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Abstract
Careful considerations concerning the interpretation of quantummechanics serves not
only for a better philosophical understanding of the physical world, but can also be
instrumental for model building. After a resume of the author’s general views and
their mathematical support, it is shown what new insights can be gained, in princi-
ple, concerning features such as the Standard Model of the elementary particles and
the search for new approaches to bring he gravitational force in line with quantum
mechanics. Questions to be asked include the cure for the formal non-convergence of
renormalised perturbation expansions, the necessary discreteness of physical variables
at the Planck scale, and the need to reconcile these with diffeomorphism invariance in
General Relativity. Finally, a program is proposed to attempt to derive the propagation
laws for cellular automaton models of the universe.

Keywords Cellular automaton · Fast fluctuating variables · Standard model ·
Copenhagen interpretation · Determinism · Perturbation expansion
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1 Introduction

Most of the modern theories for the elementary particles and the different forces by
which they interact, assume the validity of quantummechanics as it is usually defined.
The Copenhagen Interpretation states precisely how the rules for quantum dynamics
can be derived from classical dynamical laws, and subsequently how the resulting
Schrödinger equation can be derived and solved. The resulting wave function dictates
how probability distributions evolve in time. This interpretation is unique, and this
skeleton of structures can now serve as a basis for new theories to be formulated.
The mathematical basis of the skeleton is taken to be sufficiently solid to serve for this
new task; it is assumed that no further modifications are needed.

The present author fully agrees with the idea that quantum mechanics as an under-
lying frame is perfectly acceptable. Hilbert space is a vector space, for which one can
choose an orthonormal set of basis elements, to be referred to as the primary states
a system can be in, and the state of a physical system is identified with a normalised
vector in this space. The Schrödinger equation then dictates how a state vector is
evolving. Born’s rule dictates that the probabilities can be identified with the absolute
squares of the components of the state vector as it evolves.

There are three questions however, which are not answered in a completely sat-
isfactory way by the Copenhagen scheme. The first is a pragmatic question. In
practice, Hilbert space is very large, particularly when special or general relativity
are included, and one consequence of this is that the interactions assumed by the pos-
tulated Schrödinger equation more often than not lead to divergent expressions, which
have to be renormalised before they can be used at all to describe the world we see.
One can perform these renormalisations order by order in a perturbation expansion,
to find that often this expansion converges rapidly to the desired answer, such as the
anomalous magnetic moment of charged, spinning particles. But in some cases the
convergence is not good, so that one can ask a fundamental question: can we even
define what the exact expressions aught to be, even if we do not have the ability
to calculate them in practice, or, does the perturbation series lead to a meaningful
result at all? Mathematicians have strong reasons to expect that the entire perturbation
expansion diverges, in practically all of these theories.

T. Padmanabhan had his own theory on how a convergent theory for gravity could
be arrived at, in principle [1]. He considers a hierarchy of ‘shells’ where the coarse-
grained cells are regarded as consequences of partly integrating underlying shells. This
should be repeated ad infinitum, but would this converge? [2–5] Are pictures such as
these physically acceptable? We proceed by asking our second question:

When electrons are described as they orbit an atomic nucleus, we know explicitly
what the correct Schrödinger equation is, as we believe that the classical theory is valid
in the classical limit, and thus, Copenhagen gives us a unique Schrödinger equation.
But the other elementary particles, and at higher orders the electrons as well, also
react on forces different from the electro-magnetic ones. We can register these forces
by doing experiments, and the outcome of these observations is that we have a fairly
complex structure of Abelian and non Abelian gauge forces, each with their own
interaction strengths, in combination with a couple of other direct interaction effects.
Taken all together, we have more than 20 freely adjustable ‘constants of nature’. They
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can be measured with some reasonable accuracy, but should there not be a theory
that precisely explains those numbers, making them calculable before we measure
anything? The Copenhagen doctrine cannot provide answers to such questions.

A third question, finally, is extremely fundamental. Even in the early days of quan-
tum mechanics, the question was asked what ‘really happens’ when we observe some
quantum phenomenon. Heated debates at the time could not lead to complete agree-
ment here, but the Copenhagen school then decided to ‘agree that we disagree’, since
the answer of the question is irrelevant. All we see is the outcome of measurements,
and we know what our theories say about them. ‘let us just agree on that’. Do not ask
questions that cannot be answered by doing measurements.

