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Abstract

Lattice polarons, quasiparticles arising from the interaction between an impurity and its
surrounding bosonic environment confined to a lattice system, have emerged as a platform for
generating complex few-body states, probing many-body phenomena, and addressing
long-standing problems in physics. In this study, we employ a variational ansatz to investigate the
quasiparticle and spectral properties of an impurity coupled to a condensate gas of hard-core
bosons in a two-dimensional optical lattice. Our findings demonstrate that the polaron features can
be tuned by adjusting the filling factor of the bath, revealing intriguing polaron characteristics in
the strongly interacting regime. These results offer valuable insights for lattice polaron experiments
with ultracold gases and can serve as a guide for new experiments in emergent quantum devices,
such as moiré materials, where optical excitations can be described in terms of hard-core bosons.

1. Introduction

Ultracold gases have served as a robust platform for quantum simulation of exotic many-body physics [1-4].
This permitted the realization of quantum analogs of well-understood phenomena [5, 6], as well as the
exploration of physics beyond the accessible regimes in condensed matter physics. Nowadays, the versatility
of these systems allows for addressing concise proposals for long-standing open problems such as
high-temperature superconductivity. Bose polaron physics in ultracold gases has attracted much attention
given this context, and it has dramatically stimulated new theoretical and numerical approaches [7-31] to
understanding the experimental realization of this phenomenon far beyond its original formulation [32-39].

In optical lattices, impurity physics has renewed interest in probing the Mott-insulator to superfluid
transition [40], topological phases [41-43], band geometry [44], magnetic polarons [45-49], few-body
physics [50], non-equilibrium dynamics [51], and polaron physics in strongly correlated Fermi—Hubbard
models [52]. The study of lattice polarons is further motivated by the advances in quantum gas microscopy,
which enables the imaging of individual atoms [53, 54], providing intricate spatial details of quantum states
that complement traditional spectroscopic information [45, 55].

In condensed matter systems, recent experiments with cavity-coupled monolayer semiconductors have
reported the realization of the first strongly interacting two-dimensional polarons in the context of
polaron-polaritons [56—59]. The underlying character of these quasiparticles has unveiled new questions to
understand polaron physics for open systems [60, 61], photon bound states [62, 63], and few-body states of
polaritons [64]. Furthermore, the recent developments with two-dimensional van der Waals heterostructures
place quantum gases into new territories where polaron physics and Bose—Fermi mixtures are being realized
with control and tunability [65] with excitons and charge carriers (electrons and holes). Polaron physics has
demonstrated to be a powerful tool to sense correlated phases of matter [66—70]. In these experiments,
Bose—Fermi Hubbard systems may arise as a consequence of an emergent moiré potential [71-73]. In
multilayers, spatially indirect excitons (electron and hole sitting in different layers) can arise, imprinting
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strong dipole—dipole interactions, which can effectively lead to a Hubbard model sensitive to the intrinsic
quasi-bosonic character of the excitations [74]. Indeed, for relevant experiments, the excitons in a moiré
superlattice may behave as hard-core bosons, which have been predicted to exhibit superfluid [75] and
supersolid phases [76].

Motivated by the progress with ultracold gases and the relevance in the new quantum materials, in this
article, we study the strongly interacting impurity in a Bose—Einstein condensate (BEC) of hard-core bosons
in the atomic context. For this purpose, we employ a variational ansatz to describe the spectral and
quasiparticle properties of an impurity embedded in a gas of hard-core bosons. The character of the
variational ansatz allows us to understand the coupling between the collective excitations of the hard-core gas
and the impurity beyond the so-called Frohlich-like Hamiltonian, which is only valid for weak
impurity-boson interactions. Our results show that the quasiparticle properties and the emergence of the
polaron branches can be tuned with the underlying properties of the bath and find that for low densities, the
quasiparticle properties are governed by the beyond Frohlich Hamiltonian.

Our study is motivated and inspired by state-of-the-art experiments and the growing theoretical interest
in quantum gases, where interactions between different species of atoms can be tuned on demand. In
particular, in view of the experimental progress with Bose—Fermi and Bose—Bose Hubbard models [77-80],
and in van der Waals heterostructures, where moiré excitons and electrons can be tightly confined to a moiré
superlattice and highly imbalanced-population Bose—Fermi mixtures can be created to realize polaron
physics [71-73]. Our theoretical framework may provide valuable guidance for understanding these
experimental systems.

