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SAMENVATTING

De hedendaagse theoretische natuurkunde is gestoeld op twee paradigma’s. Enerzĳds
geeft Algemene Relativiteitstheorie een uitstekende beschrĳving van zwaartekracht en
het universum op grote lengteschalen. Anderzĳds vormt kwantumveldentheorie (QFT)
de basis voor ons begrip van de elementaire deeltjes op lengteschalen van ongeveer 10−20

m. Hoewel beide theorieën binnen hun eigen domein van toepassing experimenteel
overtuigend zĳn bevestigd, is een formulering van zwaartekracht als een kwantumtheorie
(kwantumgravitatie) vooralsnog een onopgeloste uitdaging gebleken.

Eén van de problemen die daarbĳ overkomen dienen te worden is renormaliseer-
baarheid. In een kwantumtheorie zĳn de koppelingsconstanten afhankelĳk van de
energieschaal waarbĳ ze worden gemeten. Vanuit een Wilsoniaans standpunt is deze
schaalafhankelĳkheid het gevolg van het momentumschilsgewĳs uitintegreren van kwan-
tumfluctuaties. Dit geeft een stroomveld door de ruimte van koppelingsconstanten, die
de renormalisatiegroepstroom (RG flow) wordt genoemd. Door een stroomlĳn langs
dit veld te volgen verkrĳgen we de effectieve actie, waar alle kwantumfluctuaties zĳn
uitgeïntegreerd.

Wanneer we storingstheorie gebruiken in de kwantisatie van Algemene Relativi-
teitstheorie, vinden we dat de negatieve massadimensie van Newtons constante leidt
tot onfysische oneindigheden van observabelen. Om deze divergenties te compense-
ren, dienen we oneindig veel nieuwe vrĳe parameters in te voeren. Hierdoor verliest
de theorie zĳn voorspellende waarde. Deze problemen kenmerken de (perturbatieve)
niet-renormaliseerbaarheid van Algemene Relativiteitstheorie.

In het Asymptotische Veiligheidsscenario, geformuleerd door Weinberg, wordt renor-
maliseerbaarheid van zwaartekracht gerealiseerd door een interagerend vast punt (NGFP)
van de renormalisatiegroep. Vanwege het interagerende karakter is dit punt lastig te
bestuderen middels storingstheorie. Dankzĳ functionele methoden zĳn er nu sterke aan-
wĳzingen dat een dergelĳk vast punt bestaat. Een dergelĳk vast punt geeft een mogelĳk-
heid voor een UV-completering van de theorie, alsmede een herstel van de voorspellende
kracht.

Hoewel Asymptotische Veiligheid een veelbelovende kandidaat is voor een theorie
van kwantumgravitatie, dient het nog verscheidene tests te doorstaan. Ten eerste levert een
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goede theorie voorspellingen die experimenteel getest kunnen worden. In Asymptotische
Veiligheid levert de voorwaarde dat een RG-stroomlĳn voortkomt uit het NGFP in het
UV een elegant mechanisme voor experimentele voorspellingen. Ten tweede moet de
theorie een aantal structurele eigenschappen hebben. Eén daarvan is unitariteit, die
essentieel is voor de waarschĳnlĳkheidsinterpretatie van kwantumtheorie. Het is een
open probleem om te bepalen of unitariteit compatibel is met Asymptotische Veiligheid.
Vanwege aanwezige interacties van het NGFP is dit een delicate kwestie.

In dit proefschrift zullen we beide vraagstukken nader bestuderen. We beginnen met
een kort overzicht van Asymptotische Veiligheid en unitariteit. Vervolgens presenteren we
de technieken die ten grondslag liggen aan de functionele renormalisatiegroepvergelĳking
(FRGE) die de Wilsoniaanse RG flow van zwaartekracht beschrĳft.

Als een eerste test bestuderen we oplossingen van de FRGE in de context van de
kosmologie. Kosmologische waarnemingen, met name die van de kosmische achter-
grondstraling, leggen strenge restricties op aan modellen voor de evolutie van het uni-
versum. We construeren een fenomenologisch gemotiveerd kosmologisch model dat in
overeenstemming is met Asymptotische Veiligheid. Hiervoor projecteren we de FRGE
op 𝑅2-zwaartekracht, en bestuderen haar oplossingen. Dit model bevat het Starobinsky-
inflatiemodel, één van de meest succesvolle modellen voor inflatie. We construeren een
asymptotisch veilige RG-stroomlĳn dat voortkomt uit het NGFP, en bovendien overeen-
komt met de observationele data over het vroege- en late-tĳdperk in de geschiedenis van
het universum.

Vervolgens onderzoeken we structurele eigenschappen van de RG flow van zwaar-
tekracht. We bekĳken de expansie van de effectieve gemiddelde actie in termen van
vormfactoren. Deze momentum-afhankelĳke functies beschrĳven de schaalafhankelĳk-
heid van interacties. We classificeren de vormfactorenvoor de laagste orde interacties
in pure zwaartekracht en zwaartekracht-materiesystemen. In het bĳzonder generaliseren
vormfactoren propagatoren tot algemene functies van het momentum.

In het algemeen zĳn hogere-afgeleidetheorieën onfysisch vanwege zogeheten Ostro-
gradski-ghosts. Deze spookdeeltjes komen voor uit polen in de propagator met negatief
residue, en schenden unitariteit. We bestuderen de hogere-afgeleidepropagator van een
scalair veld gekoppeld aan zwaartekracht. De RG zou op twee manieren een oplossing
kunnen bieden voor Ostrogradski-ghosts.

Ten eerste beperken we ons tot (inverse) propagatoren die polynomiaal zĳn in het
momentum. Door deze truncatie bevat de propagator onvermĳdelĳk extra polen. Er
zitten hierdoor Ostrogradski-ghosts in de propagator, waarbĳ de schending van unitariteit
gecodeerd wordt door de massa van de ghost. In de renormalisatiegroep wordt deze massa
schaalafhankelĳk. We ontdekken dat deze schaalafhankelĳkheid de mogelĳkheid geeft
de schending van unitariteit op te heffen door de ghosts oneindig zwaar te maken.

Ten tweede bestuderen we de propagator door middel van de volledige vormfactor. Dit
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biedt de mogelĳkheid de schending van unitariteit op een tweede manier te verwĳderen:
een dergelĳke vormfactor staat hogere afgeleiden toe zonder extra polen te introduceren.
We construeren de stroomvergelĳking waaraan deze vormfactor voldoet en bestuderen de
eigenschappen van het vaste punt. We vinden dat het deeltjesspectrum geen Ostrogradski-
ghost bevat.

Ten slotte komen we terug op de Ostrogradski-instabiliteit met de vraag welke hogere-
afgeleide-theorieën gevaarlĳk zĳn voor unitariteit. Hiertoe gebruiken we een axioma-
tische benadering voor (Euclidische) kwantumveldentheorie. Als uitgangspunt nemen
we de eis dat de theorie voldoet aan de Osterwalder-Schraderaxioma’s. Deze geven
condities voor een Euclidische QFT zodat deze equivalent is aan een unitaire theorie in
Minkowskiruimte. Centraal in de Osterwalder-Schraderaxioma’s is reflectie-positiviteit,
die voorwaarden oplegt voor het bestaan van een Euclidische tĳdsrichting. We bewĳzen
voor een grote klasse van hoger-orde-afgeleide-theorieën de noodzakelĳke en voldoende
voorwaarden voor reflectie-positiviteit.

In dit proefschrift behandelen we zowel observationele en structurele aspecten van
asymptotisch veilige kwantumgravitatie. Enerzĳds relateren we de RG flow van zwaar-
tekracht aan kosmologische waarnemingen, anderzĳds bestuderen we the eigenschappen
van unitariteit in hogere-afgeleidetheorieën. In beide gevallen kunnen vormfactoren een
belangrĳke rol spelen. Zo bieden ze de mogelĳkheid tot observeerbare kwantumgravita-
tionele effecten, en geven ze structurele informatie over de propagerende vrĳheidsgraden.
Deze prominente rol in ons begrip van zwaartekracht op een fundamenteel niveau geeft
een duidelĳke motivatie voor verdere studie van deze objecten, volgend op de eerste
stappen in dit proefschrift.

xi





SUMMARY

Present-day theoretical physics is based on two paradigms. On the one hand, General
Relativity gives an excellent description of gravity and the universe at large length scales.
On the other hand, quantum field theory (QFT) forms the basis of our understanding of
elementary particles on scales of approximately 10−20 m. While both theories have seen
impressive experimental confirmation within their domains of application, a formulation
of gravity as a quantum theory (quantum gravity) has been elusive so far.

One of the problems to overcome is renormalizability. In a quantum theory, the
coupling constants acquire a dependence on the energy scale at which they are measured.
From the Wilsonian point of view, the energy dependence is obtained from integrating
out quantum fluctuations momentum shell by momentum shell. This gives rise to a
flow through the space of coupling constants, called the renormalization group (RG) flow.
Following a particular RG trajectory along the flow, one obtains the effective action where
all quantum fluctuations are integrated out.

When we use perturbation theory to quantize General Relativity, we find that the
negative mass dimension of Newton’s constant leads to unphysical infinities in observ-
ables. In order to compensate for these divergences, one needs to introduce an infinite
number of new free parameters. Therefore, the predictive power of the theory is lost. This
demonstrates the (perturbative) non-renormalizability of General Relativity.

In the Asymptotic Safety scenario, formulated by Weinberg, renormalizability of
gravity is realized by an interacting fixed point (NGFP) of the renormalization group.
Due to its interacting character, this point is difficult to study perturbatively. However,
functional methods have provided strong evidence for the existence of such a fixed point.
This fixed point opens up the possibility of a UV-completion of the theory, as well as a
restoration of predictive power.

Although Asymptotic Safety is a promising candidate for a theory of quantum gravity,
it still needs to pass several tests. First, a viable theory should provide predictions that
can be experimentally tested. In Asymptotic Safety, the requirement that an RG trajectory
emanates from the NGFP in the UV provides an elegant mechanism that gives rise to
predictions. Secondly, the theory should satisfy certain structural properties, such as
unitarity. Unitarity is a key ingredient in the probabilistic interpretation of a quantum
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theory. It is an open problem to determine whether Asymptotic Safety is compatible with
unitarity. Owed to the interactions present in the NGFP, this is an intricate question.

In this PhD thesis, we investigate both problems. We start with an overview of
Asymptotic Safety and unitarity. Next, we present the methods underlying the functional
renormalization group equation (FRGE) encoding the Wilsonian RG flow of gravity.

As a first test, we study solutions to the FRGE in the context of cosmology. Cosmolog-
ical observations, in particular those of the cosmic microwave background, impose severe
restrictions on models for the evolution of the universe. We construct a phenomenologi-
cally valid cosmological model compatible with Asymptotic Safety. For this purpose, we
explicitly solve the FRGE projected to 𝑅2-gravity. This naturally incorporates Starobinsky
inflation, which is one of the most successful inflationary models. We explicitly construct
an asymptotically safe RG trajectory that emanates from the NGFP, and in addition agrees
with the observational data describing the early and late time evolution of the universe.

We then study structural properties of the RG flow of gravity. We examine the
approximation of the effective average action including form factors. These momentum-
dependent functions encode the scale dependence of interactions. We classify the form
factors for the lowest order interactions in pure gravity and in gravity-matter systems. In
particular, form factors generalize propagators to general functions of the momentum.

Generically, higher derivative theories are unphysical because of so-called Ostro-
gradski ghosts. These ghost particles are associated to poles in the propagator that have
negative a residue and violate unitarity. In the context of the renormalization group, we
study the higher-derivative propagator of a scalar field coupled to gravity. The RG may
provide a cure for the Ostrogradski ghosts in two ways.

First, we restrict ourselves to (inverse) propagators which are polynomial in the mo-
mentum. Due to the polynomial truncation, the propagator necessarily contains additional
poles. Thus, such propagators contain Ostrogradski ghosts, where the unitarity violation
is encoded in the ghost mass. In the renormalization group, the mass becomes scale
dependent. We discover that this scale dependence provides the possibility to remove the
unitarity violation by making the ghosts infinitely heavy.

Secondly, we study the propagator using a proper form factor. This allows for another
possibility to lift unitarity violation: such a form factor may admit higher derivatives
without introducing additional poles. We construct the flow equation satisfied by this
form factor and study its fixed point properties. We find that the particle spectrum of the
form factor appears to be free of Ostrogradski ghosts.

Ultimately, we return to the Ostrogradski instability with the question which higher-
order derivative theories are dangerous for unitarity. For this we use an axiomatic approach
for (Euclidean) quantum field theory. As a starting point, we require that the theory satis-
fies the Osterwalder-Schrader axioms. These give conditions for a Euclidean QFT being
equivalent to a unitary theory in Minkowski space. Central in the Osterwalder-Schrader
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axioms is reflection positivity, that gives conditions for the existence of a Euclidean time
direction. We prove for a large class of theories of higher-derivative theories the necessary
and sufficient requirements for reflection positivity.

In this thesis, we discuss both observational and structural aspects of asymptotically
safe quantum gravity. On the one hand we link the RG flow of gravity to cosmological
observations, on the other hand we study the properties of unitarity in higher derivative
theories. In either case, form factors may play an important role, opening up possibilities
for observable corrections due to quantum gravity, as well as providing structural infor-
mation about the propagating degrees of freedom. This prominent role in understanding
gravity at the quantum level provides a clear motivation for studying these objects beyond
the first steps taken in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 The need for quantum gravity

From everyday experience, gravity is the most prominent of the forces of Nature. It was
the first of the four fundamental forces to be identified, first described by Newton [6], long
before the unification of electromagnetism by Maxwell [7], or even before humanity had
an inkling about the existence of the strong and weak nuclear forces (see [8] for a history
of the discovery of the nuclear forces). However, despite its ubiquity, it remains in many
ways the most elusive of the four fundamental forces.

With the development of quantum field theory (QFT) (see [9–11] for textbook treat-
ments), the strong interaction and the electroweak interactions were described in a com-
mon framework, known as the Standard Model of particle physics. Extensive experimental
tests have confirmed the predictions of the Standard Model, culminating in the discovery
of the Higgs particle at the Large Hadron Collider (LHC) in 2012 [12, 13].

On the other hand, Einstein’s theory of general relativity (GR) provides the modern
description of gravity (for textbook expositions, refer to [14–18]). Also general relativity’s
predictions have been put to the test, with the spectacular observation of gravitational
waves at LIGO and Virgo as recent highlight [19].

Despite their incredible success, the Standard Model and general relativity differ
in a fundamental way. The Standard Model is a quantum theory, where particles are
represented as operators on a Hilbert space. Inherent to the quantum formalism is its
probabilistic interpretation, where fluctuations of the particle fields occur with a certain
probability. GR is in that respect a classical theory: the dynamics of space and time are
(at least locally) completely determined by its equations of motion.

Various attempts have been made to formulate general relativity as a quantum theory
[20]; prominent examples include string theory [21–23], Loop Quantum Gravity [24, 25],
Causal Dynamical Triangulations [26, 27], and Asymptotic Safety [28, 29]. Although
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Figure 1.1: Distance scales in Nature. Quantum effects have been observed at
distances smaller than 1 meter, whereas GR effects are measured at larger
scales.

each approach has proven itself as a rich source of theoretical models, each program
comes with its own specific challenges, such as providing a unique realization of the
theory (e.g. the vacuum problem in String Theory), the construction of a classical limit
recovering the degrees of freedom of GR (featured in discrete approaches such as Loop
Quantum Gravity and Causal Dynamical Triangulations), or resolving dependence of an
artifical background metric (key in the Asymptotic Safety approach). There is as yet no
conclusive evidence as to which program will provide a satisfactory description of Nature.

There are several reasons why the search for quantum gravity (QG) is a nontrivial
task. So far, there are few experimental clues on what to expect for such a theory. Non-
gravitational quantum effects of matter have been observed on small length scales, ranging
from 10−20 m probed by subatomic collider experiments at the LHC up to the everyday
meter scale in molecular physics (see Figure 1.1). As an extreme case, quantum effects
have to be taken into account in the description of neutron stars, which are typically of
kilometer size. On the other hand, general relativity has been proven to be successful
on large length scales, starting at the very largest cosmic scales (1026 m) down to solar
system tests at 1 astronomical unit (AU) ≈ 1010 m. In fact, Newtonian gravity has been
tested experimentally to sub-millimeter length scales [30]. The connection between this
separation of scales motivates the approach taken in this thesis.

A first glimpse on what a theory of Quantum Gravity should involve is provided by
the Planck mass 𝑀P. This is given by the unique combination of the (reduced) Planck
constant ℏ, the speed of light 𝑐, and Newton’s constant 𝐺 that has the units of a mass,

𝑀P =

√
ℏ𝑐

8𝜋𝐺
= 2.4 × 1027 eV . (1.1)

This energy scale can be interpreted as the scale where both quantum effects, signaled by
the occurrence of ℏ, relativistic effects, marked by 𝑐, and gravitational physics denoted by
𝐺 become relevant. Comparing the Planck energy to other energy scales in Figure 1.1, we
see that the Planck scale is far beyond any scale accessible by present-day experiments.
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1.1. The need for quantum gravity

A second motivation for a theory of quantum gravity is given by the limitation of
general relativity. Inherent to the formalism, GR predicts its own breakdown with the
occurrence of spacetime singularities, such as in the Schwarzschild metric describing a
black hole

d𝑠2 = −
(
1 − 2𝐺𝑀

𝑟

)
d𝑡2 +

(
1 − 2𝐺𝑀

𝑟

)−1
d𝑟2 + 𝑟2dΩ2 , (1.2)

where 𝑀 denotes the black hole mass, 𝑡 the time coordinate, 𝑟 the radial coordinate and
dΩ the spherical volume element. Clearly, this metric is singular at the locus 𝑟 = 0, and
general relativity gives no prediction for the fate of spacetime at this point.

Finally, incorporating gravity into quantum field theory turns out to be far from
straightforward. Taking a conventional approach, one could try to quantize the Einstein-
Hilbert action

𝑆EH =
1

16𝜋𝐺

∫
d4𝑥

√
|−𝑔 | 𝑅 , (1.3)

where 𝑔 denotes the determinant of the metric 𝑔𝜇𝜈 , and 𝑅 the Ricci scalar. Using standard
perturbation techniques, one finds that a scattering amplitude calculated from this action
yields a divergent momentum integral [31, 32]. A possibility to cure this is to introduce
an extra term in the action as a counterterm for the divergences. In the case of (1.3), this is
the infamous Goroff-Sagnotti counterterm [32]. Quantizing this counterterm introduces
new divergences, that have to be cured by new counterterms, and so on. This yields an
infinite tower of counterterms, each coming with its own coupling constant. Since all
couplings need to be measured, one would need an infinite number of experiments to
make a prediction from this theory. In this way, predictivity of the theory is lost. A theory
suffering from this property is called non-renormalizable.

In this thesis, we study the Asymptotic Safety approach to quantum gravity. Rather
than introducing new degrees of freedom or additional symmetries, the Asymptotic Safety
program takes the conventional approach that the spacetime metric encodes the correct
quantum mechanical degrees of freedom. The key difference to standard QFT methods
is the use of non-perturbative techniques. In the discussion above, we found that a
perturbative study of the renormalization of the Einstein-Hilbert action resulted in a non-
renormalizable theory. However, if one is able to treat the renormalization of gravity
non-perturbatively, it may turn out that the resulting QFT is actually in good shape.
This scenario, first conjectured by Weinberg in the 1970s [33–36], goes by the name of
Asymptotic Safety. In the next section, we discuss renormalization in a more general
setting, as well as the non-perturbative techniques necessary to study renormalization.
We then apply the developed framework in the context of quantum gravity.
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Γ𝑘 [𝜙] 𝑆[𝜙]Γ[𝜙]
𝑘 = 0 𝑘 → ∞𝑘

Figure 1.2: The effective average action interpolates between the classical action
𝑆 and the quantum effective action Γ, while integrating out fluctuations with
energy larger than an energy scale 𝑘 .

1.2 The renormalization group

At the heart of renormalization lies the scale-dependence of physics. Following Wilson’s
modern view [37], we regard renormalization as “integrating out” degrees of freedom at
a given scale. The remaining degrees of freedom then correspond to different effective
physics.

This is formalized by introducing a scale-dependent effective average action (EAA),
denoted by Γ𝑘 [𝜙] [38–40]. The scale 𝑘 denotes the energy scale up to which degrees of
freedom have been integrated out (see Figure 1.2). For 𝑘 → ∞, we obtain the classical
action 𝑆 for the fundamental degrees of freedom. As this corresponds to high energies,
this regime is called ultraviolet (UV). For 𝑘 → 0, referred to as infrared (IR), all degrees
of freedom have been integrated out and we retrieve the full quantum effective action Γ.
The family of actions traced out by Γ𝑘 forms an renormalization group (RG) trajectory;
together they form the same theory at different effective scales.

In order to study the flow of the effective average action, we expand Γ𝑘 in a basis of
operators {O𝑖 [𝜙]}, spanning the theory space T . This basis contains all monomials of 𝜙
that satisfy the symmetries of the theory:

Γ𝑘 [𝜙] =
∑
𝑖

𝑢̄𝑖 (𝑘)O𝑖 [𝜙] . (1.4)

The coefficients 𝑢̄𝑖 (𝑘), referred to as the running couplings of the system, are the coordi-
nates of Γ𝑘 with respect to this basis.

Introducing the logarithmic RG scale 𝑡 = log(𝑘/𝑘0), where 𝑘0 is an arbitrary reference
scale, taking a derivative with respect to 𝑡 defines a flow equation on theory space T .
In general, the couplings 𝑢̄𝑖 (𝑘) have a canonical mass dimension 𝑑𝑖 . Defining the
dimensionless couplings 𝑢𝑖 (𝑘) ≡ 𝑘−𝑑𝑖 𝑢̄𝑖 (𝑘) and expressing the flow equation in terms of
the 𝑢𝑖 , the flow equation becomes autonomous (i.e. independent of any explicit 𝑘) and
the scaling of the theory is captured by the 𝛽-functions of the couplings

𝜕𝑡𝑢𝑖 (𝑘) = 𝛽𝑢𝑖
(
{𝑢 𝑗}

)
. (1.5)

The solution to these first-order differential equations are exactly the RG trajectories.
Methods for calculating the 𝛽-functions are for instance perturbation theory [11], or
functional methods [38–41].
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1.2. The renormalization group

FP
TSUV

Figure 1.3: The UV-critical hypersurface SUV embedded in theory space T .
Trajectories emanating from the fixed point (blue lines) span the UV-critical
hypersurface, whereas trajectories approaching from an irrelevant direction
(dashed line) are driven away from the fixed point (black lines).

1.2.1 Renormalizability

A complete theory should satisfy the condition that the couplings 𝑢𝑖 (𝑘) remain finite at
all scales. In addition, one should be able to characterize the theory completely by a finite
number of measurements. If the latter would not be satisfied, the theory would fail to be
predictive. A theory that satisfies both conditions is called renormalizable.

At first glance, providing a predictive theory is problematic in the light of the infinite
sum in (1.4), since it seems that an infinite number of couplings should be measured.
However, there is a way to cure both problems in a single stroke. By the first condition,
the couplings should remain finite at all scales. This implies that the RG trajectory must
have an endpoint where the couplings remain constant. This is satisfied for a simultaneous
root of the 𝛽-functions

𝛽𝑢𝑖
��
𝑢 𝑗=𝑢∗

𝑗
= 0 , ∀𝑖 . (1.6)

The point {𝑢∗𝑗} is therefore a fixed point of the RG flow.
The fixed point also provides an elegant solution to the problem of predictivity. The

family of RG trajectories attracted to a fixed point forms the UV-critical hypersurface
SUV in theory space; see Figure 1.3. If this surface is finite-dimensional, a trajectory is
identified exactly by specifying a finite number of parameters. Thus, the condition that a
trajectory lies within such a surface restores predictivity. If this condition is satisfied, the
theory is called renormalizable.

The RG flow near the fixed point is conveniently characterized by linearizing the
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Chapter 1. Introduction

𝛽-functions. Expanding the flow around the fixed point, we obtain up to first order

𝛽𝑢𝑖 '
∑
𝑗

M𝑖 𝑗

(
𝑢 𝑗 − 𝑢∗𝑗

)
. (1.7)

The matrix M = 𝜕𝛽𝑢𝑖/𝜕𝑢 𝑗 is referred to as the stability matrix. Diagonalizing the
stability matrix, we can solve the flow equation in terms of the right-eigenvectors 𝑉𝐼 and
eigenvalues 𝜆𝐼 = −𝜃𝐼 of M, satisfying M𝑉𝐼 = −𝜃𝐼𝑉𝐼 :

𝑢𝑖 (𝑡) = 𝑢∗𝑖 + 𝐶𝐼𝑉𝐼 𝑖 exp (−𝜃𝐼 𝑡) . (1.8)

The numbers 𝐶𝐼 determine the initial conditions of the RG flow, and are a priori not
fixed. The 𝜃𝐼 , known as the critical exponents, determine the direction of the flow. If
Re (𝜃𝐼 ) > 0, the RG flow is automatically attracted to the fixed point as 𝑡 → ∞, and
𝐶𝐼 is a free parameter of the theory that is not fixed by the asymptotic safety condition.
The corresponding eigendirection 𝑉𝐼 is then called UV-relevant. If Re (𝜃𝐼 ) < 0, the RG
flow is attracted to the fixed point only if 𝐶𝐼 = 0. This fixes the initial condition, and the
eigendirection𝑉𝐼 is called UV-irrelevant. In the case where 𝜃𝐼 = 0, a linear approximation
does not suffice to determine whether the direction is relevant or irrelevant. The direction
𝑉𝐼 is then called marginal. A higher-order expansion of the 𝛽-function is then needed
to determine whether 𝑉𝐼 is UV-attractive or not. The dimension of the UV-critical
hypersurface is thus given by the number of relevant directions, plus the number of
UV-attractive marginal couplings.

The critical exponents can be used to classify a fixed point. A fixed point whose
critical exponents are equal to the canonical mass dimension is named Gaussian fixed
point (GFP). If an RG trajectory is attracted to the Gaussian fixed point (GFP) at high
energies, the theory is called asymptotically free. If the critical exponents are not equal
to the canonical mass dimension, the fixed point is referred to as a non-Gaussian fixed
point (NGFP). The fixed point theory is then interacting, and trajectories attracted by the
non-Gaussian fixed point (NGFP) are asymptotically safe.

1.2.2 Asymptotically safe quantum gravity

We are now in a position to review the non-renormalizability of gravity. From an RG
perspective, the Newton coupling becomes scale-dependent, denoted by 𝐺 (𝑘). Since
it has mass dimension 2 − 𝑑, where 𝑑 denotes the spacetime dimension, we define its
dimensionless counterpart 𝑔𝑘 by the relation

𝑔𝑘 = 𝑘𝑑−2𝐺 (𝑘) . (1.9)

Taking the derivative with respect to 𝑡, we find

𝜕𝑡𝑔 = (𝑑 − 2 + 𝜂𝑁 )𝑔 , (1.10)
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1.3. The functional renormalization group equation

where we have captured quantum corrections to the running of 𝐺 by the anomalous
dimension

𝜂𝑁 = 𝐺−1𝜕𝑡𝐺 . (1.11)

We observe that the value 𝑔 = 0 is indeed a fixed point of the RG flow. We can then study
the RG flow of 𝑔 in perturbation theory. In 𝑑 = 4 spacetime dimensions, the 𝛽-function
of 𝑔 up to first order in 𝑔 is given by

𝜕𝑡𝑔 = 2𝑔 +O(𝑔2) . (1.12)

From the stability analysis explained in the previous section, we therefore conclude that
the Newton coupling is irrelevant. Thus, if the RG trajectory realized in nature were to end
at the fixed point 𝑔 = 0, the value of 𝑔 is fixed, and is given by 𝑔 = 0 at all scales. Since
we observe a nonzero value of the Newton coupling, this is clearly excluded. Therefore,
gravity is not perturbatively renormalizable.1

However, from (1.10) we infer that there is a second possibility to obtain a fixed point
for 𝛽𝑔, namely if 𝜂𝑁 = 2− 𝑑. As this is at a nonzero value of 𝑔, this would be a NGFP. As
was first conjectured by Weinberg in the seventies [33–36], such a fixed point may render
gravity asymptotically safe.

Using a perturbative expansion around 𝑑 = 2 + 𝜖 dimensions, hints for such a NGFP
were already available when Weinberg formulated his conjecture [43–46], for later works
see [47–50]. However, a non-perturbative treatment at finite 𝜖 only became available
with the advent of functional methods [38–40], that opened the avenue to study the
Asymptotic Safety scenario in 𝑑 = 4 dimensions [51–112] and its phenomenological
implications [106–173] in a systematic way.

1.3 The functional renormalization group equation

The central tool in studying the non-perturbative RG flow of gravity is the functional
renormalization group equation (FRGE), also referred to as the Wetterich equation [38]:

𝜕𝑡Γ𝑘 [𝜙] =
1
2

Tr
[(
Γ(2)
𝑘 [𝜙] +R𝑘

)−1
𝜕𝑡R𝑘

]
. (1.13)

The right-hand side of this equation consists of a trace over all fluctuation fields. The

flow of the effective propagator
(
Γ(2)
𝑘

)−1
is modified by a regulator R𝑘 , which suppresses

IR modes of momentum 𝑝2 � 𝑘2. The UV is regulated by the derivative 𝜕𝑡R𝑘 , which

1Extending General Relativity by including higher-order curvature terms in the action will yield a
perturbatively renormalizable quantum theory [42]. However, such a higher-derivative theory is non-unitary
since it contains a ghost (see section 1.4).
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Chapter 1. Introduction

suppresses modes of momentum 𝑝2 � 𝑘2. In section 2.1, we give a derivation of the
FRGE via a path integral approach.

In practice, the FRGE cannot be solved exactly. A method of approximating a solution
is given by truncating the series (1.4) to include operators O𝑖 that are of interest. These
operators are retained in an ansatz for Γ𝑘 , which is substituted into the FRGE. The
approximate flow of the couplings {𝑢𝑖} are given by projecting the right-hand side of the
FRGE onto the O𝑖 .

Since this prescription does not make any assumption on the size of the 𝑢𝑖 , this method
can be applied to the non-perturbative regime. In particular, this setup has proven fruitful
in the context of gravity. Starting with the seminal work [102], there is by now substantial
evidence for the existence of a NGFP for gravity in 𝑑 = 4 spacetime dimensions [51–112].

1.4 Unitarity

The asymptotic safety scenario provides a mechanism for removing UV divergences from
the theory, as well as for rendering the number of free parameters finite. A viable quantum
theory, however, should satisfy additional constraints. One of these constraints is that the
effective action Γ = Γ𝑘=0 yields a unitary quantum field theory at 𝑘 = 0.

Since the effective action includes in principle all possible interaction monomials that
are compatible with the symmetry of the theory, one should be careful which terms in the
action are generated along an RG trajectory. Potentially dangerous terms in the effective
action are higher-derivative terms contributing to propagators of matter fields. These are
typically associated to Ostrogradski instabilities or violation of unitarity, see [174, 175]
for reviews.

It was shown by Ostrogradski in the 1850s that non-degenerate classical systems
containing time derivatives of finite degree larger than two give rise to Hamiltonians
whose kinetic term is not bounded from below [176]. Irrespective of the exact form of
the action, the unbounded Hamiltonian will yield several unwanted phenomena, related
to the instability of the system. At the classical level, the presence of degrees of freedom
coming with a wrong-sign kinetic term allows to accelerate particles to infinite velocity
while keeping the total energy of the system constant.

This type of instability also appears in the corresponding quantum system. While the
presence of higher-derivative terms in the propagators lowers the degrees of divergencies
arising in loop computations, the presence of positive and negative energy states may
trigger an instantaneous decay of the vacuum. Naively, a way out may be to reinterpret
the negative-energy creation and annihilation operators as positive-energy annihilation
and creation operators, respectively. Although this seems to cure the instability of the
vacuum state, this procedure yields states with negative norm. Removing these states
from the physical spectrum, however, yields a non-unitary 𝑆-matrix. Thus, these higher-
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1.4. Unitarity

derivative interactions violate unitarity of the theory.
In the case of a non-interacting scalar field theory, the Ostrogradski instability can

be nicely illustrated by the Kallén-Lehmann representation [10]. This representation
expresses the dressed propagator𝐺 (𝑥−𝑦) as a superposition of freely propagating particles
with mass 𝜇 ≥ 0 and propagator

𝐺free

(
𝑥; 𝜇2

)
=

∫
d𝑑𝑝
(2𝜋)𝑑

1
𝑝2 + 𝜇2 e𝑖 𝑝𝑥 , (1.14)

such that
𝐺 (𝑥 − 𝑦) =

∫ ∞

0
d𝜇2 𝜌

(
𝜇2

)
𝐺free

(
𝑥 − 𝑦; 𝜇2

)
. (1.15)

For a unitary theory, the spectral density 𝜌
(
𝜇2) is a sum over states with positive coef-

ficients, thus 𝜌
(
𝜇2) ≥ 0. If 𝜌

(
𝜇2) < 0 for some 𝜇2 in the physical sector of the theory,

then unitarity issues arise.
In particular, a system containing scalar fields 𝜙 where the propagator contains a

fourth-order kinetic term will prove to be dangerous:

𝑆 =
𝑍

2

∫
d𝑑𝑝
(2𝜋)𝑑

𝜙
[
𝑝2 + 𝑌 𝑝4] 𝜙 , (1.16)

where 𝑍 denotes a wave-function renormalization and 𝑌 is the coupling associated to the
higher-derivative term. Expanded in a Fourier basis, the propagator is given by

𝐺 (𝑝) = 1
𝑍

1
𝑝2 + 𝑌 𝑝4 . (1.17)

Using partial fraction decomposition, this can be expanded in terms of free propagators:

𝐺 (𝑝) = 1
𝑍

(
1
𝑝2 − 1

𝑝2 + 1
𝑌

)
. (1.18)

We see that the Kallén-Lehmann spectrum contains a massless state with positive density,
and a state of mass

𝜇2 = 𝑌−1 (1.19)

with negative density. The latter state is called a (Ostrogradski) ghost. It is easy to see
that the spectral density is not positive. Therefore, the theory will generically be unstable.

Generically, gravitational interactions will generate propagators with higher derivative
terms such as (1.16). This puts additional constraints on which RG trajectory is regarded
as physically viable. The interplay between unitarity and the renormalization group is
one of the main topics in this thesis.

9



Chapter 1. Introduction

1.5 Setup of this thesis

The remainder of this thesis is organized in six chapters. In chapter 2, we give a detailed
introduction to the functional methods used in studying the FRG. We start by a derivation
of the FRGE in section 2.1. Next, we discuss the construction of an RG flow for gravity.
This involves the background field method, which allows to fix redundant gauge degrees
of freedom and define a regulator. This has important consequences for diffeomorphism
symmetry.

In chapter 3, we apply the RG machinery developed in this introduction to cosmology,
and see the implications of scale dependence on astrophysical observables. We will first
study observational data on inflation and the late-time evolution of the universe. We then
construct an RG flow for a gravitational truncation, and investigate the compatibility of
the resulting RG trajectories with observations.

Chapter 4 is dedicated to the interplay between asymptotic safety and unitarity, in
the context of scalar fields coupled to gravity. Specifically, we study the effects of
metric fluctuations on the generation of a 𝑝4-propagator in the effective action. As
explained above, these higher-derivative terms may prove to be dangerous for unitarity. We
consider the possibility of using the renormalization group as a cure for these Ostrogradski
instabilities.

In chapter 5, we discuss so-called form factors. These combine infinitely many
couplings into a momentum-dependent function, allowing for a systematic expansion
of Γ𝑘 in the number of fields. We study the generalization of the system discussed in
chapter 4, from a 𝑝4-dependent propagator to a full function of the momentum.

Higher derivative propagators can be dangerous for unitarity, or its Euclidean equiva-
lent, which goes under the name of reflection positivity. For flat spacetime, one can write
down strict requirements for a theory obeying reflection positivity in terms of its partition
function. However, an explicit condition on e.g. the propagator of the theory is less clear.
In chapter 6, we present a theorem that gives necessary and sufficient conditions for a
large class of higher-derivative propagators for being reflection positive.

We conclude the thesis in chapter 7 with a summary and an outlook on further
developments building on the results in this thesis. In particular, we will focus on future
prospects related to the question of unitarity in asymptotically safe quantum gravity, and
possible observable consequences.
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CHAPTER 2

FUNCTIONAL METHODS IN

RENORMALIZATION

In this chapter, we review some general properties of the FRG. We begin with a derivation
of the FRGE in section 2.1 via a path integral approach. We then discuss truncation
schemes of the effective average action in section 2.2, yielding different types of differen-
tial equations for the RG flow. In section 2.3, we apply the developed FRG framework to
the case of gravity. We conclude this chapter with some remarks about the applications
of the functional RG in this thesis in section 2.4.

Section 2.2 and section 2.3 are based on:

B. Knorr, C. Ripken, and F. Saueressig. Form Factors in Asymptotic Safety: con-
ceptual ideas and computational toolbox. Class. Quant. Grav. (2019) [arXiv:1907.
02903].

2.1 Derivation of the FRGE

We kick off with a derivation of the FRGE à la Wetterich [38] that was introduced in
(1.13) and plays a central role throughout this thesis. The derivation of the FRGE is based
on the path integral formalism. In many cases, the path integral is not a well-defined
object in the sense that it is extremely hard to construct an integration measure on the
desired space of configuration. In this chapter, however, we assume that the path integral
measure has been constructed. In this way, we can derive an exact equation that can serve
as a starting point for setting up a QFT.

The derivation of the Wetterich equation can be found in many works (see [38–40,
177] for original research papers, or [28, 29, 178, 179] for reviews). In these works,
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Chapter 2. Functional methods in renormalization

the space over which the path integral is taken is assumed to consist of functions over
spacetime. With this assumption comes a lot of additional structure, such as an inner
product constructed from a spacetime integral, or linearity from addition and multiplica-
tion of functions. In this section, we will try to reconstruct the Wetterich equation from a
minimal set of assumptions.

2.1.1 The Schwinger functional

We start out our construction with a measure space (𝔉,Σ, 𝜇), consisting of a set 𝔉
equipped with a 𝜎-algebra Σ and a measure 𝜇. We assume the measure 𝜇 to be positive
and finite. The measure space induces the path integral Z =

∫
d𝜇(𝜑). From this integral,

we can construct for 𝑝 ∈ [1,∞] the Banach spaces L𝑝 (𝜇) of 𝑝-integrable functions,
including the extremal case L∞(𝜇) of bounded 𝜇-integrable functions.

We then define the partition function 𝑍 : L∞(𝜇) → R as the generating functional

𝑍 [𝐽] =
∫

d𝜇 e𝐽 . (2.1)

Since the measure 𝜇 is finite, and 𝐽 ∈ L∞(𝜇) is a bounded function, we conclude that 𝑍 [𝐽]
is finite, and furthermore positive. We note that Z = 𝑍 [0]. At this stage, we notice that
we have not assumed any linear structure on 𝔉 in order to define 𝐻. In particular, there
is no reference to a spacetime structure that allows for a construction of a pairing such as
𝐽 · 𝜑 =

∫
d𝑑𝑥 𝑗 (𝑥)𝜑(𝑥). This is in contrast to usual definitions of 𝑍 in the literature.

Now let 𝐻 ⊆ L∞(𝜇) be a Hilbert space equipped with an inner product 〈 · , · 〉 and
induced norm ‖ · ‖. In addition, we assume that∫

d𝜇 |𝐽 |2 < 𝐶 for all 𝐽 ∈ 𝐻 , ‖𝐽‖ = 1 (2.2)

for some bounding constant 𝐶 > 0.
We now realize the renormalization group as follows. Let {Δ𝑆𝑘 } ⊂ L∞(𝜇) be a

1-parameter family of bounded 𝜇-integrable functions parameterized by 𝑘 . We define the
𝑘-dependent Schwinger functional𝑊𝑘 : 𝐻 → R by

𝑊𝑘 [𝐽] = log 𝑍 [𝐽 − Δ𝑆𝑘] = log
∫

d𝜇 e𝐽−Δ𝑆𝑘 . (2.3)

For the moment, we do not specify any specific form for Δ𝑆𝑘 .
The inner product structure provides a functional derivative. Given a differentiable

function 𝑓 : 𝐻 → R and 𝐽 ∈ 𝐻, we define the derivative 𝛿 𝑓
𝛿𝐽 [𝐽] ∈ 𝐻 implicitly by the

relation 〈
𝛿 𝑓
𝛿𝐽 [𝐽], 𝜙

〉
= 𝛿𝜙 𝑓 [𝐽] ≡ lim

𝜀→0

1
𝜀
( 𝑓 [𝐽 + 𝜀𝜙] − 𝑓 [𝐽]) , (2.4)

12



2.1. Derivation of the FRGE

for any 𝜙 ∈ 𝐻. Since 𝐻 is a Hilbert space, this completely characterizes 𝛿 𝑓
𝛿𝐽 [𝐽]. Note

that the 𝐽 appearing in the denominator of 𝛿 𝑓
𝛿𝐽 is a dummy variable. Taking a second

derivative, one obtains the Hessian operator, given by〈
𝜙, 𝑓 (2) [𝐽]𝜓

〉
=

〈
𝜙, 𝛿

2 𝑓
𝛿𝐽 2 [𝐽]𝜓

〉
= 𝛿𝜙𝛿𝜓 𝑓 [𝐽] . (2.5)

Combining the integration measure 𝜇 and the inner product structure, we can define
multiplication operators. For 𝐽 ∈ L∞(𝜇), we characterize the operator𝑚(𝐽) by the matrix
elements

〈𝜙, 𝑚(𝐽) 𝜓〉 =
∫

d𝜇 𝜙𝐽𝜓 . (2.6)

Because of the bound (2.2), it is straightforward to see that the operator 𝑚(1) is bounded.
From that, it follows that for all 𝐽 ∈ L∞(𝜇) the operator 𝑚(𝐽) is bounded.

In the following, we assume that the Schwinger functional 𝑊𝑘 is at least twice
differentiable. We can now use the structures discussed above to calculate derivatives of
the Schwinger functional𝑊𝑘 :

Lemma 2.1. The first two derivatives of𝑊𝑘 are given by〈
𝛿𝑊𝑘
𝛿𝐽 [𝐽], 𝜙

〉
= e−𝑊𝑘 [𝐽 ]

∫
d𝜇 e𝐽−Δ𝑆𝑘𝜙 ,〈

𝜙,𝑊 (2)
𝑘 [𝐽] 𝜓

〉
=

〈
𝜙,

(
𝑚

(
e−𝑊𝑘 [𝐽 ]+𝐽−Δ𝑆𝑘

)
−

��� 𝛿𝑊𝑘
𝛿𝐽 [𝐽]

〉 〈
𝛿𝑊𝑘
𝛿𝐽 [𝐽]

���) 𝜓〉
,

(2.7)

where we defined the 1-dimensional projector | 𝜙〉〈𝜙 | by | 𝜙〉〈𝜙 | 𝜓 = 〈𝜙, 𝜓〉 𝜙.

Proof. The first derivative follows from applying the chain rule on (2.3) Taking a second
derivative of this expression, we obtain the matrix element〈

𝜙,𝑊 (2)
𝑘 [𝐽]𝜓

〉
= e−𝑊𝑘 [𝐽 ]

∫
d𝜇 𝜙e𝐽−Δ𝑆𝑘𝜓

− e−2𝑊𝑘 [𝐽 ]
(∫

d𝜇e𝐽−Δ𝑆𝑘𝜙
) (∫

d𝜇e𝐽−Δ𝑆𝑘𝜓
)

=
〈
𝜙,

(
𝑚

(
e−𝑊𝑘 [𝐽 ]+𝐽−Δ𝑆𝑘

)
−

��� 𝛿𝑊𝑘
𝛿𝐽 [𝐽]

〉 〈
𝛿𝑊𝑘
𝛿𝐽 [𝐽]

���) 𝜓〉
,

(2.8)

which proves the lemma. □

2.1.2 The effective average action

Diagrammatically, the Schwinger functional is the generating functional of connected
Feynman diagrams. Taking a Legendre transform, gives a generating functional for one-
particle irreducible (1PI) diagrams. In order for the Legendre transform to be well-defined,

13



Chapter 2. Functional methods in renormalization

we assume that the functional 𝑊𝑘 is strictly convex for all 𝑘 . The Legendre transform is
now uniquely defined and invertible and defined as the function Γ̃𝑘 : 𝐻 → R given by

Γ̃𝑘 [𝜙] = sup
𝐽 ∈𝐻

𝛾𝜙 [𝐽] ≡ sup
𝐽 ∈𝐻

〈𝜙, 𝐽〉 −𝑊𝑘 [𝐽] . (2.9)

The functional derivatives of𝑊𝑘 and Γ̃𝑘 satisfy the following properties:

Lemma 2.2. Let 𝜙 ∈ 𝐻 and 𝑘 ≥ 0. Then𝑊𝑘 and Γ̃𝑘 satisfy the following relations:

𝜙 = 𝛿𝑊𝑘
𝛿𝐽

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
(2.10)

and
𝑊 (2)

𝑘

[
𝛿Γ̃𝑘 [𝜙]

𝛿𝐽

]
=

(
Γ̃(2)
𝑘

[𝜙]
)−1

. (2.11)

Proof. We begin with the observation that if 𝑊𝑘 is strictly convex, there is a unique
element J [𝜙, 𝑘] ∈ 𝐻 that exhausts the supremum. Thus, the functional 𝛾𝜙 has a
stationary point at J [𝜙, 𝑘]. This gives the condition for all 𝜓 ∈ 𝐻

0 =
〈
𝛿𝛾𝜙

𝛿𝐽 [J [𝜙, 𝑘]] , 𝜓
〉
= 〈𝜙, 𝜓〉 −

〈
𝛿𝑊𝑘
𝛿𝐽 [J [𝜙, 𝑘]] , 𝜓

〉
, (2.12)

for all 𝜓 ∈ 𝐻, which gives the relation 𝜙 = 𝛿𝑊𝑘
𝛿𝐽 [J [𝜙, 𝑘]]. Taking a derivative of Γ̃𝑘 , we

find 〈
𝛿Γ̃𝑘
𝛿𝐽 [𝜙], 𝜓

〉
= 𝛿𝜓Γ̃𝑘 [𝜙] = 𝛿𝜓 (〈𝜙,J [𝜙, 𝑘]〉 −𝑊𝑘 [J [𝜙, 𝑘]])

= 〈𝜓,J [𝜙, 𝑘]〉 +
〈
𝜙, 𝛿𝜓J [𝜙, 𝑘]

〉
− 𝛿𝜓𝑊𝑘 [J [𝜙, 𝑘]]

= 〈𝜓,J [𝜙, 𝑘]〉 +
〈
𝜙, 𝛿𝜓J [𝜙, 𝑘]

〉
− 𝛿𝛿𝜓J [𝜙,𝑘 ]𝑊𝑘 [J [𝜙, 𝑘]]

= 〈𝜓,J [𝜙, 𝑘]〉 ,

(2.13)

which shows that J [𝜙, 𝑘] = 𝛿Γ̃𝑘
𝛿𝐽 [𝜙]. Furthermore, combining this with (2.10) gives

𝜙 = 𝛿𝑊𝑘
𝛿𝐽

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
, (2.14)

which proves the first claim. Using the chain rule, taking a derivative of this expression
gives the relation

𝜓 = 𝑊 (2)
𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
Γ̃(2)
𝑘 [𝜙]𝜓 (2.15)

for all 𝜓 ∈ 𝐻. This shows that the Hessian of 𝑊𝑘 is related to the inverse of the Hessian
of Γ̃𝑘 :

𝑊 (2)
𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
=

(
Γ̃(2)
𝑘 [𝜙]

)−1
. (2.16)

This completes the proof of the lemma. □
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2.1. Derivation of the FRGE

2.1.3 Proof of the Wetterich equation

We are now in a position to derive the FRGE. It provides an RG equation in the sense that it
gives an expression for the 𝑘-derivative of the effective average action. One of the special
features of the Wetterich equation is that it is a closed equation for the effective average
action Γ𝑘 , in the sense that it makes no direct reference to the path integral measure.