It is this last dictum of Copenhagen that this author decided not to follow. It is true
that the answer cannot come frommeasurements, but the question that can be answered
is: what could it have been that happened in an experiment giving the observed results?
Could it have been that the particles that we experimented upon, were behaving as
totally classical objects? Maybe uncertainties in the initial state gave rise to uncertain-
ties in the finally observed state, while nevertheless the outcome of the measurements
are in agreement of the known quantum theory [6, 7].

We believe that the descriptions given within the Copenhagen doctrine have shown
to be totally reliable, and this implies that we do not need to do new measurements;
one can now merely ask the question; “Assume that quantum mechanics predicts the
statistical abundances and correlations correctly, which behavioural law could have
been followed to give these answers?” The question is meaningful [8], and here we
shall argue that it is important also, since the answer(s) may be extremely helpful in
trying to answer the other two questions.

The most logical starting point would be: start with assuming some basic evolution
law that does not requireHilbert space procedures, butmerely deterministic laws based
on cause and effect. We call such evolution laws ‘classical’ for short, even if this is
not entirely classical in the standard sense. Classical evolution equations are usually
differential equations, whereas we would allow for discretised jumps as well.

2 Models

Our starting point is first to consider the completely general case of a ‘classical’ model
in the sense described above [9]. For the time being we start with a system that can be
in a finite number of physical states. At integer time steps, t = n δt , n being integer,
states evolve into different states. Inevitably then, after some large number N of steps,
the system returns to its initial state. If N equals the total number of states allowed, this
ends the description ofwhat happens.Our system is periodic.Alternatively, there could
be some states left; these must belong to different periodic sequences. All together,
this world is described by a finite number, k, of state sequences, each consisting of Ni

members, i = 1, . . . , k. The total number of states is N = ∑
i Ni .

We now introduce Hilbert space just for our convenience, declaring every physical
state to be an element of an orthonormal basis for this Hilbert space. The classical
evolution law can be written as a unitary matrix Uδt mapping every state onto its
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Fig. 1 The energy spectrum of a deterministic theory. (a) The case of a single cycle of 11 states. The total
energy range E max equals 2π/δt , where δt is the smallest time step. The separation δE equals 2π/P
where P is the period. (b) There could be many cycles, depending on the initial state. Cycles with periods
Ni = 4, 13, 9 and 7 are shown. Since they share the same time steps δt , their energies have the same
range, but the separations δEi are different. Then, we can freely add relative shifts E 0

i for the different

sequences, since E 0
i are absolutely conserved in time. (c) When merged, we see that the energy levels can

become quite complex, but the equality of some separations can still be recognised

successor. After time �t = n δt , Each periodic sequence has the property

U�t = Uδt
n , UNi δt = 1 , (2.1)

so a simple derivation yields that the eigenvalues of U (t) are

e−i En j t , with En j = n j δE j + E0
j , where

δEi = 2π/Niδt , ni = 0, . . . , Ni − 1 . (2.2)

Here, E 0
i is a real number depending on the sequence i . It is arbitrary because the

rank i of the sequence we are in is conserved by the evolution law. See a sketch of the
energy spectra in Fig. 1.

It is easy to verify that the energy spectrum entirely specifies our evolution operator,
as it does not depend on the basis chosen. Thus we can observe that the problem of
interpreting quantummechanical phenomena boils down to learning to understand the
energy spectrum.

We succeed in writing almost any classical system as if it were a quantum system,
in its quantum notation, and it is not hard to use the norm of the eigenstates to describe
probabilities, so that Born’s probability ansatz can be employed without any loss of
generality. This proves that, ifwe encounter a quantum systemwith an energy spectrum
of the form (2.2), then it may be interpreted as the classical system as described here.
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Now the converse is in general not true. If we consider just any quantum system, its
energy spectrum may not be of the form (2.2). On the other hand, the spectrum (2.2)
is sufficiently general to be employed to approximate given quantum systems in the
large size limit, where the spectrum becomes continuous, which is why we do not stop
here – we search for quantum systems that mimic some classical spectrum accurately
enough to serve as useful models.

