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Abstract

One of the most interesting and at the same time complex problems of modern
physics is to determine how does the past and the future of our Universe look like.
Especially, we are interested in the first moments of its history as they are beyond
our experimental reach at present but they influence later stages of the evolution of
the Universe we are able to observe. Generally accepted cosmological scenario starts
with the Big Bang, we speculate that the Universe was homogeneous and isotropic
with very high temperature and pressure at the beginning, after which our Universe
starts to gradually cool down and expand ending up as the Universe we live in. We
assume that very early in the evolution of the Universe the process of exponential
expansion occurred which we call inflation. During this period density fluctuations
were amplified giving the origin to the seeds that would form all the large scale
structure in the Universe – stars, galaxies etc. After inflation we distinguish two
periods important for the presented research – preheating and reheating, during
which out of the inflaton – the field that drives inflation, elementary particles that
fill the Universe now were produced.

The thesis describes the processes of cosmological particle production in the
time-dependent theories and it focuses on three main subjects: gravitational re-
heating with an instant period of particle creation, multi-stages non-perturbative
production in both adiabatic approximation and interacting theory. All of them are
based on the fact that the vacuum state changes in time and that in the parameter
space there exist a region where particle production is energetically favourable and
efficient enough to be observed.

In the chapter concerning gravitational reheating particles are produced solely
due to the change in the evolution of the observed Universe in time, which is de-
scribed by the scale factor that depends on time. In our research we assume this
kind of particle production right after the end of inflation in a very general way.
From our analysis we can draw generic conclusions about available observables in-
volving the features of inflation, observed spectrum of gravitational waves and even
characteristics of dark matter or dark energy.

The main part of the thesis concentrates on the general description of the multi-
phase non-perturbative production of particles, especially in case of inflation. The
essence of my research in this matter lies in the fact that production of particles
can repeat itself until it is energetically possible and the previous stage can affect
the next one. We investigate the role of the masses of particles and values of cou-
plings in various scenarios motivated by the usual cosmological considerations with
and without supersymmetry. In addition, we focus on the role of light states in the
theory proving that in general even massless states not coupled to inflaton can be
efficiently produced due to effects of quantum physics and also that additional light
sector present in the theory can quench the production after inflation completely
due to backreaction.



Streszczenie

Jednym z najciekawszych i jednocześnie najbardziej złożonych problemów współ-
czesnej fizyki jest ustalenie, jak wygląda przeszłość i przyszłość Wszechświata. Szcze-
gólnie interesuje nas jego wczesna ewolucja, ponieważ znajduje się ona obecnie poza
naszym zasięgiem eksperymentalnym, ale wpływa na późniejszą historię Wszechświa-
ta, którą już możemy obserwować. Ogólnie przyjęty model kosmologiczny zaczyna
się od Wielkiego Wybuchu i zakłada, że Wszechświat na początku był jednorodny
i izotropowy z bardzo wysoką temperaturą i ciśnieniem, po czym zaczął stopniowo
się ochładzać i rozszerzać, kończąc jako Wszechświat, w którym żyjemy. Poza tym
zakłada się, że bardzo wcześnie w ewolucji Wszechświata nastąpił proces ekspo-
nencjalnego rozszerzania się, który nazywamy inflacją i w którym fluktuacje gęs-
tości zostały wzmocnione, dając początek wszystkim strukturom wielkoskalowym
- gwiazdom, galaktykom itp. Po zakończeniu inflacji miały miejsce dwa procesy
bardzo istotne dla przedstawionych badań – reheating i preheating, podczas których
z inflatonu, czyli pola napędzającego inflację, powstały cząstki elementarne obecnie
wypełniające Wszechświat.

Rozprawa opisuje procesy kosmologicznej produkcji cząstek w teoriach zależnych
od czasu i skupia się na trzech głównych tematach: grawitacyjny reheating z błyskaw-
icznym procesem tworzenia cząstek oraz wieloetapowa i nieperturbacyjna produkcja
zarówno w przybliżeniu adiabatycznym, jak i w teorii oddziałującej. Wszystkie
opierają się na fakcie, że stan próżni zmienia się w czasie i że w przestrzeni parametrów
istnieje obszar, w którym wytwarzanie cząstek jest energetycznie korzystne i wystar-
czająco wydajne, aby mogło nastąpić.

W rozdziale dotyczącym reheatingu grawitacyjnego cząstki są wytwarzane wy-
łącznie ze względu na zmianę ewolucji obserwowanego Wszechświata w czasie opisy-
waną przez zależący od czasu czynnik skali. W naszych badaniach rozważamy
w bardzo ogólny sposób tego rodzaju produkcję cząstek tuż po zakończeniu inflacji,
co pozwala wyciągnąć ogólne wnioski na temat dostępnych obserwabli dotyczących
inflacji, obserwowanego spektrum fal grawitacyjnych, a nawet własności ciemnej ma-
terii lub ciemnej energii.

Główna część pracy koncentruje się na ogólnym opisie wielofazowej nieperturba-
cyjnej produkcji cząstek, w szczególności w przypadku inflacji. Istota tych badań
polega na tym, że produkcja cząstek może się powtarzać, dopóki jest dozwolona
energetycznie, a poprzedni jej etap może wpłynąć na następny. Badamy rolę mas
cząstek i wartości sprzężeń w różnych scenariuszach motywowanych standardowymi
rozważaniami kosmologicznymi z uwzględnieniem i bez supersymetrii. Ponadto kon-
centrujemy się na roli stanów bezmasowych w teorii, dowodząc, że nawet bezmasowe
stany niesprzężone bezpośrednio z inflatonem mogą być produkowane ze względu
na poprawki kwantowe, a także, że dodatkowy bezmasowy sektor może zatrzymać
całkowicie produkcję po inflacji.
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Chapter 1

Introduction

Quantum field theory can describe creation of particles in presence of an external
perturbation. The perturbation can have various character with the key examples of
Schwinger effect coming from adding an external electric field to the quantum elec-
trodynamics (QED) [1, 2, 3, 4], Hawking radiation from the blackholes originating
in gravitational horizon effects [5, 6, 7] or the Unruh effect involving an accelerating
observer [8, 9].

Particles are created during the transition between the initial and final free
configurations in equilibrium that comes from the perturbing and usually time-
dependent background. Free configuration allows to define positive and negative
energy states unambiguously, respectively particles and antiparticles, which in turn
compared for the asymptotic vacua can be related with the final particle number of
produced states.

Description of the intermediate period entails a severely compound problem,
both analytical and numerical, with a proper definition of the time-dependent par-
ticle number involving the whole non-equilibrium dynamics and the backreaction.
Distinction between particles and antiparticles is not so clear then and one has to
make use of some assumptions about the considered system allowing to approxi-
mate the intermediate basis of states in an useful way, for instance one assumes slow
variation of the perturbation and then uses standard adiabatic expansion. There
are several equivalent approaches to describe the process of particle creation such as
diagonalization of the instantaneous Hamiltonian [10], the Unruh-de Witt method
[11] or the Bogoliubov transformation between two different basis states representing
vacua [12] to name a few and this dissertation is based on the last one. Particular
choice of the method should be insignificant as they should give the same results in
the end1.

Perhaps the most prominent realisation of the process of particle creation in
time-dependent background is post-inflationary particle production. It is a very
complex and multi-stage process that mixes perturbative and non-perturbative pro-
duction, which is schematically depicted in the Figure 1.1.

This dissertation describes cosmological particle production in time-dependent
1These three methods have been compared for the de Sitter space in [13].
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Figure 1.1: Post-inflationary particle production is a very complex process consisting
of several separate phases. Scheme copied from [14].

backgrounds and consists of seven chapters with the current introduction being the
first of them. Based on the classical literature [6, 15] in Chapter 2 we introduce all
the necessary information about the physical foundations of the presented analysis -
features of the curved spacetime (the issue of quantization, definition of the vacuum,
adiabaticity), Bogoliubov transformation and its application to some simple illus-
trative forms of the gravitational background or description of particle production
in a theory with time-dependent mass term. A brief thermal history of the Universe
and the cosmological description of the homogeneous Universe has been included
there. In Chapter 3 we analyse particle production in adiabatic approximation for
massless background for two supersymmetric models including quantum corrections
in detail, partially based on [16], while in Chapter 4 we use the same approximation
to address the production in massive backgrounds and compare it with the classical
post-inflationary production in a form of parametric resonance. Moreover, we pro-
vide the useful description of this classical approach based on [17]. In Chapter 5 we
introduce the interacting theory to capture the intermediate period of production
in a more precise way [18] and then in Chapter 6 we focus on gravitational realisa-
tion of reheating with an instant period of particle creation [19]. Finally, Chapter 7
summarizes the whole dissertation. The details of some chosen calculations, which
we find useful are presented in five appendices.



Chapter 2

Foundations

2.1 Quantization of the scalar field in curved space-
time

Investigating cosmological production of particles one often considers simple
scalar field in a flat or curved spacetime. The simplest action for a massive scalar
field for Minkowski metric is of the form

S = 1
2

∫
d4x

(
ηµν∂

µφ∂νφ−m2φ2
)
, (2.1.1)

which for more general homogeneous and isotropic FRW metric in flat spacetime,
ds2 = dt2 − a2(t)d~x2, changes to:

S = 1
2

∫
d4x
√
−g

(
gµν∂

µφ∂νφ−m2φ2
)
. (2.1.2)

Euler-Lagrange equation
∂µ
∂L
∂µφ
− ∂L
∂φ

= 0 (2.1.3)

for the action above reads:

gµνφµν + 1√
−g

∂

∂µ

(
gµν
√
−g
)
φν +m2φ = 0. (2.1.4)

For Minkowski metric it simplifies to:

∂µ∂
µφ+m2φ = 0, (2.1.5)

which is the usual harmonic oscillator equation of motion, while for FRW metric it
reads:

φ̈+ 3 ȧ
a
φ̇− ∇

2

a2 φ+m2φ = 0 (2.1.6)

for comoving coordinates (t, xµ) and:

φ′′ + 2a
′

a
φ′ −∆φ+m2a2(η)φ = 0 (2.1.7)

for conformal coordinates (η, xµ), where dη = dt

a
. Both of them are again harmonic

oscillator equations but with additional external force. In order to eliminate the
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first derivative terms in the above equations and simplify them χ field defined as
χ = aφ is introduced. Then

χ′′ −∆χ+
(
m2a2 − a′′

a

)
χ = 0, (2.1.8)

which is the harmonic oscillator equation again but with the time-dependent fre-
quency, which makes the whole analysis much more complicated than in the Min-
kowski case. In particular it is not always possible to find its explicit solution -
unambiguous set of modes. Due to the coupling between the scale factor a and
scalar field φ production of particles associated with φ is possible as there is energy
transferred between the gravitational background and the field.

Action for the new field reads:

S = 1
2

∫
d3xdη

(
χ′

2 − (∂χ)2 −m2
eff(η)χ2

)
, (2.1.9)

where m2
eff = m2a2 − a′′

a
. It is a matter of convention to choose the following mode

decomposition:

χ(~x, η) =
∫ d3k

(2π)3

(
ei
~k·~xv∗~k(η)a~k + e−i

~k·~xv~k(η)a†~k
)
, (2.1.10)

where ~k denotes momentum and v~k mode function, which results in the following
equation of motion for the modes

v′′~k + ω2
~k
(η)v~k = 0 (2.1.11)

with ω2
~k
(η) = |~k|2 +m2

eff(η).1 Solving it means finding some particular set of modes.
Vacuum state is then defined by the condition: ∀~k a~k|0〉 = 0 with the commutation
relations:

[a~k, a
†
~k′

] = δ(~k − ~k′) (2.1.15)
[a~k, a~k′ ] = 0 (2.1.16)

1Mode functions v~k are orthonormal, which means that:(
v~k, v~k′

)
= δ(~k − ~k′), (2.1.12)(

v~k, v
∗
~k′

)
= 0 (2.1.13)

with scalar product(
f1, f2

)
= i

∫
d3x|g|1/2

[
f∗1 (~x, t) · ∂0f2(~x, t)− ∂0f

∗
1 (~x, t) · f2(~x, t)

]
. (2.1.14)
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2.2 Notion of vacuum in curved spacetime
In Minkowski space vacuum is the unique energy-eigenstate of the Hamiltonian

corresponding to the lowest energy and it is the same for all inertial observers. In
curved spacetime situation is quite different - in a general situation no set of mode
functions is distinguished as the Hamiltonian is explicitly time-dependent and there
are no time-independent eigenvectors that can serve as vacuum. It is a matter of
choice how to define vacuum in such a setup.

In this thesis we shall use two types of vacuum in curved spacetime: instanta-
neous and adiabatic vacuum.

