Journal of Physics: Conference Series

PAPER « OPEN ACCESS

Algebraic models of many-body systems and their dynamic symmetries
and supersymmetries

To cite this article: Francesco lachello 2019 J. Phys.: Conf. Ser. 1194 012048

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 131.169.5.251 on 06/05/2019 at 21:02


https://doi.org/10.1088/1742-6596/1194/1/012048
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/786957102/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?

Group32 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1194 (2019) 012048  doi:10.1088/1742-6596/1194/1/012048

Algebraic models of many-body systems and their dynamic
symmetries and supersymmetries

Francesco Iachello

Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, CT
06520-8120, USA

francesco.iachello@yale.edu

Abstract. An overview of the method of spectrum generating algebras (SGA) and dynamical
symmetries (DS) is given and applied to a class of models (the so-called s-b boson models)
with SGA=u(n). Quantum phase transitions (QPT) in these systems are discussed by
introducing the coset spaces U(n)/U(n-1)®U(1). Finally, spectrum generating superalgebras
(SGSA) and dynamical supersymmetries (SUSY) of a class of Bose-Fermi systems with
SGA=u(n/m) are introduced and applied to s-b Bose-Fermi models.

1. Introduction

Algebraic methods have been used extensively in physics since their introduction by Heisenberg
(1932), Wigner (1936) and Racah (1942). Since 1974, a general formulation of algebraic methods has
emerged. (See, for example, [1]). In this formulation, a quantum mechanical many-body system is
mapped onto an algebraic structure. The logic of the method is:

Many-body system
\

Quantization in terms of boson and/or fermion operators

Algebraic structure
(Lie algebra, Graded Lie algebra, Kac-Moody algebra, g-deformed algebra,...)
\

Computation of observables
(Spectra, Transitions, ...)

Comparison with experiments

2. Algebraic models
An algebraic model [2] is an expansion of the Hamiltonian and other operators in terms of elements,
Gop, of an algebra (often a Lie algebra g, or a contraction of it). The algebra G, e g is called the

spectrum generating algebra (SGA). In most applications, the expansion is a polynomial in the
elements,
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H=E,+ ZgaﬁGuﬂ + Z UypsGopTos + oo
Z , (1)
T=ty+ Y 1,,G 5 +...
B

but more complicated forms have been considered
H=f(G,). 2
An interesting situation occurs when H does not contain all elements of g, but only the invariant
(Casimir) operators of a chain of algebras g > g'©> g" D...
H=E+aC(g)+a'C(gh+a"C(g")+... , 3)
called a dynamical symmetry (DS). (For the concept of DS, see also [3]). In this case, the energy
eigenvalues can be written explicitly in terms of quantum numbers labeling the representations of g

E=(H)=E,+a(C(g))+a'(C(g")+a"(C(g")+... 4)
Also here more complicated functionals of invariant operators have been considered
H=f(C) . Q)

When a dynamic symmetry occurs, one can also calculate matrix elements of all operators in explicit
analytic form, in terms of Clebsch-Gordan coefficients (isoscalar factors) of the algebras
gog'ng"o...

Dynamic symmetries were introduced implicitly by Pauli in 1926 [4] and later by Fock [5] for the
hydrogen atom. The Hamiltonian with Coulomb interaction is invariant under a set of transformations,
G, larger than rotations (Runge-Lenz transformations, SO(4)). (In this article, algebras will be denoted
by lowercase letters, g, and groups by capital letters, G). It can be written in terms of Casimir
operators of G,

p € A
yor ¢ _ , ()
2m r G(SO(4)+1
with eigenvalues given by the Bohr formula

E(n,t,m) = —n—‘i . ™

States can be classified by representations of s0(4) D so(3) D so(2) with quantum number n,¢,m

respectively. The corresponding spectrum is shown in figure 1 where it is compared with experiment.
Apart from small relativistic corrections non included in Eq.(7), the agreement is excellent.
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Figure 1. The spectrum of the hydrogen atom is shown as evidence of SO(4) symmetry.

In this case, the expansion is 1/ H = f(C,) . Pauli’s construction has been generalized to any number

of dimensions v > 2 with DS so(v+1) and to scattering states with DS so(v,1). In this case, only the
Casimir operator of g appears, and therefore the algebra is often called degeneracy algebra, g, The
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embedding of g, into a larger algebra (the so-called dynamical algebra) which contains all the states of
the system, is discussed in several books [2, 6].