Then, the next thing toworry about is locality. The prototype of amodelwith locality
is the cellular automaton [10]. In a cellular automaton (CA), the physical variables
are updated in integer time steps t = n δt . The cells are separated by a lattice mesh
parameter a. At first sight, one might worry that this is not a strict form of locality,
but actually it is the closest substitute of locality for a lattice. This is because it takes
time δt for a signal to be passed on to its neighbour in the lattice, which means that
signals cannot move faster than c = a/δt , and, to define locality, we cannot ask for
more than that.1

Can we construct realistic models that approach the desired quantum energy spec-
tra while respecting locality? It was thought for a long time that this has been proven
impossible. Some very ‘plausible’ assumptions had been employed, but these assump-
tions were made without first exploring the world of classical models, as we did
above. For instance, it is often assumed that Alice and Bob can modify the settings of
their detector devices without affecting the ‘statistical independence’ of all physical
variables in the intermediate regions of space and time. Our above starting points,
consisting of complete lists of periodic sequences of states, never needed the assump-
tion of statistical independence; in fact, we are not doing statistics but instead, we
consider single pure, classical states. The Gedanken experiments proposed by Bell
and others could not be analysed at all without invoking statistical arguments (such
as the variables in a random number generator used to decide about the settings), and
this invalidates the conclusions made [11, 12].

In our earlier attempts it seemed to be hard to generate plausible models. As long
as the energy spectra aren’t right, the chance of succeeding is small. But by looking
at the energy spectra, we found the right procedure. There are two keywords to pay
attention to: Fast variables and Perturbation expansion.

3 Fast variables and the perturbation expansion

As mentioned in Sect. 1, much of our knowledge of the fundamental particles is based
on the fact that most of the interaction parameters are small, so that they can be
incorporated in our models by establishing power expansions. This is usually done in
terms of the degrees of freedom we have, written in the quantum notation. One never
encounters fundamental restrictions on the energy spectrum that way. Now classical
CAmodels do not carry small, tuneable interaction constants, so, wemust invent a new
way to introduce them. This we do by introducing fast variables [13]. A fast variable
is here meant to be a variable that follows a periodic path with very small periods.

1 If the CA is on a lattice, one expects signals to move faster in particular lattice directions, as compared
to others. This is not seen to happen in the real world, as we have rotation invariance. This topic is to be
handled later.
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Typically, their periods P will obey

P · E max � � , (3.1)

where E max is an anergy limit for the quantum particles observed in any experiment. It
can also be interpreted as a limit in the time resolution of our observations in practice,
or a limit for the typical energy scale for the quantum transitions considered. If those
energies are small compared to the inverse of the periods of our fast particles, then we
may safely assume that those variables are in relatively low energy modes. Now, as
we saw in Sect. 2, the energy spectrum of fast, periodic variables takes the form (2.2),
that is,

En = 2πn/P . (3.2)

This means that only the lowest energy level, E0, plays a role. We may assume that
both the initial state and the final state are in this lowest energy mode for the fast
variable. This means that we have to use states that are not the realistic states for the
fast variables, but have them in a particular superposition.. We are tempted to make
a 1/(En − E0) expansion. In this expansion, the interaction Hamiltonian emerges as

〈E0|H int|E0〉 . (3.3)

The interaction Hamiltonian may bring about a permutation of the slow variables,
which depends on the values of the fast variables. All these numbers are of order 1
or 0. However, the state |E0〉 is normalised to be of unit norm, and this introduces
factors 1/

√
Nfast squared, where Nfast counts the number of states the fast variable

visits before completing its period.
Nfast may be large, which now enables us to employ a perturbation expansion.

Before, this was impossible because we were dealing with realistic states, where
small numbers do not exist. We could view this as an application of statistics, but here,
everything is completely calculable. We now see how quantummechanics can emerge
in a deterministic system. Some fast variables will always be too fast for us to detect,
so that we are forced to use averages, but this gives us the small numbers needed for
setting up perturbation expansions.

It may seem that the types of interaction chosen between the fast and the slow
variables is non-Newtonian: the fast variable dictates transitions among the slow ones,
but not vice versa, which keeps the fast variable in its lowest energy state. This is
actually not true in the quantum expressions, because even if the fast variable does not
react visibly on the states of the slow ones, the interaction Hamiltonian is hermitian.
As such it affects the statistical distributions of the fast variables, eventually causing
transitions into higher energy states. It is just the amplitudes that are very low.

The addition of the fast variables may clarify some issues that were expressed by
critics; they could not understand how a classical model such as a cellular automaton
can ever evolve through wave functions ψ while the observable physical features are
probability distributions. At extremely high energies, or extremely high accuracies, the
excited states of the fast variables will produce linear sequences of energy eigenvalues,
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betraying their classical nature, but this does not invalidate the use of wave functions
and operators at low energies. The energy eigenstates are purelymathematical features
and they behave as wave functions muchmore than probability distributions, indeed at
all energy scales.At very high energies,we do expect sizeable deviations from standard
quantum field theories, even though quantum mechanics itself is not affected.