2. Model

We consider a single impurity coupled to an atomic ultracold two-dimensional gas of hard-core bosons
confined in a square optical lattice of Nj sites, as illustrated in figure 1(b). The Hamiltonian of the system
consists of three terms:

H=Hg+ Hy + Hag. (1)

The first term Hp describes the gas of hard-core bosons, the second term H, represents the non-interacting
Hamiltonian for the single impurity, and finally, Hxg accounts for the impurity-boson coupling. To make
our manuscript self-contained, we discuss each term separately in detail.

2.1. Collective excitations of a hard-core gas
We start describing the gas of hard-core bosons. The derivation outlined in this subsection can be found in
[81, 82], however, to make our manuscript more pedagogical, we include here a detailed derivation.

The Hamiltonian of the majority bosons is given by

HB = Z [_tB (EZ’BEr’,B +hC) - 6r,r’,U/Bﬁr,B] (2)
<r7r/>

Uss s st s s
+—=- Zr: CLBCI,Bcr,Bcr,B, (3)

where the creation (annihilation) operator of the B atoms is denoted by E;B (¢r,8)- The tunneling coefficients
is given by tg, with a chemical potential of pig. We consider an on-site boson—boson interaction, Ugg, much
larger than the tunneling, t5, so we assume that the B atoms can effectively be regarded as hard-core bosons.
Finally, 71, 3 = EI,BEY7B corresponds to the number operator.

The idea is to account for the forbidden double occupancy of the B atoms. Then, we map the bosonic
field operators into spin 1/2 operators; that is, replacing EI,B — &, and &8 — Sr, where 8§ (S;) creates
(annihilates) a spin —l—% (— %) at location r. Therefore, the Hamiltonian Hy maps to

Hy=—ty Y ($f80+hec) — Y5 — EPN. ()
(rx’) r
The ground state of the B atoms is written as

[0 @)see =] [ (2) s (2))

Iy

2

Si} 0), (5)
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Figure 1. (a) Schematic representation of the state describing a Bose—Einstein condensate (BEC) of hard-core bosons in terms of
the Bloch sphere, the angle 6 determines the filling factor of the BEC. (b) Cartoon of the impurity (blue ball) coupled to the BEC
of hard-core bosons (pink balls).

the many-body wave function consisting of N; identical sites. Since we consider hard-core bosons, this
many-body state can be understood in terms of the Bloch sphere as illustrated in figure 1(a). Here, the angle
0 is determined by a variational approach [81]

5BEC<1/) (9) |HB|¢ (6))BEC —
06

0. (6)

By minimizing the energy, we obtain a relation between the chemical potential and the angle 6:
cosf = up/4ts, which defines the filling factor ng = (cosf + 1) /2. The state of the system corresponds to a
BEC with a condensate fraction of ny = n(1 — n) [81]. Interestingly, for non-local interactions, the
phase-diagram is predicted to exhibit density-waves, superfluid, and supersolid phases [83]. The study of
these exotic phases, is however, beyond the scope of our manuscript.

To arrive at our final Hamiltonian HB, we perform three more transformations. First, we rotate our
system about the y axis to align the z axis with the mean-field solution:

St = cosOL; +sinfLZ,
§=1,

§¢ = —sinOL* + cosOLZ. (7)

Second, we use the Holstein—Primakoff transformation, retaining the linear terms [84]
S N
Ly = 3 d+d ),

iy = (4 - ).
- 1

z_ - g5
Ly 3 did., (8)

where dl , d, are bosonic operators. In momentum space, the Hamiltonian can be written as

Hy ~ Z oK (211131( + ﬂka—k) + Bk (;ilt;iik + a—kak) , 9
k
with
o = % {%k (c0520 + 1) + 4t3} , (10a)
P = —i sin” fe. (10b)
Here, e = —2tg[cos (kca) + cos (kya)], and a is the lattice constant.