Hamiltonian in curved spacetime reads

H(η) = 1
2

∫
d3x

(
χ̇2 + (∇χ)2 +m2

effχ
2
)

(2.2.1)

and instantaneous vacuum at η0 is just the lowest energy-state of the instantaneous
Hamiltonian Ĥ(η0). We can compute the expectation value of the instantaneous
Hamiltonian

〈0v|Ĥ(η0)|0v〉 = 1
4δ

3(0)
∫
d3k

(
|v′k|2 + ω2

k(η)|vk|2
)

(2.2.2)

and minimize it with respect to some chosen set of modes vk(η). Equivalently we
may minimize the energy density

ε(η0) = 1
4

∫
d3k

(
|v′k(η0)|2 + ω2

k(η0)|vk(η0)|2
)
. (2.2.3)

Provided the normalization condition coming from the time-independence of the
Wronskian: Im(v′v∗) = 1, we find the initial conditions that determine the set of
modes defining instantaneous vacuumvk(η0) = 1√

ωk(η0)
eiγk(η0)

v′k(η0) = iωk(η0)vk(η0)
(2.2.4)

with arbitrary phase γk, assuming that ω2
k > 0.

The procedure of finding adiabatic vacuum is based on the WKB approximation
for the solution of equation of motion for the modes

v̈k(η) + ω2(η)vk(η) = 0 (2.2.5)

assuming slowly changing background. Ansatz for the vacuum is of the form

vk(η) = 1√
Wk(η)

e
i
η∫
η0

Wk(η)dη
(2.2.6)

and it determines the equation for Wk

W 2
k = ω2

k −
1
2

[
W ′′
k

Wk

− 3
2

(
W ′
k

Wk

)2]
. (2.2.7)
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For a slowly changing spacetime: W ′
k

2
/W 2

k , W ′′
k /Wk � ω2

k, the 0th order approxi-
mation states that

W
(0)
k (η) = ωk(η), (2.2.8)

while the higher orders can be estimated by iteration. WKB method does not work
for small values of the couplings, therefore it cannot include the particle production
coming entirely from the expansion of the spacetime [20] as in Chapter 6.

For 0th order we can link both kinds of vacuum by the relation

1
4E

adiabatic
k = 1

4E
instantaneous
k + ωk

16 ε
2, (2.2.9)

where ε = ω̇k
ω2
k

is the adiabaticity parameter.

Moreover, for asymptotically flat geometry

a(t) ∼

a1 for t→ −∞
a2 for t→ +∞

(2.2.10)

vacuum can be described in analogy to the Minkowski case with well defined "in"
and "out" asymptotic states.

2.2.1 Adiabaticity
As the name suggests concept of adiabaticity is connected with the adiabatic

vacuum. Taking the 0th order of the mode function

vk ∼
1
√
ωk
e±i

∫
ω(t′)dt′ (2.2.11)

we can see that the equation of motion (2.2.5) can be solved in two regimes:

• for slowly varying background, when ω̇k/ω2
k < 1: adiabatic region,

• for rapidly varying background, when ω̇k/ω2
k > 1: non-adiabatic region.

In the first case occupation number reads:

nk(t) ≈
ρk
ωk
≈ |v̇k|

2

ωk
≈ 1
ωk

(√
ωe±i

∫
ω
)2
≈ const (2.2.12)

and therefore there are no states produced there, while in the non-adiabatic region
nk(t) 6= const, which corresponds to the production of particles.

2.3 Bogoliubov transformation
Particle production occurs when the background of the considered theory changes

e.g. the mass of the background field or the scale factor are not constant. This
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change influences also the vacuum structure as the vacua before and after production
differ, |0in〉 6= |0out〉. Moreover, following the procedure of second quantization we
can notice the change of the set of creation and annihilation operators and the mode
functions: (

aink , a
in †
k

)
6=
(
aoutk , aout †k

)
, (2.3.1)

vink 6= voutk , (2.3.2)

keeping: aink |0in〉 = 0 and aoutk |0out〉 = 0.

These two sets of operators act in the same Hilbert space so we can express one
by the other

aoutk = αka
in
k + βka

in †
k , (2.3.3)

aout †k = α∗ka
in †
k + β∗ka

in
k , (2.3.4)

where αk and βk are some coefficients. Commutation relation for the scalar field in
the new basis reads

[aoutk , aout †k ] = [αkaink + βka
in †
k , α∗ka

in †
k + β∗ka

in
k ] =

(
|αk|2 − |βk|2

)
[aink , a

in †
k ], (2.3.5)

which implies the normalization condition for newly introduced coefficients

|αk|2 − |βk|2 = 1 (2.3.6)

as the commutation relation is fixed2. Transformation (2.3.3)-(2.3.4) is called Bo-
goliubov transformation [15, 21] and parameters αk and βk are the Bogoliubov co-
efficients. For the mode functions it translates into the relation

vink = αkv
out
k + β∗kv

out ∗
k . (2.3.7)

Occupation number of produced particles can be described by only one of the Bo-
goliubov coefficients

nk ≡ 〈0in|Nk|0in〉 = 〈0in|aout †~k
aout~k
|0in〉 = V |βk|2. (2.3.8)

2.3.1 Simple examples of gravitational particle production
There are two classical and very pedagogical examples illustrating the idea of

purely gravitational particle production in terms of the Bogoliubov transformation:
due to the sudden jump of the scale factor and its well shape.

The first case, a sudden jump, can be described by the scale factor of the form

a(η) = a1 − a2Θ(η) =

a1 η < η0 = 0
a2 η > η0

, (2.3.9)

2For fermions |αk|2 + |βk|2 = 1 because of the different form of commutation relation.
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η

a
(η
)

η

a
(η
)

Figure 2.1: Simple scale factor profiles that are followed by with the particle pro-
duction: sudden jump (left) and well (right).

which leads to the occupation number of the form

|β|2 =

(√
k2 +m2(a1 − a2)2 −

√
k2 +m2a2

1

)2

4
√
k2 +m2(a1 − a2)2

√
k2 +m2a2

1

(2.3.10)

relying on the Bogoliubov transformation between the two regions in η.

The second case, a well, can be described by

a(η) =


a1 η < η0 = 0
a2 η0 < η < η1

a3 η > η1

(2.3.11)

and, thus, results in the occupation number that reads

|β|2 = D2(ω2 − ω3)2 + E2(ω2 + ω3)2 − 2DE(ω2
2 − ω2

3) cos (2ω2η1)
4ω2

3
(2.3.12)

with D = ω2 − ω1

2ω2
, E = ω1 + ω2

2ω2
and ω2

i = k2 +m2a2
i .

k

n
k

small a2 mid a2 big a2

k

n
k

small η1 mid η1 big η1

k

n
k

small a2 mid a2 big a2

Figure 2.2: Occupation number of produced particles as a function of momentum
for the two profiles: sudden jump depending on its height (left) and well depending
on its width (middle) and depth (right).

From Figure 2.2 we can infer that the quantity of produced particles relies on the
features of the scale factor profile - it gets bigger as the height of the jump decreases,
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the width of the well increases and the depth of the well increases.

2.4 Particle production in a theory with time-
varying mass terms

Gathering all the information we can describe the procedure of obtaining num-
ber density of produced particles in a theory with time-varying mass terms for both
scalars and fermions.

The simplest Lagrangian describing such theory for a real scalar field reads

L = 1
2(∂φ)2 − 1

2m
2(t)φ2 (2.4.1)

with corresponding Hamiltonian

H =
∫
d3x

(1
2 φ̇

2 + 1
2(∇φ)2 + 1

2m
2φ2

)
. (2.4.2)

We start the whole procedure with expanding φ in plane waves

φ =
∫ d3k

(2π)3 e
ik·x

(
φk(x0)ak + φ∗k(x0)a†−k

)
(2.4.3)

with the usual equation of motion for the modes

0 = φ̈k + ω2
kφk, (2.4.4)

where ωk ≡
√
k2 +m2. Inner product relation is of the form

1 = i(φ∗kφ̇k − φ̇∗kφk) ≡ (φk, φk), (2.4.5)

which is equivalent to the following set of the commutation relations

[φ(t,x), φ̇(t,x′)] = iδ(x− x′), (2.4.6)
[φ(t,x), φ(t,x′)] = [φ̇(t,x), φ̇(t,x′)] = 0, (2.4.7)

[ak, a
†
k′ ] = (2π)3δ(k− k′), (2.4.8)

[ak, ak′ ] = [a†k, a
†
k′ ] = 0. (2.4.9)

Substituting (2.4.3) into the Hamiltonian, we obtain

H =
∫ d3k

(2π)3
1
2
[
Ωk(t)

(
a†kak + a−ka

†
−k

)
+ Λk(t)a−kak + Λ∗k(t)a

†
ka
†
−k

]
, (2.4.10)

where3

Ωk(t) ≡ |φ̇k(t)|2 + ω2
k(t)|φk(t)|2, (2.4.11)

Λk(t) ≡ φ̇2
k(t) + ω2

k(t)φ2
k(t). (2.4.12)

3These two functions Ωk(t) and Λk(t) connect via frequency

Ω2
k(t)− |Λk(t)|2 = ω2

k(t).
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Vacuum state |0〉 defined by the relation ak |0〉 ≡ 0 turns out not to be the eigenstate
of our Hamiltonian due to the terms proportional to Λk(t). But if we use Bogoliubov
transformation [22]

āk = αkak + βka
†
−k (2.4.13)

in order to diagonalize our Hamiltonian

H =
∫ d3k

(2π)3
ωk
2
(
ā†kāk + ā−kā

†
−k

)
, (2.4.14)

we end up with the proper vacuum condition āk
∣∣∣0̄〉 ≡ 0. Comparing (2.4.10) and

(2.4.14) we get two conditions:

Ωk = ωk(|αk|2 + |βk|2), (2.4.15)
Λk = 2ωkαkβ∗k , (2.4.16)

which combined determine the Bogoliubov coefficients that are explicitly time-
dependent

αk(t) =
√

Ωk

2ωk
+ 1

2 , (2.4.17)

βk(t) = Λ∗k
|Λk|

√
Ωk

2ωk
− 1

2 , (2.4.18)

but they sustain a proper normalization

|αk(t)|2 − |βk(t)|2 = 1. (2.4.19)

Finally, the occupation number of produced scalar states reads

Nk(t) = 〈0| ā†kāk |0〉 = |βk(t)|2 ·
∫
d3x =

(
Ωk

2ωk
− 1

2

)
·
∫
d3x, (2.4.20)

where d3x is the usual volume of the system.

We can apply this procedure to the time-dependent fermionic case basing on the
simple Lagrangian of the form

L = ξ†iσ̄µ∂µξ + ηiσµ∂µη
† −m(t)ηξ −m∗(t)ξ†η† (2.4.21)

with the corresponding Hamiltonian

H =
∫
d3x

(
−ξ†iσ̄i∂iξ − ηiσi∂iη† +m(t)ηξ +m∗(t)ξ†η†

)
. (2.4.22)

We start again with the expansion into modes

ξ(x) =
∫ d3k

(2π)3 e
ik·x ∑

s=±
esk
(
usk(x0)ask + vs∗k (x0)bs†−k

)
, (2.4.23)

η†(x) =
∫ d3k

(2π)3 e
ik·x ∑

s=±
σ̄0esk

(
vsk(x0)ask − us∗k (x0)bs†−k

)
, (2.4.24)
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where esk is a helicity operator and equations of motion read

0 = u̇sk − is|k|usk + im∗vsk, (2.4.25)
0 = v̇sk + is|k|vsk + imusk. (2.4.26)

Wave functions are normalized as usual

|usk(t)|2 + |vsk(t)|2 = 1. (2.4.27)

Side note: Helicity operator

Physical meaning of helicity is that it is the projection of the total angular
momentum on the direction of the linear momentum of the particle. Helicity
operator esk is defined by

−kiσ̄iesk = s|k|σ̄0esk (2.4.28)

with s = ±.

We choose the following representation of this operator

eskα = 1√
2
eiρ

s
k

 √
1 + sk3/|k|

seiθk
√

1− sk3/|k|


α

, (2.4.29)

where ρsk and θk are two phases. The first one is arbitrary and we choose ρsk = 0,
while the second reads

eiθk ≡ k1 + ik2√
(k1)2 + (k2)2

(2.4.30)

and it is completely defined by x- and y-components of the given momentum.

Some useful properties of the helicity operator:

es†k σ̄
0erk = erkσ

0es†k = δsr, (2.4.31)
eske

r
−k = seiθkeiρ

s
k+iρs−k · δsr, (2.4.32)

eskαe
s†
kα̇ = 1

2

(
σ0 + sσiki

|k|

)
αα̇

. (2.4.33)

In the last equation there is no summation over s.