Curiously, critics find the underlying mathematics difficult to understand. Actually
the mathematics of all of the above is quite basic and should not present any problem.
Superpositions, collapsing wave functions, Born’s probability interpretation, are all
completely straightforwardly derived from the unitary transformationmatrices relating
different basis choices.2

The reason why other critics still do not accept some of these views, may be
something more serious, however: the cellular automata do not respect the essential
symmetry features of the quantised fields in the Standard Model. This emphatically
includes rotation symmetry and Lorentz invariance. The conservation of spin, in all
directions, is an essential ingredient in Bell’s theorem, more essential perhaps than
many people realise. If this is felt as an objection against my views, I accept this;
more study is needed to understand the origin of the rich symmetry structures of our
world, in spite of a cellular structure at ultra-tiny distance scales. We briefly discuss
the symmetries in the next section.

As stated in the introduction, Sect. 1, most perturbation expansions are formally
divergent, but if the first few terms converge sufficiently rapidly then our expres-
sions make sense and our results may be compared with observations. The important
improvement this entails for perturbative field theories is that, the theory itself may
be defined by a CA evolution law that is interpreted as being exact, and perturbation
expansions are only needed for comparison with experiment. Whenever the expan-
sion diverges too much, we replace it by performing simulations of the CA itself.
This may be hard in practice because the fast variable(s) may move to many different
positions, but, at least in principle, no unreliable approximations are needed to define
our theories.

As for locality, there is no reason for worry at all. In the past, locality was usually
thought to be a property of the quantum system, while the deterministic underly-
ing theory was subservient to that. Locality was regarded as a property of observed
phenomena rather than the theory itself. However, it eventually should amount to
ascertaining that no signals of any form should be allowed to go faster than light; this
feature is much easier to check by inspecting the classical equations for the dynamics.
We mentioned already that classical lattice theories naturally impose speed limits for
signals. Even the fast variables can easily be localised in space, so that they also cannot
transport signals faster than their speed limits.

2 Notably, the Born rule, linking probabilities to wave functions, seemed to be a big mystery for my critics.
If we turn to the basic real states of an automaton, the Born probabilities travel along the same paths as
the wave functions, so that the action of squaring one to get the other, remains rigorously valid during the
evolution. Born’s rule is not valid when applied among superpositions alone, but careful analysis reveals
that this is never needed for the physical interpretation.
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4 Standardmodel

Knowing how quantum theories can be linked to systems such as cellular automata,
we can now try to set up such a formalism for the quantised fields used in the Standard
Model (SM). For reasons to be spelled out in the next section, one expects the dynam-
ical variables for the Standard Model to live close to the Planck scale. This means
that direct observations will be unlikely. We really need to use accurate mathematical
arguments to proceed there, and it will be important to keep many options open.

As observed in the previous section, the most conspicuous feature of the Standard
Model is its rich symmetry structure. Maybe the three invariant local gauge groups,
U (1), SU (2), and SU (3), will be easiest to handle, since they are local and compact.
What we find is that the physically relevant states are the ones invariant under these
gauge transformations. This reminds us of the fast variables, where the most relevant
elementary states form the lowest energy eigenstate, which is also invariant under
rotations around the period. This leads to the suggestion that quantum gauge theories
can emerge from classical systems if the latter are thought to run very fast over special
orbits in the space of the gauge transformations, so that, just as for the other fast
variables, only the gauge-invariant state survives. Perhaps, U (1), SU (2) and SU (3)
are the essential spaces in which all fast variables move around. We suggest that this
must be a discrete space, which would imply that the real local gauge group is a
discrete subgroup ofU (1)⊗ SU (2)⊗ SU (3), as sometimes used in lattice gauge field
simulation models.

At least one symmetry group of the Standard Model is non-compact, besides being
continuous. This is the Lorentz group, or the Poincaré group. Such symmetries would
be themost difficult to understand if theywere to emerge in a cellular automaton. Itmay
be helpful to realise that limits in theLorentz boost parametersmay be expected as soon
as matter is present, if we may assume that there are limits for the amounts of energy
admissible within a given volume. Thus, eventually the inclusion of the gravitational
force might be unavoidable. How to implement such ideas we do not know, but this
may be a reason to suspect that, as long as we do not include gravitation, Lorentz
invariance will only be approximately obeyed.