To diagonalize Hamiltonian (9), we use a third and final transformation, in turn, the following
Bogoliubov transformation,

de = A —mAy

dT_k = uk’AYT_k — ViV (11)

3
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where the coherence factors of the BEC, 1 and vy are defined as

1
= |~ + —2k (12a)

2 2’
2 2\/af - B}

1
Ve = —7+%. (12b)
2 2/ o — B¢

We finally arrive to the Hamiltonian Hy written in terms of the collective excitations of the system, coined
spin-waves [81]

Hy = w (k) %A (13)

where ’yli and A are the creation and annihilation bosonic operators describing the collective excitations of
the BEC, respectively, with w(k) = 24/ci — 3. The dispersion of the collective excitations is linear at small
momenta w(k) ~ ¢|k|, where the speed of sound ¢ is given by ¢; = 2tv/1 — cos? 6. An extended discussion of
the remaining BEC features such as the superfluid density, finite temperature effects, among others, lie
beyond the scope of the manuscript, which, however, can be found in [81].

2.2. Impurity-Boson coupling
To describe the coupling between the impurity and the collective excitations of the BEC, we now turn our
attention into the following terms of the Hamiltonian

I:IA = —fa Z (EI,AEI‘/,A+h‘C‘) ,
<r7r/>

Hp = Uap Z Ty Bix A (14)

The first line corresponds to Hy, which simply describes the hopping term with tunneling constant t,. Here,
E; 4 (&,a) denotes the creation (annihilation) operation of the impurity. The second line give H,p written in
terms of the B atoms. Therefore, we perform the same transformations described above to the bosons
operators, which allow us to write the impurity-boson term of the Hamiltonian Hy in terms of the coupling
of the impurity to the collective excitations of the Bose gas as following

A~ U, R
HAB = % (1 + COSH) an’A
r
UAB sinf ~t ~ ~t ~
- \/ﬁ 2 Z (“q - VQ) (7—q + ’VCJ> Ctq,4%,A
s

k,q
1 S TN
— ﬁSUABcosﬁ Z [uk/+quk/’yk/+q’yk/
k,gk’
_ At : :
uk'+qVk'ryk’+q7_k’ Vk'+quk'7—(k’+q)7k'
. S DU SRN

+Vk’+qVk"7_(k/+q)'7,k']ck—q,ACk,A- (15)
The impurity-boson Hamiltonian of equation (15) consists of three contributions: i) the mean-field term in
the first line, ii) the Frohlich-like interaction where a single collective excitation can be either absorbed or
emitted (second line), and iii) beyond Fréhlich contributions (third to fifth lines), which involve processes
with two collective modes. Notice that for § — 7, the interaction Hamiltonian is completely governed by the

beyond Frohlich term.
In summary, the Hamiltonian of the system is the sum of the following terms:

I:I: Z [w (k) /?]I/?k“!_EA (k) flk_’A:| +HAB7 (16)
k

where e (k) = —2ta[cos (kca) + cos (k,a) — 2] is the impurity dispersion.
Next, we propose a Chevy-like ansatz [50, 85, 86] for the ground state as

W) =

(bOelt:o,A + Z ¢q5§,ﬂTq] | () BEC, (17)
q
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with the variational parameters ¢, and ¢q. Note that for Uyg = 0, the ground state of the system can be
written as

|Po) = e1T(=0,A|¢(9)>BEC7 (18)

this considers an impurity at the bottom of the band on top of the gas of hard-core bosons. We remark that
by construction, the ansatz (17) creates exactly one impurity on top of the BEC. So far, our main
approximation is that we consider collective excitations to be bosons. This assumption, which involves
considering only the linear terms of the Holstein—Primakoff transformation, implies that the number of
perturbations around the ground state in equation (5) is very small. Since our ansatz creates a single
excitation of the bath, we retain this approximation. In condensed matter systems, the non-bosonic nature
and corrections to the linear regime may lead to intriguing effects [74].

The functions ¢, and ¢q are obtained from the variational principle 6(¥|H — E|¥) /3¢ = 0 and
5(U|H— E|V)/ d¢, = 0, respectively. This ansatz leads to the following set of equations:

emrdo — smez ¢p (u = Edy, (19a)
Usp .
[ (p) + €a(p) + enrl fp — 7 sind (tp —vp) b0
_NLSUABCOSQZ(uPuP, gy ) 07 = By, (19b)

’
p

where epp = npUap is the mean-field energy.

