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Abstract. An overview of the method of spectrum generating algebras (SGA) and dynamical 
symmetries (DS) is given and applied to a class of models (the so-called s-b boson models) 
with SGA�u(n). Quantum phase transitions (QPT) in these systems are discussed by 
introducing the coset spaces U(n)/U(n-1)�U(1). Finally, spectrum generating superalgebras 
(SGSA) and dynamical supersymmetries (SUSY) of a class of Bose-Fermi systems with 
SGA�u(n/m) are introduced and applied to s-b Bose-Fermi models. 

1.  Introduction 
Algebraic methods have been used extensively in physics since their introduction by Heisenberg 
(1932), Wigner (1936) and Racah (1942). Since 1974, a general formulation of algebraic methods has 
emerged. (See, for example, [1]). In this formulation, a quantum mechanical many-body system is 
mapped onto an algebraic structure. The logic of the method is: 

 
Many-body system 

� 
Quantization in terms of boson and/or fermion operators 

� 
Algebraic structure 

(Lie algebra, Graded Lie algebra, Kac-Moody algebra, q-deformed algebra,...) 
� 

Computation of observables 
(Spectra, Transitions, ...) 

� 
Comparison with experiments 

2.  Algebraic models 
An algebraic model [2] is an expansion of the Hamiltonian and other operators in terms of elements, 
G��, of an algebra (often a Lie algebra g, or a contraction of it). The algebra G g�� �  is called the 
spectrum generating algebra (SGA). In most applications, the expansion is a polynomial in the 
elements, 
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      ,                          (1) 

but more complicated forms have been considered  
                                                               ( )H f G��� .                                                             (2) 

   An interesting situation occurs when H does not contain all elements of g, but only the invariant 
(Casimir) operators of a chain of algebras ' " ...g g g� � �  

     0 ( ) ' ( ') " ( ") ...H E C g C g C g� � �� � � � �          ,                     (3) 
called a dynamical symmetry (DS). (For the concept of DS, see also [3]). In this case, the energy 
eigenvalues can be written explicitly in terms of quantum numbers labeling the representations of g 
                                               0 ( ) ' ( ') " ( ") ...E H E C g C g C g� � �� � � � � �                     (4) 
Also here more complicated functionals of invariant operators have been considered 
                                                                       ( )iH f C�    .                                                           (5)  
When a dynamic symmetry occurs, one can also calculate matrix elements of all operators in explicit 
analytic form, in terms of Clebsch-Gordan coefficients (isoscalar factors) of the algebras 

' " ...g g g� � �  
   Dynamic symmetries were introduced implicitly by Pauli in 1926 [4] and later by Fock [5] for the 
hydrogen atom. The Hamiltonian with Coulomb interaction is invariant under a set of transformations, 
G, larger than rotations (Runge-Lenz transformations, SO(4)). (In this article, algebras will be denoted 
by lowercase letters, g, and groups by capital letters, G). It can be written in terms of Casimir 
operators of G, 

                                                        
2 2

22 ( (4)) 1
p e AH
m r C SO

� � � �
�

                ,                             (6) 

with eigenvalues given by the Bohr formula  

                                                                  2( , , ) AE n m
n

� ��                           .                              (7) 

States can be classified by representations of (4) (3) (2)so so so� �  with quantum number , ,n m�  
respectively. The corresponding spectrum is shown in figure 1 where it is compared with experiment. 
Apart from small relativistic corrections non included in Eq.(7), the agreement is excellent. 

 
Figure 1. The spectrum of the hydrogen atom is shown as evidence of SO(4) symmetry. 