Before we define the EAA and complete the proof of the Wetterich equation, we need
the following result:

Lemma 2.3. The 𝑘-derivative of Γ̃𝑘 is given by the path integral

𝜕𝑘 Γ̃𝑘 [𝜙] = e
−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

] ∫
d𝜇 e

𝛿Γ̃𝑘
𝛿𝐽 [𝜙]−Δ𝑆𝑘𝜕𝑘Δ𝑆𝑘 . (2.17)

Proof. We use the chain rule to obtain

𝜕𝑘 Γ̃𝑘 [𝜙] = 𝜕𝑘
(〈
𝜙, 𝛿Γ̃𝑘

𝛿𝐽 [𝜙]
〉
−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

] )
=

〈
𝜙, 𝜕𝑘

𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

〉
− (𝜕𝑘𝑊𝑘)

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
− 𝛿

𝜕𝑘
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
= − (𝜕𝑘𝑊𝑘)

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
,

(2.18)

where we used Lemma 2.2 to cancel the first and third term in the second line. Using the
chain rule once more, this can be written as

𝜕𝑘 Γ̃𝑘 [𝜙] = 𝛿𝜕𝑘Δ𝑆𝑘𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
= e

−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

] ∫
d𝜇 e

𝛿Γ̃𝑘
𝛿𝐽 [𝜙]−Δ𝑆𝑘𝜕𝑘Δ𝑆𝑘 . (2.19)

This was to be proven. □

In order to prove the Wetterich equation, we make a particular choice for Δ𝑆𝑘 . This is
fixed by choosing a 1-parameter family of trace-class operators R𝑘 on 𝐻. We then define
the EAA as

Γ𝑘 [𝜙] = Γ̃𝑘 [𝜙] −
1
2
〈𝜙,R𝑘𝜙〉 . (2.20)

We now fix Δ𝑆𝑘 by noting that the space L2(𝜇) of square-integrable functions is a Hilbert
space with inner product 〈 𝑓 , 𝑔〉L2 (𝜇) =

∫
d𝜇 𝑓 𝑔. We then define Δ𝑆𝑘 ∈ L∞(𝜇) ⊆ L2(𝜇)

implicitly by

〈Δ𝑆𝑘 , 𝐽〉L2 (𝜇) =
1
2

Tr [𝑚(𝐽)R𝑘] , (2.21)

for all 𝐽 ∈ L∞(𝜇). Here, the trace Tr denotes the trace over the Hilbert space 𝐻.
The expression (2.21) completely characterizes Δ𝑆𝑘 , since L∞(𝜇) ⊆ L2(𝜇) is dense.
Moreover, the trace is finite since 𝑚(𝐽) is bounded and R𝑘 is trace-class.
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Chapter 2. Functional methods in renormalization

We remark here that in contrast to conventional derivations of the FRGE, we make no
reference to an inner product structure on 𝔉. Usually, one uses the spacetime structure
to define Δ𝑆𝑘 [𝜑] = 1

2

∫
dd𝑥 𝜑(𝑥)R𝑘𝜑(𝑥). In the construction presented here, such an

assumption is not necessary.
We can now complete the proof of the Wetterich equation.

Theorem 2.4. Let Γ𝑘 and Δ𝑆𝑘 be defined as above. Then the Wetterich equation holds:

𝜕𝑘Γ𝑘 [𝜙] =
1
2

Tr
[(
Γ(2)
𝑘 [𝜙] +R𝑘

)−1
𝜕𝑘R𝑘

]
. (2.22)

Proof. We recognize in (2.17) the L2(𝜇)-inner product

𝜕𝑘 Γ̃𝑘 [𝜙] =
〈
e
−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
+ 𝛿Γ̃𝑘

𝛿𝐽 [𝜙]−Δ𝑆𝑘
, 𝜕𝑘Δ𝑆𝑘

〉
L2 (𝜇)

=
1
2

Tr

[
𝑚

(
e
−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
+ 𝛿Γ̃𝑘

𝛿𝐽 [𝜙]−Δ𝑆𝑘
)
𝜕𝑘R𝑘

]
,

(2.23)

where we have used (2.21) to write this as a trace over 𝐻. Combining this with (2.20),
we find for the 𝑘-derivative of the EAA:

𝜕𝑘Γ𝑘 [𝜙] =
1
2

Tr

[
𝑚

(
e
−𝑊𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
+ 𝛿Γ̃𝑘

𝛿𝐽 [𝜙]−Δ𝑆𝑘
)
𝜕𝑘R𝑘

]
− 1

2
Tr [| 𝜙〉〈𝜙 | 𝜕𝑘R𝑘]

=
1
2

Tr
[
𝑊 (2)

𝑘

[
𝛿Γ̃𝑘
𝛿𝐽 [𝜙]

]
𝜕𝑘R𝑘

]
=

1
2

Tr
[(
Γ̃(2)
𝑘

[𝜙]
)−1

𝜕𝑘R𝑘

]
=

1
2

Tr
[(
Γ(2)
𝑘

[𝜙] +R𝑘

)−1
𝜕𝑘R𝑘

]
.

(2.24)

In the first line, we have noted that we can write the inner product 〈𝜙, 𝜕𝑘R𝑘𝜙〉 as a trace
over the projection operator |𝜙〉 〈𝜙| 𝜕𝑘R𝑘 . In going to the second line, we have applied
Lemma 2.2 and Lemma 2.1 to relate this to the Hessian of 𝑊𝑘 . We then use Lemma 2.2
again to insert the Hessian of Γ̃𝑘 , which can then be related to Γ𝑘 in the last line. This
proves the FRGE. □

2.2 Truncation schemes in the EAA

Although the Wetterich equation is exact, it is difficult to construct exact solutions. One
method is to use a truncated ansatz for Γ𝑘 to obtain an approximate solution. Such an
approximation includes a subset of monomials {O𝑖} of the set of all possible monomials
that are compatible with the field content and symmetries of the theory.
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2.2. Truncation schemes in the EAA

approximation of Γ𝑘 structure of RG flow fixed points

finite number of O𝑖 ODEs algebraic
field-dependent
functions 𝑓 (𝑅1, · · · , 𝑅𝑛; 𝑡)

PDEs (𝑛 + 1 var.) PDEs (𝑛 var.)

momentum-dependent
form factors 𝑓 (𝑝1, · · · , 𝑝𝑛; 𝑡)

IDEs (𝑛 + 1 var.) IDEs (𝑛 var.)

Table 2.1: Summary of the mathematical structures capturing the flow of Γ𝑘 in
different classes of approximations. Depending on the scale-dependent terms
retained in Γ𝑘 , the projected flow equations are nonlinear ordinary differential
equations (ODEs), partial differential equations (PDEs), or (partial) integro-
differential equations (IDEs). Since fixed functionals are 𝑘-stationary solutions,
their structure is governed by differential equations that contain one variable
less than the corresponding flow equation.

The cardinality of the set {O𝑖} has important consequences for the type of equation
obtained from the truncated FRGE. An overview of the different cases and their RG flow
structure can be found in Table 2.1.

In chapter 1, we have discussed the case of approximations where the ansatz for
Γ𝑘 retains a finite number of running couplings. In this case, the flow equations are
(nonlinear) ordinary differential equations (ODEs), and the fixed point equations are
algebraic. Around a fixed point, the RG flow can be studied using the linearized flow
equation. The stability of the fixed point is captured by the (finite-dimensional) stability
matrix M𝑖 𝑗 = 𝜕𝛽𝑢𝑖/𝜕𝑢 𝑗 , and the critical exponents 𝜃𝐼 .

In special cases, the truncation has been extended to include an infinite number of
monomials. An example is the 𝑓 (𝑅)-truncation [53, 64, 65, 67, 70, 75, 85, 90, 106, 110],
which contains an ansatz for an action of the metric 𝑔𝜇𝜈 of the form

Γ𝑘 [𝑔] '
1

16𝜋𝐺𝑘

∫
d𝑑𝑥

√
𝑔 𝑓𝑘 (𝑅) , (2.25)

where 𝑅 denotes the Ricci scalar. In this truncation, the function 𝑓𝑘 includes an infinite
number of couplings. For a general action, such a coupling function may contain several
arguments. The flow and fixed point equations now become partial differential equations
(PDEs).

The discussion of the stability of the fixed point extends straightforwardly to an
infinite number of couplings. The stability matrix M gets promoted to an operator whose
eigenfunctions 𝑉𝐼 depend on the arguments of the function 𝑓 , such that the expansion
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Chapter 2. Functional methods in renormalization

around the fixed point reads

𝑓 (𝑅1, · · · , 𝑅𝑛; 𝑡) = 𝑓 ∗ (𝑅1, · · · , 𝑅𝑛) + 𝐶𝐼𝑉𝐼 𝑖 (𝑅1, · · · , 𝑅𝑛) e−𝜃𝑖 𝑡 . (2.26)

Here 𝑓 is the dimensionless coupling function and the 𝑅𝑖 are the field arguments such as
the Ricci scalar.

When studying the propagation of degrees of freedom at the quantum level, a finite
truncation may lead to spurious results. An example will be discussed in chapter 4, where
we study the propagator of a scalar field of the form

Γscalar
𝑘 [𝜙, 𝑔] ' 1

2
𝑍𝑘

∫
d𝑑𝑥

√
𝑔 𝜙

(
Δ + 𝑌𝑘Δ2

)
𝜙 . (2.27)

Such a truncation automatically leads to spurious poles in the propagator of the scalar
field, which suggest the presence of unphysical ghost fields.

The action (2.27) can be generalized to include operators of higher order in Δ by an
ansatz of the form

Γscalar
𝑘 [𝜙, 𝑔] ' 1

2
𝑍𝑘

∫
d𝑑𝑥

√
𝑔 𝜙 𝑓𝑘 (Δ)𝜙 . (2.28)

This ansatz tracks the full momentum dependence of the propagator. When evaluating the
FRGE for this truncation, the inclusion of this so-called form factor leads to an integro-
differential equation (IDE) determining the admissible 𝑓

(
𝑝2) . Conceptually, this may

be understood by noticing that besides the external momentum the argument of the form
factor may also include the loop momentum integrated over in the trace. This entails
that a consistent solution requires knowing the form factor on the entire positive real
axis. Thus approximating the form factor by a Taylor series (possibly with finite radius of
convergence) is not suitable and new computational methods for solving such equations
are required. Form factors will be studied in more detail in chapter 5.

2.3 The EAA for gravity

Up to now, we have been abstract about the organization of the action monomials O𝑖 . In
order to construct a basis of monomials in gauge theories and gravity, one has to deal
with redundant gauge degrees of freedom that have to be removed. A method to fix these
gauge degrees to freedom is provided by the background field formalism.

In this framework, one decomposes the physical metric 𝑔𝜇𝜈 into a fixed but arbitrary
background field 𝑔̄𝜇𝜈 and a fluctuation field ℎ𝜇𝜈 . Conceptually, the background metric
provides the metric structure that is used to discriminate high-momentum modes from
low-momentum modes. Its simplest incarnation is by means of a linear split:

𝑔𝜇𝜈 = 𝑔̄𝜇𝜈 + ℎ𝜇𝜈 . (2.29)
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2.3. The EAA for gravity

Alternatively, other parameterizations can be considered, such as the exponential split
𝑔𝜇𝛼

[
eℎ

] 𝛼
𝜈
, e.g. in [48, 79, 94, 98, 107, 163, 180, 181].1

The background field formalism provides a convenient way to gauge-fix the freedom
of performing coordinate transformations, 𝛿𝑔𝜇𝜈 = L𝑣𝑔𝜇𝜈 , where L𝑣 denotes the Lie
derivative along the vector 𝑣. The linear split (2.29) entails that a transformation of 𝑔𝜇𝜈
under diffeomorphisms may be implemented either by quantum gauge transformations,

𝛿Q𝑔̄𝜇𝜈 = 0 , 𝛿Qℎ𝜇𝜈 = L𝑣𝑔𝜇𝜈 , (2.30)

keeping the background metric fixed, or by background gauge transformations,

𝛿B𝑔̄𝜇𝜈 = L𝑣 𝑔̄𝜇𝜈 , 𝛿Bℎ𝜇𝜈 = L𝑣ℎ𝜇𝜈 , (2.31)

where each quantity transforms as a tensor of the corresponding rank.
Gauge-fixing is now implemented via the Faddeev-Popov method. In the present

context, this entails supplementing the EAA by a suitable gauge-fixing and ghost action:

Γ𝑘 [𝑔, 𝑐, 𝑐; 𝑔̄] = Γgrav
𝑘 [𝑔; 𝑔̄] + Γgf [𝑔; 𝑔̄] + 𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄] (2.32)

Throughout this thesis, we will use the following gauge-fixing action:

Γgf
𝑘 [𝑔; 𝑔̄] = 1

16𝜋𝐺𝑘

1
𝛼

∫
d𝑑𝑥

√
𝑔̄𝑔̄𝜇𝜈𝐹𝜇𝐹𝜈 , (2.33)

where 𝐹𝜇 is defined as

𝐹𝜇 [𝑔; 𝑔̄] = ∇̄𝜈𝑔𝜇𝜈 −
1 + 𝛽
𝑑

∇̄𝜇𝑔
𝜈
𝜈 , (2.34)

The associated ghost action then reads

𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄] = −
∫

d𝑑𝑥
√
𝑔̄ 𝑐𝜇M𝜇

𝜈𝑐
𝜈 , (2.35)

with the Faddeev-Popov operator given by

M𝜇
𝜈 = 𝑔̄𝜇𝛽∇̄𝛼∇𝛼𝑔𝛽𝜈 + 𝑔̄𝜇𝛽∇̄𝛼∇𝛽𝑔𝛼𝜈 − 2

1 + 𝛽
𝑑

𝑔̄𝛼𝛽∇̄𝜇∇𝛼𝑔𝛽𝜈 . (2.36)

In these expressions, the parameters 𝛼 and 𝛽 are gauge-fixing parameters. Tuning
these parameters to specific values yields computational simplifications. In particular,
the case 𝛽 = 𝑑

2 − 1 will be used throughout this thesis and is known as harmonic gauge.
Special cases for 𝛼 are Feynman gauge 𝛼 = 1 and Landau limit 𝛼 → 0.

1In the exponential split, fluctuations cannot alter the signature of the physical metric, i.e. 𝑔𝜇𝜈 and 𝑔̄𝜇𝜈
have the same signature. The underlying conformal field theories arising from the exponential and linear
split possess different central charges [95]. This suggests that the linear and exponential parameterization
lead to gravitational theories in different universality classes. For an exploration of the most general local
parameterization up to second order in the fluctuation field see [79].
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2.3.1 Restoration of diffeomorphism invariance

By construction, the gauge-fixing sector is breaking the symmetry under quantum gauge
transformations. At the same time, the gauge-fixing (and regulator terms) may be con-
structed in such a way that the background gauge transformations are realized explicitly
and maintained along the RG flow. The background gauge transformations may then
be used to obtain a manifestly diffeomorphism-invariant effective action depending on a
single metric 𝑔 by setting Γ[𝑔] = Γ𝑘=0 [ℎ; 𝑔̄] |ℎ=0.

Due to the gauge-fixing and regulator terms, Γ𝑘 depends on two independent argu-
ments, which may be chosen as either Γ𝑘 [ℎ; 𝑔̄] or as Γ𝑘 [𝑔, 𝑔̄]. The former formulation
has the natural interpretation of considering graviton fluctuations in a fixed but arbitrary
background, whereas the second one emphasizes the “bi-metric” character of the EAA.

While the two formulations are equivalent on the exact level, in typical approximations
they correspond to different projections in theory space and therefore yield complemen-
tary information. Both formulations allow for practical calculations; in the fluctuation
language, calculations have been done resolving vertices up to four graviton legs [57–59,
61, 62, 68, 82, 110], and first results on the all-orders fluctuation field dependence to
lowest order in the momentum have been presented in [81]. In the bi-metric language,
the most advanced calculations resolve both background and full metric Einstein-Hilbert
structures [51, 88]. Since the object driving the flow in the Wetterich equation is the fluc-
tuation two-point functionΓ(2,0)

𝑘
[ℎ; 𝑔̄], where the (2, 0) denotes that the second derivative

has been taken with respect to ℎ rather than 𝑔̄. Therefore, we will resort to the (ℎ; 𝑔̄)-setup
throughout the rest of this chapter.

The extra metric dependence is controlled by a split-Ward or Nielsen identity. It arises
from the observation that the decomposition (2.29) is invariant under local split-symmetry
transformations

𝑔̄𝜇𝜈 ↦→ 𝑔̄𝜇𝜈 + 𝜖𝜇𝜈 , ℎ𝜇𝜈 ↦→ ℎ𝜇𝜈 − 𝜖𝜇𝜈 . (2.37)

This transformation results in a (modified) split-Ward identity that relates functional
derivatives of Γ𝑘 with respect to the background to derivatives with respect to the fluctu-
ation field. Schematically, it reads

𝛿Γ𝑘 [ℎ; 𝑔̄]
𝛿𝑔̄

− 𝛿Γ𝑘 [ℎ; 𝑔̄]
𝛿ℎ

= N [ℎ; 𝑔̄] . (2.38)

The N [ℎ; 𝑔̄] carries the information about the non-trivial behavior of diffeomorphism
transformations of the gauge-fixing sector and regulator [56, 69, 72, 83, 87, 89–91, 93,
100, 105, 111, 178, 182–185].

The bi-metric structure of the EAA can be approached in two different ways, schemat-
ically depicted in Figure 2.1. The first approach is to solve the Nielsen identity (2.38) by
calculating the fluctuation two-point function in terms of background correlators. Struc-
turally, the relation involves all background correlators and background derivatives of the
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split symmetry broken by R𝑘 , Γ
gf
𝑘

solve sWIs

solve background flow

solve bi-metric flow

solve sWIs at 𝑘 = 0

Γ[𝑔̄] = Γ0 [0; 𝑔̄]

Figure 2.1: Setup to obtain the effective action using the two schemes outlined in
the main text.

regulator, as well as the gauge-fixing and ghost action,

Γ(2,0)
𝑘 = Γ(2,0)

𝑘

[
Γ(0,𝑛)
𝑘

[ℎ; 𝑔̄] , 𝛿
𝑛

𝛿𝑔̄𝑛
R𝑘 , Γ

gf
𝑘 , 𝑆

gh
]

. (2.39)

To lowest order, the background and fluctuation correlators agree. The corrections to this
can be organized in an expansion in the number of loops. Once the approximation of the
fluctuation propagator is obtained, the actual flow equation can be solved.

The second way is to employ a vertex expansion of Γ𝑘 ,

Γ𝑘 [ℎ; 𝑔̄] =
∑
𝑚

1
𝑚!

∫
d𝑑𝑥

√
𝑔̄

[
Γ(𝑚)
𝑘

[𝑔̄]
] 𝜇1𝜈1 · · ·𝜇𝑚𝜈𝑚

ℎ𝜇1𝜈1 · · · ℎ𝜇𝑚𝜈𝑚 . (2.40)

The vertices Γ(𝑚)
𝑘

[𝑔̄] depend on both background curvatures and the momenta of the
fluctuation fields in terms of covariant background derivatives. With this ansatz, both
background and fluctuation correlators are resolved individually. Because this does not
respect split symmetry, this in a sense enlarges theory space by monomials that violate
split symmetry. However, these correlators are clearly related by the Nielsen identities.
The strategy most often employed is to solve this in a sense over-complete flow, and then
to impose the Nielsen identity only in the IR limit 𝑘 → 0. This is expected to reduce the
dimension of theory space back to its original dimension.

Inserting the vertex expansion (2.40) into the FRGE and comparing order by order in
ℎ, one infers that the scale-dependence of Γ(𝑚)

𝑘 is expressed in terms of Γ(𝑚+1)
𝑘 , Γ(𝑚+2)

𝑘
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and lower-order𝑚-point functions. Thus, solving the flow of Γ𝑘 at the level of the𝑚-point
vertex requires some closure conditions for the (𝑚 + 1) and (𝑚 + 2)-point function. The
established procedure employed in most works is to retain the tensor structures of the
classical action and to identify the couplings of the two highest, non-resolved correlators
with couplings from the highest-order resolved vertex. In chapter 5, we will come back to
the question of how to close the flow equations in such a way that split symmetry breaking
is minimized.

2.4 Conclusion

In this chapter we have investigated some aspects of the functional renormalization group.
We have seen that the functional renormalization group equation can be derived on quite
general grounds from the path integral. However, as the FRGE makes no direct reference
to the path integral, it can be used as a starting point of a well-defined quantum field
theory.

Despite the exact nature of the FRGE, finding exact solutions is very hard. One may
find approximate solutions by using a truncated ansatz for the effective average action.
Depending on the truncation, the truncated FRGE reduces to a set of ordinary differential,
partial differential or integro-differential equations.

Since gravity is a gauge theory, we have to deal with redundant gauge degrees of
freedom when we apply the RG framework. This is implemented via the background field
method. Using the Faddeev-Popov mechanism, we supplement the truncation ansatz for
the EAA by a suitable gauge-fixing and associated ghost action. This procedure, however,
breaks quantum diffeomorphism invariance. This can be restored by solving the Nielsen
identity, either before solving the flow equation or after one has taken the limit lim𝑘→0 Γ𝑘 .
This should give an effective action that depends solely on the quantum metric 𝑔𝜇𝜈 .

At this stage, we have developed the tools necessary to perform an RG computation. In
the next chapters, we will put this into action in several truncation schemes. In chapter 3,
we study the RG flow of gravity in a cosmological context. Chapter 4 discusses a gravity-
matter system including a higher-derivative term of the form (2.27), and its unitarity
properties. In chapter 5 we generalize this to (2.28) in our study of form factors.
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CHAPTER 3

CONSISTENT COSMOLOGY

FROM THE RG FLOW OF

GRAVITY

The following chapter is based on:

G. Gubitosi, R. Ooĳer, C. Ripken, and F. Saueressig. Consistent early and
late time cosmology from the RG flow of gravity. J. Cosmol. Astropart. Phys.
1812.12 (2018) 004. [arXiv:1806.10147].

G. Gubitosi, F. Saueressig, and C. Ripken. Scales and hierachies in asymptoti-
cally safe quantum gravity: a review. Found. Phys. 49.9 (2019) 972. [arXiv:1901.
01731].

Additional computational details are relegated to Appendix B and Appendix C.

3.1 Introduction

One thing any viable QG theory should do is to accommodate the observed values of the
gravitational couplings. Even though measurements of quantum gravity on solar-system
scales are notoriously difficult [186], cosmological observations give some constraints
on admissible theories of gravity. In particular, QG should give an explanation for the
incredibly small value that is measured for the cosmological constant [187]. Furthermore,
there are strong indications that the universe has gone through a phase of accelerated
expansion, known as inflation [188, 189]. In this chapter, we will study whether the
asymptotic safety program supports such phenomena.
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Chapter 3. Consistent cosmology from the RG flow of gravity

3.1.1 The cosmological standard model

By now, there is a well-established and experimentally well-tested phenomenological
description of cosmology, known as the ΛCDM model (see [187, 190, 191] for reviews).
The ΛCDM model has been very successful in describing the late-time evolution of the
universe, from nontrivial predictions such as the cosmic microwave background (CMB),
the abundances of elements in the universe, and large-scale structure formation. Observa-
tions show that the universe is at large scales approximately homogeneous and isotropic.
The evolution of such a universe is captured by a Friedmann-Lemaître-Robertson-Walker
(FLRW) geometry, given by the line element

d𝑠2 = d𝑡2 − 𝑎2(𝑡)
(

d𝑟2

1 − 𝑘𝑟2 + 𝑟2dΩ2
)

, (3.1)

where the scale factor 𝑎(𝑡) parameterizes the evolution of the volume of the universe. The
factor 𝑘 ∈ {−1, 0, 1} describes whether the universe is open, static or closed, respectively.
The Einstein equations then reduce to the Friedmann equations, that govern the evolution
of the scale factor 𝑎. Denoting the Hubble rate 𝐻 by 𝐻 ≡ ¤𝑎

𝑎 , where the dot denotes a
derivative with respect to 𝑡, the Friedmann equation reads

𝑘2

𝑎2 = 𝐻2 (Ωmatter +Ωradiation +ΩΛ − 1) . (3.2)

Here Ω𝑖 denotes the contribution of different fractions of the contents of the universe. In
particular, we have the dark energy contribution ΩΛ due to the presence of the cosmolog-
ical constant:

ΩΛ =
Λ

3𝐻2
0

, (3.3)

where 𝐻0 denotes the present-day Hubble rate.
Structure formation is driven by small inhomogeneities that originate from quantum

fluctuations. These perturbations are described by the power spectrum P𝑖 (𝑘), given by
the Fourier transform of the 2-point correlation functions. On physical grounds, we can
assume that P (𝑘) is well approximated by a power law:

P𝑖 (𝑘) ' 𝐴𝑖

(
𝑘

𝑘0

)𝑛𝑖−1
. (3.4)

In this expression, 𝑘 denotes the wave number and 𝑘0 denotes an arbitrary reference scale.
The amplitude of the fluctuation is denoted by 𝐴𝑖 . The parameter 𝑛𝑖 is the so-called
spectral tilt. For 𝑛𝑖 = 1, the spectrum is perfectly homogeneous.

Perturbations around the FLRW metric can be decomposed into scalar and tensor
fluctuations. This yields the spectral tilts 𝑛𝑠, 𝑛𝑡 corresponding to the scalar and tensor
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3.1. Introduction

fluctuations, respectively. In addition, one has the ratio 𝑟 = 𝐴𝑡/𝐴𝑠 of tensor to scalar
amplitudes. Observations of the CMB have put severe constraints on the values of 𝑛𝑠 and
𝑟 , see Figure 3.1.1

3.1.2 The cosmological constant problem

The cosmological constant enters as a free parameter in the ΛCDM model, and must be
fixed by observations. The value of the cosmological constant is often considered as the
biggest mismatch between theoretical expectations and astrophysical observations (see
[192–195] and references therein). From the vacuum contributions in a QFT with UV
cutoff ΛUV, it is expected that

Λ ∝ Λ2
UV , (3.5)

where the proportionality constant is of order one. Identifying ΛUV with the Planck scale
𝑀P, introduced in (1.1), as the “typical” scale of QG, we expect that the cosmological
constant will have a similar value. However, observations from distant supernovae [188,
189] yield

Λobs = 4 × 10−66 eV2 ' 10−120 𝑀2
P , (3.6)

which is a gigantic 120 orders of magnitude smaller. In order to cure this discrepancy,
one may envision starting out with a bare value of the cosmological constant Λbare that
is chosen such that it exactly cancels the quantum contributions from the field modes.
However, this would imply the fine-tuning of the value of Λbare up to 120 digits. In
standard QFT, such a mechanism is absent. In that respect, the cosmological constant
problem is considered a prototypical example of the naturalness problem [196].

3.1.3 Inflation

Observations from the CMB [197] show that the universe is extremely homogeneous at
large scales, with temperature fluctuations of only 10−5 times the value of the average
CMB temperature. Assuming that this homogeneity has a common causal origin, it
must mean that large parts of the universe must have been in causal contact in the past.
This suggests that the universe has undergone a period of accelerated expansion, called
inflation [198].

The accelerated expansion can be driven by various different physical mechanisms
[199]. Each mechanism gives a specific shape of the power spectrum of primordial
perturbations, yielding different predictions for the spectral tilt 𝑛𝑠 and tensor-to-scalar
ratio 𝑟 . These can be checked against experimental observations. Figure 3.1 shows
the observational constraints measured by the Planck satellite [197]. In addition, the

1To date, there is no observation of the tensor spectral index 𝑛𝑡 .
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Chapter 3. Consistent cosmology from the RG flow of gravity

Figure 3.1: Observational constraints on the tensor-to-scalar ratio 𝑟 and the
scalar spectral tilt 𝑛𝑠 from Planck observations. The strongest constraint from
observations is denoted by the blue contour. Various models for inflation give
different predictions for 𝑟 and 𝑛𝑠. Note that Starobinsky inflation (𝑅2-inflation),
denoted by the orange line, is in excellent agreement with the observational
data.
Credit: Planck collaboration. Planck 2015 results. XX. Constraints on infla-
tion. Astron. Astrophys. 594 (2016) A20. [arXiv:1502.02114], reproduced
with permission © ESO.

predictions for 𝑛𝑠 and 𝑟 are shown for various models. The experimental data rule out a
large number of models.

One model that seems to be favored by the observational constraints is Starobinsky
inflation or 𝑅2-inflation [200–202]. This is a special case of power-law 𝑓 (𝑅)-gravity,
truncated at second order in 𝑅. It is given by the action2

𝑆[𝑔] = 1
16𝜋𝐺

∫
d4𝑥

√
𝑔

(
2Λ − 𝑅 + 𝐵𝑅2

)
. (3.7)

At early cosmological times, the 𝑅2-term gives rise to inflation through the classical
equations of motion. If this modification of gravity drives inflation, the value of the

2Throughout this chapter, we will work with Euclidean signature for the metric. The Lorentzian action
corresponding to Starobinsky inflation differs from (3.7) by a minus sign. We assume that the RG flows
obtained from the Euclidean action contain the same information as their Lorentzian counterpart. For first
studies into the construction of a functional RG flow on Lorentzian spacetimes see [55, 86].
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3.2. Observational constraints on gravity

Energy scale (eV) Constraint

𝑘 infl = 1022 𝐵 = −1.7 × 10−46 eV−2

𝑘 lab = 10−5 𝐺 = 6.7 × 10−57 eV−2

𝑘Hub = 10−33 Λ = 4 × 10−66 eV2

Table 3.1: Observational constraints on the parameters of the action (3.7). For
each parameter we indicate the energy scale at which the experiment is per-
formed; these are the inflationary scale 𝑘 infl, laboratory scale 𝑘 lab, and the
Hubble scale 𝑘Hub.

𝑅2-coupling 𝐵 should be
𝐵 = −1.7 × 10−46 eV−2 (3.8)

at the time of inflation.

3.1.4 Scale dependence

We will now consider the 𝑓 (𝑅)-model in the context of the asymptotic safety scenario.
In the light of the previous chapter, this suggests that the couplings Λ, 𝐺 and 𝐵 acquire a
dependence on the energy scale 𝑘 . Each coupling is then measured at a different distance
scale, as explained in detail in the next section and summarized in Table 3.1.

In order to make contact with the Asymptotic Safety scenario, these constraints
should be valid initial data for an asymptotically safe RG trajectory. This means that there
should be an RG trajectory that satisfies the observational constraints, and furthermore
is controlled by a UV fixed point at large energy scales. Within this setting, the RG
trajectory should satisfy the constraints summarized in Table 3.2. The construction of a
trajectory that meets all these requirements is a highly nontrivial task and constitutes the
main result of this chapter.

3.2 Observational constraints on gravity

In this section we will discuss the observational constraints on the gravitational parameters
in more detail.

At this point the following remark is in order. From Table 3.2, one may conclude
that at each energy scale only one parameter is constrained. In the derivation, we assume
that the other parameters take “reasonable” values, which we will check a posteriori.
In particular, we assume that Newton’s coupling 𝐺𝑘 does not run between the scale of
inflation and the laboratory scale where 𝐺 is measured.
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Energy scale (eV) RG constraint

𝑘 � 𝑀P = 2.4 × 1027 NGFP
𝑘 ' 𝑘 infl = 1022 𝐵𝑘 ' 𝐵infl = −1.7 × 10−46 eV−2

𝑘 ' 𝑘 lab = 10−5 𝐺𝑘 ' 𝐺 = 6.7 × 10−57 eV−2

𝑘 ' 𝑘Hub = 10−33 Λ𝑘 ' Λ = 4 × 10−66 eV2

Table 3.2: Constraints on the action (3.7) in the RG framework. The conditions on
the parameters are imposed at various scales and are the same as in Table 3.1.
Moreover, we impose the condition that the RG trajectory approaches a NGFP
at trans-Planckian scales 𝑘 � 𝑀P.

3.2.1 Early-time cosmology

Assuming that the inflationary behavior of the universe originates from the 𝑅2 term
(Starobinsky inflation), we can derive a constraint on the parameter 𝐵 in the action (3.7)
from early-time cosmology. In the context of inflationary cosmology, it is generally
assumed that the energy density of matter and the cosmological constant are negligible,
in the sense that these do not alter the background dynamics significantly. We take as a
working assumption that the RG flow of Λ𝑘 does not spoil this assumption, and that the
contribution from Λ𝑘infl is indeed subdominant to the dynamics of the early universe.

Neglecting the cosmological constant term, the action (3.7) reduces to the Starobinsky
action [200–202]. Constraints on this model can be obtained from observations of the
CMB, as done by the Planck collaboration [197]. As these constraints rely on the inferred
properties of the primordial perturbations when they left the Hubble horizon, we take the
Hubble parameter at that time as the relevant energy scale:

𝑘 infl = 𝐻infl ' 1022 eV . (3.9)

Constraints on inflationary models are usually parameterized in terms of an inflaton-field
potential [197, 199]. At the classical level, an 𝑓 (𝑅) action can be mapped into an action
for gravity coupled to an inflaton field 𝜑 with potential 𝑉 (𝜑). The function 𝑓 can then be
related to the potential 𝑉 . Following the derivation of Appendix B, the action (3.7) leads
to the following potential:

𝑉 (𝜑) =
𝑀2

P
8𝐵

(
1 − e−

√
2/3𝜑/𝑀P

)2
. (3.10)

This characterizes the Higgs inflation model [203, 204]. Observations of the scalar
spectral tilt 𝑛𝑠 and the tensor-to-scalar ratio 𝑟 put the following constraint on the value of
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𝐵 [202, 205, 206]:
𝑀 ' 3.3 × 10−3𝑀P , (3.11)

where 𝑀4 = −𝑀 2
P

8𝐵 . Written in terms of 𝐵𝑘 , this implies the constraint

𝑀2
P𝐵𝑘 ' −1 × 109 , (3.12)

with 𝑘 taken at horizon crossing, 𝑘 = 𝑘 infl.

3.2.2 Late-time cosmology

Late-time cosmology is sensitive only to the value of the cosmological constant at very
low energy scales, corresponding roughly to the current value of the Hubble parameter.
Thus, we take

𝑘Hub = 10−33 eV . (3.13)

While for early-time dynamics we assumed that action is dominated by the 𝑅2-term, we
take as working hypothesis here that the late-time dynamics of the universe is described
by the Einstein-Hilbert action, compatible with the ΛCDM model discussed in subsec-
tion 3.1.1. As at this stage the curvature 𝑅 is assumed to be small, we neglect the 𝑅2-term
as long as the RG flow does not drive 𝐵 to extremely large values.

Current observations are in full agreement with a universe dominated at late times by
a 2Λ − 𝑅 action [207]. Specifically, the cosmological constant density parameter takes
the value

ΩΛ ' 0.7 . (3.14)

Together with the current value of the Hubble parameter [208],

𝐻0 ' 70 km s−1Mpc−1 , (3.15)

we arrive at the following estimate:

ΩΛ ≡ 𝜌vac

𝜌𝑐
=

Λ
8𝜋𝐺

8𝜋𝐺
3𝐻2

0

⇒ Λ = ΩΛ · 3𝐻2
0 ' 4 × 10−66 eV2 .

(3.16)

3.2.3 Measurements of Newton’s constant

Current measurements of Newton’s constant are based on laboratory experiments, made
on a scale of about 10−2−100 m [208]. This corresponds to an energy scale of 10−4−10−6

eV. Thus, we take
𝑘 lab ' 10−5 eV . (3.17)
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At this length scale, Newton’s coupling is measured to be [208]

𝐺 = 6.7 × 10−57 eV−2 . (3.18)

As this measurement is obtained from a local experiment that is governed by Newtonian
gravity, the cosmological constant and the 𝑅2-coupling do not influence this result.

3.3 An RG approach to gravity

In this section, we will present the RG flow equations that govern the running of the
coupling constants. We will discuss the construction of the flow equation for 𝑓 (𝑅)-
gravity, as studied in e.g. [63, 64, 85]. As a first investigation, we will consider the case
where 𝑓 (𝑅) reduces to the Einstein-Hilbert action, i.e. we maintain only the cosmological
constant and Newton’s coupling. After that, we consider the case where the 𝑅2-coupling
comes into play. This analysis extends the earlier work [101].

We now put into practice the methods developed in chapter 2. In order to calculate the
RG flow of gravity, we employ the background field method using the linear split (2.29).
Following (2.32), we then start with the truncation of the effective average action

Γ𝑘 [𝑔, 𝑐, 𝑐; 𝑔̄] ' Γgrav
𝑘 [𝑔] + Γgf

𝑘 [𝑔; 𝑔̄] + 𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄] , (3.19)

where we use (2.33) and (2.35) for the gauge-fixing action and ghost action, respectively.
To simplify the computations, we will set the gauge-fixing parameters 𝛼 and 𝛽 to

𝛼 = 1 , 𝛽 =
𝑑

2
− 1 , (3.20)

implementing harmonic gauge.
The operators of physical interest are contained in Γgrav

𝑘 [𝑔]. For this, we will use the
𝑓 (𝑅)-action

Γgrav
𝑘 [𝑔] = 1

16𝜋𝐺𝑘

∫
d𝑑𝑥

√
𝑔 𝑓𝑘 (𝑅) , (3.21)

where 𝑅 denotes the Ricci scalar.
Inserting the ansatz (3.19) into the FRGE (1.13), we can obtain the 𝑘-dependence

of 𝐺𝑘 and 𝑓𝑘 by projecting on actions of 𝑓 (𝑅)-type. The result is a partial differential
equation for 𝑓𝑘 (𝑅). The flow equations are conveniently parameterized in terms of the
dimensionless quantities

𝑟 = 𝑘−2𝑅 ; 𝑓𝑘 (𝑟) = 𝑘−2 𝑓𝑘 (𝑅) , (3.22)

as well as the dimensionless Newton’s coupling 𝑔𝑘 = 𝑘2𝐺𝑘 that was introduced in (1.9).
By now, several incarnations of these flow equations have been constructed, using different
choices for the gauge-fixing and parameterization of the fluctuation field [53, 63, 64, 67,
70, 71, 85, 98, 99].
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3.3.1 The Einstein-Hilbert projection

As a first study, we will consider the projection onto the Einstein-Hilbert action, setting
𝐵 = 0 in the action (3.7). Following the steps in [102], we arrive at the 𝛽-functions for
the dimensionless Newton coupling 𝑔𝑘 and the cosmological constant 𝜆𝑘 = 𝑘−2Λ𝑘 :

𝜕𝑡𝑔𝑘 = (𝑑 − 2 + 𝜂𝑁 ) 𝑔𝑘
𝜕𝑡𝜆𝑘 = 𝑔𝑘 (𝐿1 + 𝜂𝑁 𝐿2) − (2 − 𝜂𝑁 ) 𝜆𝑘 ,

(3.23)

where again we have encountered the anomalous dimension of Newton’s coupling 𝜂𝑁 ,
defined in (1.11). The anomalous dimension 𝜂𝑁 is of the form

𝜂𝑁 =
𝐵1

1 − 𝑔𝑘𝐵2
𝑔𝑘 . (3.24)

The coefficients 𝐿𝑖 and 𝐵 𝑗 are given by

𝐵1 =
1
3
(4𝜋)1−𝑑/2

(
𝑑 (𝑑 + 1)Φ1

𝑑/2−1(−2𝜆) − 4𝑑Φ1
𝑑/2−1(0)

− 6𝑑 (𝑑 − 1)Φ2
𝑑/2(−2𝜆) − 24Φ2

𝑑/2(0)
)

𝐵2 = −1
6
(4𝜋)1−𝑑/2

(
𝑑 (𝑑 + 1)Φ̃1

𝑑/2−1(−2𝜆) − 6𝑑Φ̃2
𝑑/2(−2𝜆)

)
𝐿1 = (4𝜋)1−𝑑/2

(
𝑑 (𝑑 + 1)Φ1

𝑑/2(−2𝜆) − 4𝑑Φ1
𝑑/2(0)

)
𝐿2 = −1

2
(4𝜋)1−𝑑/2𝑑 (𝑑 + 1)Φ̃1

𝑑/2(−2𝜆) .

(3.25)

The threshold functions Φ𝑝
𝑛 (𝑤) and Φ̃𝑝

𝑛 (𝑤) defined as

Φ𝑝
𝑛 (𝑤) ≡

1
Γ(𝑛)

∫ ∞

0
d𝑧 𝑧𝑛−1 𝑟 (𝑧) − 𝑧𝑟 ′(𝑧)

(𝑧 + 𝑟 (𝑧) + 𝑤) 𝑝

Φ̃𝑝
𝑛 (𝑤) ≡

1
Γ(𝑛)

∫ ∞

0
d𝑧 𝑧𝑛−1 𝑟 (𝑧)

(𝑧 + 𝑟 (𝑧) + 𝑤) 𝑝 .
(3.26)

Using the Litim regulator [209], these integrals are particularly simple and can be evalu-
ated to

Φ𝑝
𝑛 (𝑤)

��
Litim =

1
Γ(𝑛 + 1)

1
(1 + 𝑤) 𝑝 ; Φ̃𝑝

𝑛 (𝑤)
��
Litim =

1
Γ(𝑛 + 2)

1
(1 + 𝑤) 𝑝 . (3.27)

We now set 𝑑 = 4 and evaluate the flow equations. The 𝛽-functions (3.23) define a flow
through the parameter space spanned by 𝑔 and 𝜆. An overview of the phase diagram is
given in Figure 3.2.
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Figure 3.2: Phase diagram of the Einstein-Hilbert projection. The fixed points
are indicated by red dots, flow lines by blue arrows. The red line denotes the
singularity in 𝜂𝑁 . First obtained in [102].

The RG flow is essentially controlled by two fixed points. First, we find a Gaussian
fixed point, located at

𝑔∗ = 𝜆∗ = 0 . (3.28)

Second, we find a NGFP at the values

𝜆∗ = 0.193 ; 𝑔∗ = 0.707 . (3.29)

Linearizing the flow around the GFP, we find the canonical mass dimensions for the
critical exponents:

GFP: 𝜃1 = +2 ; 𝜃2 = −2 . (3.30)

For the NGFP, we find the complex critical exponents

NGFP: 𝜃1,2 = 1.48 ± 3.04𝑖 . (3.31)

The positive real part shows that the NGFP is UV-attractive. The nonzero complex parts
indicate a spiraling behavior around the fixed point. As the NGFP is UV-stable, it is a
suitable candidate for the Asymptotic Safety scenario.

In addition, (3.23) shows that the locus 𝑔 = 0 is a root of 𝛽𝑔. This implies that the
RG flow cannot cross this line, as is visible in Figure 3.2. Since the measured value of
Newton’s constant is positive, RG trajectories in the region 𝑔 < 0 do not correspond to the
RG flow realized in nature. Furthermore, the anomalous dimension 𝜂𝑁 has a singularity
at 𝑔𝐵2 = 1. This is depicted as a dashed red line in Figure 3.2, where the flow changes
direction.

We finish the discussion of the Einstein-Hilbert phase diagram by the following re-
mark. The critical exponent 𝜃2 associated to the 𝑔-direction implies that the dimensionless
Newton’s coupling 𝑔𝑘 runs proportional to 𝑘2 in the vicinity of the GFP. Thus, we observe
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that in this region the dimensionful Newton’s coupling 𝐺𝑘 freezes out. We identify this
with a semi-classical regime.

3.3.2 RG flow of the 𝑅2-system

We now turn to the system that includes higher powers of the curvature. A first study of
the RG flow of higher-curvature truncations has been carried out in [84]. At the level of
polynomial expansions, systematic searches have been done up to order 𝑅6 [64, 85], 𝑅8

[63], 𝑅35 [76, 77] and recently 𝑅70 [78].
We will use the flow equations for 𝑓 (𝑅)-gravity derived in [85], listed in Appendix C.