Substituting (2.4.23) and (2.4.24) into the Hamiltonian, we obtain

H =
∫ d3k

(2π)3

∑
s=±

[
Es
k(t)

(
as†k a

s
k − bs−kb

s†
−k

)
+ F s

k (t)bs−ka
s
k + F s∗

k (t)as†k b
s†
−k

]
, (2.4.34)
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where4

Es
k(t) ≡ −sk(|usk|2 − |vsk|2) +muskv

s∗
k +m∗us∗k v

s
k, (2.4.35)

F s
k (t) ≡ −2skuskvsk −mus 2

k +m∗vs 2
k . (2.4.36)

Diagonalizing the Hamiltonian (2.4.34) using the Bogoliubov transformation(
āsk
b̄s†−k

)
=
(

αsk βsk
−βs∗k αs∗k

)(
ask
bs†−k

)
=
(

αska
s
k + βskb

s†
−k

−βs∗k ask + αs∗k b
s†
−k

)
(2.4.37)

leads to the Hamiltonian of the form

H =
∫
d3x

∑
s=±

ωk
(
ās†k ā

s
k − b̄s−kb̄

s†
−k

)
(2.4.38)

and two constraints:

Es
k = ωk(|αsk|2 − |βsk|2), (2.4.39)
F s
k = 2ωkαskβs∗k . (2.4.40)

Combining them we obtain the time-dependent Bogoliubov coefficients

αsk(t) =
√

1
2 + Es

k

2ωk
, (2.4.41)

βk(t) = F s∗
k

|F s
k |

√
1
2 −

Es
k

2ωk
(2.4.42)

with a proper normalization

|αsk(t)|2 + |βsk(t)|2 = 1. (2.4.43)

Once again we can express the occupation number in terms of the modes

Nk(t) = 〈0| ās†k āsk |0〉 = 〈0| b̄s†k b̄sk |0〉 = |βsk(t)|2 ·
∫
d3x =

(1
2 −

Es
k

2ωk

)
·
∫
d3x. (2.4.44)

2.5 Brief thermal history of the Universe
Observational data is consistent with the expansion of the Universe as for instance

the light from distant galaxies is redshifted and relic abundance of light elements is
in agreement with the theory of Big Bang Nucleosynthesis (BBN). Moreover, three
independent sources: supernovae Ia, temperature fluctuations of the Cosmic Mi-
crowave Background (CMB) and the distribution of galaxies suggest that ΛCDM5

is a reliable model of our Universe.

4These two functions Es 2
k (t) and F sk (t) connect via frequency

Es 2
k (t) + |F sk (t)|2 = ω2

k(t)

with ωk(t) ≡
√
|k|2 + |m(t)|2.

5ΛCDM (Lambda cold dark matter) model is a parametrization of cosmological model with the
Big Bang and the Universe containing a cosmological constant (Λ) related to dark energy and cold
dark matter (CDM).
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time energy
Planck epoch? < 10−43 s 1018 GeV
string scale? & 10−43 s . 1018 GeV

Grand Unification ? ∼ 10−36 s 1015 GeV
inflation? & 10−34 s . 1015 GeV

SUSY breaking? < 10−10 s > 1 TeV
baryogenesis? < 10−10 s > 1 TeV

electroweak unification 10−10 s 1 TeV
quark-hadron transition 10−4 s 100 MeV

nucleon freeze-out 0.01 s 10 MeV
neutrino decoupling 1 s 1 MeV

BBN 3 min 0.1 MeV
redshift

matter-radiation equality 104 yrs 1 eV 104

recombination 105 yrs 0.1 eV 1 100
Dark Ages 105 − 108 yrs > 25
reionization 108 yrs 25-6

galaxy formation ∼ 6× 108 yrs ∼ 10
dark energy ∼ 109 yrs ∼ 2
solar system 8× 109 yrs 0.5

us 14× 109 yrs 1 meV 0

Table 2.1: Major events in the history of the Universe, the table is taken from
[23]. Question marks denote the events corresponding to the energy scales currently
unavailable in the observations.

The Universe was homogeneous and isotropic right after Big Bang filled with
the energy of tremendous density, temperature and pressure. Due to expansion it
cooled down going through the phase transitions related to the breaking of symme-
tries restored at high energies. Table 2.1 presents the most important events in the
history of the Universe - its thermal history, with some speculative processes and
ideas marked with question marks. This table has been excerpted from [23], which
may result in some discrepancies between the energies contained there and currently
valid ones.

Based on our understanding and experimental observations of particle physics,
nuclear physics and gravity we can have some credible picture of the evolution of
the Universe from 10−10 seconds to today. We assume that before this time it went
through the processes important for this dissertation, namely inflation.

Inflation is a period of exponential expansion of the Universe, so far hypothetical
but being consistent with observations for some of its scenarios. Particular particle
physics realization of inflation is not set yet but its paradigm helps with solving a lot
of cosmological problems - isotropy and homogeneity of the Universe, its flatness,
lack of magnetic monopoles and the origin of the large-scale structure. For the de-
tailed description of inflation and associated particle production see Section 4.1.
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2.6 The Homogeneous Universe
The main goal of cosmology is to describe the structure and evolution of the

Universe at the largest scales, which is usually limited by the conditions of its ho-
mogeneity and isotropy. Homogeneous space is translationally invariant - there is no
special point in it, while isotropic one is rotationally invariant - there is no special
direction there. The most common metric describing the Universe that fulfils both
these conditions is the Friedmann-Robertson-Walker (FRW) metric of the form

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
)
, (2.6.1)

where a(t) is the scale factor and the curvature parameter k is +1 for positively
curved space, 0 for flat one and -1 for negatively curved space. For the FRW metric
all the information about the evolution of the Universe is encoded exactly in the
scale factor, which is determined by the Einstein equations and the matter content
of the Universe. It characterizes the FRW spacetime expansion rate through the
Hubble parameter

H = ȧ

a
, (2.6.2)

which is positive for an expanding universe and negative for a collapsing one. Its
importance lies also in the fact that it defines two important cosmological scales -
Hubble time t ∼ H−1, which is the scale of the age of the Universe, and Hubble
length d ∼ H−1, which corresponds to the size of the observable Universe.

The dynamics of the universe is described by the Einstein equations6

Gµν = 8πGTµν , (2.6.3)

which determines the time evolution of the scale factor. Einstein tensor

Gµν ≡ Rµν −
1
2gµνR (2.6.4)

is defined by the Ricci tensor, Rµν , and the Ricci scalar, R, which are of the form

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα, (2.6.5)
R ≡ gµνRµν , (2.6.6)

where
Γµαβ ≡

1
2g

µν [gαν,β + gβν,α − gαβ,ν ] (2.6.7)

are the Christoffel symbols.

Right hand side of the Einstein equation includes the energy-momentum tensor
of the universe, Tµν . To describe it, it is essential to introduce a set of observers
with worldlines tangent to the timelike velocity

uµ ≡ dxµ

dτ
, (2.6.8)

6There are various conventions of their form, setting 8πG ≡ 1 is one of them.
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where τ is the proper time (gµνuµuν = −1). We can also define the metric of the
3-dimensional spatial sections orthogonal to uµ: the tensor γµν = gµν + uµuν . Then,
for some general fluid Tµν is of the form

Tµν = ρuµuν + pγµν + 2q(µuν) + Σµν , (2.6.9)

where ρ = Tµνu
µuν is the matter energy density, p = 1

3Tµνγ
µν is the pressure,

qµ = −γαµTαβuβ is the energy-flux vector and Σµν = γα〈µγ
β
ν〉Tαβ is the anisotropic

stress tensor.7 For a perfect fluid it simplifies to

T µν = gµαTαν = (ρ+ p)uµuν − pδµν (2.6.10)

as there exists some special velocity for which qµ = Σµν = 0 and then ρ and p are the
proper energy density and pressure in the fluid rest frame, while uµ is its 4-velocity.

Energy-momentum tensor can simplify even more if we choose a frame comoving
with the fluid (uµ = (1, 0, 0, 0))

T µν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 , (2.6.11)

which also simplifies the Einstein equations called the Friedmann equations then

H2 =
(
ȧ

a

)2
= 8πG

3 ρ(t)− k

a2 , (2.6.12)

Ḣ +H2 = ä

a
= −4πG

3 (ρ(t) + 3p(t)) . (2.6.13)

They can be combined resulting in the continuity equation of the form
dρ

dt
+ 3H(ρ+ p) = 0 (2.6.14)

or
d ln ρ
d ln a = −3(1 + w), (2.6.15)

where w is the equation of state (or barotropic) parameter

w ≡ p

ρ
. (2.6.16)

Continuity equation can be integrated into

ρ ∝ a−3(1+w), (2.6.17)

which combined with the Friedmann equation determines the evolution of the uni-
verse

a(t) ∝

t2/3(1+w) w 6= −1
eHt w = −1

. (2.6.18)

Solutions for different values of w are presented in the Table 2.2.

7We use the notation t〈µν〉 = γα(µγ
β
ν)tαβ −

1
3γ

αβtαβγµν and t(µν) = 1
2(tµν + tνµ).
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w ρ(a) a(t) a(τ) τi

MD 0 a−3 t2/3 τ 2 0
RD 1

3 a−4 t1/2 τ 0
ΛD -1 a0 eHt −τ−1 −∞

Table 2.2: FRW solutions for a flat universe dominated by relativistic matter (MD),
radiation (RD) or a cosmological constant (ΛD).

Side note: Conformal time

Conformal time η, which simplifies the study of the null geodesics, is con-
nected with the cosmic time t through the relation:

a(η)dη = dt. (2.6.19)

For conformal time for flat case (k = 0) the Friedmann and continuity equations
change their form to:(

ȧ(t)
a(t)

)2

(η) =
(
a′(η)
a2(η)

)2

= H2(η) 1
a2 = 8πG

3 ρ(η), (2.6.20)

H′(η) +H2(η) = a′′(η)
a(η) = 4πG

3 (ρ(η)− 3p(η))a2, (2.6.21)

ρ′(η) = −3a(η)H(η)(ρ(η) + p(η)), (2.6.22)

where H(η) = a′

a2 .
Pressure and energy density for homogeneous scalar field φ(t) are equal to

ρ(t) = 1
2 φ̇

2 + V (φ), (2.6.23)

p(t) = 1
2 φ̇

2 − V (φ), (2.6.24)

which means that these equations transform into

H2(η) = 8πG
3

( 1
2a2 (φ′)2 + V (φ)

)
a2, (2.6.25)

H′(η) +H2(η) = a′′(η)
a(η) = 4πG

3 (4a2V (φ)− (φ′)2), (2.6.26)

ρ′(η) = −3a(η)H3(η)(ρ(η) + p(η)). (2.6.27)

From the continuity equation we can also derive the equation of motion for the
field φ in terms of conformal time:

φ′′ + 2a
′

a
φ′ + a2dV

dφ
= 0. (2.6.28)



Chapter 3

Non-adiabatic particle production
for massless background field

In a free quantum field theory the total number of particles is conserved, which
is no longer true as soon as interactions, which induce dynamical production of par-
ticles, come into play. Another source of new states can be the coupling between
the quantum theory and a classical source, which breaks the invariance under space
and time translations and violates the energy conservation.

Following the method developed in [24, 25] we want to analyse non-perturbative
production of particles in the time-dependent background, namely with the vev of
the background field linear in time, in a more general way including backreaction and
said quantum corrections. Our approach is based on the asymptotic approximation
of the wave functions and analytical continuation of the time variable, which makes
the calculation of the number density simpler and well-grounded in the theory of
penetration through an inverted parabolic potential.

Our starting potential is the supersymmetric version of the potential considered
in [24], which allows us to introduce the method including the influence of quan-
tum corrections based on the Yang-Feldman formalism. Such a potential has been
investigated thoroughly before, for instance analytically in the context of massless
preheating in [26] and numerically with lattice calculations for the production dur-
ing inflation in [27].

3.1 Method
The bases of the method describing the process of particle production in time-

dependent backgrounds, generalizing the reasoning from [24, 25] to the case of a com-
plex field and including backreaction, can be introduced based on the simple La-
grangian [24]:

L = 1
2∂µφ∂

µφ̄+ 1
2∂µχ∂

µχ− 1
2g

2|φ|2χ2, (3.1.1)

where a complex scalar field φ = φ1 + iφ2 interacts with a real scalar field χ via the
coupling g. For simplicity we neglect expansion of the universe now, leaving it for
the Section 3.6. The above Lagrangian is invariant under phase rotations φ→ φeiθ
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and thus the angular momentum is conserved - it is important for constraining the
amplitude of φ’s oscillations that are described further in this section.