 
In this case, the expansion is 1 / ( )iH f C� . Pauli’s construction has been generalized to any number 
of dimensions 2� �  with DS so(�+1) and to scattering states with DS so(�,1). In this case, only the 
Casimir operator of g appears, and therefore the algebra is often called degeneracy algebra, gd. The 
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embedding of gd into a larger algebra (the so-called dynamical algebra) which contains all the states of 
the system, is discussed in several books [2, 6].  
    DS assumed an important role in physics with the introduction of flavor symmetry by Gell’mann 
and Ne’eman [7-8], SUf(3). States can be classified by representations of 

(3) (2) (1) (2) (1)f I Y I Ysu su u spin u� � � � with mass formula 

                                           
� � 2

1 2 1

2
3

1( (1)) ( (2)) ( (1))
4

1( , , ) ( 1)
4

M a b C U c C SU C U

M Y I I a bY c I I Y

� �� � � �� �� �
� �� � � � �� �� �

           ,                          (8) 

where Y, I, I3  are the hypercharge, isotopic spin and third component of the isotopic spin labeling the 
representations of (1), (2), (2)Y I Iu su spin  respectively. 
The corresponding spectrum is shown in figure 2 where is compared with experiment. 

 
Figure 2. The spectrum of the baryon decuplet is shown as an example of dynamic SUf(3) symmetry 

in baryons. 

2.1. Bosonic systems
It is convenient to write the elements G g�� � as bilinear products of creation and annihilation 
operators (Jordan-Schwinger realization). For bosonic systems 
                                                           †G b b�� � ��            , 1,...,n� � �          .                       (9) 

From †,b b� � ��	� � �� � , † †, , 0b b b b� � � �� �� � � �� � � � , one obtains the commutation relations 

                                                          ,G G G G�� �	 �� �	 �	 ��	 	� � � �� �                                     (10) 

which define the real form of g=u(n) [or gl(n)]. The basis upon which the elements act is the totally 
symmetric representation, with one-row Young tableaux, 

                                         [ ,0,0,...,0]N N�      '† †
'

1 ( ) ( ) ... 0
!

n nN b b
N

� �
� ��                         (11) 

characterized by the total number of bosons N. 
 
2.2. Fermionic systems 
Fermionic systems can also be treated algebraically in terms of bilinear products of anti-commuting 
operators 
                                                           †

ij i jG a a�                , 1,...,i j m�         .                       (12) 

From � �†,i j ija a 	� , � � � �† †, , 0i j i ja a a a� � , one obtains 
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                                                           ,ij kl jk il il jkG G G G	 	� � � �� �                          ,                    (13) 

spanning the Lie algebra u(m) as before. The basis upon which these elements act is, however, the 
totally anti-symmetric representation, with one-column Young tableaux 

                                       [1,1,...,1,0,...,0]FN �              † †
'

1 ... 0
!F i i

F

N a a
N

�                  (14)                    

characterized by the total number of fermions NF. 
 
2.3. Mixed Bose-Fermi systems 
Mixtures of bosonic and fermionic systems can be treated in terms of bilinear products 

                                              

†

†

† †

†

ik i k

i i

i i

G b b

G a a
F b a
F a b

�� � �

� �

� �

�

�

�

�

                  
, 1,...,

, 1,...,
n

i j m
� � �

�
                                          (15) 

often placed in matrix form 

                                                                      
† †

† †
i

i i j

b b b a
a b a a
� � �

�

� �
�  �  
! "

  .                                                  (16) 

The bilinear products above generate the graded Lie algebra (also called superalgebra) U(n/m). (For a 
classification of superalgebras see [9-10]. The superalgebra su(n/m) is A(n-1,m-1) in Kac’s 
classification). In a single index notation, the commutation relations of the graded algebra are 
                           ,X X c X�

� � �� �
�

� � �� � 
  ; � �, j
i i j

j
X Y c Y� �� 
  ; � �,i k ikY Y f X�

�
�

� 
                  (17) 

where X are bosonic operators and Y are fermionic operators, together with the Jacobi identities. The 
basis upon which the elements act is the totally supersymmetric representation, with supertableux 
                                                             
 [ ,0,...,0}B FN N N N� � �   (18) 
                                        
where N is the total number of particles bosons+fermions.  A symbol (square-curly bracket) different 
from Eq.(11) has been used in Eq.(18) to indicate that these representations are totally symmetric 
under the interchange of bosons and totally anti-symmetric under the interchange of fermions [11]. 
 

