.8)
=

∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ

{
−
[
−e−πωℓ(âIω)

†δ(ω − ω̃)ee
−πωℓ(âIω)

†(âIIω̃ )†
]

−ee−πωℓ(âIω̃)
†(âIIω )†e−πω̃ℓ(âIω̃)

†
}
|ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

√
1− e−2πω̃ℓ

{
e−πωℓ(âIω)

†δ(ω − ω̃)− e−πω̃ℓ(âIω̃)
†
}
ee

−πωℓ(âIω)
†(âIIω̃ )† |ΩI⟩ ⊗ |ΩII⟩

Proof 16: express Hamilton operator with static patch operators

We want to show that the Hamiltonian corresponding to the Euclidean vacuum state generating
time evolution takes the form in eq. (3.35). For this, we express the static patch creation and
annihilation operators with the Euclidean ones:

(âIω)
†âIω − (âIIω )

†âIIω

=
1

1− e−2πωℓ

[(
(âE1

ω )† + e−πωℓâE2
ω

)(
âE1
ω + e−πωℓ(âE2

ω )†
)

−
(
(âE2

ω )† + e−πωℓâE1
ω

)(
âE2
ω + e−πωℓ(âE1

ω )†
)]

=
1

1− e−2πωℓ

[
(âE1

ω )†âE1
ω + (âE1

ω )†e−πωℓ(âE2
ω )† + e−πωℓâE2

ω âE1
ω + e−πωℓâE2

ω e−πωℓ(âE2
ω )†

−(âE2
ω )†âE2

ω − (âE2
ω )†e−πωℓ(âE1

ω )† − e−πωℓâE1
ω âE2

ω − e−πωℓâE1
ω e−πωℓ(âE1

ω )†
]

=
1

1− e−2πωℓ

[
(âE1

ω )†âE1
ω + e−2πωℓâE2

ω (âE2
ω )† − (âE2

ω )†âE2
ω − e−2πωℓâE1

ω (âE1
ω )†

]

=
1

1− e−2πωℓ

[
(âE1

ω )†âE1
ω + e−2πωℓ

(
1 + (âE2

ω )†âE2
ω

)
− (âE2

ω )†âE2
ω − e−2πωℓ

(
1 + (âE1

ω )†âE1
ω

)]

=(âE1
ω )†âE1

ω − (âE2
ω )†âE2

ω
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Proof 17: generator of time translations annihilates Euclidean vacuum state

We want to show the relation from eq. (3.36)

HE |ΩE⟩ =
∫ ∞

0
dω̃ ω

[
(âE1

ω̃ )†âE1
ω̃ − (âE2

ω̃ )†âE2
ω̃

]

︸ ︷︷ ︸
=(⋆)

|ΩE⟩

(⋆) =
1

1− e−2πω̃ℓ

((
âIω̃ − e−πω̃ℓ(âIIω̃ )

†
)†(

âIω̃ − e−πω̃ℓ(âIIω̃ )
†
)

−
(
âIIω̃ − e−πω̃ℓ(âIω̃)

†
)†(

âIIω̃ − e−πω̃ℓ(âIω̃)
†
))

=
1

1− e−2πω̃ℓ

(
(âIω̃)

†âIω̃ − (âIω̃)
†e−πω̃ℓ(âIIω̃ )

† − e−πω̃ℓâIIω̃ â
I
ω̃ + e−2πω̃ℓâIIω̃ (â

II
ω̃ )

†

−(âIIω̃ )
†âIIω̃ + (âIIω̃ )

†e−πω̃ℓ(âIω̃)
† + e−πω̃ℓâIω̃â

II
ω̃ − e−2πω̃ℓâIω̃(â

I
ω̃)

†
)

We look separately on how the static patch annihilation operators act on the Euclidean vacuum
state using the identity from eq. (B.8)

[
eλâ

†b̂† , â
]
= −λb̂† eλâ†b̂† and the fact that the corresponding

annihilation operators annihilate the vacuum state (see proof 15):

âIω̃ |ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓâIω̃e

e−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

=

∞∏

ω=0

√
1− e−2πωℓ

{
ee

−πωℓ(âIω)
†(âIIω )† âIω̃ −

[
ee

−πωℓ(âIω)
†(âIIω )† , âIω̃

]}
|ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

{
−
[
−e−πωℓ(âIIω̃ )

†ee
−πωℓ(âIω)

†(âIIω )†
]}

|ΩI⟩ ⊗ |ΩII⟩

=e−πω̃ℓ(âIIω̃ )
† |ΩE⟩

âIIω̃ |ΩE⟩ =
∞∏

ω=0

√
1− e−2πωℓâIIω̃ e

e−πωℓ(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

{
ee

−πωℓ(âIω)
†(âIIω )† âIIω̃ −

[
ee

−πωℓ(âIω)
†(âIIω )† , âIIω̃

]}
|ΩI⟩ ⊗ |ΩII⟩

=
∞∏

ω=0

√
1− e−2πωℓ

{
−
[
−e−πωℓ(âIω̃)

†ee
−πωℓ(âIω)

†(âIIω )†
]}

|ΩI⟩ ⊗ |ΩII⟩

=e−πω̃ℓ(âIω̃)
† |ΩE⟩

Plugging this in it follows that

(⋆) |ΩE⟩

=
1

1− e−2πω̃ℓ


(âIω̃)

†e−πω̃ℓ(âIIω̃ )
†

︸ ︷︷ ︸
=(i)

− (âIω̃)
†e−πω̃ℓ(âIIω̃ )

†
︸ ︷︷ ︸

=(i)

− e−πω̃ℓâIIω̃ e
−πω̃ℓ(âIIω̃ )

†
︸ ︷︷ ︸

=(ii)

+ e−2πω̃ℓâIIω̃ (â
II
ω̃ )

†
︸ ︷︷ ︸

=(ii)

−(âIIω̃ )
†e−πω̃ℓ(âIω̃)

†
︸ ︷︷ ︸

=(iii)

+ (âIIω̃ )
†e−πω̃(âIω̃)

†
︸ ︷︷ ︸

=(iii)

+ e−πω̃ℓâIω̃e
−πω̃ℓ(âIω̃)

†
︸ ︷︷ ︸

=(iv)

− e−2πω̃ℓâIω̃(â
I
ω̃)

†
︸ ︷︷ ︸

=(iv)


 |ΩE⟩ = 0
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It directly follows that

HE |ΩE⟩ =0

B.10. Wightman function in static coordinates

We consider the Wightman function of two local observers following Killing trajectories in static
coordinates. We identify x = xm and x′ = xn, introduce the quantization with static coordinates,
and expand the denominator of eq. (3.37) in the components:

− (x0m − x0n − iε)2 + |x⃗m − x⃗n|2

=− (x0m − x0n − iε)2 + (x1m − x1n)
2 + (x2m − x2n)

2

=−
(√

ℓ2 − r2m sinh

(
tm
ℓ

)
−
√
ℓ2 − r2n sinh

(
tn
ℓ

)
− iε

)2

+

(√
ℓ2 − r2m cosh

(
tm
ℓ

)
−
√
ℓ2 − r2n cosh

(
tn
ℓ

))2

+ (rm − rn)
2

We evaluate this to the first order in ε. This means that we can multiply the first order in ε
with arbitrary positive constants and can add arbitrary higher order ε terms. The hyperbolic
functions are expanded as follows:

sinh(x)± iε+O(ε2) =
∞∑

n=0

x2n+1

(2n+ 1)!
± iε+O(ε2) =

∞∑

n=0

(x+ iε)2n+1

(2n+ 1)!
+O(ε2)

= sinh(x± iε) +O(ε2)

cosh(x) +O(ε2) =
∞∑

n=0

x2n

(2n)!
+O(ε2) =

∞∑

n=0

(x± iε)2n

(2n)!
+O(ε2)

= cosh(x+ iε) +O(ε2)

It directly follows:

− (x0m − x0n − iε)2 + |x⃗m − x⃗n|2

=−
(√

ℓ2 − r2m sinh

(
tm
ℓ

− iε

2

)
−
√
ℓ2 − r2n sinh

(
tn
ℓ
+

iε

2

))2

+

(√
ℓ2 − r2m cosh

(
tm
ℓ

− iε

2

)
−
√
ℓ2 − r2n cosh

(
tn
ℓ
+

iε

2

))2

+ (rm − rn)
2

=(ℓ2 − r2m)− 2
√
ℓ2 − r2m

√
ℓ2 − r2n cosh

(
tm
ℓ

− tn
ℓ
− iε

)
+ (ℓ2 − r2n) + r2m − 2rmrn + r2n

=− 2
√
ℓ2 − r2m

√
ℓ2 − r2n cosh

(
tm
ℓ

− tn
ℓ
− iε

)
+ 2ℓ2 − 2rmrn

we replace the coordinate time t with the proper time τi =
√
1− r2i /ℓ

2ti and introduce the
parameter κi = 1√

ℓ2−r2i
which simplifies the expression as follows (with τm = τ̃ and τn = τ):

−(x0m − x0n − iε)2 + |x⃗m − x⃗n|2 =2ℓ2 − 2 cosh(κmτ − κnτ − iε)

κmκn
+ rmrn
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=− 2
(
cosh(κmτ̃ − κnτ − iε) + κmrmκnrn − κmκnℓ

2
)

κmκn

=− 2

κmκn

(
cosh(κmτ̃ − κnτ − iε) +

√
κ2mℓ

2 − 1
√
κ2nℓ

2 − 1− κmκnℓ
2
)

