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Abstract
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We study the low-energy sector of the strong interaction which is the least understood part of
the Standard Model, the theory that describes the interactions of all known particles. The ideal
particles for this study are the proton and the neutron, collectively called the nucleon. They make
up the nucleus of all the atoms of our world and understanding them has been of high priority
ever since their discovery. We show that one cannot neglect the effects of other hadrons, such as
neutrons and pions when studying the proton. A large part of the proton's hadronic wavefunction
is shown to consist of the wavefunctions of other hadrons. In other words, when probing the
proton there is a sizeable probability that one is probing some other hadron surrounding the
proton as a quantum fluctuation.

The nucleon itself consists of elementary particles known as quarks and gluons, collectively
called partons. Exactly how the properties of these partons make up the properties of the nucleon
has been the subject of active research ever since their discovery. Two main issues are the flavor
asymmetry of the proton sea and the spin structure of the nucleon. To address these questions
we study the interplay between the partonic and hadronic degrees of freedom. We introduce a
model based on a convolution between hadronic quantum fluctuations as described by chiral
perturbation theory, and partonic degrees of freedom motivated by a physical model of the
nucleon having only few physically constrained parameters.

We present the hadronic distribution functions and the parton distribution functions. The
results are in agreement with a large set of experimental data. These include the structure
functions of the proton and the neutron. Agreement with the sum rules of the spin structure
functions offers new insight into the spin structure of the nucleon.
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1. Introduction

The search for knowledge and the quest to understand the world around us
goes back several thousand years and probably much further back into pre-
historic times. The cause of this curiosity has in many cases been driven by
survival instincts. And for good reasons. But with the development of larger
societies and better agriculture, this ‘traditional’ view on the need-of-learning
slowly but surely changed. For instance in Ancient Greece, institutions al-
lowed for seeking knowledge for the sake of knowledge, that is for sheer
curiosity. Historically, only a chosen few per society had this privilege. In
modern times, the distribution is much more heterogenous.1 There are now
large and many institutions all around the globe, with students numbering in
the hundreds of millions, dedicated to learn more.

Science in general can be sectioned into two large categories. That of the
applied sciences and that of the basic sciences. The former can be broadly de-
scribed as the study of some specific, and in many cases a human-made device
or application of some kind. As the name suggests, very often if not always,
the main motivation is to perfect the application of said device or natural phe-
nomena, such that in shortest time possible one can reap the benefits from it.
In the basic sciences, the philosophy is somewhat different.

In the basic sciences, one seeks to understand and answer problems that ask
the most fundamental questions regarding our existence. The main motivation
is the yearning for learning.2 But as evident from modern history, even in the
basic sciences the search for knowledge very often also yields a great benefit
for the general public in the form of an improved life quality.

In this thesis, we will study the properties of one of the most important
building blocks that makes up most of our world, the proton. In understanding
the proton one also gains knowledge about the properties of the neutron which
is the sister particle of the proton. Together the proton and the neutron make
up the nucleus of every atom around us. That is the air you breathe, the water
you drink and so on are all made up of some combination of protons and
neutrons. The importance of understanding these building blocks cannot be
stressed enough. For instance the energy that the Sun provides us comes about
because when protons and neutrons as ‘fused’ together inside of the Sun, the
resulting mass of the new-formed object is slightly lower than the sum of its
parts. Some of the mass has transformed into energy, as given by Einstein’s

1Unfortunately, discrimination still occurs but this is a subject for another thesis.
2Although it is worth noting that what is basic science today, can be applied science tomorrow.
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famous equation E = mc2, and is radiated away in the form of light. This
light is essential for the existence of life here on Earth. Furthermore due to the
interaction properties between a proton in motion and human tissue, proton
therapy has become a widely used tool in treating certain types of cancer [1].

If one takes a look around, one will notice that in large, the physical world
consists of objects belonging to different size scales. We are mostly accus-
tomed to ‘normal-sized’ objects such as ourselves, other human beings, in-
sects, dust, rocks and so on. These objects have similar dynamics. You give
them a push, they move (and/or they push you back). Then there are objects
so large that the gravitational field they create have tangible effect on other
bodies, without any physical contact. But notice that the force due to gravity
is in most cases not that strong at all. The non-gravitational force created by a
magnet, when acting on an object of small mass, can overcome Earth’s gravi-
tational pull on said object! Thus, in most cases in the study of small objects,
one can safely neglect any effects of gravity.3

In addition to gravity, there are three other forces that we know of and
have a sound theory to describe them. These are the weak interactions, the
electromagnetic interactions and the strong interactions. The theory that best
describes all three of these interactions is what is called the Standard Model
of particle physics (cf. e.g. [2]). We will get into more detail regarding the
Standard Model in Chapter 2.

Within the Standard Model (SM), the weak and the electromagnetic inter-
actions are described by the electroweak theory which represents these forces
as a single unified force. The electroweak interactions are mediated by parti-
cles which for the weak sector are the massive Z and W± gauge bosons. For
the electromagnetic sector the interactions are mediated by the massless gauge
boson called the photon which is denoted by γ . The fact that the gauge bosons
of the weak theory are very massive implies that the range of the force in co-
ordinate space is very short. On the same note, the masslessness of the photon
implies that the range of the electromagnetic force is infinite, which for all
practical purposes is in accordance with observation.

In studying electroweak interactions one can use the weak sector to describe
the weak interactions and/or use quantum electrodynamics (QED) to describe
the electromagnetic part of the interactions. In other words, the electroweak
part of the SM is quite well understood. On the other hand, understanding the
strong force offers a formidable challenge.

The part of the SM that describes the strong force is called quantum chro-
modynamics (QCD). It is a theory of particles called quarks and gluons that
carry color charges. In QCD, the gluons mediate the strong force. Gluons
are massless, but unlike photons they cannot travel that far. The strong force
has a very limited range in coordinate space. Like quarks, gluons are confined

3Obviously, in the study of small objects that do have a strong gravitational field, such as black
holes, gravity plays a central role.
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within ‘colorless’ objects called hadrons. Hadrons come in two general cate-
gories, those containing three quarks, these are called baryons with the proton
being the most prominent one. And those containing quark-antiquark pairs,
these are called mesons.4

Now, a very useful method of problem solving is what is called perturba-
tion theory. This is used in problems having one part that is exactly solvable
and another part proportional to some small parameter a, that is treated as a
perturbation. One then expands the problem in this parameter and solves the
equations in order of appearance of this parameter where every order of a j

is much smaller than the previous one. That is, a3 � a2 � a and so on. In
many cases, it is then sufficient to approximate the full problem with the first
non-trivial appearance of a. That is, one regards the terms proportional to a2,
a3 and so on to be negligible. If one wants an even more refined answer, one
also takes into account the term proportional to a2, but leaves out a3. The pro-
cedure can be continued to any desired degree of precision and one even has
a control over the error one introduces in the answer by leaving out the higher
order terms. This method is used in effective theories, something that in some
regards also the SM can be categorized as. We will discuss effective theories
in more detail in Chapter 3.

Perturbation theory is successfully applied to the SM where for instance in
the electric part one expands in the fine-structure constant of electrodynamics
α = e2/(4π) where −|e| denotes the electric charge of the electron. Numeri-
cally α ≈ 1/137≈ 0.0073, thus its square is even yet smaller α2 ≈ 0.000053.
Therefore, the solutions to many of the problems one attacks in QED, are to a
good extent given by the terms proportional to α .

Actually, to be more accurate, the fine-structure constant α is not a con-
stant at all [4]. The value one extracts for it from experiment, depends on the
energy-momentum (squared) of one’s probe Q2 in said experiment. In other
words α = α(Q2). The value α ≈ 1/137 quoted above is the low-energy limit
of it α(0)≈ 1/137. At higher energies, for instance at the mass of the Z boson,
one obtains α(m2

Z) ≈ 1/128. The point is that the α of QED is not only very
small but it also varies very slowly with the energy scales of present-day and
most certainly all future particle physics experiments. This makes perturbation
theory the optimal tool to use in solving QED problems.

For good or bad, the same cannot be said for the color dynamics of the
gluons and quarks of QCD. The expansion parameter of perturbative QCD
(pQCD), denoted by αs is much more sensitive to the energies used in ex-
periments. Furthermore whereas α(Q2) grows larger for increasing values of
Q2, αs(Q2) grows larger for decreasing values of Q2 and it actually grows
close to unity for small energy-momentum transfers. This means that at small
energy-momentum transfers, i.e. in dynamics involving hadrons rather than

4The SM also allows for hadrons containing more than 3 quarks. Experimental research in this
area is very active, cf. e.g. [3].
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the gluons and quarks themselves, pQCD is no longer a viable option because
the perturbative expansion breaks down.

One way to proceed here is to put QCD on a lattice and aim for numerical
solutions by computers [5]. This is doable in some cases, but this offers more
numbers than physical insight. Another option is to make use of a low-energy
effective theory of QCD called chiral perturbation theory (ChPT) [6]. In ChPT
the degrees of freedom are the hadrons as opposed to the degrees of freedom
of QCD, which are the gluons and the quarks collectively called partons.

In the intermediate region between small and large energy-momentum trans-
fers QCD is parametrized in terms of so called parton distribution functions
(PDFs). These are functions that describe the distribution of quarks and gluons
inside hadrons at low energy scales. They depend on the energy-momentum of
the probe, but also on what fraction x of the hadron’s momentum the parton in
question carry. Thus one writes the PDFs at the low energy scales as f (x,Q2

0).
These PDFs are global functions meaning that once they are found for a spe-
cific hadron, the proton say, the same PDFs can be used in another reaction
containing the proton. Experimentally, the PDFs are generally measured at
high values of Q2. To compare to experiment one therefore has to evolve the
PDFs from the low-energy starting scale Q2

0 to the value of the experimen-
tal one. This is possible via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations [7–9].

The exact form of the PDFs at Q2
0 is not known from first principles and

usually they are parameterized with a large number of free parameters. This
is practical but offers no physical insight into the nature of the bound-state
hadrons. We will in this work take the minimalistic approach in that we will
use as few parameters for f (x,Q2

0) as possible while still being consistent with
proton structure function data. The form of the starting distributions are here
motivated by physical intuition in order to get a better understanding of low-
energy strong interactions from a physics point of view.

The quantum field theoretical description of physical reality and in par-
ticular in describing the proton allows for the existence of quantum fluctua-
tions. These fluctuations can for instance be of hadronic or partonic nature,
e.g. meson-baryon fluctuations or quark-antiquark fluctuations. The latter are
described by pQCD and the DGLAP equations, while the former are not. In
both cases antiquarks appear inside of the proton. Either as an antiquark resid-
ing in the meson in the meson-baryon fluctuation or directly if the fluctuations
are of partonic origin. Then the obvious question to ask is whether probing the
antiquark in the meson-baryon fluctuation vs probing the antiquark in the par-
tonic fluctuation might have any observable consequences. And if this turns
out to be the case, how does one describe the observations quantitatively?

In paper I we investigate to what extent the hadronic fluctuations contribute
to the self-energy of the proton. We take the approach of describing the physi-
cal proton state at low energies Q2 . 1 GeV2 by its Fock expansion, writing it
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as a bare proton part together with its hadronic baryon-meson (BM) fluctuation
part. The same philosophy is also used in papers II & III.

Formally this reads [10–16]

|P〉=
√

Z |P〉bare +∑
BM

αBM |BM〉 , (1.1)

where |P〉 is the physical-proton state and the coefficients
√

Z and αBM are the
probability amplitudes for the bare proton and the baryon-meson fluctuations,
respectively. This is reasonable from a phenomenological point of view since
we know that at the low energies quoted above, the hadrons are the relevant
degrees of freedom.

Conversely, at large enough energy scales the relevant degrees of freedom
are the partons of QCD hence the hadronic picture needs a cut-off of some
kind. This cut-off ΛH is one of the free parameters in our model and its value
comes out to be quite understandable. The remaining parameters in our model
are those for the starting PDFs q(x,Q2

0). These number in 3 plus the starting
scale Q2

0. This is in contrast to global fits of PDFs where a large number of
free parameters is used to get a fit as good as possible at the cost of introducing
ignorance to the physics of low-energy strong interactions.

QCD is a very successful theory of the strong interactions, but there are
some open questions that are related to low-energy physics which naturally
cannot be attacked via pQCD. One example is given by the flavor asymmetry
inside the proton. For instance, due to the fact that the mass of the up and
down antiquarks are both much smaller than the QCD scale parameter ΛQCD≈
200 MeV, one would expect from a pQCD point of view that their momentum
distributions inside the proton be nearly the same. Data clearly suggest that
this is not the case [17]. Thus, if one is to accept that QCD is the theory of the
strong interactions, the logical conclusion would be that the asymmetry comes
from the low-energy non-perturbative part of QCD. Indeed, this is what we
find in Paper II where we also derive and study the strange-quark distribution
inside the proton.

One may also ask how the properties of the partons translate to the prop-
erties of the proton as a whole. In paper III we investigate what is known
as the ‘proton spin puzzle’ which has been an outstanding problem since the
1980’s. Using the same parameter values as in the asymmetry case, we provide
a guiding light towards the solution of the proton spin puzzle. The x-shapes
thus obtained for the spin-dependent structure functions of the neutron and
the proton are consistent with data. Thus so are their integrated values, the so
called sum rules.

The thesis is organized as follows. In Chapter 2 we briefly describe the SM
of particle physics and its low-energy limits. The modern view of the SM is
that of an effective theory. We discuss the general idea of an effective theory
and give several examples of such theories in Chapter 3. In Chapter 4 we
go through the basics of ChPT which is the effective theory used in the low-
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energy part of our model. From the leading-order Lagrangian describing the
interaction of Goldstone bosons with octet-baryons and decuplet-baryons we
derive the Lagrangian describing the neutron fluctuating into a baryon-meson
pair.

In Chapter 5 we describe deep inelastic scattering and the language which
best describes it, which is the light-front formalism. We then introduce the
structure functions and how they are related to observables. We will also show
their form in the parton model and describe briefly how radiative corrections
introduce a Q2 dependence. In the same chapter, the virtual-photon asymme-
tries and the Bjorken sum rule are presented. We give a brief introduction to
the SU(6) model of hadrons, giving a couple of examples on how to extract
their constituents’ contribution to the spin-dependent PDFs.

In Chapter 6 we collect all the parts of our Hadron-Cloud Model. In Chapter
7 we will get into the full details of the deep inelastic scattering calculation in
the Hadron-Cloud Model and present the hadronic distribution functions and
the associated fluctuation probabilities |αBM|2 of (1.1). We will briefly discuss
the connection between the probabilities to those obtained in the self-energy
calculation.

In Chapter 8 we will give our conclusions with an outlook to applications
of our model to other reactions involving the nucleon. Chapter 9 is written in
Swedish and is a popularized summary of the work.
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2. The Standard Model and its low-energy
limits

This chapter contains a short overview of the collection of theories collectively
known as the Standard Model of particle physics. We will briefly review gauge
transformations and we will explain why invariance under gauge transforma-
tions is a desired feature of the Standard Model. We will describe QCD and
some of its symmetries, in particular the chiral symmetry of QCD. We will
conclude with a short prelude to ChPT.

The content of this chapter is standard material. There are many textbooks
and lecture notes that deal with the content of this chapter in much more detail.
See e.g. Refs. [2,4,18–22] for the parts that deal with the Standard Model and
gauge theories. For the section on chiral symmetry cf. e.g. Ref. [6].

2.1 The matter particles and gauge bosons of the
Standard Model

The ultimate decider of the validity of any statement is the experiment. Of-
tentimes, when building a model to describe the physical reality, there’s more
than one way to arrive at an answer consistent with experimental data. How
does one proceed to distinguish what is the more correct theory?

There are some tools to make use of regarding this. First, there is the much
general Occam’s razor principle. This basically states that given two explana-
tions for a problem, usually the simplest one should hold largest weight, i.e.
is the ‘more correct’ one. Then there is the ‘rule’ of elegance of a theory that
holds a lot of weight in the theoretical sciences, in particular in theoretical
physics. Of course, non of these need necessarily be true or followed for a
particular case, but experience has proven over and again that using them as a
guide can be very fruitful.

With these principles in mind, the collection of theories that best describes
elementary particles and their interactions is a renormalizable quantum field
theory based on local gauge invariance under the group

SU(3)c×SU(2)L×U(1)Y . (2.1)

This is the symmetry group of the SM before spontaneous symmetry breaking
due to the Higgs mechanism.
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Table 2.1. All the matter particles (quarks and leptons) of the Standard Model to-
gether with the gauge bosons and the quanta of the Higgs field denoted by H. Each
generation is a heavier copy of the previous one (in ascending order).

Generation

1 2 3

Quarks u up c charm t top

d down s strange b bottom

Generation

1 2 3

Leptons e electron µ muon τ tau

νe electron-neutrino νµ muon-neutrino ντ tau-neutrino

g gluons (8 of them)
γ gamma (the photon)

Gauge bosons Z Z boson
W+ W+ boson
W− W− boson

Higgs H

The different parts stand for various sectors of the SM. The symmetry group
of weak isospin, given by SU(2)L and that of weak hypercharge, denoted
by U(1)Y together gives the electroweak sector1 SU(2)L×U(1)Y which af-
ter spontaneous symmetry breaking reduces to the electromagnetic symmetry
group U(1)EM. The QCD sector of the SM is described by the color SU(3)
gauge group SU(3)c. All the particles of the Standard Model are collected in
Table 2.1.

2.2 Global and local invariance
In a general quantum field theory, the physics is contained in the action S,
defined in 4-dimensional spacetime as

S =
∫

d4zL (z), (2.2)

where the Lagrangian density L (z), simply called the Lagrangian for short,
is some combination of field operators. In the case of a free Dirac field, it is
given by the Dirac Lagrangian2

L free
QED = ψ̄(z)

(
iγµ∂µ −m

)
ψ(z). (2.3)

1Also referred to as the Glashow-Salam-Weinberg model.
2We suppress notation for bare masses etc for now.
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A symmetry transformation is a transformation that leaves the action in-
variant. There are two general types of symmetry transformations. Global and
local ones. Global transformations are those that are independent of space-
time. For a simple example of a global symmetry, consider multiplying each
field operator by a constant phase

ψ(z)→ ψ ′(z) = eiαψ(z), (2.4)

where α is a constant real number. This is a global U(1) transformation. Equa-
tion (2.4) implies that

ψ̄(z)→ ψ̄ ′(z) = ψ̄(z)e−iα , (2.5)

so that the combination (2.3) is invariant and hence so is the action and thus
the physics. The main reason this went through is that the constant α and thus
the transformation itself is independent of the spacetime coordinate z and thus
commutes with the derivative operator ∂µeiα = eiα∂µ .