We then project the flow equations onto the terms 𝑟0, 𝑟1 and 𝑟2, in order to determine the
scale-dependence of the action (3.7). Using the dimensionless couplings

𝜆𝑘 , 𝑔𝑘 , 𝑏𝑘 = 𝐵𝑘 𝑘
2 , (3.32)

the 𝛽-functions

𝜕𝑡𝜆𝑘 = 𝛽𝜆 (𝜆𝑘 , 𝑔𝑘 , 𝑏𝑘) , 𝜕𝑡𝑔𝑘 = 𝛽𝑔 (𝜆𝑘 , 𝑔𝑘 , 𝑏𝑘) , 𝜕𝑡𝑏𝑘 = 𝛽𝑏 (𝜆𝑘 , 𝑔𝑘 , 𝑏𝑘) (3.33)

can then be obtained from solving the system of linear equations listed in (C.9).

Fixed points, singularities and separation lines

As in the Einstein-Hilbert projection, we find a GFP located at

GFP: 𝜆∗ = 𝑔∗ = 𝑏∗ = 0 . (3.34)

In addition, the NGFP generalizes in the three-dimensional parameter space to

NGFP: 𝜆∗ = 0.133 , 𝑔∗ = 1.59 , 𝑏∗ = 0.119 . (3.35)

The dimensionless coupling multiplying the 𝑅2-term takes the value

𝑏∗
16𝜋𝑔∗

= 1.5 × 10−3 . (3.36)

Linearizing the flow around the GFP, we find the canonical critical exponents

GFP: 𝜃1 = +2 , 𝜃2 = −2 , 𝜃3 = −2 . (3.37)

Analyzing the eigendirections shows that the GFP is UV-attractive in the 𝑔 = 0 plane and
UV-repulsive in the other eigendirections. This confirms perturbative non-renormaliz-
ability, as discussed in subsection 1.2.2.
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For the NGFP, the critical exponents read

NGFP: 𝜃1,2 = 1.26 ± 2.45𝑖 , 𝜃3 = 27.0 , (3.38)

indicating that the NGFP is UV-attractive in all directions. The large positive eigenvalue
𝜃3 is typical for the 𝑅2 system (see e.g. [84]), and reduces significantly when higher-order
curvature terms are included [64, 76, 85].

Apart from the fixed points, the RG flow is controlled by the singularity structure of
the 𝛽-functions. The region containing the GFP and NGFP is constrained by two singular
surfaces where the 𝛽-functions diverge. These two surfaces are pictured in Figure 3.3a,
labeled “A” and ”B”. The surface A is parabola-shaped and runs approximately parallel
to the 𝑏-axis. RG trajectories flowing towards positive values of 𝜆 for small 𝑘 will
terminate at A. The surface B extends approximately parallel to the 𝜆-axis, and bounds
trajectories flowing towards positive 𝑏. However, we find that RG trajectories typically
do not terminate at B, since they are repelled once they come close to it.

Finally, we observe that also for the 𝑅2-system the 𝛽-function 𝛽𝑔 vanishes in the plane
𝑔 = 0. Thus, the RG flow cannot cross this plane. As in subsection 3.3.1, we conclude
that since the observed value of Newton’s constant is positive, the quadrants where 𝑔 < 0
can be classified as unphysical.

3.3.3 Construction of sample trajectories

We continue our study of the 𝑅2-phase diagram by constructing explicit sample solutions.
These are obtained by integrating the flow equations numerically. Our primary focus is
on RG trajectories that emanate from the NGFP in the UV and undergo a crossover to the
GFP as the RG time 𝑡 is lowered. Typical examples of trajectories showing this behavior
are depicted in Figure 3.3b. Following the discussion in [101, 104, 166], it is this type of
solutions that gives rise to a classical regime resembling GR at low energy.

Following the classification in [104], we distinguish trajectories by the IR value of
the cosmological constant. Similar to the Einstein-Hilbert case, one finds trajectories that
flow towards negative cosmological constant (Type Ia, blue curves), positive Λ (Type IIIa,
red curves) and towards vanishing Λ (Type IIa, orange curves). Typically, trajectories of
Type IIIa terminate at the singular locus A as 𝑘 → 0.

In addition to the cosmological constant, one can also track the 𝑅2-coupling 𝑏 along
the RG flow. We find that 𝑏 tends to zero as 𝑘 → 0 for all trajectories. Let us first consider
trajectories that flow towards 𝑏 → 0 from positive 𝑏. Starting in the IR and following
the flow towards the UV, we find that such an RG trajectory first approaches the GFP,
and then makes a sharp turn towards positive 𝑏. As it approaches the singularity 𝐵, it is
eventually repelled in the direction of the NGFP. The fixed point then provides the UV
completion as 𝑡 → ∞.
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Figure 3.3: Overview of the flow diagram obtained from the 𝑅2-truncation.
3.3a: the GFP (3.34) and NGFP (3.35) are marked by the red dots. The singular
planes stretch out in negative-𝑏 direction (A) and in negative-𝜆 direction (B).
Note that the singular planes do not disconnect the fixed points. This opens up
the possibility for a crossover trajectory from the NGFP to the GFP, which is
required for a viable semiclassical regime.
3.3b: selected RG trajectories. The red curves lead to a positive IR value
of the cosmological constant and are denoted as Type IIIa-trajectories. These
trajectories terminate in the singular plane A. The blue curves lead to a negative
IR value of the cosmological constant and are denoted as Type Ia-trajectories.
These avoid all singularities. The orange curves denote trajectories of Type IIa,
defined as the separatrix of trajectories of Types Ia and IIIa. The IR limit of
Type IIa trajectories is the GFP. Finally, the green curve marks the trajectory
that meets the observational constraints given in Table 3.2.

In contrast, a trajectory starting at 𝑏 → 0 from negative 𝑏 that has passed the GFP
makes a turn towards negative 𝑏. After obtaining a minimal value for 𝑏, it makes a sharp
turn and flows back in the direction of the GFP before it crosses over to the NGFP regime.
The flow of trajectories of this type may be bounded by the singular plane A. This ceiling
may prevent solutions from reaching the basin of attraction of the NGFP so that they
terminate at a finite value of 𝑡.
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Chapter 3. Consistent cosmology from the RG flow of gravity

3.4 Trajectories consistent with observations

We are now in the position to look for an RG trajectory that satisfies all the conditions
listed in Table 3.2. Since constraints listed in this table are imposed at different energy
scales, the search of the corresponding RG trajectory is a rather complicated boundary
value problem. In order to convert this setup into an initial value problem, we study the
small-𝑔 expansion of the system in subsection 3.4.1 before constructing the RG trajectory
numerically in subsection 3.4.2. The main result of this section is the trajectory displayed
in Figure 3.5 which meets all cosmological requirements.

3.4.1 Initial values from the perturbative expansion

In this section, we construct initial data that serves as a starting point for the numerical
integration of an RG trajectory compatible with cosmological observations. As a first
study, we analyze the Einstein-Hilbert projection described in subsection 3.3.1. We then
extend the calculation to include the 𝑅2-coupling.

The Einstein-Hilbert case

Let us first consider the possibility of an RG trajectory that is consistent with the observed
values for Newton’s coupling and the cosmological constant. We observe that Newton’s
coupling has a value of the order 10−57 eV−2 at an energy scale 𝑘 lab ' 10−5 eV. This
indicates that the dimensionless parameter 𝑔𝑘 = 𝑘2𝐺𝑘 at 𝑘 lab has a very small value.
Thus, an RG trajectory should reach a classical regime 𝑔 � 1.

This motivates the expansion of the 𝛽-functions around 𝑔 = 0. In order to obtain
expanded flow equations that can be solved exactly, we write the 𝛽-functions in terms of
the new couplings

𝑔𝑘 ; 𝛼𝑘 = 𝜆𝑘𝑔𝑘 . (3.39)

Up to second order in 𝑔, the expanded 𝛽-function for 𝑔 then reads

𝜕𝑡𝑔 ' 2𝑔 − 7
3𝜋
𝑔2 . (3.40)

The analytic solution then reads

𝑔𝑘 =
𝑔𝑘0𝑘

2

𝑘2
0 +

7
6𝜋 𝑔𝑘0

(
𝑘2 − 𝑘2

0

) , (3.41)

where 𝑔𝑘0 denotes an integration constant that specifies a particular RG trajectory. Restor-
ing the dimensionful Newton’s coupling, we obtain

𝐺𝑘 =
1

1 + 7
6𝜋𝐺𝑘0

(
𝑘2 − 𝑘2

0

)𝐺𝑘0 , (3.42)
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in accordance with [120]. Indeed, for 𝑘2− 𝑘2
0 � 𝐺𝑘0 Newton’s coupling is approximately

constant. Quantum corrections only occur as

𝑘2 ∼ 𝑘2
0 +

6𝜋
7
𝐺−1

𝑘0
≡ 𝑘2

𝐺 . (3.43)

At energies above the scale 𝑘𝐺 , Newton’s coupling is driven to zero quadratically.
For the cosmological constant, we expand the 𝛽-function for 𝛼𝑘 up to second order in

𝑔:
𝜕𝑡𝛼 ' − 14

3𝜋
𝛼𝑔 − 11

3𝜋
𝑔2 . (3.44)

Also this flow equation can be solved analytically:

𝛼𝑘 =
𝛼𝑘0 + 11

12𝜋 𝑔
2
𝑘0

(
1 − 𝑘4/𝑘4

0
)(

1 + 7
6𝜋 𝑔𝑘0

(
𝑘2/𝑘2

0 − 1
))2 . (3.45)

This gives the following running for Λ𝑘 [120]:

Λ𝑘 = 𝛼𝑘/𝐺𝑘 =
Λ𝑘0 − 11

12𝜋𝐺𝑘0

(
𝑘4 − 𝑘4

0
)

1 + 7
6𝜋𝐺𝑘0

(
𝑘2 − 𝑘2

0

) . (3.46)

For sufficiently small values of Λ𝑘0 this equation entails three scaling regimes of the
cosmological constant. First of all, we observe that the denominator changes the running
of Λ𝑘 similar to 𝐺𝑘 , starting at 𝑘𝐺 . For 𝑘 � 𝑘𝐺 , the scale-dependence of Λ𝑘 is governed
by the NGFP and the cosmological constant grows quadratically. Secondly, the numerator
introduces a new scale

𝑘4 ∼ 𝑘4
0 +

12𝜋
11

Λ𝑘0

𝐺𝑘0

≡ 𝑘4
Λ . (3.47)

For 𝑘 � 𝑘Λ, Λ𝑘 enters a classical regime where it freezes out. Between 𝑘Λ and 𝑘𝐺 , the
running of Λ is proportional to 𝑘4.

If 𝑘 ' 𝑘0, the dimensionful Newton’s coupling is constant up to corrections of the
order 𝑘2 − 𝑘2

0. Thus, the identification 𝑘0 = 𝑘 lab is convenient since this corresponds to
the scale where𝐺𝑘 is measured. Evaluating (3.43) with this initial condition gives a value
of 𝑘𝐺 of the order of the Planck scale.

Inserting the measured value of the dimensionful Newton’s constant into the dimen-
sionless relation gives

𝑔𝑘0 = 6.71 × 10−67 . (3.48)

Similarly, inserting 𝑘 ' 𝑘Hub into the solution (3.45) allows us to calculate the value of 𝛼
at laboratory scale:

𝛼𝑘0 = 2.68 × 10−122 . (3.49)

The initial values (3.48) and (3.49) serve as a starting point for a trajectory in the Einstein-
Hilbert projection.
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The 𝑅2-case

We now extend the analysis from the previous subsection to include the 𝑅2-coupling. We
again set 𝑘0 = 𝑘 lab and write the flow in terms of the couplings 𝑔𝑘 and 𝛼𝑘 , as well as the
additional dimensionless coupling

𝛽𝑘 =
𝑏𝑘

16𝜋𝑔𝑘
. (3.50)

In this way, we are able to solve the flow equations expanded in 𝑔.
Expanding the flow equations (3.33) up to second order in 𝑔 gives the expressions3

𝜕𝑡𝑔 ' 2𝑔 − 23
24𝜋

𝑔2 , 𝜕𝑡𝛼 ' − 23
12𝜋

𝛼𝑔 − 5
12𝜋

𝑔2 . (3.51)

This leads to the solutions

𝑔𝑘 =
𝑘2𝑔𝑘0

𝑘2
0 +

23
48𝜋 𝑔𝑘0

(
𝑘2 − 𝑘2

0

) , 𝛼𝑘 =
𝛼𝑘0 + 5

48𝜋 𝑔
2
𝑘0

(
1 − 𝑘4/𝑘4

0
)(

1 + 23
48𝜋 𝑔

2
𝑘0

(
𝑘2/𝑘2

0 − 1
))2 . (3.52)

Expanding the RG equation for 𝛽 up to first order in 𝑔 gives4

𝜕𝑡 𝛽 =
109

2160𝜋2 +O(𝑔) . (3.53)

The solution of this equation is

𝛽𝑘 =
109

2160𝜋2 log
(
𝑘

𝑘0

)
+ 𝛽𝑘0 . (3.54)

This is the typical logarithmic running of a marginal coupling at one-loop level. Inserting
the measured values at 𝑘 infl gives the initial value

𝛽𝑘0 = −5.0 × 108 . (3.55)

Combining the results (3.48), (3.49) and (3.55), one readily arrives at the initial values
for 𝑔𝑘 , 𝜆𝑘 and 𝑏𝑘 :

𝑔𝑘0 = 6.71 × 10−67 , 𝜆𝑘0 = 3.99 × 10−56 , 𝑏𝑘0 = −1.7 × 10−56 . (3.56)

This completes the starting point for numerical integration of the flow equation in the
𝑅2-system.

3Compared to subsection 3.3.1, we have used a slightly different gauge-fixing and regulator. This yields
slightly different numerical prefactors in (3.52); other qualitative and quantitative features remain the same
up to high numerical precision.

4Expanding the flow equation up to second order in 𝑔 gives a differential equation that cannot be solved
analytically.
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3.4.2 Constructing the RG trajectory realized by nature

Using the initial conditions derived in the previous section, we can now integrate the
full 𝛽-functions. We use the numerical NDSolve routine in Mathematica. In order to
keep track of the propagation of the small values of the initial conditions, we increase the
working precision to 124 digits. As soon as the RG flow has reached a regime where the
couplings take larger values, we reduce the precision to 25 digits to increase the speed of
the computation. This allows tracking the RG flow from the classical regime up to the
NGFP.

We first consider the Einstein-Hilbert case. The running of the dimensionful couplings
Λ𝑘 and 𝐺𝑘 is depicted in Figure 3.4. The energy scales at which the observational
constraints are imposed are marked by gray bars, and the typical scales 𝑘𝐺 and 𝑘Λ by a
gray dashed bar.

We observe several remarkable features in Figure 3.4. First of all, we note that the
trajectory indeed matches all observational constraints. Therefore, the expansion in small
𝑔 is valid, and quantum effects only play a role at energy scales beyond inflation. We
note that Newton’s coupling starts to run at 1027 eV, which is in the same ballpark as the
dynamically generated scale 𝑘𝐺 ' 1028 eV. For energy scales 𝑘 ≳ 𝑘𝐺 , Newton’s coupling
reaches a very small value.5 For energies above 𝑘𝐺 , Newton’s coupling enters the fixed
point regime, where 𝐺𝑘 is driven to zero quadratically in 𝑘 .

Secondly the cosmological constant Λ𝑘 starts to run at 𝑘Λ ' 10−2 eV, corresponding
to the length scale of 10−4 m. For 𝑘 < 𝑘Λ, Λ𝑘 is constant and equal to the value quoted
in Table 3.2. This is in agreement with the current measurements, that take place over
cosmological scales. At intermediate energies 𝑘Λ ≲ 𝑘 ≲ 𝑘𝐺 , the cosmological constant
scales as Λ𝑘 ∝ 𝑘4. Above the scale 𝑘𝐺 , the cosmological constant is in the fixed point
regime where it increases quadratically in 𝑘 .

We now consider the 𝑅2-system. Integrating the flow numerically from the initial
conditions (3.56), we obtain an RG trajectory ranging from the Hubble scale 𝑘Hub up to
the NGFP. This solution is depicted as the green curve in Figure 3.3b. The running of the
dimensionful couplings Λ𝑘 , 𝐺𝑘 and 𝐵𝑘 is summarized in Figure 3.5. The values of the
couplings at the relevant energy scales are presented in Table 3.3. The existence of this
RG trajectory constitutes the main result of this chapter.

Qualitatively, the running of Λ𝑘 and 𝐺𝑘 follows the same pattern as in the Einstein-
Hilbert truncation. Newton’s coupling starts to run at an energy scale above the upper
bound of the inflation scale of 1022 eV, which validates the assumption that quantum
effects start to play a role beyond 𝑘 infl. Compared to the flow of the Einstein-Hilbert
truncation, we observe that the scale at which the running of 𝐺𝑘 starts is shifted a
few orders of magnitude towards the infrared, due to corrections stemming from the

5Cosmological consequences of a Planck-scale-vanishing Newton’s coupling were discussed from a
different perspective in [210, 211].
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Figure 3.4: RG trajectory satisfying cosmological constraints in the Einstein-
Hilbert truncation. Top panel: cosmological constant Λ𝑘 . Bottom panel:
Newton’s coupling 𝐺𝑘 . The solid gray bars indicate the energy scales at which
constraints are imposed; the dashed gray bars denote the energy scales 𝑘𝐺 and
𝑘Λ that are generated by the RG flow.

𝑅2-coupling. However, this shift does not affect the analysis at the inflationary scale.
The 𝑅2-coupling 𝐵𝑘 itself remains constant and negative up to the same energy scale,

after which it starts to increase. Crossing over to positive values at 𝑘 ' 1030 eV, it
decreases quadratically as it enters the fixed point regime. Note that the positive sign of
the fixed point value of 𝑏 leads to so-called “stable inflation”. Along the RG trajectory, we
find a cross-over from positive to negative 𝑏, which then realizes the “unstable inflation”-
scenario analyzed in [206].

We close this section by verifying the working assumptions in section 3.2 that the
couplings take reasonable values. At the inflation scale, the assumption is that the
cosmological constant does not affect the inflationary dynamics. This amounts to checking
that the condition Λ𝑘/

(
𝐵𝑘𝑅

2) � 1 is valid when evaluated at 𝑘 = 𝑘 infl. Using the fact
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Figure 3.5: RG trajectory passing through all points identified in Table 3.2. Top
panel: cosmological constant Λ𝑘 . Middle panel: Newton’s coupling 𝐺𝑘 .
Bottom panel: 𝑅2-coupling 𝐵𝑘 . The gray bars indicate the energy scales at
which constraints are imposed.
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Energy scale Λ 𝐺 𝐵

(eV) (eV2) (10−57 eV−2) (10−46 eV−2)

𝑘Hub ' 10−33 4 × 10−66 6.71 −1.7
𝑘 lab ' 10−5 4 × 10−66 6.71 −1.7
𝑘 infl ' 1022 4 × 1030 6.71 −1.7

Table 3.3: Selected values of the RG flow satisfying cosmological constraints. The
parameters are constant, within numerical accuracy. The exception to this is
the cosmological constant Λ. The bold values are constrained by observations,
while the other values are predictions from the RG trajectory.

that in approximately de Sitter background the scalar curvature is related to the Hubble
parameter as 𝑅 = 12𝐻2 and 𝐻 = 𝑘 infl, we find

Λ𝑘

𝐵𝑘𝑅2

����
𝑘=𝑘infl

' 4 × 10−15 � 1 . (3.57)

Thus, our working assumptions at the inflation scale are indeed valid.
For the late-time cosmological dynamics, we have to check that the 𝑅2-term does not

affect the background universe evolution at 𝑘Hub. Again making use of the approximation
that at late times we are in a quasi-de Sitter space, we find

𝐵𝑘𝑅
2 ' 10−161 eV2 , Λ𝑘 ' 10−66 eV2 , 𝑅 ' 10−65 eV2 . (3.58)

This establishes that the 𝑅2-term can be neglected compared to the Einstein-Hilbert action.
This validates the working assumptions made at the beginning of this chapter.

3.5 Conclusion

In this chapter, we have undertaken a first study in the application of the Asymptotic
Safety scenario to cosmology. Starting with a review of the Einstein-Hilbert truncation,
we have seen how to construct the RG flow of Newton’s coupling and the cosmological
constant. This exemplifies the ideas of chapter 1. For the Einstein-Hilbert truncation, we
have shown the existence of a UV-attractive fixed point, providing a suitable completion
of the QFT at high energies.

The existence of a NGFP persists if one includes a coupling tracking the flow of∫ √
𝑔𝑅2. The fixed point is shown to have three relevant directions, giving rise to a

three-dimensional UV-critical hypersurface. We have studied the phase diagram of this
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system, and have investigated the possibility of an RG trajectory crossing over from the
NGFP regime to a classical regime where Newton’s coupling has frozen out.

We then turned to the construction of an RG trajectory that is compatible with cosmo-
logical observations. Starting from the seminal works [119, 120], cosmological scenarios
based on modified gravitational dynamics have been studied extensively in various set-
tings, as the result of scale-dependent couplings [114, 115, 118, 122, 165, 212–214],
dilaton gravity [169, 215], Higgs inflation-inspired models [167, 216], non-Gaussian
fixed point driven inflation [113, 116, 117], and anisotropic models [217]. All these
investigations use a so-called RG -improvement which relates the RG scale 𝑘 to a phys-
ical quantity like the Hubble scale or the Ricci scalar 𝑅 in order to capture the “leading
quantum gravity effects” of the system. These studies have raised the expectation that the
early universe undergoes a period of power-law inflation and exhibits an almost-flat scalar
power spectrum [121].

In contrast, the analysis described in this chapter matches RG data to cosmological
constraints, without invoking the RG improvement procedure making a scale identification
that feeds into the effective equations of motion. By solving the RG equations, we obtain
the explicit running of the coupling constants Λ𝑘 , 𝐺𝑘 and 𝐵𝑘 . The running of these
couplings was then tested against the cosmological observations described in Table 3.2.

Studying the space of trajectories compatible with Asymptotic Safety provides two
striking insights. Firstly, there are RG trajectories that are compatible with the measured
values of Newton’s coupling and the cosmological constant obtained at laboratory and
Hubble scales, respectively. Moreover, an 𝑅2-term can be included in the analysis that
gives rise to a phase of early-time inflation, without spoiling the late-time cosmological
evolution. The initial conditions for this cosmological model below the Planck scale are
determined by the NGFP governing the gravitational dynamics above the Planck scale;
we have explicitly constructed a trajectory emanating from the NGFP that gives rise both
to the correct low-energy physics, as well as a realization of an inflationary phase that is
in agreement with observations. Thus, Asymptotic Safety may give rise to Starobinsky
inflation without introducing an ad hoc inflaton field. In this sense, the construction
is minimal in attributing observed phenomena in early and late time dynamics of the
universe to quantum gravity effects.6

Secondly, the constructed trajectories show how the RG flow may introduce new
scales dynamically. As is illustrated in Figure 3.4 and Figure 3.5, the RG flow undergoes
a crossover to a classical regime where the dimensionful couplings become constant. This
crossover sets a scale which we identify as (of the order of) the Planck scale𝑀P. This scale
is generated dynamically when the RG flow leaves the scale-invariant regime associated to
the NGFP. Similar toΛQCD, it must be determined by experimental observation. Solutions
to the flow equations also show that the Asymptotic Safety scenario is compatible with

6For a similar discussion at the level of effective field theory see [218, 219].
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the small value of the cosmological constant. The observed value Λobs may be taken
as an experimental input, fixing one of the initial conditions of the RG flow around the
fixed point. While this viewpoint does not gives an explanation for the small value of the
cosmological constant, it does ensure that one obtains a consistent theory ranging from
cosmic to ultraviolet scales.

We close this chapter with an outline for future work. Investigations into higher orders
in powers of the curvature have shown that classical power counting still provides a good
guiding principle for determining the relevance of an interaction [75–78, 112], lending
support to the general arguments [52] that the set of relevant interactions will be finite.
As irrelevant interactions are constrained by Asymptotic Safety, the inclusion of these
interactions will provide conditions on the space of couplings that may lead to testable
predictions.

Furthermore, it is clear that the addition of matter fields will give contributions to
the 𝛽-functions [60, 107, 130]. Naturally, this will give rise to different properties of
a non-Gaussian fixed point, such as position and stability coefficients. At least for the
class of gravity-dominated fixed points, these properties are qualitatively similar to the
properties described in this chapter. Therefore, it is expected that the scenario developed
here carries over to these cases as well. Naturally, it would be interesting to study the scale
dependence of the cosmological parameters taking into account contributions from phase
transitions in the matter sector, such as electroweak symmetry breaking (see [192–194] for
discussions on this topic). However, since investigations into this direction have shown
that these analyses grow in complexity rather quickly (see [136, 220, 221] for studies
including Higgs phase transitions), this is left for follow-up investigations.
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CHAPTER 4

AVOIDING OSTROGRADSKI

INSTABILITIES WITHIN

ASYMPTOTIC SAFETY

The following chapter is based on:

D. Becker, C. Ripken, and F. Saueressig. On avoiding Ostrogradski instabilities
within Asymptotic Safety. J. High Energy Phys. 12 (2017) 121. [arXiv:1709.
09098].

Additional computational details are relegated to the accompanying Appendix D.

4.1 Introduction

In the previous chapters, we have seen how functional methods can be used to study
the Asymptotic Safety scenario of quantum gravity. We have studied the RG flow of an
𝑓 (𝑅)-truncation and identified a non-Gaussian fixed point suitable for asymptotic safety.
Furthermore, the RG flow allows for a trajectory that provides an effective action that is
compatible with cosmological observations.

4.1.1 Gravity-matter systems

While the prospects of obtaining a quantum description of the gravitational force at all
length scales is already intriguing, it is also clear that a realistic description of our world
also requires the inclusion of matter degrees of freedom. While there has already been
significant effort geared towards the understanding the role of the Asymptotic Safety
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Chapter 4. Avoiding Ostrogradski instabilities within Asymptotic Safety

mechanism for gravity-matter systems, the picture is still far from complete.1 In order
to discuss potential UV-completions of gravity-matter systems it is useful to distinguish
between the two cases where the matter sector of the underlying fixed point is Gaussian or
non-Gaussian in the sense that matter self-interactions are either absent or turned on. On
general grounds, one may expect though that non-trivial interactions in the gravitational
sector also induce non-trivial matter self-couplings, see [134] for a detailed discussion.
Depending on the details of the approximation used to investigate the fixed point structure
of the gravity-matter system, it is conceivable that a matter fixed point which is actually
non-Gaussian may be projected onto a Gaussian one if the approximation used to probe
it does not include self-interactions. Conversely, a fixed point identified as Gaussian may
split into a Gaussian and a non-Gaussian one once additional couplings are probed.

In order to get an idea which matter sectors could actually be compatible with Asymp-
totic Safety, refs. [128–130, 155] studied gravity-matter systems where the matter sector
contains an arbitrary number of minimally coupled scalars 𝑁𝑠, vectors 𝑁𝑉 , and Dirac
fermions 𝑁𝐷 . Complementary results for the case where spacetime carries a foliation
structure have been reported in [108]. While there is substantial evidence for the statement
that the matter content of the standard model of particle physics leads to a fixed point
structure suitable for realizing the Asymptotic Safety mechanism, the precise values for
𝑁𝑆 , 𝑁𝑉 , and 𝑁𝐷 supporting a NGFP are different. Restricting to the cases where the mat-
ter sector contains scalar fields only, [128–130, 155] report an upper bound 𝑁𝑆 ≲ 16−20,
while in [108] no such bound is present in agreement with the initial works [161, 162].
This difference can be traced back to different definitions of Newton’s coupling employed
in the two sets of work: the former define Newton’s coupling based on the flat space gravi-
ton propagator while the latter work with a background Newton’s coupling. As argued in
[155] matter degrees of freedom contribute differently in these settings. The two pictures
are in qualitative agreement if 𝑁𝑠 is small (“gravity rules”) but start to deviate once the
matter contribution becomes significant (“matter matters”).

In a complementary approach, the fixed point structure arising within scalar-tensor
theory has been studied in [150–152, 156, 157, 163, 222, 223].2 This setup includes two
arbitrary functions of the scalar field 𝜙, a scale-dependent scalar potential 𝑉𝑘 (𝜙) and a
function 𝐹𝑘 (𝜙) describing the coupling of the scalar to the Ricci scalar. In 𝑑 = 3 this
setting gives rise to a Wilson-Fisher type RG fixed point which can be understood as a
gravitationally dressed version of the Wilson-Fisher fixed point known in a non-dynamical
flat background. In 𝑑 = 4 the analogous analysis identifies a fixed point with a Gaussian
matter sector. In particular the scalar mass and 𝜙4-coupling vanish at this fixed point.
Ref. [151] supplements this setting by a third scale-dependent function 𝐾𝑘 (𝜙) dressing

1For early works on this topic see [161, 162].
2For related studies of RG flows of scalar field theories in a fixed (curved) background spacetime see [56,

224–226].
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the scalar kinetic term. In this generalization also a non-Gaussian matter fixed point
structure has been identified.

The influence of gravity on the flow of gauge-couplings has been discussed extensively
in both perturbative [227–230] and non-perturbative [123, 125, 145, 146, 149] settings.
Fundamental aspects related to the inclusion of fermions have been discussed in [131,
147] and the compatibility of light chiral fermions with asymptotic safety has been argued
in [135, 142, 154]. Starting from the prediction of the Higgs mass based on Asymptotic
Safety [168], mass hierarchies in the standard model and its extensions have been studied
in [137, 144, 221] while the influence of gravitational interactions on the flow of Yukawa-
couplings has been studied in [124, 140, 148, 159, 173, 231].3

Based on these works there have been several key insights related to asymptotically
safe gravity-matter systems. Firstly, non-Gaussian fixed points in the matter sector may
come with a higher predictive power than their Gaussian counterparts. In ref. [149] this
property has been used to predict the value of the fine-structure constants based on the
Asymptotic Safety mechanism. Secondly, a non-vanishing fixed point value for the U(1)
hypercharge may provide a solution to the triviality problem of the standard model [123].
Thirdly, the ratio of the Higgs and top mass can be predicted correctly based on the
Asymptotic Safety mechanism above the Planck scale [168].

These salient features are, however, accompanied by the lurking danger that the
non-vanishing gravitational interactions may induce potentially dangerous terms in the
effective action. Typical candidates are higher-derivative terms contributing to propa-
gators of matter fields, associated to Ostrogradski instabilities (see section 1.4). In this
chapter, we initiate the study of this class of interaction terms for gravity-matter flows. For
transparency we focus on the simplest possible model comprising the Einstein-Hilbert
action supplemented by minimally coupled scalar fields including a higher-derivative
term in the scalar propagator. We show that, as expected, the higher-derivative term is
generated along the RG flow. Quite remarkably, the higher-derivative coupling vanishes
at the NGFPs providing candidate UV-completions of the flow. Thus the computation
bypasses the instabilities typically associated with the presence of higher-derivative terms
in the propagator in a highly non-trivial way. These findings constitute a highly non-trivial
consistency test concerning the structure of asymptotically safe gravity-matter systems.

3For a controlled realization of the Asymptotic Safety mechanism in gauged Yukawa-systems and their
phenomenological applications see [232–235].
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4.1.2 The Ostrogradski instability and potential cures

As discussed already in section 1.4, a prototypical example of a higher-derivative theory
that violates unitarity is given by a scalar field with a fourth-order kinetic term. The action

𝑆 =
𝑍

2

∫
d𝑑𝑝
(2𝜋)𝑑

𝜙
[
𝑝2 + 𝑌 𝑝4] 𝜙 (4.1)

gives rise to the scalar propagator

𝐺
(
𝑝2

)
=

1
𝑍

(
1
𝑝2 − 1

𝑝2 + 1
𝑌

)
. (4.2)

From this propagator, we infer that the theory contains a massless state with positive
density, and a negative-norm state of mass

𝜇2 = 𝑌−1 . (4.3)

This state is called the Ostrogradski ghost (or recently a Merlin state [236, 237]), yielding
either an unstable theory, or states propagating backwards in time.

Although higher derivatives generically introduce severe fundamental flaws in a the-
ory, there are a number of ways to bypass this problem. This can be done at both the
classical and the quantum level.

One way for curing the Ostrogradski instability at the classical level is to lift the
condition of non-degeneracy. In this case the higher-order time derivatives are removed
by either combining them into total derivatives or using a gauge symmetry. In the former
case, the total derivatives in the Lagrangian do not contribute to the dynamics. Provided
that this procedure removes all higher-derivative terms, this results in a healthy theory. In
the latter case, gauge symmetry can be used to impose an extra condition on the equations
of motion. If these constraints remove the higher derivatives, the instability is cured as
well.

A second option consists of generalizing the propagator to be a function of the
momentum. Such theories are similar to what one finds in string theory [238]. This
strategy results in a non-local theory which contains time-derivatives of infinite order. In
this case the propagator does not admit a partial fraction decomposition. If additional
poles in the physical spectrum are absent, the theory will nevertheless still be stable.
However, the question of whether the resulting non-local theory is well-posed is subtle.
An exposition of the treatment of this class of theories is given in [239, 240]. For a
more detailed discussion of infinite-order theories in the context of gravity we refer to
[241–245]. In chapter 5, we will study the RG properties of the generalized propagator.
The question which functions of the momentum are compatible with unitarity is discussed
further in a more mathematical context in chapter 6.
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When assessing the stability of a higher-derivative theory at the quantum level, the
situation becomes even more involved. In this case the dressed propagator of the theory
can be obtained from the effective action Γ and one expects that for a stable theory this
propagator does not give rise to Ostrogradski ghosts. Following the discussion of the
classical case above, this may be realized in two ways:

1. pushing the mass of the Ostrogradski ghost to infinity.

2. completing the dressed propagator into an entire function.

The first case can be illustrated by considering the propagator (4.2). At the quantum
level the coupling 𝑌 will depend on the renormalization group scale 𝑘 , which we indicate
by 𝑌𝑘 . The requirement that the higher-order derivative term does not contribute to the
dressed propagator corresponds to demanding that lim𝑘→0𝑌𝑘 → 0. This means that the
ghost mass goes to infinity. The ghost then decouples from the spectrum of the theory
and does not entail an instability.4 This scenario may be realized in two ways. Firstly,
the system may exhibit a fixed point located at 𝑌∗ = 0. The theory at the fixed point is
scale-invariant and ghost-free. Secondly, an RG trajectory may be attracted to the 𝑌𝑘 = 0
hyperplane as 𝑘 → 0. The ghost will drop out of the effective propagator rendering the
renormalized theory effectively ghost-free.

When investigating case 1, gravity plays an essential role. In its absence, the action
(4.1) describes a one-parameter family of non-interacting theories parameterized by 𝑌 .
The only ghost-free theory in this set is 𝑌 = 0. This picture changes once a minimal
coupling to the gravitational field is included. In this case the gravitational interactions
induce a non-trivial flow of 𝑌𝑘 , opening the door to the nontrivial scenarios described
above.

At this stage the following remarks are in order. Firstly, we stress that the condition that
the theory should be ghost-free applies to the dressed propagator (obtained at 𝑘 = 0) only.
At finite values of 𝑘 it is expected that the process of integrating out quantum fluctuations
mode-by-mode will generate higher-order derivative terms in the intermediate description.
This does not signal the sickness of the theory, as its degrees of freedom should be read off
from the dressed propagator. Secondly, investigating the case b) will require generalizing
the simple ansatz (4.1) to a scale-dependent function of the momentum. In [246] it has
been shown that this class of models suffices to obtain the Polyakov effective action from
a renormalization group computation. This generalization is beyond the present work
though.

4For a similar discussion in the context of higher-derivative gravity see [54].
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4.2 RG flows including higher-derivative propagators

Following up on the general discussion of section 4.1, we now perform a RG computation
determining the scale-dependence of the higher-derivative coupling 𝑌 in a gravity-matter
setting. The key results of this section are the 𝛽-functions that govern the RG flow of our
projection. These are given in (4.13), (4.14), (4.17) and (4.19).

4.2.1 The functional renormalization group equation and its projection

We use the functional tools introduced in chapter 2. We start with the FRGE (1.13),
governing the scale-dependence of the EAA Γ𝑘 . We approximate the solution to the
FRGE by making a suitable truncation that retains the operators of interest. In the present
setting, we study the following ansatz:

Γ𝑘 [𝑔, 𝜙, 𝑐, 𝑐; 𝑔̄] ≈ Γgrav
𝑘 [𝑔] + Γscalar

𝑘 [𝜙, 𝑔] + Γgf
𝑘 [𝑔; 𝑔̄] + 𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄] . (4.4)

The gravitational part of this ansatz is taken to be of Einstein-Hilbert form

Γgrav
𝑘 [𝑔] = 1

16𝜋𝐺𝑘

∫
d4𝑥

√
𝑔 [−𝑅 + 2Λ𝑘] , (4.5)

which includes a scale-dependent Newton’s coupling 𝐺𝑘 and a cosmological constant
Λ𝑘 . The gravitational sector is supplemented by a gauge-fixing action Γgf

𝑘 and a ghost
term 𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄] that we take to be the same as in (2.33) and (2.35) for 𝑑 = 4 spacetime
dimensions. In order to facilitate the comparison with the results reported in [130], we
implement the Feynman-harmonic gauge5 𝛼 = 1, 𝛽 = 1. The gravitational part of Γ𝑘 is
supplemented by 𝑁𝑠 scalar fields,

Γscalar
𝑘 [𝜙, 𝑔] = 1

2
𝑍𝑘

𝑁𝑠∑
𝑖=1

∫
d4𝑥

√
𝑔 𝜙𝑖

[
Δ + 𝑌𝑘 Δ2] 𝜙𝑖 , (4.6)

where Δ ≡ −𝑔𝜇𝜈∇𝜇∇𝜈 is the Laplacian constructed from the full metric. Besides a
wave-function renormalization 𝑍𝑘 , this ansatz contains a scale-dependent coupling 𝑌𝑘
associated with a higher-derivative contribution to the scalar propagator.

The right-hand side of the FRGE is then projected onto the 𝛽-functions as follows.
The flow of 𝐺𝑘 and Λ𝑘 can be read off from the terms proportional to

∫
d4𝑥

√
𝑔̄ 𝑅̄ and∫

d4𝑥
√
𝑔̄, respectively. These contributions are conveniently found by selecting 𝑔̄𝜇𝜈 as

the metric on a 4-sphere and taking the value of the scalar field 𝜙 = 0. The resulting
operator traces can then be evaluated using standard heat-kernel techniques [28, 63, 102].

5Compared to [130], we do not include an anomalous dimension for the ghost fields. Thus our results
correspond to 𝜂𝑐 = 0.
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Figure 4.1: Feynman diagrams encoding the scalar contributions to the 𝛽-
functions. The solid and double line denote the scalar and graviton propagator,
respectively. The crossed circle denotes the insertion of the cutoff operator
𝜕𝑡R𝑘 .

The flow in the scalar sector is efficiently computed on an Euclidean background
geometry 𝑔̄𝜇𝜈 = 𝛿𝜇𝜈 and by expanding the background scalar field 𝜙(𝑥) in terms of
Fourier modes. Setting the graviton fluctuation fields to zero, the scalar sector appearing
on the left-hand side of the flow equation is

Γscalar
𝑘

��
ℎ=0 =

1
2
𝑍𝑘

∫
d4𝑞

(2𝜋)4 𝜙
(
−𝑞2

) (
𝑞2 + 𝑌𝑘𝑞4

)
𝜙

(
𝑞2

)
. (4.7)

Thus the scale-dependence of 𝑍𝑘 and 𝑌𝑘 is encoded in terms coming with two powers of
the background scalar field and two and four powers of the momentum 𝑞, respectively.
The Feynman diagrams generating these structures are depicted in Figure 4.1. They
consist of a pure graviton tadpole (Figure 4.1a), and two diagrams with scalar-graviton
loop formed by connecting two three-point vertices (Figure 4.1b and Figure 4.1c). The
projection of the flow equation then requires extracting the contributions proportional to
𝑞2 and 𝑞4 from these diagrams.

4.2.2 Evaluating the flow equation

Starting from the ansatz (4.4), the goal is to find the 𝛽-functions determining the scale-
dependence of 𝐺𝑘 , Λ𝑘 and 𝑌𝑘 as well as the scalar anomalous dimensions

𝜂𝑁 = 𝐺𝑘𝜕𝑡𝐺𝑘 , 𝜂𝑠 = −𝜕𝑡 log 𝑍𝑘 . (4.8)

The 𝛽-functions are conveniently expressed in terms of the dimensionless couplings

𝑔𝑘 ≡ 𝑘−2𝐺𝑘 , 𝜆𝑘 ≡ 𝑘2Λ𝑘 , 𝑦𝑘 ≡ 𝑌𝑘 𝑘2 , (4.9)

This information is obtained by substituting the ansatz into the FRGE and extracting
the relevant interaction terms from the trace appearing on the right-hand side. The
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explicit evaluation of this operator trace requires specifying the regulator function R𝑘 .
Throughout this chapter, we will resort to a Litim-type regulator

R𝑘 = Z𝑘 𝑘
2 𝑟

(
□/𝑘2

)
, 𝑟 (𝑧) = (1 − 𝑧)Θ(1 − 𝑧) . (4.10)

The matrix-valued wave function renormalization Z𝑘 is obtained from the substitution
rule □ ↦→ 𝑃𝑘 ≡ □ + 𝑘2𝑟

(
□/𝑘2) . Following the nomenclature introduced in [63], the

coarse-graining operator □ is chosen either as

Type I: □ = Δ ,
Type II: □ = Δ + 𝑞𝑅̄ ,

(4.11)

where the endomorphism 𝐸 ≡ 𝑞𝑅̄ is chosen such that all curvature terms appearing in
Γ(2)
𝑘 become part of the coarse-graining operator.

Due to the non-smooth character of the Litim profile (4.10), the extraction of external
momenta from the traces is non-trivial. Contributions arising at the boundary of the
momentum integrals have to be taken into account carefully. Our strategy for incorporating
such terms is explained in detail in Appendix D.

The scale-dependence of the dimensionless couplings (4.9) is encoded in the 𝛽-
functions which we define according to

𝜕𝑡𝑔𝑘 = 𝛽𝑔 (𝑔, 𝜆, 𝑦) , 𝜕𝑡𝜆𝑘 = 𝛽𝜆(𝑔, 𝜆, 𝑦) , 𝜕𝑡 𝑦𝑘 = 𝛽𝑦 (𝑔, 𝜆, 𝑦) . (4.12)

For the dimensionless variables, the system of differential equations is autonomous in the
sense that the 𝛽-functions are independent of 𝑘 .

The explicit expressions for the 𝛽-functions in the gravitational sector are

𝛽𝑔 = (2 + 𝜂𝑁 ) 𝑔 ,
𝛽𝜆 = (𝜂𝑁 − 2)𝜆

+ 𝑔

48𝜋

(
120

1 − 2𝜆
− 20𝜂𝑁

1 − 2𝜆
− 96 + 2𝑁𝑠 (6 − 𝜂𝑠) +

3𝛽𝑦 + 𝑦(6 − 𝜂𝑠)
1 + 𝑦

)
.

(4.13)

The anomalous dimension of Newton’s coupling is 𝑦- and 𝑁𝑠- dependent. Inspired by
[102], it can be cast into the following form:

𝜂𝑁 (𝑔, 𝜆, 𝑦) = 𝑔 (𝐵1(𝜆) + 𝑁𝑠 𝐵3(𝜆, 𝑦))
1 − 𝑔𝐵2(𝜆)

. (4.14)

The functions 𝐵1 and 𝐵2 encode the contribution of the gravitational sector. For a Type I
regulator, these functions have been determined in the seminal paper [102] and are listed
in (3.25). For the Type II regulator, cf. (4.11), these functions become

𝐵
Type II
1 = − 1

3𝜋

(
13

1 − 2𝜆
+ 10

)
, 𝐵

Type II
2 =

1
12𝜋

13
1 − 2𝜆

. (4.15)
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4.2. RG flows including higher-derivative propagators

Besides the gravitational self-interaction, there is a contribution of the scalar sector to the
running of 𝜆 and 𝑔. For the latter, the additional scalar part is captured by

𝐵3 =
1

72𝜋

(
12 − 3𝜂𝑠 +

4𝛽𝑦 + (4 − 𝜂𝑠) 𝑦
1 + 𝑦

)
. (4.16)

Note that the choice of regulator, (4.11), enters into 𝐵1 and 𝐵2 only.
Next, we turn to the 𝛽-functions of the scalar sector. The anomalous dimension for

the scalar field can be expressed as

𝜂𝑠 =
𝑔

1 − 𝑔𝑆4

(
𝑆1 + 𝜂𝑁 𝑆2 + 𝛽𝑦 𝑆3

)
, (4.17)

where the 𝜆 and 𝑦-dependent coefficients are given by

𝑆1 =
1

105𝜋
1

1 − 2𝜆

(
2

(1 + 𝑦)2 + 1
1 + 𝑦 − 73 − 72𝑦

)
− 1

15𝜋
1

(1 − 2𝜆)2

(
1

1 + 𝑦 + 9 − 4𝑦
)

,

𝑆2 =
1

60𝜋
1

(1 − 2𝜆)2

(
1

1 + 𝑦 + 4 − 3𝑦
)

,

𝑆3 = − 1
7𝜋

1
1 − 2𝜆

(
1

6(1 + 𝑦)2 + 11
30(1 + 𝑦) +

2
5

)
,

𝑆4 = − 1
35𝜋

1
1 − 2𝜆

(
1

4(1 + 𝑦)2 − 1
6(1 + 𝑦) − 3 − 2𝑦

)
.