3.  Geometry of algebraic models 
Geometry can be associated to algebraic models with algebra g by constructing appropriate coset 
spaces, obtained by splitting g (Cartan decomposition) into 
                                                                 g h p� �                                                                       (19) 
where h, a subalgebra of g, is called the stability algebra and p the remainder (not closed with respect 
to commutation). For models with u(n) structure, the appropriate coset space (g/h) is  
                                                          ( ) / ( 1) (1)u n u n u� �        .                                                    (20) 
This space is a globally symmetric Riemannian space [2, chapter 5] with dimension 2(n-1). For 
bosonic models, the algebra h can be constructed by selecting one boson, b1, and choosing 

                                                    
† †
1 1

† †
1 1

,

,

h b b b b

p b b b b
� �

� �

�

�
         

, 2,...,
2,...,

n
n

� �
�

�
�

                     .                         (21) 

Associated with the Cartan decomposition, there are geometric variables �i defined by 
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    ,    ip p�        .                                   (22) 

For bosonic systems 

                                      % & % &† * † †
1 1 1

1; exp 0
!

N
N b b b b b

N� � � � �# # #� �� �� �   .                                 (23) 

For systems with fixed value of N it is convenient to introduce projective coherent states in terms of 
projective variables [12] 

                                                  † †
1

1; 0
!

N
N b b

N� � �' '� �� �� �             .                                      (24) 

For algebraic models written in terms of boson operators 1b s� and ( 2,..., )mb m n� , it is convenient 
to rewrite the coherent state as  

                                                   † †1; 0
!

N

m m
m

N s b
N

� �� �� ��  
! "


                                               (25) 

with normalization 

                                                      2; ; 1
N

m
m

N N� � �� �� ��  
! "


 .                                                 (26) 

The semiclassical energy functional associated with the quantum algebraic Hamiltonian is 

                                                        
; ;

( ; )
; ;

N H N
E N

N N
� �

�
� �

� .                                                     (27) 

This energy functional depends on the complex coordinates �m which can be split into real 
coordinates, qm and momenta, pm. (For details, see [13]). 
   Geometry can also be associated to algebraic Bose-Fermi models with graded Lie algebra g* [14]. 
However, the construction involves Grassmann variables and will not be discussed here. 
 

4.  Algebraic models in physics 
In the last 50+ years, many algebraic models of many-body systems have been constructed, for 
bosonic, fermionic and mixed Bose-Fermi systems. Here, only a selected class of algebraic models of 
bosonic systems and their associated Bose-Fermi systems will be discussed. 
 
4.1. Bosonic models: The Interacting Boson Model 
A list of algebraic bosonic models with SGA u(n), called s-b models, and their associated dynamic 
symmetries extensively investigated is: u(2) [15,16]; u(3) [16]; u(4) [16]; u(6) [17]. These provide a 
description of many-body problems with f=n-1 degrees of freedom [13]. A convenient realization of 
these models is with a scalar boson, called s, and another boson, bm, with 2 1f � ��  components. The 

integer or half-integer number  1 30, ,1, ,2,...
2 2

��  is called quasi-spin. The use of both integer and 

half-integer values allows one to treat problems in both odd and even dimensions. 
One of the best examples of algebraic bosonic models is the Interacting Boson Model (IBM) [17]. 
This model describes even-even nuclei as a collection of correlated pairs of nucleons with angular 
momentum J=0 and J=2. The pairs are then treated as bosons, called s (J=0) and d (J=2). Introducing 
boson creation and annihilation operators 

                                                            
† †, ( 0, 1, 2)

, ( 0, 1, 2)

s d
s d

(

(

(

(

� ) )

� ) )
                       ,                                    (28) 
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generically denoted by † , ( 1,...,6)b b� � � � , one can write the Hamiltonian, H, and the transition 
operators, T, as 
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                                    (29) 

The bilinear products of the six creation and six annihilation operators 
                                              †g G b b�� � ���            , 1,...,6� � �                                                     (30) 
span the Lie algebra u(6) which is then the SGA of the IBM. The basis B upon which the elements act 
is the totally symmetric representation 

                                           [ ,0,...,0]N N�           † †
'

1 ... 0
!