Things become considerably more involved when we gauge the transforma-
tion, i.e. making it local by letting it depend on spacetime. For concreteness
let now α(z) be given by a function depending on spacetime and consider the
transformation

ψ(z)→ ψ ′(z) = eiα(z)ψ(z). (2.6)

We now find that the transformation is not a symmetry of the system because
the derivative term is not invariant. We get for this term

∂µψ → ∂µ

(
eiα(z)ψ(z)

)
= eiα(z)∂µψ + i

[
∂µα(z)

]
eiα(z)ψ, (2.7)

which is different from eiα(z)∂µψ for a general function α(z). Thus, with our
ordinary derivative ∂µ , we find that the theory is not gauge invariant. The
derivative does not transform covariantly. This is not surprising considering
the definition of ∂µ in some direction nµ [18, 23],

nµ∂µψ(z) = lim
ε→0

1
ε
(ψ(z+ εn)−ψ(z)) . (2.8)

Insisting that our theory be invariant under local transformations, we can trans-
form ψ(z) and ψ(z+εn) independently and (2.8) would lose its definite mean-
ing as a derivative. We need a derivative operator where ψ(z) and ψ(z+ εn)
transform the same way. This is accomplished by utilizing the techniques of
parallel transport. What one finds is the covariant derivative Dµ , which in the
case of U(1) gauge theory is given by,

Dµ = ∂µ − igAµ . (2.9)

In (2.9) g is a constant and Aµ(z) is a real vector field that transforms as

Aµ(z)→ Aµ(z)+
1
g

∂µα(z) (2.10)
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under the transformation (2.6). It is now straightforward to check that Dµψ
and ψ transform similarly under (2.6).

Finally, to make Aµ(z) a dynamical field, one needs to write down a kinetic
term for it in the Lagrangian. This kinetic term should be invariant under
(2.10). By observing that Dµ(Dνψ) and (DµDν −DνDµ)ψ transform as ψ
under (2.10), one constructs

[Dµ ,Dν ]≡−igFµν , (2.11)

where
Fµν ≡ ∂µAν −∂νAµ , (2.12)

and Fµνψ transforms as ψ . The full QED Lagrangian, invariant under U(1)
gauge transformations is then given by,

LQED =−1
4

FµνFµν + ψ̄(z)
(
iγµDµ −m

)
ψ(z). (2.13)

We notice that by requiring the theory to be invariant under gauge transforma-
tions, we automatically get interactions in the theory.3

The procedure can be repeated for a general non-Abelian gauge group where
one finds that the covariant derivative is given by

Dµ = ∂µ − igT aAa
µ , (2.14)

where g is the gauge coupling and the T a are the generators of the Lie algebra.
They satisfy

i f abcT c = [T a,T b], (2.15)

where the f abc are the structure constants of the group.
The field strength is constructed analogously to (2.11) by

[Dµ ,Dν ] =−igT aFa
µν . (2.16)

Thus
Fa

µν =
i
g
[Dµ ,Dν ]

a = ∂µAa
ν −∂νAa

µ +g f abcAb
µAc

ν , (2.17)

from which the kinetic term can be constructed

L =−1
2

tr
(
FµνFµν) , (2.18)

where ‘tr’ denotes color trace.
Expanding (2.18) one finds terms with three and four gauge fields. This is

drastically different from the Abelian case where gauge field self-interactions

3This can be seen by expanding Equation (2.13). Doing so one finds terms involving both the
photon and the fermion field such as ψ̄γµ Aµ ψ .
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are absent.4 This has profound implications for QCD. We will return to this in
discussing QCD.

2.3 The electroweak sector of the Standard Model
Since we won’t need much details of the weak interactions we won’t get into
the specifics regarding it. But in summary one can say that using the tech-
niques described above, one can construct the covariant derivative for the
electroweak gauge group SU(2)L×U(1)Y . To describe the dynamics of the
massive gauge bosons W± and the Z, one might be tempted to add mass terms
such as m2Z2 to the theory. But such a mass term can be shown to break gauge
invariance. This problem is absent in QED since photons are anyway massless
and hence don’t need any mass term. Also in QED the fermion mass-term is
gauge invariant as we have seen. This latter statement is no longer true when
one incorporates QED and the weak theory into the unified electroweak theory.

Thus if one insists on keeping a theory invariant under gauge transforma-
tions, one has to accept that explicit mass terms are forbidden. One way to
generate mass terms is then via spontaneous symmetry breaking and the Brout-
Englert-Higgs mechanism [24, 25]. The question is why one should consider
gauge theories in the first place. The short answer is that even though one
introduces redundancies when one considers gauge invariant quantities, they
make life easier w.r.t. the renormalizability of the theory [26–28].

A little more involved suggestion is discussed next.

2.4 Why gauge invariance is a good thing
Some questions naturally spring to mind. Why renormalizable and why gauge
invariance? And why do we ultimately want to break the symmetry and in par-
ticular why not break it explicitly instead of choosing to introduce the Higgs
mechanism and thus break the symmetry hiddenly? All these questions are
somewhat related and we refer the reader to [29] for a more in depth discus-
sion on this.

To shed some light on this here, we consider classical electromagnetism as
an example. We know that the dynamical fields are those of the electric and
magnetic fields, ~E and ~B respectively. It is in terms of these that the original
Maxwell equations are formulated.5 We can actually set up and measure the
fields ~E and ~B themselves. So in that sense they are quite physical. Now,

4At one-loop QED one might consider the simplest photon-photon interaction via a triangle of
fermions. But by Furry’s theorem these diagrams sum to zero (odd number of photons). The
next simplest thing is a box diagram of four fermions in the loop describing photon-photon
scattering, cf. Figure 3.1b.
5Actually, the original equations of Maxwell are in terms of the components of ~E and ~B.
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because the electric and magnetic fields are irrotational and divergenceless,
respectively, one can reformulate the theory in terms of the derivatives of the
scalar and vector potentials φ and ~A instead. But, due to the nature of deriva-
tives, these functions are uniquely determined only up to additive constants.
Thus, already here some redundancy is introduced into the theory. And that is
really what a gauge symmetry is. It is a redundancy and not really a symmetry
in a physical sense. True symmetries of Nature are global in character, and
come in companion with associated conserved charges and Noether’s theorem
and Ward identities.

In any case, for a long period of time the potentials φ and ~A were seen as
mere mathematical objects that simplified calculations and not much more.
It was the more directly measurable objects ~E and ~B that were considered
more fundamental. It was only in the 1950’s through phenomena such as
e.g. the Aharonov-Bohm effect [30] that it was recognized that the potentials
contained more information than did the objects ~E and ~B.

For any relativistic quantum mechanics, Galilean invariance is not enough.
To the best of our knowledge, and all experimental data support this, the world
around us is a Lorentz-invariant one. Hence the relativistic theories we build
should respect this. Now, it is possible to press on and construct the theory in
terms of say the fields ~E and ~B. But this comes with the price of checking that
each and every step in our calculations really is Lorentz-invariant. On the other
hand, by reformulating the theory in terms of (Lorentzian) scalar products of
the even more abstract four-vector potential Aµ = (φ ,~A), Lorentz-invariance
will be manifest. This comes with the price of introducing redundancies into
the theory and one must make sure not to overcount any degrees of freedom
[31]. The latter alternative is much more easier and useful in practice than is
the former.

2.5 QCD
This section is devoted to perhaps the most difficult but at the same time the
most fascinating part of the SM. It is about what has been established as the
theory of the strong interactions, namely QCD. In contrast to the electromag-
netic fine structure parameter,6 the strong parameter αs(µ2) grows large for
low energies < 1 GeV. This running of αs introduces a scale ΛQCD≈ 200 MeV
where the degrees of freedom of QCD, the quarks and gluon somehow config-
ure themselves into colorless hadrons. Around this scale, the strong coupling
is large and pQCD breaks down.

6At the Planck scale 1/
√

GN and perhaps even lower than that, quantum gravity effects are
no longer negligible. Also, ordinary QFTs are questionable at these enormous energies. Here
GN is Newton’s constant. The electromagnetic parameter α blows up at the Landau pole (LP)
which occurs at trans-Planckian energies ELP ≈ 10277 GeV� 1/

√
GN ∼ 1019 GeV.

20



More specifically, the evolution of αs(µ) is described by the renormaliza-
tion group equation

µ2 ∂αs

∂ µ2 = β (αs), (2.19)

where the beta function β (αs) has been computed to four-loop order in pQCD
[32] and more recently to five-loop order [33].

The leading order expression for the beta function is given by,

β0 = 11− 2
3

n f , (2.20)

where n f is the number of active light-quark flavors. We see that β0 < 0 for
n f ≤ 16 (this property persists to higher orders). This property leads to asymp-
totic freedom [34, 35]. Plugging in β0 in (2.19), one can solve for αs,

αs(µ2) =
αs(µ2

0 )

1+ β0
4π αs(µ2

0 ) ln µ2

µ2
0

, (2.21)

which relates αs at two different scales µ2
0 and µ2. It is this running of αs

and the fact that it grows large at scales around ΛQCD that makes pQCD break
down around these scales. As is obvious from (2.20), the value of ΛQCD de-
pends on the number of active flavors one is taking into account, but its value
is around 200 MeV - 300 MeV.

There are two major alternatives to handle this issue of the non-applicability
of pQCD. One is lattice QCD, which emphasizes the numerical computability
of QCD. The other major alternative is ChPT which takes into account the
hadronic degrees of freedom. We will use the leading-order Lagrangian of
ChPT. But in order to get an idea of what ChPT is about, we will first discuss
QCD is more detail.

The QCD Lagrangian is given by

LQCD =−1
2

tr
(
FµνFµν)+ ψ̄

(
i /D−Mq

)
ψ, (2.22)

where the quark fields are collected in the object ψ and Mq is the (diago-
nal in flavor space) mass matrix Mq = diag(mu,md ,ms,mc,mb,mt). The field
strength is given by Equation (2.17). QCD is invariant under non-Abelian
gauge transformations U(z) ∈ SUc(3), but due to confinement the range of
the force is short as opposed to infinite as in the Abelian case of QED. The
demand that only gauge-invariant objects are observable, hints at why parti-
cles carrying color, such as the gluons and the quarks, arrange themselves into
color-white objects.

QCD has several exact global symmetries, such as baryon-number conser-
vation and flavor-number conservation. The former forbids decays such as
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alpha-particles (Helium nucleus) into pions

He2+ 9 π+π+π0 (forbidden by baryon-number conservation in QCD),
(2.23)

while flavor-number conservation forbids strong decays such as,7

K+ 9 π+π0 (not allowed in QCD). (2.24)

QCD has also several approximate global symmetries. These are SU(2)
isospin and flavor SU(3) f . This can be shown if one approximates the QCD
Lagrangian by ignoring the mass differences of the lightest quarks. For in-
stance, the up and down quarks have the masses mu≈ 3 MeV and md ≈ 5 MeV.
The difference of their mass is not small compared to the absolute value of
their masses, but it is small relative the typical hadronic scale of the proton
mass mP ≈ 1 GeV. If one ignores the mass difference between the two light-
est quarks, the u and d in the QCD Lagrangian, it becomes invariant under
SU(2) isospin transformations. Now, because the said mass difference is not
exactly zero, but rather small, we don’t expect the symmetry to be exact, but
rather good. The consequence of this invariance is that the three conserved
(isospin) charges commute with the Hamiltonian hence we get a degeneracy
in the hadronic spectrum. This is also what is found in Nature, namely the
proton and the neutron are nearly degenerate in mass and form an isospin dou-
blet called the nucleon. The pions are nearly degenerate in mass and form an
isospin vector. The isospin quartet corresponding to I = 3/2 are the four Delta
baryons ∆++,∆+,∆0 and ∆−. All these mentioned hadrons are major players
in this thesis.

One can press on and approximate the QCD Lagrangian by taking the mass
difference of the three lightest quarks u, d and s to be negligible. Then the
obtained Lagrangian is invariant under flavor SU(3) f transformations, but we
don’t expect this symmetry to be as good as the isospin symmetry previously
considered. This is due to the fact that the mass of the strange quark, ms ≈
100 MeV, is considerably larger than that of the u and d. In any case, it
is still an order of magnitude smaller than the typical hadronic scale. The
degeneracy in the hadronic spectrum due to this allows one to classify the
low-lying hadrons into multiplets, as shown in Figure 2.1.8

In this thesis, we include all the Goldstone bosons corresponding to the
spontaneously broken SU(3)A symmetry of the chiral Lagrangian, a topic we
now turn to.

7This parity-violating decay can proceed via the weak interactions yielding a much longer life-
time for the K+.
8Historically, the classification of the low-lying hadrons into multiplets (the eight-fold way) was
derived before the creation of QCD [36, 37].
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n P

Σ− Σ0,Λ Σ+

Ξ− Ξ0

(a)

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

(b)

K0 K+

π− π0,η π+

K− K̄0

(c)

Figure 2.1. The low-lying hadrons classified into multiplets. In (a): The octet-
baryons. (b): The decuplet-baryons. (c): The Goldstone bosons of spontaneously
broken SU(3)A.

2.5.1 Chiral symmetry
In the previous section we considered QCD in the limit where we neglected
the mass differences of the lightest N f flavors, yielding the isospin (N f = 2)
and flavor (N f = 3) symmetries. We now consider the limit where we set
the masses of these N f lightest flavors to zero. The QCD Lagrangian then
becomes9

L0,N f =−
1
2

tr(FµνFµν)+ ∑
f=(s,)c,b,t

f̄ (i /D−m f ) f + q̄i /Dq. (2.25)

By introducing the left and right handed fields

qL,R ≡ PL,Rq =
1∓ γ5

2
q, (2.26)

one finds that the QCD Lagrangian in the chiral limit is invariant under chiral
transformations

SU(N f )L×SU(N f )R, (2.27)

that act independently on left and right handed fields.
One can further reformulate these symmetries in terms of vector and axial-

vector flavor transformations to connect with the isospin and flavor transfor-
mations previously discussed in Section 2.5. Applying Noether’s theorem, one
then finds the conserved currents,

( jA)µ
a = q̄c f s(γµγ5)ss′(ta) f f ′qc f ′s′ , a = 1, . . . ,N2

f −1 (2.28)

and
( jV )µ

a = q̄c f s(γµ)ss′(ta) f f ′qc f ′s′ , a = 1, . . . ,N2
f −1. (2.29)

9The notation refers to the cases of setting the mass of the lightest N f flavors to zero [38].

23



For N f = 2, i.e. taking only the up and down quarks as massless, one obtains
from these currents the corresponding (approximately) conserved charges10

(IV )a =
∫

d3r q†taq, a = 1, . . . ,3 (2.30)

and
(IA)a =

∫
d3r q†γ5taq, a = 1, . . . ,3. (2.31)

These charges commute with the QCD Hamiltonian H0,2 corresponding to
the Lagrangian (2.25) and one can show that one would expect to find parity
doublets, that is, particles very close in mass but of opposite parity relative to
each other. These parity doublets have not been found in Nature and it seems
that they do not exist.11

One neat way to explain this lack of parity doublets which at the same time
also explains the low mass of the pions is that the axial-vector flavor symmetry
SU(N f )A is hidden, or in other words, it is spontaneously broken. Correspond-
ing to a spontaneous breaking of a continuous symmetry is the appearance of
Goldstone bosons that in the case of an SU(N) group number in N2−1, which
is the number of degrees of freedom of said group. Now, if the chiral symme-
try was an exact symmetry, these Goldstone bosons would be massless. Since
we know that the chiral symmetry is only approximate, we don’t expect ex-
actly massless Goldstone bosons. But in view of the lightness of the up and
down quarks as compared to the hadronic scale, we expect ‘Goldstone bosons’
having small mass.12 In particular, corresponding to spontaneous breaking of
SU(2)A, one expects to find 22− 1 = 3 Goldstone bosons. And indeed this
is what is found in Nature, namely the three pions π0,π+ and π− are near
degenerate in mass and very light compared to other hadrons.

In this thesis we include all the Goldstone bosons corresponding to sponta-
neous breaking of SU(3)A. These number in 32− 1 = 8 and are collected in
the meson-octet of Figure 2.1c.

10These charges are only approximately conserved in QCD due to the non-vanishing (but yet
small compared to hadronic scales) of the up and down quark masses.

11For instance, no meson has ever been found in Nature having a mass near that of the pions but
having the opposite parity to that of the pions.

12The strange quark is kind of special. In some instances it can be considered as heavy, e.g. when
discussing SU(2) isospin symmetry. And in some other instances it can be considered as light
(compared to the c, b, t quarks), as in for instance when considering SU(3) flavor symmetry.
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3. Effective theories

In this chapter we will review some important aspects of a way to view a
theoretical model that in recent times has gained more appreciation and rev-
erence. It is the concept of an effective theory, more specifically in our case
an effective field theory. We give some examples of effective theories such as
low-energy QED and show their usability, but also their limitation.

Some references that goes into more detail regarding effective field theories
are e.g. [39, 40].

3.1 Newtonian mechanics as an effective theory
The idea of an effective theory is really not that dramatic. For instance, before
the birth of Einstein’s theories of relativity, Galilean relativity together with
Newtonian gravity had been applied with great success to anything from the
motion of the planets to everyday things like addition of velocities.1 It is not
until extreme cases such as speeds v close to the speed of light2 in vacuum c, or
very precise measurements of gravitational effects that one notices deviation of
Galilean & Newtonian relativity from data. For instance, in Galilean relativity,
the addition of two collinear velocities, in the x-direction say, having relative
velocity v is given by the simple rule

ux = u′x + v, (in Galilean relativity). (3.1)

In the special theory of relativity, the same quantity is given by

ux =
u′x + v

1+ v
c2 u′x

=
(
u′x + v

)[
1− vu′x

c2 +O

((
vu′x
c2

)2
)]

,

(in Einsteinian relativity).

(3.2)

As can be seen, for low velocities compared to that of the speed of light c,
the two expressions are as good as equal. Thus Newtonian mechanics is a
perfectly fine theory for everyday life occurrences where the speeds involved
are small compared to that of light. In that sense, it can be seen as a low-
speeds effective theory of the more fundamental Einsteinian mechanics. For

1The precession of the perihelion of the planet Mercury is something that is difficult to account
for with Galilean relativity and Newtonian gravity. It can be calculated using Einstein’s general
theory of relativity and the result is consistent with experimental data [41].
2For the purpose of illustration, we will restore c in the present section.
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low speeds, it is much more economical to use Newtonian mechanics as can be
seen from the simple addition rule of Equation (3.1) as compared to the more
involved (3.2). This fact didn’t change with the creation of special theory of
relativity and will not change tomorrow if an even more fundamental theory
of relativity is created.

But we want to stress that for speeds not small compared to the speed of
light, the effective theory as provided by Newtonian & Galilean mechanics is
simply wrong and has to be modified.