(4.18)

The system is completed by the 𝛽-function for the higher-derivative coupling 𝑦. Its general
structure follows a similar pattern as 𝜂𝑠:

𝛽𝑦 =
1

1 − 𝑔 𝑆8
((2 + 𝜂𝑠) 𝑦 + 𝑔 (𝑆5 + 𝜂𝑁 𝑆6 + 𝜂𝑠 𝑆7)) . (4.19)

The functions 𝑆5 to 𝑆8 depend on 𝜆 and 𝑦 and are found to be

𝑆5 =
1

15𝜋
1

1 − 2𝜆

(
12

(1 + 𝑦)2 − 44
1 + 𝑦 + 32

)
− 1

30𝜋
1

(1 − 2𝜆)2

(
35

1 + 𝑦 + 25 + 85 𝑦
)

,

𝑆6 =
1

12𝜋
1

(1 − 2𝜆)2

(
3

1 + 𝑦 − 5 + 5 𝑦
)

,

𝑆7 = − 1
30𝜋

1
1 − 2𝜆

(
3

(1 + 𝑦)2 − 11
1 + 𝑦 + 8

)
,

𝑆8 = − 4
15𝜋

1
1 − 2𝜆

(
1

(1 + 𝑦)2 − 1
1 + 𝑦

)
.

(4.20)
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Chapter 4. Avoiding Ostrogradski instabilities within Asymptotic Safety
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Figure 4.2: Illustration of the singularity structure of the 𝛽-functions (4.13),
(4.14), (4.17) and (4.19) projected onto the 𝑦 = 0-plane. The thick dashed gray
line indicates the fixed singularity at 𝜆sing = 1/2. At the blue and purple lines
the anomalous dimensions 𝜂𝑁 and 𝜂𝑠 diverge respectively. The solid blue and
purple lines apply to the Type I regulator while the dashed blue and purple
lines are obtained from the Type II regularization procedure.

The equations (4.13), (4.14), (4.17) and (4.19) form an implicit system which can be
solved for the 𝛽-functions 𝛽𝜆, 𝛽𝑦 and anomalous dimensions 𝜂𝑁 and 𝜂𝑠. In absence of
the higher-derivative terms in the scalar propagator, which can be switched off by setting
𝑦 = 0 and 𝛽𝑦 = 0, the 𝛽-functions agree with the ones reported in [130] in the limit
𝜂𝑐 = 0. This provides a non-trivial cross-check of our derivation.

4.2.3 Structural properties of the 𝛽-functions

The system of 𝛽-functions (4.13), (4.14), (4.17) and (4.19) possesses several interesting
properties. Firstly, 𝜂𝑠 and 𝛽𝑦 depend on the number of scalar fields 𝑁𝑠 only implicitly.
This feature is readily deduced from the Feynman diagrams in Figure 4.1. These do not
contain closed scalar loops that could give rise to terms proportional to 𝑁𝑠. The number
of scalars then enters the flow in the scalar sector only indirectly through the value of the
cosmological constant and the anomalous dimension of Newton’s coupling. This suggests
that the fixed point structure and flow pattern obtained from the 𝛽-functions will be rather
stable under a change of the number of scalar fields.

Moreover, the 𝛽-functions possess several singular loci where either a 𝛽-function
or an anomalous dimension diverges. The projection of these singular lines onto the
𝑦 = 0-plane is shown in Figure 4.2.

Inspecting 𝛽𝜆 and 𝛽𝑦 one encounters two singular lines

𝜆sing =
1
2

and 𝑦sing = −1 , (4.21)
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4.3. Properties of the renormalization group flow

where the denominators in the 𝛽-functions vanish. In addition one obtains singular lines
when the anomalous dimensions 𝜂𝑁 or 𝜂𝑠 diverge. For 𝜂𝑁 this locus is independent of 𝑦
and 𝑁𝑠 and implicitly parameterized by the relation

𝜂
sing
𝑁 : 𝑔𝐵2(𝜆) = 1 . (4.22)

Since 𝐵2(𝜆) depends on the choice of coarse-graining operator, the Type I and Type II
coarse-graining operators yield two different singularity structures. As illustrated in
Figure 4.2, the Type I choice leads to a singular locus which screens the line 𝜆sing = 1

2 for
positive Newton’s coupling while the Type II coarse-graining screens 𝜆sing = 1

2 for 𝑔 < 0.
This observation may actually become important when “quenching the cosmological
constant” along the lines proposed in [171] which presupposes that an RG trajectory
emanating from the classical regime can actually reach the singular locus 𝜆sing = 1

2 .
The hypersurface on which the scalar anomalous dimension 𝜂𝑠 diverges is given by a

quadratic polynomial in 𝑔 with 𝜆- and 𝑦-dependent coefficients

𝜂
sing
𝑠 : 1 − 𝑆3𝑦 − 𝑔 (𝑆4 + 𝑆3 𝑆7 + 𝑆8) + 𝑔2𝑆4𝑆8 = 0 . (4.23)

For 𝑦 = 0 the resulting line is depicted as the purple line in Figure 4.2. The hypersurface
also screens the line 𝜆sing = 1/2 for 𝑔 > 0. In the Type I coarse-graining procedure 𝜂sing

𝑠

is sandwiched between 𝜂sing
𝑁 and 𝜆sing = 1/2, while for the Type II procedure, it actually

provides the screening of the 𝜆sing = 1/2-line. Thus the inclusion of scalar matter actually
alters the singularity structure of the 𝛽-functions. At the same time, we expect that the
system is rather insensitive to the inclusion of matter fields. The latter point will be
confirmed in more detail by the analysis of the next section.

4.3 Properties of the renormalization group flow

We now discuss the properties of the RG flow entailed by the system (4.13), (4.14), (4.17)
and (4.19). In subsection 4.3.1 we study the flow of the subsystem where the effects of
the higher-derivative terms are switched off. The results provide the basis for analyzing
the effects related to the presence of higher-derivative terms in the scalar propagator in
subsection 4.3.2 and 4.3.3. Throughout the section we focus on the flow generated by the
Type I coarse-graining operator.

4.3.1 Minimally coupled scalar fields

The system (4.12) constitutes a set of autonomous first-order differential equations cap-
turing the scale-dependence of the couplings {𝑔𝑘 , 𝜆𝑘 , 𝑦𝑘 }. The anomalous dimensions
𝜂𝑁 and 𝜂𝑠 can be obtained by evaluating (4.14) and (4.17) along a solution of this system.
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Figure 4.3: Characteristics of the NGFP in the minimally coupled gravity-scalar
system as a function of 𝑁𝑠. Its position in the (𝜆, 𝑔)-plane and the resulting
scalar anomalous dimension 𝜂∗𝑠 are shown in the left panel while the stability
coefficients are displayed in the right panel. In order to mimic the behavior of
fermionic matter, we also show the domain 𝑁𝑠 < 0.

In order to study the dynamics of this system, we investigate its fixed points. Recall from
chapter 1 that these are given by the points {𝑢∗𝑗}, satisfying

𝛽𝑢𝑖
(
{𝑢 𝑗 ,∗}

)
= 0 . (4.24)

Linearizing the flow at such a point provides us with the stability matrix M𝑖 𝑗 =
𝜕𝛽𝑖
𝜕𝑢 𝑗

���
𝑢=𝑢∗

,
whose eigenvectors and associated critical exponents signify relevant and irrelevant di-
rections. Before delving into the analysis of the full system, it is useful to first analyze the
subsystem obtained from setting 𝑦𝑘 = 0, 𝛽𝑦 = 0. In this approximation the contributions
of the higher-derivative terms in the scalar sector are switched off and the projection of the
flow equation is given by the Einstein-Hilbert action supplemented by an arbitrary number
𝑁𝑠 of minimally coupled scalar fields. The RG flow resulting from similar projections has
been studied in [108, 128, 130, 155, 162]. The analysis of this subsection then facilitates
the comparison with these works.

Fixed point structure

The reduced system possesses two fixed points, a Gaussian and a non-Gaussian one. Like
the GFP discussed in subsection 3.3.1, the GFP is situated at the origin and its stability
coefficients are determined by the mass-dimension of the coupling constants,

(𝜆∗, 𝑔∗) = (0, 0) , 𝜃1 = 2 , 𝜃2 = −2 . (4.25)
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4.3. Properties of the renormalization group flow

𝑁𝑠 𝑔∗ 𝜆∗ 𝑔∗𝜆∗ 𝜂∗𝑠 𝜃1 𝜃2

−∞ 0 −3/4 0 0 4 2
−100 0.333 −0.684 −0.228 −0.046 3.897 1.962
−6 1.530 −0.111 −0.170 −0.556 1.768 1.515

0 0.707 0.193 0.137 −0.766 1.475 ± 3.043𝑖
1 0.655 0.208 0.136 −0.771 1.603 ± 3.281𝑖

10 0.419 0.278 0.117 −0.784 2.818 ± 4.502𝑖
100 0.119 0.389 0.046 −0.768 15.37 7.406
+∞ 0 1/2 0 −0.709 ∞ 4.76

Table 4.1: Characteristic quantities for the NGFP appearing at selected values
of 𝑁𝑠. The case 𝑁𝑠 = 0 corresponds to the Einstein-Hilbert truncation. Several
quantities seem to converge when taking the limit 𝑁𝑠 → ±∞.

The anomalous dimensions vanish at this fixed point. The stability coefficients indicate
that the GFP is a saddle point in the (𝜆, 𝑔)–plane exhibiting one UV-attractive and one
UV-repulsive eigendirection, see also the left diagram of Figure 4.4. The GFP exists for
all values 𝑁𝑠.

In addition the system possesses a one-parameter family of NGFPs parameterized by
the number of scalar fields 𝑁𝑠. The position and stability of this family is shown in the left
and right diagram of Figure 4.3, respectively. By virtue of (4.13) all NGFPs come with
𝜂∗𝑁 = −2. Explicit values of the position (𝜆∗, 𝑔∗), the universal product Λ∗𝐺∗ = 𝜆∗𝑔∗, the
scalar anomalous dimension evaluated at the fixed point 𝜂∗𝑠, and the stability coefficients
for selected values of 𝑁𝑠 are provided in Table 4.1.

Notably, there is a NGFP for both positive and negative values of 𝑁𝑠. In the study
of gravity-matter systems where fermionic matter is included, the contributions from the
fermionic sector to the 𝛽-functions come with an opposite sign relative to the bosonic
sector. In the present case, we can mimic this behavior by studying negative values of 𝑁𝑠.

The one-parameter family of NGFP solutions exhibits a maximal value of 𝑔∗ = 1.60
at 𝑁𝑠 = −7.47. The cosmological constant 𝜆∗ has an inflection point at (𝑁𝑠, 𝜆∗) =
(−5.23,−0.0519) and has a zero at 𝑁𝑠 = −4.81. The anomalous dimension has a mini-
mum at (𝑁𝑠, 𝜂

∗
𝑠) = (14.3,−0.784); it has inflection points at (𝑁𝑠, 𝜂

∗
𝑠) = (−5.45,−0.600)

and (𝑁𝑠, 𝜂
∗
𝑠) = (35.5,−0.780). The analysis of the stability coefficients displayed in the

right diagram of Figure 4.3 shows that all NGFPs are UV-attractive in the (𝜆, 𝑔)-plane.
The critical exponents 𝜃𝑖 have a non-zero imaginary part for 𝑁𝑠 ∈ [−6, 83] only. For
other values of 𝑁𝑠 the critical exponents turn out to be real.
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Figure 4.4: Three prototypical RG trajectories obtained from numerically inte-
grating the reduced system of 𝛽-functions for 𝑁𝑠 = 1 (left). The flow is governed
by the interplay of the NGFP and GFP. The scalar anomalous dimension 𝜂𝑠
along the trajectories is shown in the right diagram. The anomalous dimension
𝜂𝑠 is negative semi-definite along the entire RG flow. In the UV (𝑘 → ∞) the
anomalous dimension 𝜂𝑠 approaches its fixed point value 𝜂∗𝑠 = −0.771 inde-
pendently of the specific initial conditions. In the IR 𝜂𝑠 remains negative and
vanishes asymptotically for the solutions of Type Ia and Type IIa. Trajectories
of Type IIIa terminate in the singular line 𝜂sing

𝑁 (red dashed line) triggering the
divergence of 𝜂𝑠 at a finite value of 𝑘 .

In the interval 𝑁𝑠 ∈ [−4, 16] the NGFP discussed above is the only non-trivial fixed
point solution. Outside this window the simplified system possesses additional NGFPs.
These are, however, separated from the GFP by the singular lines depicted in Figure 4.2.
They are disconnected from the region where classical physics is expected to reside.
Therefore, these fixed points will not be discussed in detail.

Flows away from the NGFP

Beyond the vicinity of the NGFP, where the linearized approximation of the flow is
valid, the RG trajectories can be constructed by integrating the 𝛽-functions of the reduced
system numerically. In the case where the critical exponents of the NGFP are complex
(𝑁𝑠 ∈ [−6, 83]) the resulting phase diagram follows the same classification as in the case
of pure gravity [104] that was discussed in subsection 3.3.3. For the case 𝑁𝑠 = 1 three
prototypical RG trajectories are shown in the left diagram of Figure 4.4. The trajectories
undergo a crossover from the NGFP, controlling the high-energy regime, to the GFP,
controlling the classical regime of the theory.

The scalar anomalous dimension obtained along these sample RG trajectories is shown
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4.3. Properties of the renormalization group flow

in the right panel of Figure 4.4. Notably 𝜂𝑠 (𝑘) ≤ 0 along the entire flow: at the NGFP
one has 𝜂∗𝑠 = −0.771 and the scalar anomalous dimension approaches zero when the flow
enters the classical regime governed by the GFP. Thus the anomalous dimension induced
by the gravitational quantum corrections suppresses the propagation of scalar modes on
all scales. The rapid increase of |𝜂𝑠 | for the Type IIIa trajectory close to its termination
point is a clear indication that the present approximation is insufficient in this regime and
should thus not be given too much significance.

4.3.2 Fixed point structure including higher-derivative terms

We now focus on the fixed point structure of the full system (4.12) including the higher-
derivative coupling 𝑦𝑘 . Following the structure of the last subsection, we first discuss the
fixed point structure of the system.

Inspecting the 𝛽-functions, one finds that the GFP (4.25) has the following extension

(𝜆∗, 𝑔∗, 𝑦∗) = (0, 0, 0) , 𝜃1 = 2 , 𝜃2 = −2 , 𝜃3 = −2 . (4.26)

Again there is a GFP for all values of 𝑁𝑠 and the anomalous dimensions vanish at this fixed
point. The stability coefficients indicate that the GFP is a saddle point in the (𝜆, 𝑔, 𝑦)-
plane exhibiting one UV-attractive and two UV-repulsive eigendirections. In particular,
it may serve as an IR attractor for RG flows starting at 𝑔𝑘 > 0 which subsequently leave
the GFP regime along the unstable direction.

The analysis of possible NGFPs starts with the following, intriguing observation:
when restricted to 𝑦 = 0, the 𝛽-function 𝛽𝑦 , given in (4.19), simplifies to

𝛽𝑦
��
𝑦=0 =

𝑔

6𝜋
2 + 𝜂𝑁
(1 − 2𝜆)2 . (4.27)

Thus 𝛽𝑦 supports a fixed point at 𝑦∗ = 0 if 𝜂∗𝑁 = −2. From 𝛽𝑔 one finds that the later
condition is precisely the anomalous dimension of Newton’s coupling at any NGFP. This
shows that there is an extension of the NGFP discussed in the previous section to the full
system, i.e., for all values of 𝑁𝑠 we obtain a NGFP with 𝑦∗ = 0. This family of NGFPs
will be called NGFP0 in the sequel. Remarkably, the balancing between the anomalous
dimension 𝜂∗𝑁 and the other contributions to 𝛽𝑦 works for 𝑑 = 4 only. In any other
spacetime dimension the fixed point is shifted away from the 𝑦 = 0-plane.

A numerical investigation of the fixed point structure for 𝑁𝑠 ∈ [−100, 100] reveals the
existence of three families of NGFPs, parameterized by 𝑁𝑠, and located in the physically
interesting region. The three families are conveniently labeled by the sign of the fixed
point value 𝑦∗ which is either negative (NGFP− branch), zero (NGFP0 branch), or positive
(NGFP+ branch). The positions and stability coefficients of these fixed points are shown
in Figure 4.5. In addition the characteristics for the NGFPs found for 𝑁𝑠 = 1 are collected
in Table 4.2. The detailed properties of the fixed point solutions are the following.
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Figure 4.5: Illustration of the fixed point structure resulting from the full system
of 𝛽-functions (4.12) as a function of 𝑁𝑠. The characteristics of the NGFP−,
NGFP0, and NGFP+ are shown in the first, second, and third row, respectively.

60



4.3. Properties of the renormalization group flow

𝑔∗ 𝜆∗ 𝑦∗ 𝑔∗𝜆∗ 𝜂∗𝑠 𝜃1 𝜃2 𝜃3

GFP 0 0 0 0 0 +2 −2 −2
NGFP− 0.776 0.176 −0.804 0.137 −0.721 1.26 ± 2.92𝑖 11.4
NGFP0 0.655 0.208 0 0.136 −0.771 1.60 ± 3.28𝑖 −0.527
NGFP+ 0.646 0.211 0.621 0.136 −0.775 1.63 ± 3.34𝑖 0.358

Table 4.2: Characteristic features of the four fixed points arising from the full set
of 𝛽-functions (4.12) for 𝑁𝑠 = 1.

NGFP−

The characteristic properties of this family of fixed points is shown in the first line of
Figure 4.5. Their defining criterion is that they are located at 𝑦∗ < 0 for all values of
𝑁𝑠. The position 𝑦∗ is found to be in the interval −1 < 𝑦∗ ≲ −0.76 and approaches the
singularity 𝑦sing = −1 in the scalar propagator if |𝑁𝑠 | becomes large. The profile for 𝑔∗
is peaked at 𝑁𝑠 ≈ 11.3 where 𝑔∗ ≈ 2.73. The cosmological constant 𝜆∗ undergoes a
crossover from 𝜆∗ < 0 for 𝑁𝑠 ≳ 7 to 𝜆∗ > 0 for negative values 𝑁𝑠. For large negative
values 𝑁𝑠 the fixed points are pushed into the corner of singular lines 𝜆sing = 1/2,
𝑦sing = −1.

The stability coefficients are displayed in the upper right diagram of Figure 4.5. In
the interval 𝑁𝑠 ∈ [−100, 100] all three stability coefficients come with a positive real part
indicating that all three couplings are UV-relevant. Within the interval −30 ≲ 𝑁𝑠 ≲ 11
the two critical exponents 𝜃1 and 𝜃2 form a complex pair, indicating a spiraling behavior
of the RG flow towards NGFP− in their respective eigendirections. Outside this window
all 𝜃 𝑗 are real-valued. The scalar anomalous dimension 𝜂∗𝑠 is shown in Figure 4.6. For
𝑁𝑠 ≲ 20 one has 𝜂∗𝑠 < 0, indicating a suppression of the scalar propagator at high energies.
At 𝑁𝑠 ≈ 20 there is a transition to very small and positive values 𝜂∗𝑠 ≲ 0.1. Notably this
is the only fixed point configuration where 𝜂∗𝑠 is actually positive.

NGFP0

The characteristic features of this class of fixed points are displayed in the middle line
of Figure 4.5. All fixed points in this family are located at 𝑦∗ = 0. Therefore this
family constitutes the natural extension of the NGFP seen in the last subsection. The
profiles specifying the position of these fixed points in the (𝜆, 𝑔)-plane resemble the one
of NGFP− discussed above, with the difference that their values are scaled and mirrored
around 𝑁𝑠 ≈ 0. This implies that the fixed point is pushed towards the singularity at
𝜆 = 1/2 for large positive 𝑁𝑠. The transition to 𝜆∗ < 0 happens at negative 𝑁𝑠 ≈ −4.81
and the maximum value of 𝑔∗ ≈ 1.60 is obtained at 𝑁𝑠 ≈ −7.47.
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Figure 4.6: Fixed point value of the scalar anomalous dimension 𝜂∗𝑠 evaluated
for the three classes of fixed points NGFP−, NGFP0, and NGFP+ as a function
of 𝑁𝑠.

The stability properties of the class NGFP0 can again be read off from the stability
coefficients displayed in Figure 4.5. Two of their stability coefficients always come with
a positive real part (indicating that the directions are UV-attractive). On the interval
𝑁𝑠 ∈ (−6, 82] they form a complex conjugate pair while outside this range both of
them are real-valued. The third coefficient 𝜃3 changes sign at 𝑁𝑠 = 67. For smaller
values 𝜃3 < 0, indicating that the corresponding NGFP0 is actually a saddle point in the
(𝜆, 𝑔, 𝑦)-plane. For 𝑁𝑠 > 67 all three stability coefficients have positive real parts so
that the fixed points are UV-attractors in this case. The scalar anomalous dimension 𝜂∗𝑠
remains negative throughout and is bounded by |𝜂∗𝑠 | < 0.77.

NGFP+

This class of fixed points is characterized in the bottom line of Figure 4.5. This class comes
with a positive 𝑦∗ which grows very rapidly for negative values of 𝑁𝑠. The positions of
the fixed points in the (𝜆, 𝑔)-plane are qualitatively the same as the ones found for NGFP0.
For large positive values 𝑁𝑠 ≳ 64 the location 𝑦∗ changes sign. At this point it becomes
problematic to track the family of solutions further. Since 𝑦∗ is no longer positive at this
point we adopt this as an upper bound on 𝑁𝑠 in this case.

All stability coefficients appearing in this family possess a positive real part so that
the NGFP+ are UV-attractors in the (𝜆, 𝑔, 𝑦)-plane. Similar to the other fixed points, the
stability coefficients 𝜃1 and 𝜃2 are real for 𝑁𝑠 ≲ −3.5 while for 𝑁𝑠 ≳ −3.5 they form
a complex pair. The scalar anomalous dimension 𝜂∗𝑠 is negative throughout and takes
values between −2 ≲ 𝜂∗𝑠 ≲ −0.77.

At this point the following remark is in order. Combining (4.2) and (4.9), the mass of
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the Ostrogradski ghost is

𝜇2 =
𝑘2

𝑦∗
. (4.28)

Thus 𝜇2 will become infinite for any RG trajectory approaching a NGFP as 𝑘 → ∞. This
is just a consequence of the fact that a fixed point cannot support a dimensionful scale.
The relation (4.28) also reveals that the fixed points NGFP0 are special. Owed to their
position at 𝑦∗ = 0 the mass of the Ostrogradski ghost is infinite for all values 𝑘 . In this
way, the NGFP0 realize the first class of loopholes discussed in subsection 4.1.2. Thus the
extra degree of freedom is not present and one expects that the resulting theory does not
suffer from an Ostrogradski instability although it lives in a theory space which a priori
permits the presence of higher-derivative terms in the propagator.

4.3.3 Phase diagram including higher-derivative terms

We now extend the local analysis of the RG flow to a global picture. For concreteness, we
focus on the case 𝑁𝑠 = 1. The details of the fixed point structure arising in this setting are
summarized in Table 4.2. Since the essential features of the flow are set by its fixed point
structure, it is clear that the analysis applies to an entire window −6 ≲ 𝑁𝑠 ≲ 11 where
the fixed point structure and stability coefficients exhibit the same qualitative behavior.

The global structure of the RG flow is obtained by integrating the 𝛽-functions (4.12)
numerically. A characteristic set of trajectories obtained this way is shown in Figure 4.7.
Figure 4.7a shows the RG trajectories connecting the three NGFPs (gray lines) and the
NGFPs with the GFP (orange lines). Since both NGFP± act as UV-attractors in the
(𝜆, 𝑦, 𝑔)-plane and the NGFP0 possesses one IR-attractive eigendirection there is a single
RG trajectory emanating from either NGFP± for 𝑘 → ∞ and ending at the NGFP0 as
𝑘 → 0. The GFP possesses two IR-attractive eigendirections. As a result, one finds a
unique trajectory that starts from NGFP0 and connects to the GFP 𝑘 → 0 (green line).
This trajectory is the intersection of the two-dimensional UV-critical hypersurface of
NGFP0 with the two-dimensional IR-critical hypersurface of the GFP. In addition there
are two families of solutions which originate from NGFP± and end at the GFP, again
coming from the intersection of the three-dimensional UV-critical hypersurfaces of the
NGFPs with the IR-critical hypersurface of the GFP. These flows are exemplified by the
orange lines. All together this set constitutes the generalization of the Type IIa trajectory
displayed in Figure 4.4.

Figure 4.7b then illustrates the generalization of the trajectories of Type Ia and
Type IIIa to the (𝜆, 𝑦, 𝑔)–plane. These trajectories may emanate from all three NGFPs
and subsequently cross over to the GFP. From the vicinity of the GFP they either flow to
large negative values 𝜆𝑘 (Type Ia) or positive 𝜆𝑘 (Type IIIa) such that their projection to
the (𝜆, 𝑔)-plane resembles the left diagram of Figure 4.4. The latter class again termi-
nates in the hypersurface 𝜂sing

𝑁 at a finite value 𝑘 . Notably, for all physically interesting
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Figure 4.7: Illustration of the phase diagram resulting from the 𝛽-functions (4.12)
for 𝑁𝑠 = 1. The GFP and the three NGFPs are marked with red points while
the singular loci 𝑦sing = −1 and 𝜂sing

𝑁 are shaded in gray. All arrows point from
UV to IR.
4.7a: The three NGFPs, NGFP−, NGFP0 and NGFP+, together with the GFP
are denoted by red dots. Dark gray lines denote the RG trajectories connecting
NGFP± and NGFP0. The green curve depicts the RG trajectory connecting
NGFP0 and the GFP. Typical examples from the set of trajectories between
NGFP± and the GFP are drawn in orange. Together the trajectories span a
2-dimensional surface.
4.7b: Typical RG trajectories undergoing a crossover from the NGFP to the
classical regime controlled by the GFP. Depending on whether the classical
value of the cosmological constant found along the flow is positive (red curves)
or negative (blue curves) the trajectories are termed Type IIIa and Type Ia,
respectively. The red solutions terminate at 𝜂sing

𝑁 .

trajectories which exhibit a crossover to the GFP, 𝑦𝑘 flows to zero in the IR, provided that
the underlying trajectories do not terminate at a finite value 𝑘 . When evaluating the scalar
anomalous dimension 𝜂𝑠 along the RG trajectories shown in Figure 4.7 one again obtains
the qualitative behavior shown in the right diagram of Figure 4.4: for large 𝑘 , the value
of 𝜂𝑠 is determined by its fixed point value 𝜂∗𝑠. Once the RG trajectory enters the vicinity
of the GFP quantum effects become small, 𝜂𝑠 � 1 asymptotically.
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4.3.4 Ghost-free RG flows in the infrared

In order to determine the stability of the theory in the presence of higher-derivative terms
one has to study the renormalized scalar propagator obtained from the effective average
action Γ𝑘 in the limit 𝑘 → 0. Defining 𝑌0 ≡ lim𝑘→0𝑌𝑘 the (squared) renormalized mass
of the Ostrogradski ghost is

𝜇2
0 =

1
𝑌0

(4.29)

Hence the extra modes will disappear from the spectrum if 𝑌0 = 0. Thus the focus of
the investigation is on the IR behavior of 𝑦𝑘 . Figure 4.7 demonstrates that all physically
interesting RG trajectories have the property that the dimensionless coupling 𝑦𝑘 goes
to zero in the IR. This leaves three potential scenarios for the dimensionful coupling
𝑌𝑘 = 𝑦𝑘 𝑘−2:

1. The dimensionless coupling 𝑦𝑘 approaches zero slower than quadratically. The
canonical scaling of 𝑌𝑘 will dominate the flow and 𝑌0 diverges. In this case the
ghost becomes massless and eats up the scalar degree of freedom, see (4.2).

2. The dimensionless coupling falls off faster than 𝑘2. The anomalous scaling dom-
inates the flow, and 𝑌𝑘 → 0. The Ostrogradski ghost decouples and the theory is
stable.

3. The dimensionless coupling converges exactly quadratically. The dimensionful
coupling 𝑌𝑘 approaches a constant, which can be zero or nonzero. The theory is
stable only if this constant is zero.

We will now discuss the IR behavior of the several classes of trajectories. Most of
the physically interesting trajectories fall into the classes Type Ia, Type IIa, or Type IIIa
introduced in Figure 4.4. The only trajectories which are not captured by this classification
are the trajectories connecting the NGFPs which will be discussed separately. Our
investigation reveals that the phase diagrams shown in Figure 4.7 contains RG trajectories
realizing all of the three cases described above.

Trajectories ending at the GFP (Type IIa)

We start our analysis by considering Type IIa trajectories for which the cosmological
constant Λ𝑘 flows to zero for 𝑘 → 0. In this case the IR completion of the trajectory is
provided by the GFP (4.26). The IR-attractive hypersurface of the GFP is spanned by the
two eigenvectors associated with the negative stability coefficients 𝜃2 = 𝜃3 = −2. The
explicit expressions for these eigenvectors are 𝑒1 = 𝑦̂ and 𝑒2 = 2+𝑁𝑠

16𝜋 𝜆̂ + 𝑔̂, where 𝑦̂, 𝜆̂ and
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𝑔̂ are the unit vectors along the 𝑦, 𝜆 and 𝑔-axis, respectively. By linearizing the flow at
the GFP one finds that along these scaling directions

𝑦𝑘 = 𝑦𝑘0

(
𝑘2

𝑘2
0

)
⇔ 𝑌𝑘 = 𝑌𝑘0 . (4.30)

Hence, there is a single RG trajectory, specified by 𝑌𝑘0 = 0, for which 𝑌0 = 0 and the
mass of the Ostrogradski ghost becomes infinite. This is the trajectory that has no initial
component in the 𝑦̂-direction, i.e. the one that approaches the GFP along 𝑒2. Integrating
the 𝛽-functions numerically one finds that this trajectory belongs to the UV-critical
hypersurface of NGFP−.

Trajectories of Type Ia and IIIa

Figure 4.4 illustrates the existence of RG trajectories where 𝜆𝑘 flows towards negative
(Type Ia) or positive infinity (Type IIIa) as 𝑘 → 0. In order to determine the IR behavior
of these trajectories, we numerically integrate the 𝛽-functions. Trajectories of Type IIIa
terminate at 𝜂sing

𝑁 at a finite value of 𝑘 and cannot be completed to 𝑘 = 0 in the present
approximation. Therefore, we limit our analysis to trajectories of Type Ia which extend to
𝑘 = 0. The IR values𝑌0 ≡ lim𝑘→0𝑌𝑘 arising within this class of solutions are conveniently
illustrated by studying the behavior of RG trajectories piercing the (𝑦, 𝑔)-plane located at
𝜆 = −0.1 since the flow is essentially perpendicular to this plane. The resulting structure
is illustrated in Figure 4.8.

The plot shows that Type Ia trajectories can emanate from all three NGFPs: trajectories
coming from NGFP0 pass the plane at the blue line while trajectories above (below) this
line lie in the UV-critical surface of NGFP+ (NGFP−). Trajectories where 𝑌0 = 0 span
the black line in this diagram. Thus there is a one-dimensional surface of solutions where
the renormalized squared mass of the Ostrogradski ghost, (4.29), is infinite. In this case
the additional degree of freedom does not propagate. Imposing the physical requirement
that the renormalized scalar propagator does not give rise to an Ostrogradski ghost may
then be used to fix one of the free parameters of the theory from stability considerations.

Trajectories flowing to NGFP0

The final option for taking an IR limit consists in approaching NGFP0 along its IR-
attractive eigendirection. From Figure 4.7 one sees that there are two trajectories emanat-
ing from either NGFP± which end at NGFP0 as 𝑘 → 0. Linearizing the RG flow at the
NGFP0 and using the stability coefficient along the IR attractive eigendirection listed in
Table 4.2 yields the RG evolution of 𝑦𝑘 for these trajectories:

lim
𝑘→0

𝑦𝑘 =

(
𝑘

𝑘0

)0.527
𝑦𝑘0 =⇒ 𝑌𝑘 =

(
𝑘0

𝑘

)1.473
𝑌𝑘0 . (4.31)
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Figure 4.8: Behavior of the RG trajectories passing through (𝑦, 𝑔)-plane situated
at 𝜆 = −0.1. Trajectories passing the plane above (below) the blue line emanate
from NGFP+ (NGFP−) while the high-energy behavior of trajectories building
up the blue line is governed by the NGFP0. Trajectories for which lim𝑘→0𝑌𝑘 = 0
are indicated by the black line.

Since the scaling of the dimensionless 𝑦 is significantly smaller than 𝑘2, the dimensionful
𝑌 diverges as 𝑘 → 0 for all initial values 𝑦 ≠ 0. As a consequence the IR value of
the ghost mass vanishes and the two terms describing the propagation of the scalar field
in (4.2) mutually cancel. Loosely speaking, the physical degree of freedom is eaten by
the ghost so that the scalar does not propagate anymore. This cancellation mechanism,
however, is only robust if no further powers of the momentum are generated in the scalar
propagator. In chapter 5, we will study the RG system where arbitrary powers of the
momentum are present. This will provide a verification of the cancellation of the degrees
of freedom in the present context.

4.4 Conclusions and outlook

In this chapter, we have used the effective average action Γ𝑘 to study the RG flow of gravity
coupled to scalar matter. Our ansatz for Γ𝑘 is given by the Einstein-Hilbert action coupled
to an arbitrary number of scalar fields. The novel feature of the setup is the inclusion
of a higher-derivative term in the scalar propagator. At the classical level, these actions
suffer from the Ostrogradski instability: the appearance of degrees of freedom with a
wrong-sign kinetic term, so-called Ostrogradski ghosts. This renders the theory either
unstable or non-unitary. At the same time it is clear that a generic RG flow may generate
such potentially dangerous higher-derivative terms dynamically, through the coupling to
gravity. We have initiated the systematic study of these terms in the RG framework with
the goal of assessing their hazard potential for asymptotically safe theories.
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The quantity that actually encodes the relevant information on the spectrum of the
theory is the renormalized propagator. Exploiting that the effective average action obeys
lim𝑘→0 Γ𝑘 = Γ with Γ being the standard effective action, this quantity can be accessed
in the IR-limit of the flow. Within the present approximation the stability properties
of the theory are captured by the IR-value of the (squared) Ostrogradski ghost mass
𝜇2

0 = 𝑌−1
0 . The ghost decouples from the spectrum if 𝑌0 = 0, so that the setting may give

rise to stable (or equivalently unitary) theories even though the generic actions include
higher-derivative kinetic terms.

The detailed study of the RG flow then established the following picture. In ab-
sence of the higher-derivative term the setting studied in this work gives rise to a unique
non-Gaussian fixed point (NGFP) suitable for rendering the gravity-matter system asymp-
totically safe. Upon including the scale-dependent Ostrogradski ghost mass, this NGFP
splits up into three NGFPs which are labeled by the sign of 𝑌∗. Notably there is one fixed
point solution NGFP0 for which 𝑌∗ = 0 for all values of 𝑘 .

When projected to the (𝜆, 𝑦, 𝑔)-plane (see Figure 4.7) the system of NGFPs essentially
possesses a UV-critical hypersurface with three relevant directions. Within this space we
have identified a two-dimensional subspace of RG trajectories that have a ghost-free IR
limit. Phrased differently, the Ostrogradski ghost mass corresponds to a relevant direction
of the NGFPs, introducing a new free parameter. The freedom coming with this free
parameter can be fixed by the physical requirement that the theory should contain only
physical degrees of freedom in the IR. In this way the construction elegantly circumvents
the potential danger of Ostrogradski instabilities by introducing a new free parameter and
a mechanism to fix its value simultaneously. In this way the analysis in section 4.3 shows
that the set of complete, unitary RG trajectories obtained from the full (𝜆, 𝑔, 𝑦)-system
(4.12) is in one-to-one correspondence with the one found in the reduced system excluding
the higher-derivative coupling.

As a byproduct, our analysis also provided new insights into potential bounds on the
number of scalar fields compatible with the asymptotic safety mechanism. Throughout
the calculation, we used a coarse-graining operator of Type I (see [63] for an extended
discussion), and extracted the running of 𝜂𝑁 from the background Newton’s coupling.
The resulting analysis indicates that there are NGFPs suitable for realizing asymptotic
safety for all values 𝑁𝑠. The characteristic fixed point properties shown in Figure 4.3 are
strikingly similar to the ones found for foliated gravity-matter systems [108]. Notably,
our results also agree with the ones reported in [130], where an upper bound 𝑁𝑠 ≲ 17 has
been obtained. The crucial difference between the two settings lies in the choice of coarse-
graining operator in the gravitational sector: our analysis uses a Type I coarse-graining
operator while [130] resorts to a coarse-graining operator of Type II. If the analysis of
subsection 4.3.1 is repeated for a coarse-graining operator of Type II, which effectively
replaces (3.25) by (4.15), the reduced system (4.12) gives rise to the same upper bound on
the number of scalar fields 𝑁𝑠 ≲ 17. From Figure 4.2 one then expects that the singular
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line 𝜂sing
𝑁 plays a decisive role in stabilizing the NGFP for large values 𝑁𝑠.

The results reported in [128, 155] study a similar gravity-matter system. However,
these computations are based on a different definition of Newton’s coupling which makes
the direct comparison between the approaches rather intricate. In chapter 5, we develop
the correspondence between these calculations.

Our analysis demonstrates that the existence of unitary RG trajectories is a non-trivial
feature. A priori, a kinetic function of polynomial type is bound to have multiple roots,
yielding ghosts in the particle spectrum. This suggests that the present computation
should be extended by studying polynomial truncations of higher order.

A more radical approach would be to construct the RG flow of the scalar propagator
retaining non-polynomial momentum dependence. This entails a generalization of (4.6)
to

Γscalar
𝑘 [𝜙, 𝑔] =

∫
d𝑑𝑥

√
𝑔𝜙 𝑓𝑘 (Δ)𝜙 . (4.32)

In chapter 5 we calculate the RG flow of this system. The so-called form factor 𝑓𝑘 (Δ)
opens up the possibility to have analytic kinetic functions without multiple roots. This
gives a ghost-free spectrum. An example is a propagator of the type e−Δ

(
Δ + 𝑚2)−1

studied e.g. in the context of non-local gravity models [241–245, 247].
It is not straightforward to see whether the propagator contains a ghost state, if it is a

general function of the momentum. In chapter 6, we study the conditions on a Euclidean
field theory that give rise to unitarity in a more mathematical setting. We then prove a
theorem that states the necessary and sufficient conditions for a large class of propagators
arising from (4.32) to be ghost-free.
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CHAPTER 5

FORM FACTORS IN

ASYMPTOTIC SAFETY

The following chapter is based on:

B. Knorr, C. Ripken, and F. Saueressig. Form Factors in Asymptotic Safety: con-
ceptual ideas and computational toolbox. Class. Quant. Grav. (2019) [arXiv:1907.
02903].

Additional computational details are relegated to Appendix E and Appendix F.
Numerical algorithms are implemented in the Mathematica files fpsolver.nb and
flowequations.wls.1

5.1 Introduction

In the previous chapters, we have shown how to use the effective average action as a
solution to the FRGE to construct an approximate non-perturbative RG flow for gravity
and matter. Central in this procedure was a truncation to certain operators of interest,
see section 2.2. The type of truncation determines the character of the resulting RG
equation, whether it is an ordinary differential equation, partial differential equation or
integro-differential equation. In chapter 4, we encountered a truncation which retained a
finite number of couplings. The resulting RG equations were ODEs. Chapter 3 gave an
example of a truncation with an infinite number of couplings, a truncation of the form∫ √

𝑔 𝑓 (𝑅). As is demonstrated in Appendix C, the resulting flow equations are PDEs,
that reduced to ODEs when we restrict 𝑓 to second order in 𝑅. In this chapter, we will
study a scheme that gives rise to an integro-differential flow equation.

1These files may be downloaded from https://arxiv.org/src/1907.02903v1/anc.
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Chapter 5. Form factors in Asymptotic Safety

The choice of operators that are retained in the truncated EAA is physically motivated.
In chapter 3, we studied monomials that are relevant for cosmological observations. In
chapter 4, we discussed higher-order derivative operators acting on a scalar field coupled
to gravity, which had important consequences for the Ostrogradski instability.

These expansions are not systematic, in the sense that they have no straightforward
generalization that incorporates all allowed monomials in the EAA. One such expansion
scheme is the vertex expansion (2.40)

Γ𝑘 [ℎ; 𝑔̄] =
∑
𝑚

1
𝑚!

∫
d𝑑𝑥

√
𝑔̄

[
Γ(𝑚)
𝑘

[𝑔̄]
] 𝜇1𝜈1 · · ·𝜇𝑚𝜈𝑚

ℎ𝜇1𝜈1 · · · ℎ𝜇𝑚𝜈𝑚 . (5.1)

Here the vertices Γ(𝑚)
𝑘

[𝑔̄] are operators that depend both on background curvatures and
on the momenta of the fluctuation fields in terms of covariant background derivatives. As
discussed in subsection 2.3.1, the downside to this expansion is that it does not obey split
symmetry (2.37), which signals a breaking of background independence.

Opposite to this approach we can expand the EAA in monomials that are manifestly
split-symmetric, which is exemplified by the 𝑓 (𝑅)-truncation. The idea of this chapter is to
set up a systematic expansion that parameterizes all possible split-symmetric operators for
gravity and gravity-matter systems. Gravity-matter systems have been studied extensively,
as in e.g. [60, 73, 74, 89, 108, 111, 112, 117, 123–128, 130–146, 149–152, 154–156,
160–163, 170–173, 248].

We will set up an expansion by constructing manifestly split-symmetric invariants. A
natural ordering principle in the case of gravity-matter systems is the number of matter
systems and curvature tensors. For the case of pure gravity, the expansion of the EAA is
then of the form

Γ𝑘 [𝑔] =
∑
𝑛

1
𝑛!

∫
d𝑑𝑥

√
𝑔F𝑛 [𝑔]R1 · · ·R𝑛 . (5.2)

This depends only on the metric 𝑔 rather than that relying on a background metric 𝑔̄ and
fluctuation ℎ. The operators F𝑛 (Δ1, · · · ,Δ𝑛) are called form factors. Generically, these
are functions of the Laplacian operators Δ𝑖 constructed from the metric 𝑔 acting on the
curvature tensors R𝑖 , respectively. To simplify the notation, we have suppressed any
tensorial indices in (5.2). For gravity-matter systems, a similar expansion can be written
down.

At this point, we note that the expansion (5.2) is contained in the expansion (5.1), since
each term F𝑛R1 · · ·R𝑛 can be expanded in a (possibly infinite) series of background op-
erators acting on fluctuation fields. Since the form factors are manifestly split-symmetric,
this imposes nontrivial relations between the fluctuation vertices that parameterize a
split-symmetric vertex expansion.

In section 5.2, we will give a detailed discussion of form factors in gravity-matter
system, including a list of the lowest-order terms for various gravity-matter systems and
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pure gravity. We then proceed with the construction of the map from the background form
factors of a scalar-tensor system to the associated interacting vertices. In section 5.3, we
compute the RG flow of the propagator of the scalar-tensor system, keeping full momentum
dependence. We conclude with a summary of the results and a discussion of implications
for other work in this thesis in section 5.4. Details on several computations in this chapter
have been relegated to Appendix E and Appendix F.

5.2 Form factors in gravity and gravity-matter systems

We start our investigation with describing the momentum-dependent form factors for
gravity and gravity-matter systems. We assume that we can freely integrate by parts,
without generating boundary terms. For details regarding notation and conventions, see
Appendix A.

5.2.1 Form factors for split-symmetry invariant actions

In this section, we list the form factors for different types of matter coupled to gravity. We
will consider scalar matter, Abelian gauge fields, and fermions. We conclude this section
with form factors constructed for pure gravity.

Scalars

For scalar fields 𝜙, there is one form factor associated with the kinetic term

Γ𝑠,kin
𝑘 [𝜙, 𝑔] = 1

2

∫
d𝑑𝑥

√
𝑔𝜙 𝑓

(𝜙𝜙)
𝑘 (Δ)𝜙 . (5.3)

In analogy to computations in flat Minkowski space, we define the wave-function renor-
malization of the scalar field according to [130]:

𝑍 𝑠
𝑘 ≡ 𝜕

𝜕𝑝2 𝑓
(𝜙𝜙)
𝑘

(
𝑝2

)����
𝑝2=0

. (5.4)

Correspondingly, we have an anomalous dimension given by

𝜂𝑠 (𝑘) ≡ −𝜕𝑡 log 𝑍 𝑠
𝑘 . (5.5)

One may also extract the zero-momentum behavior of the form factor. In this way, we
define the gap parameter

𝜇2
𝑘 ≡

(
𝑍2
𝑘

)−1
𝑓
(𝜙𝜙)
𝑘

(
𝑝2

)����
𝑝2=0

. (5.6)
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If 𝑓 (𝜙𝜙) (
𝑝2) is a linear function of 𝑝2 and 𝜙 is in the symmetric phase, then 𝜇𝑘 has

the interpretation of the mass of the scalar field, since it corresponds to the pole of the
(Wick-rotated) Lorentzian propagator. For a general form factor, this interpretation does
not hold; one has to analyze the pole structure of the (Wick-rotated) form factor in order
to gain insight into the masses of the propagating fields.

To linear order in the spacetime curvature, the scalar sector gives rise to two additional
form factors,

Γ(R𝜙𝜙)
𝑘 [𝜙, 𝑔] =

∫
d𝑑𝑥

√
𝑔 𝑓

(R𝜙𝜙)
𝑘

(Δ1,Δ2,Δ3) 𝑅𝜙𝜙 ,

Γ(Ric𝜙𝜙)
𝑘 [𝜙, 𝑔] =

∫
d𝑑𝑥

√
𝑔 𝑓

(Ric𝜙𝜙)
𝑘

(Δ1,Δ2,Δ3) 𝑅𝜇𝜈 (
∇𝜇∇𝜈𝜙

)
𝜙 .