N b b
N � ��       .                          (31)                               

For rotationally invariant problems, like the one described here, it is convenient to introduce the Racah 
form of the algebra [18]. To this end, one constructs operators that transform as irreducible 
representations of the rotation algebra, (3)so , called spherical tensor boson operators 

†
, ,, ( 0,2; 0, 1, 2)m mb b m� � ) )� � �  with commutation relations 

                                   †
, ', ' ' ',m m mmb b 	 	� � �� �� � ��    † †

, ', ' , ', ', , 0m m m mb b b b� �� �� �� � � �� � � �                                      (32) 

It should be noted that if †
,mb�  transforms as a spherical tensor, ,mb�  does not. An operator that 

transforms as a spherical tensor is % &, ,
m

m mb b�
�� � �

� �
� . The Lie algebra g in Racah form is obtained by 

taking tensor products 
                                              

( )( ) †
'( , ')

kkG b b* *
� �� +� �� �

�� �      ( , ' 0,2)�� �  .                                            (33) 

Tensor products of two operators with respect to (3)so   are defined as 

                                           1 2 1 2

1 2

1 2

( )( ) ( ) ( ) ( )
1 1 2 2

,

kk k k kT U k k k T U* **
* *

* * *� �+ �� � 
            .                           (34) 

4.1.1.  Dynamic symmetries of the Interacting Boson Model 
The algebra u(6) can be broken, with the constraint that the angular momentum algebra so(3) be 
contained in it, into three subalgebra chains: 

                                        
( ) : (6) (5) (5) (3) (2)
( ) : (6) (3) (3) (2)
( ) : (6) (6) (5) (3) (2)

I u u so so so
II u su so so
III u so so so so

� � � �
� � �
� � � �

            .                            (35) 

For each of these three cases, DS, it is possible to construct an energy formula, which gives the 
energies in terms of quantum numbers labeling the representations of ' " ...g g g� � �   
   Dynamic symmetry (I): u(5).  
The Hamiltonian, H, and energy formula, E, are 

                      
( )

0 1 2 2 2
( )

0

( (5)) ( (5)) ( (5)) ( (3))

( , , , , , ) ( 4) ( 3) ( 1)

I

I
d L d d d

H E C u C u C so C so
E N n v n L M E n n n v v L L


 � � �


 � � �,

� � � � �

� � � � � � � �
         ,     (36) 

where , , , ,d LN n v L M denote the representations of (6), (5), (5), (3), (2)u u so so so  respectively, while 
�,  is an additional quantum number (missing label) that takes into account the fact that the breaking 

(5) (5) (3)u so so� �  is non-canonical [2, chapter 6]. An example is given in figure 3, where the 
energy formula (36) is compared with experiment. 
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Figure 3. The spectrum of the nucleus 110Cd is shown as an example of u(5) symmetry. 

 
   Dynamic symmetry (II): su(3) 
The Hamiltonian and energy formula for this case are 

                      
% &

( )
0 2 2

( ) 2 2
0

( (3)) ' ( (3))

( , , , , , ) 3 3 ' ( 1)

II

II
L

H E C su C so

E N K L M E L L

* *

- ( * - ( -( - ( *

� � �

� � � � � � � �
, (37) 

where , , , , , LN K L M- (  label the states of Chain II. Again here K is a missing label. 
An example is given in figure 4, where the energy formula (37) is compared with experiment. 

 
Figure 4. The spectrum of the nucleus 156Gd is shown as an example of su(3) symmetry. 