3.2 Low-energy light-by-light scattering in effective
QED

In particle physics the scale separations are given in the masses and energies
involved. For instance, in calculating most atomic processes, where the elec-
tron is the main player, one does not need to know even about the existence
of the top quark. This is because their respective masses, me and mt , are well
separated by a scale Λ. That is, me = 0.511 MeV� Λ . mt = 172000 MeV.
Similarly, in reactions where the momentum transfers are much smaller than
the electron mass, the electron can be integrated out of the theory.3

A simple example comes from low-energy light-by-light (γ-γ) scattering in
QED. In QED, the only available mass scale is that of the electron mass me.
Thus in low-energy γ-γ scattering where the energy of the photon Eγ is much
less than the mass of the electron Eγ � me, the electron can be viewed as a
very heavy static particle and its propagator 1/∆(p,me) essentially reduces to
its inverse mass:

1
∆(p,me)

= �p+me

p2−m2
e
= �p+me

m2
e

1
p2

m2
e
−1

= �p+me

m2
e

(
−1− p2

m2
e

)
+ · · · ≈ −1

me
.

(3.3)
This means that the electron has been integrated out of the theory and is no
longer a dynamical field. Therefore, one can write down an effective La-
grangian using only the electromagnetic field as a degree of freedom. If we
constrain our effective theory to be invariant under Lorentz, gauge and parity
transformations, one can write down the most general effective Lagrangian

3The term ‘integrate out’ comes from the act of literally integrating out the electron field from
the generating functional, in the setting of path integral formalism of a quantum field theory
[39, 40].
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(a) (b)

Figure 3.1. Light-by-light scattering. (a): Low-energy effective theory four-photon
contact interaction. (b): Leading-order contribution in QED (one-loop diagram plus
permutations).

using the invariants4 FµνFµν and Fµν F̃µν [38, 42–44]

Leff,temporary =−
1
4

FµνFµν +
a

m4
e

(
FµνFµν)2

+
b

m4
e

FµνFνσ FσρFρµ

+ cFµν∂ 2Fµν +d(∂ µFµν)(∂αFαν)+O(∂ 6),
(3.4)

where F ∈ O(∂ ). The effective Lagrangian could in principle include an infi-
nite number of terms, but by using symmetry arguments together with power
counting and the approximation that we neglect terms of order O(∂ 6), we have
reduced it down to four terms only! Actually, one can reduce the number of
terms even further using information from the equations of motion. Namely

∂µFµν − (4c−2d)∂ 2∂µFµν +O(∂F ·F2)+O(∂ 6) = 0, (3.5)

thus ∂µFµν ∈ O(∂ 4) and ∂ 2∂µFµν ∈ O(∂ 6). Therefore the derivative terms
in (3.4) are actually not leading-order but higher-order operators and are at
least O(∂ 6). Thus, the leading order effective Lagrangian contains only two
unknown low-energy constants a and b,

Leff =−
1
4

FµνFµν +
a

m4
e

(
FµνFµν)2

+
b

m4
e

FµνFνσ FσρFρµ +O(∂ 6).

(3.6)
An example of these effective point interactions is shown in the Feynman dia-
gram of Figure 3.1a.

What is important to notice is that the symmetries of the more fundamental
theory of QED are present in the effective theory. And that all the information
of the physics in this energy regime is contained in the low-energy constants
a and b in (3.6).

Suppose now for a moment that we don’t know of QED. As it stands, we
cannot write down an expression for the low-energy constants a and b. We

4Invariance under parity implies that only the square of the dual tensor F̃µν = εµνρσ Fρσ can
appear in the Lagrangian.

27



can only hope to determine them by comparing to experiment, i.e. we measure
them by recognizing the different interactions

FµνFµν ∝ ~E2−~B2,

Fµν F̃µν ∝ ~E ·~B.
(3.7)

The idea is that we use the effective Lagrangian (3.6) in the energy regime
where it is valid, until some day we construct a more predictive and more
fundamental theory that describes the interaction in even more detail.

Of course we know that in this case the theory is QED. In fact, the value
of the low-energy constants a and b can be derived in QED by computing
the Feynman diagram of Figure 3.1b which can be seen as a zoom in of the
effective vertex of the effective Lagrangian shown in Figure 3.1a. The result
is [45],

a =−α2

36
and b =

7α2

90
. (3.8)

As seen, they are both given in terms of a single parameter α , namely the fine
structure constant of QED.

We conclude this section by emphasizing that the effective theory as pro-
vided by the pure-photon Lagrangian (3.6) has its limitations. It is only valid
for momenta much smaller than the electron mass. For larger momenta the
effective theory has to be modified.

3.3 Fermi’s theory of weak interactions
A similar example to that of Section 3.2 is given by Fermi’s theory of weak
interactions. For a long time, the energies of the particle accelerators were
far below the mass of the Z and the W bosons and there was no knowledge
about their existence. From knowledge about the symmetries of the weak in-
teractions as obtained through experiments, one could write down an effective
Lagrangian for the flavor-changing reaction us→ ud

Leff,weak =−2
√

2GFVusV ∗ud

(
ūγµ 1− γ5

2
s
)(

d̄γµ
1− γ5

2
u
)
, (3.9)

where GF is Fermi’s constant and the Vi j are matrix elements of the CKM
mixing matrix.5 The four-fermion contact interaction is depicted in the Feyn-
man diagram of Figure 3.2a. Much later when a theory with better ‘resolving
power’ was constructed in the electroweak theory, one could understand that
the vertex consisted of exchanges of very massive Z and W bosons, see Figure
3.2b.

5The acronym stands for Cabibbo Kobayashi–Maskawa.
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Figure 3.2. Flavor-changing weak interaction. (a): Fermi’s effective four-fermion
interaction. (b): W -boson exchange as described by the electroweak theory.

In the electroweak theory, the lowest-order amplitude M of the reaction is
given by

M =

(
ig√

2

)2

VusV ∗ud

(
ūγµ 1− γ5

2
s
)(

d̄γν 1− γ5

2
u
)( −igµν

p2−m2
W

)
, (3.10)

where the propagator of the W -boson is written in Feynman gauge. Expanding
the propagator like we did in (3.3) one can make the matching between Fermi’s
coupling and the weak coupling g,

GF =
g2

4
√

2m2
W
. (3.11)

We conclude by noting that Fermi’s effective theory of the weak interactions
is only valid for momenta much smaller than the mass of the W boson.
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4. A brief introduction to chiral perturbation
theory.

Having given some examples of effective theories and their advantages and
limitations, we will in this chapter discuss a low-energy effective theory of
QCD called chiral perturbation theory (ChPT) [6, 42–44, 46].

In sections 4.1-4.3 the basic building blocks of ChPT are presented. In
Section 4.4 we give the full leading-order Lagrangian that we use. For com-
pleteness we give in Section 4.5 the Lagrangian for an initial state neutron
fluctuating into a baryon-meson pair. The analogous Lagrangian for the initial
state proton is given in the papers. We show here that the neutron Lagrangian
cannot be obtained by a simple isospin flip.

4.1 An effective low-energy theory of chiral QCD
Consider the Lagrangian of Equation (2.25) with the addition of some external
fields vµ , aµ , s and p,

L0,3,ext = −
1
2

tr(FµνFµν)+ ∑
f=c,b,t

f̄ (i /D−m f ) f + q̄i /Dq

+ q̄/vq+ q̄/aγ5q− q̄sq+ iq̄γ5 pq.
(4.1)

The external fields are classical Hermitian 3× 3 flavor-matrix fields. For
instance, one can describe photon-hadron coupling by replacing vµ by the
photon field. Setting all of them equal to zero, a = v = p = 0, except s→
diag(mu,md ,ms), one obtains the full QCD Lagrangian.

To show that the Lagrangian (4.1) has a local chiral symmetry

SU(3)R×SU(3)L = SU(3)V ×SU(3)A (4.2)

one introduces the fields rµ ≡ vµ +aµ , lµ ≡ vµ−aµ and M ≡ s+ ip. Inserting
these into (4.1) one obtains

L0,3,ext = −
1
2

tr(FµνFµν)+ ∑
f=c,b,t

f̄ (i /D−m f ) f + q̄Ri /DqR + q̄R/rqR

+ q̄Li /DqL + q̄L/l qL− q̄RMqL− q̄LM†qR,

(4.3)
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which is invariant under local flavor transformations1 VR,L(z) ∈ SU(3)

qR,L→VR,LqR,L,

rµ →VR(rµ + i∂µ)V
†
R ,

lµ →VL(lµ + i∂µ)V
†
L ,

M→VRMV †
L .

(4.4)

As discussed in Subsection 2.5.1, the SU(3)A part is spontaneously bro-
ken and the 8 Goldstone bosons2 are conveniently encoded in the 3×3 flavor
matrix U(z) having unit determinant,

U(z) = eiΦ(z)/F0 , (4.5)

with the condition that it transforms as U(z) → VR(z)U(z)V †
L (z) under lo-

cal chiral transformations. The Hermitian matrix Φ contains the Goldstone
bosons

Φ =

π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0
√

2K−
√

2K̄0 − 2√
3
η

 . (4.6)

At leading order, the parameter F0 is equal to the pion decay constant Fπ = F0.
The weak decay width of the charged pion is proportional to the pion decay
constant which is measured to be

Fπ ≈ 92.4 MeV. (4.7)

4.2 The building blocks of mesonic ChPT
With all this in place, we now have the building blocks of the effective theory.
These consist of: The unitary matrix U(z) containing the Goldstone bosons;
the matrix M; the chiral gauge covariant derivative

DµA≡ ∂µA− irµA+ iAlµ , (4.8)

where A (and DµA) transforms as A(z)→ VR(z)A(z)V
†
L (z); and the left and

right field strength tensors defined respectively as

f L
µν ≡ ∂µ lν −∂ν lµ − i[lµ , lν ],

f R
µν ≡ ∂µrν −∂νrµ − i[rµ ,rν ],

(4.9)

1We have suppressed the spacetime dependence of the fields, i.e. q is q(z) and so on.
2These are also sometimes referred to as pseudo Goldstone bosons since a true Goldstone boson
should be massless.

32



which transform as f L
µν→VL f L

µνV †
L and f R

µν→VR f R
µνV †

R . In particular we note
that the gluons and quarks are no longer the degrees of freedom. Actually
not even all hadrons appear as active degrees of freedom at this stage. For
the moment we are considering such low energies where only the Goldstone
bosons are the active degrees of freedom [cf. Eq. (4.6)].

Obviously, one can build infinitely many combinations out of these build-
ing blocks. To make progress one needs a counting scheme that enables one
to identify and categorize each building block in terms of importance. For
instance such as the example of low-energy QED where we saw that the field
strength F is counted as F ∈ O(∂ ) [cf. Equation (3.4)] and ∂ ↔ p is a typical
momentum in a reaction described by the effective theory.

Perturbative QED and pQCD being expansions in coupling constants, are
valid as long as the expansion parameters (the coupling constants) are small.
By definition then, terms where more powers of the expansion parameter ap-
pear, are still smaller. The appearance of the expansion parameter is as good
as synonymous with the appearance of many field operators. This is however
not the case in ChPT. Here the expansion is in powers of Q, where Q is a
typical momentum appearing in a reaction described by ChPT, and terms with
many field operators need not be irrelevant. For this reason one assumes no
suppression for the Goldstone boson fields i.e.

U(z)∼ O
(
Q0) . (4.10)

One can show that the mass term actually is counted as the square of the mass
of the (pseudo) Goldstone bosons, thus

M ∼ O
(
Q2) . (4.11)

Also from
Dµ ∼ O (Q) , (4.12)

one finds that [cf. e.g. Equation (2.17)]

f L/R
µν ∼ O

(
Q2) . (4.13)

4.3 Lowest-order ChPT Lagrangian
From these one can construct the Lagrangian order by order. At order Q0 we
have the trivial terms UU† = 1 and det U = 1. At order Q we only have the
building block Dµ but this is forbidden by Lorentz invariance. At order Q2,
there are only two terms (tr = flavor trace),3

tr
[(

DµU
)† DµU

]
and tr

[
U†M+M†U

]
at O(Q2). (4.14)

3There is also a third term proportional to tr
[
U†M−M†U

]
which has a zero coefficient due to

parity invariance of the theory.
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Thus, the lowest-order Lagrangian of ChPT is determined by two low-energy
constants F0 and B0 [recall a similar situation in low-energy QED, Equation
(3.6)],

L
(2)

ChPT =
1
4

F2
0 tr
[(

DµU
)† DµU

]
+2B0 tr

[
U†M+M†U

]
. (4.15)

Notice that even though this Lagrangian looks very simple (it is written in
terms of only two free parameters) it has predictive power to a wide range of
Goldstone boson interactions since it is written in terms of U and M, which
can be expanded to write very complicated interactions.

4.4 Baryonic ChPT
The outline presented in the previous sections regarding mesonic ChPT can be
generalized to also account for baryonic degrees of freedom. We won’t go into
any details here and refer the reader to [46] for an introduction. Also since the
leading-order mesonic + baryonic Lagrangian of ChPT is presented in papers
I & II with all the necessary information we won’t repeat the details here but
simply state the leading-order Lagrangian.

The leading-order Lagrangian that describes the interaction of pseudo Gold-
stone bosons with octet-baryons and decuplet-baryons is given by4 [48–51],

Lint =
D
2

tr(B̄γµγ5{uµ ,B})+
F
2

tr(B̄γµγ5[uµ ,B])

− hA

mR

εadeερµαβ

2
√

2

[(
∂α T̄ abc

β

)
γ5γρuµbdBce + B̄ecuµdbγ5γρ∂αT abc

β

]
,

(4.16)
where D, F and hA/mR are coupling constants with values determined from
experiment. In the Lagrangian (4.16) the octet-baryons of Fig. 2.1a, such as
for instance the proton and neutron, are encoded in the matrix B. Similarly the
decuplet-baryons of Fig. 2.1b such as e.g. ∆++, ∆+, ∆0 and ∆− are encoded
in the object T abc

β . Finally the pseudo Goldstone bosons such as e.g. the pions
π+, π0 and π− are encoded in the matrix uµ which is related to the matrix U
presented in Eq. (4.5) [see papers I & II for details regarding this].

If one expands (4.16) one finds that a typical term in the octet part is given
by [

−D+F√
2Fπ

]
n̄γµγ5(∂µπ−)P+h.c. (4.17)

where ‘h.c.’ stands for Hermitian conjugate and Fπ is the pion decay constant
[cf. Equation (4.7)]. Equation (4.17) can be used to describe an interaction

4The next-to-leading-order ChPT Lagrangian for octet & decuplet baryons is presented in [47].
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containing the neutron, the pion and the proton represented by the field oper-
ators n̄, π− and P, respectively.

Similarly a typical term in the decuplet part of (4.16) is given by

[
hAερµαβ

2mRFπ

]
(∂α ∆̄++

β )γ5γρ(∂µπ+)P+h.c. (4.18)

which can be used to describe the interaction between a Delta baryon (∆++ in
this case) with a pion and a proton represented by the field operators ∆̄++, π+

and P, respectively.

4.5 The Lagrangian describing neutron to
baryon-meson fluctuation

In papers I and II we present the Lagrangian for the initial state being a proton
state. For completeness we give here the Lagrangian for the case of having an
initial-state neutron.

One might think that this should be given by a simple isospin-flip relation.
However, this is not the case, there are some sign changes in some of the
terms. For many calculations only the magnitude (squared) of the couplings
enter each term of the final formula, as for instance in the deep inelastic scat-
tering and the self-energy calculations. But in reactions where interference
effects are involved, signs can be important. Therefore, for the convenience
of the reader we list here the neutron to baryon-meson Lagrangian. These
Lagrangians are all derived from (4.16).

For the case of a neutron fluctuating into a meson and an octet-baryon we
find,

L n→BoctM =

[
− D+F√

2Fπ
P̄γµγ5(∂µπ+)+

D+F
2Fπ

n̄γµγ5(∂µπ0)

+
D−3F
2
√

3Fπ
n̄γµγ5(∂µη)+

D−F
2Fπ

Σ̄0γµγ5(∂µ K̄0)

− D−F√
2Fπ

Σ̄−γµγ5(∂µK−)+
D+3F
2
√

3Fπ
Λ̄γµγ5(∂µ K̄0)

]
n+h.c.

(4.19)
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Table 4.1. The neutron to baryon-meson fluctuations. Also shown are the couplings
and their strength relative to the largest coupling gmax

BM , where gmax
OM = gPπ− for the

octet and gmax
DM = g∆−π+ for the decuplet.

OM Pπ− nπ0 ΛK0 Σ−K+ Σ0K0 nη

gBM − D+F√
2Fπ

D+F
2Fπ

D+3F
2
√

3Fπ
− D−F√

2Fπ

D−F
2Fπ

D−3F
2
√

3Fπ∣∣gBM/gmax
OM

∣∣2 1 0.5 0.5 0.08 0.04 0.03

DM ∆−π+ ∆0π0 ∆+π− Σ∗−K+ Σ∗0K0

gBM
−hA

2mRFπ
−hA√
6mRFπ

hA
2
√

3mRFπ

−hA
2
√

3mRFπ

hA
2
√

6mRFπ

|gBM/gmax
DM |2 1 0.67 0.33 0.33 0.17

For the case of a neutron fluctuating into a meson and a decuplet-baryon we
find,

L n→BdecM =
hAερµαβ

2mRFπ

[
−1√

3
(∂α Σ̄∗−β )γ5γρ(∂µK−)+

1√
6
(∂α Σ̄∗0β )γ5γρ(∂µ K̄0)

−(∂α ∆̄−β )γ5γρ(∂µπ−)−
√

2
3
(∂α ∆̄0

β )γ5γρ(∂µπ0)

+

√
1
3
(∂α ∆̄+

β )γ5γρ(∂µπ+)

]
n+h.c.

(4.20)
In Table 4.1, we have collected the names of the BM pairs in the fluctuation
together with their couplings. We have also indicated the coupling strength
relative the largest coupling within a multiplet.

4.6 Assets and limitations of ChPT
Since ChPT is an effective theory it also has its range of applicability similar
to the effective theories described in Chapter 3. Indeed in the case of ChPT
the perturbative expansion is carried out i powers of momenta and the masses
of the Goldstone bosons and in practice it is limited by two effects [52]: On
the one hand ChPT breaks down where the not-considered degrees of freedom
become active i.e. when the heavier hadrons can be excited; On the other hand
ChPT breaks down when loops become as important as tree-level diagrams.
Both of these limits lead to the fact that ChPT does not work for momenta in
the 1 GeV range [6, 47]. How we deal with this is discussed in Chapter 6.
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One of the advantages ChPT has over a pure phenomenological model such
as e.g. the eight-fold way [36, 37] is that one does not need to stick to the
leading-order results, but one can calculate the corrections in a systematic way.
For example even before the creation of QCD one could use the eight-fold way
to derive the Gell-Mann-Okubo mass formula [53],

m2
η =

4
3

m2
K−

1
3

m2
π . (4.21)

The relation (4.21) coincides with the leading-order ChPT result for the same
quantity. The difference is that in the case of ChPT one can improve on the
result whereas in the phenomenological eight-fold way one does not know
how to improve it systematically.