(5.7)

Here Δ𝑖 is the Laplacian acting on the 𝑖-th field, i.e. Δ1 (𝑅𝜙𝜙) = (Δ1𝑅) 𝜙𝜙. An
investigation of correlations of this type without form factors in a bi-metric setup has
been carried out in [73], and in a Brans-Dicke motivated context in [150, 151, 163, 225].
The monomials listed in (5.7) constitute a complete set of form factors at first order in the
spacetime curvature. The invariant∫

d𝑑𝑥
√
𝑔 𝑓𝑘 (Δ1,Δ2,Δ3) 𝑅𝜇𝜈 (

∇𝜇𝜙
) (
∇𝜈𝜙

)
(5.8)

can be mapped to this basis set through integration by parts and the use of the second
Bianchi identity. Moreover, any pair of contracted covariant derivatives acting on different
fields may be eliminated by means of the identity∫

d𝑑𝑥
√
𝑔𝐻1𝐻2 (Δ𝐻3)

=
∫

d𝑑𝑥
√
𝑔

[
(Δ𝐻1) 𝐻2 + 𝐻1 (Δ𝐻2) + 2

(
∇𝜇𝐻1

) (
∇𝜇𝐻2

) ]
𝐻3 , (5.9)

where the 𝐻𝑖 represent arbitrary tensor fields. These manipulations typically also produce
additional curvature tensors by the commutation of covariant derivatives. Since these are
of higher order in 𝑅, they will not be considered at this stage.

Vectors

The kinetic term of an Abelian gauge field 𝐴𝜇 with field strength 𝐹𝜇𝜈 = ∇𝜇𝐴𝜈 − ∇𝜈𝐴𝜇

reads

Γv
𝑘

[
𝐴𝜇, 𝑔

]
=

1
4

∫
d𝑑𝑥

√
𝑔𝐹𝜇𝜈𝐹

𝜇𝜈 , (5.10)
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where all indices are raised and lowered with respect to the spacetime metric 𝑔𝜇𝜈 . This
term can be generalized to include the form factor 𝑓 𝑣𝑘 (Δ):

Γv,kin
𝑘

[
𝐴𝜇, 𝑔

]
=

1
4

∫
d𝑑𝑥

√
𝑔𝐹𝜇𝜈 𝑓

v
𝑘 (Δ)𝐹

𝜇𝜈 . (5.11)

Similar to the scalar case, 𝑓 v
𝑘 (𝑥)

��
𝑥=0 encodes the wave-function renormalization for the

vector fields. In the case of non-Abelian gauge fields, the connection 𝐷𝜇 is given by ∇𝜇

supplemented by an additional connection piece built from 𝐴𝜇.
In 𝑑 = 4 spacetime dimensions there is a second interaction monomial constructed

from two powers of the field strength tensor contracted with a totally antisymmetric
𝜖-tensor. Like for the kinetic term (5.10), one could also generalize this term by in-
cluding a form factor. By partial integration, one can bring this invariant to the form∫
𝜖 𝜇𝜈𝜌𝜎𝐴𝜇∇𝜈 𝑓 (Δ)∇𝜌𝐴𝜎 . We will now assume that 𝑓 can be expanded in a Taylor series

in Δ. For the non-constant terms, commuting ∇𝜈 with the Laplacian gives an additional
field strength tensor. For the constant term, the commutator is zero. However, contrac-
tion of ∇𝜈 and ∇𝜌 with the 𝜖-tensor gives a field strength tensor. As a consequence the
interaction monomial contains either three powers of the field strength, or an additional
spacetime curvature and will thus not be considered here.

Fermions

Our construction of the form factors for fermionic fields builds on the spin-base formalism
developed in [147, 249, 250]. We start by introducing (spacetime-dependent) Dirac
matrices 𝛾𝜇 satisfying the Clifford algebra

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈1 , 𝛾𝜇 ∈ Mat(𝑑𝛾 × 𝑑𝛾 ,C) , 𝑑𝛾 = 2 b𝑑/2c , (5.12)

where 1 denotes the unit matrix in Dirac space. Dirac fermions are then represented by a
Grassmann-valued 𝑑𝛾-component vector 𝜓. Fermion bilinears are formed with the metric
𝔥 on Dirac space, where 𝔥 ∈ Mat

(
𝑑𝛾 × 𝑑𝛾 ,C

)
is antihermitian, 𝔥† = −𝔥, and has unit

determinant. The conjugate of a Dirac spinor is then defined as 𝜓̄ ≡ 𝜓†𝔥. This ensures
that

(
𝜓̄𝜓

)† = 𝜓̄𝜓 is real.
Since the properties of the Clifford algebra depend on the dimension of spacetime,

the discussion will focus on four-dimensional (Euclidean-signature) spacetimes admit-
ting a spin-structure. In this case the 𝛾𝜇 can be chosen to satisfy the reality prop-
erty (𝛾𝜇)† = 𝔥𝛾𝜇𝔥−1. Moreover, the Clifford algebra admits an additional operator
𝛾∗ = 1

24
√
𝑔 𝜖𝜇𝜈𝜌𝜎𝛾

𝜇𝛾𝜈𝛾𝜌𝛾𝜎 , where 𝜖 is the standard Levi-Civita symbol. It satisfies
tr 𝛾∗ = 0, (𝛾∗)† = 𝔥𝛾∗𝔥−1, and (𝛾∗)2 = 1. This allows to distinguish the left- and
right-handed components of the Dirac spinor by the projection operators Γ± = 1

2 (1 + 𝛾∗).
Given a set of Dirac matrices, satisfying (5.12) and the reality properties for the 𝛾𝜇
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uniquely determines 𝔥. In order to construct a kinetic term for the fermions, we introduce
a covariant derivative ∇𝜇 containing the spin-base connection Γ𝜇,2

∇𝜇𝜓 = 𝜕𝜇𝜓 + Γ𝜇𝜓 , ∇𝜇𝜓̄ = 𝜕𝜇𝜓̄ − 𝜓̄Γ𝜇 . (5.13)

The spin-base connection Γ𝜇 is completely determined in terms of the Dirac matrices and
the Levi-Civita connection,

Γ𝜇 =
4∑

𝑛=1
𝑚𝜇𝜌1 · · ·𝜌𝑛𝛾

𝜌1 · · ·𝜌𝑛 , 𝑚𝜇𝜌1 · · ·𝜌𝑛 ≡
(−1)

𝑛(𝑛+1)
2 tr

(
𝛾𝜌1 · · ·𝜌𝑛

[
(𝐷𝜇𝛾

𝜈), 𝛾𝜈
] )

8 𝑛! (4 (1 − (−1)𝑛) − 2𝑛) ,

(5.14)
where 𝐷𝜇𝛾

𝜈 = 𝜕𝜇𝛾𝜈 +Γ𝜈
𝜇𝜌𝛾

𝜌 and 𝛾𝜌1 · · ·𝜌𝑛 = 1/𝑛!(𝛾𝜌1 · · · 𝛾𝜌𝑛 + . . .) is the completely an-
tisymmetrized product of 𝑛 Dirac matrices. The connection ensures that ∇𝜇𝜓 transforms
as a covector under general coordinate transformations and as a vector under SL

(
𝑑𝛾 ,C

)
spin-base transformations. As an important property, /∇ ≡ 𝛾𝜇∇𝜇 satisfies the Lichnerow-
icz relation

ΔD ≡ (𝑖 /∇)2 =

(
−𝑔𝜇𝜈∇𝜇∇𝜈 +

1
4
𝑅

)
1 . (5.15)

Based on these prerequisites, it is now straightforward to introduce the three indepen-
dent form factors appearing at the level of fermion bilinears,

ΓD,1
𝑘 [𝜓̄, 𝜓, 𝑔] =

∫
d4𝑥

√
𝑔 𝜓̄ 𝑓 D,1

𝑘
(ΔD) (i/∇) 𝜓 ,

ΓD,2
𝑘 [𝜓̄, 𝜓, 𝑔] =

∫
d4𝑥

√
𝑔 𝜓̄ 𝑓 D,2

𝑘
(ΔD) 𝛾∗ /∇𝜓 ,

ΓD,3
𝑘 [𝜓̄, 𝜓, 𝑔] =

∫
d4𝑥

√
𝑔 𝜓̄ 𝑓 D,3

𝑘
(ΔD) 𝜓 ,

ΓD,4
𝑘 [𝜓̄, 𝜓, 𝑔] =

∫
d4𝑥

√
𝑔 𝜓̄ 𝑓 D,4

𝑘
(ΔD) 𝛾∗ 𝜓 .

(5.16)

The form factors 𝑓 D,1
𝑘

(ΔD) and 𝑓 D,2
𝑘

(ΔD) generalize the kinetic term. In particular, linear
combinations of 𝑓 D,1

𝑘 (0) and 𝑓 D,2
𝑘 (0) define the wave-function renormalizations for the

two chiral components of the Dirac field. The form factors 𝑓 D,3
𝑘

(ΔD) and 𝑓 D,4
𝑘

(ΔD)
generalize the mass terms to momentum-dependent functions. Again the 𝑘-dependent
mass of the fermion is associated with the roots of the (Lorentzian-signature) Dirac
equation. In a flat background the relevant equation is[

𝑓 D,1
𝑘 (□)(𝑖 /𝜕) + 𝑓 D,2

𝑘 (□) 𝛾∗ /𝜕 −
(
𝑓 D,3
𝑘 (□) + 𝑓 D,4

𝑘 (□) 𝛾∗
) ]
𝜓 = 0 , (5.17)

2The connection piece of ∇𝜇 can be generalized to also contain a spin-torsion part ΔΓ𝜇 . This case will
not be considered here.
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so that the construction accommodates scale-dependent mass terms for the right- and left-
handed components of the Dirac fermion. Owed to the presence of the scalar curvature
term in (5.15) the form factors 𝑓 D,𝑖

𝑘
(ΔD) have a non-trivial overlap with scale-dependent

functions 𝑓𝑘 (𝑅) built from the Ricci scalar. A natural way to disentangle these two sets
of functions is to take the flat-space limit where the latter are trivial.

Gravity

The first set of non-trivial form factors in the gravitational sector appears at second order
in the spacetime curvature. In this case the basis for the split symmetry invariant form
factors can be chosen as

ΓC
𝑘 [𝑔] =

1
16𝜋𝐺𝑘

∫
d𝑑𝑥

√
𝑔 𝐶𝜇𝜈𝜌𝜎𝑊

C
𝑘 (Δ) 𝐶

𝜇𝜈𝜌𝜎 ,

ΓR
𝑘 [𝑔] =

1
16𝜋𝐺𝑘

∫
d𝑑𝑥

√
𝑔 𝑅𝑊R

𝑘 (Δ) 𝑅 .
(5.18)

The choice of these basis terms is distinguished in the sense that the form factors𝑊C
𝑘 (Δ)

and 𝑊R
𝑘 (Δ) lead to a non-trivial momentum dependence of the transverse-traceless and

scalar propagator, respectively, when the background in (2.29) is chosen as flat Euclidean
space. The third potential invariant

∫
d𝑑𝑥√𝑔 𝑅𝜇𝜈 𝑅

𝜇𝜈 does not give rise to an additional
form factor. Any term of the form

∫
d𝑑𝑥√𝑔 𝑅𝜇𝜈 Δ𝑛 𝑅𝜇𝜈 , where 𝑛 ≥ 1 can be mapped

to the basis elements and higher-order curvature terms by means of the second Bianchi
identity (A.4). To demonstrate this, we first note that

∇𝛼∇𝛼𝑅𝜌𝜎𝜇𝜈 = −∇𝛼
[
∇𝜌𝑅𝜎𝛼𝜇𝜈 + ∇𝜎𝑅𝛼𝜌𝜇𝜈

]
= 2∇𝜌∇[𝜇𝑅𝜈 ]𝜎 − 2∇𝜎∇[𝜇𝑅𝜈 ]𝜌 +O

(
𝑅2

)
,

(5.19)

where we commuted two covariant derivatives and made use of the contracted Bianchi
identity (A.5) in the second step. Contracting with a Riemann tensor, this implies

𝑅𝜌𝜎𝜇𝜈∇2𝑅𝜌𝜎𝜇𝜈 = 4𝑅𝜌𝜎𝜇𝜈∇𝜌∇𝜇𝑅𝜈𝜎 +O
(
𝑅2

)
. (5.20)

Integrating this equation over spacetime then allows to integrate by parts, so that the
covariant derivatives appearing on the right-hand side can again be arranged to act on the
Riemann tensor. Again making use of the contracted Bianchi identity establishes that∫

d𝑑𝑥
√
𝑔

[
𝑅𝜌𝜎𝜇𝜈Δ𝑅𝜌𝜎𝜇𝜈 − 4𝑅𝜇𝜈Δ𝑅𝜇𝜈 + 𝑅Δ𝑅

]
= O

(
𝑅3

)
. (5.21)

This relation readily extends to higher powers of the Laplacian. This case involves
additional commutators when reordering the covariant derivatives before performing the
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integration by parts. These additional commutators only provide further terms of order
O

(
𝑅3) , so that (5.21) is correct for all positive powers Δ𝑛. Using (A.3) in order to

eliminate the Riemann tensor in favor of the Weyl tensor leads to a similar relation, albeit
with different numerical coefficients,∫

d𝑑𝑥
√
𝑔

[
𝐶𝜌𝜎𝜇𝜈Δ𝐶𝜌𝜎𝜇𝜈 − 4

𝑑 − 3
𝑑 − 2

𝑅𝜇𝜈Δ𝑅𝜇𝜈 +
𝑑 (𝑑 − 3)

(𝑑 − 1) (𝑑 − 2) 𝑅Δ𝑅
]
= O

(
𝑅3

)
.

(5.22)
This establishes that the monomials (5.18) are indeed the only form factors that appear
at second order in the curvature, see also [251] for related discussions.3 However,
in dimensions higher than four, the Ricci-squared term without form factor has to be
included, since it cannot be eliminated by the Euler characteristic.

At this stage the following remark is in order. The two monomials
∫

d𝑑𝑥 √
𝑔 and∫

d𝑑𝑥√𝑔𝑅 spanning the Einstein-Hilbert action do not lend themselves to a generalization
by introducing a non-trivial form factor. Adding a function 𝑓𝑘 (Δ) acting on the Ricci
scalar in OR leads to integrands which are total derivatives and thus merely contribute
surface terms to the action. This case will not be considered any further at this stage.

5.2.2 Form factors in the vertex expansion of a scalar-tensor theory

Having discussed the form factors of a scalar-tensor theory obeying split symmetry in
section 5.2.1, we now investigate the role of form factors in the framework of a vertex
expansion. In this case, we consider fluctuations of the gravitational field ℎ𝜇𝜈 in a flat
Euclidean background 𝑔̄𝜇𝜈 = 𝛿𝜇𝜈 . This setting allows to introduce momentum-dependent
form factors in the interaction vertices. The flat background allows to use derivatives 𝜕𝑖𝜇
with □𝑖 ≡ −𝜕2

𝑖 and momenta 𝑝𝑖𝜇 interchangeably. Again, we adopt the convention that
the index 𝑖 denotes the field on which the derivative acts. For notational brevity, we drop
the subscript 𝑘 and it is understood implicitly that all form factors also depend on the
scale 𝑘 . Where necessary, we use a subscript to enumerate the tensor structures that a
given form factor is associated to.

Classification of interaction vertices in powers of ℎ

We start by generalizing the nomenclature introduced in (2.40) to the scalar-tensor case.
In the presence of two fields, we have

Γ𝑘 [ℎ, 𝜙; 𝑔̄] =
∑
𝑚,𝑛

1
𝑛!𝑚!

∫
d𝑑𝑥

√
𝑔̄

[
Γ(𝑚,𝑛)
𝑘

[𝑔̄]
] 𝜇1𝜈1 · · ·𝜇𝑚𝜈𝑚

ℎ𝜇1𝜈1 · · · ℎ𝜇𝑚𝜈𝑚𝜙
𝑛 . (5.23)

3This statement assumes that the form factors possess a well-defined (inverse) Laplace transform (E.10),
which we tacitly assume throughout the entire work.
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In this expression, we have denoted the vertex encoding the interaction of 𝑚 ℎ-fields
and 𝑛 𝜙-fields by Γ(𝑚,𝑛)

𝑘
[𝑔̄]. Notably, the symmetry properties in the vertices in terms

of their momentum-dependence and tensor structure appear automatically, once they are
extracted from (5.23) using the variational principle.

Order O
(
ℎ0) The lowest-order vertex describes the propagation of a scalar field in a

flat background and does not contain the graviton fluctuation field,

Γ𝑘 |𝜙𝜙 =
1
2

∫
d𝑑𝑥 𝑓 (𝜙𝜙) (□)𝜙 . (5.24)

Here we use a vertical line followed by a string of fields to denote the projection of
(5.23) onto the corresponding string of fields. Going to momentum space and taking two
functional derivatives with respect to 𝜙 then yields the (symmetrized) two-point vertex

Γ(0,2)
𝑘

(
𝑝2

)
= 𝑓 (𝜙𝜙)

(
𝑝2

)
. (5.25)

Order O
(
ℎ1) For nonzero orders in ℎ, the vertices Γ(𝑚,𝑛)

𝑘
[𝑔̄]𝜇1𝜈1 · · ·𝜇𝑛𝜈𝑛 , with 𝑚 ≥ 1

contain a nontrivial tensor structure. For 𝑚 = 1 and 𝑛 = 2, there are four form factors
𝑓
(ℎ𝜙𝜙)
T , associated to the independent tensor structures

Γ𝑘 |ℎ𝜙𝜙 =
∫

d𝑑𝑥
[
𝑓
(ℎ𝜙𝜙)
(𝑔̄) 𝛿𝜇𝜈 + 𝑓

(ℎ𝜙𝜙)
(11) 𝜕

𝜇
1 𝜕

𝜈
1 + 𝑓

(ℎ𝜙𝜙)
(22) 𝜕

𝜇
2 𝜕

𝜈
2

+ 𝑓 (ℎ𝜙𝜙)
(12) 𝜕

𝜇
1 𝜕

𝜈
2

]
ℎ𝜇𝜈𝜙𝜙 . (5.26)

Note that in order to obtain a complete basis, the fourth structure is necessary. While
partial integration allows us to write∫

d𝑑𝑥 𝜕𝜇1 𝜕
𝜈
2 ℎ𝜇𝜈𝜙𝜙 = −1

2

∫
d𝑑𝑥

(
𝜕
𝜇
1 𝜕

𝜈
1 ℎ𝜇𝜈

)
𝜙2 , (5.27)

identities of this form no longer hold if there is a form factor which contains Laplacians
acting on the two 𝜙-fields with different powers.

The momentum dependence of the form factors is conveniently parameterized by the
squares of the momenta associated with the three fields,

𝑓
(ℎ𝜙𝜙)
T = 𝑓

(ℎ𝜙𝜙)
T

(
𝑝2

1, 𝑝
2
2, 𝑝

2
3

)
. (5.28)

Combinations of the form 𝑦𝑖 𝑗 = 𝑝𝑖𝜇𝑝
𝜇
𝑗 , 𝑖, 𝑗 = 1, 2, 3, 𝑖 ≠ 𝑗 can be easily eliminated as

independent arguments, using momentum conservation at the vertex. For any three-point
vertex, this gives

𝑝
𝜇
1 + 𝑝𝜇2 + 𝑝𝜇3 = 0 , (5.29)
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which entails
𝑝2

3 =
(
𝑝1𝜇 + 𝑝2𝜇

) (
𝑝
𝜇
1 + 𝑝𝜇2

)
= 𝑝2

1 + 𝑝2
2 + 2𝑦12 . (5.30)

Solving this relation for 𝑦12 allows us to express 𝑦12 in terms of the 𝑝2
𝑖 . Identities for the

other 𝑦𝑖 𝑗 can be obtained along the same lines, yielding

𝑦12 =
𝑝2

3 − 𝑝2
1 − 𝑝2

2
2

, 𝑦13 =
𝑝2

2 − 𝑝2
1 − 𝑝2

3
2

, 𝑦23 =
𝑝2

1 − 𝑝2
2 − 𝑝2

3
2

. (5.31)

These relations allow to eliminate any dependence of 𝑓 (ℎ𝜙𝜙)
T on 𝑦𝑖 𝑗 in favor of the 𝑝2

𝑖 .

We close the discussion of the vertex expansion with the following remarks. The clas-
sification of the form factors related to higher-order vertices follows the same pattern as
the one for the three-point vertices. Firstly, one determines the independent arguments
of 𝑓 (ℎ

𝑚𝜙𝑛)
T using momentum conservation at the vertex. Secondly, one determines the

independent tensor structures providing a suitable basis for the expansion (5.23). Notably,
the number of tensor structures proliferates rather quickly. The vertex with 𝑚 = 𝑛 = 2 is
discussed in detail in Appendix F. In this case there are 35 independent tensor structures
that all come with their own form factor,

𝑓
(ℎℎ𝜙𝜙)
T = 𝑓

(ℎℎ𝜙𝜙)
T

(
𝑝2

1, 𝑝
2
2, 𝑝

2
3, 𝑦12, 𝑦13, 𝑦23

)
. (5.32)

Momentum conservation at the vertex implies that any form factor appearing in a four-
point vertex can depend on six different combinations of the incoming momenta. Sys-
tematically eliminating 𝑝

𝜇
4 by imposing momentum conservation at the vertex, 𝑝𝜇4 =

−
(
𝑝
𝜇
1 + 𝑝𝜇2 + 𝑝𝜇3

)
, leads to the arguments appearing in (5.32).

The vertex expansion can readily be generalized to an arbitrary background 𝑔̄𝜇𝜈 . In
this case, there is the additional complication that operator structures acting on the same
field no longer commute. For example, the Laplacian Δ̄1 no longer commutes with ∇̄1𝜇∇̄𝜇

𝑖 ,
where 𝑖 ≠ 1. This raises the need to impose some convention on how the operators are
ordered. This is particularly relevant for the vertex functions of higher order, such as the
four-point vertex discussed in Appendix F where the form factors depend on a subset of
both Δ̄𝑖 and ∇̄𝑖𝜇∇̄𝜇

𝑗 . In this case one may impose that all ∇̄𝑖𝜇∇̄𝜇
𝑗 are to the left of all Δ̄𝑖

and Δ̄ 𝑗 . Different choices for the operator orderings are equivalent up to terms of order
R.

5.2.3 Mapping between interaction vertices and split-symmetric interactions

At this stage it is natural to ask about the relation between the split symmetry invariant
form factors introduced in section 5.2.1 and the vertex expansion in the previous section.
In order to address this question we expand the split symmetry invariant action (5.3) in
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terms of graviton fluctuations in a flat background 𝑔̄𝜇𝜈 = 𝛿𝜇𝜈 . We can then give the result
in terms of projected components appearing in the expansion (5.23). At zeroth order in
the ℎ-fields, this yields

Γ𝑠,kin
𝑘

���
𝜙𝜙

=
1
2

∫
d𝑑𝑥 𝜙 𝑓 (𝜙𝜙) (□)𝜙 . (5.33)

The terms linear in ℎ originate from expanding √
𝑔 and the form factor respectively. The

former follow from

√
𝑔 ' 1 + 1

2
ℎ + 1

8
ℎ2 − 1

4
ℎ𝜇𝜈ℎ𝜇𝜈 +O

(
ℎ3

)
. (5.34)

The latter arise from expanding the Laplacian acting on scalar fields in powers of ℎ:

Δ𝜙 ' [□ + d1 + d2 + · · · ] 𝜙 , (5.35)

where d𝑖 denotes the operator containing 𝑖 ℎ-fields. Explicit computation of the first two
orders gives

d1 = ℎ𝜇𝜈𝜕
𝜇𝜕𝜈 +

(
𝜕𝜇ℎ𝜇𝜈

)
𝜕𝜈 − 1

2
(𝜕𝛼ℎ) 𝜕𝛼 ,

d2 = − ℎ𝛼𝜇 ℎ𝛼𝜈𝜕𝜇𝜕𝜈 − ℎ𝛼𝛽
(
𝜕𝛽ℎ𝛼𝜇

)
𝜕𝜇 − ℎ𝛽𝜇

(
𝜕𝛾ℎ𝛽𝛾

)
𝜕𝜇

+ 1
2
ℎ𝛼𝛽

(
𝜕𝜇ℎ𝛼𝛽

)
𝜕𝜇 + 1

2
ℎ𝜇𝜈

(
𝜕𝜇ℎ

)
𝜕𝜈 .

(5.36)

Combining these basic expansions with the computational techniques introduced in Ap-
pendix E allows to calculate the variation of functions of the Laplacian. This results in
the following expansion coefficient:

Γ𝑠,kin
𝑘

���
ℎ𝜙𝜙

=
1
2

∫
d𝑑𝑥

[
1
2
𝑓 (𝜙𝜙) (□2) ℎ𝜙𝜙

+
∫ ∞

0
d𝑠 𝑓 (𝜙𝜙) (𝑠)

∞∑
𝑗=0

(−𝑠) 𝑗+1

( 𝑗 + 1)!

𝑗∑
𝑙=0

(
𝑗

𝑙

)
(−1)𝑙

(
□ 𝑗−𝑙𝜙

)
d1□𝑙e−𝑠□𝜙

]
. (5.37)

Here 𝑓 (𝜙𝜙) (𝑠) denotes the inverse Laplace transform of the form factor 𝑓 (𝜙𝜙) (□). Re-
markably, all sums and the Laplace transform can be performed explicitly. Labeling the
Laplacians acting on ℎ, the first and second scalar field by □1, □2 and □3 respectively, we
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find ∫ ∞

0
d𝑠 𝑓 (𝜙𝜙) (𝑠)

∞∑
𝑗=0

(−𝑠) 𝑗+1

( 𝑗 + 1)!

𝑗∑
𝑙=0

(
𝑗

𝑙

)
(−1)𝑙□ 𝑗−𝑙

2 □𝑙3 e−𝑠□3ℎ𝜙𝜙

=
∫ ∞

0
d𝑠 𝑓 (𝜙𝜙) (𝑠)

∞∑
𝑗=0

(−𝑠) 𝑗+1

( 𝑗 + 1)! (□2 − □3) 𝑗 e−𝑠□3ℎ𝜙𝜙

= (□2 − □3)−1
∫ ∞

0
d𝑠 𝑓 (𝜙𝜙) (𝑠)

(
e−𝑠 (□2−□3) − 1

)
e−𝑠□3ℎ𝜙𝜙

= (□2 − □3)−1
(
𝑓 (𝜙𝜙) (□2) − 𝑓 (𝜙𝜙) (□3)

)
ℎ𝜙𝜙 .

(5.38)

A series expansion of the second line shows that the coefficient is finite also on the locus
□2 − □3 = 0. Substituting this result into (5.37) yields the final form of the coefficient
Γ𝑠,kin
𝑘

���
ℎ𝜙𝜙

:

Γ𝑠,kin
𝑘

���
ℎ𝜙𝜙

=
1
2

∫
d𝑑𝑥

[
1
2
𝛿𝜇𝜈 𝑓 (𝜙𝜙) (□2)

+ 𝑓 (𝜙𝜙) (□2) − 𝑓 (𝜙𝜙) (□3)
□2 − □3

(
𝜕
𝜇
3 𝜕

𝜈
3 + 𝜕𝜇1 𝜕

𝜈
3 − 1

2
𝛿𝜇𝜈𝜕1𝛼𝜕

𝛼
3

) ]
ℎ𝜇𝜈𝜙𝜙 . (5.39)

The expansion of the monomials (5.7) around a flat background starts at order ℎ;
therefore they do not contribute to Γ𝑘 |𝜙𝜙. The terms Γ(R𝜙𝜙)

𝑘

���
ℎ𝜙𝜙

and Γ(Ric𝜙𝜙)
𝑘

���
ℎ𝜙𝜙

are
found by replacing the curvature tensors by their leading coefficients in ℎ. They read

ΓR𝜙𝜙
𝑘 |ℎ𝜙𝜙 =

∫
d𝑑𝑥 𝑓 (R𝜙𝜙) (□1,□2,□3)

[
□1𝛿

𝜇𝜈 + 𝜕𝜇1 𝜕
𝜈
1
]
ℎ𝜇𝜈𝜙𝜙 , (5.40)

and

ΓRic𝜙𝜙
𝑘

���
ℎ𝜙𝜙

=
1
2

∫
d𝑑𝑥 𝑓 (Ric𝜙𝜙) (□1,□2,□3)

[
(□1 + □2 − □3) 𝜕𝜇1 𝜕

𝜈
2

− 1
4
(□1 + □2 − □3)2 𝛿𝜇𝜈 + □1 𝜕

𝜇
2 𝜕

𝜈
2

]
ℎ𝜇𝜈𝜙𝜙 .

(5.41)

The structure of the four-point vertex can be analyzed along the same lines. Since
the intermediate steps and results are rather lengthy, this calculation has been relegated to
Appendix F. At this stage, it is sufficient to remark that split-symmetric actions containing
more than one curvature tensor do not contribute to the (ℎ𝜙𝜙)-vertex when expanded
around a flat background. Thus, (5.39), (5.40) and (5.41) capture all contributions
originating from a split-symmetric action.
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We are now in a position to discuss the relation between the split symmetry in-
variant interaction monomials and the vertex expansion discussed in section 5.2.1 and
section 5.2.2, respectively. In general, any split-symmetric action will give rise to an
infinite tower of interaction vertices Γ(𝑚,𝑛)

𝑘 when one expands in graviton fluctuations
around a background 𝑔̄. This tower then implies that there is a relation between the form
factors appearing in the split-symmetric action and the vertex expansion.4 We illustrate
this general property for the form factor appearing in the scalar kinetic term (5.3). Com-
bining (5.33) and (5.39) gives the expansion of the split-symmetric scalar kinetic term
Γ𝑠,kin
𝑘 [𝜙, 𝑔]. In a flat background spacetime, up to terms of second order in ℎ we have:

Γ𝑠,kin
𝑘 =

1
2

∫
d𝑑𝑥

{
𝜙 𝑓 (𝜙𝜙) (□)𝜙 +

[
𝛿𝜇𝜈 𝑓 (𝜙𝜙) (□2)

+ 𝑓 (𝜙𝜙) (□2) − 𝑓 (𝜙𝜙) (□3)
□2 − □3

(
𝜕
𝜇
2 𝜕

𝜈
2 + 𝜕𝜇1 𝜕

𝜈
2 − 1

2
𝛿𝜇𝜈𝜕1𝛼𝜕

𝛼
2

) ]
ℎ𝜇𝜈𝜙𝜙 +O

(
ℎ2

) }
. (5.42)

Here we used the symmetry in the two 𝜙-fields to exchange the indices 2 and 3. By
comparing (5.42) to (5.24) and (5.26), we see that split symmetry entails a specific relation
between the form factors appearing in the vertex expansion. The (𝜙𝜙)-vertex receives
contributions from the scalar kinetic term only, and anticipating this we deliberately chose
the same name for the two functions.

At the level of the (ℎ𝜙𝜙)-vertices, the split-symmetric expansions (5.39), (5.40) and
(5.41) induce the following form factors associated with the tensor structures (5.26):

𝑓
(ℎ𝜙𝜙)
(𝑔̄) =

1
8

[
𝑓 (𝜙𝜙)

(
𝑝2

2

)
+ 𝑓 (𝜙𝜙)

(
𝑝2

3

)
− 𝑝2

1
𝑓 (𝜙𝜙) (

𝑝2
2
)
− 𝑓 (𝜙𝜙) (

𝑝2
3
)

𝑝2
2 − 𝑝2

3

]
+ 𝑝2

1 𝑓
(R𝜙𝜙) − 1

8

(
𝑝2

1 + 𝑝2
2 − 𝑝2

3

)2
𝑓 (Ric𝜙𝜙) ,

𝑓
(ℎ𝜙𝜙)
(11) = 𝑓 (R𝜙𝜙) ,

𝑓
(ℎ𝜙𝜙)
(22) =

1
2
𝑓 (𝜙𝜙) (

𝑝2
2
)
− 𝑓 (𝜙𝜙) (

𝑝2
3
)

𝑝2
2 − 𝑝2

3
+ 1

2
𝑝2

1 𝑓
(Ric𝜙𝜙) ,

𝑓
(ℎ𝜙𝜙)
(12) =

1
2
𝑓 (𝜙𝜙) (

𝑝2
2
)
− 𝑓 (𝜙𝜙) (

𝑝2
3
)

𝑝2
2 − 𝑝2

3
+ 1

2

(
𝑝2

1 + 𝑝2
2 − 𝑝2

3

)
𝑓 (Ric𝜙𝜙) ,

(5.43)

In order to ease the notation we have suppressed the arguments of all functions that
depend on all three squared momenta. This establishes that split symmetry enforces

4A similar relation also holds once terms breaking split symmetry are added, such as the regulator and
the gauge-fixing term. These are controlled by the Nielsen identity (2.38). The modifications induced by
these terms will not be discussed here.
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relations between the four independent form factors appearing in the vertex expansion. In
other words, extracting the parts of the (ℎ𝜙𝜙)-vertices that can be completed into split-
symmetric actions requires contributions from all four tensor structures. Furthermore,
the corresponding momentum-dependent form factors are fixed in terms of the two free
functions 𝑓 (R𝜙𝜙) and 𝑓 (Ric𝜙𝜙) by the relations (5.43). This also establishes that there
are two combinations of tensor structures that cannot be completed into split-symmetric
monomials. At a practical level, this suggests that the amount of split symmetry breaking
induced by the regulator and gauge-fixing terms can be quantified by these equations. This
provides a much more straightforward way to check how strongly full diffeomorphism
symmetry is broken than the evaluation of the nontrivial Nielsen identity (2.38).

For the form factors associated to vertices of higher order, 𝑓 (ℎ
𝑚𝜙2)

T where 𝑚 ≥ 2,
relations can be obtained along the same lines. Their explicit construction requires
classifying all split-symmetric invariants containing up to 𝑚 powers of the curvature
tensor. Subsequently, this set of actions is expanded in the fluctuation field up to 𝑚-th
order. The result is then compared to the classification of tensor structures involving 𝑚
ℎ-fields and two scalars. Given that 𝑓 (ℎℎ𝜙𝜙)

T already gives rise to 35 tensor structures, it
is clear that already the next order of relations will be very involved. We relegate partial
results to Appendix F.

We close the section with a conceptual remark. In general, the EAA does not reduce to
a functional of only one metric in the limit 𝑘 → 0. The reason is that the Nielsen identity
is still nontrivial even in this limit, in particular because the gauge-fixing term is still
present. Our discussion of form factors then might serve as an approximate solution to
the Nielsen identity. This approximation does not include the breaking induced by gauge-
fixing. Demanding split symmetry restoration may fix an infinite number of couplings. In
the specific example of the (ℎ𝜙𝜙)-vertices, split symmetry restoration (up to the nontrivial
part of the Nielsen identity) at 𝑘 = 0 corresponds to imposing the boundary conditions
(5.43). This fixes two linear combinations of the form factors introduced in (5.26).

5.3 Momentum-dependent propagators in the scalar-
tensor model

After our survey of the conceptual properties of momentum-dependent form factors,
we now turn to computational techniques that allow to determine the form factors as
solutions of the FRGE. For clarity, we focus on the simplest case and consider the form
factor associated to the kinetic term (5.3). This generalizes the second-order kinetic term
studied in chapter 4 to a full function of the Laplacian. This section is organized as
follows. In subsection 5.3.1 we present the setup, whereas in subsection 5.3.2 we give the
explicit flow equations. The results are presented in subsection 5.3.3.
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5.3. Momentum-dependent propagators in the scalar-tensor model

5.3.1 Setup

We study the flow of the form factor of a scalar field coupled to gravity. As explained in
the previous section, we approximate the flow of the three- and four-point vertex based
on a diffeomorphism-invariant ansatz for the EAA:

Γ𝑘 [𝑔, 𝜙, 𝑐, 𝑐; 𝑔̄] ≈ Γgrav
𝑘 [𝑔] + Γscalar

𝑘 [𝜙, 𝑔] + Γgf
𝑘 [𝑔; 𝑔̄] + 𝑆gh [𝑔, 𝑐, 𝑐; 𝑔̄]. (5.44)

The gravitational part is taken to be the Einstein-Hilbert action, discussed in subsec-
tion 3.3.1:

Γgrav
𝑘 [𝑔] = 1

16𝜋𝐺𝑘

∫
d𝑑𝑥

√
𝑔 [2Λ𝑘 − 𝑅] . (5.45)

This includes a scale-dependent Newton’s coupling 𝐺𝑘 and the cosmological constant
Λ𝑘 . The gauge-fixing action Γgf

𝑘 and resulting ghost action are given in (2.33) and (2.35)
respectively. For the moment, we keep the gauge-fixing parameters 𝛼 and 𝛽 arbitrary.

Finally, the form factor of the real scalar field is given by

Γscalar
𝑘 [𝜙, 𝑔] = 1

2
𝑍 𝑠
𝑘

∫
d𝑑𝑥

√
𝑔 𝜙 𝑓𝑘 (Δ)𝜙 , (5.46)

where Δ = −𝑔𝜇𝜈∇𝜇∇𝜈 is the Laplacian constructed from the full metric 𝑔. The couplings
are parameterized with a scale-dependent wave-function renormalization 𝑍𝑘 ; the strength
of the gravitational interaction is encoded in the function 𝑓𝑘 , which is subject to the
constraint

𝑓 ′(0) = 1 . (5.47)

Following chapter 4, the gravity-matter system is expected to possess a NGFP suitable
for asymptotic safety, see also [130, 155, 161, 4] for additional evidence. This fixed point
is already visibly in the simplest projection, where Γscalar

𝑘 [𝜙, 𝑔] is approximated by the
classical action of a minimally coupled scalar field, setting

𝑍𝑘 = 1, 𝑓𝑘 (Δ) = Δ . (5.48)

For 𝑑 = 4 it is situated at positive values of Newton’s coupling and cosmological constant
and exhibits a complex pair of critical exponents with a positive real part. Hence, the
fixed point acts as a UV-attractor for the RG flow in the (𝐺,Λ)-plane. It is connected to
the one found for pure gravity through an analytic continuation in the number of scalar
fields.

5.3.2 Flow equations

We now present the 𝛽-functions of the scalar-tensor system derived from the ansatz (5.44).
These are expressed in dimensionless variables; for the gravitational sector, we have the
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dimensionless Newton’s coupling 𝑔 = 𝑘2𝐺𝑘 and cosmological constant 𝜆𝑘 = 𝑘−2Λ𝑘 . In
the scalar sector, we have the dimensionless form factor defined via

𝑓 (𝑧) = 𝑘−2 𝑓
(
𝑘2𝑧

)
. (5.49)

In addition, we introduce the gravitational and scalar anomalous dimensions, respectively:

𝜂𝑁 = (𝐺𝑘)−1 𝜕𝑡𝐺𝑘 , 𝜂𝑠 = − (𝑍𝑘)−1 𝜕𝑡𝑍𝑘 . (5.50)

For simplicity, we present the flow equations in Feynman-harmonic gauge, corresponding
to setting the gauge-fixing parameters 𝛼 = 1, 𝛽 = 𝑑

2 − 1. Finally, we introduce the
dimensionless regulator shape function 𝑟 as

𝑅𝑘 (𝑧) = 𝑘2𝑟
( 𝑧
𝑘2

)
, (5.51)

where 𝑅𝑘 denotes the scalar part of the regulator R𝑘 .

Gravitational 𝛽-functions

The gravitational 𝛽-functions are explicitly given by

𝜕𝑡𝑔 = (𝑑 − 2 + 𝜂𝑁 ) 𝑔 . 𝜕𝑡𝜆 = 𝑔 (𝐿1(𝜆) + 𝐿3 [ 𝑓 ] + 𝜂𝑁 𝐿2(𝜆)) − (2 − 𝜂𝑁 ) 𝜆 . (5.52)

The anomalous dimension takes the form

𝜂𝑁 =
𝑔 (𝐵1(𝜆) + 𝐵3 [ 𝑓 ])

1 − 𝑔𝐵2(𝜆)
. (5.53)

The functions 𝐵1(𝜆), 𝐵2(𝜆), 𝐿1(𝜆) and 𝐿2(𝜆) only depend on the gravitational couplings,
and were first derived in [102]. They are given explicitly in (3.25).

The functionals 𝐵3 and 𝐿3 arise from the inclusion of the form factor 𝑓 , and read

𝐵3 [ 𝑓 ] =
2
3
(4𝜋)1−𝑑/2

(
Φ1

𝑑/2−1 [ 𝑓 ] −
1
2
𝜂𝑠Φ̃

1
𝑑/2−1 [ 𝑓 ]

)
𝐿3 [ 𝑓 ] = (4𝜋)1−𝑑/2

(
Φ1

𝑑/2 [ 𝑓 ] −
1
2
𝜂𝑠Φ̃

1
𝑑/2 [ 𝑓 ]

)
.

(5.54)

In these expressions, we have conveniently used the generalized threshold functionals

Φ𝑝
𝑛 [ 𝑓 ] =

1
Γ(𝑛)

∫ ∞

0
d𝑧𝑧𝑛−1 𝑟 (𝑧) − 𝑧𝑟 ′(𝑧)

( 𝑓 (𝑧) + 𝑟 (𝑧)) 𝑝

Φ̃𝑝
𝑛 [ 𝑓 ] =

1
Γ(𝑛)

∫ ∞

0
d𝑧𝑧𝑛−1 𝑟 (𝑧)

( 𝑓 (𝑧) + 𝑟 (𝑧)) 𝑝 .
(5.55)

If 𝑓 (𝑧) = 𝑧 + 𝑤 is linear in 𝑧, these functionals reduce to the threshold functionals as
defined in (3.26):

Φ𝑝
𝑛 (𝑤) = Φ𝑝

𝑛 [𝑧 + 𝑤] Φ̃𝑝
𝑛 (𝑤) = Φ̃𝑝

𝑛 [𝑧 + 𝑤] . (5.56)
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Propagator 𝛽-function

The flow equation for 𝑓 is given by(
1 − 1

2
𝜂𝑠

)
𝑓
(
𝑞2

)
+ 1

2
𝜕𝑡 𝑓

(
𝑞2

)
− 𝑞2 𝑓 ′

(
𝑞2

)
= K1 +K2 +K3 , (5.57)

where the K𝑖 correspond to the three Feynman diagrams in Figure 5.1. Structurally, the
diagrams consist of a momentum and angular integral over a number of graviton and
scalar propagators, and an insertion of the derivative of the regulator, connected by their
vertex functions. The structural part of the diagrams reads

K1 = −32𝜋𝑔
∫

d𝜇 [𝜂𝑁 ] V1(𝑝, 𝑞, 𝑥)
(
𝐺

grav
0 (𝑝2)

)2
,

K2 = 32𝜋𝑔
∫

d𝜇 [𝜂𝑠] V2(𝑝, 𝑞, 𝑥)𝐺grav
0 (𝔰)

(
𝐺scalar

0 (𝑝2)
)2

,

K3 = 32𝜋𝑔
∫

d𝜇 [𝜂𝑁 ] V3(𝑝, 𝑞, 𝑥)𝐺scalar
0 (𝔰)

(
𝐺

grav
0 (𝑝2)

)2
.

(5.58)

Here we have introduced the Mandelstam variable 𝔰 = 𝑝2 + 𝑞2 + 2𝑝𝑞𝑥. We define the
regularized integrals∫

d𝜇[𝜂] ≡ 𝑆𝑑−2

(2𝜋)𝑑
∫ ∞

0
d𝑝𝑝𝑑−1

∫ 1

−1
d𝑥

(
1 − 𝑥2

) 𝑑−3
2 ×[

𝑟
(
𝑝2

)
− 1

2
𝜂𝑟

(
𝑝2

)
− 𝑝2𝑟 ′

(
𝑝2

)]
, (5.59)

where 𝜂 ∈ {𝜂𝑠, 𝜂𝑁 }. In this expression, 𝑆𝑛 denotes the area of the 𝑛-sphere, given by

𝑆𝑛 =
(𝑛 + 1)𝜋 𝑛+1

2

Γ
(
𝑛+1

2 + 1
) . (5.60)

The regularized dimensionless graviton and matter propagators are

𝐺
grav
0 (𝑧) = (𝑧 + 𝑟 (𝑧) − 2𝜆)−1 , (5.61a)

𝐺scalar
0 (𝑧) = ( 𝑓 (𝑧) + 𝑟 (𝑧))−1 . (5.61b)

The vertex functions V𝑖 are given by

V1 = − 1
8
𝑑 (𝑑 + 1) 𝑓

(
𝑞2

)
+ 1

2
𝑓 ′

(
𝑞2

)
𝑞2

(
𝑑 −

𝔰 − 𝑝2 + 𝑑−4
𝑑−2𝑞

2

𝔰 − 𝑞2

)
+ 1

2
𝑓 (𝔰) − 𝑓

(
𝑞2)

𝔰 − 𝑞2 𝑞2

(
1 +

𝔰 − 𝑝2 + 𝑑−4
𝑑−2𝑞

2

𝔰 − 𝑞2

)
,

(5.62a)
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𝑞

𝑝

(a)

𝑝 + 𝑞

𝑝

𝑞

(b)

𝑝

𝑝 + 𝑞

𝑞

(c)

Figure 5.1: Feynman diagrams contributing to the flow of the scalar form factor.
The solid and double lines denote the scalar and graviton propagators, respec-
tively. The crossed circle denotes the insertion of the cutoff operator 𝜕𝑡R𝑘 .
5.1a: tadpole diagram K1. 5.1b and 5.1c: self energy diagrams K2 and K3.

V2 = − 𝑑

2
1

𝑑 − 2

(
𝑓
(
𝑝2

))2
+ 1

2

(
𝔰 + 𝑑 + 2

𝑑 − 2
𝑝2 − 𝑞2

)
𝑓
(
𝑝2

) 𝑓 (
𝑝2) − 𝑓

(
𝑞2)

𝑝2 − 𝑞2

−
(
𝔰
2
+ 1
𝑑 − 2

𝑝2 − 𝑞2
) (

𝑓
(
𝑝2) − 𝑓

(
𝑞2)

𝑝2 − 𝑞2

)2

𝑝2 ,

(5.62b)

V3 = − 𝑑

2
1

𝑑 − 2

(
𝑓
(
𝔰2

))2
+ 1

2

(
𝑝2 + 𝑑 + 2

𝑑 − 2
𝔰 − 𝑞2

)
𝑓 (𝔰)

𝑓 (𝔰) − 𝑓
(
𝑞2)

𝔰 − 𝑞2

−
(
𝑝2

2
+ 1
𝑑 − 2

𝔰 − 𝑞2
) (

𝑓 (𝔰) − 𝑓
(
𝑞2)

𝔰 − 𝑞2

)2

𝔰 .