DS assumed an important role in physics with the introduction of flavor symmetry by Gell’mann
and Ne’eman [7-8], SUg3). States can be classified by representations of
su,(3) o su,(2) ® uy (1) o spin, (2) ® u, (1) with mass formula

1
M:a+b[Cl(U(l))]+({C2(SU(2))—ZC12(U(1))} ®)
MY, I,I)=a+bY +c[1(1+1)7iyz}
where Y, I, I; are the hypercharge, isotopic spin and third component of the isotopic spin labeling the
representations of w, (1), su,(2),spin,(2) respectively.
The corresponding spectrum is shown in figure 2 where is compared with experiment.

YNT-2056
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Figure 2. The spectrum of the baryon decuplet is shown as an example of dynamic SU{(3) symmetry
in baryons.

2.1. Bosonic systems
It is convenient to write the elements G,, e gas bilinear products of creation and annihilation

operators (Jordan-Schwinger realization). For bosonic systems

G, =bib, a,B=1,.,n : )
From [ba, b;:| =0, [ba,bﬁ] = [bi,b;] =0, one obtains the commutation relations
[GpsGs ]=6,,Gus = 3,46y (10)

which define the real form of g=u(n) [or gl(n)]. The basis upon which the elements act is the totally
symmetric representation, with one-row Young tableaux,

1 T\, Ny
|N)=[N.0,0....,0] |N>=W(ba)“(b;)“...|0> (11)
characterized by the total number of bosons N.

2.2. Fermionic systems
Fermionic systems can also be treated algebraically in terms of bilinear products of anti-commuting

operators

G, =aa, i,j=1,.,m . (12)

i i

T — =lat afl= i
From {ai,aj}_éij, {ai,aj}—{al. ,aj}—O,one obtains
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[ij)le] = ajkGﬂ - 51'1ij ’ (13)

spanning the Lie algebra u(m) as before. The basis upon which these elements act is, however, the
totally anti-symmetric representation, with one-column Young tableaux

IN,)=[L1,...,1,0,...,0] IN,) =;a§‘a;‘?---|0> (14)
N,

characterized by the total number of fermions N.

2.3. Mixed Bose-Fermi systems
Mixtures of bosonic and fermionic systems can be treated in terms of bilinear products

_pt
G, =byb,
L= T a,p = 1,...,”

sz az ak ' ﬁ (1 5)

Fi=bla i,j=1..,m

F;'a = ajba

often placed in matrix form

b;bﬁ bial. (16)
alb, adla; |

The bilinear products above generate the graded Lie algebra (also called superalgebra) U(n/m). (For a
classification of superalgebras see [9-10]. The superalgebra su(n/m) is A(n-1,m-1) in Kac’s
classification). In a single index notation, the commutation relations of the graded algebra are

[ XXy ]=2e,X, s [X,.Y]= ey, s VY=Y fiX, (17)
Y J V4

where X are bosonic operators and Y are fermionic operators, together with the Jacobi identities. The
basis upon which the elements act is the totally supersymmetric representation, with supertableux

|N=N,+N,)=[N,0,...,0} (18)

where N is the total number of particles bosons+fermions. A symbol (square-curly bracket) different
from Eq.(11) has been used in Eq.(18) to indicate that these representations are totally symmetric
under the interchange of bosons and totally anti-symmetric under the interchange of fermions [11].

3. Geometry of algebraic models
Geometry can be associated to algebraic models with algebra g by constructing appropriate coset
spaces, obtained by splitting g (Cartan decomposition) into
g=h®p (19)

where 4, a subalgebra of g, is called the stability algebra and p the remainder (not closed with respect
to commutation). For models with u(n) structure, the appropriate coset space (g/) is

u(n)/ u(n-1)@u(l) . (20)
This space is a globally symmetric Riemannian space [2, chapter 5] with dimension 2(n-1). For
bosonic models, the algebra / can be constructed by selecting one boson, b;, and choosing

h=b{b,blb, a,f=2,..n
p=b'b,.b

17a>~a

@

T

b, a=2,..,n

Associated with the Cartan decomposition, there are geometric variables n; defined by
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n)=esn| Sapan) - ner @)
For bosonic systems
. 1
|N;na>=[exp(nab;b]—nabrba)]ﬁ(br)”m) : (23)