 
Dynamic symmetry (III): so(6) 
The Hamiltonian and energy levels for this symmetry are 

                         
( )

0 2 2 2
( )

0

( (6)) ( (5)) ( (3))

( , , , , , ) ( 4) ( 3) ( 1)

III

III
L

H E AC so BC so CC so
E N L M E A B CL L. / � . . / /,

� � � �

� � � � � � �
      ,                (38) 

where , , , , , LN L M. / �, label the states of Chain III with �,  the missing label. 
An example is given in figure 5, where the energy formula (38) is compared with experiment. 



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012048

IOP Publishing

doi:10.1088/1742-6596/1194/1/012048

8

 
 
 
 
 
 

 
Figure 5. The spectrum of the nucleus 196Pt is shown as an example of so(6) symmetry. 

4.1.2.  Numerical studies 
In many cases, spectra of nuclei cannot be described by a dynamic symmetry. For these cases, H must 
be diagonalized numerically. Lie algebras are useful here to construct the basis B in which the 
diagonalization is done. For the Interacting Boson Model, the basis used in the diagonalization is 
usually the basis of Chain (I) (6) (5) (5) (3) (2)u u so so so� � � � , with quantum numbers given in 
Eq.(36). Note that for ( ), 5u n n � the construction of the basis containing the angular momentum 
algebra so(3) is not simple, since hidden quantum numbers (missing labels) appear [17]. 
An Hamiltonian often used in numerical studies is  

                                                 
% &

% &
% & % &

0

†

(2) (2)† † †

ˆ ˆˆ

ˆ

ˆ

d

d

H E n Q Q

n d d

Q d s s d d d

0 0

0


 *

0

� � �

�

� + � + � +

�

��

� ��

           .                           (39) 

This Hamiltonian provides a good description of nuclei in terms of three parameters, , ,
 * 0 . Using 
this Hamiltonian it has been possible to provide a classification of all nuclei in terms of symmetry 
groups, a portion of which is shown in figure 6. 

 
Figure 6. Symmetry classification of nuclei with Z=50-82 and N=82-126. 
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In this figure a color code has been used to denote each of the three symmetries, as indicated in the 
symmetry triangle in the bottom right. 

4.2. Bose-Fermi models: The Interacting Boson-Fermion Model 
For each of the bosonic models of Sect. 4.1, one can construct a corresponding Bose-Fermi model by 
adding fermions to the bosons. One of the best examples of Bose-Fermi models is the Interacting 
Boson-Fermion Model (IBFM) [19]. In odd-even nuclei at least one particle is unpaired, and at higher 
excitation energies, pairs may break. A more accurate description of nuclei is then in terms of 
correlated pairs with J=0 and J=2, treated as bosons, s and d, plus unpaired fermions with angular 
momentum j. The Hamiltonian is now 

                                                      B F BFH H H V� � �                                                             (40) 
with 

                                           

† † †
0 ' ' ' '

' '

† † †
0 ' ' ' '

' '
† †

'

B

F ik i k ii kk i i k k
ik ii kk

BF ik i k
ik

H E b b v b b b b

H E a a u a a a a

V w b b a a

�� � � �� �� � � � �
�� �� ��

�� � �
��




#

� � �

� � �

�


 



 





           .                        (41) 

4.2.1. Dynamic supersymmetries of the Interacting Boson-Fermion Model 
Dynamic supersymmetries of Bose-Fermi models require more stringent conditions than dynamic 
symmetries of models of bosons or of fermions. Two of these conditions are:  

(i) To each boson � there exists a fermion j related to it by a supersymmetry transformation.  
(ii) In the Hamiltonian, H, of Eq.(40), all couplings must be related by a supersymmetry 

transformation. If gB , gF  and gBF are the coupling constants in the first, second and third 
term in the r.h.s. of Eq.(40), then 2 2B F BFg g g� � . 