If one plugs in the isospin averaged pion and kaon masses one finds mη ≈
567 MeV which is surprisingly close to the experimental value of mexp

η ≈
547 MeV, given that the comparison comes from the leading-order Lagrangian.

Another instance where ChPT has proven to be a precision science is the
use of ChPT corrections to the quark-mass ratio5 [54],

ms

mq
= 2

m2
K

m2
π
−1. (4.22)

5Here mq = mu = md .
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5. The structure of the proton

In this chapter we go into the details of deep inelastic scattering (DIS) and
introduce the structure functions of the proton. Section 5.1 is a brief history of
the investigations of the proton structure. It is aimed at the history-of-science
interested reader. In Section 5.2 we introduce the relevant variables used in
describing DIS on a proton. Section 5.3 introduces light-cone variables.

In Section 5.4 we investigate the ‘small’ and large (in the Bjorken limit)
components of the photon momentum q and show that DIS takes a snapshot
of the proton at light-cone time. In the sections 5.5 - 5.7 we introduce the
structure functions of the proton and their interpretation in the naive parton
model. The QCD-improved parton model is also discussed here.

The virtual-photon asymmetries and the sum rules for the polarized struc-
ture functions, in particular the Bjorken sum-rule are discussed in Section 5.8.
We conclude this chapter with sections 5.9 and 5.10 by discussing the SU(6)
model of hadrons and how it relates to the spin puzzle of the proton.

5.1 A brief history of the proton structure
With Heisenberg introducing the notion of grouping ‘similar’ particles into
multiplets such that they can be related by some symmetry transformation,
a whole new way of looking at the world of particles was established [55].
This was motivated by the discovery of the neutron by Chadwick [56] and its
usefulness was further cemented by the fact that the neutron’s mass is only
slightly larger than that of the proton [57]. In fact it was realized that the pro-
ton, P, and the neutron, n, could generally be treated as two states of one and
the same particle, the nucleon N. In this way the neutron is then related to the
proton by a symmetry transformation called isotopic spin, or simply isospin,
the name of which reflects the fact that the group properties are similar to those
of ‘ordinary’ spin. At this time, there was no knowledge of the existence of
quarks and in particular no knowledge about where this isospin property of
the nucleon came from. Of course, we now know that the isospin symmetry
between the proton and the neutron is due to the isospin symmetry between
their building blocks, the so called u and d quarks, cf. Section 2.5.

Eventually even more particles were discovered which we now know are
bound states of 2 or 3 valence quarks, which we call mesons and baryons,
respectively. The discovery that hadrons are made of quarks goes back to
the experimental data coming from DIS of electrons on protons. Similar to
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the results obtained by Geiger & Marsden [58, 59] leading to the realization
that the atom contains a small but compact core [60], the very important DIS
experiments at SLAC [61, 62] lead to the conclusion that the protons, and
hadrons in general, consist of tiny parts that indeed can carry a big part of the
proton’s energy & momentum.

Bjorken developed the DIS theory and amongst other introduced a variable
ω into the structure functions [63]. When Feynman learned of this he realized
that introducing instead the variable x = 1/ω = Q2/(2p · q) will allow him
to make the parton interpretation, cf. e.g. [64]. Bjorken & Paschos very soon
applied it to DIS [65]. An effort that eventually lead to the important notion
of scaling, i.e. that in the Bjorken limit, Q2 → ∞ with x = Q2/(2p · q) held
fixed, the structure functions of the proton F1 and F2 are independent of Q2 but
depend only on the dimensionless variable x. Here, Q2 denotes the square of
the momentum transfer from the electron (or lepton in general) to the proton,
and q2 = −Q2 < 0 is the virtuality of the photon and p is the momentum of
the proton.

What was found experimentally was that scaling was approximate but only
mildly violated. But not long after the derivation of Bjorken scaling it was
shown that Bjorken scaling is grossly violated in all but few interacting quan-
tum field theories (QFTs) [66,67]. The only QFTs where a mild scaling viola-
tion could occur were asymptotically free ones, i.e. those having an effective
coupling approaching zero for the renormalization scale approaching infinity.
None of the QFTs around at that time were asymptotically free and a quest to
find one had begun. This resulted in the proposal of QCD in 1973 [34, 35] as
the theory of strong interactions. The experimental data in favor of QCD as
the theory of strong interactions soon came through the detection of three-jet
events at PETRA in 1979 [68, 69].

Eventually the ‘mild’ modification of the Bjorken scaling was derived via
QCD. The modification introduces a logarithmic energy dependence of the
structure functions and it is known as the DGLAP equation also called QCD
evolution [7–9]. This set of equations basically describe how the QCD vacuum
is populated and evolves as gluons splits to quark-antiquarks pairs (qq̄) and
the quarks radiate gluons which transform any of their excess energy into qq̄-
pairs and so on. A very dynamical picture of the inside of hadrons began to
emerge as opposed to the very static one proposed in the naive quark model
[70,71], where hadrons are pictured as consisting of 2 or 3 heavy ∼ 300 MeV
valence quarks basically sitting around carrying quantum numbers such as
electromagnetic charge and color charge.

The notion of these so called valence quarks of the quark model was not
totally abandoned but rather absorbed into the modern QCD improved parton
model. It is still true that, for instance, the proton is made up of 2 u and one
d quark but it is understood that when we say this, it is with reactions in mind
where the momentum transfers are low Q2 . 1 GeV. Or in other words, where
one’s resolution is not precise enough to resolve the sea of gluons and qq̄-pairs
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P(p)

l(pl)

X(pX)W ∗,γ∗(q)

l′(p′l)

Figure 5.1. Deep inelastic scattering of a lepton l, l′ ∈ {e±,µ±,ν} of four-momentum
pl on a proton P of four-momentum p via one-boson exchange carrying the momen-
tum transfer q = pl− p′l .

inside the proton. Rather, one sees 2 or 3 heavy dressed quarks, dressed by the
mentioned partons. As one looks deeper one resolves more and more of the
sea structure of the proton.

Once this is established, a plethora of questions arises such as what are the
properties of this sea? How much of the proton’s energy & momentum is
carried by the sea partons? How do the properties of the sea carry over to the
properties of the whole proton? To get a better feel for all the terminology just
introduced we need to get into some of the details of DIS.

5.2 General deep inelastic scattering
To avoid misunderstandings and confusion when discussing experiments in
the natural sciences, but most definitely when it comes to quantum mechanical
processes, one needs to be very specific about what it is one is describing and
what actually is the information obtained in said experiment. For instance,
to get the long-distance properties of the proton, such as its overall electric
charge, magnetic moment and spin, one can scatter a lepton l carrying four-
momentum pl on it and measure the recoil of the lepton and the proton. The
proton stays intact and the information one extracts can be parametrized by the
Pauli and Dirac form factors, cf. e.g. [4, 72]. In this case we say that we have
an elastic scattering on the proton. These form factors are needed because the
proton is not a point-like object.

More generally, there are no point-like objects in any QFT due to quantum
fluctuations. For instance, there are also electron form factors in the quantum
field theoretical description of electron-electron scattering. But in contrast to
the proton form factors, the electron form factors are calculable in perturbative
QED [73]. The proton form factors are not calculable from QED.
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In any case, the physical situation is that plenty of photons are exchanged
between the lepton and the proton. To make progress, one describes the reac-
tion with a single photon exchange which is the leading order (in perturbative
QED) contribution to the process.1 The photon carries the momentum transfer

q = pl− p′l, (5.1)

which is absorbed by the proton.
As one puts in more energy into the reaction, larger values of the momentum

transfer become available and eventually the proton cannot stay intact and
shatters into a shower of hadrons. This final-state hadronic shower carrying
four-momentum pX is denoted by X in Figure 5.1. When this happens, we say
that we have an inelastic scattering on the proton.

Now, the DIS reaction as depicted in Fig. 5.1 is effectively a two-body re-
action. But the mass of X is unspecified. Thus one has three independent
kinematical variables, e.g. the square of the center of mass energy s, the mo-
mentum transfer (squared) t = q2 and p · q. But the QED part (the electron-
photon vertex) is calculable whereas the part γ∗+P→ X is what we want to
explore. This latter part depends only on Q2 and p ·q.

One can easily show that in the general scattering reaction, the momentum
transfer squared is negative, i.e. q2 < 0. For reasons of convenience then, one
chooses to work with the variable

Q2 ≡−q2 > 0 (5.2)

instead.
Apart from q2, the only other Lorentz-invariant quantity in the reaction is

p ·q. Introducing the dimensionless quantity known as Bjorken x, defined by

x≡ Q2

2p ·q , (5.3)

one can show [63, 75] that the structure functions that parameterize the in-
ternal, microscopic structure of the proton are, modulo logarithmic correc-
tions [7–9], independent of the energy scale of the probe Q2. This occurs in
the Bjorken limit, also called the ‘deep’ inelastic limit. To wit, in the specific
case where Q2→∞ with x kept fixed, the reaction is said to be a Deep Inelastic
Scattering (DIS) on the proton. Obviously this limit is an idealization. A less
strict definition of DIS is that ‘deep’ is when Q2 � m2

P and ‘inelastic’ refers
to when p2

X = (p+q)2� m2
P, where mP denotes the mass of the proton.

The cross section for DIS of a lepton on a proton is given by

dσ ∼ `µνWµν , (5.4)

1Of course one does not need to stop at single photon exchange. See for instance [74].
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where `µν is the leptonic tensor and is easily calculable.2 The object of interest
here is the hadronic tensor Wµν which can be written as a correlation3 of the
hadronic current Jµ(ξ ) in the ground-state proton, at spacetime points ξ and
0 [76],

Wµν =
1

4π

∫
d4ξ eiqξ 〈P|[Jµ(ξ ),Jν(0)]|P〉 . (5.5)

The hadronic tensor can be parametrized in terms of Lorentz-invariant struc-
ture functions that exhibit the scaling behavior with logarithmic corrections
mentioned above.

DIS is naturally a light-cone process. To understand this we will briefly
discuss the light-front formalism and with it the light-cone time-ordered per-
turbation theory.

5.3 Light-front dynamics
The most common quantum mechanics is the instant-form version where one
assumes commutation relations for the relevant operators at equal times,4 say
at ξ 0 = 0. Dirac [77] recognized two other options, the forward hyperboloid
form, also more commonly called the ‘point form’ of dynamics with ξ 2 =
const. > 0, ξ 0 > 0, and the front form

ξ 0 +ξ 3 = 0,
(quantization sheet for front-form dynamics).

(5.6)

Later on, Leutwyler & Stern completed the construction making it in total five
inequivalent forms of relativistic dynamics [78], see also [79] for a review on
this subject. These different forms of dynamics are related to hyper-surfaces
having tangents pointing into the space-like regions of Minkowski space. Two
such surfaces, for the instant form and the front form are shown in Figure 5.2.

The instant form of dynamics is the most common, but application of front
form of dynamics is far from rare [80]. This form has its advantages e.g. in
the light-front gauge, A0 +A3 = 0, QCD is ghost-free, and disadvantages (e.g.
it is quite unintuitive).5 Some of its advantages are that it yields the maximum
number of the generators of the Poincaré group kinematical, that is, free of
interactions [77, 82].6

2For instance in the case of scattering a muon or electron on a nucleon `µν = tr[/p′lγ
µ /plγ

ν ]/2
(we have neglected the mass of the lepton), cf. Figure 5.1.
3Only the connected part is included in Equation (5.5), that is, vacuum transitions of the form
〈0|Jµ (ξ )Jν (0)|0〉〈P|P〉 are excluded.
4To avoid confusion with the Bjorken-x variable, we denote the spacetime vector by ξ µ =
(ξ 0,ξ 1,ξ 2,ξ 3) = (t,x,y,z).
5See [81] for an introduction to light-cone variables, rapidity and all that.
6The terms ‘light-front’ and ‘light-cone’ are synonyms and used throughout and sometimes
interchangeably.
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ξ 0

(a)

ξ 0

(b)

Figure 5.2. Quantization surfaces for (a) instant form, t = ξ 0 = 0 and (b) front form,
t + z = ξ 0 +ξ 3 = 0.

But it also has its issues, such as those related to so called end-point singu-
larities. For instance, in calculations involving Feynman loops in combination
with residue techniques similar to what we do in Paper I, care needs to be
taken, see e.g. [83, 84] and the references therein.

The light-cone coordinates of a general four-vector l =(l+, l−,~l⊥) are given
by

~l⊥ ≡ (l1, l2) with l⊥ ≡ ‖~l⊥‖ (5.7)

and
l± ≡ l0± l3↔ l0 =

1
2
(l++ l−) and l3 =

1
2
(l+− l−). (5.8)

Another useful combination that shows up in the light-front spinors is the ob-
ject

l1± il2 = l⊥e±iφ , (5.9)

see Figure 5.3. Including the Jacobian of the transformation (5.8), the volume
element is given by

d4l =
1
2

dl+dl−d2l⊥. (5.10)

From these, one can write down the Lorentzian inner-product of any two four-
vectors a and b as

a ·b =
1
2
(
a+b−+a−b+

)
−~a⊥ ·~b⊥, (5.11)

with the obvious special case (a = b)

a2 = a+a−−a2
⊥. (5.12)
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l2

l1 +
il2 = l⊥ eiφ

l 1− il 2
= l ⊥e−iφ

l1

φ
−φ

Figure 5.3. Definition of the phase φ .

From Equation (5.12) follows that the four-momentum k of an on-shell particle
of mass m, satisfies the following dispersion relation

k− =
m2 + k2

⊥
k+

, (on-shell). (5.13)

In QFT applications in the instant form (see e.g. [4, 18–20]) one deals with
time-ordered correlation functions. At some point in the calculations one has
to Fourier transform time-ordered plane-wave factors. An expression that typ-
ically appears is

∫
d4xeipx Θ(t)e−ikx = (2π)3δ (3)(~p−~k) i

p0− k0 + iε
, (5.14)

where k denotes again the four-momentum of a one-particle state, i.e. one
has k2 = m2. Obviously, the expression in (5.14) has only support for~k = ~p,
but p0 6= k0 is possible. One can interpret Equation (5.14) such that in this
(ordinary) time-ordered perturbation theory (TOPT) the three-momentum~k is
conserved at a vertex while the energy k0 is not.

In light-cone time-ordered perturbation theory (LCTOPT), it is the plus-
component k+ and the perpendicular components~k⊥ = (k1,k2) that are con-
served while the light-cone energy k− = k0 + k3 is not. Taking this and the
above changes of variables into account, the transition from TOPT to LCTOPT
is straightforward.

A major area of application of light-front dynamics and LCTOPT is in DIS
problems. This is because in the Bjorken limit, light-front coordinates sepa-
rates the variables into large and small components as we now will show.
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5.4 DIS takes a snapshot at light-cone time
The canonically conjugate variable to ξ+ is the light-cone energy k−= k0−k3.
The light-cone time ξ+ multiplies the large component of the photon energy
q− when Fourier transforming [cf. Equation (5.5)].

That q− is indeed large can be seen by choosing

~q ‖ (−~e3)⇒ q = (ν ,0,0,−|q3|). (5.15)

Since Q2 ≡ −q2 = q2
3 − ν2, we have that |q3| =

√
Q2 +ν2. Then a finite

Bjorken-x variable [cf. Equation (5.3)]

x =
Q2

2p ·q =
Q2

2(p0ν + p3
√

Q2 +ν2)
, (5.16)

where p is the proton momentum, implies ν ∼ Q2 so that

|q3| ≈ ν . (5.17)

Thus
q+ = ν +q3 = ν−|q3| is small (at least not large) (5.18)

while
q− = ν−q3 = ν + |q3| ≈ 2ν ∼ Q2 is large. (5.19)

Now, the the integral in (5.5) has only support for small ξ+. Everything else
is averaged out because of the large q− that multiplies ξ+ in the exponential.
Naively one might think that DIS takes an instantaneous snapshot of a small
spatial region, i.e. that all components of ξ are small. But this is not the case:
ξ− can be sizable. Concerning the smallness of spatial regions, one can show,
however, that in the two directions perpendicular to the "collision axis" of
proton and γ∗ the focus is on small ξ⊥ [76]. This comes about because the
commutator in (5.5) has only support for time-like ξ 2 (microcausality) [4].
Thus ξ 2 > 0, i.e. ξ 2

⊥ < ξ+ξ−. Since ξ+ must be small [and ξ− is not large,
just normal ∼ 1/(xmP)] then ξ⊥ must be small.

5.5 The structure functions
For both the target and the beam unpolarized, the cross section for the DIS
reaction l±P→ l±X shown in Figure 5.1, is given by7 [72, 87]

d2σ
dxdQ2 =

4πα2

Q4

[(
1− y− m2

Py2

Q2

)
F2(x,Q2)

x
+ y2F1(x,Q2)

]
, (5.20)

7The cross section given in (5.20) refers to the single-photon/boson exchange cross section.
Two-photon contribution to the DIS cross section has been measured to be consistent with zero
within the uncertainties of the measurement [85]. The interference effects of virtual Z0 and
photon exchange are found to be small [86].
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where the functions F1 and F2 are called the unpolarized structure functions
of the proton. They parametrize our ignorance of the proton structure. We
will return to their interpretation within the parton model in Section 5.6. In
Equation (5.20) the term proportional to m2

Py2/Q2 is as good as zero for our
purposes and can be omitted. The variable y is defined as [88]

y =
q · p
pl · p

= 1− E ′

E
, (5.21)

where the second equality is evaluated in the proton rest frame and E (E ′)
refers to the energy of the initial-state (final-state) lepton in the rest frame of
the proton. Another variable widely used in DIS lingua is the energy loss of
the incoming particle [cf. Equation (5.1)]

ν =
q · p
mP

= E−E ′. (5.22)

For both the target and the lepton beam longitudinally polarized, the differ-
ence of cross sections for parallel and antiparallel spins of the proton and the
lepton is given by [89],

d2∆σ‖
dxdQ2 =

16πα2y
Q4

[(
1− y

2
− γ2y2

4
− m2

l y2

Q2

)
g1(x,Q2)− γ2y

2
g2(x,Q2)

]
.

(5.23)
In Equation (5.23), the g1 & g2 are the polarized structure functions. They
parametrize our ignorance about the spin structure of the proton.

Basically, the leptonic tensor `µν of Equation (5.4) contains a symmetric (in
µν) and an antisymmetric part (in µν). The antisymmetric part is proportional
to the spin vector of the lepton while the symmetric part is not. Similarly for
a spin-1/2 target, such as the proton, the hadronic tensor Wµν has a symmetric
and an antisymmetric part. The symmetric part is independent of the target’s
spin vector while the antisymmetric part is proportional to the spin vector of
the target. Therefore the contraction `µνWµν in the DIS cross section (5.4)
contains terms that are totally independent of any spin and it contains terms
that are proportional to the spins of both the lepton and the target proton.
Thus to measure the polarized structure functions g1 and g2, both the target
proton and the lepton beam must be polarized. Obviously then, to measure the
unpolarized structure function F1 and F2 it suffices to use unpolarized beam
and/or target [88].