For systems with fixed value of NV it is convenient to introduce projective coherent states in terms of
projective variables [12]
1 .
IN:9,) =——][ 6/ + 9,6, ] |0) . (24)

Nt

For algebraic models written in terms of boson operators b, = sand b, (m =2,...,n), it is convenient
to rewrite the coherent state as

|N;a>=\/%[s++2amb;j |0> (25)

with normalization

N
<N;a|N;a>:(l+Z|am|2j . (26)
The semiclassical energy functional associated with the quantum algebraic Hamiltonian is
<N ;a|H |N ;a>
This energy functional depends on the complex coordinates «, which can be split into real
coordinates, ¢,, and momenta, p,,. (For details, see [13]).

Geometry can also be associated to algebraic Bose-Fermi models with graded Lie algebra g* [14].
However, the construction involves Grassmann variables and will not be discussed here.

E(N;o) = 27

4. Algebraic models in physics

In the last 50+ years, many algebraic models of many-body systems have been constructed, for
bosonic, fermionic and mixed Bose-Fermi systems. Here, only a selected class of algebraic models of
bosonic systems and their associated Bose-Fermi systems will be discussed.

4.1. Bosonic models: The Interacting Boson Model

A list of algebraic bosonic models with SGA u(n), called s-b models, and their associated dynamic
symmetries extensively investigated is: u(2) [15,16]; u(3) [16]; u(4) [16]; u(6) [17]. These provide a
description of many-body problems with f=n-1 degrees of freedom [13]. A convenient realization of
these models is with a scalar boson, called s, and another boson, b,,, with f =2/¢+1 components. The

integer or half-integer number /= 0,%,1,%,2,... is called quasi-spin. The use of both integer and

half-integer values allows one to treat problems in both odd and even dimensions.

One of the best examples of algebraic bosonic models is the Interacting Boson Model (IBM) [17].
This model describes even-even nuclei as a collection of correlated pairs of nucleons with angular
momentum J=0 and J=2. The pairs are then treated as bosons, called s (J=0) and d (J=2). Introducing
boson creation and annihilation operators

s'd! (p=0,%1,%2)

) (28)
s,d, (u=0,11,£2)
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generically denoted by b’

a

,b (a=1,...,6), one can write the Hamiltonian, //, and the transition
operators, 7, as
H=Ey+Y &,:biby+ > u,,bibib by +...
aff apyd (29)
T=t,+) 1,blb,+...
af

The bilinear products of the six creation and six annihilation operators
g=G,, =blb, a,f=1,..,6 (30)
span the Lie algebra u(6) which is then the SGA of the IBM. The basis B upon which the elements act

is the totally symmetric representation

1
N)=[N,0....,0 N)=——=0bb....|0) . 31
| > [ ] | > \/ﬁ a“a | > ( )
For rotationally invariant problems, like the one described here, it is convenient to introduce the Racah
form of the algebra [18]. To this end, one constructs operators that transform as irreducible

representations of the rotation algebra,so(3), called spherical tensor boson operators
b

lm?>

b, ({=0,2;m = 0,%1,£2) with commutation relations
[b/,m’bz',m'] = 5/,‘f'5mm' [b/,m’b/t',n1':| = [b;,m’bj',m'] = 0 (32)
It should be noted that if b;m transforms as a spherical tensor, b,, does not. An operator that

transforms as a spherical tensor is I;[’m = (—)Fm b, _, - The Lie algebra g in Racah form is obtained by

taking tensor products

GOwey=[vxb,]"  (r=02). (33)
Tensor products of two operators with respect to so(3) are defined as
[7%) % U“‘ﬂ]‘“ = 3" (ki [k )T OU L . (34)