(5.62c)

Note that the vertices V2 and V3 are related by the exchange 𝔰 ↔ 𝑝2, consistent with
the observation that the corresponding self-energy diagrams K2 and K3 differ only in the
insertion of the regulator 𝜕𝑡R𝑘 and a relabeling of momenta.

We remark that the left-hand side of the 𝛽-function is a function of 𝑞2, while on the
right-hand side also odd powers of 𝑞 are present. The right-hand side can be properly
symmetrized by the observation that odd powers of the angular variable 𝑥 integrate to
zero.

From the flow equation for 𝑓 , we derive a separate equation for 𝜂𝑠. This is done
by taking two derivatives with respect to 𝑞 and setting 𝑞 = 0. Using the requirement
𝑓 ′(0) = 1 gives an implicit equation for 𝜂𝑠:

𝜂𝑠 = − d2

d𝑞2 (K1 +K2 +K3)
����
𝑞=0, 𝑓 ′ (0)=1

. (5.63)

The explicit expression for 𝜂𝑠 is rather lengthy, so we refer to the supplementary notebook
fpsolver.nb in [1] for further details.
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5.3. Momentum-dependent propagators in the scalar-tensor model

5.3.3 Fixed point properties

In the following section we will discuss the solution of the set of flow equations presented
in (5.52) and (5.57). We will focus on the fixed point, where all couplings are independent
of the renormalization group scale 𝑘 .

We will concentrate on the Landau-harmonic gauge. This is obtained by the following
choice for 𝛼 and 𝛽:

Landau-harmonic gauge: 𝛼 = 0 , 𝛽 =
𝑑

2
− 1 . (5.64)

Behavior at 𝑞 = 0 As a start, we consider the behavior of 𝑓 at zero momentum.
Evaluating at 𝑞 = 0, the flow equation reduces to the form

1
2
𝜕𝑡 𝑓 (0) =

[
L0 (𝑔, 𝜆, 𝜂𝑠, 𝑓 ;𝛼, 𝛽) −

(
1 − 1

2
𝜂𝑠

)]
𝑓 (0) . (5.65)

We conclude that at the fixed point, this equation is satisfied if either 𝑓 (0) = 0, or if
L0 = 1 − 1

2𝜂𝑠. We find that if 𝑓 (0) = 0 at some point of an RG trajectory, then 𝑓 (0)
vanishes along the entire trajectory. Furthermore, given a numerical solution, this gives
a non-trivial check whether one or both of these conditions hold.

Asymptotic behavior Next, we study the asymptotic properties of the fixed point solu-
tion. To this end, we make the ansatz that for large momentum 𝑞2, the function 𝑓 behaves
as 𝑓

(
𝑞2) ∼ 𝑓∞𝑞2𝑛, where 𝑓∞, 𝑛 > 0. Inserting this into the fixed point equation gives a

consistent equation for 𝑛 < 2. Within this range, the diagram K2 is always sub-leading.
Next, we study the asymptotic behavior around the Landau-harmonic gauge, (5.64).

To this end, we first write the gauge parameter 𝛽 as 𝛽 =
(
𝑑
2 − 1

)
+ Δ𝛽 and then make an

expansion around 𝛼 = 0, Δ𝛽 = 0. Expanding then around large 𝑞 gives the asymptotic
relation

− 1
2
𝜂𝑠 − (𝑛 − 1) = 32𝜋𝑔

(𝑑 − 2𝑛) (𝑑 − 2(𝑛 − 1))
𝑑

∫
d𝜇 [𝜂𝑁 ] ×(

𝑑 − 1
𝑑 − 2

[
𝑑 − 4

8
− 4
𝑑 (𝑑 + 2)Δ𝛽

]
𝐺

grav
0

(
𝑝2

)2
+ 1

4
𝛼

𝑝2 + 𝑟
(
𝑝2) ) +O(𝛼2,Δ𝛽2) . (5.66)

For the exact Landau limit and harmonic gauge, 𝛼 = 0, Δ𝛽 = 0, we find that the right-hand
side of this equation vanishes exactly in 𝑑 = 4 dimensions. This means that the canonical
relation 𝑛 = 1 − 1

2𝜂𝑠 holds exactly; thus, the asymptotic behavior of 𝑓 receives no direct
quantum corrections due to gravity.
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Truncating the expansion to first order in 𝛼 and Δ𝛽, we find a quadratic equation for
𝑛. This equation can be solved in terms of 𝜂𝑠, 𝑔 and 𝜆. Expanding to first order in 𝑔, we
find that 𝑛 is of the form

𝑛 = 1 − 1
2
𝜂𝑠 +O(𝑔) . (5.67)

This confirms the expectation that the fall-off behavior of the propagator is determined to
leading order by the anomalous dimension and receives additional quantum corrections
at higher orders. By definition, the anomalous dimension is determined at 𝑞 = 0, and is
therefore governed by the small-momentum properties of 𝑓 .

The anomalous dimension Similar to the asymptotic exponent 𝑛, we can study the
anomalous dimension 𝜂𝑠 close to Landau-harmonic gauge. Expanding (5.63) around
𝛼,Δ𝛽 = 0 gives

−𝜂𝑠 = 32𝜋𝑔

(
(𝑑 − 4)(𝑑 − 1)

4

∫
d𝜇 [𝜂𝑁 ] 𝐺grav

0

(
𝑝2

)2
+ 𝛼W

)
+O

(
𝛼2,Δ𝛽2

)
, (5.68)

where W is given by

W [𝜆, 𝜂𝑁 , 𝜂𝑠, 𝑓 ] =
∫

d𝜇 [𝜂𝑁 ]
(𝑑 − 2)𝑝2 + 2 𝑓

(
𝑝2) (

𝑓
(
𝑝2) 𝐺scalar

0
(
𝑝2) − 1

)
2𝑝2 (

𝑝2 + 𝑟
(
𝑝2) )2

+
∫

d𝜇 [𝜂𝑠]
𝑓
(
𝑝2)2

𝑝2 (
𝑝2 + 𝑟

(
𝑝2) )𝐺scalar

0

(
𝑝2

)2
. (5.69)

Remarkably, the anomalous dimension is independent of Δ𝛽 to first order in Δ𝛽. Taking
the Landau limit 𝛼 = 0, we see that the anomalous dimension vanishes exactly in 𝑑 = 4.

The exact solution in Landau limit As we have seen, in 𝑑 = 4, the Landau-harmonic
gauge (5.64) gives an anomalous dimension 𝜂𝑠 = 0; furthermore, we have found that
the asymptotic exponent 𝑛 must be exactly 1. In fact, if we evaluate the full fixed point
equation in this gauge, we find that the function

𝑓∗(𝑧) = 𝑓lin(𝑧) = 𝑧 (5.70)

is an exact solution. In other words, no non-trivial two-point function will be generated
by this solution. This constitutes the most important result of this section.

It is important to note that this statement holds independently of the choice of regulator.
Thus, a different choice of𝛼 and 𝛽 cannot be reabsorbed into a different choice of regulator.
Therefore, variations in the fixed point solution for a different gauge choice probe the gauge
dependence of the RG flow.
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5.3. Momentum-dependent propagators in the scalar-tensor model

The exact solution 𝑓∗(𝑧) = 𝑧 implies that the dimensionless mass parameter (5.6)
vanishes at the fixed point,

𝜇∗ = 0. (5.71)

In combination with the observation that 𝑓 is positive, this entails that the scalar propagator
corresponds to a single massless scalar degree of freedom.

In order to study the stability of the fixed point, one should construct the stability
matrix associated to the form factor. At this stage, the following conceptual remark is in
order. The relation (5.61b) (with the regulator 𝑟 (𝑧) set to zero) shows that the form factor
𝑓 is closely related to the propagator the scalar field,(

𝐺scalar
)−1

∝ 𝑓 (𝑝2) ∝ Z𝑠 (𝑝2)
(
𝑝2 + 𝜇2

)
. (5.72)

In general, we assume that the prefactor Z𝑠 (𝑝2) is positive, and may be absorbed in a field
redefinition without affecting the pole structure of the propagator. This suggests to gen-
eralize (5.5) to a momentum-dependent anomalous dimension 𝜂∗𝑠 (𝑝2) ≡ −𝜕𝑡 logZ𝑠

∗ (𝑝2).
It is then natural that there are no stability coefficient associated with deformations of
Z𝑠
∗ (𝑝2).5 In the case at hand, we have the exact solution 𝜂∗𝑠 (𝑝2) = 0.

Owing to this observation, the stability of the form factor is limited to the stability
of the gap parameter 𝜇 [59]. We note that, since the fixed point is trivial, the critical
exponent associated to 𝜇2 is just the canonical one,

𝜃𝜇2 = +2 , (5.73)

given by the classical mass dimension.

Solutions in Feynman gauge The fact that the linear solution solves the fixed point
equations in Landau-harmonic gauge is a highly nontrivial result. For Feynman-harmonic
gauge, the function 𝑓lin is not a solution. Since the equation (5.57) is a highly nonlinear
integro-differential equation (IDE), we have to resort to numerical methods to find a
solution. In fpsolver.nb, we have implemented a numerical algorithm that searches for
a numerical solution. At the time of writing, we have not been able to find a fixed point
solution in this gauge.

However, we can insert 𝑓lin on the right-hand side of (5.57) to obtain a one-loop
approximation. However, solving the resulting linear differential equation gives either a
singularity at 𝑞 = 0, or a root at positive momentum. Both features are undesirable, and
show the necessity of using non-perturbative approximations.

5In this analysis we have tacitly assumed that the function 𝑓∗ has a single root. If 𝑓∗ has multiple roots, as
was the case in chapter 4, each root has an associated gap parameter 𝜇1, 𝜇2, . . . and corresponding stability
coefficient.

91



Chapter 5. Form factors in Asymptotic Safety

5.4 Conclusion and discussion

In this chapter we have provided a detailed account of momentum-dependent form factors
in quantum field theory and their role in the Asymptotic Safety program. Conceptually,
the role of the form factors may be understood as follows. The object carrying the relevant
information on the QFT is the quantum effective action Γ ≡ Γ𝑘=0. This functional serves
as a generating function for all 1PI correlation functions. It is obtained as the endpoint
of an RG trajectory where all quantum fluctuations are integrated out. Asymptotic
Safety then entails that all couplings 𝑢̄𝑖 (𝑘 = 0) in Γ are determined by the fundamental
parameters identifying the RG flow infinitesimally close to the NGFP. The map between
the fundamental parameters and the 𝑢̄𝑖 (𝑘 = 0) is obtained by solving the flow equation and
constructing the complete RG trajectory. This picture has some profound consequences.

Firstly, the momentum dependence of the couplings 𝑢̄𝑖 (𝑘 = 0) originates from
momentum-dependent form factors evaluated at 𝑘 = 0. A priori, this is conceptually
different from the dependence of the couplings 𝑢̄𝑖 (𝑘) on the coarse-graining scale 𝑘 ,
which originates from integrating out quantum fluctuations shell-by-shell in momentum
space. In simple cases, the 𝑘-dependence of the couplings may be identified with their
dependence on an external momentum 𝑝. However, form factors capturing the momentum
dependence of the interaction vertices go far beyond this approximation. In particular
they also cover “anisotropic” situations where external momenta differ from each other.

Secondly, as discussed in section 5.2.1, the cosmological constant and Newton’s
coupling cannot be promoted to momentum-dependent form factors, since the inclusion
of the differential operators leads to surface terms in Γ𝑘 . Thus𝐺𝑘=0 andΛ𝑘=0 are numbers
which are independent of the external momenta in a scattering process. In this way the
RG picture is reconciled with the statement that the (renormalized) cosmological constant
and Newton’s coupling “do not run” [252].

Thirdly, form factors are essential when expanding the EAA in split-symmetric mono-
mials, as explained in detail in section 5.1. In setting up the FRGE, the necessity of intro-
ducing a gauge-fixing and regulator breaks diffeomorphism symmetry with a background
metric 𝑔̄𝜇𝜈 . Using form factors, one can self-consistently close the RG equation by means
of monomials that depend on 𝑔 only, keeping the breaking of diffeomorphism symmetry
to a minimum.

The actual computation of the form factors featuring in Asymptotic Safety is still
in its infancy. Our goal was to give a detailed survey of the computational techniques
which allow to explore this new research area. We illustrated these techniques based
on the simplest example by computing the gravitational corrections to the form factor
governing the propagation of a scalar field minimally coupled to the Einstein-Hilbert
action. Structurally, the 𝛽-functions governing the flow of the scalar propagator, (5.57),
already exhibit all the features also expected in the gravitational sector or more complex
gravity-matter systems: the scale-dependence is encoded in a non-linear IDE. Solving
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reference 𝜂s
∗ Δ

[130] −0.361 —
[155] 0 —
polynomial expansion6 −0.771 —
form factors 0 1

Table 5.1: Comparison of the scalar anomalous dimension 𝜂s
∗ reported in the

literature. As an important novel feature, the form factor 𝑓 (𝜙𝜙)
∗ (𝑝2) allows to

analyze the asymptotic behavior of the scalar two-point function (propagator)
at large momenta.

this type of equations is highly nontrivial, and can only be done in very special cases.
The main result of this analysis is discussed in subsection 5.3.3. Here it is established

that the scalar kinetic term of the gravity-scalar fixed point previously studied in [107,
108, 111, 130, 155, 161] extends to a complete form factor which is well-defined for all
momenta. Remarkably, for harmonic gauge (𝛽 = 𝑑

2 − 1) and Landau limit (𝛼 → 0), the
propagator 𝑓 (𝑧) = 𝑧 is an exact solution to the flow equation.

A particular feature of this solution is a vanishing gap parameter 𝜇∗. This supports
the conjecture [73] that the scalar sector of the gravity-matter system is shift-symmetric,
i.e. it is invariant under the transformation 𝜙 → 𝜙 + 𝑐, where 𝑐 is a constant.

The analysis of perturbations around this solution shows that, as expected, the gap
parameter of the scalar is a relevant parameter. Since the fixed point solution is trivial,
the anomalous dimension vanishes. Table 5.1 compares this value to results reported in
the literature. The results are in remarkable agreement with [155], despite a different
closure of the split-symmetry. Since the underlying computations of [130] use a different
choice for the field decomposition and the implementation of the regulator function, one
should not expect a matching of the results beyond the qualitative agreement here.

The scaling of the scalar propagator in the large-momentum regime follows from the
scaling analysis in subsection 5.3.3 and is given by

lim
𝑝2→∞

𝐺s
∗(𝑝2) ∝ 1

𝑝2𝛼 , 𝛼 = 1 . (5.74)

By performing a Fourier transform to position space, this asymptotic behavior then
governs the short-distance asymptotics of the scalar two-point correlator. Explicitly,

〈𝜙(𝑥)𝜙(𝑦)〉 ' 1
|𝑥 − 𝑦 |2Δ

, Δ =
1
2
(𝑑 − 2𝛼) = 1 . (5.75)

6See chapter 4.
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Notably, this fall-off is compatible with the unitarity bounds on the scaling behavior of
scalar correlators stating that Δ ≥ Δmin = 1 [253, 254].

An important point, which so far has not been addressed in the literature, is the
relation between the form factors at the fixed point 𝑓∗({𝑝𝑖}) and in the quantum effective
action 𝑓𝑘=0({𝑝𝑖}). Establishing this connection requires solving the 𝑘-dependent IDE
with suitable boundary conditions. In the scalar case discussed in this chapter this
computation would proceed as follows. The first step constructs the eigenperturbations
associated with the three relevant directions explicitly. Adding perturbations into the
relevant directions then gives different initial conditions for the projected flow equation
imposed at asymptotically large values of 𝑘 . The latter is then mapped to the couplings
appearing in the quantum effective action Γ𝑘=0 by solving the IDE (5.57). While this
analysis is crucial for understanding whether the non-Gaussian fixed point is connected
to the observed “low-energy world”, this computation is beyond the scope of the present
work.

An important cross-check along these lines may be provided by the effective field
theory treatment of gravity [255], recently reviewed in [256–259]. Suppose that instead
of tracing the renormalization group flow to the deep infrared, 𝑘 = 0, the solution of
the IDE is constructed up to a finite scale 𝑘2 = Λ2 ≲ 𝑀2

Pl. Provided that the structure
of the effective average action at this scale resembles the Einstein-Hilbert action, the
resulting quantum effective action should resemble the one found in the effective field
theory treatment, at least at the perturbative level.

Clearly, understanding the momentum-dependent form factors associated with the
non-Gaussian fixed points appearing in gravity and gravity-matter systems and the re-
sulting quantum effective actions constitute formidable computational tasks. However,
already from the pioneering works [59, 109], it is clear that the form factors related to
the two-point functions of the fluctuation fields (non-perturbative propagators) may hold
the key to understanding the structure of spacetime at short distances. Also the fate of
spacetime singularities, omnipresent in GR, is closely linked to understanding the struc-
ture of the graviton propagator at trans-Planckian momenta. Thus, form factors may be
the key towards unlocking some of the most fundamental questions in quantum gravity.
Therefore, research addressing these challenges may very well be worth the effort.
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CHAPTER 6

REFLECTION POSITIVITY IN

HIGHER-DERIVATIVE

SCALAR THEORIES

The following chapter is based on:

F. Arici, D. Becker, C. Ripken, F. Saueressig, and W. D. van Suĳlekom. Reflec-
tion positivity in higher derivative scalar theories. J. Math. Phys. 59.8 (2018)
082302. [arXiv:1712.04308].

The following chapter studies under which conditions higher-derivative theories vio-
late or satisfy unitarity. We will restrict ourselves to a flat background and to Euclidean
signature. We will study the Euclidean equivalent of unitarity, called reflection positivity.

6.1 Unitarity and reflection positivity

Apart from consistency conditions on a QFT such as renormalizability, which is necessary
for avoiding unwanted divergencies, we may also impose additional physical constraints
on a QFT. A prominent property is unitarity, as discussed in chapter 1. Unitarity en-
sures positivity of transition amplitudes in scattering processes, yielding a consistent
probabilistic interpretation of the quantum theory.

Unitarity of a QFT on flat Minkowski space has been made precise in the form of
the Wightman axioms [260], as conditions on the correlation functions. Osterwalder and
Schrader [261, 262] showed that one can construct a Lorentzian QFT from a probabilistic
theory on a Euclidean manifold M, provided that the latter satisfies the Osterwalder–
Schrader axioms. The Euclidean theory can then be mapped to a Lorentzian QFT by
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Chapter 6. Reflection positivity in higher-derivative scalar theories

means of a Wick rotation. This is the content of the Osterwalder–Schrader reconstruction
theorem.

In this thesis, we have encountered Euclidean QFTs as the natural framework for
the FRG. Furthermore, in Euclidean theories the inner product on M is positive definite
and the Laplace operator Δ is elliptic, yielding a mathematical toolbox stocked with a
functional calculus that is under better control than in the Lorentzian case.

The Osterwalder–Schrader axioms (see the standard work [263] for a detailed exposé)
can be phrased as a set of conditions on the partition function 𝑍 [𝐽], which can be written
formally as the path integral

∫
D𝜑 e−𝑆 [𝜑 ]+𝐽 ·𝜑 (see section 2.1). The Osterwalder-Schrader

axioms are then:

1. Analyticity

2. Regularity

3. Euclidean invariance

4. Reflection positivity

5. Ergodicity

We will now explain these axioms in detail. The first two axioms ensure that the partition
function is sufficiently “nice” such that e.g. correlators can be calculated by taking func-
tional derivatives. The third axiom, Euclidean invariance, translates to Lorentz invariance
in the corresponding Lorentzian QFT. Ergodicity corresponds to the requirement that the
vacuum state is unique.

Reflection positivity stands out in the sense that it is the only axiom that explicitly
refers to a Euclidean time direction. It singles out a specific direction in Euclidean
space, which eventually will translate to the Lorentzian causal structure. In general,
reflection positivity of a partition function 𝑍 [𝐽] is given by the following requirement.
Let {𝐽𝑖 (𝑡, ®𝑥)} be a finite sequence of test functions on 𝑑-dimensional Euclidean space
R𝑑 such that 𝐽𝑖 (𝑡, ®𝑥) is zero for 𝑡 < 0. Reflection positivity then states that for any such
sequence, the matrix

B𝑖 𝑗 = 𝑍
[
𝐽𝑖 − Θ 𝐽 𝑗

]
(6.1)

is positive. Note that the condition on the support of the 𝐽𝑖 already isolates the 𝑡-direction
as a special direction in R𝑑 . Together with the time reflection operator Θ, which will be
defined in full rigor in section 6.2, this selects the Euclidean time direction.

Reflection positivity has been proven for only a few theories, including the Klein-
Gordon theory or the Dirac operator (see for instance [261, 264]). We consider free scalar
theories with a covariance operator or propagator of the form𝐶 (Δ) on flat, non-dynamical

96



6.2. Setup and sufficient conditions

Euclidean spacetime. In this case, the partition function can be written as

log 𝑍 [𝐽] = −1
2
〈𝐽, 𝐶 (Δ)𝐽〉 . (6.2)

In particular, this case includes the Klein-Gordon propagator
(
Δ + 𝑚2)−1, which has been

proven to be reflection positive. However, propagators of the form𝐶−1 = 𝑝𝑛 (Δ), where 𝑝𝑛
denotes a polynomial of degree 𝑛 ≥ 2, are commonly expected to be reflection positivity
violating, based on the classical theorem by Ostrogradski [176].

The main result of this chapter is Theorem 6.2, which gives for a large class of
functions 𝐶 a necessary and sufficient condition such that reflection positivity is satisfied.
For example, the theorem proves violation of reflection positivity for a propagator of the
form 𝐶

(
𝑝2) = (

𝑝2 + 𝑚2)−1 −
(
𝑝2 + 𝑀2)−1, as was also shown in [265].

The rest of this chapter is organized as follows. In section 6.2, we introduce a rigorous
definition of reflection positivity of a propagator𝐶 (Δ), and state the theorem Theorem 6.2.
We then prove the theorem in section 6.2 and section 6.3. We illustrate the theorem by
selected cases where reflection positivity is confirmed or violated in section 6.4. We
close the chapter with an outlook on possible extensions of the theorem and applications
in theoretical physics in section 6.5.

6.2 Setup and sufficient conditions

We start by setting up the functional spaces for which the theorem will hold. The key
ingredient for reflection positivity is the time-reflection operator 𝜃 : R𝑑 → R𝑑 , given by
(𝑡, ®𝑥) ↦→ (−𝑡, ®𝑥) on flat Euclidean spacetime. The time reflection operator gives rise to
the operator Θ on the space of square-integrable functions L2(R𝑑) by pullback of 𝜃. That
is, for 𝑓 ∈ L2(R𝑑), we define

Θ 𝑓 B 𝑓 ◦ 𝜃 . (6.3)

Following the conventions of [264], we defineS (R+) to be the space of Schwartz functions
𝑓 ∈ S (R) such that supp 𝑓 ⊆ R+ B [0,∞). By S

(
R𝑑
+
)

we denote the completed
topological tensor product S (R+) ⊗̂S

(
R𝑑−1) , that is, the space of functions 𝑓 such that

𝑓 ∈ S
(
R𝑑

)
and supp 𝑓 ⊆ {𝑥 ∈ R𝑑 , 𝑡 ≥ 0}.

For the free theory, reflection positivity can be phrased as the following condition on
the covariance operator 𝐶:

Definition 6.1 (Reflection positivity). Let 𝐶 be a covariance operator that commutes with
the time reflection operator Θ. Then 𝐶 is said to satisfy reflection positivity if for all
𝐽 ∈ S

(
R𝑑
+
)
, we have the inequality

〈𝐽, 𝐶 Θ 𝐽〉 ≥ 0 . (6.4)
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Chapter 6. Reflection positivity in higher-derivative scalar theories

Based on this definition, we derive the necessary and sufficient conditions for a large class
of free propagators to satisfy reflection positivity.

Theorem 6.2. Let 𝐶 be a real rational function which has no poles on R+. A necessary
and sufficient condition for the operator 𝐶 (Δ) to satisfy reflection positivity is that the
poles of 𝐶 all lie on R−, are simple and have non-negative residue.

An essential ingredient in the proof of this theorem is establishing a relation between
reflection positivity of 𝐶 (Δ) and its pole structure. We find that the inner product
𝐼 [𝐽] ≡ 〈𝐽, 𝐶 Θ 𝐽〉 is a sum over the residues at the poles, deformed by some 𝐽 and
the pole-dependent prefactor. Thus, the properties of the poles—their degree, and their
position—determine whether 𝐼 [𝐽] is non-negative for all 𝐽.

Essential for the theorem is that a real rational function 𝐶 admits a unique represen-
tation in terms of its partial fraction decomposition [266, Corollary 5.5.4]:

𝐶 (𝑥) =
𝑁∑
𝑗=1

©­«
𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
(
𝑥 − 𝑧 𝑗

)−𝑛ª®¬ + 𝑝(𝑥) . (6.5)

where 𝑝 is a real polynomial. The number 𝑧 𝑗 ∈ C is a pole of order 𝑘 𝑗 for 𝐶, writing
ord

(
𝐶, 𝑧 𝑗

)
= 𝑘 𝑗 . The set of poles of 𝐶 is denoted by P𝐶 . We assume that 𝐶 has no poles

on the positive real line, i.e. P𝐶 ∩ R+ = ∅. In the physics setting, a pole on the positive
real line corresponds to a negative squared mass. The existence of such a particle would
allow for obtaining an infinite amount of energy by creating particles from the vacuum,
which we exclude on physical grounds.

Using Fourier transforms and the pseudo-differential calculus on R𝑑 (see [267, 268]),
together with the property that 𝐶 has no poles on R+, we can write the operator 𝐶 (Δ) as
a sum of powers of resolvents plus a local operator 𝑝(Δ),

𝐶 (Δ) =
𝑁∑
𝑗=1

©­«
𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
(
Δ − 𝑧 𝑗

)−𝑛ª®¬ + 𝑝(Δ) , (6.6)

acting on Schwartz space S
(
R𝑑
+
)
.

The coefficients 𝑎 𝑗𝑛 appearing in the expansion (6.5) are the residues, given by the
expression

𝑎 𝑗𝑛 = res
𝑧→𝑧 𝑗

( (
𝑧 − 𝑧 𝑗

)𝑛−1
𝐶 (𝑧)

)
. (6.7)

It is easy to check that for the complex conjugate 𝐶 (𝑧) the reality condition 𝐶 (𝑧) = 𝐶 (𝑧)
implies that if 𝑧 𝑗 is a complex pole of order 𝑘 𝑗 , then 𝑧 𝑗 is also a pole of order 𝑘 𝑗 .
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Let us remark that the operator 𝐶 (Δ) can be decomposed into the sum of simpler
operators, coming from separate poles,

𝐶𝜆(Δ) =
𝑘∑

𝑛=1

(
𝑎𝑛 (Δ − 𝜆)−𝑛 + 𝑎̄𝑛

(
Δ − 𝜆̄

)−𝑛) , 𝜆 ∈ C\R , ord (𝐶, 𝜆) = 𝑘

𝐶𝜇 (Δ) =
𝑘∑

𝑛=1
𝑎𝑛 (Δ − 𝜇)−𝑛 , 𝜇 ∈ R− , ord (𝐶, 𝜇) = 𝑘 .

(6.8)

For later reference, we use the following notation for the Klein-Gordon propagator with
(possibly complex) mass 𝑤 ∈ C\R+:

𝐼𝑤 [𝐽] =
〈
𝐽,Θ (Δ − 𝑤)−1 𝐽

〉
. (6.9)

Proposition 6.3. Let 𝐶 be a real rational function with partial fraction decomposition
(6.5). The 𝐼 [𝐽] for the covariance operator 𝐶 (Δ) can be written as

𝐼 [𝐽] =
𝑁∑
𝑗=1

𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
1

(𝑛 − 1)!
d𝑛−1

d𝑧𝑛−1
𝑗

𝐼𝑧 𝑗 [𝐽] . (6.10)

Proof. Substituting the expression for 𝐶 (Δ) into 𝐼 [𝐽], we obtain

𝐼 [𝐽] = 〈𝐽, 𝑝(Δ) Θ 𝐽〉 +
𝑁∑
𝑗=1

𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
1

(𝑛 − 1)!
d𝑛−1

d𝑧𝑛−1
𝑗

〈
𝐽,Θ

(
Δ − 𝑧 𝑗

)−1
𝐽
〉

. (6.11)

Since 𝑝 is a polynomial, 𝑝(Δ) is a local operator; therefore, the inner product 〈𝐽,Θ 𝑝(Δ)𝐽〉
vanishes since for 𝐽 ∈ S

(
R𝑑
+
)
, supp 𝐽 ∩ suppΘ 𝐽 = {0}. □

From this proposition, we conclude that reflection positivity is directly linked to the
pole structure of the propagator. We are now in a position to prove the if part of the main
theorem.

Proposition 6.4. A sufficient condition for 𝐶 (Δ) to satisfy reflection positivity is that the
poles of 𝐶 all lie on R−, are simple and possess a non-negative residue.

Proof. In [264, 269–271], it is shown that for all 𝐽 ∈ S
(
R𝑑
+
)
, the integral 𝐼𝜇 [𝐽] ≥ 0,

𝜇 ∈ R, is non-negative. If all poles are simple and in R−, we can write

𝐼 [𝐽] =
𝑁∑
𝑗=1
𝑎 𝑗 𝐼𝜇 𝑗 [𝐽] , (6.12)

with 𝑎 𝑗 = res𝑧→𝜇 𝑗 𝐶 (𝑧). The claim then follows from the assumption that all residues are
non-negative. □
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Chapter 6. Reflection positivity in higher-derivative scalar theories

In the next section, we will prove the proposition that the condition in Proposition 6.4
is actually a necessary condition for reflection positivity. We will show that reflection
positivity is violated whenever there are complex poles, real poles of higher order, or real
poles with negative residue.

6.3 Necessary conditions for reflection positivity

6.3.1 Properties of the Klein-Gordon quadratic form

We have seen in the previous section that the Klein-Gordon propagator and its integral
𝐼𝑤 [𝐽] play a key role in the discussion of reflection positivity. In this subsection, we will
prove three lemmata that will allow us to construct functions 𝐽 ∈ S

(
R𝑑
+
)

such that 𝐼𝑤 [𝐽]
and its derivatives explicitly violate the inequality (6.4).

Lemma 6.5. Let 𝑤 ∈ C\R+, 𝐽 ∈ S
(
R𝑑
+
)
, and 𝐼𝑤 [𝐽] be defined as in (6.9). The following

identity holds true:

𝐼𝑤 [𝐽] = −𝜋𝑖
∫

d𝑑−1𝑝√
𝑤 − ®𝑝2

𝐽∗
(
−
√
𝑤 − ®𝑝2, ®𝑝

)
𝐽
(√
𝑤 − ®𝑝, ®𝑝

)
. (6.13)

Proof. The proof consists of computing a contour integral in 𝑝0. Factorizing the measure,
we obtain after Fourier transforming that

𝐼𝑤 [𝐽] =
∫

d𝑑−1 ®𝑝
∫ ∞

−∞
d𝑝0 𝐽

∗ (
−𝑝0, ®𝑝

)
𝐽
(
𝑝0, ®𝑝

)(
𝑝0)2 + ®𝑝2 − 𝑤

. (6.14)

The integral over 𝑝0 can be calculated by closing the contour in the lower half-plane. This
gives

𝐼𝑤 [𝐽] = lim
𝑅→∞

∫
d𝑑−1 ®𝑝

∫
Γ𝑅

d𝑠
𝐽∗ (−𝑠, ®𝑝) 𝐽 (𝑠, ®𝑝)
𝑠2 − (𝑤 − ®𝑝)2 , (6.15)

where Γ𝑅 is a large semicircle of radius 𝑅 such that Γ𝑅 ⊂ {𝑧 ∈ C | Im(𝑧) ≤ 0}. The
integrand is meromorphic in the interior of the contour, since 𝐽 (𝑠, ®𝑝) is analytic in the
lower half-plane by the Paley-Wiener theorem (cf. [268, Theorem 7.2.4]). Furthermore,
since the integral over 𝑝0 is over the reals, we can extend 𝐽

(
𝑝0, ®𝑝

)
to an analytic function

by considering 𝐽∗ (𝑠, ®𝑝). Finally, the contribution of the semicircular arc of Γ𝑅 to the
integral vanishes in the limit 𝑅 → ∞, since the same Paley-Wiener theorem ensures that
𝐽 is falling off sufficiently fast.

The contour integral is now calculated by the residue theorem; the integrand has
poles at ±

√
𝑤 − ®𝑝2, with the convention that

√
𝑤 − ®𝑝2 lies in the lower half-plane (see
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𝑤{𝑤 − ®𝑝2}

branch cut

{√
𝑤 − ®𝑝2

}
Figure 6.1: The two square roots (in blue) of 𝑤 − ®𝑝2 as ®𝑝 varies over R𝑑−1 (in
red). We adopt the convention that

√
𝑤 − ®𝑝2 lies in the lower half-plane (solid

blue line). The branch cut will never be crossed because of our assumption that
𝑤 ∉ R+.

Figure 6.1). The integral is then given by

𝐼𝑤 [𝐽] = − 2𝜋𝑖
∫

d𝑑−1 ®𝑝 res
𝑠→

√
𝑤− ®𝑝2

𝐽∗ (−𝑠, ®𝑝) 𝐽 (𝑠, ®𝑝)
𝑠2 − 𝑤 − ®𝑝2

= − 𝜋𝑖
∫

d𝑑−1𝑝√
𝑤 − ®𝑝2

𝐽∗
(
−
√
𝑤 − ®𝑝2, ®𝑝

)
𝐽
(√
𝑤 − ®𝑝, ®𝑝

)
.

(6.16)

In this expression, we have calculated the integral by factorizing the denominator 𝑠2−𝑤−
®𝑝2 =

(
𝑠 −

√
𝑤 − ®𝑝2

) (
𝑠 +

√
𝑤 − ®𝑝2

)
into first-order roots. Since 𝐽 (𝑠, ®𝑝) and 𝐽∗ (−𝑠, ®𝑝)

are analytic, the second line then follows from a straightforward application of the residue
theorem.

□

The second lemma is a homogeneity property of 𝐼𝑤 [𝐽], which follows from the
previous lemma.

Lemma 6.6. Let 𝐽 ∈ S
(
R𝑑
+
)
, and let 𝑞 be a polynomial. Then 𝑞(Δ)𝐽 ∈ S

(
R𝑑
+
)
, and

𝐼𝑤 [𝑞(Δ)𝐽] = 𝑞(𝑤̄)𝑞(𝑤)𝐼𝑤 [𝐽] , (6.17)

for all 𝑤 ∈ C\R+.
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Proof. Since 𝑞 is a polynomial, the operator 𝑞(Δ) is local. Thus, the support of 𝑞(Δ)𝐽 is
contained in the support of 𝐽, which is contained in R𝑑

+ . Furthermore, since 𝐽 is smooth,
𝑞(Δ)𝐽 is smooth as well.

We then apply Lemma 6.5 to calculate 𝐼𝑤 [𝑞(Δ)𝐽],

𝐼𝑤 [𝑞(Δ)𝐽] = −𝜋𝑖
∫

d𝑑−1 ®𝑝√
𝑤 − ®𝑝2

�(𝑞(Δ)𝐽)∗ (
−
√
𝑤 − ®𝑝2, ®𝑝

) �(𝑞(Δ)𝐽) (√
𝑤 − ®𝑝2, ®𝑝

)
,

(6.18)
where �(𝑞(Δ)𝐽) denotes the Fourier transform of the function 𝑞(Δ)𝐽. Since we have�(𝑞(Δ)𝐽) (𝑝) = 𝑞(𝑝2)𝐽 (𝑝) and �(𝑞(Δ)𝐽)∗(𝑝) = 𝑞(𝑝2)𝐽∗(𝑝), this can be rewritten as

𝐼𝑤 [𝑞(Δ)𝐽] = −𝜋𝑖𝑞(𝑤̄)𝑞(𝑤)
∫

d𝑑−1 ®𝑝√
𝑤 − ®𝑝2

𝐽∗
(
−
√
𝑤 − ®𝑝2, ®𝑝

)
𝐽

(√
𝑤 − ®𝑝2, ®𝑝

)
, (6.19)

which we recognize as 𝑞(𝑤̄)𝑞(𝑤)𝐼𝑤 [𝐽]. This completes the proof. □

Reflection positivity is satisfied trivially if 𝐼 [𝐽] is zero for all 𝐽 ∈ S
(
R𝑑
+
)
. In order to

exclude this case, we show that one can always construct a 𝐽 such that 𝐼𝑤 [𝐽] is nontrivial.
This is shown in the following lemma.

Lemma 6.7. Let 𝐼𝑤 [𝐽] be defined as in (6.9). Then there exists a 𝐽 ∈ S
(
R𝑑
+
)

for which

𝐼𝑤 [𝐽] ≠ 0 . (6.20)

Proof. First note that 𝐼𝑤 [𝐽] extends to a continuous quadratic form on L2(R𝑑
+ ), so that by

a density argument it suffices to show that there exists a 𝐽 ∈ L2(R𝑑
+ ) for which 𝐼𝑤 [𝐽] ≠ 0.

We consider the following explicit candidate:

𝐽 (𝜏, ®𝑥) = 𝜒[𝑎,𝑏] (𝜏) · (𝑐1 · · · 𝑐𝑑−1)1/4 e−𝜋(𝑐1𝑥
2
1+···+𝑐𝑑−1𝑥

2
𝑑−1) , (6.21)

where 𝜒[𝑎,𝑏] is the indicator function on the interval [𝑎, 𝑏] ⊂ R+ and 𝑐1, . . . , 𝑐𝑑−1 > 0.
One readily checks that for 𝑧 in the lower half-plane we have

𝐽 (𝑧, ®𝑝) = 1
2𝜋𝑖𝑧

(
e−2𝜋𝑖𝑎𝑧 − e−2𝜋𝑖𝑏𝑧

) e−𝜋(𝑝2
1/𝑐1+···+𝑝2

𝑑−1/𝑐𝑑−1)

(𝑐1 · · · 𝑐𝑑−1)1/4 . (6.22)

We may now invoke Lemma 6.5 to show that for this 𝐽, we have

𝐼𝑤 [𝐽] = − 1
4𝜋𝑖

∫
d𝑑−1 ®𝑝(

𝑤 − ®𝑝2)3/2

(
e−2𝜋𝑖𝑎

√
𝑤− ®𝑝2 − e−2𝜋𝑖𝑏

√
𝑤− ®𝑝2

)2

× e−𝜋(𝑝2
1/𝑐1+···+𝑝2

𝑑−1/𝑐𝑑−1)

(𝑐1 · · · 𝑐𝑑−1)1/4 . (6.23)
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Now observe that as we let 𝑐1,. . . ,𝑐𝑑−1 → 0 the Gaussian integrals converge to the Dirac
delta distribution 𝛿 ( ®𝑝) (note, however, that this only applies to the combined expression
for 𝐽∗ (−𝑧, ®𝑝) 𝐽 (𝑧, ®𝑝) appearing in integral expression (6.23) for 𝐼𝑤 [𝐽]; it is not the case
that the function 𝐽 (𝑧, ®𝑝) itself converges to a Dirac delta distribution). Moreover, it is
sufficient to consider this limiting case, since if the above integral is non-zero in this limit,
there must exist finite values of 𝑐1, . . . ,𝑐𝑑−1 for which the 𝐼𝑤 [𝐽] is also non-zero. It is
now straightforward to compute that in this limit we have

𝐼𝑤 [𝐽] |𝑐1,...,𝑐𝑑−1→0 = − 1
2(𝑑+3)/2𝜋𝑖

𝑤−3/2
(
e−2𝜋𝑖𝑎

√
𝑤 − e−2𝜋𝑖𝑏

√
𝑤
)2

, (6.24)

which is indeed non-zero for generic values of 𝑎 and 𝑏. □

6.3.2 Reduction to separate poles

Before we proceed to consider the various cases, we will show that, whenever we have
a term in the sum (6.5) which on its own violates reflection positivity, we can always
tune 𝐽 in such a way that 𝐼 [𝐽] only depends on this term. This follows from Lemma 6.7,
combined with the homogeneity property of Lemma 6.6.

Lemma 6.8. For any pole 𝜆 ∈ P𝐶 , there exists a 𝐽 ∈ S
(
R𝑑
+
)

such that

𝐼 [𝐽] = 〈𝐽, 𝐶𝜆(Δ) Θ 𝐽〉 . (6.25)

Proof. Let 𝐽 ∈ S
(
R𝑑
+
)
be such that 𝐼𝜆 [𝐽] ≠ 0, by Lemma 6.7. We consider the polynomial

𝑞(𝑧) =
∏

𝑧 𝑗 ∈P𝐶\{𝜆,𝜆̄}

(
𝑧 − 𝑧 𝑗

) 𝑘 𝑗 .
(6.26)

By definition,

𝐼 [𝑞(Δ)𝐽] =
∑
𝑗

𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
1

(𝑛 − 1)!
d𝑛−1

d𝑧𝑛−1 𝐼𝑧 [𝑞(Δ)𝐽]
����
𝑧=𝑧 𝑗

, (6.27)

with the first sum running over the set of poles P𝐶 . If we set 𝑞 𝑗 (𝑧) = 𝑞(𝑧)/
(
𝑧 − 𝑧 𝑗

) 𝑘 𝑗 , it
is easy to see that the sums

𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
1

(𝑛 − 1)!
d𝑛−1

d𝑧𝑛−1 𝐼𝑧 [𝑞(Δ)𝐽]

=
𝑘 𝑗∑
𝑛=1

𝑎 𝑗𝑛
1

(𝑛 − 1)!
d𝑛−1

d𝑧𝑛−1
(
𝑧 − 𝑧 𝑗

) 𝑘 𝑗
(
𝑧 − 𝑧 𝑗

) 𝑘 𝑗 𝐼𝑧
[
𝑞 𝑗 (Δ)𝐽

]
(6.28)
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vanish upon evaluation at 𝑧 𝑗 ≠ 𝜆, 𝜆̄.
Therefore, the only terms that are left in the sum (6.27) are the ones corresponding to

𝜆, 𝜆̄, giving
𝐼 [𝑞(Δ)𝐽] = 〈𝑞(Δ)𝐽, 𝐶𝜆(Δ) Θ 𝑞(Δ)𝐽〉 , (6.29)

which proves the claim. □

6.3.3 Violation of reflection positivity

We are now ready to prove that the condition in Proposition 6.4 is also necessary. This
is achieved by constructing functions in S

(
R𝑑
+
)

that violate reflection positivity in all the
cases that are not covered by the conditions in Proposition 6.4. In Proposition 6.9, we
consider complex poles, while poles of higher order are excluded in Proposition 6.10.

Proposition 6.9. Let us assume that𝐶 has a pole in the upper half-plane. Then there exists
a 𝐽 ∈ S

(
R𝑑
+
)

such that
𝐼 [𝐽] < 0 . (6.30)

Proof. In view of Lemma 6.8, we may assume, without loss of generality, that 𝐶 has
exactly two complex conjugate poles, 𝜆 and 𝜆̄, of order 𝑘 , with Im(𝜆) > 0.

Let 𝐽 ∈ S
(
R𝑑
+
)
be such that 𝐼𝜆 [𝐽] ≠ 0, which is always possible in view of Lemma 6.7.

Let us choose a polynomial ansatz for 𝑞 defined as follows:

𝑞(𝑧) = (𝑧 − 𝜆)𝑘−1ℎ(𝑧) , ℎ(𝑧) = 1 − 𝛼̄
2𝑖 Im(𝜆) (𝑧 − 𝜆) + 1 . (6.31)

Note that the polynomial ℎ is chosen in such a way that ℎ(𝜆) = 1 and ℎ(𝜆̄) = 𝛼.
We now compute

𝐼 [𝑞(Δ)𝐽] =2 Re
𝑘∑

𝑛=1
𝑎𝑛

1
(𝑛 − 1)!

d𝑛−1

d𝑧𝑛−1 𝐼𝑧 [𝑞(Δ)𝐽]
����
𝑧=𝜆

=2 Re
𝑘∑

𝑛=1
𝑎𝑛

1
(𝑛 − 1)!

d𝑛−1

d𝑧𝑛−1 (𝑧 − 𝜆)
𝑘−1 (

𝑧 − 𝜆̄
) 𝑘−1

ℎ(𝑧)ℎ(𝑧)𝐼𝑧 [𝐽]
����
𝑧=𝜆

=2 Re
(
𝛼 · 𝑎𝑘 (2𝑖 Im(𝜆))𝑘−1 𝐼𝜆 [𝐽]

)
.

(6.32)

In the first step, we have applied Lemma 6.6. In the last step, we have used that (𝑧−𝜆)𝑘−1

vanishes at 𝜆, with all of its derivatives, except for the (𝑘 − 1)-th. Note that Im(𝜆) ≠ 0,
and 𝐼𝜆 [𝐽] ≠ 0 by construction, hence we can choose 𝛼 to make the above expression
negative. This completes the proof. □

The case of real poles of order greater than one can be treated in a similar way.
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Proposition 6.10. Suppose that 𝐶 (𝑧) has a pole in the upper half-plane. Then there exists
a 𝐽 ∈ S

(
R𝑑
+
)

such that
𝐼 [𝐽] < 0 . (6.33)

Proof. By Lemma 6.8, it is not restrictive to assume that 𝐶 has exactly one pole 𝜇 of
order 𝑘 > 1.

Let 𝐽 ∈ S
(
R𝑑
+
)

be such that 𝐼𝜇 [𝐽] ≠ 0, which again is always possible in view of
Lemma 6.7.