In this model point φ = 0 in the phase space is distinguished as the other field χ
becomes massless there. It is called an enhanced symmetry point (ESP). We aim to
consider time-dependent background and its influence on particle creation. It can be
realized in this framework keeping 〈χ〉 = 0 and 〈φ〉 = vt + iµ asymptotically, when
quantum effects are negligible - it is a pure classical solution. Both parameters,
v and µ, are real and they represent a velocity in the φ-space and an impact pa-
rameter, respectively, see Figure 3.1. In consequence, χ acquires a time-dependent
mass m2

χ(t) = g2|φ(t)|2, which leads to its production.

Im φ

 µ

 ν

Re φ

φ

Re t

Im t

in out

Figure 3.1: Illustration of the parameters v and µ in the phase space (top) and
contour of integration for a complex t (bottom).

At first we investigate the production of χ particles without the effects of back-
reaction on the trajectory of φ field. Particular modes of χ field with time-varying
frequency ω(t) =

√
k2 + g2|φ(t)|2 and momentum fixed by

k2 + g2µ2

gv
. 1 (3.1.2)

become excited, when they enter the non-adiabatic region |φ| . ∆φ with

∆φ =
√
v

g
. (3.1.3)
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This condition is fulfilled only for a time

∆t ∼

√
v/g

v
∼ (gv)−1/2, (3.1.4)

which agrees with the condition (3.1.2) due to the uncertainty principle - produced
states carry the energy of the order E ∼ (∆t)−1. In this region mass of χ field
becomes tiny, which makes it energetically favourable to transfer kinetic energy of
φ to χ initiating χ’s particle production.

Side note: Vacuum expectation value and Lorentz invariance

Assuming that only a scalar field carries a vacuum expectation value is
encouraged by the fact that if anything else than a Lorentz scalar has a vev,
Lorentz invariance is spontaneously broken.

If a fermion carries a vev: ψ → v + ψ, its mass term

L ⊃ mψψ̄ (3.1.5)

changes to
L ⊃ m|v|2 +mvψ̄ +mvψ +mψψ̄ (3.1.6)

with the 2nd and 3rd terms breaking Lorentz invariance.

If a gauge boson carries a vev: Aµ → v + Aµ, its mass term

L ⊃ m2AµA
µ (3.1.7)

changes to
L ⊃ m2v(Aµ + Aµ) +m2v2 +m2AµA

µ (3.1.8)

with the 1st term breaking Lorentz invariance.

First, we have to find the equation of motion for the modes χk that couples the
classical evolution of φ with the time-dependent quantum field χ, which in this case
reads (

∂2
t + k2 + g2|φ(t)|2

)
uk = 0. (3.1.9)

For each k there are two linearly-independent solution to this equation: uink with
vacuum state with no particles in the far past and uoutk with no particles in the far
future, connected with each other through a Bogoliubov transformation. We want
to start with the state uink and see what is the number density of particles in the far
future, which is given by nk = |βk|2 for the kth mode. We can choose modes uink of
the quite simple form in the far past using the WKB approximation

uink →
1√

2
√
k2 + g2|φ|2

e−i
t∫ √

k2+g2|φ(t′)|2dt′ as t→ −∞, (3.1.10)
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which defines our adiabatic vacuum |in〉 with no particles in the far past.

We can find the solution for uk solving equation (3.1.9) respecting the bound-
ary conditions in terms of hypergeometric functions but there exist a more gen-
eral method using some physical arguments. We can treat (3.1.9) as a one dimen-
sional Schrödinger equation for particle scattering/penetration through an inverted
parabolic potential. A wave sent from the far right of the potential partially pene-
trates to the far left with an asymptotic amplitude Tkψoutk and is partially reflected
back to the right with an asymptotic amplitude Rkψ

in∗
k . Parameters Tk and Rk are

the transmission and reflection amplitudes, respectively. These two sets of modes
are linked by the relation uink (t → −∞) = T ∗kψ

out∗
k and the Bogoliubov coefficient

βk can be expressed in terms of these amplitudes as

βk = R∗k
T ∗k
. (3.1.11)

Using WKB method we can find R and T introducing a simple trick - analyti-
cal continuation for t. When we move along the real time coordinate the solution
(3.1.10) is spoiled for small t as we enter the non-adiabatic region. But if we assume
t to be complex we can move from t = −∞ to t = +∞ along a complex contour in
such a way that the WKB approximation is not destroyed whatsoever, see Figure
3.1. Integral

t∫
dt′ becomes then a contour integral along a semicircle of large radius

in the lower complex t plane.

For large values of |t| we can expand the integral in (3.1.10) to obtain
√
k2 + g2|φ|2 ∼ gvt+ k2 + g2µ2

2gvt , (3.1.12)

which induces a factor(
e−iπ

)−i(k2+g2µ2)/2gv−1/2
= ie−π(k2+g2µ2)/2gv (3.1.13)

as we go around half of the circle in the phase space. This factor corresponds
precisely to the ratio R∗ and T ∗ and thus

nk = |βk|2 = e−π(k2+g2µ2)/gv. (3.1.14)

This result is nonperturbative in coupling g since there is a factor g in the denomi-
nator of the exponent not g2.

Interaction terms in our potential generate radiative corrections to the effective
potential, which results in the Coleman-Weinberg effective potential and three UV-
divergent terms:

Veff (φ) = Λeff + g2m2
effφ

2 + g4λeffφ
4, (3.1.15)

which can be eliminated by the proper counterterms1. To obtain an appropriate
picture of particle production at the considered order of these corrections we remove

1In the supersymmetric models these divergences do not exist.
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the whole Coleman-Weinberg effective potential for φ induced by loops of χ parti-
cles by hand. It means substituting χ mass-squared with g2|φ(t)|2 to delete loop
contributions from χ in 〈χ2〉, which reads

〈χ2(t)〉 ≡ 〈in|χ2(t)|in〉 =
∫ d3k

(2π)3 |u
in
k (t)|2 (3.1.16)

at time t. Thus, subtracted correction δM , which should be included in the classical
equation of motion for φ (

∂2 + g2(〈χ2〉 − δM)
)
φ = 0, (3.1.17)

is of the form
δM ≡

∫ d3k

(2π)3
1

2
√
k2 + g2|φ(t)|2

. (3.1.18)

It can be now explicitly seen that large values of µ correspond to negligible (〈χ2〉 − δM)
term and the trajectory of the background cannot be affected by the presence of the
non-adiabatic region, therefore avoiding particle creation completely then.

All above equations of motion can be translated into the energy transfer between
the two systems: χ and φ. Energy conservation in this time-dependent scenario reads

d

dt
Hφ = − d

dt
〈in|Hχ|in〉, (3.1.19)

where the left hand side describes the classical energy of the rolling φ(t) field, while
the right hand side concerns the vacuum expectation value of the time-dependent χ
Hamiltonian.

Once χ particles are produced and trajectory of 〈φ〉 leaves the non-adiabatic re-
gion, we can observe the effects of backreaction of the created states on the evolution
of the background. In general, description of the backreaction is very complicated
but in this approach a simple one is accessible. The crucial fact is that we can treat
the initial production of χ states as instant, since it takes place in the vicinity of
φ = 0, and that the induced potential V ∼ |φ| is linear making the evolution of φ
under its impact quite simple.

Newly produced χ particles are nonrelativistic since k .
√
gv � g|φ| and their

total density is given by

ρχ(t) =
∫ d3k

(2π)3nk
√
k2 + g2|φ(t)|2 ≈ g|φ(t)|nχ, (3.1.20)

where nχ is defined by (3.1.14). It looks like a new linear potential inducing an
attractive force acting in the field space on the trajectory of 〈φ〉.

As φ evolves in the phase space some of its energy is inherited by χ field, re-
sulting in some new excitations. When φ moves away from the point φ = 0, the
mass of excited χ states grows increasing the energy cumulated in this sector and
backreacting on the evolution of the background via the potential (3.1.20). Induced
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attractive force slows it down and at some point φ∗, where the initial kinetic energy
density 1

2 φ̇
2 ≡ 1

2v
2 is comparable to the energy density ρχ contained in χ sector,

turns it back towards the non-adiabatic region inducing another production of χ
particles. We can estimate this bending point as2

φ∗ = 4π3

g5/2v
1/2eπgµ

2/v. (3.1.21)

Then again linear potential is established, which is steeper this time as it corresponds
to the stronger attractive force, and the process repeats itself again and again until it
is energetically favourable, see Figure 3.2. The oscillating nature of the evolution of
the background is sustained with the trajectory agreeing with the effective potential
and the angular momentum conservation. In some cases, for example when taking
into account the evolution of the scale factor, the amplitude of these oscillation may
significantly drop, see Section 3.6.

Figure 3.2: Oscillating nature of the background. Figure from [25].

Apart from that we must take under control all other quantum effects to build
a full picture of particle production process here. These are loop corrections to
the effective action including kinetic corrections, which can be expressed as a series
expanded in v2/φ4, and Coleman-Weinberg potential energy, which is removed by
hand, but also interaction effects, which are the subject of the next section, all of
them being important in the regime of dominating kinetic energy. The first two ef-
fects are governed by the parameters, nonadiabaticity and kinetic factor, diverging
near the origin. Nevertheless, for a weak coupling the nonadiabaticity parameter
gets enhanced in comparison to the kinetic corrections, v2/g2φ4 � v2/φ4, and it is
justified to pay attention only to the first effect and accompanying particle produc-
tion. In particular, sufficiently large impact parameter µ prevents kinetic correction
from domination at all.

2We can notice that for a very weak coupling g the length of the first pass through the non-
adiabatic region is much greater than the impact parameter µ, which in consequence makes the
evolution of the background one-dimensional after the first pass.
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So far in our analysis we also neglected the impact of scattering and decay of the
χ particles, which is the subject of Section 3.4.4.

Note that this method is much more general than only applying to the precise
φ = iµ+vt evolution of the background. We can also use it each time the trajectory
of the background can be approximately linear near the origin of the phase space,
no matter what is its behaviour away from the origin.

3.2 Production of fermions
In the case of fermionic production we have to differentiate between various

representations of the fermionic field. Again, we are interested in the theories with
time-dependent backgrounds, which drive particle production.

3.2.1 Weyl fermions
The simplest Lagrangian for the Weyl representation of the fermionic field reads:

L = ξ†i∂̄/ ξ + η†i∂̄/ η −m
(
ξη + ξ†η†

)
, (3.2.1)

where m = m(t) ∈ R. Equations of motions for these four fields are of the form:

0 = i∂̄/ α̇αξα −mη†α̇, (3.2.2)
0 = i∂/αα̇ξ

†α̇ −mηα, (3.2.3)
0 = i∂̄/ α̇αηα −mξ†α̇, (3.2.4)
0 = i∂/αα̇η

†α̇ −mξα, (3.2.5)

which can be translated into two second order differential equations

0 =
(
∂2 +m2

)
ξα + iṁσ0

αα̇η
†α̇, (3.2.6)

0 =
(
∂2 +m2

)
η†α̇ + iṁσ̄0α̇αξα (3.2.7)

and then diagonalized to

0 =
(
∂2 +m2 ± iṁ

)
ψ±α, (3.2.8)

introducing the notation ψ±α ≡ ξα ± σ0
αα̇η

†α̇. It can be decomposed into mode
functions

ψ±(t,x) =
∫ d3k

(2π)3 e
ik·xψk±(t) (3.2.9)

with the equation of motion of the form

0 = ψ̈k± +
(
ω2
k ± iṁ

)
ψk±, (3.2.10)

where ωk ≡
√

k2 +m2. In the adiabatic region,
∣∣∣ω̇k/2ω2

k

∣∣∣ � 1, it possesses two
independent solutions

ψk± ∼
√

1± m

ωk
e−i

∫ t
dt′ωk(t′),

√
1∓ m

ωk
e+i

∫ t
dt′ωk(t′), (3.2.11)
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which for our choice of the eigenspinor of the helicity operators turns into

ψ±α ∼
∫ d3k

(2π)3 e
ik·x∑

s

eskα ×
(
αsk±

√
1± m

ωk
e−i

∫ t
dt′ωk(t′) + βsk±

√
1∓ m

ωk
e+i

∫ t
dt′ωk(t′)

)
.