4.1.1. Dynamic symmetries of the Interacting Boson Model
The algebra u(6) can be broken, with the constraint that the angular momentum algebra so(3) be
contained in it, into three subalgebra chains:
(1) :u(6) > u(5) o s0(5) 2 s0(3) o so(2)
(1) : u(6) o su(3) o so(3) o so(2) . (35)
(L) : u(6) o s0(6) 2 so(5) > so(3) D so(2)
For each of these three cases, DS, it is possible to construct an energy formula, which gives the
energies in terms of quantum numbers labeling the representationsof g 5 g'>g" >...
Dynamic symmetry (I): u(5).
The Hamiltonian, H, and energy formula, E, are
H'" = E,+ £C,(u(5)) + aC,(u(5)) + fC,(s0(5)) + 7 C,(s0(3))
E(N,n,,v,n,L,M,)=E, +éen, +an,(n, +4)+ fv(v+3)+yL(L+1)
where N,n,,v,L, M, denote the representations of u(6),u(5),s0(5),s0(3),s0(2) respectively, while

(36)

v, is an additional quantum number (missing label) that takes into account the fact that the breaking
u(5) o so(5) o so(3) is non-canonical [2, chapter 6]. An example is given in figure 3, where the
energy formula (36) is compared with experiment.
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Figure 3. The spectrum of the nucleus ''’Cd is shown as an example of u(5) symmetry.

Dynamic symmetry (I1): su(3)
The Hamiltonian and energy formula for this case are
H'"" = E, + kC,(su(3)) + k' C,(s0(3))

. (37)
E(N, 2 1, K, L M) = By + (A% + 47 + A+ 32+ 3) + ' L(L +1)

where N, A, u,K,L, M, label the states of Chain II. Again here K is a missing label.

An example is given in figure 4, where the energy formula (37) is compared with experiment.

E 156
Gd
(MeV) 64°"92 Exp. Th
*1i24,00 (20,2) (16,4)  (18,0) [(24,0) (20,2) (16,4)  (18,0) |
I I 71\ ] ] 1
\ ‘ b
5
444
2 o+ 4’— 5’_. + =+ + r -
4 3= 2" 3
=S el A=
| 8= o o'— | &
10— g4 44— a—
1l e &= — lg_ 2=3= )
4 8- © F8— 5 2
6— 6'—
4— 4:_
2— 2'—
o4 & + o— SuU(3) e

Figure 4. The spectrum of the nucleus '*°Gd is shown as an example of su(3) symmetry.

Dynamic symmetry (III): so(6)
The Hamiltonian and energy levels for this symmetry are
H"D = E, + AC,(s0(6)) + BC,(s0(5)) + CC,(s0(3))
E"(N,o,7,v,,L,M,)=E, + Ac(c +4) + Br(zr +3) + CL(L +1)
where N,o,7,v,,L, M, label the states of Chain Il with v, the missing label.

An example is given in figure 5, where the energy formula (38) is compared with experiment.

(3%
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Figure 5. The spectrum of the nucleus '*°Pt is shown as an example of so(6) symmetry.

4.1.2. Numerical studies

In many cases, spectra of nuclei cannot be described by a dynamic symmetry. For these cases, H must
be diagonalized numerically. Lie algebras are useful here to construct the basis B in which the
diagonalization is done. For the Interacting Boson Model, the basis used in the diagonalization is
usually the basis of Chain (I) u(6) 2 u(5) o so(5) D so(3) D so(2), with quantum numbers given in
Eq.(36). Note that for u(n),n >5the construction of the basis containing the angular momentum
algebra so(3) is not simple, since hidden quantum numbers (missing labels) appear [17].

An Hamiltonian often used in numerical studies is

H=E,+e¢n, +K(QA"-QA")

i, = (d"d) . (39)
0% = (a?T x5 +s' xc?)(z) + ;((a’T xc?)a)

This Hamiltonian provides a good description of nuclei in terms of three parameters, ¢,x, y . Using

this Hamiltonian it has been possible to provide a classification of all nuclei in terms of symmetry
groups, a portion of which is shown in figure 6.

Po & ] | ]
e | | |
Hg 80 11 R
Au_ 78 I 1
L] L L
w7 1 EANE M 75
Os 78 | . 24
___Re 7% 1 122
w [ TT1 . | [178 120
Ta 73
i Hln?_‘_z] T | B3 ... U6/
12 14 N6
i ... UI6/12)
Tm 0 0
Ine - SUSY LEGEN
Ho 67
oy 68 L] o
r Te 66
Gd 64 |
Bu 62 100
Z sme -~
| em e [T A
Nd 60 e
P B
Ca 58
L 5 £
Ba 658
Cs 5
Xe 54
|8 5 € x/E
Ta ]
sp 81 SYMMETRY TRIANGLE
Sn 80

B2 B4

Figure 6. Symmetry classification of nuclei with Z=50-82 and N=82-126.
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In this figure a color code has been used to denote each of the three symmetries, as indicated in the
symmetry triangle in the bottom right.