We proceed similarly to the proof of Proposition 6.9 and choose for 𝑞 a polynomial
of the form

𝑞(𝑧) = 𝛼(𝑧 − 𝜇)𝑘−1 + 1 . (6.34)

Computing 𝐼 [𝑞(Δ)𝐽], we obtain

𝐼 [𝑞(Δ)𝐽] =
𝑘∑

𝑛=1
𝑎𝑛

1
(𝑛 − 1)!

d𝑛−1

d𝑧𝑛−1 𝐼𝑧 [𝑞(Δ)𝐽]
����
𝑧=𝜇

=
𝑘∑

𝑛=1
𝑎𝑛

1
(𝑛 − 1)!

d𝑛−1

d𝑧𝑛−1

(
1 + 2𝛼(𝑧 − 𝜇)𝑘−1 + 𝛼2(𝑧 − 𝜇)2(𝑘−1)

)
𝐼𝑧 [𝐽]

����
𝑧=𝜇

=𝐼 [𝐽] + 2𝛼 · 𝑎𝑘 𝐼𝜇 [𝐽] ,
(6.35)

where we have used Lemma 6.6 in the first step. In the second step, we observed that
all derivatives of (𝑧 − 𝜇)𝑘 evaluated at 𝜇 vanish, except for the (𝑘 − 1)-st. Note that 𝑎𝑘
is non-zero by assumption and 𝐼𝜇 [𝐽] is non-zero by construction; thus, we can choose 𝛼
such that 𝐼 [𝑞(Δ)𝐽] < 0, which proves the claim. □

Finally, whenever𝐶 has a real single pole with negative residue, we can use Lemma 6.8
to construct a 𝐽 such that 𝐼 [𝐽] only depends on that pole. The sign of the residue will
automatically imply that reflection positivity is violated.

Combined with the proof that simple real poles with non-negative residue satisfy
reflection positivity, we have completed the proof of our main result.

Theorem 6.2. Let 𝐶 be a real rational function which has no poles on R+. A necessary
and sufficient condition for the operator 𝐶 (Δ) to satisfy reflection positivity is that the
poles of 𝐶 all lie on R−, are simple and have non-negative residue.

6.4 Selected cases

In order to put the theorem into context, we will give some physical examples of higher-
derivative theories which may or may not violate reflection positivity. We will consider
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the Klein–Gordon case (subsection 6.4.1), a propagator with negative residue (subsec-
tion 6.4.2), complex poles (subsection 6.4.3), and poles of order higher than one (subsec-
tion 6.4.4). Finally, we will study a propagator which does not fall into the class covered
by Theorem 6.2, and show which proof strategies fail in this case (subsection 6.4.5).

6.4.1 The Klein–Gordon operator

The first case we consider is the Klein–Gordon operator, given by 𝐶
(
𝑝2) = (𝑝2 +𝑚2)−1,

where 𝑚2 > 0. This case is extensively studied [264, 269–271] and will turn out to be
reflection positive. Indeed, using Lemma 6.5, we find

𝐼−𝑚2 [𝐽] = 𝜋
∫

d𝑑−1 ®𝑝√
𝑚2 + ®𝑝2

����𝐽 (
−𝑖

√
𝑚2 + ®𝑝2, ®𝑝

)����2 , (6.36)

where we have used that
√
−1 = −𝑖, in accordance with the sign convention of the

square root in Lemma 6.5. It is clear that this is a positive number, and therefore the
Klein–Gordon operator is reflection positive.

6.4.2 Negative residues

We now study the canonical example of an Ostrogradski ghost [265]. Consider the
propagator

𝐶
(
𝑝2

)
=

𝑀2 − 𝑚2

(𝑝2 + 𝑚2)(𝑝2 + 𝑀2)
=

1
𝑝2 + 𝑚2 − 1

𝑝2 + 𝑀2 . (6.37)

We now define the polynomial 𝑞(𝑠) =
(
𝑠 + 𝑚2); using Lemma 6.8 and 6.6, we find

𝐼 [𝑞(Δ)𝐽] = −(𝑚2 − 𝑀2)2𝐼−𝑀 2 [𝐽]. (6.38)

Since 𝐼−𝑀 2 [𝐽] ≥ 0, this indeed violates reflection positivity.

6.4.3 Complex poles

Thirdly, we consider a propagator with a complex pole, given by

𝐶
(
𝑝2

)
=

(
𝑝2 + 𝑚2 + 𝑖Γ

)−1
+

(
𝑝2 + 𝑚2 − 𝑖Γ

)−1
, (6.39)

where 𝑚2, Γ > 0. From a physical perspective, the parameter Γ signals a decay width,
and therefore an unstable fundamental degree of freedom. We will now show that this
propagator is not reflection positive. First, we consider an arbitrary 𝐽 ∈ S (R𝑑

+ ). By
Lemma 6.7, we can assume that 𝐼 [𝐽] ≠ 0. If 𝐼 [𝐽] < 0, we have shown violation of
reflection positivity, and there is nothing to prove.
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Assume therefore that 𝐼 [𝐽] > 0. In light of Proposition 6.9, we choose

𝑞(𝑠) = 2
2𝑖Γ

(
𝑠 + 𝑚2 − 𝑖Γ

)
+ 1 . (6.40)

Then, using Lemma 6.6, we compute

𝐼 [𝑞(Δ)𝐽] = 2 Re 𝐼−𝑚2+𝑖Γ [𝑞(Δ)𝐽] = −𝐼 [𝐽], (6.41)

which is clearly negative. Thus, 𝑞(Δ)𝐽 violates reflection positivity.

6.4.4 Higher order poles

We now consider the propagator 𝐶
(
𝑝2) = (

𝑝2 + 𝑚2)−2. According to Proposition 6.10,
this should violate reflection positivity. With the same reasoning as in the previous section,
assume for 𝐽 ∈ S

(
R𝑑
+
)

that 𝐼−𝑚2 [𝐽] > 0. Then set 𝑞(𝑠) = 𝛼
(
𝑠 + 𝑚2) + 1. Computing

𝐼 [𝑞(Δ)𝐽], we obtain
𝐼 [𝑞(Δ)𝐽] = 𝐼 [𝐽] + 2𝛼𝐼−𝑚2 [𝐽]. (6.42)

Choosing 𝛼 < − 𝐼 [𝐽 ]
2𝐼−𝑚2 [𝐽 ] , 𝐼 [𝑞(Δ)𝐽] becomes negative, and reflection positivity is vio-

lated.

6.4.5 Non-rational propagators

Finally, we explore the limits of Theorem 6.2, by considering a propagator which is non-
rational. Let 𝐶

(
𝑝2) =

(
𝑝2 + 𝑚2)−1 exp

(
−𝑝2) . Propagators of this type are inspired by

e.g. non-local gravity models [244].
The function𝐶 is a bounded function on R+, and therefore defines a bounded operator

𝐶 (Δ). However, analytically continuing to a complex function 𝐶 (𝑧) gives a function that
diverges exponentially as Im(𝑧) → ±∞.

This poses a problem when closing the contour in Lemma 6.5; in order to calculate
the 𝑝0-integral, the contribution from the arc in the negative half-plane has to vanish. For
rational functions, this is satisfied since the Schwartz functions S

(
R𝑑
+
)

decay faster than
any rational function at infinity. For the exponential function 𝐶, this is not satisfied and
therefore the contribution to the contour integral cannot be neglected.

A possibility for restoring the requirements for Lemma 6.5 is imposing a stricter
condition on the class of admissible 𝐽’s. In order to calculate the contour integral for
𝐶 (𝑧), one should restrict the class of Schwartz functions to functions that decay faster
than any exponential.
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6.5 Conclusion

The main result of this chapter is Theorem 6.2, where we give necessary and sufficient
conditions for reflection positivity in a large class of scalar field theories on flat Euclidean
spacetime. We have studied scalar theories with a propagator of the form 𝐶 (Δ), where 𝐶
is a real rational function without poles on R+. Our theorem states that the only functions
𝐶 that yield a reflection positive theory have simple poles on R− and non-negative residue.

We have illustrated the theorem by some physical examples in section 6.4. First,
we have shown that the Klein-Gordon propagator

(
Δ + 𝑚2)−1 is indeed reflection pos-

itive. Secondly, we have explicitly demonstrated violation of reflection positivity in
subsection 6.4.2, subsection 6.4.3 and subsection 6.4.4. These examples emphasize the
caution that has to be taken with theories containing a polynomial kinetic function, such
as 𝑓 (Δ) = 𝑍

(
Δ + 𝑌Δ2) that was studied in chapter 4. Our theorem demonstrates the

importance of imposing additional constraints on the effective action Γ𝑘=0, in order to
obtain a theory that is reflection positive.

There are several cases that are not covered by the theorem. Notably, the case where
𝐶 (Δ) =

(
Δ + 𝑚2)−1

𝑓 (Δ), where 𝑓 (Δ) is an entire, analytic function with suitable falloff
conditions is covered only partially by the theorem. Propagators of this form underlie the
program of non-local theories of gravity (see [244] for a review) and arise naturally in the
context of noncommutative geometry [272–274] and asymptotic safety [28, 103, 158, 4],
as we have seen in chapter 5.

The theorem is also bypassed by constructions along the lines of a PT -symmetric
quantum mechanics, as advocated in [275, 276]. This setup builds on a nontrivial
modification of the inner product (6.4).

One may extend the theorem along different lines. First of all, we may relax our
assumptions on the analytic properties of 𝐶 to cover the entire class of non-local propa-
gators. Secondly, one may consider non-scalar and interacting fields. The generalization
to non-scalar fields may go along the same lines as in [264]. Interacting fields may prove
to be more problematic, since the condition for reflection positivity does not reduce to
a simple positivity condition of an inner product. On the classical level, the conditions
for obtaining an Ostrogradski ghost-free theory have been studied in [174]. Finally, one
may generalize Theorem 6.2 to non-flat spacetimes. As a first step, one might consider
reflection positivity on a curved manifold equipped with a foliation structure. For the
case of the Klein-Gordon operator, the corresponding generalization for the Osterwalder-
Schrader axioms have been studied in [264, 270, 271].
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CHAPTER 7

CONCLUSION

In the introduction of this thesis, we encountered general relativity and the Standard Model
of particle physics as the basis for our current understanding of the fundamental forces and
particles in our universe. While conceptually very different, they are extremely successful
in their domains of applicability. The Standard Model, formulated as a quantum theory,
has been tested with high precision at small length scales. On the other hand, general
relativity provides an excellent description of the universe at large scales. However,
coming up with a unified description of a quantum theory of gravity has proven to be
rather difficult. The application of perturbative quantization techniques to GR results in a
non-renormalizable theory, either leading to UV-divergences, or to a loss of predictivity
due to an infinite number of counterterms in the action.

On closer inspection, this phenomenon hinges on a perturbative analysis. Weinberg’s
conjecture that the renormalization group flow of gravity possesses a non-perturbative
fixed point [34] may be an elegant way to reconcile the laws of QFT with general
relativity. Such a NGFP leads to the Asymptotic Safety scenario. Due to the fixed point,
UV divergences are avoided. In addition, predictive power is restored if the NGFP has a
finite-dimensional UV-critical hypersurface. This can be described by a finite number of
free parameters, whilst giving relations for an infinite number of irrelevant parameters.

The development of functional methods [38, 102] has paved the way for a systematic
study of this conjecture. Combined with the background field method and truncations, we
can study approximations to solutions of the functional renormalization group equation
for gravity in terms of the effective average action Γ𝑘 [28, 29].

While Asymptotic Safety is a promising candidate for a theory of quantum gravity, it
should pass several tests. First and foremost, a theory should provide predictions that can
be tested by experiment. Asymptotic Safety predicts relations between UV-irrelevant and
-relevant couplings, which are fixed by the finite-dimensional UV-critical hypersurface.
Secondly, a theory should be self-consistent. An open problem in the self-consistency
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of Asymptotic Safety is the question of unitarity. Since Γ𝑘 may contain operators of
arbitrarily high order, this is an complicated question.

Within this context, we focused in this thesis on the following observational and
structural aspects of asymptotically safe quantum gravity:

1. We tested compatibility of Asymptotic Safety with cosmological observations.

2. We demonstrated that Ostrogradski ghosts can be avoided by the renormalization
group.

3. We classified form factors and calculated the full momentum dependence of a
higher-derivative scalar propagator.

4. We provided necessary and sufficient conditions for reflection positivity in higher-
derivative scalar theories.

Astrophysical observations, in particular those of the CMB by the Planck satellite,
highly constrain theoretical models. One of these models, so-called Starobinsky inflation
supplemented with a cosmological constant, is in excellent agreement with the observa-
tions. This model is described by an 𝑓 (𝑅)-action truncated to second order in 𝑅. It
contains three couplings: the cosmological constant Λ, Newton’s constant 𝐺 and the
𝑅2-coupling 𝐵 that drives early-time inflation. Measurements of the scalar spectral tilt
𝑛𝑠 and the tensor-to-scalar ratio 𝑟 of fluctuations in the CMB determine the value of 𝐵.
Measurements on the large-scale structure give a constraint on Λ. Finally, Newton’s con-
stant can be observed in laboratory experiments. Each of these parameters is measured
at a characteristic energy scale.

In chapter 3 we have studied whether Asymptotic Safety is compatible with this model.
To this end, we have investigated the RG flow of the aforementioned 𝑅2-action. In this
analysis, we reproduced the NGFP of gravity, demonstrating the asymptotically safe UV
limit of the theory. Next, we studied the flow away from the fixed point. Each trajectory
emanating from the NGFP gives a specific dependence of the couplings on the RG scale
𝑘 . Identifying the RG scale with the scale at which the couplings are measured, we obtain
three experimental constraints for the three couplings in the Starobinsky model. Each of
these constraints is imposed at a different scale 𝑘 .

We have constructed the RG trajectory, shown in Figure 3.5, that emanates from the
NGFP and in addition satisfies all three experimental constraints. This provides evidence
that the Asymptotic Safety scenario is consistent with observations from cosmology.

Apart from renormalizability, unitarity is an important consistency condition on a
quantum theory. For instance, theories with a 𝑝4-kinetic term suffer from the Ostrogradski
instability. The higher-order term leads to an Ostrogradski ghost in the Kallén-Lehmann
spectrum, whose negative norm leads to a violation of unitarity. In the context of
the FRG, such actions are dangerous as they may be generated automatically along the
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RG flow through gravitational interactions. However, the Ostrogradski instability can
be lifted by pushing the ghost mass to infinity when flowing towards 𝑘 → 0. This
decouples the ghost from the particle spectrum. In chapter 4, we have studied the RG
flow of a higher-derivative scalar field coupled to gravity. We established that the system
contains three NGFPs, suitable for asymptotic safety. Furthermore, within its UV critical
hypersurfaces lie specific trajectories for which the ghost decouples in the IR, as is shown
in subsection 4.3.4. This evidence that the RG allows for gravity-matter systems which
are both asymptotically safe and ghost-free constitutes the main result of this chapter.

In chapter 5, we introduced form factors as generalized expansion coefficients in the
EAA. They are functions of the Laplacian acting on monomials constructed from the
fundamental fields of the theory. The expansion of such actions in a given background
is manifestly split-symmetric, providing an important constraint en route to background
independence. We classified the lowest-order form factors for gravity-matter systems and
pure gravity. In addition, we obtained a mapping between the form factor expansion and
the vertex expansion.

After that, we studied the form factor associated to a scalar kinetic term. This
generalizes the 𝑝4-kinetic term from chapter 4 to a full function of the momentum. We
calculated the RG equations of the form factor coupled to gravity, and looked for fixed
points. Remarkably, in Landau-harmonic gauge the kinetic term of a minimally coupled
scalar field turned out to be an exact solution to the RG equation. An important feature
of this form factor is that the form factor is manifestly positive. Its only root is at
zero momentum, corresponding to a single scalar degree of freedom of zero mass. The
construction of this form factor is the most important result of this chapter.

Finally, we studied the mathematical foundations of unitarity in chapter 6. Unitarity
on Euclidean flat spacetime can be defined through the Osterwalder-Schrader axioms.
Central in these axioms is the requirement of reflection positivity, a positivity condition
on the propagator in combination with a reflection in Euclidean time. The main result
of this chapter is Theorem 6.2. This result gives for a large class of higher-derivative
theories a set of necessary and sufficient conditions for reflection positivity. In particular,
we prove that the 𝑝4-propagator from chapter 4 is not reflection positive, and therefore
violates unitarity. This stresses the importance of studying the properties of the effective
action Γ𝑘=0, and the extra constraints that should be imposed on RG trajectories describing
a realistic quantum theory.

The results presented in this thesis provide a starting point for several directions of
follow-up research. On the observable side, the study of the UV-critical hypersurface
can give valuable predictions that could be tested experimentally. Within the 𝑓 (𝑅)-
truncation, irrelevant operators are of the form

∫ √
𝑔𝑅𝑚, where 𝑚 > 2. The value of the

corresponding couplings in the IR are therefore determined by a trajectory in the UV-
critical hypersurface. An interesting follow-up investigation along the lines of chapter 3
would be to reconstruct this hypersurface, for instance when including the 𝑅3-operator.
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The associated couplings are then fixed in terms of the couplings (Λ, 𝐺, 𝐵) and can
therefore be predicted. This prediction can be tested against the latest cosmological
observations.

The results presented in chapter 4 and chapter 5 show that the study of Ostrogradski
ghosts and form factors are closely related. On the one hand, the computation of the form
factor in chapter 5 shows that a polynomial truncation of the momentum dependence in
the propagator may lead to spurious poles. On the other hand, if a pole associated to
an Ostrogradski ghost is present at some scale 𝑘 in the RG flow, it may turn out to be
harmless, by the mechanisms shown in chapter 4. Therefore, the flow of form factors
away from the fixed point is an important topic that should be addressed.

The computation of form factors is still at an early stage. However, they may play
a key role in the understanding of the structure of spacetime at small distances through
the gravitational two-point function (see the pioneering works [59, 109] for results in an
RG context), or in cosmology (for a study of the effects of form factors on inflation, see
[277]). Form factors are also expected to contribute in an essential way to higher-order
vertices, revealing new insights into the nature of interactions. Thus, understanding the
behavior of form factors will provide an intriguing line of inquiry in the coming years.

Unitarity of more complicated, interacting systems such as gravity remains an un-
solved problem, however. Also here form factors may provide vital information, such as
the pole structure of the propagator. In chapter 5, we demonstrated that the scalar prop-
agator remains positive definite when gravitational corrections are taken into account.
Whether such properties are also present in pure gravity and other gravity-matter systems,
and how this is related to unitarity, are important questions to be answered in follow-up
investigations.

In this thesis, we have discussed both structural and observational facets of quantum
theory and quantum gravity in particular. Both aspects are essential in a satisfactory theory
describing nature. On the one hand, a theory should be structurally consistent, while on the
other hand a theory should be testable by experiment. This thesis has made contributions
in both directions, linking the renormalization group flow of gravity to cosmological
observations, and by studying the properties of unitarity in higher-derivative theories.
Form factors open up an exciting new window in both areas, and are therefore expected
to shape interesting future research.
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APPENDIX A

NOTATION AND

CONVENTIONS

In this chapter, we will introduce some notation that we have used throughout this thesis.

A.1 Spacetime manifold

We will denote by M a 𝑑-dimensional Riemannian manifold. The manifold M is
equipped with a (positive-definite) metric 𝑔. In general, indices of the tangent bundle will
be denoted by Greek indices. Symmetrization and anti-symmetrization are denoted by
round and square brackets, and normalized to unit strength,

𝐻𝛼𝛽 = 𝐻(𝛼𝛽) + 𝐻 [𝛼𝛽 ] . (A.1)

The metric 𝑔 induces the Levi-Civita connection, whose covariant derivative is de-
noted by ∇. The covariant Laplacian is given by Δ = −𝑔𝜇𝜈∇𝜇∇𝜈 .

The Riemann curvature tensor is defined by the commutator of two covariant deriva-
tives. For a covariant vector field 𝑋𝜇, we denote[

∇𝛼,∇𝛽

]
𝑋𝜇 = 𝑅 𝜈

𝛼𝛽𝜇 𝑋𝜈 . (A.2)

The Ricci tensor and scalar are formed from the contraction of the Riemann tensor, i.e.
𝑅𝛼𝜇 = 𝑅 𝜈

𝛼𝜈𝜇 , 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 . The Weyl tensor is the traceless part of the Riemann tensor,

𝐶𝜇𝜈𝜌𝜎 = 𝑅𝜇𝜈𝜌𝜎 − 2
𝑑 − 2

(
𝑔𝜇 [𝜌𝑅𝜎 ]𝜈 − 𝑔𝜈 [𝜌𝑅𝜎 ]𝜇

)
+ 2
(𝑑 − 1) (𝑑 − 2) 𝑅𝑔𝜇 [𝜌𝑔𝜎 ]𝜈 . (A.3)

The Riemann tensor satisfies the first and second Bianchi identity,

𝑅𝜇 [𝜈𝜌𝜎 ] = 0 , ∇[𝛼𝑅𝜇𝜈 ]𝜌𝜎 = 0 . (A.4)
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Appendix A. Notation and conventions

From the latter identity it follows that

∇𝛼𝑅𝛼𝛽𝜇𝜈 = 2∇[𝜇𝑅𝜈 ]𝛽 , ∇𝜈𝑅𝜇𝜈 =
1
2
∇𝜇𝑅 . (A.5)

An often-employed technique is the background-field method. This consists of an
expansion of the full metric 𝑔 in terms of a background metric. This background metric
will be denoted by 𝑔̄. Covariant objects formed from this metric will be denoted by a bar,
e.g. ∇̄ and Δ̄. The full metric 𝑔 can then be expressed in terms of the background metric
and a fluctuation field. In this thesis, we will only use the linear parameterization, which
expands 𝑔 as

𝑔𝜇𝜈 = 𝑔̄𝜇𝜈 + ℎ𝜇𝜈 . (A.6)

We reserve the symbol □ for the Laplacian in flat space 𝑔̄𝜇𝜈 = 𝛿𝜇𝜈 , i.e.

□ = −𝛿𝜇𝜈𝜕𝜇𝜕𝜈 . (A.7)

Action functionals contain strings of fields built out of the fundamental fields them-
selves or in the form of curvature tensors. The projection of an action to a string of
fields is denoted by the action monomial followed by a vertical line carrying the string of
fields onto which the action is projected as a subscript. For instance, the projection of the
volume term to the string given by one power of the metric fluctuation is denoted by∫

d𝑑𝑥
√
𝑔

����
ℎ

=
1
2

∫
d𝑑𝑥

√
𝑔̄ ℎ . (A.8)

Derivatives acting on the 𝑖-th field in the string carry the number of the field as a
subscript, i.e.,∫

d𝑑𝑥
√
𝑔 (Δ1Δ2Δ3) (𝑅1𝑅2𝑅3) =

∫
d𝑑𝑥

√
𝑔 (Δ𝑅1) (Δ𝑅2) (Δ𝑅3) . (A.9)

Notably, differential operators with different subscripts commute since they are acting on
different fields.

A.2 Fourier space

In many cases the computation can be simplified by adopting flat Euclidean space as
background. In this case it is convenient to switch to momentum space and work with the
Fourier-transformed fields,

𝜙(𝑝) =
∫

d𝑑𝑥 𝜙(𝑥) e−𝑖 𝑝𝑥 , (A.10)

114



A.2. Fourier space

where we use the same symbol for the fields in position and momentum space. In this
case the form factors depend on the field’s momenta. We adopt the convention that all
momenta are incoming, so that momentum conservation at an 𝑛-point vertex implies

𝑛∑
𝑖=1

𝑝𝑖 = 0 . (A.11)

Starting from an action functional, the resulting interaction vertices are obtained by taking
suitable variations with respect to the (fluctuation) fields. This automatically leads to a
symmetrization in the tensor and momentum structures, e.g.

𝛿

𝛿𝜙(𝑝4)
𝛿

𝛿𝜙(𝑝3)
𝛿

𝛿ℎ𝜌𝜎 (𝑝2)
𝛿

𝛿ℎ𝜇𝜈 (𝑝1)
ℎ𝛼𝛽 (𝑞1)ℎ𝛾𝛿 (𝑞2)𝜙(𝑞3)𝜙(𝑞4)

=

[
1 𝜇𝜈
𝛼𝛽 1 𝜌𝜎

𝛾𝛿 𝛿(𝑞1 − 𝑝1)𝛿(𝑞2 − 𝑝2) + 1 𝜌𝜎
𝛼𝛽 1 𝜇𝜈

𝛾𝛿 𝛿(𝑞1 − 𝑝2)𝛿(𝑞2 − 𝑝1)
]
×[

𝛿(𝑞3 − 𝑝3)𝛿(𝑞4 − 𝑝4) + 𝛿(𝑞3 − 𝑝4)𝛿(𝑞4 − 𝑝3)
]

, (A.12)

for the (ℎℎ𝜙𝜙)-vertex. Here, the identity on the space of symmetric 𝑑 × 𝑑 matrices is

1𝛼𝛽
𝜇𝜈 ≡ 1

2

(
𝛿
𝜇
𝛼𝛿

𝜈
𝛽 + 𝛿𝜈𝛼𝛿

𝜇
𝛽

)
(A.13)

and 𝛿(𝑥) is the usual Dirac delta in 𝑑 dimensions.
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APPENDIX B

F(R)-GRAVITY IN THE

JORDAN AND EINSTEIN

FRAME

In this appendix, we study the map of a 𝑓 (𝑅)-theory for gravity to a tensor-scalar system.
In this case, we will refer to the 𝑓 (𝑅)-action as being in the Jordan frame. Using a suitable
redefinition of degrees of freedom, we can recast this action using the classical equations
of motion as an action consisting of the Einstein-Hilbert action plus an additional scalar
[218, 219]. This frame is called the Einstein frame. In this appendix we give a derivation
of the map between the two frames, following [278].

We start from a (Lorentzian) 𝑓 (𝑅)-theory accompanied by a generic action for matter
fields:

𝑆 =
𝑀2

P
2

∫
d4𝑥

√−𝑔 𝑓 (𝑅) + 𝑆m
(
𝑔𝜇𝜈

)
. (B.1)

Note that for completeness we include a matter action, even though this will not be relevant
in a cosmological context. Subsequently, we introduce an auxiliary scalar field 𝜙 in the
form of

𝑆 =
𝑀2

P
2

∫
d4𝑥

√−𝑔 [ 𝑓 (𝜙) + 𝑓 ′(𝜙) (𝑅 − 𝜙)] + 𝑆m
(
𝑔𝜇𝜈

)
, (B.2)

where the prime denotes a derivative with respect to its argument. Under the assumption
that 𝑓 ′′(𝜙) ≠ 0, the equations of motion include the condition 𝜙 = 𝑅, indicating the
use of 𝜙 as Lagrange multiplier. Thus, the two theories (B.1) and (B.2) are equivalent
on-shell. Under the assumption that 𝑓 ′(𝜙) > 0, we now perform the conformal rescaling
𝑓 ′(𝜙)𝑔𝜇𝜈 ≡ 𝑔̃𝜇𝜈 . This brings the gravitational part of the action into Einstein-Hilbert
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Appendix B. f(R)-gravity in the Jordan and Einstein frame

form:

𝑆 =
𝑀2

P
2

∫
d4𝑥

√
−𝑔̃

[
𝑅̃ − 3

2 𝑓 ′(𝜙)2 𝑔̃
𝜇𝜈∇̃𝜇 𝑓

′(𝜙)∇̃𝜈 𝑓
′(𝜙)

− 1
𝑓 ′(𝜙)2 (𝜙 𝑓 ′(𝜙) − 𝑓 (𝜙))

]
+ 𝑆m

(
𝑔̃𝜇𝜈/ 𝑓 ′(𝜙)

)
. (B.3)

In order to obtain a canonical kinetic term for the scalar field, we introduce the new field
𝜑 according to

𝑓 ′(𝜙) = e
√

2/3𝜑/𝑀P . (B.4)

If 𝑓 ′(𝜙) is monotonic, this relation implicitly defines a map 𝜙(𝜑). This yields the action

𝑆 =
∫

d4𝑥
√
𝑔̃

[
𝑀2

P
2
𝑅̃ − 1

2
(∇𝜑)2 −𝑉 (𝜑)

]
+ 𝑆m

(
𝑔̃𝜇𝜈/𝐹 ′) , (B.5)

where 𝐹 ′ = e
√

2/3𝜑/𝑀P . The scalar potential is given by the implicit expression

𝑉 (𝜑) =
𝑀2

P

2 𝑓 ′ (𝜙(𝜑))2 (𝜙(𝜑) 𝑓 ′ (𝜙(𝜑)) − 𝑓 (𝜙(𝜑))) . (B.6)

For the 𝑓 (𝑅) type action (B.1), the transformation can be carried out explicitly. In
particular, for the cosmology-inspired truncation1

𝑓 (𝑅) = −2Λ + 𝑅 − 𝐵𝑅2 . (B.7)

For 𝐵 = 0 the action (B.1) is already in the Einstein frame. For 𝐵 ≠ 0, we evaluate the
relation (B.4) to obtain

1 − 2𝐵𝜙 = e
√

2/3𝜑/𝑀P ⇒ 𝜙 =
1 − e

√
2/3𝜑/𝑀P

2𝐵
. (B.8)

Inserting this into the potential (B.6) gives

𝑉 (𝜑) = 𝑀P

2

[
− 1

4𝐵
+ 1

2𝐵
e−
√

2/3𝜑/𝑀P +
(
− 1

4𝐵
+ 2Λ

)
e−2

√
2/3𝜑/𝑀P

]
. (B.9)

This potential gives the starting point for the analysis of the cosmological dynamics in
chapter 3.

1Note that we are working with an action that differs from (3.7) by an overall minus sign. We correct for
this by writing the potential (3.10) with opposite sign from the one obtained here.
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APPENDIX C

FLOW EQUATIONS OF

F(R)-GRAVITY

In this appendix, we present the flow equations for the 𝑓 (𝑅)-gravitational theory that was
discussed in chapter 3. Flow equations of this type of truncation have been derived in [53,
64, 76, 85, 99], and their properties have been analyzed in detail by various groups (see
[53, 65–67, 70, 71, 98] for selected works and further references). For now, we review the
flow equations derived in [85]; in order for this thesis to be a self-contained manuscript,
we review the main results. See also [279] for further details regarding the construction
of flow trajectories.

We take the ansatz for the EAA to be

Γ𝑘 [𝑔; 𝑔̄] = Γf
𝑘 [𝑔] + 𝑆gf [𝑔 − 𝑔̄; 𝑔̄] + 𝑆gh + 𝑆aux , (C.1)

with
Γf
𝑘 [𝑔] =

1
16𝜋𝐺𝑘

∫
𝑑4𝑥

√
𝑔 𝑓𝑘 (𝑅) . (C.2)

This term is supplemented by a scale-independent gauge-fixing term implementing ge-
ometrical gauge in the Landau limit. The ansatz for Γ𝑘 is then completed by the cor-
responding ghost action and auxiliary fields exponentiating Jacobians arising from field
redefinitions. Details on these terms can be found in the original article [85].

The flow of 𝑓 is then found by inserting (C.1) into the FRGE and projecting the
resulting flow on functions of the scalar curvature. This results in a partial differential
equation governing the scale dependence of 𝑓𝑘 (𝑅). We express the equation in terms of
the dimensionless quantities

𝑟 ≡ 𝑘−2𝑅 ; F𝑘 (𝑟) ≡
1

16𝜋𝐺𝑘
𝑘−4 𝑓𝑘

(
𝑘2𝑟

)
. (C.3)
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Appendix C. Flow equations of f(R)-gravity

The partial differential equation satisfied by F𝑘 then reads [85]

384𝜋2 (
𝜕𝑡F𝑘 + 4F𝑘 − 2𝑟F ′

𝑘

)
=

6∑
𝑖=1

𝑐𝑖 , (C.4)

with the 𝑐𝑖 given by

𝑐1 =
[
5𝑟2𝜃

(
1 − 𝑟

3
)
− (12 + 4𝑟 − 61

90 )𝑟
2
] [

1 − 𝑟
3

]−1
,

𝑐2 = 10𝑟2𝜃
(
1 − 𝑟

3
)

,

𝑐3 =
[
10𝑟2𝜃

(
1 − 𝑟

4
)
− 𝑟2𝜃

(
1 + 𝑟

4
)
− (36 + 6𝑟 − 67

60𝑟
2)

] [
1 − 𝑟

4

]−1
,

𝑐4 =
[
𝜂 𝑓

(
10 − 5𝑟 − 271

36 𝑟
2 + 7249

4536𝑟
3
)
+ (60 − 20𝑟 − 271

18 𝑟
2)

] [
1 + F𝑘

F ′
𝑘
− 𝑟

3

]−1
,

𝑐5 = 5𝑟2

2

[
𝜂 𝑓

( (
1 + 𝑟

3
)
𝜃
(
1 + 𝑟

3
)
+

(
2 + 𝑟

3
)
𝜃
(
1 + 𝑟

6
) )

+ 2𝜃
(
1 + 𝑟

3
)
+ 4𝜃

(
1 + 𝑟

6
) ] [

1 + F𝑘
F ′

𝑘
− 𝑟

3

]−1
,

𝑐6 =
[
F ′

𝑘 𝜂 𝑓

(
6 + 3𝑟 + 29

60𝑟
2 + 37

1512𝑟
3
)

+ (𝜕𝑡F ′′
𝑘 − 2𝑟F ′′′

𝑘 )
(
27 − 91

20𝑟
2 − 29

30𝑟
3 − 181

3360𝑟
4
)

+ F ′′
𝑘

(
216 − 91

5 𝑟
2 − 29

15𝑟
3
)
+ F ′

𝑘

(
36 + 12𝑟 + 29

30𝑟
2
) ]

×
[
2F𝑘 + 3F ′

𝑘

(
1 − 2

3𝑟
)
+ 9F ′′

𝑘

(
1 − 𝑟

3
)2

]−1
.

(C.5)

Here, a prime denotes a derivative with respect to the dimensionless curvature scalar 𝑟
and 𝜂 𝑓 is the anomalous dimension of 𝑓 ′𝑘 (𝑅),

𝜂 𝑓 =
1
F ′

𝑘

(𝜕𝑡F ′
𝑘 + 2F ′

𝑘 − 2𝑟F ′′
𝑘 ) . (C.6)

Using the dimensionless variables introduced in (3.32), the dimensionless object
F𝑘 (𝑟) corresponding to the action (3.7) is

F𝑘 (𝑟) =
1

16𝜋𝑔𝑘
(2𝜆𝑘 − 𝑟 + 𝑏𝑘𝑟2) . (C.7)

Substituting this expression into (C.4) and subsequently expanding the result in a power
series around 𝑟 = 0 the 𝛽-functions for the couplings 𝜆𝑘 , 𝑔𝑘 and 𝑏𝑘 can be read off from
the three lowest-order terms in this expansion. Concretely,

𝜕𝑡𝑔𝑘 = 𝛽𝑔 (𝑔, 𝜆, 𝑏) , 𝜕𝑡𝜆𝑘 = 𝛽𝜆(𝑔, 𝜆, 𝑏) , 𝜕𝑡𝑏𝑘 = 𝛽𝑏 (𝑔, 𝜆, 𝑏) , (C.8)

120



where the 𝛽𝑖 are obtained as the solution of the following linear system of equations

−
6
(
9𝑔𝑘 𝛽𝑏 − 9𝑏𝑘 𝛽𝑔 + 72𝑏𝑘𝑔𝑘 + 𝛽𝑔 − 8𝑔𝑘

)
𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3) −

80 − 10𝛽𝑔
𝑔𝑘

1 − 2𝜆𝑘

+
48

(
−𝜋𝜆𝑘 𝛽𝑔 + 𝜋𝑔𝑘 𝛽𝜆 + 4𝜋𝑔𝑘𝜆𝑘

)
𝑔2
𝑘

+ 48 = 0 , (C.9a)

−
−20𝛽𝑏 + 40𝑏𝑘 + 5𝛽𝑔

𝑔𝑘
− 30

1 − 2𝜆𝑘
−

3
(
4𝑔𝑘 𝛽𝑏 − 4𝑏𝑘 𝛽𝑔 + 24𝑏𝑘𝑔𝑘 + 𝛽𝑔 − 6𝑔𝑘

)
𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3)

−
36𝑏𝑘

(
9𝑔𝑘 𝛽𝑏 − 9𝑏𝑘 𝛽𝑔 + 72𝑏𝑘𝑔𝑘 + 𝛽𝑔 − 8𝑔𝑘

)
𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3)2 −

2(6𝑏𝑘𝜆𝑘 − 1)
(
80 − 10𝛽𝑔

𝑔𝑘

)
3(2𝜆𝑘 − 1)2

−
24𝜋

(
2𝑔𝑘 − 𝛽𝑔

)
𝑔2
𝑘

+ 23 = 0 , (C.9b)

−
216𝑏2

𝑘

(
9𝑔𝑘 𝛽𝑏 − 9𝑏𝑘 𝛽𝑔 + 72𝑏𝑘𝑔𝑘 + 𝛽𝑔 − 8𝑔𝑘

)
𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3)3

−
18𝑏𝑘

(
4𝑔𝑘 𝛽𝑏 − 4𝑏𝑘 𝛽𝑔 + 24𝑏𝑘𝑔𝑘 + 𝛽𝑔 − 6𝑔𝑘

)
𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3)2

−
2(6𝑏𝑘𝜆𝑘 − 1)

(
−20𝛽𝑏 + 40𝑏𝑘 + 5𝛽𝑔

𝑔𝑘
− 30

)
3(2𝜆𝑘 − 1)2

−
−186𝑔𝑘 𝛽𝑏 + 186𝑏𝑘 𝛽𝑔 − 744𝑏𝑘𝑔𝑘 + 29𝛽𝑔 − 116𝑔𝑘

60𝑔𝑘 (18𝑏𝑘 + 4𝜆𝑘 − 3)

−
−40𝑏𝑘 𝛽𝑏 + 10𝛽𝑏 + 80𝑏2

𝑘 − 20𝑏𝑘 + 271𝛽𝑔
36𝑔𝑘 − 271

9

1 − 2𝜆𝑘
+

24𝜋
(
𝑔𝑘 𝛽𝑏 − 𝑏𝑘 𝛽𝑔

)
𝑔2
𝑘

−

(
−72𝑏2

𝑘𝜆𝑘 + 30𝑏𝑘𝜆𝑘 + 9𝑏𝑘 − 4
) (

80 − 10𝛽𝑔
𝑔𝑘

)
9(2𝜆𝑘 − 1)3 +

15
(
4𝑔𝑘 − 𝛽𝑔

)
2𝑔𝑘 (2𝜆𝑘 − 1) − 872

45
= 0 . (C.9c)

The 𝛽-functions (C.9) are the main result of this appendix and underlie the analysis of the
gravitational RG flow performed in chapter 3.

We remark that in [99] a similar flow equation was derived based on a physical gauge-
fixing condition. While the resulting equation gives rise to a qualitatively similar structure
in terms of fixed points, it also possesses a singular hypersurface of codimension 1 that
separates the NGFP from the classical region, see [65] for further analysis. Thus the
corresponding solutions do not exhibit a crossover from the NGFP to a classical regime
which is crucial for connecting the construction to a viable low-energy dynamics.
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APPENDIX D

EXPANDING TRACE

ARGUMENTS INCLUDING

STEP FUNCTIONS

This appendix is edited from [4].

In this appendix, we collect technical details underlying the evaluations of momentum-
space integrals that are regulated by the Litim cutoff. These are encountered in the
derivation of the 𝛽-functions in chapter 4. The Litim cutoff is often used because it
allows us to evaluate many momentum-space integrals analytically. When used in higher-
order momentum expansions, however, special care has to be taken with regard to its
non-smooth nature.

D.1 Explicit form of vertex functions and propagators

We start by deriving the relevant propagators and interaction vertices from the ansatz for
the higher-derivative scalar field coupled to gravity given in (4.4).

In the remainder of this appendix, we employ the Feynman-harmonic gauge fixing
condition 𝛼 = 1, 𝛽 = 𝑑

2 − 1, cf. (2.33). By expanding the gauge-fixed Einstein-Hilbert
action up to second order in ℎ𝜇𝜈 one finds that the inverse gravitational propagator is
given by [

Γ(ℎℎ)
𝑘

] 𝜇𝜈𝛼𝛽
=

1
32𝜋𝐺𝑘

(
𝑝2 − 2Λ𝑘

) [
(1 − 𝑃ℎ) −

𝑑 − 2
2

𝑃ℎ

] 𝜇𝜈𝛼𝛽
, (D.1)

where 1𝜇𝜈
𝛼𝛽 is the unit on the space of symmetric tensors, defined in (A.13) and
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Appendix D. Expanding trace arguments including step functions

[𝑃ℎ]𝜇𝜈 𝛼𝛽 ≡ 𝑑−1𝛿𝜇𝜈𝛿
𝛼𝛽 the projector on the trace mode. The inverse scalar propa-

gator is obtained from (4.6) and reads

Γ(𝜙𝜙)
𝑘 = 𝑍𝑘

(
𝑝2 + 𝑌𝑘 𝑝4

)
. (D.2)

To simplify the notation, we have suppressed the unit operator acting on the 𝑁𝑠 scalar
fields. This inverse propagator contains the scale-dependent wave-function renormaliza-
tion 𝑍𝑘 and the inverse ghost mass 𝑌𝑘 .

For later convenience, we introduce the following short-hand notations for the scale-
dependent coefficients 𝛼𝑤

𝑛 multiplying the 𝑝2𝑛-terms in the (scalar part) of (D.1) and
(D.2),

𝛼ℎℎ
0 = − Λ𝑘

16𝜋𝐺𝑘
, 𝛼ℎℎ

1 = 1
32𝜋𝐺𝑘

, 𝛼ℎℎ
2 = 0 ,

𝛼
𝜙𝜙
0 = 0 , 𝛼

𝜙𝜙
1 = 𝑍𝑘 , 𝛼

𝜙𝜙
2 = 𝑍𝑘𝑌𝑘 ,

(D.3)

and all coefficients 𝛼𝑤
𝑛 with 𝑛 ≥ 3 vanishing.

Applying the implicit regulator prescription 𝑝2 ↦→ 𝑃𝑘 = 𝑝2 + 𝑅𝑘
(
𝑝2) to the propaga-

tors (D.1) and (D.2) gives[
Rℎℎ

𝑘

] 𝜇𝜈,𝛼𝛽
=

1
32𝜋𝐺𝑘

𝑅𝑘

[
(1 − 𝑃ℎ) − 𝑑−2

2 𝑃ℎ

] 𝜇𝜈,𝛼𝛽
(D.4a)

R𝜙𝜙
𝑘 = 𝑍𝑘

(
1 + 𝑌𝑘

(
2 𝑝2 + 𝑅𝑘

))
𝑅𝑘 . (D.4b)

In addition to the propagators, one also needs the (momentum-dependent) three- and
four-point vertices containing one and two derivatives with respect to the background
scalar field. We denote the momenta associated with the graviton fluctuations, scalar
fluctuations, and background scalar field by 𝑝, 𝑝, and 𝑞. Note that this is in contrast to
the convention in section 5.2.2 where we used partial integration to remove all partial
derivatives from the graviton fluctuation. The 3-point vertex obtained from (4.6) is then
given by [

Γ(ℎ𝜙𝜙) (𝑝, 𝑝, 𝑞)
] 𝜇𝜈

=
1
2
𝑍𝑘

(
𝑝𝜇𝑞𝜈 + 𝑝𝜈𝑞𝜇 − 1

2
𝛿𝜇𝜈 (𝑝 · 𝑞)

)
. (D.5)

Note that this can be obtained from (5.43) by setting 𝑓 (𝜙𝜙) (
𝑝2) = 𝑍𝑘 𝑝

2 and the other
form factors to zero.

Finally, the 4-point vertex is[
Γ(ℎℎ𝜙𝜙)

] 𝜇𝜈𝜌𝜎
= −1

2
𝑍𝑘

[ (
1
4
𝛿𝜇𝜈𝛿𝜌𝜎 − 1

2
𝛿𝜇𝜌𝛿𝜈𝜎

)
(𝑞1 · 𝑞2)

− 𝑔̄𝜇𝜈𝑞𝜌1𝑞
𝜎
2 + 2𝑔̄𝜇𝜌𝑞𝜎1 𝑞

𝜈
2

]
. (D.6)
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D.1. Explicit form of vertex functions and propagators

All vertices are understood to contain the appropriate symmetrizations in the external
indices and are subject to momentum conservation. Moreover, we set 𝑌𝑘 = 0 in order to
keep the expressions for the vertices at a readable length. The contributions proportional
to𝑌𝑘 are easily generated by a computer algebra program. Their precise form is irrelevant
for the discussion of the general structures below.

For the Litim-type cutoff [209, 280] the dimensionful profile function 𝑅𝑘 is given by

𝑅𝑘 (𝑝2) = (𝑘2 − 𝑝2)Θ(𝑘2 − 𝑝2) . (D.7)

The key advantage of this regulator is that it allows for an analytic evaluation of the
loop integrals shown in Figure 4.1. However, the distributional character of the regulator
renders the expansion in the external momenta 𝑞 non-trivial. The next subsection discusses
how this expansion can be implemented consistently, also taking into account the non-
trivial boundary terms arising in the expansion procedure.

D.1.1 Loop-integrations with a distributional regulator

The loop integrals encountered in chapter 4 contain a trace over spacetime indices and an
integration over loop momenta. We adopt the conventions that the absolute values of the
loop momentum and external momentum are denoted by 𝑝 and 𝑞 and 𝑝 · 𝑞 = 𝑝𝑞 cos(𝜗)
defines their relative angle 𝜗. Moreover, the loop momentum is shifted such that the
external momentum does not appear in the argument of the regulator insertion 𝜕𝑡𝑅𝑘 . The
spacetime indices are taken into account by stringing together the propagators and vertices
contracting the corresponding index structures.