For the Wightman function, it follows

W (xm, xn) =− 1

4π2
1

(x0 − (x′)0 − iε)2 − |x⃗− x⃗′|2

=− κmκn
8π2

1

cosh(κmτ̃ − κnτ − iε) +
√
κ2mℓ

2 − 1
√
κ2nℓ

2 − 1− κmκnℓ2

We use the hyperbolic identity

sinh2
(x
2

)
=

1

2
(cosh(x)− 1) ⇔ cosh(x) = 1 + 2 sinh

(x
2

)

The Wightman function is

Wm,n(s) =− κmκn
8π2

1

1 + 2 sinh2
(
κmτ̃−κnτ

2 − iε
)
+
√
κ2mℓ

2 − 1
√
κ2nℓ

2 − 1− κmκnℓ2

=− κmκn
16π2

1

sinh2((κmτ̃ − κnτ)/2− iε)− bmn

(B.9)

with κi = 1/
√
ℓ2 − r2i and

bmn =− 1

2

(
1 + κmrmκnrn − κmκnℓ

2
)
=

1

2

(
κmκnl

2 −
√
κ2mℓ

2 − 1
√
κ2nℓ

2 − 1− 1
)
. (B.10)

As we know, that r2i ≤ ℓ2. We can directly see that bmn is non-negative when introducing a
rescaled variable xi = ri

ℓ whose absolute value is always smaller than one. For the parameter bmn

we obtain

bmn =
1

2

(
(1− xmxn)√
1− x2m

√
1− x2n

− 1

)

Here we can see that bmn vanishes for identical trajectories (xm = xn) and is positive otherwise.

B.11. Fourier expansion of Wightman function

Here, we derive the Fourier expansion of the Wightman function in terms of its variable

s = κmτ̃ − κnτ

The variable s is a variable whose dimension is the product of time and acceleration. The
Wightman function from eq. (B.9), which we now expand in terms of its Fourier modes, is

Wm,n(s) =
a

sinh2(s/2− iε)− bmn

with a = −κmκn
16π2

The Fourier transform of the Wightman function is defined in terms of the variable λ

∼Wm,n (λ) = F [Wm,n(s)](λ) =
1√
2π

∫ ∞

−∞
Wm,n(s)e

−iλsds (B.11)
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B.11. Fourier expansion of Wightman function

Re

Im

−8π

−6π

−4π

−2π

2π

4π

2 arcsinh(
√
bmn)

iε

γ

Figure 42.: Visualization of solving the integral from eq. (B.11) using Residue theorem
where the blue dots are the poles of the function Wm,n(s) and the gray
line is the integration contour

The poles of the Wightman function lie at

sn =
{
±2 arcsinh

(√
bmn

)
+ 2iπn

}
with n ∈ Z

The iε in the argument of the sinh hereby shifts the pole off the real axis, which is the curve we
evaluate the integral on as depicted in 42. We use the Residue theorem to evaluate the integral:

∮

γ
Wm,n(s)e

−iλsds = 2πi

N∑

n=1

I(γ, sn)Res(Wm,n(s)e
−iλs, sn)

where tn are the poles, the winding number I(γ, tn) is one if the pole is in the interior of γ and 0
if the pole is outside. Its sign depends on the orientation of the curve: for clockwise integration
curves, we get a minus sign. The integration contour γ is chosen along the real axis and closed
via a half circle in the negative imaginary plane around all poles with negative n.

Res1n = Res
(
Wm,n(s)e

−iλs, 2 arcsinh
(√

bmn

)
+ 2iπn

)
=
ae2λ(πn−i arcsinh(

√
bmn))

√
bmn(bmn + 1)

Res2n = Res
(
Wm,n(s)e

−iλs,−2 arcsinh
(√

bmn

)
+ 2iπn

)
= −ae

2λ(πn+i arcsinh(
√
bmn))

√
bmn(bmn + 1)

As a solution to the integral B.11, we get

∮

γ
Wm,n(s)e

−iλsds =− 2πi

∞∑

n=1

(
Res1−n +Res2−n

)
= −4πa sin

(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

∼Wm,n (λ) =
1√
2π

∮

γ
Wm,n(s)e

−iλsds = − 1√
2π

4πa sin
(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)
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With the inverse Fourier transform, we can express the Wightman function in terms of its Fourier
modes:

Wm,n(s) =
1√
2π

∫ ∞

−∞

∼Wm,n (λ)eiλsdλ = −
∫ ∞

−∞

2a sin
(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

eiλsdλ (B.12)
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A p p e n d i x C

Symmetries

C.1. Matrix representation for the action of isometries on the
future boundary of de Sitter spacetime

In this appendix, we explicitly calculate the coordinate representation of the homomorphism

h : SL(2,R) → SO(1, 2)

introduced in eq. (5.1).
We introduced an auxiliary vector space V with the following basis elements:

e1 = iσy =

(
0 1
−1 0

)
, e2 = σx =

(
0 1
1 0

)
, e3 = σz =

(
1 0
0 −1

)
.

With respect to this basis, the bilinear form

⟨x, y⟩ = 1

2
tr(xy) with x, y ∈ V.

the matrix elements ⟨ej , ek⟩ are equivalent to the Minkowski metric with matrix representation:


⟨e1, e1⟩ ⟨e1, e2⟩ ⟨e1, e3⟩
⟨e2, e1⟩ ⟨e2, e2⟩ ⟨e2, e3⟩
⟨e3, e1⟩ ⟨e3, e2⟩ ⟨e3, e3⟩


 =



−1 0 0
0 1 0
0 0 1


,

This allows us to identify Minkowski spacetime R1,2 with the vector space V via the matrix
representation ηjk = ⟨ej , ek⟩.

We now explicitly calculate the matrix elements of the transformation h ∈ SO(1, 2) corresponding
to a given element g ∈ SL(2,R) with matrix representation

g =

(
a b
c d

)
.

Any x ∈ V can be expressed as a linear combination of the basis elements e1, e2, and e3. In order
to express the function h with respect to this basis, we exploit the homomorphism:

ej 7→ gejg
−1 ≡ h1j e1 + h2j e2 + h3j e3

This leads to the following matrix representation:

h(g) =




1
2

(
a2 + b2 + c2 + d2

)
1
2

(
a2 − b2 + c2 − d2

)
−ab− cd

1
2

(
a2 + b2 − c2 − d2

)
1
2

(
a2 − b2 − c2 + d2

)
cd− ab

−ac− bd bd− ac bc+ ad


. (C.1)
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Proof 18: Matrix representation of homeomorphism h(g)

e1 7→ ge1g
−1 =

(
−ac− bd a2 + b2

−c2 − d2 ac+ bd

)

=
1

2

(
a2 + b2 + c2 + d2

)
e1 +

1

2

(
a2 + b2 − c2 − d2

)
e2 + (−ac− bd)e3

≡h11e1 + h21e2 + h31e3

e2 7→ ge3g
−1 =

(
bd− ac (a− b)(a+ b)
d2 − c2 ac− bd

)

=
1

2

(
a2 − b2 + c2 − d2

)
e1 +

1

2

(
a2 − b2 − c2 + d2

)
e2 + (bd− ac)e3

≡h12e1 + h22e2 + h32e3

e3 7→ ge2g
−1 =

(
2ad− 1 −2ab
2cd 1− 2ad

)

=(−ab− cd)e1 + (−ab+ cd)e2 + (ad+ bc)e3

≡h13e1 + h32e2 + h33e3

which is exactly the result from the matrix representation in eq. (C.1).

C.2. Action of homomorphism applied to null geodesics

The action of the homomorphism h : SL(2,R) → SO(1, 2) on the null geodesics has the following
form:

x(s) =




s
u+ vs
v − us


 → x′(s′) = h(g)x(s) =




s′

u′ + v′s′

v′ − u′s′


 =



x′0
x′1
x′2




This can be expanded in matrix form using the matrix form of the homeomorphism from eq.
(C.1):

x′ =




1
2

(
(sv + u)

(
a2 − b2 + c2 − d2

)
+ s
(
a2 + b2 + c2 + d2

))
+ (su− v)(ab+ cd)

1
2

(
(sv + u)

(
a2 − b2 − c2 + d2

)
+ s
(
a2 + b2 − c2 − d2

))
+ (v − su)(cd− ab)

(v − su)(ad+ bc) + (sv + u)(bd− ac)− s(ac+ bd)


.

We are interested in the symmetry action of the temporal boundaries, from which we infer the
transformation rules of the tessellation and, therefore, our holographic network. By considering
the limit s′ → ∞ we obtain the action of h(g) on the temporal future boundary I+:

x′(s)

s′
=




1

u′

s′
+ v′

v′

s′
− u′




−→
s′→∞




1
v′

−u′


.