4.2. Bose-Fermi models: The Interacting Boson-Fermion Model

For each of the bosonic models of Sect. 4.1, one can construct a corresponding Bose-Fermi model by
adding fermions to the bosons. One of the best examples of Bose-Fermi models is the Interacting
Boson-Fermion Model (IBFM) [19]. In odd-even nuclei at least one particle is unpaired, and at higher
excitation energies, pairs may break. A more accurate description of nuclei is then in terms of
correlated pairs with J=0 and J=2, treated as bosons, s and d, plus unpaired fermions with angular
momentum j. The Hamiltonian is now

H=H,+H,+V,. (40)
with
H,=E, +Zgaﬁb;bﬁ + D Vo biblbby,
aa' BB’
H,.=LE' +277ka a, + Z Uy d; afakak . (41)
i'kk"
ZWaﬂlkb bﬁa a,
apik

4.2.1. Dynamic supersymmetries of the Interacting Boson-Fermion Model
Dynamic supersymmetries of Bose-Fermi models require more stringent conditions than dynamic
symmetries of models of bosons or of fermions. Two of these conditions are:
(1) To each boson a there exists a fermion j related to it by a supersymmetry transformation.
(i1) In the Hamiltonian, H, of Eq.(40), all couplings must be related by a supersymmetry
transformation. If gp , gr and gpr are the coupling constants in the first, second and third
term in the r.h.s. of Eq.(40), then 2g, =2g, = g,,..

In the case of the IBFM, for each dynamic symmetry of the bosons, U(5), SU(3) and SO(6), several
classes of supersymmetries are possible, described by the graded Lie algebra u(6/Q) and its

subalgebras, where Q is the dimension of the fermionic space,

Q=>(2j+) . (42)

Here j; are the values of the angular momenta of the fermions. A class of supersymmetry extensively
studied is that in which, in addition to bosons with J=0,2, one has fermions with j=3/2. The
supersymmetry is then described by the chain
u(6/4) o s0(6) ® su(4) o spin(6) o spin(5) o spin(3) > spin(2) . (43)
A consequence of supersymmetry is that if bosonic states are known one can predict fermionic states
and vice versa. Both are given by the same formula, which for the case mentioned above is
E(N,(0,,0,,03).(7,,7,),v,,J,M) = E,

+4[0,(0, +4)+0,(0, +2)+ 03 |+ B[r,(z, +3) + 1,(z, + D]+ CI(J +1)

Here N=Np+Np is the total number of bosons plus fermions, and states are identified by the quantum
numbers of the representations of the algebras appearing in the chain (43). As a result, if one knows
the spectra of even-even nuclei (bosonic), one can predict those of odd-even nuclei (fermionic). In the
1980’s, several case of spectra of nuclei with supersymmetric properties were found [20,21]. An
example is shown in figure 7.

(44)
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Figure 7. An example of u(6/4) supersymmetry in nuclei: the pair of nuclei '*°Os-"""Ir.

Recently, supersymmetry in nuclei has been confirmed by a series of new experiments. These
experiments deal with an even more complex situation than that described above, wherein a distinction
is made between protons and neutrons with the introduction of proton and neutron pairs with J=0,2
treated as bosons, and denoted by s_,d ;s,,d, . The corresponding model is known as Interacting

Boson Model-2 (IBM-2) and has an algebraic structure u_(6) ® u,(6) . Consequently, when fermions

are added one has a model with two types of bosons (protons and neutrons) and two types of fermions
(protons and neutrons), called Interacting Boson Fermion Model-2 (IBFM-2), with algebraic structure
u (6/Q )®u,(6/Q,). If supersymmetry occurs for this very complex structure, one expects to

have supersymmetric partners composed of a quartet of nuclei, even-even, even-odd, odd-even and
odd-odd. In a major effort that has involved several laboratories worldwide, it has been possible to
measure spectra of odd-odd nuclei and thus test the occurrence of super symmetry in nuclei [22]. An
example is shown in figure 8.