In the case of the IBFM, for each dynamic symmetry of the bosons, U(5), SU(3) and SO(6), several 
classes of supersymmetries are possible, described by the graded Lie algebra (6 / )u 1  and its 
subalgebras, where � is the dimension of the fermionic space,  
                                                              (2 1)i

i
j1 � �
       .                                                         (42) 

Here ji are the values of the angular momenta of the fermions. A class of supersymmetry extensively 
studied is that in which, in addition to bosons with J=0,2, one has fermions with j=3/2. The 
supersymmetry is then described by the chain 
                        (6 / 4) (6) (4) (6) (5) (3) (2)u so su spin spin spin spin� � � � � �               .         (43) 
A consequence of supersymmetry is that if bosonic states are known one can predict fermionic states 
and vice versa. Both are given by the same formula, which for the case mentioned above is 

                    
% & % &

� �
1 2 3 1 2 0

2
1 1 2 2 3 1 1 2 2

( , , , , , , , , )

( 4) ( 2) ( 3) ( 1) ( 1)

E N J M E

A B CJ J

. . . / / �

. . . . . / / / /
, �

� �� � � � � � � � � � �� �
      .          (44) 

Here N=NB+NF is the total number of bosons plus fermions, and states are identified by the quantum 
numbers of the representations of the algebras appearing in the chain (43). As a result, if one knows 
the spectra of even-even nuclei (bosonic), one can predict those of odd-even nuclei (fermionic). In the 
1980’s, several case of spectra of nuclei with supersymmetric properties were found [20,21]. An 
example is shown in figure 7. 



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012048

IOP Publishing

doi:10.1088/1742-6596/1194/1/012048

10

 
 
 
 
 
 

 
Figure 7. An example of u(6/4) supersymmetry in nuclei: the pair of nuclei 190Os-191Ir. 

 
Recently, supersymmetry in nuclei has been confirmed by a series of new experiments. These 
experiments deal with an even more complex situation than that described above, wherein a distinction 
is made between protons and neutrons with the introduction of proton and neutron pairs with J=0,2 
treated as bosons, and denoted by , ; ,s d s d2 2 � � . The corresponding model is known as Interacting 
Boson Model-2 (IBM-2) and has an algebraic structure (6) (6)u u2 �� . Consequently, when fermions 
are added one has a model with two types of bosons (protons and neutrons) and two types of fermions 
(protons and neutrons), called Interacting Boson Fermion Model-2 (IBFM-2), with algebraic structure 

(6 / ) (6 / )u u2 2 � �1 � 1 . If supersymmetry occurs for this very complex structure, one expects to 
have supersymmetric partners composed of a quartet of nuclei, even-even, even-odd, odd-even and 
odd-odd. In a major effort that has involved several laboratories worldwide, it has been possible to 
measure spectra of odd-odd nuclei and thus test the occurrence of super symmetry in nuclei [22]. An 
example is shown in figure 8. 
   Dynamic supersymmetry in nuclei is the only experimentally verified case of supersymmetry in 
Physics (as of 2018). The supersymmetric constituents are nucleons (fermions) and nucleon pairs 
(bosons). Bosons are thus composite objects. A major part of the program at CERN-LHC will be 
devoted in the next few years to a search for supersymmetry in particle physics. The expected 
constituents are fundamental particles, quarks (fermions) and squarks (bosons), or gluons (bosons) and 
gluinos (fermions). Several authors, in particular Y. Nambu, have suggested that the only 
supersymmetries that can occur in Nature are of the “composite” type. Indeed, Nambu [23] has 
constructed an effective supersymmetry in Type-II superconductors, where supersymmetric partners 
are electrons and Cooper pairs. Also, Catto and Gürsey [24] and others have applied the same idea to 
hadronic spectroscopy where the supersymmetric partners are diquarks (D) and quarks (q). This 
scheme is an enlargement of Gürsey-Radicati SU(6) [25]. Since the diquarks transform as the 
representation 21 and the quarks as the representation 6 of SU(6), the appropriate superalgebra here is 
u(6/21). This scheme is thus similar to the u(6/�) scheme of nuclear physics described above, except 
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that the role of u(6) is interchanged, since in nuclear physics u(6) refers to the Bose sector and u(�) to 
the Fermi sector, while in Catto-Gürsey supersymmetry u(6) refers to the quarks (Fermi part) and 
u(21) to the diquark (Bose part). Gürsey’s scheme implies the occurrence of diquark-antidiquark 
states, for which there was little evidence at the time when u(6/21) was introduced [24], but for which 
now substantial evidence has been accumulated. It remains to be seen whether or not Nambu’s 
suggestion is substantiated by future experiments. 