With this expression for the symmetry action on the future boundary of de Sitter spacetime, the
parameters u′ and v′ can easily be calculated using the relation derived in appendix A.6.1. The
new parameters u′ and v′ satisfy the condition u′2 + v′2 = 1.

u′ =
x′1 − x′0x

′
2

1 + (x′0)
2
=

−(−acu+ adv + bcv + bdu)
(
u
(
a2 − b2 + c2 − d2

)
− 2v(ab+ cd)

)

2
(
1
4(u(a

2 − b2 + c2 − d2)− 2v(ab+ cd))2 + 1
)
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+
u
(
a2 − b2 − c2 + d2

)
+ v(2cd− 2ab)

2
(
1
4(u(a

2 − b2 + c2 − d2)− 2v(ab+ cd))2 + 1
)

v′ =
x′2 + x′0x

′
1

1 + (x′0)
2
=

1
4

(
u
(
a2 − b2 − c2 + d2

)
− 2abv + 2cdv

)(
u
(
a2 − b2 + c2 − d2

)
− 2v(ab+ cd)

)

1
4(u(a

2 − b2 + c2 − d2)− 2v(ab+ cd))2 + 1

+
u(bd− ac) + v(2ad− 1)

1
4(u(a

2 − b2 + c2 − d2)− 2v(ab+ cd))2 + 1
.
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A p p e n d i x D

Holographic network

D.1. Distance time-slices

The size of de Sitter spacetime at the time τ is easiest derived in global coordinates

x⃗G =




ℓ sinh(τ/ℓ)
ℓ cos θ cosh(τ/ℓ)
ℓ sin θ cosh(τ/ℓ)




where ℓ cosh(τ/ℓ) is the radius of de Sitter spacetime at fixed time τ . The size of 1+1 dimensional
de Sitter spacetime at time τ accordingly is

ddS(τ) = 2πℓ cosh(τ/ℓ),

The time-slices in global and conformal coordinates are related as cosh τn = 1
cosTn

.
The ratio of the size of de Sitter spacetime at the consecutive time slices τn and τn+1 is given by

ddS(τn+1)

ddS(τn)
=

cos
(
π
2 (1− 2−n)

)

cos
(
π
2 (1− 2−(n+1))

) n→∞−→ 2.

D.2. Tensor network for smaller curvatures is partial isometry

Here we show, that the tensor network for larger de Sitter radii and with that for de Sitter
spacetimes with smaller curvatures also is a partial isometry.

M †
2M2 = =
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Appendix D. Holographic network

= =

=

M †
4M4 = =

= · · · =

D.3. Transformed tensor network is partial isometry (unitary
representation)

Pf ≡ (Mf )†Mf =
(
U(f)MU(S)†U(f)†U(S)†

)†
U(f)MU †(S)U †(f)U(S)†

=U(S)U(f)U(S)M †U(f)†U(f)MU †(S)U †(f)U(S)†

=U(S)U(f)U(S)M †MU †(S)U †(f)U(S)†

P 2
f =U(S)U(f)U(S)M †MU †(S)U †(f)U(S)†U(S)U(f)U(S)M †MU †(S)U †(f)U(S)†

=U(S)U(f)U(S)M †MM †MU †(S)U †(f)U(S)†

=U(S)U(f)U(S)M †MU †(S)U †(f)U(S)†

=Pf
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D.4. Invariance of vacuum state

In order to show that the vacuum state is invariant under the family of tensor networks Mf , we
apply the vacuum state to the tensor network and perform the first simplifications in more detail.
Here, the tensors corresponding to the tensor network are (first) depicted in gray:

M |Ω⟩ = =

=

In the last step, we have introduced the braiding condition. This is simplified further in the main
part (section 6.5.3). This also describes the action of MS since this tensor network has the same
shape as M .
The same thing can is done for C which is the second generator of PSL(2,Z):

MC |Ω⟩ = =

=

Here, we have introduced both the braiding and pivotality conditions in the last step.
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Appendix D. Holographic network

MB |Ω⟩ = =

= =

=

D.5. Modify physical state in contracting spacetime

The spacetime dynamics of a contracting universe can be described with an isometry V † where the
dimension of Hin = h⊗m is larger than the dimension of Hout = h⊗n with m > n. A contracting
part of the tensor network is characterized by the following adjoint isometry:

V

h⊗k

h⊗n

V † : Hin → Hout = h⊗m → h⊗n with n < m.

This isometry satisfies the identity V †V = 1n. A new state |ψ′⟩ ∈ Hin at a finite timeslice of a
contracting spacetime again has to fulfil the condition from eq. 7.2: This is directly solved by the
following state |ψ′⟩:

|ψ′⟩ =VWV † |ψ⟩

It is straightforward to see, that this state is normalized:

⟨ψ′|ψ′⟩ =
(
⟨ψ|VW†V †

)(
VWV † |ψ⟩

)
= ⟨ψ|V V † |ψ⟩ = ⟨V †ψ|V †ψ⟩ = 1
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D.6. Haar integral identity

First, we introduce some basic identities. The swap operation can be expressed with respect to
an orthonormal basis λα as follows:

swap = =
∑

α

(λα ⊗ 1)(1⊗ λα) =
∑

α

λα ⊗ λα =
∑

α λα

λα

(D.1)

By connecting the two outputs we can directly derive another identity:

∑

α

λα λα =
∑

α

λα

λα

= = d1 (D.2)

With this we can derive the identity of the Haar integral S2:

S2 =

∫
dU U † ⊗ U =

1

d
swap (D.3)

Proof 19: Identity for Haar integral S2 from eq. (D.3)
We consider the Haar integral S2 and make an infinitesimal substitution:

S2 =

∫
dU U † ⊗ U 7→

∫
dU (U †e−iϵX)⊗ (eiϵXU)

=

∫
dU (U †(1− iεX)⊗ (1+ iεX)U) +O(ε2)

=

∫
dU
[
U † ⊗ U − iεU †X ⊗ U + iεU † ⊗XU

]
+O(ε2)

=S2 − iεS2(X ⊗ 1) + iε(1⊗X)S2 +O(ε2)

⇒ 0 =(1⊗X)S2 − S2(X ⊗ 1)

We choose the hermitian operator X to be a Hilbert-Schmidt orthonomal operator basis λα and
right-multiply with (λα ⊗ 1). Summing over α yields

∑

α

λα λα

S2 =
∑

α

S2(λ
αλα ⊗ 1) =

∑

α

(1⊗ λα)S2(λ
α ⊗ 1)

=
∑

α λα
S2

λα

We now use the identities of the swap operation (D.1) and the swap operation with connected
outputs (D.2):

d S2 = S2
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The integral representation of S2 directly gives

S2
=

∫
dU

U †

U

=

Plugging all this together we get

S2 = 1
d S2 = 1

d

The Haar integral we are really interested in is of the form

S4 =

∫
dU
(
U † ⊗ U † ⊗ U ⊗ U

)
=

∫
dU

U†

U†

U

U

.

We will derive the following identity for the operator S4.

S4 =

∫
dU

U†

U†

U

U

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

(D.4)

Proof 20: Indentity for Haar integral S4 from eq. (D.4)
To derive this identity we make an infinitesimal change of variables U 7→ eiεXU . We consider X
to be a hermitian operator and evaluate the expression to first order in ε:

S4 =

∫
dU
(
U † ⊗ U † ⊗ U ⊗ U

)
7→
∫
dU
((
eiεXU

)† ⊗
(
eiεXU

)† ⊗ eiεXU ⊗ eiεXU
)

=

∫
dU
(
U †e−iεX ⊗ U †e−iεX ⊗ eiεXU ⊗ eiεXU

)

=

∫
dU
(
U †(1− iεX)⊗ U †(1− iεX)⊗ (1+ iεX)U ⊗ (1+ iεX)U

)
+O(ε2)

=

∫
dU
[(
U † ⊗ U † ⊗ U ⊗ U

)
− iε

(
U †X ⊗ U † ⊗ U ⊗ U

)
− iε

(
U † ⊗ U †X ⊗ U ⊗ U

)

+iε
(
U † ⊗ U † ⊗XU ⊗ U

)
+ iε

(
U † ⊗ U † ⊗ U ⊗XU

)]
+O(ε2)

=S4 − iεS4(X ⊗ 1⊗ 1⊗ 1)− iεS4(1⊗X ⊗ 1⊗ 1) + iε(1⊗ 1⊗X ⊗ 1)S4

+ iε(1⊗ 1⊗ 1⊗X)S4 +O(ε2)

It directly follows:

S4(X ⊗ 1⊗ 1⊗ 1) + S4(1⊗X ⊗ 1⊗ 1) = (1⊗ 1⊗X ⊗ 1)S4 + (1⊗ 1⊗ 1⊗X)S4 (D.5)
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which holds for all hermitian operators X. We choose X = λα to be the Hilbert-Schmidt
orthonomal operator basis with tr(λαλβ) = δαβ and right-multiply (D.5) with (λα ⊗ 1⊗ 1⊗ 1).
In tensor network notation we then get

∑

α
S4

λα λα

+ S4

λα

λα

=
∑

α

S4
λα

λα

(i)

+
S4

λα

λα

(ii)

(D.6)

To simplify this further we use the identity for the Haar integral S2 eq. (D.3):

(i) = S4 =

∫
dU

U †

U †

U

U

=
S2

=
1

d

(ii) =

S4

=

∫
dU

U †

U †

U

U

= S2 =
1

d

The LHS of (D.6) can be factorized as

d S4 + S4 = d S4

M

where

M = +
1

d

The inverse of M is

M−1 =
d2

d2 − 1
− d

d2 − 1

This results is a simplified version of eq. (D.6):

d S4

M

=
1

d
+

1

d
(D.7)
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We can derive the identity (D.4) for S4 by right-multiplying both sides of eq. (D.7) withM−1⊗1⊗1:

d S4

M M−1

=
1

d

M−1

+
1

d

M−1

S4 =

∫
dU

U †

U †

U

U

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

To apply the identity from D.4 and calculate the Haar integral in (7.6) we need to reorder the
expression and adapt it do the different order of U and U †:

∫
dU

U†

U

U†

U

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

D.7. Calculation Haar Integral

We introduce a color code for the lines to keep track of the dimensions:

≡ dk

≡ dn

≡ dn−k

We want to calculate the Haar integral using the identity derived in (7.7) where the dimension of
the entire system is dn:

⟨ψ′|ψ′⟩ = 1

d2n − 1
|ψ⟩|0⟩⊗(n−k)

⟨0|⊗(n−k)

W

W†

⟨ψ|

|0⟩⊗(n−k)

⟨0|⊗(n−k) − 1

dn(d2n − 1)
|ψ⟩|0⟩⊗(n−k)