We will now consider these structure functions in the parton model.

5.6 The naive parton model
In the simple (naive) parton model, one assumes that the constituents of the
proton, the partons, are free and pointlike and interact elastically with the lep-
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ton. Furthermore, the unpolarized structure function F1(x) is independent of
the momentum transfer Q2 and it is given by (cf. e.g. [88, 90]),

F1(x) =
1
2 ∑

q
e2

q [q(x)+ q̄(x)] , (5.24)

where eq denotes the electric charge of the quark q. In Equation (5.24) are de-
fined the unpolarized PDFs for a quark and antiquark of flavor q, respectively
as

q(x)≡ q↑(x)+q↓(x), (5.25)

and
q̄(x)≡ q̄↑(x)+ q̄↓(x), (5.26)

where q↑(↓)(x) is the number of flavor q quarks carrying a momentum fraction
x of the proton having spin parallel (antiparallel) to the spin of the proton.

In the parton model, the polarized structure functions are given by

g2(x) = 0 (5.27)

and
g1(x) =

1
2 ∑

q
e2

q [∆q(x)+∆q̄(x)] , (5.28)

where the polarized PDFs for a quark and antiquark of flavor q are defined as

∆q(x)≡ q↑(x)−q↓(x) (5.29)

and
∆q̄(x)≡ q̄↑(x)− q̄↓(x), (5.30)

respectively. These together with the unpolarized ones are the all-important
PDFs. They are universal in the sense that they are the same for a given hadron
no matter what reaction one is considering. They have not yet been calculated
from first principles because they are partly (QCD) non-perturbative objects.

In the parton model, the structure functions F1 and F2 satisfy the Callan-
Gross relation [91]

F2 = 2xF1. (5.31)

In other words F2(x) is given in terms of F1(x). To derive the Callan-Gross
relation (5.31) in the parton model, one assumes that the electrically charged
partons (the quarks) are spin-1/2 particles.8 The experimental verification of
the Callan-Gross relation [92] is indeed strong evidence of the spin-1/2 nature
of the confined quarks.

As seen, in the parton model, the PDFs and thus the structure functions are
independent of Q2 [63]. Radiative corrections bring in the Q2 dependence.

8For instance, if one assumes the partons to be spin-0 particles one would get that F1(x) = 0
which is experimentally invalidated.
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q(pq)

l(pl)

K(k)

g

q′
γ∗

l′(p′l)

Figure 5.4. Scattering of a lepton on a quark K with momentum k = zpq = xp where p
is the momentum of the proton and pq is the momentum of the quark before radiation
of a gluon g. Another contribution to this process is when the gluon is radiated after
the photon-quark interaction.

5.7 QCD-improved parton model
In the QCD-improved parton model, the structure functions gets logarithmic
corrections and no longer scale.9 The quarks can now radiate and absorb glu-
ons and gluons can split into quark-antiquark pairs and so on. Through a pro-
cess called factorization, very similar to renormalization, one can write down
the renormalized PDFs at a factorization scale µF [93, 94]

q(x,µ2
F) = q0(x)+

αs

2π

∫ 1

x

dz
z

q0

(
x
z

)
P(z) ln

µ2
F

κ2 . (5.32)

Here q0(x) is the (non-observable) bare parton distribution and κ2 is an in-
frared cut-off. Basically, the infrared cut-off κ is the virtuality κ2 = k2 of the
quark K and comes from a collinear divergency due to the radiated gluon g
of Figure 5.4. This divergency is absorbed into the non-observable bare dis-
tribution q0(x). The variable z = k/pq is the longitudinal momentum fraction
carried by the quark after the radiation, thus pq = xp/z where p is, as usual,
the momentum of the proton.

This yields the Q2-dependent structure functions the logarithmic depen-
dence of which have been verified experimentally over several orders of mag-
nitude,

F1(x,Q2) =
1
2 ∑

q
e2

q

[
q(x,µ2

F)+
αs

2π

∫ 1

x

dz
z

q
(

x
z
,µ2

F

)

×
(

P(z) ln
Q2

µ2
F
+C(z)+ · · ·

)]
,

(5.33)

9The structure functions are said to scale if they only depend on x and not on Q2.
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where the ellipsis stand for higher order (α2
s ,α3

s , . . . ) contributions. In equa-
tions (5.32) and (5.33), P(z) and C(z) are functions that can be calculated in
QCD via diagrams such as the one in Figure 5.4.

We note that it is convenient to choose the factorization scale µ2
F = Q2

because then the explicit logarithm in the structure function is identically zero
and all the Q2 dependency will be put on the PDFs q(x,Q2).

This is not the end of the story however. Since αs itself depends on the
renormalization scale µ [cf. Equation (2.21)] and it does so as inversely pro-
portional to a logarithm, the factor αs(µ2)

2π ln(µ2
F/κ2) is not necessarily small.

This problem is solved by a resummation of such terms to a power n. The re-
sulting system of differential equations for the PDFs as functions of x and the
momentum transfer Q2 of the probe are the DGLAP equations. We won’t give
the full details here, but will state a simpler version of the DGLAP equation
where we only take gluon radiation from a parton into account.

Consider the situation of Figure 5.4 only slightly more generalized. Sup-
pose the struck quark radiates n gluons instead of merely one as shown in the
figure. Then at each intermediate step the quark carries a momentum fraction
xi and virtuality ti with presumably t0� t1� ··· � tn−1� tn� t = Q2 and
for sure x0 > x1 > · · · > xn−1 > xn = x. One can then show that the resulting
differential equation is given by the following simpler DGLAP equation

∂q(x, t)
∂ ln t

=
αs(t)
2π

∫ 1

x

dz
z

P(z)q
(

x
z
, t
)
. (5.34)

Notice that the αs(t) is evaluated at the same scale as the PDF. We also note
that this is a differential equation for q(x, t) in t hence an initial condition
needs to be specified. These starting distributions have not been derived from
first principles and usually they are parametrized with a large set of (∼ 25)
parameters and fitted to experimental data.

The universality of the PDFs (due to factorization [94]) then implies that
one can use the PDFs for other reactions. This way of thinking is understand-
able from a practical point of view, but it does not provide any insight into the
physics of the PDFs and the strongly bound system. In the present work, we
promote the idea of using intuition and simple modeling for the starting distri-
butions at some low scale Q2

0 and then use DGLAP to compare to experiment
which usually determines the PDFs at larger scales Q2 > Q2

0.

5.8 Virtual-photon asymmetries and the Bjorken sum
rule

To extract information on the spin-dependent distributions, what one mea-
sures experimentally are the so called virtual-photon asymmetries. The imag-
inary part of the forward Compton amplitude and the virtual-photon absorp-
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tion cross-section are related by the optical theorem, enabling one to write the
virtual-photon asymmetries as10 [95]

A1 =
σT

1/2−σT
3/2

σT
1/2 +σT

3/2
=

g1− γ2g2

F1
,

A2 =
2σLT

σT
1/2 +σT

3/2
= γ

g1 +g2

F1
,

(5.35)

where
γ ≡ 2Mx√

Q2
. (5.36)

We notice that for a high-energy beam either x is small or Q2 is large thus
γ ≡ 2Mx/

√
Q2 is small. The asymmetry A2 being proportional to γ is expected

to be small at high energies [96]. Thus for our purposes we will be more
interested in comparing our results to

A1 '
g1

F1
. (5.37)

In Equation (5.35) all the differential cross sections depend on x and Q2 [97]
which we have suppressed. Furthermore σ3/2 (σ1/2) is the differential cross-
section for the absorption of a transversely polarized photon having spin po-
larized parallel (antiparallel) to the spin of the longitudinally polarized proton.

Let us consider the following integrals of the proton and neutron structure
functions [98–100]

ΓP±n(xmin,Q2) =
∫ 1

xmin

dx
(
gP

1 (x,Q
2)±gn

1(x,Q
2)
)
. (5.38)

The lower limit of the integral represents the fact that for a fixed value of Q2

the low-x region is difficult to access experimentally. Thus some extrapolation
is required. Strictly speaking, also the upper limit involves some extrapolation
but here it is more straightforward since g1(x,Q2) depends on the difference of
quark distributions it must vanish in the x→ 1 limit, because the unpolarized
distributions are observed to do so [90].

On the theory side Bjorken derived the following Q2-independent relation
using isospin symmetry (∆uP = ∆dn) and current algebra [98, 99]

ΓP−n
Bj =

∫ 1

0
dx [gP

1 (x)−gn
1(x)] =

|gA/gV |
6

, (5.39)

where |gA/gV | is the (coupling) strength of the neutron beta decay. In QCD,
the structure functions acquire radiative corrections11 (cf. Section 5.7) and

10Due to the smallness of the spin-dependent part of the total cross section, they can be best
determined from cross-section asymmetries where the spin-independent parts cancel.

11In other words they become Q2 dependent.
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thus so does the Bjorken sum rule. These corrections can be calculated order
by order in pQCD. For three active flavors, u, d and s, the expression for the
Bjorken sum rule up to and including O(α4

s ) is given by [101, 102],

ΓP−n
Bj (Q2) =

|gA/gV |
6

[
1− αs(Q2)

π
− 3.5831 α2

s (Q
2)

π2 − 20.2165 α3
s (Q

2)

π3

− 175.673 α4
s (Q

2)

π4 +O
(

α5
s

)]
.

(5.40)
Plugging in the numbers |gA/gV |= 1.2723±0.0023 from neutron beta decay
and αs(3 GeV2) = 0.25 [103] we see that

ΓP−n
Bj (3 GeV2) = 0.187, (5.41)

which is in quite good agreement with data [104],

ΓP−n(3 GeV2) = 0.181±0.008 (stat.)±0.014 (syst.). (5.42)

We note that the naive quark model gives the value |gA/gV |SU(6) = 5/3 ≈
1.67, which is much larger that the above quoted experimental value. Obvi-
ously to be in agreement with experiment (and the Bjorken sum rule) some-
thing more is needed. A more realistic model should also take into account
relativistic effects and possibly effects of SU(6) breaking. This is the topic of
Paper III.

Starting with the naive quark model expression for the integral

ΓP+n =
∫ 1

0
dx [gP

1 (x)+gn
1(x)], (5.43)

and assuming SU(3) f flavor symmetry and that the strange quark and sea po-
larization are zero i.e. that ∆s = ∆q̄i = 0 one obtains the so-called Ellis-Jaffe
sum rule [100]. This sum rule has been invalidated by experiment and we
won’t go into more detail here regarding its theoretical aspects, cf. e.g [105].

5.9 The SU(6) model of hadrons
One of the simplest ways to model hadrons is via their SU(6) wavefunction.
This consists of a direct product of their quark and spin representations ap-
propriately symmetrized [21]. The simplest hadronic SU(6) wavefunction is
that of the ∆++ baryon with helicity λ = +3/2. The ∆++ consists of three u
quarks and if it is in a helicity λ = 3/2 configuration the spin of the quarks
must all be aligned, say ‘up’ along the quantization axis. We denote this state
by |∆++,3/2〉. Thus the SU(6) representation of |∆++,3/2〉 is given by

|∆++,3/2〉= |u ↑ u ↑ u ↑〉 , (5.44)
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where each ‘up arrow’ refers to the neighboring quark on its left. The other
wavefunctions corresponding to the helicity configurations λ = 1/2, −1/2
and −3/2 can be obtained by suitable lowering operators acting on the spin
space.

Having the wavefunction at our disposal, one can start calculating and com-
paring to observables. For instance consider the following expectation value

∆qH = 〈H|Nq↑−Nq↓|H〉 , (5.45)

where Nq↑ counts the number of flavor q quarks with polarization ↑ and Nq↓
counts the number of q quarks with polarization ↓.

Thus in the case of the |∆++,3/2〉 we have,

Nu↑ |∆++,3/2〉= Nu↑ |u ↑ u ↑ u ↑〉= (1+1+1) |u ↑ u ↑ u ↑〉= 3 |u ↑ u ↑ u ↑〉
(5.46)

and Nu↓ |∆++,3/2〉= Nu↓ |u ↑ u ↑ u ↑〉= 0. Thus

∆u = 〈u ↑ u ↑ u ↑|Nu↑−Nu↓ |u ↑ u ↑ u ↑〉= 〈u ↑ u ↑ u ↑|Nu↑ |u ↑ u ↑ u ↑〉= 3
(5.47)

for |∆++,3/2〉. Obviously ∆d = 0 for the same state.
Next we consider a slightly more involved wavefunction, that of the proton.

For concreteness let us consider the ‘up’ polarized proton |P,1/2〉. Its SU(6)
wavefunction is given by,

|P,1/2〉=
√

2
6

[
2 |u ↑ u ↑ d ↓〉− |u ↑ u ↓ d ↑〉− |u ↓ u ↑ d ↑〉

]
+permutations.

(5.48)
The counting procedure gives,

Nu↑ |P,1/2〉

=

√
2

6

[
2 ·2 |u ↑ u ↑ d ↓〉− |u ↑ u ↓ d ↑〉− |u ↓ u ↑ d ↑〉

]
+permutations.

(5.49)
Similarly,

Nu↓ |P,1/2〉=
√

2
6

[
0−|u ↑ u ↓ d ↑〉− |u ↓ u ↑ d ↑〉

]
+permutations, (5.50)

yielding the result

∆u =
4
9
×3 =

4
3
, (5.51)

where the factor of 3 comes from the permutations.
Doing a similar calculation for the d quarks one finds,

∆d =−1/3. (5.52)
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And since the proton does not contain any valence anti-quarks or valence
strange-quarks, we find that the fraction of the proton’s spin carried by its
quarks is,

∆Σ≡ ∆u+∆d +∆s+∆ū+∆d̄ +∆s̄ =
4
3
− 1

3
= 1. (5.53)

Obviously this is not very surprising since in the SU(6) model the only an-
gular momentum available is provided by the spin degrees of freedom of the
quarks. What surprised many in the nuclear and the particle physics commu-
nity was the result of a measurement done in 1988 by the European Muon
Collaboration, which indicated that only a tiny fraction of the proton’s spin is
carried by the quarks.

5.10 The proton spin crisis
The initial and subsequent measurements by the European Muon Collabora-
tion (EMC) of the proton’s axial charge g(0)A and its spin-dependent parton dis-
tributions spawned immense interest from both experimental and the theory
side [106]. On the experimental side, the motivation was to check the results
and increase on the accuracy of the original data. But also to get a detailed
picture of the various distributions of the partons (quarks and gluons), such as
their energy-momentum, angular momentum, orbital angular momentum and
spin distributions. This impressive effort spanned more than two decades and
are collected in the works of e.g. [107–114].

The theoretical activity was mostly motivated by the quest to understand
what many interpreted as a surprisingly low value for the obtained axial charge
g(0)A . Here, low is in relation to what one would expect from results predicted
by the non-relativistic quark model (NRQM). In the NRQM, or as many call
it, the naive (static) quark model, the axial charge is given by the sum of the
helicities12 of the quarks of the proton, i.e. g(0)A = ∆Σ of Equation (5.53). Tra-
ditionally, one writes the sum rule for the longitudinal spin structure of the
nucleon as (see the reviews [90, 105, 115])

1
2
=

1
2

∆Σ+∆g+Lq +Lg, (5.54)

where Lg and Lq represent contributions from gluon and quark orbital angular
momentum, respectively and ∆g is the contribution from any eventual polar-
ized glue.

The ‘low’ value obtained in experiments would in the NRQM suggest that
a large fraction of the proton’s spin resides in orbital angular momentum and
perhaps in polarized sea, neither of which is accounted for in the NRQM.

12Relative to the quantization axis for the proton’s spin.
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The orbital angular momentum of the partons can contribute to the total
proton spin but in general higher orbital angular momentum states belong to
higher energy states and not the ground state of the proton. The contribution
from polarized sea is not unreasonable due to the fact that approximately 50%
of the proton’s momentum is carried by electrically neutral, but strongly in-
teracting partons [116]. A result predicted (to hold in the asymptotic limit) in
QCD [117–119].

In QCD, this sea and in particular the electrically neutral partons just men-
tioned are represented by qq̄-pairs and gluons. Furthermore, from a theoretical
point of view, it is not unreasonable that the gluons can contribute a ∆g 6= 0
to the spin of the proton [120, 121] by virtue of the U(1) axial anomaly, see
e.g. [122, 123]. Experimentally, it is challenging to extract ∆g, but recent ex-
periments indicate a small value consistent with zero, although with substan-
tial uncertainty [124,125]. Meanwhile, recent lattice QCD calculations of ∆g,
together with certain assumptions, indicate a substantial gluonic contribution
to the proton spin, see e.g. [126].

What all the above tells us is that the situation is still not resolved to a
satisfying degree and that it is in need of some clearance and guidance.
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6. The Hadron-Cloud Model

In this chapter we present all parts of the Hadron-Cloud Model. The model
consists of three major parts, each applicable in their range of validity. These
are in ascending order (in energy) ChPT for low energies, a phenomenological
hadronic form factor combined with a physical model for the starting PDFs in
intermediate energies and finally pQCD at large energies.

6.1 The HCM
As noted in Section 4.6, ChPT like any other effective theory has its range of
applicability. ChPT and in particular leading-order ChPT works for momenta
in the range of the Goldstone boson masses Q∼ 0.5 GeV, but not for momenta
higher up. And we already know from previous chapters that pQCD breaks
down around scales of Q . 1 GeV. Thus, there is a gap in energy range
0.5 GeV . Q . 1 GeV where neither ChPT nor pQCD is applicable. In our
work, we choose to use a phenomenological model that connects these two
regions, this is illustrated in Fig. 6.1.

We emphasize in particular that the phenomenological modeling of the in-
termediate energy range ‘connects smoothly’ to leading-order ChPT for very
low energies, i.e. it shares with ChPT the low-energy limit, which serves to
pin down parameters and the overall structure of interactions.

For energies close to 1 GeV the form factor in our model

G(~p2
M +~p2

B,Λ
2
H) = e

−~p2
M+~p2

B
2Λ2

H ,
(6.1)

which is a decaying Gaussian in the three-momenta of the hadrons in the fluc-
tuation, suppresses the hadronic contributions exponentially. In other words,
for energies slightly below ∼ 1 GeV the form factor smoothly turns off the
hadronic degrees of freedom (d.o.f.). This allows (correctly) for the partonic
d.o.f. to be the active ones in this energy range, cf. Fig. 6.1.

It is thus expected that the value of the cut-off parameter ΛH should be
about the energy where the partonic d.o.f. become the correct ones. Indeed
this is also what comes out of the fit, cf. Paper II.