 
Figure 8. An example of supersymmetry in odd-odd nuclei: the spectrum of 196Au, supersymmetric 

partner of 194Pt, 195Pt, 195Au [22]. 
 

5.  Quantum Phase Transitions in algebraic models 
Quantum phase transitions (QPT) are phase transitions that occur as a function of a coupling constant, 
�, that appears in the quantum Hamiltonian, H, that describes the system 
                                                   % & 1 21H H H
 3 3� � �� �� �    , 0 134 4        .                              (45) 

As � changes from 0 to 1, the eigenstates of H change from those of H1 to those of H2. Associated with 
phase transitions there are order parameters, the expectation values of some suitable chosen operators 
that describe the state of the system, O . Introduced in the 1970’s [26], they have become in recent 
years of great importance in a variety of systems. QPT are also called ground state phase transitions 
and/or zero temperature phase transitions. 
QPT can be conveniently studied within the framework of algebraic models. For these models, one 
can do both the semi-classical and the quantal analysis. Also, in many-body systems, finite size scaling 
(1/N expansion) can be easily investigated. The latter point is particularly important in applications to 
finite systems: nuclei, molecules, finite polymers, photonic crystals, optical lattices, etc. In this article, 
particular emphasis will be given to the semi-classical analysis of algebraic models. 
 
5.1. Semi-classsical analysis of QPT in algebraic models 
An algorithm to study QPT in algebraic models was developed by Gilmore [26].  

(i) Consider and Hamiltonian H which is a mixture of Casimir invariants of two (or more) 
algebras as in Eq.(45), 
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                                        % & 1 21 ( ) ( )H C g C g
 3 3� � �� �� �     .                                                       (46) 

(ii) Construct the energy per particle, ( ; ) /E N N� , where the energy functional E is given in 
Eq.(27). 

(iii) Minimize E as a function of the variables �, thus determining Emin. 
(iv) Study the behavior of Emin and its derivatives as a function of the coupling constants � 

(control parameters) which appear in front of the Casimir operators. The phase transition 
is said to be of zeroth order if E is discontinuous at the critical point, of first order if 

min /E 35 5  is discontinuous, of second order if 2 2
min /E 35 5  is discontinuous, etc. 

(Erhenfest classification). 
 
5.1.1. QPT in the Interacting Boson Model 
A convenient Hamiltonian to study QPT in the Interacting Boson Model is given in Eq.(39), rewritten 
as 

                                            % & ˆ ˆˆ1 dH n Q Q
N

0 03
 3� �� � � 6� �� �
       .                                              (47) 

In this Hamiltonian there are two control parameters � and �. The number of classical variables �m 
associated with u(6) is five (see Sect.3). However, by exploiting the rotational invariance of the 
problem, it is possible to reduce the number of variables to two, called intrinsic or Bohr variables [17, 
Ch.3] �,� and to write the coherent state as 

                           % &† † † †
0 2 2

1 1; , cos sin 0
! 2

N

N s d d d
N

� � � � � � �

� �� �� � � ��  � �� �! "
           .          (48) 

The energy surface for the Hamiltonian H of Eq.(46) is 

            % &
% & % &

2
2

2 2 2

2 3 2 4
2 2

51 1
1 4 4 (1 )

( ; , ; , )
( 1) 7 24 4 cos3

4 (1 ) 2 7

N N
E N N

N
N

� 3 33 0
� �

� � 3 0 

3 � 0� � 0 �

�

7 8� �� � � �9 9� �� �� �9 9� : ;� ��9 9� � �� �9 9� � �< =

       .       (49) 

Using the algorithm described above, one can construct the phase diagram of the interacting boson 
model given in figure 9 [27]. The three phases (dynamic symmetries) are at the vertices of the triangle. 
There is a line of 1st order transitions ending in a point of 2nd order transition. 