⟨0|⊗(n−k)

W

W†

⟨ψ| |0⟩⊗(n−k)⟨0|⊗(n−k)
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+
1

d2n − 1
|ψ⟩|0⟩⊗(n−k)

⟨0|⊗(n−k)

W

W†

⟨ψ| |0⟩⊗(n−k)⟨0|⊗(n−k) − 1

dn(d2n − 1)
|ψ⟩|0⟩⊗(n−k)

⟨0|⊗(n−k)

W

W†

⟨ψ|

|0⟩⊗(n−k)

⟨0|⊗(n−k)

the tensor network expressions translate back as follows:

dk =

dn =tr(W †W )dn−1 =
W

W†

1 = ⟨0|0⟩⊗(n−k) = |0⟩⊗(n−k) ⟨0|⊗(n−k)

1 = ⟨0|0⟩⊗k = |ψ⟩ ⟨ψ|

dn−1 tr(W ) =
W

This gives us the following result:

⟨Ω′|Ω′⟩ = 1

d2n − 1
⟨Ω|Ω⟩ ⟨0|0⟩⊗(n−1) ⟨0|0⟩⊗(n−1) dn−1 tr(W )dn−1 tr(W †)

− 1

dn(d2n − 1)
⟨Ω|Ω⟩ ⟨0|0⟩⊗(n−1) ⟨0|0⟩⊗(n−1) dkdn−1 tr(W )dn−1 tr(W †)

+
1

d2n − 1
⟨Ω|Ω⟩ ⟨0|0⟩⊗(n−1) ⟨0|0⟩⊗(n−1) dkdn−1 tr(W †W )

− 1

dn(d2n − 1)
⟨Ω|Ω⟩ ⟨0|0⟩⊗(n−1) ⟨0|0⟩⊗(n−1) dn−1 tr(W †W )

=
d2n−2

d2n − 1
tr(W ) tr(W †)− dkd2n−2

dn(d2n − 1)
tr(W ) tr(W †) +

dkdn

d2n − 1
− dn

dn(d2n − 1)

= tr(W ) tr(W †)
d2n−2

d2n − 1

(
1− dk

dn

)
+

dn

d2n − 1

(
dk − 1

dn

)

=| tr(W )|2 d−2

1− d−2n

(
1− dkd−n

)
+

d−n

1− d−2n

(
dk − d−n

)

⟨Ω′|Ω′⟩ = | tr(W )|2
(
1− dkd−n

)

d2(1− d−2n)
+
d−n

(
dk − d−n

)

1− d−2n

Modification: consider a local operator acting on j sites:

⟨Ω′|Ω′⟩ =tr(W ) tr(W †)
d2(n−j)

d2n − 1

(
1− dk

dn

)
+

dn

d2n − 1

(
dk − 1

dn

)
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=| tr(W )|2 d−2j

1− d−2n

(
1− dkd−n

)
+

d−n

1− d−2n

(
dk − d−n

)

lim
n→∞

⟨Ω′|Ω′⟩ = | tr(W )|2d−2j

With the dimension of the operator W being dj we can use the bound | tr(W )|2 ≤ (dj)2 = d2j :

lim
n→∞

⟨Ω′|Ω′⟩ ≤ d2jd−2j = 1

D.8. Tracenorm of unitary operator

We want to show the bound from eq. (7.9):

| trW |2 ≤ d2

We consider the unitary operator W , which acts on a subsystem h of dimension d.

For any unitary operator W with eigenvalue λ the following holds:

W |ϕ⟩ = λ |ϕ⟩ ⇒ ⟨ϕ|W † = ⟨ϕ|λ∗

We can consider the norm of eigenstate |ϕ⟩:

⟨ϕ|ϕ⟩ = ⟨ϕ|1 |ϕ⟩ = ⟨ϕ|W †W |ϕ⟩ = ⟨ϕ|λ∗λ |ϕ⟩ = |λ|2 ⟨ϕ|ϕ⟩

It directly follows (assuming λ ̸= 0), that |λ|2 = 1. Since the eigenvalues of a unitary matrix have
norm 1 they can be written as

λ = eiθ

Bound

The trace of a (square) matrix equals the sum of the eigenvalues (counted with the respective
multiplicities).

trW =

d∑

j=1

eiθj

| trW |2 =




d∑

j=1

eiθj



(

d∑

k=1

e−iθk

)
=

d∑

j=1

d∑

k=1

ei(θj−θk)

=
d∑

j=k=1

e0 +
d∑

j=1

d∑

k=j+1

(
ei(θj−θk) + ei(θk−θj)

)

ei(a−b) + ei(b−a) = 2 cos(a− b)

=d+ 2

d∑

j=1

d∑

k=j+1

cos(θj − θk)

Since the range of cos(x) is the interval [−1, 1] this directly implies a bound for the trace:

| trW |2 ≤ d2 (D.8)
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Condition for equality

We want to know, what needs to hold for (D.8) to be an equality. We know, that W is a unitary
operator and therefore the rows and columns of W are orthonormal vectors. Since the columns
are orthonormal vectors it directly follows, that

|[W ]jk| ≤ 1

| trW | = d =

∣∣∣∣∣∣

d∑

j=1

[W ]jj

∣∣∣∣∣∣
≤

d∑

j=1

|[W ]jj | ≤
d∑

j=1

1 = d

This can only be true if the above terms are equal and therefore the diagonal elements of the
unitary operator W are equal to 1:

|[W ]jj | = 1

Since the vectors in the columns are normalized and the diagonal entries equal to 1 the off-diagonal
elements have to be equal to 0.

Accordingly W has to be the identity if | trW | = d.

| tr(W )|2 = d2 ⇔W = 1

D.9. Local operator on a subsystem is maximally mixed

We can also look at the properties of a local density matrix of a subsystem j and how this system
can be influenced by applying a operator W at the future boundary. We will show, that (for
nontrivial W) the local operator ρj is maximally mixed.

For all valid physical states (which for now is the vacuum state |Ω⟩ and for random isometries V
the following holds:

∣∣∣∣
∣∣∣∣ρj −

1

d

∣∣∣∣
∣∣∣∣
2

2

≤ ε (D.9)

where ρj = trĵ
(
V |Ω⟩ ⟨Ω|V †).

In words: Any local operator which we could model using the described approach would be very
close to the identity. No other local operations would be possible.

Note: We consider N to be the size of the system including n (output) tensor legs each having
dimension d. The dimension of our local subsystem (which is attached to one tensor leg) has
dimension d.

∣∣∣∣
∣∣∣∣ρj −

1

d

∣∣∣∣
∣∣∣∣
2

2

=tr

((
ρj −

1

d

)2
)

= tr

((
ρj −

1

d

)(
ρj −

1

d

))

=tr

(
ρ2j −

2

d
ρj +

1

d2
1

)
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=tr
(
ρ2j
)
− 2

d
tr(ρj) +

1

d2
tr(1)

= tr
(
ρ2j
)
− 2

d
+

1

d2
d

=tr
(
ρ2j
)
− 1

d

Sanity check: If we consider the state on subsystem j to be a pure state we know that

tr
(
ρ2j
)
− 1

d
=

1

d
− 1

d
= 0 ≤ ε

We now consider a more general reduced density operator on a single subsystem:

tr(ρ2j ) = tr

(
trĵ

(
V |Ω⟩ ⟨Ω|V †

)2)

We describe the random isometries using random unitaries with an attached ancilla system.
We consider a random unitary U and the initial state |Ω⟩.
For any arbitrary state |Ω⟩ there exists a unitary operator T such that

T |0⟩⊗n = |Ω⟩ |0⟩⊗(n−k)

If we apply a random unitary U to this we get:

UT |0⟩⊗n = U |Ω⟩ |0⟩⊗(n−k)

We can now translate tr(ρ2j ) to tensor network notation where the trace operation is represented
by joining up corresponding external tensor legs:

tr(ρ2j ) =

· · ·

· · ·
|0⟩ |0⟩

⟨0| ⟨0|

|Ω⟩

U

|Ω⟩

U†

· · · · · ·

· · · · · ·

· · ·

· · ·
|0⟩ |0⟩

⟨0| ⟨0|

|Ω⟩

U

|Ω⟩

U†

· · · · · ·

· · · · · ·
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In order to evaluate this expression with a random unitary operator U we use the Haar measure
introduced in (7.5). The Haar measure ist left- (respectively, right-) invariant, which is why the
unitary T which describes the initial conditions is absorbed in the integral.