(3.2.12)

where αsk± and βsk± are some constants. Combining (3.2.2) and (3.2.5) we can
represent one set of these coefficients with the other as:

αsk− = +sαsk+, (3.2.13)
βsk− = −sβsk+. (3.2.14)

Side note: Helicity operator, Weyl fermions

Eigenspinor of the helicity operator esk satisfies the relation

ki

|k|
(
σ0σ̄i

)
α

β
eskβ = seskα (3.2.15)

with s = ±.
We choose the following representation of this spinor

eskα = eiθ
s
k ×

√√√√1 + sk3

|k|

( −k1+ik2

s|k|+k3

1

)
= eiθ

s
k ×

 seiαk
√

1− sk3/|k|√
1 + sk3/|k|

 , (3.2.16)

where θsk is some indefinite phase and

eiαk ≡ −k1 + ik2√
(k1)2 + (k2)2

. (3.2.17)

Some useful properties of the helicity operator:

es†k σ̄
0erk = erkσ

0es†k = 2δsr, (3.2.18)
εαβeskβ = ei(θsk+θs−k) × seiα−kes†−kα̇σ̄

0α̇α, (3.2.19)

es−ke
r
k = ei(θs−k+θrk) × 2seiαkδsr, (3.2.20)

eskαe
s†
kα̇ =

(
σ0 − sσiki

|k|

)
αᾱ

, es†α̇k esαk =
(
σ̄0 − sσ̄iki

|k|

)ᾱα
. (3.2.21)

In the last line there is no summation over s.
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Finally, wave functions of ξ and η are of the form:

ξα = 1
2 (ψ+α + ψ−α) (3.2.22)

∼
∫ d3k

(2π)3 e
ik·x∑

s

eskα ×
[
αsk+u

s
k+e

−i
∫ t

dt′ωk(t′) + βsk+u
s
k−e

+i
∫ t

dt′ωk(t′)
]
,

η†α̇ = 1
2 σ̄

0α̇α (ψ+α − ψ−α) (3.2.23)

∼
∫ d3k

(2π)3 e
ik·x∑

s

σ̄0α̇αeskα

[
αsk+u

−s
k+e

−i
∫ t

dt′ωk(t′) + βsk+u
−s
k−e

+i
∫ t

dt′ωk(t′)
]
,

where
usk± ≡

1
2

[√
1± m

ωk
± s

√
1∓ m

ωk

]
. (3.2.24)

Quantization can be performed by replacing

αsk+ −→
1√
2
ask, (3.2.25)

βsk+ −→
1√
2
bs−k, (3.2.26)

which comes from the canonical anti-commutation relation.

3.2.2 Dirac fermions
The simplest Lagrangian for the Dirac representation of the fermionic field reads

L = ψ̄(iγµ∂µ −m)ψ, (3.2.27)

where again we assume m = m(t). Corresponding equation of motion is of the form

0 = (iγµ∂µ −m)ψ, (3.2.28)

which for the mode functions, ψ(t,x) ∼ ψk(t)eik·x, becomes

0 = iγ0ψ̇k − (k · γ +m)ψk. (3.2.29)

For Dirac representation γ matrices are equal to

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (3.2.30)

while mode functions create a doublet ψk =
(
ψk↑
ψk↓

)
, which put together leads to

the following equations of motion:

0 = iψ̇k↑ − k · σψk↓ −mψk↑, (3.2.31)
0 = iψ̇k↓ − k · σψk↑ +mψk↓. (3.2.32)
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Note that also k·σ
k
ψk↑(↓) satisfies the same set of the equations of motion. Thus, we

can choose the basis of the wave functions ψk↑(↓) as the eigenstates of the helicity
operator denoted as ψsk↑(↓) (s = ±) satisfying

k · σ
k

ψsk↑(↓) = sψsk↑(↓). (3.2.33)

Second order equations of motion for them read
0 = ψ̈sk↑ +

(
ω2
k + iṁ

)
ψsk↑, (3.2.34)

0 = ψ̈sk↓ +
(
ω2
k − iṁ

)
ψsk↓, (3.2.35)

where ωk ≡
√

k2 +m2 denotes the frequency.

WKB solutions for this set of equations read

ψsk↑ = αskξ
s
k

√
1 + m

ωk
e−i

∫ t′
dt′ωk(t′) + βskη

s
k

√
1− m

ωk
e+i

∫ t′
dt′ωk(t′), (3.2.36)

ψsk↓ = sαskξ
s
k

√
1− m

ωk
e−i

∫ t′
dt′ωk(t′) − sβskηsk

√
1 + m

ωk
e+i

∫ t′
dt′ωk(t′), (3.2.37)

where αsk and βsk correspond to the Bogoliubov coefficients with the normalization
condition |αsk| + |βsk| = 1, while ξsk and ηsk are the normalized eigenspinors for the
helicity operator.

Side note: Helicity operator, Dirac fermions

Eigenspinor ξsk for the helicity operator k·σ
k

with the momentum
k = {k1, k2, k3} is given by

ξsk = 1
2e

iθsk


sk−√

|k|(|k|−sk3)√
|k|−sk3

|k|

 , (3.2.38)

where θsk ∈ R , k± ≡ k1 ± ik2 and s = ± corresponds to the eigenvalue. It is
orthogonal in a sense that

ξr†k ξ
s
k = 1

2δ
rs. (3.2.39)

C-transformed state
ηsk ≡ −sεξs∗−k (3.2.40)

possesses the same properties and its explicit form reads

ηsk = −sεξs∗−k = −1
2e
−iθs−k

k+√
k2 − (k3)2


sk−√

|k|(|k|−sk3)√
|k|−sk3

|k|

 . (3.2.41)

The difference between ξsk and ηsk is just a phase because |k+|2 = k2 − (k3)2.
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Finally, we can obtain the WKB solution for ψsk as

ψsk = αsk

 ξsk
√

1 + m
ωk

sξsk
√

1− m
ωk

 e−i ∫ t′ dt′ωk(t′) + βsk

 ηsk
√

1− m
ωk

−sηsk
√

1 + m
ωk

 e+i
∫ t′

dt′ωk(t′).

(3.2.42)

As in the bosonic case we want to extend this solution to the complex values of
t assuming that mass is linear in time

m(t) = gvt. (3.2.43)

Even for complex t WKB solution is valid for large |t| and then

ωk ∼ gvt. (3.2.44)

It means that for the far past the positive frequency is equal to −ωk(t), while for
the far future +ωk(t) and therefore the initial and final WKB solutions read3

uskin ∼

 ξsk
√

1− m
ωk

−sξsk
√

1 + m
ωk

 e+i
∫ t

dt′ωk(t′), (3.2.45)

uskout ∼ αsk

 ξsk
√

1 + m
ωk

sξsk
√

1− m
ωk

 e−i∫ t dt′ωk(t′) + βsk

 ηsk
√

1− m
ωk

−sηsk
√

1 + m
ωk

 e+i
∫ t

dt′ωk(t′).

(3.2.46)

The asymptotic form of the integral appearing in the exponential functions above
reads ∫ t

dt′ω(t′) =
∫ t

dt′gvt′
(

1 + k2

2g2v2t2
+ . . .

)
= (3.2.47)

= 1
2gvt

2 + k2

2gv

(∫ t|θ=−π
dt′

1
t′

+
∫ θ

θ=−π
dt′

1
t′

)
+ · · · = (3.2.48)

= 1
2gv|t|

2e2iθ + k2

2gv (ln |t|+ i(θ + π)) + . . . ., (3.2.49)

where we assume t = |t|eiθ and θ → −π corresponds to the in-state frequency
(t→ −∞). Therefore, we can express uskin on the complex t-plane as

uskin ∼

 ξsk

√
1− m(t)

ωk(t)

−sξsk
√

1 + m(t)
ωk(t)

 e+ 1
2gv|t|

2(i cos 2θ−sin 2θ)+ k2
2gv (i ln |t|−θ−π)+... (3.2.50)

and going to θ → 0 through the lower half plane we obtain

uskin|θ→0 ∼

 ξsk

√
1− m(|t|)

ωk(|t|)

−sξsk
√

1 + m(|t|)
ωk(|t|)

 e+i 1
2gv|t|

2+ k2
2gv (i ln |t|−π)+.... (3.2.51)

3We choose ξsk not ηsk for the helicity basis but the difference between them is just a phase, see
(3.2.38) and (3.2.41).
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This expression should be consistent with the second term of (3.2.46), which means
that

βsk = phase× e−π
k2
2gv (3.2.52)

and finally number density of produced fermions is proportional to

|βsk|2 = e−π
k2
gv . (3.2.53)

3.2.3 Majorana fermions
For the Majorana representation of fermions the simplest Lagrangian is of the

form
L = ξ†i∂̄/ ξ − 1

2mξξ −
1
2m

∗ξ†ξ†, (3.2.54)

where we assume m = m(t) ∈ C and ṁ = ṁ∗, with the equations of motion that
read

0 = i∂̄/ α̇αξα −m∗ξ†α̇, (3.2.55)
0 = i∂/αα̇ξ

†α̇ −mξα. (3.2.56)

As in the Dirac case we can obtain second order differential equations

0 =
(
∂2 + |m|2

)
ξα + iṁ∗σ0

αα̇ξ
†α̇, (3.2.57)

0 =
(
∂2 + |m|2

)
ξ†α̇ + iṁσ̄0α̇αξα, (3.2.58)

that can be diagonalized. It is difficult to obtain a general solution of these equations
so in our analysis we consider two cases:

• Case A: Arg(m) is constant
Diagonalized equation of motion is given by

0 =
(
∂2 + |m|2 ± i|m|·

)
Ξθ
±α, (3.2.59)

where m = |m|eiθ, θ ∈ R and Ξθ
±α ≡

(
ξ ± e−iθσ0ξ†

)
α
.

• Case B: ṁ is constant
Time-dependent mass can be written in the form: m(t) = ṁt + m0, where
m0 = const ∈ C. Choosing the notation ṁ = |ṁ|eiρ (ρ ∈ R) it can be further
rewritten as

m(t) =
[
|ṁ|

(
t+ Re(m0e

−iρ)
|ṁ|

)
+ i Im(m0e

−iρ)
]
eiρ ≡ [|ṁ| (t− t0) + iµ] eiρ,

(3.2.60)
where t0, µ ∈ R. Diagonalized equation of motion is given by

0 =
(
∂2 + |ṁ|2(t− t0)2 + µ2 ± i|ṁ|

)
Ξρ
±α. (3.2.61)
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Case A is similar to the theory of Dirac fermions with one difference: m should
be replaced with |m|. Equation governing Ξθ

+ and Ξθ
−,

0 = Ξ̇θ
+ + i|m|Ξθ

+ + σ0σ̄i∂iΞθ
−, (3.2.62)

is also similar to the corresponding Dirac one (3.2.31), which provides with the
solutions of the form

Ξθ
+α ∼

∫ d3k

(2π)3 e
ik·x∑

s

eskα

αsk
√

1 + |m|
ωk

e−i
∫ t

dt′ωk(t′) + βsk

√
1− |m|

ωk
e+i

∫ t
dt′ωk(t′)

 ,
(3.2.63)

Ξθ
−α ∼

∫ d3k

(2π)3 e
ik·x∑

s

eskα

sαsk
√

1− |m|
ωk

e−i
∫ t

dt′ωk(t′) − sβsk

√
1 + |m|

ωk
e+i

∫ t
dt′ωk(t′)

 ,
(3.2.64)

where αsk and βsk are some constants. For ξ and ξ† it means that

ξα = 1
2
(
Ξθ

+α + Ξθ
−α

)
(3.2.65)

∼
∫ d3k

(2π)3 e
ik·x∑

s

eskα

[
αskv

s
k+e

−i
∫ t

dt′ωk(t′) + βskv
s
k−e

+i
∫ t

dt′ωk(t′)
]
,

ξ†α̇ = 1
2e

+iθσ̄0α̇α
(
Ξθ

+α − Ξθ
−α

)
(3.2.66)

∼
∫ d3k

(2π)3 e
ik·x∑

s

e+iθσ̄0α̇αeskα

[
αskv

−s
k+e

−i
∫ t

dt′ωk(t′) + βskv
−s
k−e

+i
∫ t

dt′ωk(t′)
]
,

where

vsk± ≡
1
2

√1± |m|
ωk
± s

√
1∓ |m|

ωk

 . (3.2.67)

Considering the consistency between ξ and ξ† we are provided with the relation
linking αsk and βsk

βsk = e−i(θsk+θs−k) × e−iαke−iθ · αs∗−k, (3.2.68)

where both phases are coming from the definition of the helicity operator.
Quantization can be again performed by substituting αsk with 1√

2
ask again.