For the two-dimensional Bose polaron in homogeneous confinement, Chevy’s ansatz in [87] has
provided a very accurate description compared to quantum Monte Carlo calculations [88], and it is
equivalent to the non-self-consistent T-matrix approximation [89]. Furthermore, the limitations of Chevy’s
ansatz for weakly interacting BEC are related to the formation of clusters around the impurity [13], clusters
that, due to the bosonic nature of the atoms forming the BEC, can be arbitrarily large. The formation of large
polaron clouds cannot be correctly captured with this ansatz. Here, however, we work in the opposite regime
where these clusters are intrinsically prevented due to the hard-core nature of the bosons. Therefore, we
expect this ansatz to be even more reliable with the hard-core constraint for the bath bosons.

3. Lattice polarons

We can now investigate the spectral features of the impurity coupled to the hard-core gas and the properties
of the resulting lattice polaron. In particular, we perform calculations of the energy, quasiparticle residue and
the spectral function. Here, the polaron energy is denoted by E, we shift the energy of the non-interacting
impurity and the BEC to zero, such that E, can be read directly as the polaron energy. The quasiparticle
residue, Z, is determined by the squared overlap between the interacting |¥) and the non-interacting |®)
states, the latter corresponding to the case where the impurity sits on top of the BEC without creating
correlations, see equation (18):

= (@ T)|*. (20)

On the other hand, the spectral function of the impurity is defined by the expression

|(Po|Vy)]
Ak=0,w) lzw E +in

where {|W,)} is the set of eigenstates obtained from the diagonalization of equations (19a) and (19b), and E,
denotes the corresponding eigenenergies. For visibility purposes, we add a small imaginary number, i, to
the spectral function. As we focus on the zero-momentum impurity, we simply denote A(k = 0,w) = A(w).
First, we study the zero-momentum polaron energy, E/t, as a function of the angle § (which varies the
filling factor np) for several values of the interaction strength Uxg. This is shown in figure 2, where we show
for attractive impurity-boson interactions: Uag/t = —10.0 (red line), Usp/t = —5.0 (blue line), and
Uap/t = —1.0 (black line) as well as for repulsive interactions Uap/t = 1.0 (dot-dashed purple line) and
Upp/t = 5.0 (dashed orange line). In our numerics, we solve the variational equations by discretizing the first
Brillouin zone, in this case, our grid consists of 151 x 151 points. We take ty = t5 = t.

(21)
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Figure 2. Zero-momentum polaron energies as a function of the angle 6 for Uag/t = —10.0 (red line), Uag/t = —5.0 (blue line),

Uag/t = —1.0 (black line), Uag/t = 1.0 (dot-dashed purple line) and Uxp/t = 5.0 (dashed orange line). The dependence on the
filling factor is depicted at the top of the figure.

For attractive interactions in figure 2, we observe for small angles, i.e. close to unit filling factors, that the
polaron energy simply saturates at Uag. Physically, this is very intuitive: when the bosons fill the lattice, there
is no longer a continuum of scattering processes, and the energy of adding an impurity is simply given by the
energy cost of putting a boson and an impurity together, which is Usp. With increasing angle, that is,
decreasing the filling factor, scattering processes start to be allowed, then, the energy of the polaron increases
smoothly with the angle 6. Interestingly, we find that when 6 — , that is, ng — 0, the energy of the polaron
does not tend to zero. This is somewhat surprising because in the limit ng — 0, the problem can be regarded
as a B atom placed in an empty lattice, and one would expect that the energy of the polaron to approach zero
as ng — 0. However, this is a partial description and it is not entirely valid in the strong coupling regime. To
further understand this unexpected behavior, note that in equation (15), the mean-field and Frohlich terms
of the Hamiltonian vanish when 6§ — 7, while the term beyond Frohlich remains finite (last three lines in
equation (15)). This term increases with Uap, leading to a non-zero polaron energy for ng — 0. In this limit,
both the mean-field and Frohlich contributions become negligible, and the polaron state is completely
dominated by the beyond Frohlich term of the Hamiltonian, this is a genuine result of strong interactions.