In order to apply the identity from (D.4) and calculate the Haar integral it is helpful to rearrange
this expression (exchange operators 1 and 4) to be able to distinguish between incoming and
outgoing legs more easily (left: input legs/past, right: output legs/future):

To make the figure less cluttered we introduce the following color code:

≡ d1

≡ dn

≡ dn−1

We use that the random isometry acting on the vacuum state can be encoded in a random unitary
acting on a larger vacuum state with ancilla quibits and a fixed unitary operator. This fixed
unitary operator can be neglected due to the right-invariance of the Haar measure.

tr(ρ2j ) =

⟨0|⊗n

|0⟩⊗n

U

U†

⟨0|⊗n

|0⟩⊗n

U

U†

Because the order of the unitaries with and without daggers differs between this case and eq.
(D.4) we need to take this reordering into account. The identity we need to apply now reads

∫
dw

W

W †

W

W †

=
1

d2 − 1
− 1

d(d2 − 1)
+

1

d2 − 1
− 1

d(d2 − 1)

(D.10)

Therfore, we get four terms that we consider seperately.
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(i) =

⟨0|⊗n

|0⟩⊗n

U

U†

⟨0|⊗n

|0⟩⊗n

U

U†

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

= =

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

(ii) =

⟨0|⊗n

|0⟩⊗n

U

U†

⟨0|⊗n

|0⟩⊗n

U

U†

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n
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(iii) =

⟨0|⊗n

|0⟩⊗n

U

U†

⟨0|⊗n

|0⟩⊗n

U

U†

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

(iv) =

⟨0|⊗n

|0⟩⊗n

U

U†

⟨0|⊗n

|0⟩⊗n

U

U†

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

=

⟨0|⊗n

|0⟩⊗n

⟨0|⊗n

|0⟩⊗n

We can now need to summarize and interpret these results and plug them into eq. (D.10). Because
we consider the entire system and not just a subsystem, the dimension of the system is N = dn:

tr(ρ2j ) =
(i)

N2 − 1
− (ii)

N(N2 − 1)
+

(iii)

N2 − 1
− (iv)

N(N2 − 1)

|0 · · · 0⟩ ⟨0 · · · 0|

|0 · · · 0⟩ ⟨0 · · · 0|

=tr(|0 · · · 0⟩ ⟨0 · · · 0|) tr(|0 · · · 0⟩ ⟨0 · · · 0|) = ⟨0 · · · 0|0 · · · 0⟩ ⟨0 · · · 0|0 · · · 0⟩ = 1

(⋆)
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|0 · · · 0⟩ ⟨0 · · · 0|

|0 · · · 0⟩ ⟨0 · · · 0|

=tr(|0 · · · 0⟩ ⟨0 · · · 0| |0 · · · 0⟩ ⟨0 · · · 0|) = ⟨0 · · · 0|0 · · · 0⟩ ⟨0 · · · 0|0 · · · 0⟩ = 1

(⋆⋆)

tr(ρ2j ) =
(⋆)

N2 − 1
− (⋆⋆)

N(N2 − 1)
+

(⋆⋆)

N2 − 1
− (⋆)

N(N2 − 1)

=
d2n − 1

(
(⋆⋆)− (⋆)

dn

)
+

d2n − 1

(
(⋆)− (⋆⋆)

dn

)

= dn = dn−1 = d

=
1

d2n − 1

(
dn+1 − dn+1

dn
+ d2n−1 − d2n−1

dn

)

=
dn+1 − d+ d2n−1 − dn−1

d2n − 1

=
(dn − 1)(d+ dn−1)

(dn − 1)(dn + 1)

=
d+ dn−1

dn + 1
=

1

d

(
d2 + dn

dn + 1

)
=

1

d

(
1 + d2−n

1 + d−n

)
=

1

d

(
1 + d2d−n

1 + d−n

)
n>>1−→ 1

d

For large n we can taylor expand around d−n:

1 + d2d−n

1 + d−n
= 1 + (d2 − 1)d−n + (1− d2)d−2n + (d2 − 1)d−3n + · · ·

Now, we need to remember the bound (D.9) we wanted to prove:

∣∣∣∣
∣∣∣∣ρj −

1

d

∣∣∣∣
∣∣∣∣
2

2

≤ ε

⇔ tr
(
ρ2j
)
− 1

d
≤ ε

This is true in leading order which means, that the density matrix ρj needs to be very close to
the identity (we cannot generate arbitrary local states).

Most straightforward generalization: consider a subsystem of size m (m tensor legs, m < n):

tr(ρ2m) =
d2n − 1

(
(⋆⋆)− (⋆)

dn

)
+

d2n − 1

(
(⋆)− (⋆⋆)

dn

)

= dn = dn−m = dm
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=
1

d2n − 1

(
dn+m − dn+m

dn
+ d2n−m − d2n−m

dn

)

=
dn+m − dm + d2n−m − dn−m

d2n − 1

=
1

dm
d2m + dn

1 + dn

=
1

dm
d2md−n + 1

d−n + 1

d2md−n + 1

d−n + 1
=1 + (d2m − 1)d−n + (1− d2m)d−2n + (d2m − 1)d−3n + · · ·

=1 + d2m−n − d−n + d−2n − d2m−2n + d2m−3n − d−3n + · · ·
Consider the case m = n:

tr(ρ2m=n) =
1

dm
d2md−n + 1

d−n + 1

m=n
= 1

This would correspond applying a global operator which then does not need to be maximally
mixed.
Here it is not taken into account how big the expansion rate is that is given by the isometry
(relation of k input and n output legs). This is "swallowed" in the encoding using the ancilla
qubits which is performed with a fixed unitary operator swallowed by the Haar measure (right
invariance of Haar measure).

D.10. Operator pushing with maximally entangled state

For all matrices M and N and the maximally entangled state

|ψAB⟩ =
1√
d

d∑

j=1

|j⟩ |j⟩

The following property holds

(M ⊗N) |ψAB⟩ =(M ⊗N)


 1√

d

d∑

j=1

|j⟩ ⊗ |j⟩




=


 1√

d
(MN−1N ⊗N)

d∑

j=1

|j⟩ ⊗ |j⟩




=


 1√

d
(MN−1 ⊗ 1)

d∑

j=1

(N |j⟩)⊗ (N |j⟩)




=

(
1√
d
(MN−1 ⊗ 1)

d∑

k=1

|k⟩ ⊗ |k⟩
)

=(MN−1 ⊗ 1) |ψAB⟩
In tensor network language this translates to

|ψ⟩

M N

=

|ψ⟩

MN−1 1
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A p p e n d i x E

Unruh effect cloning

E.1. Express the initial state of de Sitter spacetime with static
patch modes

Here, we calculate the expression of the initial state of the universe eq. (B.8) (multi-rail state) in
terms of static patch modes. For this, we use the identity derived in eq. (B.8)

|ψ⟩ =
d∑

j=1

cj(âωj )
† |Ω⟩

=
d∑

j=1

cj
1√

1− e−2πωi

[
(âIωj

)† − e−πωi âIIωj

]
|Ω⟩

=
d∑

j=1

cj
1√

1− e−2πωi

[
(âIωj

)† − e−πωi âIIωj

] ∞∏

ω=0

√
1− e−2πωee

−πω(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

=
d∑

j=1

cj(â
I
ωj
)†

√
1− e−2πωj

∞∏

ω=0

√
1− e−2πωee

−πω(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

−
d∑

j=1

cje
−πωj

√
1− e−2πωj

∞∏

ω=0

√
1− e−2πω

{
ee

−πω(âIω)
†(âIIω )† âIIωj

+
[
âIIωj

, ee
−πω(âIω)

†(âIIω )†
]}

|ΩI⟩ ⊗ |ΩII⟩

=
d∑

j=1

cj(â
I
ωj
)†

√
1− e−2πωj

∞∏

ω=0

√
1− e−2πωee

−πω(âIω)
†(âIIω )† |ΩI⟩ ⊗ |ΩII⟩

−
d∑

j=1

cje
−πωj

√
1− e−2πωj

∞∏

ω=0

√
1− e−2πω

[
(âIωj

)†e−πωjee
−πω(âIω)

†(âIIω )†
]
|ΩI⟩ ⊗ |ΩII⟩

=

d∑

j=1

cj(â
I
ωj
)†
(
1− e−2πωj

)
√
1− e−2πωj

|Ω⟩

=
d∑

j=1

cj(â
I
ωj
)†
√
1− e−2πωj |Ω⟩

E.2. Two-mode transformation

Here we consider the Bogoliubov transformation of two modes which are associated with the
creation/annihilation operators â(†) = (âIω)

(†) and b̂(†) = (âIIω )
(†) which we refer to as UAB. For
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the transformation of two modes, the transformation UAB can be expressed as

UAB(θ) = exp
[
θ(â†b̂† − âb̂)

]
.

Using the disentangling theorem [BR03, eq. (A5.17)]

ei θ(K̂++K̂−) = ei (tanh θ)K̂+e− ln(cosh2 θ)K̂3ei (tanh θ)K̂−

where the operators satisfy the commutation relations [K̂3, K̂±] = ±K̂± and [K̂+, K̂−] = −2K̂3

we can rewrite UAB in the following way:

UAB(θ) = exp
[
θ(â†b̂† − âb̂)

]
=

1

cosh θ
etanh θâ†b̂†e− ln(cosh θ)(â†â+b̂†b̂)e− tanh θ âb̂

It needs to be noted that this expression greatly simplifies when applied to a vacuum state:

UAB |Ω⟩AB =
1

cosh θ
etanh θâ†b̂† |Ω⟩AB

For many calculations, we use more general expressions to allow for easier generalization.