Dynamic supersymmetry in nuclei is the only experimentally verified case of supersymmetry in
Physics (as of 2018). The supersymmetric constituents are nucleons (fermions) and nucleon pairs
(bosons). Bosons are thus composite objects. A major part of the program at CERN-LHC will be
devoted in the next few years to a search for supersymmetry in particle physics. The expected
constituents are fundamental particles, quarks (fermions) and squarks (bosons), or gluons (bosons) and
gluinos (fermions). Several authors, in particular Y. Nambu, have suggested that the only
supersymmetries that can occur in Nature are of the “composite” type. Indeed, Nambu [23] has
constructed an effective supersymmetry in Type-II superconductors, where supersymmetric partners
are electrons and Cooper pairs. Also, Catto and Giirsey [24] and others have applied the same idea to
hadronic spectroscopy where the supersymmetric partners are diquarks (D) and quarks (q). This
scheme is an enlargement of Gilirsey-Radicati SU(6) [25]. Since the diquarks transform as the
representation 21 and the quarks as the representation 6 of SU(6), the appropriate superalgebra here is
u(6/21). This scheme is thus similar to the u(6/Q) scheme of nuclear physics described above, except

10
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that the role of u(6) is interchanged, since in nuclear physics u(6) refers to the Bose sector and u(Q) to
the Fermi sector, while in Catto-Giirsey supersymmetry u(6) refers to the quarks (Fermi part) and
u(21) to the diquark (Bose part). Giirsey’s scheme implies the occurrence of diquark-antidiquark
states, for which there was little evidence at the time when u(6/21) was introduced [24], but for which
now substantial evidence has been accumulated. It remains to be seen whether or not Nambu’s
suggestion is substantiated by future experiments.
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Figure 8. An example of supersymmetry in odd-odd nuclei: the spectrum of *’Au, supersymmetric

partner of '*Pt, '°Pt, ' Au [22].

5. Quantum Phase Transitions in algebraic models
Quantum phase transitions (QPT) are phase transitions that occur as a function of a coupling constant,

&, that appears in the quantum Hamiltonian, A, that describes the system
H=¢[(1-&)H,+¢H,| ,0<¢£<1

(45)

As & changes from 0 to 1, the eigenstates of H change from those of H; to those of H,. Associated with
phase transitions there are order parameters, the expectation values of some suitable chosen operators

that describe the state of the system, <0> Introduced in the 1970’s [26], they have become in recent

years of great importance in a variety of systems. QPT are also called ground state phase transitions
and/or zero temperature phase transitions.
QPT can be conveniently studied within the framework of algebraic models. For these models, one
can do both the semi-classical and the quantal analysis. Also, in many-body systems, finite size scaling
(1/N expansion) can be easily investigated. The latter point is particularly important in applications to
finite systems: nuclei, molecules, finite polymers, photonic crystals, optical lattices, etc. In this article,
particular emphasis will be given to the semi-classical analysis of algebraic models.

5.1. Semi-classsical analysis of QPT in algebraic models
An algorithm to study QPT in algebraic models was developed by Gilmore [26].

(1)
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Consider and Hamiltonian H which is a mixture of Casimir invariants of two (or more)
algebras as in Eq.(45),
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H=¢[(1-£)Cg)+&C(gy)] - (46)

(i1) Construct the energy per particle, E(N;a)/ N, where the energy functional E is given in
Eq.(27).

(iii) Minimize E as a function of the variables a, thus determining E,,,;,..

(iv) Study the behavior of E,;, and its derivatives as a function of the coupling constants &
(control parameters) which appear in front of the Casimir operators. The phase transition
is said to be of zeroth order if E is discontinuous at the critical point, of first order if
OE_. /0& is discontinuous, of second order if 0°E_. /0 is discontinuous, etc.

min

(Erhenfest classification).