Regarding the starting PDFs for a given parton i = q, q̄ or g (of mass mi) in
a hadron H, we assume that at the starting scale for QCD evolution Q0, they
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Q � 1 GeV

ChPT

Goldstone bosons
+ non-relativistic baryons

Q [GeV]

Q ∼ 1 GeV

phenomenological
form factor + starting PDFs

hadrons
+ partons

Q & 1 GeV

pQCD

partonsactive
d.o.f

energy

theory

‘Hadron-Cloud Model’

Figure 6.1. The different theory parts of the Hadron-Cloud Model together with the
energy range where each part is used: For very low energies Q� 1 GeV we use
leading-order ChPT; in the intermediate region 0.5 GeV . Q . 1 GeV we use a phe-
nomenological form factor that connects smoothly to the ChPT part (it has ChPT as
its low-energy limit). In this range we also use physics motivated starting PDFs. For
energies Q & 1 GeV pQCD is used (DGLAP evolution of the starting PDFs). The
bottom row denotes the active d.o.f in each energy range.

are given by a Gaussian in the momentum components of the partons of the
probed hadron,

f bare
i/H (x) =

∫ d4k
(2π)4 δ

(
k+

p+H
− x
)

Ni/H(σi,mi)e
− (k0−mi)

2+k2
x+k2

y+k2
z

2σ2
i

×Θ(1− x) Θ(x) Θ
(
(pH − k)2) . (6.2)

The Heaviside functions come from the kinematics of the deep inelastic reac-
tion. The normalization factor Ni/H(σi,mi) is fixed by valence-quark number
and momentum sum rules, cf. Paper II for more details.

These starting PDFs are parametrized using only three parameters, these
are the Gaussian widths σg, σ1 and σ2. The indices refers to the width of the
gluon distribution and to the widths of the distributions of quarks appearing
once or twice in a hadron, respectively. For instance in the case of the neutron
n(ddu) we use σ1 and σ2 for the u and d quarks, respectively.

For hadrons containing three quarks of the same flavor such as ∆++(uuu)
we use isospin relations to write down the distributions in terms of the pa-
rameters σ1 and σ2. To wit: We make use of the relations for the isovector
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combination1 u−d,

u∆++−d∆++ = 3(u∆+−d∆+), (6.3)
u∆0−d∆0 = − (u∆+−d∆+), (6.4)

u∆−−d∆− = − (u∆++−d∆++) (6.5)

and for the isoscalar combination u+d,

u∆++ +d∆++ = u∆+ +d∆+ = u∆0 +d∆0 = u∆−+d∆− . (6.6)

We find,

u∆++ =
1
2
(u∆++ +d∆++)+

1
2
(u∆++−d∆++) =

1
2
(u∆+ +d∆+)+

3
2
(u∆+−d∆+)

= 2u∆+−d∆+ .
(6.7)

Thus, the distribution for the u quark in the ∆++(uuu) baryon can be written
as

fu/∆++ = 2 fu/∆+− fd/∆+ , (6.8)

where the first term contains the σ2 parameter and the second term contains
the σ1 parameter, as discussed above.

We want to emphasize that these parameters are not totally free in the sense
that their values should be of the order of the inverse size of the hadrons as
given by Heisenberg’s uncertainty relation. That is, for a typical hadron size
D (diameter) we have

σ ≈ h̄
2D
≈ 0.1 GeV. (6.9)

Indeed a fit to data on the unpolarized proton structure functions yields such
values for the parameters of our model, see Paper II.

Strictly speaking, the HCM has five parameters σ1, σ2, σg, Q0 and ΛH . But
as discussed above one would expect that ΛH and the starting value for QCD
evolution Q0 to be roughly the same. Indeed our results show that they are
practically given by the same value

ΛH ' Q0 = 0.88 GeV, (6.10)

effectively reducing the number of parameters to four.

6.2 Spin in the Hadron-Cloud Model
To also describe the spin structure of the nucleon we take as a first ansatz that
the polarized distributions are proportional to the unpolarized ones with the

1In the following we suppress the notation fu/∆++ and simply denote this quantity by u∆++ . The
other distributions are denoted analogously. We will restore the notation in Eq. (6.8).
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constant of proportionality given by the respective SU(6) value. In formulas
this reads,

∆ f bare
q/H (x) = ∆ f SU(6)

q/H f bare
q/H (x), (6.11)

where f bare
q/H (x) is given by (6.2) and ∆ f SU(6)

q/H is the SU(6) value for a parton q
in a hadron H. For instance, in the case of the polarized u distribution inside a
proton we use,

∆ f SU(6)
u/P = 4/3, (6.12)

as obtained in Section 5.9, Equation (5.51). In (6.11) we also include the rela-
tivistic effects of a Melosh transformation [127–131], but this transformation
does not introduce any new parameters. The full distributions are given by a
convolution as discussed in detail in Paper III.

It turns out that the above ansatz yields a value for the integral of the polar-
ized structure functions that is in disagreement with (5.40, 5.42). This moti-
vates an exploration of a possible breaking of the SU(6) symmetry. We there-
fore introduce a breaking of the SU(6) symmetry for the nucleon, replacing in
(6.11)

∆ f SU(6)
q/H → ∆ fq/H = ∆ f SU(6)

q/H +θ q
H (6.13)

for the proton with isospin-flipped values for the neutron, but (as a first ap-
proximation) θ q

H = 0 for all other hadrons.
If one insists on a probabilistic interpretation of the (bare) PDFs, the two

parameters θ u
P and θ d

P cannot be varied in a completely free way. Rather one
has to ensure that the number of quarks with a specific spin orientation does
not exceed the total number of quarks. Consequently,

−2≤ ∆ fu/P ≤ 2 and −1≤ ∆ fd/P ≤ 1. (6.14)

This is equivalent to,

−10/3≤ θ u
P ≤ 2/3 and −2/3≤ θ d

P ≤ 4/3. (6.15)

If one fits the θ parameters to the value of the integral ΓP−n(xmin = 0) [cf.
Eqs. (5.38) and (5.42)] it turns out that one exhausts the limits put on these
parameters, i.e. one finds θ u

P =−θ d
P = 2/3 leading to,

∆ fu/P = 2 and ∆ fd/P =−1. (6.16)

The finding (6.16) suggests that in the bare proton a large part of the u quarks
have spins parallel to the proton’s spin, whereas a large part of the d quarks
have spins aligned antiparallel to the proton’s spin.

Taking into account all the physical effects of the model: The bare part, the
hadronic fluctuations, the Melosh transformation and the values obtained in
(6.16) used in (6.11), we obtain a very good agreement with the (measured)
full functions ΓP±n(xmin) listed in Equation (5.38).
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Finally, we find that the fraction of the proton’s spin carried by the quarks
to be [cf. Section 5.10],

∆Σ = 0.39. (6.17)

This value is in good agreement with the experimental value [104],

0.26≤ ∆Σexp ≤ 0.36. (6.18)
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7. Deep inelastic scattering and the proton
self-energy in the Hadron-Cloud Model

Deep inelastic scattering of leptons on the proton or more generally on the nu-
cleon, provides an excellent tool to explore the structure of the proton. This is
mostly because as far as we know, leptons are elementary particles (cf. Chapter
2). We went through the general DIS formalism in Section 5.2. In the present
chapter we will discuss DIS on the proton within the HCM (cf. Section 6.1).
In the process we will derive the hadronic distribution functions which are the
probability distributions of the fluctuations.

We will here present the hadronic y and k⊥-distributions and present all
the various fluctuation probabilities in detail. We will discuss a possible con-
nection between the probabilities obtained in the self-energy and in the DIS
calculations.

7.1 Deep inelastic scattering in the Hadron-Cloud
Model

To account for the BM fluctuations in accordance with Equation (1.1), we
consider the possibility for the probe to interact with either the partons of the
bare proton, or those of the baryon (B) or meson (M) in the BM fluctuation. In
other words we decompose the hadronic electromagnetic current operator as
follows

Jµ(ξ ) = Jbare
µ (ξ )+ JB

µ (ξ )+ JM
µ (ξ ), (7.1)

where each part couples only to the relevant part of the proton wavefunction of
Equation (1.1). Due to the decomposition of the current, the hadronic tensor
Wµν can similarly be written as a sum depending on whether one probes the
bare proton or whether one probes the baryon/meson in the fluctuation i.e.

Wµν =W bare
µν +∑

BM

[
W BM

µν +W MB
µν
]
, (7.2)

where W BM
µν (W MB

µν ) refers to probing the baryon (meson) in the fluctuation.

7.2 Probing the bare proton
The different parts of the hadronic tensor can be found by considering how the
time-evolution operator acts on the physical proton state. To wit, start with the
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hadronic tensor of Equation (5.5) which we write as

Wµν =
1

4π

∫
d4ξ eiqξ

〈
Pλ̃ (p)

∣∣∣Jµ(ξ )Jν(0)
∣∣∣Pλ̃ (p)

〉
, (7.3)

where we take the proton to be polarized along the +z direction so that λ̃ is
definite and equals

λ̃ =+1/2. (7.4)

Notice that Equations (7.3) and (5.5) are equivalent since we can write the
proton matrix element of Jµ(ξ )Jν(0) as a commutator because the subtracted
term vanishes for stable targets [76, 88]. Now, under the time-evolution oper-
ator one finds that (T is the time-ordering operator)

Jµ(ξ ) |Pλ̃ 〉= T{Jµ(ξ )eiSint}|Pλ̃ 〉bare

=̂ T{
(
Jbare

µ (ξ )+ JB
µ (ξ )+ JM

µ (ξ )
)
(1+ iSint)}|Pλ̃ 〉bare

(7.5)

where we have only kept the non-trivial leading-order terms in the step ‘=̂’.
When contracted with 〈Pλ̃ |, the first term gives the bare tensor, i.e.

W bare
µν =

1
4π

∫
d4ξ eiqξ

〈
Pλ̃
∣∣∣[Jbare

µ (ξ ),Jbare
ν (0)

]∣∣∣Pλ̃
〉

bare
. (7.6)

Terms such as
|JB

µ (ξ )|Pλ̃ 〉
bare

and |JM
µ (ξ )|Pλ̃ 〉

bare
(7.7)

vanish since by definition the bare-proton state |Pλ̃ 〉bare doesn’t contain any
fluctuations. The non-vanishing terms in (7.5) are what constitutes the bary-
onic and mesonic tensors W BM

µν and W MB
µν , respectively. We will now turn to

these terms.

7.3 Probing the baryon in the fluctuation
Consider the case of probing one of the hadrons in the fluctuation. For con-
creteness let us take the case of probing the baryon in the fluctuation (cf. Figure
1 of Paper II). The tensor for this is given by

W BM
µν =

1
4π ∑

M,X ′

∫
d4ξ eiqξ d̄3 pM

2EM

×
〈

Pλ̃
∣∣∣JB

µ (ξ )
∣∣∣X ′,M(pM)

〉〈
X ′,M(pM)

∣∣∣JB
ν (0)

∣∣∣Pλ̃
〉
.

(7.8)

Here we have inserted a complete set of states with the anticipation that Sint
annihilates a state M. Therefore we have written down the phase space of M
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explicitly, while the sum over X ′ is kept on a schematic level. We use the
notation

d̄n ≡ dn/(2π)n and δ̄ (n) ≡ (2π)nδ (n). (7.9)

With equations (7.5) and (7.7) in mind, the matrix elements in Eq. (7.8) can
be written 〈

X ′,M(pM)
∣∣∣T{JB

µ (ξ )iSint}
∣∣∣Pλ̃

〉
bare

. (7.10)

We will in the following omit the subscript ‘bare’, and for the sake of defi-
niteness, we will consider the proton-pion fluctuation. In other words, we will
use the following part of the action

iSint = igPπ0

∫
d4z P̄(z)γαγ5(∂ z

απ0(z))P(z). (7.11)

The full leading-order Lagrangian and thus the action is presented in Paper I.
The hadronic couplings including gPπ0 are tabulated in Table I of said paper.

Inserting the action we find

〈
X ′,M(pM)

∣∣∣T{JB
µ (ξ )iSint}

∣∣∣Pλ̃
〉

=
gPπ0

2

∫
d2z⊥dz−dz+ θ(ξ+− z+)

∫
d̄2 pB⊥d̄p−B

∫ d̄y
2y

δ̄
(

p−B −
p2

B⊥+m2
B

yp+

)
×θ(y)exp

[−i
2

z+
(

p−− p−B − p−M
)]

exp
[−i

2
z−
(

p+− p+B − p+M
)]

× exp [+i~z⊥ · (~p⊥−~pB⊥−~pM⊥)]∑
λ

Sλ (pB = yp+)
〈

X ′
∣∣∣JB

µ (ξ )
∣∣∣Bλ (pB)

〉
,

(7.12)
where

p+B = yp+, p+M = yM p+. (7.13)

In (7.12) we have defined the vertex function

Sλ (p̃B) = ūλ (p̃B)γ5�pMuλ̃ (p̃), (7.14)

with the notation ã≡ (a+,~a⊥) for the momenta.1 The light-front spinors uλ (p̃)
for a spin-1/2 baryon of mass m and polarization λ are given by [132, 133]

u1/2(p̃) =
1√
2p+


p++m
p⊥eiφ

p+−m
p⊥eiφ

 , u−1/2(p̃) =
1√
2p+


−p⊥e−iφ

p++m
p⊥e−iφ

m− p+

 ,

(7.15)
where the angle φ is defined in Equation (5.9).

1This notation is not to be confused with or applied to λ̃ , which is helicity and given by (7.4).
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The light-front vector-spinors, uµ
λ (p̃), of a spin-3/2 particle of mass m and

polarization λ are given by the Clebsch-Gordon expansion,

uµ
3/2(p̃) = εµ

+1(p̃)u1/2(p̃),

uµ
1/2(p̃) =

√
2
3

εµ
0 (p̃)u1/2(p̃)+

√
1
3

εµ
+1(p̃)u−1/2(p̃),

uµ
−1/2(p̃) =

√
2
3

εµ
0 (p̃)u−1/2(p̃)+

√
1
3

εµ
−1(p̃)u1/2(p̃),

uµ
−3/2(p̃) = εµ

−1(p̃)u−1/2(p̃).

(7.16)

Written on the form ε = [ε+,ε−,(~ε⊥)], the polarization vectors are given by

εµ
+1(p̃) =

[
0, −

√
2

p+ p⊥eiφ ,
(
− 1√

2
,− i√

2

)]
,

εµ
0 (p̃) =

1
m

[
p+, 1

p+
(

p2
⊥−m2

)
,~p⊥

]
,

εµ
−1(p̃) =

[
0,

√
2

p+ p⊥e−iφ ,
(

1√
2

,− i√
2

)]
.

(7.17)

Using the following representation for the Dirac matrices,

γ0 =

(
σ0 0
0 −σ0

)
, γ j =

(
0 σ j

−σ j 0

)
, γ5 =

(
0 σ0

σ0 0

)
, (7.18)

expressed in terms of the standard Pauli matrices [4] with σ0 ≡ diag(1,1), we
obtain the vertex functions listed in Paper II.

Getting back to our Equation (7.12) we notice that the exponentials will
turn into delta functions once integrated over. The time-ordered exponential
will turn into a ‘propagator’ via2

∫ ∞

−∞
dz+ θ(ξ+− z+)exp

[−i
2

z+
(

p−− p−B − p−M
)]

=
2i

p−− p−B − p−M
exp
[−i

2
ξ+
(

p−− p−B − p−M
)]

=
p+2i

m2
P−

p2
B⊥+m2

B
y − p+p−M

,

(7.19)

where the final equality holds in the Bjorken limit.3 In (7.19), we have also
made use of the on-shell relation p+p− = m2

P and used the p−B delta function
of Equation (7.12).

2We suppress the iε regulator.
3Recall the factor exp(iqξ ) in the hadronic tensor. Thus, ξ+ multiplies q−� p−− p−B − p−M ,
in the Bjorken limit. Hence, in the Bjorken limit, the exponential in (7.19) is as good as unity.
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We will from now on work in a frame where ~p⊥ = 0. The~z⊥ delta function
in (7.12) then implies that

~pB⊥ =−~pM⊥ ≡~k⊥. (7.20)

Notice also that what we have done so far, holds for any baryon in the fluc-
tuation. The only things that differ for the other baryons are the couplings
gBM and the explicit form of the vertex functions Sλ . The vertex functions are
identical for all the octet-baryons apart from the masses used. Similarly, they
are identical for all the decuplet baryons. Thus, it’s just as well to denote the
hadronic coupling by the more general gBM . Implementing all this, Equation
(7.12) becomes

〈
X ′,M(pM)

∣∣∣T{JB
µ (ξ )iSint}

∣∣∣Pλ̃
〉
=

igBM

1− yM

∑λ Sλ (p+B = (1− yM)p+)

m2
P−

k2
⊥+m2

B
1−yM

− p+p−M

×θ(1− yM)〈X ′|JB
µ (ξ )|Bλ (p+B = (1− yM)p+

)
〉 ,

(7.21)
where we have suppressed the mass and~k⊥ dependence of Sλ . Similarly the
Lorentz-invariant integrals become

∫ d̄3 pM

2EM
=
∫

d̄2k⊥
∫

d̄p−M

∫ d̄yM

2yM
δ̄
(

p−M−
p2

M⊥+m2
M

yM p+

)
θ(yM), (7.22)

which together with θ(1− yM) of Equation (7.21) restricts the yM-integral to
the physical range yM ∈ [0,1]. Doing the p−M delta function and summing over
all the BM pairs, the baryonic tensor becomes

W BM
µν = ∑

BM,λ ,λ ′
|gBM|2

1
4π

∫
d4ξ eiqξ

∫
d̄2k⊥

∫ 1

0

d̄yM

2yM

1
(1− yM)2

×
〈

Bλ ′ (p+B = (1− yM)p+
)∣∣∣[JB

µ (ξ ),J
B
ν (0)

]∣∣∣Bλ (p+B = (1− yM)p+
)〉

× S∗λ
′
(p+B = (1− yM)p+)Sλ (p+B = (1− yM)p+)(

m2
P−

k2
⊥+m2

B
1−yM

− k2
⊥+m2

M
yM

)2 ,

(7.23)
where we have used the completeness of the states X ′.

From the explicit form of the vertex functions [cf. Paper II] it is easy to
verify that the off-diagonal terms vanish under the φ -integration. In other
words ∫ 2π

0
dφ ∑

λ ,λ ′
S∗λ

′
Sλ =

∫ 2π

0
dφ ∑

λ
|Sλ |2. (7.24)
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Using this, and making the change of variables y = 1−yM, the baryonic tensor
becomes

W BM
µν =

1
4π

∫
d4ξ eiqξ ∑

BM,λ

∫ 1

0

dy
y

〈
Bλ (pB)

∣∣∣[JB
µ (ξ ),J

B
ν (0)

]∣∣∣Bλ (pB)
〉∣∣∣∣

p+B =yp+

× 1

(2π)3 2y(1− y)

∫
d2k⊥

∣∣∣∣∣∣gBMG(y,k2
⊥,Λ

2
H)

Sλ (p+B = yp+,~k⊥)

m2
P−

k2
⊥+m2

B
y − k2

⊥+m2
M

1−y

∣∣∣∣∣∣
2

,

(7.25)
where we have included the form factor G(p+B = yp+,k2

⊥,Λ
2
H) to avoid un-

physical contributions [cf. Section 6.1 and Paper II].