Proof 21: Expand unitary two mode transformation

First, we check that the commutation relations are fulfilled such that we can use the disentangling
theorem from above:

iK̂+ =â†b̂† ⇒ K̂+ = −iâ†b̂†

iK̂− =− âb̂ ⇒ K̂− = iâb̂

K̂3 =
1

2
(â†â+ b̂b̂†) =

1

2
(â†â+ b̂†b̂+ 1)

[
K̂+, K̂−

]
=−

[
iK̂+, iK̂−

]
= −

[
â†b̂†,−âb̂

]
=
[
â†b̂†, âb̂

]

=â†
[
b̂†, âb̂

]
+
[
â†, âb̂

]
b̂† = −(â†â+ b̂b̂†) = −2K̂3

[
K̂3, K̂+

]
=− i

2

[
â†â+ b̂b̂†, â†b̂†

]
= − i

2

([
â†â, â†b̂†

]
+
[
b̂b̂†, â†b̂†

])

=− i

2

(
â†
[
â, â†

]
b̂† +

[
b̂, b̂†

]
â†b̂†

)
= −iâ†b̂† = K̂+

[
K̂3, K̂−

]
=
i

2

[
â†â+ b̂b̂†, âb̂

]
=

i

2

([
â†â, âb̂

]
+
[
b̂b̂†, âb̂

])

=
i

2

(
â
[
â†, â

]
b̂+ b̂â

[
b̂†, b̂

])
= −iâb̂ = −K̂−

Plugging this into the disentangling theorem, we get:

UAB(θ)

=ei(tanh θ)(−iâ†b̂†)e− ln(cosh2 θ) 1
2
(â†â+b̂b̂†)ei(tanh θ)iâb̂

=etanh θâ†b̂†e− ln(cosh2 θ) 1
2
(â†â+b̂†b̂+1)

︸ ︷︷ ︸
(⋆)

e− tanh θ âb̂

(⋆) = exp

[
−(ln(cosh θ) + ln(cosh θ))

1

2
(â†â+ b̂†b̂+ 1)

]

= exp
[
− ln(cosh θ)(â†â+ b̂†b̂+ 1)

]

= exp
[
− ln(cosh θ)(â†â+ b̂†b̂)− ln(cosh θ)

]
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= exp
[
− ln(cosh θ)(â†â+ b̂†b̂)

]
exp[− ln(cosh θ)]

=
1

cosh θ
etanh θâ†b̂†e− ln(cosh θ)(â†â+b̂†b̂)e− tanh θ âb̂

When applying this transformation to the tensor product of the (single mode) vacuum states
corresponding to â and b̂, we get the following transformed vacuum state:

|ψAB⟩ =UAB(θ) |Ωa⟩ ⊗ |Ωb⟩

=
1

cosh θ
exp
[
tanh θâ†b̂†

]

· exp
[
− ln(cosh θ)(â†â+ b̂†b̂)

]

· exp
[
− tanh θ âb̂

]
|Ωa⟩ ⊗ |Ωb⟩

=
1

cosh θ
exp
[
tanh θâ†b̂†

]
|Ωa⟩ ⊗ |Ωb⟩

We can relate this expression directly to the transformation between the static patch vacuum
states and the Euclidean vacuum from eq. (3.34) by making a coefficient comparison:

|ΩE⟩ =
∞⊗

ω=0

Uω(|ΩI⟩ ⊗ |ΩII⟩)

=

∞⊗

ω=0

1

cosh θ
etanh θ(âIω)

†(âIIω )†(|ΩI⟩ ⊗ |ΩII⟩)

1

cosh(θ)
=
√
1− e−2πω ⇒ tanh(θ) = e−πω

It directly follows

Uω =
√
1− e−2πωee

−πω(âIω)
†(âIIω )†e

1
2
ln(1−e−2πω)((âIω)

†âIω+(âIIω )†âIIω )e−e−πω âIω â
II
ω

This is similar to the regular setting of the Unruh effect, where every two-mode entangled Rindler
state is assigned a state from Minkowski spacetime.

E.3. Transformation of the multi-rail state using the two-mode
transformation

We consider the multi-rail state introduced as an input state in eq. (8.3). We look at the
commutation relation between the unitary two-mode transformation U and the Euclidean creation
operator (âE1

ω )† to derive alternative expressions.

|ψ⟩ =
d∑

i=1

ci(â
E
i )

† |ΩE⟩

=
d∑

i=1

ci(â
E
i )

†U |ΩI⟩ |ΩII⟩

=
d∑

i=1

ciU(âEi )
† |ΩI⟩ |ΩII⟩ −

d∑

i=1

[
U, (âEi )

†
]
|ΩI⟩
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(E.1)
=

d∑

i=1

ciU

(
1√

1− e−2πωi
(âIi)

†
)
|ΩI⟩ |ΩII⟩ −

d∑

i=1

U√
1− e−2πωi

[
1−

√
1− e−2πωi

]
(âIi)

† |ΩI⟩ |ΩII⟩

=

d∑

i=1

ci
U√

1− e−2πωi

(
1−

[
1−

√
1− e−2πωi

])
(âIi)

† |ΩI⟩ |ΩII⟩

=
d∑

i=1

ciU(âIi)
† |ΩI⟩ |ΩII⟩

=
d∑

i=1

ci

(
(âIi)

†U +
[
U, (âIi)

†
])

|ΩI⟩ |ΩII⟩

(E.2)
=

d∑

i=1

ci

(
(âIi)

†U +
(√

1− e−2πωi − 1
)
(âIi)

†U
)
|ΩI⟩ |ΩII⟩

=

d∑

i=1

ci

(√
1− e−2πωi

)
(âIi)

†U |ΩI⟩ |ΩII⟩

=
d∑

i=1

ci
√
1− e−2πωi(âIi)

† |ΩE⟩

where we have used, that the operator U is a product of two mode transformations Uω which
commutes with all creation and annihilation operators âω̃, (âω̃)† with ω̃ ̸= ω. For a less cluttered
notation we use âωi = âi. It follows:

[U, âi] =

[∏

ωk

Uωk
, âi

]
=
∏

ωk ̸=ωi

Uωk
[Uωi , âi]

In order to calculate the commutators involving the two-mode transformation Uω, we need the
identities for commutators of exponential operators derived in appendix B.8.
The unitary operator Uω describing the two-mode transformation can be expanded as

Uωj =
√

1− e−2πωje
e−πωj (âIωj

)†(âIIωj
)†

︸ ︷︷ ︸
=U

(3)
j

· e
1
2 ln(1−e−2πωj )

(
(âIωj

)†âIωj
+(âIIωj

)†âIIωj

)
︸ ︷︷ ︸

=U
(2)
j

· e−e−πωj âIωj
âIIωj︸ ︷︷ ︸

=U
(1)
j

.

which we write down as

U
(1)
j =exp

[
λ1â

I
ωj
âIIωj

]
λ1 = −e−πωj

U
(2)
j =exp

[
λ2(â

I
ωj
)†âIωj

]
exp
[
λ2(â

II
ωj
)†âIIωj

]
λ2 =

1

2
ln(1− e−2πωj )

U
(3)
j =exp

[
λ3(â

I
ωj
)†(âIIωj

)†
]

λ3 = e−πωj

Proof 22: Commutator two mode transformation and Euclidean creation operator

We can use these ingredients to calculate the commutator of the unitary operator and a Euclidean
creation operator to be

[
U, (âEω )

†
]
=

U√
1− e−2πω

{[
1−

√
1− e−2πω

]
(âIω)

† +
[
−e−πω

]
âIIω

}
(E.1)
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E.3. Transformation of the multi-rail state using the two-mode transformation

There are two sets of Euclidean operators which are identical up to switching the static patches I
and II. We will consider the creation operator we denoted as (ω̂E1)†, which can be expressed in
static patch creation and annihilation operators as follows:

(âE1
ω )† =

1√
1− e−2πω

(
(âIω)

† − e−πωâIIω

)

We consider the commutator for mode ω (all commutators involving different modes vanish).
First we look at the U (2) operator separately:

[
U (2), (âIω)

†
]
=
[
exp
[
λ2(â

I
ωj
)†âIωj

]
, (âIω)

†
]
exp
[
λ2(â

II
ωj
)†âIIωj

]
= (1− e−λ2)U (2)(âIω)

†

[
U (2), âIIω

]
=exp

[
λ2(â

I
ωj
)†âIωj

][
exp
[
λ2(â

II
ωj
)†âIIωj

]
, âIIω

]
= (1− eλ2)U (2)âIIω

The commutator to be derived can be calculated as follows:
[
U, (âEω )

†
]
=

[√
1− e−2πωU (3)U (2)U (1),

1√
1− e−2πω

(
(âIω)

† − e−πωâIIω )
)]

=
[
U (3)U (2)U (1), (âIω)

†
]
− e−πω

[
U (3)U (2)U (1), âIIω

]

=
[
U (3), (âIω)

†
]
U (2)U (1) + U (3)

[
U (2), (âIω)

†
]
U (1) + U (3)U (2)

[
U (1), (âIω)

†
]

− e−πω
([
U (3), âIIω

]
U (2)U (1) + U (3)

[
U (2), âIIω

]
U (1) + U (3)U (2)

[
U (1), âIIω

])

=U (3)
[
(1− e−λ2)U (2)(âIω)

†
]
U (1) + U (3)U (2)

[
λ1â

II
ωU

(1)
]

− e−πω
([

−U (3)λ3(â
I
ω)

†
]
U (2)U (1) + U (3)

[
(1− eλ2)U (2)âIIω

]
U (1)

)

=U (3)
{
(1− e−λ2)U (2)

(
U (1)(âIω)

† −
[
U (1), (âIω)

†
])

+ U (2)U (1)λ1â
II
ω

−e−πω
(
−λ3

(
U (2)(âIω)

† −
[
U (2), (âIω)

†
])
U (1) + (1− eλ2)U (2)U (1)âIIω

)}

=U (3)U (2)
{
(1− e−λ2)

(
U (1)(âIω)

† −
[
λ1U

(1)âIIω

])
+ U (1)λ1â

II
ω

−e−πω
(
−λ3

(
(âIω)

† −
[
(1− e−λ2)(âIω)

†
])
U (1) + (1− eλ2)U (1)âIIω

)}

=U (3)U (2)U (1)
{
(1− e−λ2)

(
(âIω)

† − λ1â
II
ω

)
+ λ1â

II
ω

−e−πω
(
−λ3e−λ2

[
(âIω)

† −
(
λ1â

II
ω

)]
+ (1− eλ2)âIIω

)}

=U (3)U (2)U (1)

{
(1− 1√

1− e−2πω
)
(
(âIω)