Case B demands WKB solution for Ξρ
+ of the form

Ξρ
+α ∼

∫ d3k

(2π)3 e
ik·x∑

s

eskα × (3.2.69)

×

αsk
√

1 + |ṁ| (t− t0)
ωk

e−i
∫ t

dt′ωk(t′) + βsk

√
1− |ṁ| (t− t0)

ωk
e+i

∫ t
dt′ωk(t′)

 ,
where again αsk and βsk are some coefficients. Relation between Ξρ

+ an Ξρ
−,

0 = Ξ̇ρ
+ + i|ṁ|(t− t0)Ξρ

+ + σ0σ̄i∂iΞρ
− − µΞρ

−, (3.2.70)
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coming from (3.2.55) and (3.2.56) determines the WKB solution for Ξ−

Ξρ
−α ∼

∫ d3k

(2π)3 e
ik·x∑

s

eskα
s|k| − iµ√

k2 + µ2 × (3.2.71)

×

αsk
√

1− |ṁ| (t− t0)
ωk

e−i
∫ t

dt′ωk(t′) − βsk

√
1 + |ṁ| (t− t0)

ωk
e+i

∫ t
dt′ωk(t′)

 .
For ξ and ξ† it means that

ξα = 1
2 (Ξρ

+α + Ξρ
−α) (3.2.72)

∼
∫ d3k

(2π)3 e
ik·x∑

s

eskα

[
αskw

s
k+e

−i
∫ t

dt′ωk(t′) + se−iαke−iρ · αs∗−kw
s
k−e

+i
∫ t

dt′ωk(t′)
]
,

ξ†α̇ = 1
2e

+iθσ̄0α̇α (Ξρ
+α − Ξρ

−α) (3.2.73)

∼
∫ d3k

(2π)3 e
ik·x∑

s

e+iθσ̄0α̇αeskα

[
αskw

−s∗
k+ e−i

∫ t
dt′ωk(t′) − se−iαke−iρ · αs∗−kw

−s∗
k− e

+i
∫ t

dt′ωk(t′)
]
,

where

wsk± ≡
1
2

±
√

1 + |ṁ|(t− t0)
ωk

+ s|k| ∓ iµ√
|k|2 + µ2

√
1− |ṁ|(t− t0)

ωk

 . (3.2.74)

Considering the consistency between ξ and ξ† we are once again provided with the
relation linking αsk and βsk:

βsk = e−i(θsk+θs−k) × e−iαke−iρ
|k|+ isµ√

k2 + µ2 · α
s∗
−k, (3.2.75)

where the indefinite phases e−i(θsk+θs−k) can be included in αk coefficient by redefini-
tion.

Quantization can be performed by substituting αsk with 1√
2
ask.

3.3 Influence of interactions
We can extend our method to include quantum corrections, what enables us to

investigate the influence of the interactions on the particle production process.

To obtain the proper occupation number of the produced states we follow the
Bogoliubov transformation method described in Section 2.3, which in the theories
with large interaction terms becomes complicated since the out-state gets affected
by all other fields through the interaction terms. Thus, operator aout

k should differ
then from the non-interacting case.
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Side note: Production of gauge bosons

Method presented in this Chapter can be also applied to the production of
gauge bosons easily. Starting from the Lagrangian [28]

L = −1
4F

µνFµν + (Dµφ)∗Dµφ− λ
(
|φ|2 − v

)2
(3.3.1)

with Dµφ = ∂µ + ieAµφ, we can expand the kinetic term for the scalar field φ

(Dµφ)∗Dµφ = ∂µφ∗∂µφ− ieAµφ∗∂µφ+ ieAµφ∂
µφ∗ + e2AµA

µ|φ|2 (3.3.2)

obtaining the mass of our gauge boson

m2
A = 2e2|φ|2. (3.3.3)

Its equation of motion is given by [17]

A′′k + ω2
kAk = −σkaA′k ≈ 0 (3.3.4)

with ω2
k = k2 + 2e2(v2t2 + µ2), when we assume linear time evolution of the

background: 〈φ〉 = vt+ iµ.

Let us consider some general real scalar field Ψ satisfying the following commu-
tation relation [

Ψ(t,x), Ψ̇(t,y)
]

= iδ3(x− y) (3.3.5)
with the equation of motion that reads

0 =
(
∂2 +M2(x)

)
Ψ(x) + J(x). (3.3.6)

Here M denotes a mass of Ψ, which in general can be coordinate-dependent and we
focus on its time-dependence, and J a source term, which is an operator consisting
of the fields present in the model.

The solution to (3.3.6) is known as the Yang-Feldman equation [29]

Ψ(x) =
√
ZΨas(x)− iZ

∫ x0

tas
dy0

∫
d3y [Ψas(x),Ψas(y)] J(y) (3.3.7)

with Ψas being the free asymptotic field fulfilling

0 =
(
∂2 +M2

)
Ψas (3.3.8)

and Z the field renormalization constant. For the details of the derivation of the
Yang-Feldman equation see Appendix A.

For x0 = tas (3.3.7) transforms into

Ψ(tas,x) =
√
ZΨas(tas,x), (3.3.9)
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so it corresponds to the time, when our interacting field Ψ behaves like a free field.
Thus, we can relate the in-state defined at tas = −∞ ≡ tin with the out-state defined
at tas = +∞ ≡ tout through the expression

Ψout(tout,x) = Ψin(tout,x)− i
√
Z
∫
d4y

[
Ψin(tout,x),Ψin(y)

]
J(y). (3.3.10)

As asymptotic fields are free, they can be expanded into modes

Ψas(x) =
∫ d3k

(2π)3 e
ik·x

[
Ψas
k (x0)aas

k + Ψas∗
k (x0)aas†

−k

]
(3.3.11)

with the equation of motion that reads

0 = Ψ̈as
k + (k2 +M2)Ψas

k (3.3.12)

and the commutation relations of the form[
aas

k , a
as†
k′
]

= (2π)3δ3(k− k′), (other relations) = 0. (3.3.13)

Moreover, mode functions satisfy time-independent inner product relation

Ψ̇as∗
k Ψas

k −Ψas∗
k Ψ̇as

k = i/Z, (3.3.14)

which allows to derive aas
k in terms of Ψas

aas
k = −iZ

∫
d3xe−ik·x

(
Ψ̇as∗
k Ψas −Ψas∗

k Ψ̇as
)
. (3.3.15)

The above relation for out-states reads

aout
k = αka

in
k + βka

in†
−k + (3.3.16)

−Z3/2
∫
d3xe−ik·x

∫
d4y

[
Ψ̇out∗
k (x)Ψin(x)−Ψout∗

k (x)Ψ̇in(x),Ψin(y)
]
J(y) =

= αka
in
k + βka

in†
−k + (3.3.17)

−i
√
Z
∫
d4xe−ik·x

(
−βkΨin

k (x0) + αkΨin∗
k (x0)

)
J(x),

where

αk ≡ −iZ
(
Ψ̇out∗
k Ψin

k −Ψout∗
k Ψ̇in

k

)
, (3.3.18)

βk ≡ −iZ
(
Ψ̇out∗
k Ψin∗

k −Ψout∗
k Ψ̇in∗

k

)
(3.3.19)

are some time-independent coefficients. They satisfy the relations

Ψout
k = α∗kΨin

k − β∗kΨin∗
k , (3.3.20)

Ψin
k = αkΨout

k + β∗kΨout∗
k (3.3.21)

and have a proper normalization

|αk|2 − |βk|2 = 1, (3.3.22)

so we can identify them as the Bogoliubov coefficients including quantum corrections.
So relations (3.3.16) and (3.3.17) describe the generalized Bogoliubov transforma-
tion law with the first two terms reproducing the usual transformation connected
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with the time-dependence of the mass term and the third one purely describing the
effect of interactions.

Finally, the occupation number of produced states including quantum corrections
is of the form

nk ≡
〈
0in
∣∣∣aout†

k aout
k

∣∣∣ 0in
〉

=

=
∣∣∣∣(βkain†

−k − i
√
Z
∫
d4xe−ik·x

(
−βkΨin

k + αkΨin∗
k

)
J
) ∣∣∣0in

〉∣∣∣∣2 = (3.3.23)

=

 V · |βk|2 + · · · (βk 6= 0)
0 + Z

∣∣∣∫ d4xe−ik·xΨin∗
k J |0in〉

∣∣∣2 (βk = 0) ,

where V denotes the volume of the system. Although at the leading order occupa-
tion number can vanish here for βk = 0, we can see that the particle production
process can be also initiated due to quantum corrections then.

For the fermionic case, the results are analogous with one difference: proper
commutation relation.

3.4 SUSY model with a single coupling

It is interesting to investigate the details of our method describing particle pro-
duction in some supersymmetric model. This way we introduce fermions in a very
natural way also cancelling the possible divergences. We can choose a simple but
non-trivial superpotential

W = 1
2gΦX2, (3.4.1)

where Φ andX are chiral superfields which interact via the coupling g. For simplicity
we assume the supersymmetry is unbroken for now. Interactions in this system are
described by the Lagrangian

Lint = −g2|φ|2|χ|2 − 1
4g

2|χ|4 −
(1

2gφψχψχ + gχψφψχ + h.c.
)
, (3.4.2)

where φ/ψφ and χ/ψχ are the scalar/fermion components of Φ and X supermulti-
plets, respectively. Again, we assume that φ carries a vev 〈φ〉 ≡ 〈0in |φ| 0in〉, which
induces a mass g 〈φ〉 for χ and ψχ, keeping ψφ and φ̃ ≡ φ − 〈φ〉 massless. ESP is
placed in the phase space at χ = ψψ = ψχ = 0.

Important feature of this system is the fact that it is the minimal supersymmetric
model containing not only the fields with masses varying in time but also massless
fields. It allows us to compare cases with βk = 0 (φ̃, ψφ) and βk 6= 0 (χ, ψχ) within
a single model.
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3.4.1 One-loop corrections

Potential corresponding to the considered superpotential reads

V = g2|φ|2|X|2 + 1
4g

2|X|2 + 1
2gφψXψX + 1

2gφ
∗ψ+

Xψ
+
X + (3.4.3)

+gXψφψX + gX∗ψ+
φ ψ

+
X +m2

S|X|2.

The particle content of our theory is: one massive fermion ψX (mψ), one massive
scalar X (mX), one massles fermion ψφ and one massless scalar φ, and both fermions
are Weyl spinors. Two-component notation follows [30].

We are interested in one-loop corrections to χ’s and φ’s propagators at low
energies, so we can use on-shell renormalization scheme:

Π2(p2 = m2
R) = 0, (3.4.4)

d

dp2 Π2(p2 = m2
R) = 0, (3.4.5)

where mR denotes the renormalized mass and Π2 - one-loop correction. In this
scheme4

m2
phys = m2

R = m2 − δm2, (3.4.7)

where
δm2 = i

(
m2 d

dp2L
1
p2=m2

R
− L1

p2=m2
R

)
(3.4.8)

and L1 stands for all the diagrams contributing to the one-loop mass correction,
while m2 is the bare mass. We use dimensional regularization with D = 4− ε.

If the background field carries the vacuum expectation value:

φ→ 〈φ〉+ φ (3.4.9)

our potential changes its form to

V = g2|φ|2|X|2 + g2|〈φ〉|2|X|2 + g2〈φ〉φ∗|X|2 + g2〈φ〉∗φ|X|2 + 1
4g

2|X|2 +

+1
2gφψXψX + 1

2g〈φ〉ψXψX + 1
2gφ

∗ψ+
Xψ

+
X + 1

2g〈φ〉
∗ψ+

Xψ
+
X + (3.4.10)

+gXψφψX + gX∗ψ+
φ ψ

+
X +m2

S|X|2,

where mS denotes possible soft mass.