The physical explanation for the finite energy of the attractive polaron as the bath density tends to zero
can be traced by first considering the opposite regime. Near unit filling, the energy of the polaron is E ~ Upg,
which simply represents the energy of double occupation where the impurity and a lattice boson occupy the
same site. Since the lattice is filled, this is the only state available. As we decrease the filling factor, scattering
states become available, and the impurity can occupy empty sites, but it can also occupy a filled state and
move as a dimer with a boson of the BEC, forming a two-body bound state. For strong interactions, the
dimer state becomes robust and persists at small densities of the BEC; this represents a true two-body bound
state with a non-zero binding energy for ng — 0. Then, we would expect the energy of the polaron to lie
below the energy of the bound state. Confined to optical lattices, the study of the scattering between a pair of
atoms from a two-body perspective [90-92] has predicted the emergence of both long-lived attractive and
repulsive bound states, which were experimentally observed [93].

For repulsive interactions, we observe that close to unit filling (§ = 0), the energy of the polaron saturates
to E ~ Uy, as shown in figure 2. With increasing angle (decreasing filling factor), the polaron energy
smoothly decreases and tends to zero as the filling factor approaches zero. Our findings suggest that for
strong coupling, the repulsive and attractive polaron behave differently in the limit ng — 0.

To understand the quasiparticle character of the polaron states discussed above, we now turn to the
polaron residue as defined in equation (20). In figure 3, we show the residue Z as a function of the angle ¢
and the interaction strength Uap/t. For weak attractive interactions, we find that the polaron is well-defined
with Z ~ 1. As the interaction strength increases, the polaron remains a well-defined quasiparticle only for
small angles (close to unit filling factors). In contrast, for small filling factors (# — ), the residue of the
polaron starts dropping to zero. That is, the states we discussed previously, where the energy of the
ground-state remains non-zero in the limit ng — 0, have indeed very small residue and are consequently
ill-defined quasiparticles. Note that in this same limit (ng — 0), the residue of the repulsive polaron is close
to one, meaning that in this case, this branch remains as a well-defined quasiparticle. On the other hand,
close to unit filling and for strong coupling, the repulsive polaron cedes its spectral weight and is no longer a
well-defined quasiparticle. Thus, we obtain opposite behaviors for attractive and repulsive polarons: For

6
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Figure 3. Quasiparticle residue, Z, for the zero-momentum polaron as a function of the interaction strength, Uag, and the angle 6
which determines the filling factor (see top).

strong interactions, we have found that the low-energy polaron state becomes ill-defined as np approaches 0
for attractive interactions and as ng approaches 1 for repulsive interactions. Furthermore, the residue in
figure 3 exhibits symmetry under (6, Usg) — (0 — 7, —Uap), highlighting a particle-hole symmetry. This
symmetry implies that scattering processes can be understood in terms of the interactions of an impurity
with either a particle or a hole.

One should remark that the breakdown of the quasiparticle picture occurs only for strong interactions.
For weak impurity-boson interactions, we obtain that the quasiparticle picture holds valid for all filling
factors, including the limit cases of ng — 0 and ng — 1.

Now, we can complete the physical picture of the intriguing behavior of the attractive polaron energy at
low densities based on the residue observations. Attractive strong interactions allow the binding of the
impurity and a boson of the bath; the energy of the dimer state is below zero and sets an upper bound on the
polaron energy. As the density of the bath decreases, the residue of the attractive polaron branch also
decreases. Physically, this can be understood by the fact that as the density decreases, the impurity finds fewer
bosonic atoms to bind with. Therefore, this state becomes less accessible, leading to a vanishing residue.

Since our approach preserves the sum-rule [ A(w)dw = 1, if the polaron loses its residue, the spectral
weight has to be distributed in high-energy excitations. Physically, these states can be understood as a
continuum of scattering states formed by an impurity state with finite momentum k and a collective
excitation of the BEC, fﬂk, with opposite momentum k. Indeed, our variational ansatz provides not only the
residue of the polaron, ¢y = v/Z, but also the weight of these scattering states, ¢y.

To understand how the spectral weight is transferred into high-energy excitations, we plot in figure 4 the
spectral function, A(w), as a function of the frequency w/t for fixed Usp/t = —5 and several filling factor
values.