† + e−πωâIIω

)
− e−πωâIIω

−e−πω

(
−e−πω 1√

1− e−2πω

[
(âIω)

† + e−πωâIIω

]
+ (1−

√
1− e−2πω)âIIω

)}

=
U√

1− e−2πω

{[
1−

√
1− e−2πω

]
(âIω)

† +
[
−e−πω

]
âIIω

}

Proof 23: Commutator two mode transformation and static patch creation operator acting on
static patch vacuum states

We directly consider the commutator when acting on the static patch vacuum states, which
evaluates to

[
Uωk

, (âIωk
)†
]
|Ωωk

⟩I ⊗ |Ωωk
⟩II =

(√
1− e−2πωk − 1

)
(âIωk

)†Uωk
|Ωωk

⟩I ⊗ |Ωωk
⟩II (E.2)
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This can be calculated as follows:
[
Uωk

, (âIωk
)†
]
|Ωωk

⟩I ⊗ |Ωωk
⟩II =

=
√

1− e−2πωk

[
U

(3)
k U

(2)
k U

(1)
k , (âIωk

)†
]
|Ωωk

⟩I ⊗ |Ωωk
⟩II

=
√
1− e−2πωk

([
U

(3)
k , (âIωk

)†
]
U

(2)
k U

(1)
k + U

(3)
k

[
U

(2)
k , (âIωk

)†
]
U

(1)
k

+U
(3)
k U

(2)
k

[
U

(1)
k , (âIωk

)†
])

|Ωωk
⟩I ⊗ |Ωωk

⟩II
use (B.4) with λ1 = −e−πωk and (B.6)

=
√

1− e−2πωk

(
U

(3)
k

[
U

(2)
k , (âIωk

)†
]
+ U

(3)
k U

(2)
k

(
e−πωk âIIωk

U
(1)
k

))
|Ωωk

⟩I ⊗ |Ωωk
⟩II

=
√
1− e−2πωk

(
U

(3)
k

[
U

(2)
k , (âIωk

)†
])

|Ωωk
⟩I ⊗ |Ωωk

⟩II

=
√
1− e−2πωk

(
U

(3)
k

[
eln

√
1−e−2πωk (âIωk

)†âIωk , (âIωk
)†
]
eln

√
1−e−2πωk (âIIωk

)†âIIωk

)
|Ωωk

⟩I ⊗ |Ωωk
⟩II

use (B.5) with λ2 = ln
√

1− e−2πωk

=
√
1− e−2πωk

(
U

(3)
k

(
1− e− ln

√
1−e−2πωk

)
eln

√
1−e−2πωk (âIωk

)†âIωk (âIωk
)†eln

√
1−e−2πωk (âIIωk

)†âIIωk

)

|Ωωk
⟩I ⊗ |Ωωk

⟩II
=
√
1− e−2πωk

(
U

(3)
k

(
1− e− ln

√
1−e−2πωk

)
eln

√
1−e−2πωk (âIωk

)†
)
|Ωωk

⟩I ⊗ |Ωωk
⟩II

=
√
1− e−2πωk

(
U

(3)
k

(√
1− e−2πωk − 1

)
(âIωk

)†
)
|Ωωk

⟩I ⊗ |Ωωk
⟩II

=
√
1− e−2πωk

(√
1− e−2πωk − 1

)
(âIωk

)†U
(3)
k |Ωωk

⟩I ⊗ |Ωωk
⟩II

=
(√

1− e−2πωk − 1
)
(âIωk

)†Uωk
|Ωωk

⟩I ⊗ |Ωωk
⟩II

We used that the exponential functions of the creation and annihilation operators act on the
respective vacuum states as follows:

eλ1âb̂ |Ωa⟩ |Ωb⟩ = |Ωa⟩ |Ωb⟩

eλ2â†â |Ωa⟩ =eλ2n̂ |Ωa⟩ =
∞∑

k=0

1

k!
(λ2n̂)

k |Ωa⟩ =
∞∑

k=0

1

k!
(λ2 · 0)k |Ωa⟩ = e0 |Ωa⟩ = |Ωa⟩

eλ2â†ââ† |Ωa⟩ =eλ2â†â |1a⟩ = eλ2 |1a⟩ = eλ2 â† |Ωa⟩

E.4. Transformation dual rail state with multinomial theorem

We now want to look at alternate forms of the transformed multi-rail state (8.4). We expand the
exponential function, apply the multinomial theorem, and use multi-index notation:

|ψE⟩ =
d∑

k=1

ck
√

1− e−2πωk(âIωk
)†
∏

ω

√
1− e−2πω exp

[
e−πω(âIω)

†(âIIω )
†
]
|ΩI⟩ ⊗ |ΩII⟩

=
d∑

k=1

ck

√
1− z2k(â

I
ωk
)†

(∏

ω

√
1− z2

) ∞∑

n=0

1

n!

(∑

ω

z(âIω)
†(âIIω )

†

)n

|ΩI⟩ ⊗ |ΩII⟩
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=
d∑

k=1

ck

√
1− z2k

∞∑

n=0

∑

Ln

(∏

ω

√
1− z2zlj

)
(âIωk

)† |l1l2 . . . ld⟩I︸ ︷︷ ︸
=
√
lk+1|L(k)⟩I

⊗ |l1l2 . . . ld⟩II︸ ︷︷ ︸
=|L⟩II

=
d∑

k=1

ck

√
1− z2k

∞∑

n=0

zn

(∏

ω

√
1− z2

)∑

Ln

√
lk + 1 |L(k)⟩I |L⟩II

Here, we expanded the unitary transformation, expanded the exponential function using the
Taylor series, and applied the multinomial theorem:

1

k!

(
d∑

i=1

â†i b̂
†
i

)k

=
∑

l1+l2+···+ld=k

1

l1!l2! . . . ld!
(â1

†b̂†1)
l1 · · · (âd†b̂†d)ld

E.5. Unruh cloning channel

We take the initial state from eq. (8.6):

|ψ⟩ =
d∑

k=1

ck

√
1− z2k

∞∑

n=0




d∏

j=1

znj

√
1− z2j


∑

Ln

√
lk + 1 |L(k)⟩I |L⟩II

With this expression of |ψ⟩ we derive the Unruh channel from eq. (8.7)

E(ψ) = trII(|ψ⟩ ⟨ψ|) = ρI

. In doing so, we split the channel into two parts: the diagonal part, where identical frequencies
are excited, and the off-diagonal part, where different frequencies are excited. This distinction
affects the index we call k, which is the mode excited in the multi-rail state.

E(ψ) = trII(|ψ⟩ ⟨ψ|) = ρI

=trII







d∑

k=1

ck

√
1− z2k

∞∑

n=0

∑

Ln




d∏

j=1

z
lj
j

√
1− z2j


√lk + 1 |L(k)⟩I |L⟩II





·





d∑

k̃=1

c∗
k̃

√
1− z2

k̃

∞∑

n=0

∑

Ln




d∏

j=1

z
lj
j

√
1− z2j



√
lk̃ + 1 ⟨L(k̃)|I ⟨L|II








=
d∑

k,k̃=1

ckc
∗
k̃

√
1− z2k

√
1− z2

k̃

d∏

j

(1− z2j )
∑

Ln

∞∑

n=0

z
2lj
j

√
lk + 1

√
lk̃ + 1 |L(k)⟩ ⟨L(k̃)|I

=

d∑

k=1

|ck|2(1− z2k)

d∏

j=1

(1− z2j )
∑

Ln

∞∑

n=0

z
2lj
j

∑

Ln

(lk + 1) |L(k)⟩ ⟨L(k)|I

+

d∑

k,k̃=1

k ̸=k̃

ckc
∗
k̃

√
1− z2k

√
1− z2

k̃

d∏

j=1

(1− z2j )
∑

Ln

∞∑

n=0

z
2lj
j

√
lk + 1

√
lk̃ + 1 |L(k)⟩ ⟨L(k̃)|I

Under the assumption that we do not have to consider different z, this simplifies in the following
way:

E(ψ) =
d∑

k=1

(
1− z2

)d+1
d∑

k=1

|ck|2
∞∑

n=0

z2n
∑

Ln

(lk + 1) |L(k)⟩I ⟨L(k)|I
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+
∑

k, k̃ = 1
d(
1− z2

)d+1
d∑

k=1

ckc
∗
k̃

∞∑

n=0

z2n
∑

Ln

√
lk + 1

√
lk̃ + 1 |L(k)⟩I ⟨L(k̃)|I

=(1− z2)d+1
∞∑

n=0

z2nρ
(n+1)
I

with

ρ
(n+1)
I =

∑

Ln




d∑

k=1

|ck|2(lk + 1) |L(k)⟩ ⟨L(k)|I +
d∑

k,k̃=1

k ̸=k̃

ckc
∗
k̃

√
lk + 1

√
lk̃ + 1 |L(k)⟩ ⟨L(k̃)|I




E.6. Identify Unruh channel with cloning channel

First, we compare the coefficients of the block diagonal density matrices of the Unruh channel
from eq. (8.8) and the cloning channel from eq. (4.3).