One then encounters 𝑞-dependent scalar loop-integrals of the form

𝐼𝑤1𝑤2
(𝑚,𝑛) ≡∫

d𝑑𝑝
(2𝜋)𝑑

𝐹𝑘 (𝑞, 𝑝, cos(𝜗)) 𝜕𝑡R𝑤2
𝑘 (𝑝2)(∑2

𝑙=0 𝛼
𝑤1
𝑙 ( ®𝑝 + ®𝑞)2𝑙 +R𝑤1

𝑘 (( ®𝑝 + ®𝑞)2)
)𝑚 (∑2

𝑙=0 𝛼
𝑤2
𝑙 𝑝2𝑙 +R𝑤2

𝑘 (𝑝2)
)𝑛 . (D.8)

Here 𝑤1, 𝑤2 ∈ {ℎ, 𝜙} denotes the type of regulator insertion. In a slight abuse of no-
tation, the symbol Rℎℎ

𝑘 (𝑝2) is used to refer to the scalar part of (D.4a). The function
𝐹𝑘 (𝑞, 𝑝, cos(𝜗)) captures the momentum dependence of the vertices. The 𝑛-point func-
tions (D.5) and (D.6) illustrate that 𝐹 is polynomial in 𝑞 and 𝑝. In particular it has a
well-defined series expansion around 𝑞 = 0. Noting that the vertices (D.5) and (D.6)
come with one and two powers of the external momentum, respectively, it is easy to verify
that this expansion starts at order 𝑞2.

The goal of this section is to study the 𝑞-dependence of (D.8). In chapter 4, we
are interested in the running of the anomalous dimension 𝜂𝑠 and the higher-derivative
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Appendix D. Expanding trace arguments including step functions

coupling𝑌𝑘 . These can be extracted from the Taylor coefficient of 𝑞2 and 𝑞4, respectively.
Thus, the evaluation of the Taylor expansion will suffice.

For a general profile function 𝑅𝑘 the integrals (D.8) cannot be computed analytically.
Moreover, the presence of the external momentum 𝑞 and the scale-dependent couplings
make their numerical evaluation computationally very expensive. The profile function
(D.7) allows to bypass this problem by restricting the 𝑝-integration to a compact domain
and giving rise to cancellations in the propagators. The former property can be verified
by noting that the logarithmic 𝑘-derivative of (D.4), evaluated for a Litim profile, has the
form

𝜕𝑡R𝑤
𝑘 (𝑝2) = 𝑏̄𝑤𝑘 (𝑝2) Θ(𝑘2 − 𝑝2) , (D.9)

where

𝑏̄ℎℎ𝑘 (𝑝2) = 1
32𝜋𝐺𝑘

(
2𝑘2 − 𝜂𝑁

(
𝑘2 − 𝑝2

))
,

𝑏̄
𝜙𝜙
𝑘 (𝑝2) = 𝑍𝑘

(
2𝑘2 − 𝜂𝑠 (𝑘2 − 𝑝2) + (𝜕𝑡𝑌𝑘 − 𝜂𝑠𝑌𝑘)(𝑘4 − 𝑝4) + 4𝑌𝑘 𝑘4

)
.

(D.10)

Inspecting (D.8) for the case 𝑚 = 0 reveals that the step functions appearing in the
numerator and denominator have the same support. As a result the integrals for the case
𝑚 = 0 simplify significantly:

𝐼𝑤1𝑤2
(0,𝑛) ≡

∫
dΩ𝑑−2

∫ 1

−1
d𝑥

∫ 𝑘

0

d𝑝
(2𝜋)𝑑

𝑝𝑑−1 𝐹𝑘 (𝑞, 𝑝, 𝑥) 𝑏̄
𝑤
𝑘 (𝑝2)(∑2

𝑙=0 𝛼
𝑤
𝑙 𝑘2𝑙

)𝑛 . (D.11)

Here
∫

dΩ𝑑−2 = (𝑛−1) 𝜋
𝑛−1

2

Γ( 𝑛−1
2 +1) is the surface area of the (𝑑 − 2)-sphere and the spacetime

indices on 𝐹𝑘 and 𝑏̄𝑤𝑘 (𝑝2) are suppressed for readability. Furthermore, we have made a
substitution of variables 𝑥 ≡ cos(𝜗). Owed to the simple structure of the denominator,
which is independent of 𝑝 and 𝜗 the evaluation of these integrals is rather straightforward.

The case where 𝑚 ≠ 0 is non-trivial. Because of the step-function in the numerator,
the full integration domain is reduced to a 𝑑-dimensional ball of radius 𝑘 , i.e., 𝑝 ∈ [0, 𝑘]
and 𝑥 ∈ [−1, 1]. In this domain the set of propagators exponentiated by 𝑛 again undergoes
the simplification (D.11). In the propagators containing (𝑝 + 𝑞)2, the regulator leads to
terms proportional to Θ

(
𝑘2 − ( ®𝑝 + ®𝑞)2

)
. As illustrated in Figure D.1, the value of the

step function has a non-trivial dependence on the absolute value of 𝑞 and the angle 𝜗.
Thus, unless 𝑞 = 0, there is always a part of the integration domain on which the

denominator retains its dependence on the integration variables 𝑥, 𝑝. As a result perform-
ing the integral becomes very involved. In order to complete the evaluation of the flow
equation we then expand the integrands around 𝑞 = 0, taking the distributional character
of the integrand into account. This allows us to obtain analytic expressions for the re-
sulting integrals. This is achieved as follows. The first step uses the Heaviside function
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1cos(𝜗)−1
0

𝑝2

𝑘2
𝑞 = 0

1cos(𝜗)−1
0

𝑝2

𝑘2
𝑞 = 1

2 𝑘

1cos(𝜗)−1
0

𝑝2

𝑘2
𝑞 > 2𝑘

Figure D.1: The value of Θ
(
𝑘2 − ( ®𝑝 + ®𝑞)2

)
for three different values of 𝑞. In

the gray regions the step function evaluates to 1 while it vanishes in the white
regions.

in the numerator of (D.8) to restrict the integration domain to 𝑝 ∈ [0, 𝑘]. Following the
derivation of (D.11) the factor

(∑2
𝑙=0 𝛼

𝑤2
𝑙 𝑝2𝑙 +R𝑤2

𝑘 (𝑝2)
)𝑛

becomes independent of 𝑝 and
𝑞. Together with the angular integration

∫
dΩ it can then be absorbed into a prefactor

𝑁𝑛
𝑘 (𝑤) ≡

( 2∑
𝑙=0

𝛼𝑤
𝑙 𝑘2𝑙

)−𝑛 ∫
dΩ𝑑−2 , (D.12)

so that (D.8) reduces to

𝐼𝑤1𝑤2
(𝑚,𝑛) = 𝑁

𝑛
𝑘 (𝑤2)

∫ 1

−1
d𝑥

∫ 𝑘

0

d𝑝
(2𝜋)𝑑

𝑝𝑑−1 𝐹𝑘 (𝑞, 𝑝, 𝑥) 𝑏̄𝑤2
𝑘 (𝑝2)(∑∞

ℓ=0 𝛼
𝑤1
ℓ ( ®𝑝 + ®𝑞)2ℓ +R𝑤1

𝑘 (( ®𝑝 + ®𝑞)2)
)𝑚 . (D.13)

In the next step we eliminate the step function from the denominator. To this purpose
we insert the following partition of unity

1 = Θ
(
( ®𝑝 + ®𝑞)2 − 𝑘2

)
+ Θ

(
𝑘2 − ( ®𝑝 + ®𝑞)2

)
, (D.14)

defined in the weak sense.1 Furthermore we set Θ(0) = 1
2 , so that this point is distributed

evenly among the two terms. Inserting (D.14) into (D.13) then gives

𝐼𝑤1𝑤2
(𝑚,𝑛) = 𝑁

𝑛
𝑘 (𝑤2)

∫ 1

−1
d𝑥

∫ 𝑘

0

d𝑝
(2𝜋)𝑑

𝑝𝑑−1𝐹𝑘 (𝑞, 𝑝, 𝑥) 𝑏̄𝑤2
𝑘 (𝑝2)×

Θ
(
( ®𝑝 + ®𝑞)2 − 𝑘2

)
(∑2

ℓ=0 𝛼
𝑤1
ℓ ( ®𝑝 + ®𝑞)2ℓ

)𝑚 +
Θ

(
𝑘2 − ( ®𝑝 + ®𝑞)2

)
(∑2

ℓ=0 𝛼
𝑤1
ℓ 𝑘2ℓ

)𝑚  . (D.15)

1Regarding Θ as a distribution over the real numbers, this partition makes sense everywhere except at
zero. However, this is a measure-zero set and does not affect the behavior of the distribution.
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Appendix D. Expanding trace arguments including step functions

We will now consider the expansion of (D.15) around 𝑞 = 0. The integral kernel itself is
a distribution and thus its formal expansion yields distributional coefficients. In a weak
sense, which is sufficient in the present context, the formal expansion coefficients can be
constructed by using the integral representation of the Heaviside distribution

Θ(𝑠) ≡ lim
𝜖→0+

1
2𝜋𝑖

∫ ∞

−∞
d𝑡 (𝑡 − 𝑖𝜖)−1 e𝑖𝑡𝑠 . (D.16)

Substituting 𝑠 = (±(𝑘2 − ( ®𝑝 + ®𝑞)2)) and expanding the kernel in powers of 𝑞, we obtain,
after taking the proper limit,

Θ
(
±

(
𝑘2 − ( ®𝑝 + ®𝑞)2

) )
' Θ

(
±

(
𝑘2 − 𝑝2

))
∓ 2𝑝𝑥𝛿

(
±

(
𝑘2 − 𝑝2

))
𝑞

+
[
2𝑝2𝑥𝛿′

(
±

(
𝑘2 − 𝑝2

))
∓ 𝛿

(
±

(
𝑘2 − 𝑝2

))]
𝑞2 +O(𝑞3) . (D.17)

Since the expansion of 𝐹𝑘 (𝑞, 𝑝, cos(𝜗)) starts at order 𝑞2 it then suffices to terminate
this expansion at order 𝑞2. When inserting this representation into (D.15) we encounter
terms in which the delta-distribution has to be evaluated on the boundary of the integral
domain. Using Θ(0) ≡ 1

2 , these can be evaluated by noting that∫
[0,𝑎]

d𝑧 𝐺 (𝑧)𝛿(𝑎 − 𝑧) ≡ 1
2𝐺 (𝑎) , (D.18)

which follows from

𝐺 (𝑎) = 𝐺 (0) +
∫
[0,𝑎]

d𝑧 𝜕𝑧𝐺 (𝑧) Θ(𝑎 − 𝑧)

= 1
2𝐺 (𝑎) +

∫
[0,𝑎]

d𝑧 𝐺 (𝑧)𝛿(𝑎 − 𝑧) .
(D.19)

Finally, terms containing the 𝑛-th derivative of the delta-function are evaluated using∫
[0,1]

d𝑧 𝐺 (𝑧) 𝜕𝑛𝑠 𝛿(𝑠)
��
𝑠=±(1−𝑧) =

1
2 (±1)𝑛𝐺 (𝑛) (1) . (D.20)

The weak identities (D.18) and (D.20) are sufficient to derive the relevant trace contribu-
tions for the scalar 𝛽-functions.
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D.1.2 Master integrals

We close the discussion by deriving a set of master integrals, which form the basis of our
loop computations

𝐼𝑤,𝑚(𝑞, cos(𝜗)) ≡
∫ 𝑘

0

d𝑝
(2𝜋)𝑑

𝑓 (𝑝)


Θ
(
( ®𝑝 + ®𝑞)2 − 𝑘2

)
(∑2

ℓ=0 𝛼
𝑤
ℓ ( ®𝑝 + ®𝑞)2ℓ

)𝑚
+
Θ

(
𝑘2 − ( ®𝑝 + ®𝑞)2

)
(∑2

ℓ=0 𝛼
𝑤
ℓ 𝑘

2ℓ
)𝑚  . (D.21)

Based on the relation (D.17), these integrals admit a series expansion in 𝑞,

𝐼𝑤,𝑚(𝑞, cos(𝜗)) ' 𝐼 (0)𝑤,𝑚 + 𝐼 (1)𝑤,𝑚 𝑞 +
1
2
𝐼 (2)𝑤,𝑚 𝑞

2 +O(𝑞3) . (D.22)

The series coefficients 𝐼 (𝑛)𝑤,𝑚 depend on cos(𝜗). The first three coefficients in this expansion
are found by substituting (D.17) into (D.21) and evaluating the resulting integrals using
the identities (D.18) and (D.20),

𝐼 (0)𝑤,𝑚 =

( 2∑
ℓ=0

𝛼𝑤
ℓ 𝑘

2ℓ

)−𝑚 ∫ 𝑘

0

d𝑝
(2𝜋)𝑑

𝑓 (𝑝) ,

𝐼 (1)𝑤,𝑚 = 0 ,

𝐼 (2)𝑤,𝑚 = −𝑚𝑘3 cos2(𝜗)
(
𝛼𝑤

1 + 2𝛼𝑤
2 𝑘

2
) ( 2∑

𝑙=0
𝛼𝑤
𝑙 𝑘

2𝑙

)−(𝑚+1)
𝑓 (𝑘)
(2𝜋)𝑑

.

(D.23)

This result completes the discussion on carrying out the momentum integrals encountered
in chapter 4. Note that the surface terms do not enter into the computation of the scalar
anomalous dimension. They contribute to higher-order kinetic terms in the propagator
only.
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APPENDIX E

VARYING FUNCTIONS OF

LAPLACIANS

This appendix is dedicated to setting up the machinery for expanding functions 𝑓 (Δ) of
the Laplacian to a given order in the fluctuation field ℎ𝜇𝜈 . The objective is to retain
all covariant derivatives, which is central for computing the momentum-dependence of
the form factors discussed in chapter 5. This appendix is edited from [1]. We start by
introducing the concept of multicommutators and their properties in section E.1 before
discussing the expansion of 𝑓 (Δ) in section E.2.

E.1 Multicommutators and combinatorial identities

Let𝑄, 𝑋,𝑌, 𝑍 denote some (differential) operators. The multicommutator is then defined
recursively as

[𝑋,𝑌 ]𝑙 ≡ [𝑋, [𝑋,𝑌 ]𝑙−1] , [𝑋,𝑌 ]0 ≡ 𝑌 , 𝑙 ∈ N . (E.1)

For 𝑙 = 1, this reduces to the standard commutator

[𝑋,𝑌 ]1 = [𝑋,𝑌 ] = 𝑋𝑌 − 𝑌𝑋 . (E.2)

The multicommutator is additive in its second argument,

[𝑋,𝑌 + 𝑍]𝑙 = [𝑋,𝑌 ]𝑙 + [𝑋, 𝑍]𝑙 , (E.3)

and, for a constant parameter 𝑠 ∈ R, obeys the homogeneity property

[𝑠𝑋,𝑌 ]𝑙 = 𝑠𝑙 [𝑋,𝑌 ]𝑙 , [𝑋, 𝑠𝑌 ]𝑙 = 𝑠[𝑋,𝑌 ]𝑙. (E.4)
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This implies that the multicommutator is linear in its second argument. A multicommu-
tator containing a product of operators in the second argument can be expressed as a finite
sum:

[𝑋,𝑌𝑍]𝑚 =
𝑚∑
𝑙=0

(
𝑚

𝑙

)
[𝑋,𝑌 ]𝑙 [𝑋, 𝑍]𝑚−𝑙 . (E.5)

For 𝑋 = 𝑍 = Δ, this entails the useful identity

[Δ, 𝑌Δ]𝑙 = [Δ, 𝑌 ]𝑙Δ . (E.6)

Using the multicommutator, we can give exact expressions for commuting differential
operators. In particular, one can prove by induction that

𝑄𝑚𝑌 =
𝑚∑
𝑙=0

(
𝑚

𝑙

)
[𝑄,𝑌 ]𝑙𝑄𝑚−𝑙 , (E.7)

and

𝑌𝑄𝑚 =
𝑚∑
𝑙=0

(
𝑚

𝑙

)
(−1)𝑙𝑄𝑚−𝑙 [𝑄,𝑌 ]𝑙 . (E.8)

Finally, we note that when integrated over spacetime, multicommutators may be resolved
by employing the identity∫

d𝑑𝑥
√
𝑔𝑌 [Δ, 𝑍]𝑚𝑋 =

∫
d𝑑𝑥

√
𝑔

𝑚∑
𝑙=0

(−1)𝑙
(
Δ𝑚−𝑙𝑌

)
𝑍

(
Δ𝑙𝑋

)
, (E.9)

which is again proven by induction.

E.2 Expanding functions of the Laplacian in terms of fluctua-
tion fields

We are now in a position to evaluate the expansion of 𝑓 (Δ) in terms of fluctuations ℎ𝜇𝜈
around a fixed background metric 𝑔̄𝜇𝜈 . In the first step we express 𝑓 (Δ) in terms of the
inverse Laplace transform 𝑓 (𝑠),

𝑓 (Δ) =
∫ ∞

0
d𝑠 𝑓 (𝑠) e−𝑠Δ , (E.10)

which we always assume to exist. This covers in particular logarithms of the Laplacian
which can be represented as [281],

log(Δ) =
∫ ∞

0
d𝑠

e−𝑠 − e−𝑠Δ

𝑠
. (E.11)
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At this stage, the problem of carrying out the ℎ-expansion simplifies to expanding the
exponential function and subsequently undoing the Laplace transform.

We then note that the Laplacian Δ = −𝑔𝜇𝜈∇𝜇∇𝜈 admits an expansion

Δ = Δ̄ + d1 + d2 + . . . , (E.12)

where Δ̄ is the Laplacian constructed from the background metric and the expansion
coefficients d𝑚 contain 𝑚 powers of the metric fluctuation ℎ𝜇𝜈 . The d𝑚 depend on the
tensor structure on which the Laplacian acts. For example, for a scalar 𝜙, we have

d𝜙
1 = ℎ𝜇𝜈∇̄𝜇∇̄𝜈 +

(
∇̄𝜇ℎ𝜇𝜈

)
∇̄𝜈 − 1

2
(
∇̄𝛼ℎ

)
∇̄𝛼 ,

d𝜙
2 = − ℎ𝜇𝛼ℎ𝛼𝜈∇̄𝜇∇̄𝜈 − ℎ𝛼𝛽

(
∇̄𝛽ℎ𝛼𝜇

)
∇̄𝜇 − ℎ𝜇𝛽

(
∇̄𝛾ℎ𝛽𝛾

)
∇̄𝜇

+ 1
2
ℎ𝛼𝛽

(
∇̄𝜇ℎ𝛼𝛽

)
∇̄𝜇 + 1

2
ℎ𝜇𝜈

(
∇̄𝜇ℎ

)
∇̄𝜈 .

(E.13)

The next step substitutes the expansion (E.12) into the exponential and subsequently
expands in the fluctuation field. At this stage we first note the auxiliary identity

d
d𝜖

e𝑋+𝜖𝑌 = 𝑉 (𝜖 ; 𝑋,𝑌 ) e𝑋+𝜖𝑌 = e𝑋+𝜖𝑌 𝑉̃ (𝜖 ; 𝑋,𝑌 ) , (E.14)

where

𝑉 (𝜖 ; 𝑋,𝑌 ) =
∞∑
𝑗=0

1
( 𝑗 + 1)! [𝑋 + 𝜖𝑌,𝑌 ] 𝑗 ,

𝑉̃ (𝜖 ; 𝑋,𝑌 ) =
∞∑
𝑗=0

(−1) 𝑗
( 𝑗 + 1)! [𝑋 + 𝜖𝑌,𝑌 ] 𝑗 .

(E.15)

The expressions for 𝑉 (𝜖 ; 𝑋,𝑌 ) and 𝑉̃ (𝜖 ; 𝑋,𝑌 ) thereby follow from expanding the ex-
ponential in its Taylor series, taking the derivative with respect to 𝜖 and a subsequent
reordering of terms employing the identities (E.7) and (E.8). This result can then be used
to construct the expansion of e𝑋+𝜖𝑌 in 𝜖 either bringing the exponential factor to the left

e𝑋+𝜖𝑌 = e𝑋
[
1 + 𝜖𝑉̃ (0; 𝑋,𝑌 ) + 𝜖

2

2

(
𝑉̃ (0; 𝑋,𝑌 )2 + 𝑉̃𝜖 (0; 𝑋,𝑌 )

)
+O

(
𝜖3

)]
, (E.16)

or to the right

e𝑋+𝜖𝑌 =

[
1 + 𝜖𝑉 (0; 𝑋,𝑌 ) + 𝜖

2

2

(
𝑉 (0; 𝑋,𝑌 )2 +𝑉𝜖 (0; 𝑋,𝑌 )

)
+O

(
𝜖3

)]
e𝑋 . (E.17)

In these expressions, the subscript 𝜖 indicates a derivative with respect to 𝜖 before setting
𝜖 to zero. A straightforward calculation shows that

𝑉𝜖 (0; 𝑋,𝑌 ) =
∞∑
𝑗=0

∞∑
𝑘=1

1
(𝑘 + 𝑗 + 2)! [𝑋, [𝑌, [𝑋,𝑌 ]𝑘]] 𝑗 , (E.18)
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and

𝑉̃𝜖 (0; 𝑋,𝑌 ) =
∞∑
𝑗=0

∞∑
𝑘=1

(−1)𝑘+ 𝑗+1

(𝑘 + 𝑗 + 2)! [𝑋, [𝑌, [𝑋,𝑌 ]𝑘]] 𝑗 . (E.19)

Replacing the operators 𝑋 and 𝑌 by the background Laplacian Δ̄ and the expansion
coefficients d𝑚 then allows to extract the required powers of the fluctuation field from
the exponential e−𝑠Δ. We stress that this expansion is exact in the sense that there is
no approximation on the momentum structure, i.e., all derivatives acting on fields are
retained.

We conclude our derivation with a summary of the algorithm described above:

1. rewrite the function as a Laplace transform,

2. calculate the coefficients d𝑖 defined in (E.12) up to the required order,

3. rescale the metric fluctuation ℎ𝜇𝜈 by a control parameter 𝜖 ,

4. choose whether to order the exponential of the background Laplacian to the left or
the right of the expansion,

5. use the corresponding expansion formula and set 𝜖 to 1 after truncating the series
at the desired order,

6. undo the Laplace transform.

Depending on the concrete situation, once the expansion is done one can do the sums over
the multi-commutators using the scaling properties (E.4) together with identities of the
type (E.9) and perform the Laplace transform. If this is not possible, one can nevertheless
handle all the expressions as they are, and perform the sums and the transform at the very
end, after the functional trace has been calculated.
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APPENDIX F

THE SCALAR-TENSOR

4-POINT VERTEX

In this appendix we discuss the general structure of the (ℎℎ𝜙𝜙)-vertex. This appendix is
edited from [1]. Most of the discussion extends straightforwardly to general four-point
vertices. We first note that any four-point form factor has six independent variables, which
we take as the squares of three momenta and the scalar products between them,

𝑓
(ℎℎ𝜙𝜙)
T = 𝑓

(ℎℎ𝜙𝜙)
T

(
𝑝2

1, 𝑝
2
2, 𝑝

2
3, 𝑦12, 𝑦13, 𝑦23

)
. (F.1)

In this,
𝑝𝑖𝜇𝑝

𝜇
𝑗 = 𝑦𝑖 𝑗 (F.2)

denotes the scalar product between two different momenta. All other combinations can
be related to these variables by momentum conservation:

𝑝2
4 = 𝑝2

1 + 𝑝2
2 + 𝑝2

3 + 2𝑦12 + 2𝑦13 + 2𝑦23 ,
𝑦14 = −𝑝2

1 − 𝑦12 − 𝑦13 ,
𝑦24 = −𝑝2

2 − 𝑦12 − 𝑦23 ,
𝑦34 = −𝑝2

3 − 𝑦13 − 𝑦23 .

(F.3)

If one wants to resolve any four-point function numerically, it is useful to parameterize
the (cosine of the) angles instead of the full scalar product to get a fixed domain in all
variables.

Note that starting from the four-point function, the covariantization to curved space is
non-trivial. For the three-point function, no ordering ambiguity exists since the different
Laplacians commute as they act on different objects. Here this is no longer the case since
Δ1 and ∇1𝜇∇𝜇

2 , etc., no longer commute.
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Appendix F. The scalar-tensor 4-point vertex

Now we have to find an operator basis. There are five different types of tensor struc-
tures, depending on the number of derivatives contracted with the graviton fluctuations.
To write down a basis, we introduce a shorthand notation on the basis of lexicographic
ordering of indices. In general, a tensor structure looks like

T 𝛼𝛽𝛾𝛿ℎ𝛼𝛽 (𝑝1)ℎ𝛾𝛿 (𝑝2)𝜙(𝑝3)𝜙(𝑝4) , (F.4)

where T can consist of either the background metric or derivatives acting on either field.
We will choose the convention that all derivatives acting on 𝜙(𝑝4) will be integrated
by parts. Then, there are the following 59 tensor structures, where we have taken into
account the symmetry of the individual index pairs (𝛼𝛽) and (𝛾𝛿). First, there are those
where T only contains the metric:

T 𝛼𝛽𝛾𝛿 =
1
2

(
𝑔̄𝛼𝛾 𝑔̄𝛽𝛿 + 𝑔̄𝛼𝛿 𝑔̄𝛽𝛾

)
↔ 𝑓

(ℎℎ𝜙𝜙)
(1) ,

T 𝛼𝛽𝛾𝛿 =
1
𝑑
𝑔̄𝛼𝛽 𝑔̄𝛾𝛿 ↔ 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄𝑔̄) .

(F.5)

There are three different types of structures with one metric and two derivatives in T .
Using lexicographic ordering, we denote the six functions of type 1 by

T 𝛼𝛽𝛾𝛿 = 𝑔̄𝛼𝛽𝜕𝛾𝑖 𝜕
𝛿
𝑗 ↔ 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄ 𝑖 𝑗) , (F.6)

where 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {1, 2, 3}, 𝑗 ≥ 𝑖, indicate which field the derivatives act upon.
For example, the expression (𝑔̄13) denotes the term

𝑓
(ℎℎ𝜙𝜙)
(𝑔̄13)

(
𝑝2

1, 𝑝
2
2, 𝑝

2
3, 𝑦12, 𝑦13, 𝑦23

)
(𝜕𝛾ℎ(𝑝1)) ℎ𝛾𝛿 (𝑝2)

(
𝜕 𝛿𝜙(𝑝3)

)
𝜙 (𝑝4) . (F.7)

Dual to these are the six terms

T 𝛼𝛽𝛾𝛿 = 𝑔̄𝛾𝛿𝜕𝛼
𝑖 𝜕

𝛽
𝑗 ↔ 𝑓

(ℎℎ𝜙𝜙)
(𝑖 𝑗 𝑔̄) , (F.8)

with the same set of possibilities for 𝑖 and 𝑗 as above. The third type is

T 𝛼𝛽𝛾𝛿 = 𝑔̄𝛽𝛿𝜕𝛼
𝑖 𝜕

𝛾
𝑗 ↔ 𝑓

(ℎℎ𝜙𝜙)
(𝑖 𝑔̄ 𝑗) , (F.9)

where both 𝑖 and 𝑗 are in {1, 2, 3}, giving rise to nine combinations. Finally, there are 36
terms without metrics,

T 𝛼𝛽𝛾𝛿 = 𝜕𝛼
𝑖 𝜕

𝛽
𝑗 𝜕

𝛾
𝑘 𝜕

𝛿
𝑙 ↔ 𝑓

(ℎℎ𝜙𝜙)
(𝑖 𝑗𝑘𝑙) , (F.10)

where again due to symmetry reasons, 𝑖 ≤ 𝑗 and 𝑘 ≤ 𝑙. Not all of these 59 structures are
independent though, because we still have the symmetry of exchanging the two ℎ-fields
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while also swapping the two corresponding momenta. Going through all tensor structures,
we find that the following are actually dependent:

(11𝑔̄), (12𝑔̄), (13𝑔̄), (22𝑔̄), (23𝑔̄), (33𝑔̄), (2𝑔̄2), (3𝑔̄1), (3𝑔̄2),
(2212), (1213), (2213), (1222), (2222), (2322), (1123), (1223),

(2223), (2323), (1133), (1233), (1333), (2233), (2333) .
(F.11)

As an example, a form factor corresponding to (11𝑔̄) maps to (𝑔̄22) in the following way:

𝑓
ℎℎ𝜙𝜙
(11𝑔̄)

(
𝑝2

1, 𝑝
2
2, 𝑝

2
3, 𝑦12, 𝑦13, 𝑦23

) (
𝜕𝜇𝜕𝜈ℎ𝜇𝜈 (𝑝1)

)
ℎ(𝑝2)𝜙(𝑝3)𝜙(𝑝4)

→ 𝑓
ℎℎ𝜙𝜙
(11𝑔̄)

(
𝑝2

2, 𝑝
2
1, 𝑝

2
3, 𝑦12, 𝑦23, 𝑦13

)
ℎ(𝑝1)

(
𝜕𝜇𝜕𝜈ℎ𝜇𝜈 (𝑝2)

)
𝜙(𝑝3)𝜙(𝑝4) . (F.12)

For convenience, we will retain the redundant structures in the discussion below, bearing
in mind these relations.

Performing a Fourier transform and using (A.12), we have

Γ(ℎℎ𝜙𝜙)𝜇𝜈𝜌𝜎 (𝑝1, 𝑝2, 𝑝3, 𝑝4)

=
∫
𝑞1 · · ·𝑞4

∑
T

T 𝛼𝛽𝛾𝛿 𝑓
(ℎℎ𝜙𝜙)
T

(
𝑞2

1, 𝑞
2
2, 𝑞

2
3, 𝑞1𝜇𝑞

𝜇
2 , 𝑞1𝜇𝑞

𝜇
3 , 𝑞2𝜇𝑞

𝜇
3

)
×[

𝛿(𝑞3 − 𝑝3)𝛿(𝑞4 − 𝑝4) + 𝛿(𝑞3 − 𝑝4)𝛿(𝑞4 − 𝑝3)
]
×[

1𝛼𝛽
𝜇𝜈1𝛾𝛿

𝜌𝜎𝛿(𝑞1 − 𝑝1)𝛿(𝑞2 − 𝑝2) + 1𝛼𝛽
𝜌𝜎1𝛾𝛿

𝜇𝜈𝛿(𝑞1 − 𝑝2)𝛿(𝑞2 − 𝑝1)
]

. (F.13)

It is understood that all occurrences of 𝑝4 are replaced by −𝑝1 − 𝑝2 − 𝑝3. The last line
reinforces why the tensor structures in (F.11) are dependent.

For the derivation of the flow equation for the kinetic term of the scalar field, we need
to derive the form factors corresponding to all tensor structures above from our single-
metric ansatz. To lighten the notation, we will in the following suppress the superscript
(𝜙𝜙) on 𝑓 . The expansion of our ansatz in metric fluctuations reads

1
2

∫
d𝑑𝑥

√
𝑔 𝜙 𝑓 (Δ)𝜙 =

1
2

∫
d𝑑𝑥

∫ ∞

0
d𝑠 𝑓 (𝑠) √𝑔 𝜙e−𝑠Δ𝜙

' 1
2

∫
d𝑑𝑥

∫ ∞

0
d𝑠 𝑓 (𝑠)

√
𝑔̄

[
1 + 1

2
ℎ + 1

8
ℎ2 − 1

4
ℎ𝜇𝜈ℎ

𝜇𝜈

]
×

𝜙

[
1 +𝑉

(
0;−𝑠Δ̄,−𝑠d1 − 𝑠d2

)
+ 1

2

(
𝑉

(
0;−𝑠Δ̄,−𝑠d1

)2 +𝑉𝜖
(
0;−𝑠Δ̄,−𝑠d1

) ) ]
e−𝑠Δ̄𝜙 . (F.14)
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We split the contributions to the four-point function into pieces:

• 1
8

∫
d𝑑𝑥

√
𝑔̄

[
1
2
ℎ2 − ℎ𝜇𝜈ℎ𝜇𝜈

]
𝜙 𝑓

(
Δ̄
)
𝜙 , (F.15a)

• 1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) ℎ 𝜙

∑
𝑗≥0

1
( 𝑗 + 1)!

[
−𝑠Δ̄,−𝑠d1

]
𝑗
e−𝑠Δ̄𝜙 , (F.15b)

• 1
2

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

1
( 𝑗 + 1)!

[
−𝑠Δ̄,−𝑠d2

]
𝑗
e−𝑠Δ̄𝜙 , (F.15c)

• 1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

1
( 𝑗 + 1)!

[
−𝑠Δ̄,−𝑠d1

]
𝑗
×∑

𝑙≥0

1
(𝑙 + 1)!

[
−𝑠Δ̄,−𝑠d1

]
𝑙
e−𝑠Δ̄𝜙 ,

(F.15d)

• 1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙 ×

∑
𝑗≥0

∑
𝑘≥1

1
( 𝑗 + 𝑘 + 2)![

−𝑠Δ̄,
[
−𝑠d1,

[
−𝑠Δ̄,−𝑠d1

]
𝑘

] ]
𝑗
e−𝑠Δ̄𝜙 .

(F.15e)

The d𝑖 are the ones obtained from the scalar Laplacian. We calculate the general vertex
functions in the basis as above. The first term gives contributions

1
16
𝑓
(
𝑝2

3

) +↦−→ 𝑓
(ℎℎ𝜙𝜙)
(𝑔̄𝑔̄) ,

−1
8
𝑓
(
𝑝2

3

) +↦−→ 𝑓
(ℎℎ𝜙𝜙)
(1) .

(F.16)

Here and in the following, the sign +↦−→ signals that the term on the left contributes to the
form factor(s) on the right. For the second term we calculate

1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) ℎ 𝜙

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!
[
Δ̄, d1

]
𝑗
e−𝑠Δ̄𝜙

=
1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) ℎ 𝜙

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!
(
𝑝2

1 + 2𝑦13

) 𝑗
d1e−𝑠𝑝

2
3𝜙

=
1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠)

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!
(
𝑝2

1 + 2𝑦13

) 𝑗
e−𝑠𝑝

2
3×[

𝜕𝛼
3 𝜕

𝛽
3 + 𝜕𝛼

1 𝜕
𝛽
3 + 1

2
𝑔̄𝛼𝛽𝑦13

]
ℎ𝛼𝛽ℎ𝜙𝜙 .

(F.17)

Here we chose the momentum of the ℎ in the d1 as 𝑝1 and that of the 𝜙 to the right as
𝑝3. Such a choice is not a problem since the variation of the vertex gives the correct

138



symmetrization automatically. For non-exceptional momenta (which is the case for our
tadpole diagram), we can further do the sum, thus the contribution of this term is

1
4
𝑓
(
𝑝2

1 + 2𝑦13 + 𝑝2
3
)
− 𝑓

(
𝑝2

3
)

𝑝2
1 + 2𝑦13

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(33𝑔̄) , 𝑓

(ℎℎ𝜙𝜙)
(13𝑔̄) ;

1
8
𝑦13

𝑓
(
𝑝2

1 + 2𝑦13 + 𝑝2
3
)
− 𝑓

(
𝑝2

3
)

𝑝2
1 + 2𝑦13

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(𝑔̄𝑔̄) .

(F.18)

For the exceptional momentum configuration 𝑝2
1 + 2𝑦13 = 0, the finite difference goes

over to a derivative,

lim
𝑝2

1+2𝑦13→0

𝑓
(
𝑝2

1 + 2𝑦13 + 𝑝2
3
)
− 𝑓

(
𝑝2

3
)

𝑝2
1 + 2𝑦13

= 𝑓 ′
(
𝑝2

3

)
, (F.19)

which can also be verified directly from the sum representation above, where all terms
with 𝑗 > 0 vanish, and the Laplace transform can be carried out trivially. As a general
strategy we propose to insert the sum representation, which involves the inverse Laplace
transform of 𝑓 , as above into any given diagram, and only do the sum and back-transform
afterwards. This correctly accounts for potentially exceptional momentum configurations.

We continue with the next term,

1
2

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!
[
Δ̄, d2

]
𝑗
e−𝑠Δ̄𝜙

=
1
2

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!×(
𝑝2

1 + 𝑝2
2 + 2𝑦12 + 2𝑦13 + 2𝑦23

) 𝑗
d2e−𝑠𝑝

2
3𝜙 . (F.20)

For this we need

𝜙 d2𝜙 =

[
− 𝑔̄𝛽𝛿𝜕𝛼

3 𝜕
𝛾
3 − 𝑔̄𝛽𝛿𝜕𝛼

3 𝜕
𝛾
1 − 𝑔̄𝛽𝛿𝜕𝛼

1 𝜕
𝛾
3

− 1
2
𝑦13𝑔̄

𝛼𝛾 𝑔̄𝛽𝛿 + 1
2
𝑔̄𝛾𝛿𝜕𝛼

2 𝜕
𝛽
3

]
ℎ𝛼𝛽ℎ𝛾𝛿𝜙𝜙 . (F.21)

In the tadpole diagram this contribution enters with exceptional momenta, we thus follow
the strategy advertised above. Denoting

ℨ =
1
2

∫ ∞

0
d𝑠 𝑓 (𝑠)

∑
𝑗≥0

(−𝑠) 𝑗+1

( 𝑗 + 1)!
(
𝑝2

1 + 𝑝2
2 + 2𝑦12 + 2𝑦13 + 2𝑦23

) 𝑗
e−𝑠𝑝

2
3 , (F.22)
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the contributions are

−ℨ +↦−→ 𝑓
(ℎℎ𝜙𝜙)
(3𝑔̄3) , 𝑓

(ℎℎ𝜙𝜙)
(3𝑔̄1) , 𝑓

(ℎℎ𝜙𝜙)
(1𝑔̄3) ,

−1
2
𝑦13ℨ

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(1) ,

1
2
ℨ

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(23𝑔̄) .

(F.23)

For the fourth term,

1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

1
( 𝑗 + 1)!

[
−𝑠Δ̄,−𝑠d1

]
𝑗
×∑

𝑙≥0

1
(𝑙 + 1)!

[
−𝑠Δ̄,−𝑠d1

]
𝑙
e−𝑠Δ̄𝜙

=
1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

∑
𝑙≥0

(−𝑠) 𝑗+𝑙+2

( 𝑗 + 1)!(𝑙 + 1)!×(
𝑝2

2 + 2𝑦12 + 2𝑦23

) 𝑗 (
𝑝2

1 + 2𝑦13

) 𝑙
e−𝑠𝑝

2
3 d2

1𝜙 , (F.24)

and the last term,

1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

∑
𝑘≥1

1
( 𝑗 + 𝑘 + 2)!×[

−𝑠Δ̄,
[
−𝑠d1,

[
−𝑠Δ̄,−𝑠d1

]
𝑘

] ]
𝑗
e−𝑠Δ̄𝜙

=
1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

∑
𝑘≥1

(−𝑠) 𝑗+𝑘+2

( 𝑗 + 𝑘 + 2)!e−𝑠𝑝
2
3×(

𝑝2
1 + 𝑝2

2 + 2𝑦12 + 2𝑦13 + 2𝑦23

) 𝑗 (
d1

[
Δ̄, d1

]
𝑘
−

[
Δ̄, d1

]
𝑘
d1

)
𝜙

=
1
4

∫
d𝑑𝑥

√
𝑔̄

∫ ∞

0
d𝑠 𝑓 (𝑠) 𝜙

∑
𝑗≥0

∑
𝑘≥1

(−𝑠) 𝑗+𝑘+2

( 𝑗 + 𝑘 + 2)!e−𝑠𝑝
2
3×(

𝑝2
1 + 𝑝2

2 + 2𝑦12 + 2𝑦13 + 2𝑦23

) 𝑗 ( (
𝑝2

1 + 2𝑦13

) 𝑘
−

(
𝑝2

1 + 2𝑦12 + 2𝑦13

) 𝑘 )
d2

1𝜙 .
(F.25)

In both cases we thus need

𝜙 d2
1𝜙 = 𝜙 d1

[
𝜕𝛼

3 𝜕
𝛽
3 + 𝜕𝛼

1 𝜕
𝛽
3 + 1

2
𝑔̄𝛼𝛽𝑦13

]
ℎ𝛼𝛽𝜙 (F.26a)
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=

[
(𝜕𝛾1 + 𝜕𝛾3 ) (𝜕

𝛿
1 + 𝜕 𝛿

3 ) + 𝜕
𝛾
2 (𝜕

𝛿
1 + 𝜕 𝛿

3 ) +
1
2
𝑔̄𝛾𝛿 (𝑦12 + 𝑦23)

]
×[

𝜕𝛼
3 𝜕

𝛽
3 + 𝜕𝛼

1 𝜕
𝛽
3 + 1

2
𝑔̄𝛼𝛽𝑦13

]
ℎ𝛼𝛽ℎ𝛾𝛿𝜙𝜙

(F.26b)

=

[
(3311) + (1311) + 1

2
𝑦13(𝑔̄11) + 2(3313) + 2(1313) + 𝑦13(𝑔̄13)

+ (3333) + (1333) + 1
2
𝑦13(𝑔̄33) + (3312) + (1312) + 1

2
𝑦13(𝑔̄12)

+ (3323) + (1323) + 1
2
𝑦13(𝑔̄23) + 1

2
(𝑦12 + 𝑦23)(33𝑔̄)

+ 1
2
(𝑦12 + 𝑦23) (13𝑔̄) + 1

4
𝑦13(𝑦12 + 𝑦23) (𝑔̄𝑔̄)

]
ℎ𝛼𝛽ℎ𝛾𝛿𝜙𝜙 .

(F.26c)

With the shorthand

𝔛 =
1
4

∫ ∞

0
d𝑠 𝑓 (𝑠)

∑
𝑗≥0

∑
𝑙≥0

(−𝑠) 𝑗+𝑙+2

( 𝑗 + 1)!(𝑙 + 1)!
(
𝑝2

2 + 2𝑦12 + 2𝑦23

) 𝑗 (
𝑝2

1 + 2𝑦13

) 𝑙
e−𝑠𝑝

2
3

+ 1
4

∫ ∞

0
d𝑠 𝑓 (𝑠)

∑
𝑗≥0

∑
𝑘≥1

(−𝑠) 𝑗+𝑘+2

( 𝑗 + 𝑘 + 2)!
(
𝑝2

1 + 𝑝2
2 + 2𝑦12 + 2𝑦13 + 2𝑦23

) 𝑗
e−𝑠𝑝

2
3×( (

𝑝2
1 + 2𝑦13

) 𝑘
−

(
𝑝2

1 + 2𝑦12 + 2𝑦13

) 𝑘 )
, (F.27)

we have the final contributions

𝔛
+↦−→ 𝑓

(ℎℎ𝜙𝜙)
(3311) , 𝑓

(ℎℎ𝜙𝜙)
(1311) , 𝑓

(ℎℎ𝜙𝜙)
(3333) , 𝑓

(ℎℎ𝜙𝜙)
(1333) , 𝑓

(ℎℎ𝜙𝜙)
(3312) , 𝑓

(ℎℎ𝜙𝜙)
(1312) ,

𝑓
(ℎℎ𝜙𝜙)
(3323) , 𝑓

(ℎℎ𝜙𝜙)
(1323) ,

2𝔛 +↦−→ 𝑓
(ℎℎ𝜙𝜙)
(3313) , 𝑓

(ℎℎ𝜙𝜙)
(1313) ,

1
2
𝑦13𝔛

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(𝑔̄11) , 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄33) , 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄12) , 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄23) ,

𝑦13𝔛
+↦−→ 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄13) ,

1
2
(𝑦12 + 𝑦23)𝔛

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(33𝑔̄) , 𝑓

(ℎℎ𝜙𝜙)
(13𝑔̄) ,

1
4
𝑦13(𝑦12 + 𝑦23)𝔛

+↦−→ 𝑓
(ℎℎ𝜙𝜙)
(𝑔̄𝑔̄) .

(F.28)
We can now compile the full list of all form factors that do not vanish in our ansatz:

𝑓
(ℎℎ𝜙𝜙)
(1) = −1

8
𝑓
(
𝑝2

3

)
− 1

2
𝑦13ℨ , (F.29a)

𝑓
(ℎℎ𝜙𝜙)
(𝑔̄𝑔̄) =

1
16
𝑓 (𝑝2

3) +
1
8
𝑦13

𝑓
(
𝑝2

1 + 2𝑦13 + 𝑝2
3
)
− 𝑓

(
𝑝2

3
)

𝑝2
1 + 2𝑦13

+ 1
4
𝑦13(𝑦12 + 𝑦23)𝔛 , (F.29b)
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𝑓
(ℎℎ𝜙𝜙)
(𝑔̄11) = 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄12) = 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄23) = 𝑓

(ℎℎ𝜙𝜙)
(𝑔̄33) =

1
2
𝑦13𝔛 , (F.29c)

𝑓
(ℎℎ𝜙𝜙)
(𝑔̄13) = 𝑦13𝔛 , (F.29d)

𝑓
(ℎℎ𝜙𝜙)
(13𝑔̄) = 𝑓

(ℎℎ𝜙𝜙)
(33𝑔̄) =

1
4
𝑓
(
𝑝2

1 + 2𝑦13 + 𝑝2
3
)
− 𝑓

(
𝑝2

3
)

𝑝2
1 + 2𝑦13

+ 1
2
(𝑦12 + 𝑦23)𝔛 , (F.29e)

𝑓
(ℎℎ𝜙𝜙)
(23𝑔̄) =

1
2
ℨ , (F.29f)

𝑓
(ℎℎ𝜙𝜙)
(1𝑔̄3) = 𝑓

(ℎℎ𝜙𝜙)
(3𝑔̄1) = 𝑓

(ℎℎ𝜙𝜙)
(3𝑔̄3) = −ℨ , (F.29g)

𝑓
(ℎℎ𝜙𝜙)
(1311) = 𝑓

(ℎℎ𝜙𝜙)
(1312) = 𝑓

(ℎℎ𝜙𝜙)
(1323) = 𝑓

(ℎℎ𝜙𝜙)
(1333) = 𝑓

(ℎℎ𝜙𝜙)
(3311) = 𝑓

(ℎℎ𝜙𝜙)
(3312) = 𝑓

(ℎℎ𝜙𝜙)
(3323)

= 𝑓
(ℎℎ𝜙𝜙)
(3333) = 𝔛 ,

(F.29h)

𝑓
(ℎℎ𝜙𝜙)
(1313) = 𝑓

(ℎℎ𝜙𝜙)
(3313) = 2𝔛 . (F.29i)
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