4This relation follows the expression

Π2(p2) = −p2δZ + δm2 + iL1. (3.4.6)
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One-loop corrections for χ and φ read then

Π2
χ(p2) = 2g4|〈φ〉|2

(4π)2

(
(m2

χR
− p2)

[
m2
ψ

m4
χR

+
m2
ψ

m4
χR

(
m2
ψ

m2
χR

− 1
)

log
m2
ψ −m2

χR

m2
ψ

− 1
2m2

χR

]
+

+ log
m2
ψ −m2

χR

m2
ψ − p2 +

m2
ψ

p2 log
m2
ψ − p2

m2
ψ

−
m2
ψ

m2
χR

log
m2
ψ −m2

χR

m2
ψ

− 1
2
p2

m4
χR

[
−m2

χR
+

+(m2
χ +m2

S) log
m2
χ +m2

S

m2
χ −m2

χR
+m2

S

]
− 1

2 + 1
2
m2
χ +m2

S

p2 log
m2
χ +m2

S

m2
χ − p2 +m2

S

)
, (3.4.11)

Π2
φ(p2) = 2g4|〈φ〉|2

(4π)2

(1
2p

2 −m2
φR

) 1
m2
φR

−
4m2

ψ

m2
φR

√
4m2

ψ −m2
φR

arctan mφR√
4m2

ψ −m2
φR

+

+2

√

4m2
ψ − p2

p
arctan p√

4m2
ψ − p2

+

√
4m2

ψ −m2
φR

mφR

arctan mφR√
4m2

ψ −m2
φR

− p2

m2
φR

+

+
4p2(m2

χ +m2
S)

m3
φR

√
4m2

χ −m2
φR

+ 4m2
S

arctan mφR√
4m2

χ −m2
φR

+ 4m2
S

+ 3
2 + log(m2

χ +m2
S) +

+ 1
mφR

2m2
S −m2

φR
−m2

χ√
4m2

χ −m2
φR
−m2

S

arctan mφR√
m2
χ −m2

φR
−m2

S

+

+

√
4m2

S −m2
φR
−m2

χ

p
arctan mφR√

4m2
χ −m2

φR
+ 4m2

S

 , (3.4.12)

while the physical masses are given by these implicit expressions

m2
χR

= g2|〈φ〉|2 +m2
S −

2g2

(4π)2

[
m2
ψ

(
m2
ψ

m2
χR

+
m2
ψ

m4
χR

(m2
ψ −m2

χR
) log

m2
ψ −m2

χR

m2
ψ

− 1
2

)
+

−(g2|〈φ〉|2 +m2
S) log(g2|〈φ〉|2 +m2

S)−m2
ψ

(
m2
ψ

m2
χR

log
m2
ψ −m2

χR

m2
ψ

+ 2
)

+ 1
2g

2|〈φ〉|2
]
,

(3.4.13)

m2
φR

= 2g2

(4π)2

m2
ψ + (m2

χ +m2
S) log(m2

χ +m2
S) +

m2
ψmφR√

4m2
ψ −m2

φR

arctan mφR√
4m2

ψ −m2
φR

+

−2m2
ψ log(m2

ψ) + 1
2g

2|〈φ〉|2 − 1
2g

2|〈φ〉|2
[
log(m2

χ +m2
S)+

+ 2
mφR

2m2
S −m2

φR
−m2

χ√
4m2

χ −m2
φR

+ 4m2
S

arctan mφR√
4m2

χ −m2
φR

+ 4m2
S

 (3.4.14)

and are presented in the Figures 3.3 and 3.4. There can exist several solutions for
a physical mass for a given set of parameters but some of them can be excluded due
to its real value: m2

phys > 0.
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Figure 3.3: Physical mass of χ as a function of a tree-level mass with non-zero (top)
and vanishing (bottom) soft mass.

3.4.2 Influence of interactions
Equations of motion for all the fields are given by

0 = ∂2φ+ J†φ, (3.4.15)
0 =

(
∂2 + g2 |〈φ〉|2

)
χ+ J†χ, (3.4.16)

0 = iσ̄µ∂µψφ − J†ψφ , (3.4.17)

0 = iσ̄µ∂µψχ − g
〈
φ†
〉
ψ†χ − J

†
ψχ

(3.4.18)

with source terms of the form

J†φ ≡ g2|χ|2φ+ 1
2gψ

†
χψ
†
χ, (3.4.19)

J†χ ≡ g2
(
|φ|2 − |〈φ〉|2

)
χ+ 1

2g
2|χ|2χ+ gψ†χψ

†
φ, (3.4.20)

J†ψφ ≡ gχ†ψ†χ, (3.4.21)

J†ψχ ≡ g
(
φ† −

〈
φ†
〉)
ψ†χ + gχ†ψ†φ. (3.4.22)
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Figure 3.4: Physical mass of φ as a function of a tree-level mass with non-zero (top)
and vanishing (bottom) soft mass.

Yang-Feldman equations for all the fields read

φ(x) =
√
Zφφ

as(x)− iZφ
∫ x0

tas
dy0

∫
d3y [φas(x), φas∗(y)] J†φ(y), (3.4.23)

χ(x) =
√
Zχχ

as(x)− iZχ
∫ x0

tas
dy0

∫
d3y [χas(x), χas∗(y)] J†χ(y), (3.4.24)

ψφα(x) =
√
Zψφψ

as
φα(x)− iZψφ

∫ x0

tas
dy0

∫
d3y

{
ψas
φα(x), ψas†

φβ̇
(y)
}
J†β̇ψφ(y),(3.4.25)

ψχα(x) =
√
Zψχψ

as
χα(x) + (3.4.26)

−iZψχ
∫ x0

tas
dy0

∫
d3y

({
ψas
χα(x), ψas†

χβ̇
(y)
}
J†β̇ψχ(y) +

{
ψas
χα(x), ψasβ

χ (y)
}
Jψχβ(y)

)
.
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Asymptotic fields can be expanded into modes

φas = 〈0as |φas| 0as〉+
∫ d3k

(2π)3 e
ik·x

(
φas
k a

+,as
φk + φas∗

k a−,as†
φ−k

)
, (3.4.27)

χas =
∫ d3k

(2π)3 e
ik·x

(
χas
k a

+,as
χk + χas∗

k a−,as†
χ−k

)
, (3.4.28)

ψas
φ =

∫ d3k

(2π)3 e
ik·x

(
e+

kψ
as
φka

+,as
ψφk + e−kψ

as∗
φk a

−,as†
ψφ−k

)
, (3.4.29)

ψas
χ =

∫ d3k

(2π)3 e
ik·x ∑

s=±
esk
(
ψ

(+)s,as
χk as,as

ψχk − se−iθkψ
(−)s,as∗
χk as,as†

ψχ−k

)
, (3.4.30)

satisfying the equations of motion

0 = φ̈as
k + k2φas

k , (3.4.31)
0 = χ̈as

k +
(
k2 + g2 |〈φ〉|2

)
χas
k , (3.4.32)

0 = ψ̇as
φk + i|k|ψas

φk, (3.4.33)
0 = ψ̇

(+)s,as
χk + is|k|ψ(+)s,as

χk + ig
〈
φ†
〉
ψ

(−)h,as
χk , (3.4.34)

0 = ψ̇
(−)s,as
χk − is|k|ψ(−)s,as

χk + ig 〈φ〉ψ(+)h,as
χk , (3.4.35)

where the helicity of fermions is taken into account. In all the expression ± distin-
guishes between the particle and antiparticle for scalars and different helicities for
fermions.

Commutation relations given by

[
as,as
φk , a

r,as†
φk′

]
=
[
as,as
χk , a

r,as†
χk′

]
= (2π)3δ3(k− k′)δsr, (3.4.36){

as,as
ψφk, a

r,as†
ψφk′

}
=
{
as,as
ψχk, a

r,as†
ψχk′

}
= (2π)3δ3(k− k′)δsr (3.4.37)

entail the following inner product relations

i = Zφ
(
φ̇as∗
k φas

k − φas∗
k φ̇as

k

)
, (3.4.38)

i = Zχ (χ̇as∗
k χas

k − χas∗
k χ̇as

k ) , (3.4.39)

1 = Zψφ

∣∣∣ψas
φk

∣∣∣2 , (3.4.40)

1 = Zψχ

(∣∣∣ψ(+)s,as
χk

∣∣∣2 +
∣∣∣ψ(−)s,as
χk

∣∣∣2) , (3.4.41)
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which in turn enable us to formulate all the out-state annihilation operators

a+,out
φk = −iZ

∫
d3xe−ik·x

[
φ̇out∗
k

(
φout −

〈
0out

∣∣∣φout
∣∣∣ 0out

〉)
−φout∗

k

(
φ̇out −

〈
0out

∣∣∣φ̇out
∣∣∣ 0out

〉)]
, (3.4.42)

a−,out†
φ−k = +iZ

∫
d3xe−ik·x

[
φ̇out
k

(
φout −

〈
0out

∣∣∣φout
∣∣∣ 0out

〉)
−φout

k

(
φ̇out −

〈
0out

∣∣∣φ̇out
∣∣∣ 0out

〉)]
, (3.4.43)

a+,out
χk = −iZχ

∫
d3xe−ik·x

(
χ̇out∗
k χout − χout∗

k χ̇out
)
, (3.4.44)

a−,out†
χ−k = +iZχ

∫
d3xe−ik·x

(
χ̇out
k χout − χout

k χ̇out
)
, (3.4.45)

a+,out
ψφk = Zψφ

∫
d3xe−ik·xψout∗

φk · e
+†
k σ̄0ψout

φ , (3.4.46)

a−,out†
ψφ−k = Zψφ

∫
d3xe−ik·xψout

φk · e
−†
k σ̄0ψout

φ , (3.4.47)

as,out
ψχk = Zψφ

∫
d3xe−ik·x

(
ψ

(+)s,out∗
χk · es†k σ̄0ψout

χ + se−iθkψ
(−)s,out
χk · ψout†

χ σ̄0es−k

)
,

(3.4.48)

using proper Yang-Feldman equations.

Moreover, the relation between in and out-states constituting the Bogoliubov
transformation can be obtained

φout(tout,x) = φin(tout,x)− i
√
Zφ

∫
d4y

[
φin(tout,x), φin†(y)

]
J†φ(y), (3.4.49)

χout(tout,x) = χin(tout,x)− i
√
Zχ

∫
d4y

[
χin(tout,x), χin†(y)

]
J†χ(y), (3.4.50)

ψout
φα (tout,x) = ψin

φα(tout,x)− i
√
Zψφ

∫
d4y

{
ψin
φα(tout,x), ψin†

φβ̇
(y)
}
J†β̇ψφ(y),(3.4.51)

ψout
χα (tout,x) = ψin

χα(tout,x)− i
√
Zψχ

∫
d4y

({
ψin
χα(tout,x), ψin†

χβ̇
(y)
}
J†β̇ψχ(y)+

+
{
ψin
χα(tout,x), ψinβ

χ (y)
}
Jψχβ(y)

)
, (3.4.52)

corresponding to the Bogoliubov transformation for creation/annihilation operators
given by

a+,out
φk =

〈
a+,out
φk

〉
+ a+,in

φk − i
√
Zφ

∫
d4xe−ik·xφout∗

k

(
J†φ −

〈
J†φ
〉)
, (3.4.53)

a−,out†
φ−k =

〈
a−,out†
φ−k

〉
+ a−,in†φ−k + i

√
Zφ

∫
d4xe−ik·xφout

k

(
J†φ −

〈
J†φ
〉)
, (3.4.54)

a+,out
χk = αχka

+,in
χk + βχka

−,in†
χ−k − i

√
Zχ

∫
d4xe−ik·xχout∗

k J†χ, (3.4.55)

a−,out†
χ−k = β∗χka

+,in
χk + α∗χka

−,in†
χ−k + i

√
Zχ

∫
d4xe−ik·yχout

k J†χ, (3.4.56)

a+,out
ψφk = a+,in

ψφk − i
√
Zψφ

∫
d4xe−ik·xψout∗

φk · e
+†
k J†ψφ , (3.4.57)

a−,out†
ψφ−k = a−,in†ψφ−k − i

√
Zψφ

∫
d4xe−ik·xψout

φk · e
−†
k J†ψφ , (3.4.58)

as,out
ψχk = αχka

s,in
ψχk + βχka

s,in†
ψχ−k + (3.4.59)

−i
√
Zψχ

∫
d4xe−ik·x

(
ψ

(+)s,out∗
χk · es†k J

†
ψχ

+ se−iθkψ
(−)s,out∗
χk · es−kJψχ

)
.
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Finally, Bogoliubov coefficients for massive fields are of the form

αχk ≡ −iZχ
(
χ̇out∗
k χin

k − χout∗
k χ̇in

k

)
, (3.4.60)

βχk ≡ −iZχ
(
χ̇out∗
k χin∗

k − χout∗
k χ̇in∗

k

)
, (3.4.61)

αsψχk ≡ Zψχ
(
ψ

(+)s,out∗
χk ψ

(+)s,in
χk + ψ

(−)s,out∗
χk ψ

(−)s,in
χk

)
, (3.4.62)

βsψχk ≡ −Zψχse−iθk
(
ψ

(+)s,out∗
χk ψ

(−)s,in∗
χk − ψ(−)s,out∗

χk ψ
(+)s,in∗
χk

)
. (3.4.63)

For massless fields φ and ψφ the usual Bogoliubov coefficients vanish as their mass
does not depend on time and thus their in-states equal to the out-states, φin

k (t) = φout
k (t)

and ψin
φk(t) = ψout

φk (t).

In the interacting theories it is difficult to obtain precise analytical results in an
easy way, usually it is even impossible, and we are left with the numerical analysis.
In order to find the evolution of number density we need to solve equations of motion
for 〈φ〉 and all the in-modes.