First, we consider the diagonal part:

Unruh:
d∑

k=1

(lk + 1) = n+ d

Cloning:

(
n∑

i=1

2 + n

2n+ 2

)
+

1

2
1 = n

(
2 + n

2n+ 2
+

1

2

)
= n

(
1 +

1

2(1 + n)

)
= n+

1

2/n+ 2

Now, we consider the off-diagonal part for both channels:

Unruh:
d∑

k,k̃=1

k ̸=k̃

√
lk + 1

√
lk̃ + 1 = (

√
n+ d)2 = n+ d

Cloning:




n∑

i,j=1
i ̸=j

n− 2

(n+ 1)2


 = n(n− 1)

n− 2

(n+ 1)2
= n

(
(1− 1/n)(1− 2/n)

(1 + 1/n)2

)
= n

(
1 +

1− 5n

(1 + n)2

)

=n+
1/n− 5

2 + n+ 1/n

We can see that the leading orders of the coefficients match the dimensionality of the cloning
channel as needed.
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A p p e n d i x F

Unruh effect superposition

F.1. Calculation scalar product of states of the field

To obtain an explicit expression for the final state from eq. (9.5), we need to calculate the scalar
product ⟨ωj ,m|ωi, n⟩F. For this, we use the Wightman function from section 3.8. An alternative
approach would be to use Bogoliubov transformations, which are not employed in this paper.

⟨ωj ,m|ωi, n⟩F =

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ∗(τ̃)ei(ωiτ−ωj τ̃)⟨0| ϕ̂†(xm)ϕ̂(xn) |0⟩F︸ ︷︷ ︸

W (xm,xn)

=

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃

1

(2π)1/4
e−τ2/(4T 2) 1

(2π)1/4
e−τ̃2/(4T 2)ei(ωiτ−ωj τ̃)W (xm, xn)

=

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃

1√
2π

exp
[
−(τ2 + τ̃2)/(4T 2) + i(τωi − τ̃ωj)

]
W (xm, xn) (F.1)

The Wightman function W (xm, xn) refers to trajectories in a de Sitter static patch in a spacetime
with de Sitter radius ℓ at constant rm and rn, respectively. The Wightman function is calculated
in appendix B.10. We plug this in and obtain the following expression for eq. (F.1):

⟨ωj ,m|ωi, n⟩F =

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃

1√
2π

exp
[
−(τ2 + τ̃2)/(4T 2) + i(τωi − τ̃ωj)

]

· −1

16π2
κmκn

sinh2[(κmτ̃ − κnτ)/2] +
1
2(1 + κmrmκnrn − κmκnℓ2)− iεκmκn/4

where κm,n = 1/
√
ℓ2 − r2m,n. To simplify the time dependence of the Wightman function, we use

the expansion of the Wightman function in terms of the Fourier modes calculated in eq. (B.12):

⟨ωj ,m|ωi, n⟩F =−
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ∗(τ̃)ei(τωi−τ̃ωj)

∫ ∞

−∞
−κmκn

16π2
2 sin

(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

eiλsdλ

where the parameter bmn defined in eq. (B.10) captures the dependence on the trajectories xm
and xn and s is defined to be s = (κmτ̃ − κnτ)/2.
This way, we can separate the time-independent part and solve the time integrals:

⟨ωj ,m|ωi, n⟩F =

∫ ∞

−∞

κmκn
16π2

2 sin
(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ(τ̃)ei(τωi−τ̃ωj)eiλsdλ

(F.2)
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Time integrals

Using the expression of the Wightman function from eq. (F.2) we can solve the time integrals

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ(τ̃)ei(τωi−τ̃ωj)eiλs =

∫ ∞

−∞
dτχ(τ)ei(ωi−λκn)τ

∫ ∞

−∞
dτ̃χ(τ̃)ei(−ωj+λκm)τ̃

= 2πχ̃(ωi − λκn)χ̃(−ωj + λκm)

where χ̃(Ω) is the Fourier transform of the switching function, which again is a Gaussian. The
Fourier transform of the switching function takes the following form:

χ̃(Ω) =
4

√
2

π
Te−T 2Ω2

With this, the time-dependent part overall simplifies to
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ(τ̃)ei(τωi−τ̃ωj)eiλs = 2

√
2πT 2e−T 2(ωj−κmλ)2e−T 2(ωi−κnλ)

2

= 2
√
2πT 2e

−T 2κ2
m

(
ωj
κm

−λ
)2

e
−T 2κ2

n

(
ωi
κn

−λ
)2

We can simplify this further using the adiabaticity assumption from eq. (9.2) which requires
a large interaction time T . As the switching function χ(τ) is a Gaussian function with a large
interaction time, we know that its Fourier transform χ̃(Ω) is very sharp. Accordingly, the product
of the two Fourier-transformed switching functions only contributes if their peaks (the respective
means of the Gaussians) are close. The resulting condition is such that the peaks are close and
the Gaussians do not vanish is

ωi

κn
≈ ωj

κm
(F.3)

For this quotient, we introduce a quantity

qin =
ωi

κn
.

With this quotient, the time integral and, therefore, the product of Fourier-transformed switching
functions takes the following form:

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ̃χ(τ)χ(τ̃)ei(τωi−τ̃ωj)eiλs = 2

√
2πT 2e−T 2κ2

m(qjm−λ)2e−T 2κ2
n(qin−λ)2

When plugging this back into the scalar product from eq. (F.2), we obtain

⟨ωj ,m|ωi, n⟩F =

∫ ∞

−∞

κmκn
16π2

2 sin
(
2λ arcsinh

(√
bmn

))
√
bmn(bmn + 1)(e2πλ − 1)

2
√
2πT 2e−T 2κ2

m(qjm−λ)2e−T 2κ2
n(qin−λ)2dλ

which can be simplified using q = qin = qjm

⟨ωj ,m|ωi, n⟩F =
κmκn
16π2

4
√
2πT 2

√
bmn(bmn + 1)

∫ ∞

−∞

sin
(
2λ arcsinh

(√
bmn

))

e2πλ − 1
e−T 2(κ2

m+κ2
n)(q−λ)2dλ (F.4)
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F.2. Diagonal terms of scalar product

Solve Fourier integral

We approximate the λ-integral from eq. (F.4) by again using that the interaction time T is large,
which was imposed by the condition introduced in (9.2) and then solve the integral using Laplace’s
method:

∫ b

a
dxf(x)e−ng(x) ∼

√
2π

ng′′(x0)
f(x0)e

−ng(x0) for n→ ∞

Here, the function g(x) has to be differentiable twice (with a strict minimum such that g′(x0) = 0)
and f(x0) ̸= 0. We identify the different terms of the integrals as follows where our integration
variable is λ:

n =T 2

f(λ) =
sin
(
2λ arcsinh

(√
bmn

))

e2πλ − 1

g(λ) =(κ2m + κ2n)(q − λ)2, g′′(λ) = 2(κ2n + κ2m)

g′(λ0) =− 2(κ2m + κ2n)(q − λ0) = 0 ⇒ λ0 = qin

For large T , the following holds:

⟨ωj ,m|ωi, n⟩F =
κmκn
16π2

4
√
2πT√

bmn(bmn + 1)

1√
κ2n + κ2m

sin
(
2q arcsinh

(√
bmn

))

e2πq − 1
(F.5)

F.2. Diagonal terms of scalar product

For obtaining the diagonal terms of the scalar product, we consider two identical trajectories
r = rm = rn and express bmn in terms of the dimensionless variable x, which is the rescaled radial
variable:

bmn = lim
xm→xn

1

2

(
(1− xmxn)√
1− x2m

√
1− x2n

− 1

)
= 0

We consider the result from eq. (F.5) and consider the limiting case of identical trajectories:

⟨ωi,m|ωi,m⟩ =κmκn
16π2

4
√
2πT

e2πq − 1

1√
κ2m + κ2m

lim
b→0

sin
(
2q arcsinh

(√
bmn

))
√
bmn(bmn + 1)

=
κmκn
16π2

4
√
2πT

e2πq − 1

1√
2κm

2q (F.6)

Note, that we introduced the parameter q ≈ qim = ωi
κm

. We can plug this back in to obtain

⟨ωi,m|ωi,m⟩ =κmκn
16π2

4πT

e
2πωi
κm − 1

1

κm
2
ωi

κm

This is the thermal spectrum with the de Sitter temperature TdS = κ
2π from eq. (8.2):

⟨ωi,m|ωi,m⟩ = T

2π

ωi(
eωi/TdS − 1

) =
T

2π

ωi

(e2πq − 1)
(F.7)
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Appendix F. Unruh effect superposition

F.3. Normalized inner product

Here, we calculate the inner product of normalized states

Λij
nm =

⟨ωj ,m|ωi, n⟩F√
⟨ωi, n|ωi, n⟩F ⟨ωj ,m|ωj ,m⟩F

with this we can expand the off-diagonal terms (i ̸= j and n ≠ m) of the scalar product as follows:

⟨ωj ,m|ωi, n⟩F =Λij
nm

√
⟨ωi, n|ωi, n⟩F ⟨ωj ,m|ωj ,m⟩F

=Λij
nm

T

2π

√
ωiωj

(e2πq − 1)(e2πq − 1)

=Λij
nm

T

2π

√
ωiωj

e2πq − 1

With this, we can see that the information of the off-diagonal terms is encoded in the normalized
inner product. For further calculations, we need to plug in the explicit expression of the parameters
from eq. (B.10) and the results of the scalar product from eq. (F.5) and its diagonal terms from
eq. (F.7). We also use, that qin = ωi

κn
.

Λmn
ij =

κmκn
2π2

√
2π2 sin

(
2q arcsinh

(√
bmn

))
√
bmn(bmn + 1)

√
κ2n + κ2m

√
ωiωj

=

√
κmκn sin

(
2q arcsinh

(√
bmn

))
√
2q
√
κ2n + κ2m

√
bmn(bmn + 1)

As a sanity check, we look at the normalized inner product for identical trajectories, which is
obtained by taking the limit bnn → 0:

Λnn
ii =

√
κnκn sin

(
2q arcsinh

(√
bnn
))

√
2q
√
κ2n + κ2n

√
bnn(bnn + 1)

=

√
κnκn√

2q
√
2κ2n

2q = 1
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