 
Figure 9. Phase diagram of the Interacting Boson Model [27]. 
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Experimental evidence for these phase transitions has been found [17]. 
 

6.  Summary of algebraic models in physics 
Since its introduction in the 1970’s, algebraic modelling of many-body systems has seen many 
applications, encompassing many aspects of physics and chemistry. Here are summarized some of 
these applications and their associated algebras. 
6.1. Nuclear Physics 
The Interacting Boson Model, IBM-1 [17] with algebra (6)u . 
The Proton-Neutron Interacting Boson Model, IBM-2 [17] with algebra (6) (6)u u2 �� . 
The Interacting Boson-Fermion Model, IBFM-1 [19] with superalgebra (6 / )u 1 . 
The Proton-Neutron Interacting Boson-Fermion Model, IBFM-2 [19] with superalgebra 

(6 / ) (6 / )u u2 2 � �1 � 1 . 
These models have been briefly described in Sect. 4. 
6.2. Molecular Physics 
The Vibron Model, VM [16] with algebra (4)u . 
The Electron-Vibron Model, EVM [28] with superalgebra (4 / )u 1 . 
6.3. Hadronic Physics 
The Algebraic Model of Mesons [29] with algebra (4)u  
The Algebraic Model of Baryons [30,31] with algebra (7)u   
6.4. Polymer Physics 
The Algebraic Model of Anharmonic Polymer chains [32, 33], with algebra (2)i

i

u�
   

6.5. Cluster Physics 
The Algebraic Cluster Model (ACM): Two-body problems [34] with algebra (4)u  
The Algebraic Cluster Model (ACM): Three-body problems [35] with algebra (7)u  
The Algebraic Cluster Model (ACM): Four-body problems [36] with algebra (10)u  
For applications to cluster physics one needs also to include the discrete symmetry of the cluster. 
Symmetries that have been considered are: two-body Z2 , three-body D3h and four-body Td . 
 
6.6. Crystal Physics 
The Algebraic Lattice Model: one-dimensional systems [37] with algebra (2)i i

i

u�
  

The Algebraic Lattice Model: two-dimensional systems [37] with algebra ' '
'

(2)ii ii
ii

u�
 . 

Also here one needs to include the discrete symmetry of the lattice. Symmetries that have been 
considered are: D4h (square lattice), D6h (hexagonal lattice). 

7.  Conclusions 
Symmetry in its various forms (space-time, gauge, dynamic, …) has become a guiding principle in the 
description of Physics and Chemistry. Algebraic modelling is an ideal tool for discovering symmetries 
in complex many-body systems. Through the symmetries and supersymmetries of algebraic models it 
has been possible to uncover order and regularities in the spectra of complex quantum systems, 
molecules, atoms, nuclei and hadrons. This discovery is part of the simplicity in complexity program. 
As Herman Weyl wrote: Nature loves symmetry! In the 21st Century, as the complexity of the 
phenomena that we are studying increases, dynamic symmetry and supersymmetry, and their 
underlying algebraic models, may play an equally important role. In fact, one of the lessons we have 



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012048

IOP Publishing

doi:10.1088/1742-6596/1194/1/012048

14

 
 
 
 
 
 

learned is that the more complex is the structure, as in figure 10, the more useful is the concept of 
symmetry. 

 
Figure 10. Tessellation of the hyperbolic Poincare’ plane. (From M.C. Escher, Circle Limit III, 1959). 
 
I am therefore looking forward to many more years of Group Theory Colloquia. 
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