5.1.1. QPT in the Interacting Boson Model
A convenient Hamiltonian to study QPT in the Interacting Boson Model is given in Eq.(39), rewritten
as

_ _ ~ é”l,Al
H—g[(l §)nd+NQ Q} . (47)

In this Hamiltonian there are two control parameters & and . The number of classical variables a,,
associated with u(6) is five (see Sect.3). However, by exploiting the rotational invariance of the
problem, it is possible to reduce the number of variables to two, called intrinsic or Bohr variables [17,
Ch.3] B,y and to write the coherent state as

|N;B.y)= \/%(ST +ﬂ[cos7dg +%siny(cﬂ2 +d', )D |0) : (48)

The energy surface for the Hamiltonian H of Eq.(46) is

ik ey (2 | 5
1+ﬂ2{(1 §)-(7 +1)4N} AN(+ F)

SN -D 2 4|7 ns 2 5o
—4N(l+ﬂ2)2{4ﬂ 4\/g;(ﬂ cos37+7;(ﬂ}

Using the algorithm described above, one can construct the phase diagram of the interacting boson
model given in figure 9 [27]. The three phases (dynamic symmetries) are at the vertices of the triangle.
There is a line of 1° order transitions ending in a point of 2™ order transition.

E(N;B.7:&, 1) =(eN) (49)

0(6)
o KVI 2386

2" ORDER
TRANSITION
DEFORMED
PHASE

15" oRDER
TRANSITION

I I

ueE) SPHERICAL PHASE su@)

Figure 9. Phase diagram of the Interacting Boson Model [27].
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Experimental evidence for these phase transitions has been found [17].

6. Summary of algebraic models in physics

Since its introduction in the 1970’s, algebraic modelling of many-body systems has seen many
applications, encompassing many aspects of physics and chemistry. Here are summarized some of
these applications and their associated algebras.

6.1. Nuclear Physics

The Interacting Boson Model, IBM-1 [17] with algebra u(6).

The Proton-Neutron Interacting Boson Model, IBM-2 [17] with algebra u_(6) @ u,(6) .
The Interacting Boson-Fermion Model, IBFM-1 [19] with superalgebra u(6/Q).

The Proton-Neutron Interacting Boson-Fermion Model, IBFM-2 [19] with superalgebra
u (6/Q )0u,(6/Q)).

These models have been briefly described in Sect. 4.

6.2. Molecular Physics

The Vibron Model, VM [16] with algebra u(4).

The Electron-Vibron Model, EVM [28] with superalgebra u(4/Q).

6.3. Hadronic Physics

The Algebraic Model of Mesons [29] with algebra u(4)

The Algebraic Model of Baryons [30,31] with algebra u(7)

6.4. Polymer Physics

The Algebraic Model of Anharmonic Polymer chains [32, 33], with algebra Z@ul.(2)

6.5. Cluster Physics
The Algebraic Cluster Model (ACM): Two-body problems [34] with algebra u(4)

The Algebraic Cluster Model (ACM): Three-body problems [35] with algebra u(7)
The Algebraic Cluster Model (ACM): Four-body problems [36] with algebra #(10)

For applications to cluster physics one needs also to include the discrete symmetry of the cluster.
Symmetries that have been considered are: two-body Z, , three-body D3, and four-body 7, .

6.6. Crystal Physics
The Algebraic Lattice Model: one-dimensional systems [37] with algebra 2@1”;(2)

The Algebraic Lattice Model: two-dimensional systems [37] with algebra Z@”,uﬁ.@) .
Also here one needs to include the discrete symmetry of the lattice. Symmetries that have been
considered are: Dy, (square lattice), Dg, (hexagonal lattice).

7. Conclusions

Symmetry in its various forms (space-time, gauge, dynamic, ...) has become a guiding principle in the
description of Physics and Chemistry. Algebraic modelling is an ideal tool for discovering symmetries
in complex many-body systems. Through the symmetries and supersymmetries of algebraic models it
has been possible to uncover order and regularities in the spectra of complex quantum systems,
molecules, atoms, nuclei and hadrons. This discovery is part of the simplicity in complexity program.
As Herman Weyl wrote: Nature loves symmetry! In the 21% Century, as the complexity of the
phenomena that we are studying increases, dynamic symmetry and supersymmetry, and their
underlying algebraic models, may play an equally important role. In fact, one of the lessons we have

13
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learned is that the more complex is the structure, as in figure 10, the more useful is the concept of
symmetry.

Figure 10. Tessellation of the hyperbolic Poincare’ plane. (From M.C. Escher, Circle Limit 111, 1959).
I am therefore looking forward to many more years of Group Theory Colloquia.
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