7.4 Probing the meson in the fluctuation
We now turn to the case of probing the meson in the fluctuation (cf. Figure 1
of Paper II). The mesonic tensor is given by

W MB
µν =

1
4π ∑

B,λ ,X ′

∫
d4ξ eiqξ d̄3 pB

2EB

×
〈

Pλ̃
∣∣∣JM

µ (ξ )
∣∣∣X ′,Bλ (pB)

〉〈
X ′,Bλ (pB)

∣∣∣JM
ν (0)

∣∣∣Pλ̃
〉
.

(7.26)

This is very similar to the baryon case with the main difference that we are
now probing a spinless meson. Let the baryon and meson carry the momentum
fractions y and yM , respectively. We can then write the matrix element as〈

X ′,Bλ (pB)
∣∣∣JM

µ (ξ )
∣∣∣Pλ̃

〉
=
〈

X ′,Bλ (pB)
∣∣∣T{JM

µ (ξ )iSint}
∣∣∣Pλ̃

〉
bare

= igBM

∫ d̄yM

yM
θ(yM)

Sλ (p+B = yp+)δ̄ (1− y− yM)

m2
P−

k2
⊥+m2

M
yM
− p+p−B

×
〈

X ′
∣∣∣JM

µ (ξ )
∣∣∣M(yM p+,~k⊥)

〉
= igBM

θ(1− y)
1− y

Sλ (p+B = yp+)

m2
P−

k2
⊥+m2

M
1−y − p+p−B

〈
X ′
∣∣∣JM

µ (ξ )
∣∣∣M((1− y)p+,~k⊥

)〉
.

(7.27)
Now using

∫ d̄3 pB

2EB
=
∫

d̄2k⊥
∫

d̄p−B

∫ d̄y
2y

δ̄
(

p−B −
p2

B⊥+m2
B

yp+

)
θ(y), (7.28)
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we obtain for the mesonic tensor,

W MB
µν =∑

BM
|gBM|2

1
4π

∫
d4ξ eiqξ

∫
d̄2k⊥

∫ 1

0

d̄y
2y

1
(1− y)2

×
〈
M
(

p+M = (1− y)p+
)∣∣[JM

µ (ξ ),JM
ν (0)

]∣∣M (p+M = (1− y)p+
)〉

× ∑λ S∗λ (p+B = yp+)Sλ (p+B = yp+)(
m2

P−
k2
⊥+m2

M
1−y −

k2
⊥+m2

B
y

)2 .

(7.29)
We now make the change of variables y→ 1− y and find the analogous ex-
pression to that in Equation (7.25),

W MB
µν =

1
4π

∫
d4ξ eiqξ ∑

BM,λ

∫ 1

0

dy
y
〈M (pM) |

[
JM

µ (ξ ),JM
ν (0)

]
|M (pM)〉

∣∣∣∣
p+M=yp+

× 1

(2π)3 2y(1− y)

∫
d2k⊥

∣∣∣∣∣∣gBMG(1− y,k2
⊥,Λ

2
H)

Sλ (p+B = (1− y)p+,~k⊥)

m2
P−

k2
⊥+m2

M
y − k2

⊥+m2
B

1−y

∣∣∣∣∣∣
2

.

(7.30)
In deriving (7.25,7.30) we have neglected the dependence of the matrix el-
ement on ~k⊥. And the form factor G(1− y,k2

⊥,Λ
2
H) is short for G(p+B =

(1− y)p+,k2
⊥,Λ

2
H).

As discussed in the papers I - III we use a Gaussian form factor having the
average of the squares of the fluctuation’s three-momenta as its argument

G(y,k2
⊥,Λ

2
H) = exp

[
−~p

2
B +~p2

M

2Λ2
H

]
= {in the proton’s rest frame}

= exp

− (p·pB)
2+(p·pM)2

m2
P

−m2
B−m2

M

2Λ2
H


= exp

−
(

m2
B+k2

⊥
2mPy

)2
+
(

m2
M+k2

⊥
2mP(1−y)

)2
+ k2
⊥−

m2
B+m2

M
2 +

m2
P

4

[
(1− y)2 + y2

]
2Λ2

H

 ,
(7.31)

where we have written the argument of the second exponential in a Lorentz-
invariant form.
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7.5 The hadronic distribution functions
For convenience, we collect here the the fluctuation part of the hadronic tensor
(7.2), W H

µν = ∑BM(W BM
µν +W MB

µν ). It is given by

W H
µν =

1
4π

∫
d4ξ eiqξ ∑

BM,λ

∫ 1

0

dy
y

{
f λ
MB(y)

〈
M(p+M = yp+)

∣∣[JM
µ (ξ ),JM

ν (0)
]∣∣M(p+M = yp+)

〉
+ f λ

BM(y)
〈

Bλ (p+B = yp+)
∣∣∣[JB

µ (ξ ),J
B
ν (0)

]∣∣∣Bλ (p+B = yp+)
〉}

,

(7.32)

where we have defined the hadronic distribution functions,

f λ
BM(y) =

|gBM|2
(2π)32y(1− y)

∫
d2k⊥

∣∣∣∣∣G(y,k2
⊥,Λ

2
H)

Sλ (y,~k⊥)
m2

P−m2(y,k2
⊥)

∣∣∣∣∣
2

, (7.33)

and

f λ
MB(y) =

|gBM |2
(2π)32y(1− y)

∫
d2k⊥

∣∣∣∣∣G(1− y,k2
⊥,Λ

2
H)

Sλ (1− y,~k⊥)
m2

P−m2(1− y,k2
⊥)

∣∣∣∣∣
2

.

(7.34)
In (7.33) and (7.34) m2(y,k2

⊥) is given by

m2(y,k2
⊥)≡

m2
B + k2

⊥
y

+
m2

M + k2
⊥

1− y
. (7.35)

We note that without a form factor G(y,k2
⊥,Λ

2
H), the hadronic distributions

satisfy the relation
f λ
BM(y) = f λ

MB(1− y). (7.36)

When introducing a form factor, one has to choose it such that this relation is
not spoiled.

7.6 The probabilities obtained from the DIS calculation
Here we want to make a comment regarding the meson momentum in the
numerator of the hadronic distribution functions. In other words the meson
momentum pM in the vertex function (7.14). In the framework of LCTOPT
there is an ambiguity for the choice of this momentum. Two choices that are
common in the literature are given by [12, 16],

(A) : pM =
(

p+P − p+B , p−P − p−B ,~pP⊥−~pB⊥
)
, (7.37)

70



and

(B) : pM =

(
p+P − p+B ,

m2
M + p2

M⊥
p+M

,~pP⊥−~pB⊥

)
. (7.38)

These two choices give very similar results w.r.t. agreement with the unpo-
larized structure functions without much adjustment in the values of the pa-
rameters ΛH , Q0 and σi introduced in Chapter 6. Hence the interpretation of
the results are basically independent of this momentum choice, except for two
instances: The d̄-ū asymmetry has a slightly better shape using momentum
choice A, we include a plot of this here; the θ parameter needs to be slightly
larger when using momentum choice A.

We choose to work with momentum choice B given in (7.38) because this
choice is in line with the Goldstone theorem [134] whereas choice A given in
(7.37) is not. This can be seen explicitly from the vertex functions listed in
Paper II.

The relation (7.36) is shown explicitly in Figure 7.1 where we have plotted
the helicity-summed y distributions for the baryons in the fluctuations given
by

fBM(y) = ∑
λ

f λ
BM(y). (7.39)

For the convenience of the reader we have also plotted the y distributions
for the mesons in the fluctuations given by fMB(y). Interestingly, the shape
of the y distributions differ quite a lot depending on whether one works with
momentum choice A or B shown by the left and right panels, respectively of
said figure.

Independent of this choice we see that in a given BM fluctuation the baryon
takes a much larger momentum fraction than its companion meson. This is
due to the larger mass of the baryon relative to its companion meson. For
instance since m∆/mπ > mN/mπ we see in the top panels of Figure 7.1 that
f∆π(y) peaks at a slightly larger value of y than does fNπ(y). On the other
hand, the distributions for the baryons that have a heavier companion meson
peaks at a smaller value of y relative to the nucleon/Delta case, because now
the heavier meson also takes a substantial momentum fraction.

We can also study the k⊥ distributions by defining

f λ
BM(y,k⊥)≡

k⊥
(2π)22y(1− y)

∣∣∣∣∣gBM G(y,k2
⊥,Λ

2
H)

Sλ (y,~k⊥)
m2

P−m2(y,k2
⊥)

∣∣∣∣∣
2

. (7.40)

One can then express the y and k⊥ distributions, respectively as

f λ
BM(y) =

∫ ∞

0
dk⊥ f λ

BM(y,k⊥) (7.41)

and

f λ
BM(k⊥) =

∫ 1

0
dy f λ

BM(y,k⊥). (7.42)
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2Figure 7.1. The hadronic y distribution functions fBM(y) and fMB(y) in the upper and
lower panels, respectively. The left (right) panels are for momentum choice A (B).

Obviously the k⊥ distributions satisfy the relation

f λ
BM(k⊥) = f λ

MB(k⊥). (7.43)

In contrast to the y distributions of a BM pair where the baryon carries a frac-
tion y and the companion meson a fraction 1− y, the baryon and the meson
in a given BM pair each carry k⊥. Consequently, the k⊥ distributions of the
heavier BM pairs peak at a larger value of k⊥ relative the corresponding ones
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1Figure 7.2. The hadronic k⊥ distribution functions fBM(k⊥) for the octet and decuplet-
baryons in the top and bottom panels, respectively. The left and right panels refers to
using momentum choice A and B, respectively.

for the lighter BM pairs. This can be seen in Figure 7.2 where we have plotted
fBM(k⊥) for both momentum choices.

The hadronic distribution functions are probability distributions, hence by
integrating with respect to y and k⊥ one obtains the fluctuation probabilities
|αBM|2 of Equation (1.1),

|αλ
BM(ΛH)|2 =

∫ 1

0
dy f λ

BM(y) =
∫ ∞

0
dk⊥ f λ

BM(k⊥). (7.44)

In Figure 7.3 are plotted the helicity-summed probabilities ∑λ |αλ
BM(ΛH)|2 as

functions of the cut-off parameter ΛH . As seen, on the octet side the neutron-
pion and the proton-pion fluctuations dominate while on the decuplet side the
Delta-pion fluctuation dominate.

We can study this closer by looking into the isospin-summed probabilities.
This is shown in Figure 7.4 where we have summed the nπ+ and the Pπ0

contributions and denote it as nucleon-pion (Nπ):4

|α̃λ
Nπ(ΛH)|2 ≡ |αλ

nπ+(ΛH)|2 + |αλ
Pπ0(ΛH)|2. (7.45)

The isospin-summed Delta-pion probability |α̃λ
∆π |2 is analogously defined. In

the same figure we also indicate how the probabilities depend on the helicity
of the baryon in question.

4By definition the LHS of Equation (7.45) is a positive quantity, so the bars on |α̃Nπ (ΛH)|2 are
not really needed. They serve mainly typographical purposes.
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Figure 7.5. The flavor asymmetries xd̄− xū (top panel) and d̄/ū (bottom panel) of
the proton sea using momentum choice A and the parameter values (7.46). The band
represents a variation in the decuplet coupling where the solid (dashed) curves are for
the largest (smallest) value of the decuplet coupling hA/m∆, as discussed in Paper II.
The dotted curves only take nucleon-pion fluctuations into account. Data taken from
the FNAL E866/NuSea Collaboration [17].

As can be seen from the figure, for the nucleon-pion probabilities there
is not much of a difference in using momentum choice A or B as indicated
by the left and right panels, respectively. There is a difference for the Delta
which leads to the need for a slightly larger SU(6) breaking in the proton to
compensate for this when using momentum choice A.

Concerning the flavor asymmetries xd̄ − xū and d̄/ū, momentum choice
A gives a slightly different shape for xd̄ − xū as can be seen in Figure 7.5.
The analogous figure corresponding to using momentum choice B instead can
be found in Paper II. We want to emphasize that independent of momentum
choice, the values for the parameters of our model that best describe data
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P(p) B(p− k)

M(k)

P(p)

Figure 7.6. Feynman diagram for the scalar self-energy. The blobs denote the form
factor.

comes out pretty much the same. To be more explicit, using momentum choice
A, the values that best describe data are given by

σ1 = 0.13 GeV,σ2 = 0.24 GeV,σg = 0.028 GeV,

ΛH = 0.87 GeV,Q0 = 0.88 GeV.
(7.46)

7.7 Connecting the DIS and the self-energy
probabilities

Since the self-energy calculation of Paper I is done in the instant-form of dy-
namics [cf. Section 5.3] it is not straightforward to compare the probabilities
to those obtained in the DIS formalism which is done in light-front dynamics.
Strictly speaking, to make a connection between the probabilities obtained in
the two different calculations, they both must be written on the same form of
dynamics. Let us illustrate this with a simple example.

7.7.1 Scalar self-energy
In a theory consisting of only scalar fields, the wavefunction renormalization
parameter Z (to be defined below) takes on a simpler form than in the case of
particles with spin.

A simple scalar theory is described by the following interaction Lagrangian,

L scalar
int = gB̄MP+h.c., (7.47)

where the ‘baryon’ (B), ‘meson’ (M) and the ‘proton’ (P) are all scalars and
g denotes a coupling. We want to calculate the leading-order BM contribution
to the proton self-energy −iΣ(p). This is given by the value of the Feynman
diagram shown in Figure 7.6 where the blobs denote the form factor G(ΛH)
that comes with every vertex but we will avoid writing it out in the following.

The Feynman propagator is given by,

iSF(p) =
i

p2− m̊2
P + iε

, (7.48)
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where we have denoted the bare mass of the proton by m̊P. In the case of
real protons and non-zero spin baryons the most general Clifford expansion
implies that the self-energy operator can be written in terms of two scalar
functions [cf. Paper I]. In the present case due to the scalar nature of the fields
the most general Clifford expansion of the self-energy is given by a single
scalar function

Σ(p) = Σs(p2). (7.49)

We will in the following omit the subscript and simply write this as Σ(p2).
Thus the full unrenormalized propagator

iS(p)≡ iSF + iSF [−iΣ]iSF + · · · (7.50)

can be written as,

S(p) =
1

p2− m̊2
P−Σ(p2)+ iε

. (7.51)

The wavefunction renormalization parameter Z can then be obtained by using
the pole mass definition m2

P−m̊2
P−Σs(m2

P) = 0, where mP denotes the physical
mass of the proton, and the definition of the renormalized propagator

Z×SR(p) = S(p) =
1

p2− m̊2
P−
[
Σ(m2

P)+(p2−m2
P)Σ′(m2

P)+ · · ·
]

=
1

1−Σ′(m2
P)
× 1

p2−m2
P
,

(7.52)

where

Σ′(m2
P)≡

dΣ(p2)

dp2

∣∣∣∣∣
p2=m2

P

. (7.53)

Thus, we have

Z =
1

1−Σ′(m2
P)
. (7.54)

The self-energy calculation gives,

−iΣ(p2) =
|g|2
(2π)4

∫
d4k

1
k2−m2

M + iε
1

(p− k)2−m2
B + iε

. (7.55)

We now introduce light-cone coordinates and work in the ~p⊥ = 0 frame,

k2 = k+k−− k2
⊥, (7.56)

(p− k)2 = (p+− k+)(p−− k−)− k2
⊥. (7.57)

Let k+ = yp+, then

k2−m2
M + iε = yp+

(
k−− m2

M + k2
⊥

yp+
+

iε
yp+

)
(7.58)
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and

(p− k)2−m2
B + iε = p+(y−1)

[
k−− p−+

m2
B + k2

⊥
(1− y)p+

− iε
(1− y)p+

]
.

(7.59)
Thus

Σ(p−) =
−i|g|2
(2π)4

1
2p+

∫ ∞

−∞

dyd2k⊥
y(1− y)

∫ ∞

−∞

dk−

[k−−ζ1][k−−ζ2]
, (7.60)

where the poles in the complex k− plane are located at

ζ1 ≡
m2

M + k2
⊥

yp+
− iε

yp+
, ζ2(p−)≡ p−− m2

B + k2
⊥

(1− y)p+
+

iε
(1− y)p+

. (7.61)

We notice that the convergence properties of the k−-integral allow us to rewrite
it as a closed contour integral in the complex k− plane. Now, for y< 0 both the
poles ζ1,2 lie in the upper half-plane, hence closing the contour in the lower
half-plane yields the integral zero. Similarly if y > 1 then both poles lie in the
lower half-plane and the integral is zero. Thus, this restricts the y-integral to
the physical range 0≤ y≤ 1. Picking up the residue we obtain

Σ(p−) =
|g|2
(2π)3

1
2p+

∫ 1

0

dyd2k⊥
y(1− y)

1
ζ2(p−)−ζ1

. (7.62)

Now

dΣ
dp2

∣∣∣∣∣
p2=m2

P

=
1

p+
dΣ

dp−

∣∣∣∣∣
p+p−=m2

P

=
−|g|2
16π3

∫ 1

0

dyd2k⊥
y(1− y)

1[
m2

P−m2(1− y,k2
⊥)
]2 ,

(7.63)
where m2(y) is defined in Equation (7.35).

Now let us reinsert the form factor that comes with every vertex and also
to connect with the DIS case we let y→ 1− y so that the baryon carries a
momentum fraction y and the meson carries 1− y. And we can also sum over
all possible BM pairs that can contribute to the loop of Fig. 7.6 each having a
coupling gBM to the proton. Thus using Eqs. (7.53), (7.54) and (7.63) we find,

Zscalar
SE =

1

1+∑BM
|gBM |2
16π3

∫ 1
0

dyd2k⊥
y(1−y)

∣∣∣∣ G(y,k2
⊥,Λ

2
H )

m2
P−m2(y,k2

⊥)

∣∣∣∣2
.

(7.64)

7.7.2 Scalar DIS
Having the hadronic distribution functions for the realistic DIS case, the scalar
case follows trivially with the vertex function of Equation (7.14) replaced by
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P(p) P(p)
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Figure 7.7. Feynman diagram depicting the one-propagator term of Equation (7.67).

unity S = 1. Now since ∑BM |αBM|2 = ∑BM
∫ 1

0 dy fBM(y) is the total fluctuation
probability, the probability to probe the bare proton is given by

Zscalar
DIS = 1−∑

BM
|αBM|2 = 1−∑

BM

|gBM|2

16π3

∫ 1

0

dyd2k⊥
y(1− y)

∣∣∣∣ G(y,k2
⊥,Λ

2
H)

m2
P−m2(y,k2

⊥)

∣∣∣∣2 .
(7.65)

We immediately recognize this as the leading order term in the geometric ex-
pansion of Eq. (7.64). Thus

Zscalar
SE = Zscalar

DIS +O
(
|αBM|4

)
. (7.66)

We note that the result obtained in the self-energy case really is a probability
i.e. 0≤ Zscalar

SE ≤ 1 whereas Zscalar
DIS can become negative for unrealistically large

values of the cut-off parameter ΛH . This is not too surprising given the fact
that the self-energy result is further away from observables whereas Zscalar

DIS
becoming negative signals that we are operating outside the range of validity
of the effective theory. In the self-energy case there is no such signal.