Figure 4 shows the evolution of the polaron peak with decreasing density (increasing ) for strong
impurity-boson interactions. For large filling factors (small angles), the polaron peak retains most of the
spectral weight, as shown by the red line in figure 4; in this case, only the quasiparticle peak at
w/t = Upp/t = —5 is visible in the spectral function. By decreasing the filling factor (increasing 6), we
observe a reduction of polaron peak, as indicated by the blue and black curves for = 37 /4 and § = 77/8,
respectively. As the polaron peak shrinks, its spectral weight is transferred into high-energy excitations, these
excitations are incoherent and consist of the continuum of excitations of our ansatz in equation (17); i.e. this
continuum is formed by one collective excitation of the BEC and an impurity state with opposite
momentum. Close to § = T, the polaron peak has disappeared and the quasiparticle residue vanishes,
distributing its spectral weight in the continuum of excitations which become more visible (purple line).

Due to the confinement of the BEC and the impurity within an optical lattice, the continuum of
excitations is bounded from above and below. The width is given by W = 4¢[2 4 1/2(1 + cos? §)], which
depends on 6. Note that the fading of the polaron in the strong coupling regime is a result that only the
beyond Frohlich term in the Hamiltonian of equation (15) can capture.
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Figure 4. Spectral function, A(w), as a function of the frequency w/t with Uag/t = —5 for 6 = 7 /4 (red line), § = 37 /4 (blue
line), @ = 77 /8 (black line) and 6 = 7 — 0.05 (purple line). With increasing angle (decreasing the filling factor), we observe that
the polaron becomes ill-defined and cedes its spectral weight to the continuum of collective excitations.

4, Discussion and conclusions

In this work, we have studied the problem of an impurity coupled to a BEC of hard-core bosons in a
two-dimensional optical lattice. Employing a variational ansatz to describe the formation of the Bose
polaron for strong coupling, we unveiled the quasiparticle properties of the zero-momentum impurity and
have shown the interplay between the strong impurity-boson interactions and the inherent collective
excitations of the hard-core bosons which tune the quasiparticle features.

As mentioned, the study of the strongly interacting Bose polaron in homogeneous or harmonic
confinements, that is, without the lattice, has attracted significant attention. Therefore, it is important to
discuss the aspects that are genuine lattice polaron features. Experimentally, the first observations of
attractive and repulsive polarons unveiled an interplay between these quasiparticle branches [32, 33]. These
polaron states also emerge in lattice confinement. One of the most notable differences between
homogeneous and lattice polarons is the nature of the continuum of scattering states. While unbound for
homogeneous polarons, in a lattice, these states are bounded both from above and below, which changes the
underlying character of the quasiparticle and can give rise to the emergence of repulsive bound states.

On the other hand, many aspects of the lattice polaron in a condensate of hard-core bosons remain to be
studied, aspects that for homogeneous Bose polarons have unveiled many intriguing properties. These
include non-equilibrium dynamics [37, 38], criticality [35], and universal properties [39]. All these motivate
further theoretical and numerical developments to understand lattice hard-core polarons beyond the Chevy
ansatz-like approach. Due to the reduced dimensionality of the system, approaches such as exact
diagonalization [52], quantum Monte Carlo, DMRG, or other sophisticated many-body techniques [94] may
be suitable for studying these kinds of systems. Furthermore, an interesting avenue is to study the Fermi
lattice polaron, which may reveal new physics such as the polaron-to-molecule crossover in a lattice, a
phenomenon extensively studied in homogeneous confinements [95-98].

The ability to probe lattice systems site-by-site using quantum microscopy has increased interest in the
study of lattice polarons, which may serve as probes to measure quantum phase transitions [40], topological
and geometric features [41-44], as well as following spatially non-equilibrium dynamics [51]. Entering into
the strongly interacting regime may lead to the emergence of new few-body and many-body states [50].

In ultracold gases, the breakthrough experimental progress to realize binary mixtures confined in optical
lattices make our proposal realistic. For instance, a population-imbalanced Bose—Fermi mixture can be
produced with bosonic #Rb and fermionic “°K. This mixture is attractive in view of the existing Feshbach
resonance between the Rubidium and Potassium atoms, allowing for tuning the impurity-boson interactions
on demand.

Van der Waals heterostructures have opened new avenues for realizing strongly correlated phases in
periodically confined systems. In bilayers, moiré superlattices enable the realization of Hubbard models
[80, 81]. Very recently, the first Bose—Fermi—Hubbard model was realized in these systems [82]. Given the
ability to tune Hubbard model parameters through the relative twist angle, we expect our study to draw
attention towards realizing mediated superconductivity in these systems.
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