An important step will be the realisation of the Dirac equation. There were earlier
attempts in lower dimensions and in the absence of mass, by Wetterich [6, 7]. In the
case of 3+1 dimensions, and/or with mass term, the energy spectrum shows that we
shall need fast variables, Sect. 3. This has not yet been done explicitly, as far as we
know. It will be of much interest to extend such a model into QCD, by including
couplings of the Dirac fields to the link variables of the local gauge group SU (3). It
all depends on how well continuum limits will be arrived at. This we cannot foresee. It
will be very worth-while to make some attempts, since we might arrive at a simulation
technique for QCD in which we can follow in Minkowskian time how events evolve.

Next, we need a dynamical degree of freedom that explains the existence of the
Higgs field. The most conspicuous feature there, is the very low value of the Higgs
mass as compared with the Planck mass. This has proven to be difficult to understand.
A possible connection with cosmology was suggested by Bezrukov et al. [14], and
Jegerlehner [15]. Here, we mention that, due to Goldstone’s theorem [16, 17], a low
mass scalar field must be related to a global symmetry. Since the field of the neutral
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Higgs particle is formedby the invariant length of theHiggs isospinfield, theGoldstone
symmetry here must involve global scale transformations of the Higgs isospinor. It is
almost but not quite an exact symmetry at the Planck scale, broken by about one part in
1034, being the square of the Higgs mass / Planck mass ratio. One suggestion could be
that, as everything in this theory, also the Higgs field takes integer values only. Perhaps
statistical laws force the vacuum values to be rather small integers, while there must
be a limit to the size of the Higgs isospinor. Choosing the size limit as a sufficiently
large integer, this limit might violate the Higgs-scale invariance by the given small
amount.

Spinor fields can be introduced in the automaton theory by accepting Boolean vari-
ables; these give rise to anticommuting field variables. A study of the role of fermions
in cellular automaton theories was made by Wetterich [6, 7]. An interesting question
is the origin of the rich Yukawa interactions displayed by the observed fermions; they
too are expansion parameters and must be tuned down by factors 1/N . We emphasise
these observations, hoping that one day such features will be calculable.

5 Gravity: nature’s Rubik cube

Unfortunately, some of the schemes suggested above may be highly premature. The
reason for this suspicion is that, at the Planck scale, for sure the gravitational force
will take over. To stay in line with our general considerations, it will be mandatory to
search for a classical model for gravity as well. We should ask for invariance under
local diffeomorphisms, or, if possible, some discrete substitute for that. Our problem is
that diffeomorphism invariance does not square well with discreteness. Yet we believe
that our proposal is more promising than some of the usual attempts to ‘quantise
gravity’. In lieu of that, we propose to first ‘discretise gravity’.

In fact we have a more direct indication that the allowed classical states may be
sparse at thePlanck scale; this is suggestedwhenweanalyseHawking radiation emitted
by a black hole. Since this radiation is thermal, one can derive the state density by
applying statistical mechanics. This gives us approximately one physical degree of
freedom on each surface element of Planckian dimensions on a black hole horizon. It
is tempting to believe that this also points to discreteness of states as seen by freely
falling observers in the same region of space-time. These states should include all
structures involved with the local curvature of space and time.

In a discrete space-time, the ultimate diffeomorphic transformation is the permuta-
tion of two space-time points. From there, one might hope to return to the continuum
limit. This sounds like being a very hard problem because of the paucity of clues
available, How do laws of physics change under a two-point permutation?

There may be better ways to pose such questions.Which space-time transformation
may be easier to handle? Here, we propose a transformation that came about from the
study of quantum black holes. Here, we found important space-time effects when
an ultra fast particle is added or removed from a system. Such a particle carries a
gravitational field in the formof a shockwave [18], or aCherenkovflashof gravitational
radiation. The creation or annihilation of an energetic particle causes space-time to rip
apart in two pieces, the part in front of, and the part behind the particle. The parts are
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glued together again after a shift, whose magnitude follows from Einstein’s equations.
This is a simple example of a diffeomorphism transformation generated by a particle.

If, however, two or more particles are created or annihilated, the combination of
two such fissures results in a more complicated diffeomorphism, as these two may not
commute. This situation should actually be familiar to what one needs to do to solve
the Rubik cube: a single move causes quite a few of the faces to interchange colours,
but by applying carefully chosen permutations of such actions, one may end up with a
single two-point permutation. Perhaps indeed we should try to formulate the effects of
a single permutation of two neighbouring space-time points similarly, but the author
has not yet succeeded in completing this space-time Rubik cube puzzle. The question
will be whether such procedures can be discretised.

Needless to emphasise that this last section contains just wild speculations onwhere
to go next. These were brought up merely to emphasise that questions can be phrased
in ways different from the usual ones, and that we need to consider such questions to
make more lasting progress.

Data availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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