7.7.3 Spin complicates things
Once spin gets involved in the self-energy calculation it is no longer straight-
forward to make a connection to the probabilities obtained in the DIS calcu-
lation. This is due to at least two reasons: The less problematic one is that
the Clifford expansion of the self-energy operator now contains two scalar
functions one of which is evaluated at the physical proton mass. This is in
contrast to the scalar case where it is the derivative of the scalar function that
is evaluated at the physical proton mass, cf. Equation (7.54).

The other reason, which is the main issue is that the fermion propagator
introduces momenta in the numerator of the self-energy operator. An example
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of such a term is given by (cf. Paper I),

Σ ∼
∫

d4k
k2

k2−m2
M + iε

1
(p− k)2−m2

B + iε

=
∫

d4k
[

1
(p− k)2−m2

B + iε
+

m2
M

k2−m2
M + iε

1
(p− k)2−m2

B + iε

]
,

(7.67)

where we have added 0 = m2
M −m2

M to the numerator and rewritten. Notice
that the first term is a one-propagator term similar to a contact interaction (cf.
Figure 7.7) and it is not trivial to relate it to the DIS calculation where only
two-propagator terms appear.

To compare with the DIS case we need to rewrite Equation (7.67) in light-
cone coordinates and perform the k− contour integration like we did in the
scalar case. But this is not possible for the one-propagator term since the k−-
integral is not convergent.

If one still presses on and keeps only the two-propagator terms in the ex-
pression for the self-energy one can obtain a relation similar to what we found
in the scalar case Equation (7.66) on one condition: That is if one makes the
same substitution for the momenta appearing in the numerator as one makes
for the momentum choices A and/or B. In other words, one does not integrate
over the momenta appearing in the numerator, but instead takes the momenta
on-shell. This appears awkward and most likely the resolution of this lies in
another approach. Further investigations on this is beyond the scope of this
thesis, but the above example shows that the issue is related to the momenta in
the numerator as introduced by the effective theory. The problem is less severe
in classically renormalizable theories such as QED, cf. e.g. [83, 84, 135].
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8. Conclusions and outlook

In this thesis we present our Hadron-Cloud Model (HCM) from which we de-
rive the hadronic distribution functions and present in detail how this is done.
Due to the light mass of the pions, naturally the pions play a big role in the
hadronic description of nuclear and particle physics. Indeed, we show that a
large part of the proton’s hadronic wavefunction consists of the wavefunctions
of the pions and their companion baryons, the nucleon and the Delta baryon.

With our simple model, which consists of a few physically-constrained pa-
rameters the values of which come out as expected from general arguments,
we are in agreement with a large set of data on the unpolarized structure func-
tions of the proton.

We also investigate a possible asymmetry in the strange-sea of the proton.
Thus we include hadrons containing strangeness into our HCM. These are
heavier and have much smaller coupling to the proton, meaning that their fluc-
tuation probabilities are much smaller compared to those of the nucleon-pion
or Delta-pion fluctuations. Regardless of this we are able to compare to two
available data sets on the strange-sea of the proton. We are in good agree-
ment with the strange-sea data from the HERMES collaboration which shows
a small strange-sea content in the proton. The older data from the CCFR col-
laboration suggest a slightly larger strange-sea content in the proton. In this
regard we comment on the possibility to include more strangeness into the
model. This may be through the inclusion of the Λ∗K fluctuation. We refrain
from exploring this possibility mainly because there is no clear indication from
experimental data that this is needed.

The model results are in good agreement with data on the flavor asymmetry
and the spin structure of the proton. Moreover, exploring a possible SU(6)
breaking we show that the polarized structure functions of both the proton and
the neutron can be reproduced. Thus we also get good agreement with the
measured sum rules of the structure functions, in particular the very important
Bjorken sum rule.

The PDFs of our model are global functions which means that their appli-
cation is not restricted to the reactions we present here. They can be used in
various other reactions such as e.g. in proton-proton collisions. In this regard,
it would be interesting to see what other insights the HCM has to offer.
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9. Summary in Swedish – Populärvetenskaplig
sammanfattning

Avhandlingens titel på svenska: Samspelet mellan kvark
och hadronska frihetsgrader och protonens struktur

Nyfikenhet och grundvetenskapernas nytta
Ett av de utmärkande dragen hos oss människor är vår råa vetgirighet. Vi
kan ibland vilja lära oss mer om ett fenomen enbart för nyfikenhetens skull.
Lyckligtvis har det genom historien visat sig att denna törst efter kunskap näs-
tan alltid kommit allmänheten till nytta. Ett av de mest självklara exempel
på detta ges av Michael Faradays experimenterande med elektricitet och mag-
neter i mitten av 1800-talet. En dag kan du beskatta det – så säger legenden att
Faraday svarade när han fick frågan av en politiker vari ligger elektricitetens
praktiska nytta. Vi är nog de allra flesta överens om att vår förståelse och
kontroll av elektricitetens kraft har förhöjt vår livskvalitet avsevärt.

Detta synsätt på grundvetenskaperna, vilket denna avhandling faller under,
är ännu mer cementerad idag än någonsin förr. Idag forskar vi om än mer
abstrakta fenomen än ovan nämnda exempel från 1800-talets mitt. I detta
arbete har vi studerat några finurliga egenskaper hos två partiklar som praktiskt
taget hela vår materiella värld består av. Dessa partiklar kallas för protonen
och neutronen och de är i många avseende så otroligt lika att de kan ses som
två sidor hos ett och samma mynt. Med andra ord, förstår man ena så förstår
man mycket om den andra också.

De allra vanligaste partiklarna
Allt vi kan ta i och känna på är uppbyggd av protoner och neutroner, omgivna
av en gas av elektroner. Tillsammans utgör dessa det vi kallar för atomen. Om
du kunde dela bredden hos ett hårstrå i en miljon lika stora delar så skulle varje
del vara en atom bred. I och med denna ‘inzoomning’ så har du alltså gått från
ett hårstrå och kommit fram till en atom, dvs till gasmolnet av elektroner. Man
skulle kunna tro att protonen och neutronen gömmer sig strax under detta moln
av elektroner och att man bara behöver zooma lite till så kommer man fram till
atomkärnan. Men det visar sig att kärnan är extremt liten och kompakt. Om
atomkärnan skulle var lika stor som ett äpple i din hand så skulle det innebära
att elektronmolnet ligger på en höjd av 10 km. Då kan man bara tänka sig hur
liten atomkärnan är jämfört med bredden av ett hårstrå!
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Kvarkar, gluoner, partoner och färgladdning
Till skillnad från elektronen som är en elementarpartikel, så består protoner
och neutroner själva av mindre beståndsdelar. Dessa beståndsdelar är dels
materiepartiklar som kallas för kvarkar som är elementarpartiklar precis som
elektronen, dels består de av förmedlarpartiklar som kallas gluoner. En förmed-
larpartikel förmedlar kraften mellan andra partiklar. Vanligt ljus som vi bl.a.
ser med ögonen är en förmedlarpartikel, den förmedlar den elektromagnetiska
kraften mellan partiklar som bär på elektrisk laddning. Gluoner förmedlar nå-
got som vi kallar för färgladdning mellan partiklar som bär på färgladdning.
De partiklar som bär färgladdning är kvarkar och faktiskt gluoner själva. Efter-
som både kvarkar och gluoner finns i protonen så brukar man kollektivt kalla
dem för partoner.

Det finns tre olika färgladdningar, vi kallar dem för röd, grön och blå som
kortare skrivs r, g och b. Det finns också motsvarande antifärger som vi skriver
som r̄, ḡ och b̄ som tillsammans med deras respektive färger bildar ett färgneu-
tralt tillstånd, dvs ett vitt tillstånd. Varje partikel har dessutom en motsvarande
antipartikel. Exempel på dessa är antiprotonen och antineutronen. Det häftiga
är att protoner och neutroner, som ju består av färgladdade partoner, själva är
vita dvs de är färgneutrala. Kan vi beskriva protonen och neutronen i termer av
färgladdade kvarkar sådan att ‘summan’ av alla färger och antifärger på något
sätt blir färgneutral? Det visar sig att det går om vi beskriver protonen med tre
kvarkar. Detsamma gäller även för neutronen.

Baryoner, mesoner, hadroner
Alla partiklar som består av tre kvarkar kallas för baryoner. Det finns dessu-
tom partiklar som består av ett kvark-antikvark par, dessa kallas för mesoner.
Den allra vanligaste mesonen är pionen som man betecknar π . Mer generellt
brukar man kalla både baryoner och mesoner och andra färgneutrala kom-
posita objekt av kvarkar för hadroner.

Partikelfysikens standardmodell
I naturen finns det fyra fundamentala krafter eller växelverkan som man nu-
mera kallar dem. Dessa är gravitationskraften, den svaga kraften, elektromag-
netiska kraften och den starka kraften. Den förstnämnda är i många fall gäl-
lande mikroskopiska/små massor totalt försumbar. T.ex. så vinner den elektro-
magnetiska kraften hos ett kylskåpsmagnet över hela jordens gravitationskraft
på en liten bit metall!

De övriga tre krafterna beskrivs mycket väl av det som kallas för par-
tikelfysikens standardmodell eller också bara Standardmodellen. Standard-
modellen har varit otroligt framgångsrikt och den sista pusselbiten, Higgspar-
tikeln, som enligt Standardmodellen borde finnas hittades till slut mer än 40 år
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proton

elektron

foton

}partikeldusch

Figur 9.1. Diagram föreställande djupt inelastisk spridning av en elektron på en pro-
ton.

efter dess förutsägelse. Men en del av Standardmodellen är mycket mer svår-
begriplig än de två övriga och det är delen som behandlar den starka kraften.
Den starka kraften beskrivs av teorin som kallas för kvantkromodynamik.
Namnet härleder från att den är en kvantmekanisk teori om färgladdningarna
r, g, b och deras antifärger r̄, ḡ och b̄.

Observation och djupt inelastisk spridning
Bilden av naturen och hur vi observerar den såsom vi beskrivit den ovan är en
någon förenklad variant. Generellt så kan man säga att för att observera något
så måste man sprida ljus på det och sedan fånga upp reflektionen av objektet.
Som t.ex. när våra ögon fångar upp ljus som reflekterats på ett objekt, så tolkar
våra hjärnor om den informationen och skapar oss en bild av objektet. Men
människoögat ser bara ytan av saker. Vill man t.ex. se vad som finns under
huden kan man bl.a. använda röntgenljus för att fotografera människoskelet-
tet. Röntgenljus är mycket mer energirikt, därför mycket farligare, än det ljus
vi kan se. På samma sätt kan man säga att vill man se protonens skelett dvs
protonens byggstenar, kvarkarna, så måste man sprida väldigt energirikt ljus
på protonen. Det är precis det som görs vid experiment av djupt inelastisk
spridning. Inelastisk betyder i det här fallet att protonen slås sönder och sam-
man i och med spridningen och ‘förvandlas’ till en dusch av partiklar, se Figur
9.1. Omvänt kan man säga att om man istället vrider ner energin hos fotonen
så sprids den elastiskt på protonen och då ser man protonen som en helhet
istället för kvarkarna inuti. Man kan då fråga sig om dessa två olika sorters av
experiment, elastiskt och inelastisk spridning, ger samma svar om protonens
olika egenskaper?
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Asymmetrin i sjön och protonens spinn
En kvantmekanisk egenskap hos protonen som kallas för spinn har sedan mitt-
en av 1980-talet gäckat forskarvärlden i det som blivit döpt till protonens
spinn-kris. Då fann man nämligen att de tre kvarkarnas spinn utgör bara en
liten bråkdel av protonens spinn vilket var i motsägelse till den enklaste mod-
ellen av protonen som dittills gett en bra förståelse. Protonen och hadroner i
allmänhet tycks alltså vara mycket mera komplicerade än att bestå av några
stillastående kvarkar.

En mera korrekt beskrivning av protonen är att inuti den finns förutom de tre
kvarkarna vi beskrev ovan en hel uppsjö av kvark-antikvark par och gluoner i
massor som alla bär en liten del av protonens energi. Experimentellt söker man
också finna om denna sjö är polariserad dvs om den bär en del av protonens
spinn. Vidare finns data på den så kallade asymmetrin i sjön i en proton dvs att
en viss sorts antikvark som kallas d̄ bär mera av protonens impuls & energi än
en liknande antikvark kallad ū. Detta är mycket oväntat då dessa antikvarkar
båda är väldigt lätta jämfört med kvantkromodynamikens skala kallad ΛQCD.

Störningsteori
I de flesta fall av problemlösning inom fysiken så brukar man tillämpa en viss
beräkningsmetod kallad störningsteori. Störningsteori fungerar på så sätt att
man delar in problemet i två delar. Ena delen kan man lösa på ett exakt sätt
medan den andra delen antar man är litet jämfört med den exakta delen dvs att
den är en liten störning. Inom kvantkromodynamik så inser man att störnin-
gen är proportionell mot αs (alpha-s) som är styrkan i en stark växelverkan.
Två starka växelverkan är då proportionell mot αs×αs och tre växelverkan
är proportionell mot αs×αs×αs osv. Om nu αs är litet jämfört med 1 så
är två växelverkan ännu mindre. Som exempel om αs = 1/10 = 0.1 så är
αs×αs = 1/100 = 0.01 som ju är 10 gånger mindre än αs. Alltså kan man i
de flesta fallen nöja sig med att beräkna de delar som är proportionella mot αs
och anta att de andra delarna är försumbara. Detta fungerar utmärkt så länge
αs är litet jämfört med 1. Det som gör kvantkromodynamiken så komplicerad,
som benämndes i samband med diskussionen om Standardmodellen ovan, är
att αs blir stor för låga energier och då kan man inte tillämpa störningsmetoder
för att lösa problemen. För att göra framsteg har man konstruerat metoder som
använder en annan störningsparameter än ovan nämnda αs. Den främsta teorin
i det här avseendet kallas för kiral störningsteori som är en låg-energi variant
av kvantkromodynamik.

Hadroner som frihetsgrader
Till skillnad från kvantkromodynamiken som har kvarkar och gluoner som
frihetsgrader så har kiral störningsteori hadroner som frihetsgrader. I vår
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beskrivning av protonen tar vi hänsyn till detta. Som exempel visar vi i artikel
I att protonens vågfunktion (den som teoretiskt beskriver protonens tillstånd),
som man skriver |proton〉, består till stora delar av andra hadroners vågfunk-
tioner. I enkelhet kan man säga att vi delar in protonens vågfunktion i en del
som enbart består av en proton medan de andra delarna består av hadronska
fluktuationer.

Generellt så kan man säga att partikel-fluktuationer är något som är tillåtet
inom kvantmekanikens värld. Protonens fluktuationer har protonens kvanttal,
som t.ex. samma elektriska laddning. Med andra ord skriver vi protonens
vågfunktion som

|proton〉= αbar×|proton〉bar +αnπ ×|neutron+pion〉+ andra fluktuationer,

(9.1)
där den första termen representerar den bara (nakna) protonen medan den an-
dra termen representerar ett neutron-pion par. Parametrarna αbar och αnπ är
sannolikhetsamplituder för respektive term, dvs de är relaterade till hur stor
sannolikhet respektive term har i protonens vågfunktion. I vårt arbete har vi
också tagit hänsyn till många andra fluktuationer som vi inte skrivit ut i ovan
ekvation.

Från modellen som ges av vågfunktionen (9.1) följer alltså att när man
sprider en foton på en proton som i Figur 9.1 finns en betydande chans att
man egentligen sprider på en fluktuation istället. När man då sprider på en
fluktuation måste man tag hänsyn till kvark- och gluon-fördelningarna i fluk-
tuationen. Dessa fördelningar brukar man parametrisera med ett stort antal
(cirka 30 st.) parametrar som man anpassar till data från experiment. Detta
ger ett effektivt sätt att beskriva andra experiment där samma fördelningar
ingår, men det ger inte så mycket för själva förståelsen av protonen. Vi använ-
der istället en mycket enklare model för dessa fördelningar som utgår från en
fysikalisk modell av protonen och som ges av få parametrar.

Genom att lägga ihop denna modell för kvark- och gluon-fördelningarna
tillsammans med fördelningarna för hadronerna får vi resultat som överensstäm-
mer med en stor mängd data från experiment

Resultat
I denna avhandling presenterar vi vår modell kallad HCM (Hadron-Cloud
Model) varifrån vi härleder de hadronska fördelningsfunktionerna. Vi visar
i detalj hur detta går till. På grund av pionernas lätta massa så spelar de en stor
roll i hadronska reaktioner i kärn- och partikelfysik. Vi visar att stora delar av
protonens hadronska vågfunktion består av andra hadroners vågfunktioner, i
synnerhet de tillhörande pioner, nukleoner och Delta-baryoner.
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Vi undersöker en eventuell asymmetri i särkvarksjön, varför vi även inklud-
erar tyngre hadroner i vår beskrivning av de hadronska fluktuationerna. Dessa
tyngre hadroner har mycket mindre sannolikhetsamplituder på grund av deras
större massa och mindre kopplingar till protonen. Med avseende på asym-
metrin i särkvarksjön jämför vi med data från två olika experiment varav vår
modell är i bra överensstämmelse med det nya experimentet. Data från det
äldre experimentet visar på lite mera särkvarkar i sjön. Vi ger förslag på en
utveckling av modellen där man också tar hänsyn till andra hadronska frihets-
grader innehållande särkvarkar, som t.ex. Λ∗K fluktuationen. Men vi avstår
från en vidareutveckling av detta på grund av att det inte finns tillräckligt
mycket indikation från experiment att det behövs.

Med vår enkla modell vars få parametrar är i princip bestämda av fysikaliska
randvillkor får vi resultat som överensstämmer med en stor mängd data på pro-
tonens opolariserade strukturfunktioner. Våra resultat överensstämmer också
med data på d̄-ū asymmetrin i sjön.

Genom att utforska ett brott i SU(6) symmetrin hos protonen och neutronen
visar vi att våra resultat också överensstämmer med data på de polariserade
strukturfunktionerna och därmed summareglerna, i synnerhet Bjorkens sum-
maregel.

Modellen är väldigt generell i att den kan tillämpas på andra reaktioner
inom kärn- och partikelfysiken som t.ex. proton-proton kollisioner.
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List of abbreviations

QCD quantum chromodynamics
pQCD perturbative QCD
QED quantum electrodynamics
PDF parton distribution function
PDFs parton distribution functions
HCM Hadron-Cloud Model
ChPT chiral perturbation theory
DIS deep inelastic scattering
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
TOPT time-ordered perturbation theory
LCTOPT light-cone time-ordered perturbation theory
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