For massive particles occupation number at the leading order is given by

nχk ≡
∑
s=±

〈
0in
∣∣∣as,out†
χk as,out

χk

∣∣∣ 0in
〉

= V · 2 |βχk|2 + · · · , (3.4.64)

nψχk ≡
∑
s=±

〈
0in
∣∣∣as,out†
ψχk as,out

ψχk

∣∣∣ 0in
〉

= V ·
∑
s=±

∣∣∣βsψχk

∣∣∣2 + · · · , (3.4.65)

where factor 2 counts degrees of freedom of a complex scalar field. For the linear
evolution of the background, 〈φ〉 = vt+ iµ, it translates into

|βχk|2 =
∣∣∣βsψχ k

∣∣∣2 ∼ e−π
k2+g2µ2
g|v| . (3.4.66)

Quasi-classically number densities of produced massive scalars and fermions are
equal and read

nχ = nψχ =
∫ d3k

(2π)3
nχk
V
∼ 2× (g|v|)3/2

(2π)3 e−πgµ
2/|v|. (3.4.67)

For the massless fields, φ̃ and ψφ, occupation number at the lowest order in g is
given by

nφk ≡
∑
s=±

〈
0in
∣∣∣(as,out†

φk −
〈
as,out†
φk

〉) (
as,out
φk −

〈
as,out
φk

〉)∣∣∣ 0in
〉
≈

≈ V · g2
∫ d3p

(2π)3

[
ZφZ

2
χ

∣∣∣∣∫ dt φout
k χin

|k+p|χ
in
p · g 〈φ∗〉

∣∣∣∣2 + ZφZ
2
χ

∣∣∣∣∫ dt φout
k χin

|k+p|χ
in
p · g 〈φ〉

∣∣∣∣2 +

+1
4ZφZ

2
ψχ

∑
s,r,q

(
1 + rq

p·(k + p)
p|k + p|

)
×
∣∣∣∣∫ dt φout

k ψ
(s)r,in
χ|k+p|ψ

(s)q,in
χp

∣∣∣∣2
]
, (3.4.68)

nψφk ≡
∑
s=±

〈
0in
∣∣∣as,out†
ψφk as,out

ψφk

∣∣∣ 0in
〉
≈

≈ V · g2ZχZψφZψχ

∫ d3p

(2π)3

∑
s,r

1
2

(
1− srk · p

kp

)
×
∣∣∣∣∫ dt ψout

φk χ
in
|k+p|ψ

(s)r,in
χp

∣∣∣∣2 . (3.4.69)
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These expressions simplify when we investigate their physical meaning looking at
the corresponding diagrams, which are presented in the Figure 3.5. It seems like
they violate the energy and momentum conservation laws but nothing more wrong -
time-dependence of the background balances their amount in the system. These di-
agrams correspond to the "inverse decay" processes in varying external background,
which turns out to be the main channel in the production of massless states.

+

n

�k

�

2

n

 

�

k

�

2

 

�

 

�

�

h�i

�

� �

 

�

 

�

2

�

+ (anti-parti
le diagrams)

+ (anti-parti
le diagram)

Figure 3.5: Diagrams corresponding to the production of massless states.

Analytical calculation of the equations (3.4.68) and (3.4.69) is highly limited in
case of the time-dependent theories. Although, it is possible to simplify them to the
form

nφk/V ∼ g2
∫ d3p

(2π)3

∣∣∣∣∣
∫
dt

1√
2k

∣∣∣∣∣
2

e−πp
2/g|v| ∝ g2 · (g|v|)3/2|t|2/k, (3.4.70)

nψφk/V ∼ g2
∫ d3p

(2π)3

∣∣∣∣∣∣
∫
dt

1√
2g|v||t|

∣∣∣∣∣∣
2

e−πp
2/g|v| ∝ g2 ·

√
g|v||t|, (3.4.71)

using some crude approximations for small momentum or equivalently large value
of the background’s vev:

χin
k ∼

1√
2ωk

e−πk
2/2g|v|, (3.4.72)

ψ
(s)r,in
χk ∼ e−πk

2/2g|v|, (3.4.73)
ωk ∼ g|v||t|. (3.4.74)

These approximate results correspond to the exponential suppression of (3.4.66).

We can find analytical expressions for the in-modes for the massless states:
√
Zφφ

in
k (t) = 1√

2|k|
e−i|k|t, (3.4.75)

√
Zψφψ

in
φk(t) = e−i|k|t, (3.4.76)
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while for the massive ones it is only possible to presume WKB approximation. In
our model √

Zχχ
in
k (t) ∼ 1√

2ωk(t)
e−i

∫ t
dtωk(t′), (3.4.77)

√
Zψχψ

(+)s,in
χk (t) ∼ 1√

2
·

√√√√1 + s|k|
ωk(t)

e−i
∫ t

dtωk(t′), (3.4.78)

√
Zψχψ

(−)s,in
χk (t) ∼ 〈φ(t)〉√

2 · |〈φ(t)〉|

√√√√1− s|k|
ωk(t)

e−i
∫ t

dtωk(t′), (3.4.79)

where ωk ≡
√

k2 + g2 |〈φ〉|2. This approximation is valid as long as |〈φ〉| �
√
v/g,

which means that if we start with 〈φ〉 big enough, it is safe to choose initial conditions
given by

√
Zχχ

in
k (0) = 1√

2ωk(0)
, (3.4.80)

χ̇in
k (0) = −i

√
ωk(0)

2 , (3.4.81)

√
Zψχψ

(+)s,in
χk (0) = 1√

2
·

√√√√1 + s|k|
ωk(0) , (3.4.82)

√
Zψχψ

(−)s,in
χk (0) = φ(0)√

2 · |φ(0)|

√√√√1− s|k|
ωk(0) . (3.4.83)

For the out-modes we are again deep outside the non-adiabatic region and thus we
can utilize the WKB-type solutions of the form

√
Zχχ

out
k = 1√

2ωk
e−i

∫ t
dt′ωk(t′), (3.4.84)

√
Zψχψ

(+)s,out
χk = 1√

2
·
√

1 + sk

ωk
e−i

∫ t
dt′ωk(t′), (3.4.85)

√
Zψχψ

(−)s,out
χk = 〈φ〉√

2 |〈φ〉|
·
√

1− sk

ωk
e−i

∫ t
dt′ωk(t′). (3.4.86)

Taking into account the asymptotic field expansion we can also describe the
impact of backreaction on the evolution of φ’s vev. At the 1-loop level in momentum
integration equation governing 〈φ〉 reads

0 =
〈
0in
∣∣∣ ( ∂2φ+ g2 |χ|2 φ+ 1

2gψ
†
χψ
†
χ

) ∣∣∣0in
〉
∼

∼
〈
φ̈
〉

+ g
∫ d3p

(2π)3

(
Zχ
∣∣∣χin
p

∣∣∣2 · g 〈φ〉 − 1
2Zψχ

∑
s

ψ(−)s,in
χp ψ(+)s,in∗

χp

)
. (3.4.87)
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Finally, combining all the information we can end up with the number densities
for massive fields

|βχk|2 ∼
Zχ
(
|χ̇in
k |

2 + ω2
k |χin

k |
2)

2ωk
− 1

2 , (3.4.88)∣∣∣βsψχk∣∣∣2 ∼ 1
2 + sk

2ωk
Zψχ

(∣∣∣ψ(−)s,in
χk

∣∣∣2 − ∣∣∣ψ(+)s,in
χk

∣∣∣2)+ (3.4.89)

− 1
ωk
ZψχRe

(
g 〈φ〉ψ(−)s,in∗

χk ψ
(+)s,in
χk

)
.

Equations needed for determining number densities of produced states, namely
(3.4.68), (3.4.69), (3.4.88) and (3.4.89), are quite difficult to solve analytically but of
course there are numerical solutions available. Figure 3.6 shows our results for some
specific choice of the parameters - our first conclusion is that all the species are pro-
duced, not only the massive ones. Moreover, numerical results for massive states are
in good agreement with the analytical ones, which claim nχ ∼ nψχ ∼ 2.81 × 10−3.
For this choice of parameters the ratios of final densities equal approximately to
nφ/nχ ∼ 28% for bosons and nψφ/nψχ ∼ 1.5% for fermions. To see some general
picture there is a comparison between the number densities of all the species for
different values of coupling g presented in the Table 3.1.

Figure 3.6: Time evolution of |〈φ〉| (right axis) and number densities for all the
species (left axis) for φ(t = 0) = 5.0 + 0.05i, φ̇(t = 0) = −0.5 and g = 1. Approxi-
mate final values of number densities are equal to: nφ = 7.82×10−4, nχ = 2.77×10−3,
nψφ = 4.26× 10−5, nψχ = 2.78× 10−3.

We can see in the Table 3.1 that for the bigger values of g number densities of
produced massless states rise significantly, which is illustrated by the Figure 3.7.
Crucial difference lies in the fact that for stronger coupling we can observe the trap-
ping effect leading to the oscillations of the background, which is absent in the case
of the weak g. For stronger coupling massless bosons φ can be produced as abun-
dantly as massive bosons χ and it seems that their number density exceeds the latter
in the end. We believe it is an artificial effect coming from the limited accuracy of
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g nχ nψχ nφ nψφ
0.1 45.85 50.66 1.83 1.66
0.5 47.33 47.74 4.26 0.66
0.8 45.26 45.36 8.72 0.66
1.5 36.8 37.04 25.03 1.13
1.6 35.67 35.94 27.16 1.24
1.8 32.85 33.14 32.59 1.41
2 43.45 43.61 12.27 0.67

Table 3.1: Number densities of produced species as a part of the whole production
(in %).

our numerical calculations - only up to terms of the order of g2, that can be solved
using interacting field theory as in Chapter 5. Nonetheless, the main conclusion
that the massless species can be produced as efficiently as the massive ones holds.

Figure 3.7: Time evolution of |〈φ〉| (right axis) and all number densities (left axis)
for the stronger coupling g = 2. Other parameters are the same as in the Figure
3.6.

Moreover, we are able to find some functions reproducing time-evolution of the
number densities for the massless species with good accuracy, which is helpful with
no analytical results available. Fitted functions are presented in the Figure 3.8.

Our approximate functions are given by

nφk/V ∼ 0.16 · g
2

4π
1

e
√
πk2/g|v| − 1

· g|v|(t− t∗)2
[

sin 0.52k(t− t∗)
0.52k(t− t∗)

]2

, (3.4.90)

nψφk/V ∼ 0.40 · g
2

4π
1

e
√
πk2/g|v| + 1

·
√
g|v|(t− t∗)

[
sin 0.59k(t− t∗)

0.59k(t− t∗)

]2

,(3.4.91)
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Figure 3.8: Numerically found distribution functions for massless species nφk, nψφk
(thick lines) and corresponding approximate functions for various couplings
g = 0.5, 1, 2 (thin lines). The values of all the parameters are consistent with the
previous plots with numerical results: φ(t = 0) = 5.0 + 0.05i, φ̇(t = 0) = −0.5 and
|v| = 0.5, t∗ = 10 for these functions.
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where t∗ denotes the time when φ’s trajectory is closest to the point φ = 0. They
possess a very interesting structure as they consist of four factors with some numeri-
cal constant - perturbative suppression g2/4π, usual bosonic/fermionic distribution,
time-dependent factor identified as (3.4.70) or (3.4.71) and oscillating part (sine).
For low momentum they mimic the behaviour of (3.4.70) and (3.4.71), but they are
not only limited to this case - they fit numerical results over the whole range of
momenta very well due to the oscillating factor.

3.4.3 SUSY-breaking
We can include SUSY-breaking in our model in two ways:

a) SUSY can be broken from the beginning, before the non-perturbative produc-
tion occurs,

b) SUSY can be broken after the non-perturbative production and before rescat-
tering.

In both cases SUSY is broken during rescattering and decays of the products and it
should be taken into account to have a complete analysis.

We consider two possible soft SUSY-breaking terms:

a) δLsoft = m2
S|χ|2,

b) δLsoft = m2
S|χ|2 + Aφχ2 + h.c.,

where mS denotes the soft mass. Second possibility is crucial in gravity-mediation
scenarios of SUSY-breaking, when A ∼ m, while in other scenarios it just comes
down to the first one (A� m).

For the scenario with soft mass term distribution of produced states after one
"oscillation" reads

nχk = (gv)3/2

(2π)3 e
−
π(g2µ2+m2

S
+k2)

gv (3.4.92)

for SUSY broken before the production and

nχk = (gv)3/2

(2π)3 e
− π
gv

(g2µ2+k2) (3.4.93)

for SUSY broken after the production. In the Figure 3.9 there is the ratio of number
distributions of produced states for broken and unbroken SUSY as a function of v
for different values of soft mass depicted. Soft mass does not depend on the coupling
so in general lighter particles are produced more efficiently.

3.4.4 Comparison between different sources of production
Time-varying vacuum expectation value of the background field induces the pro-

cess of particle production that may have a very miscellaneous origin. We have
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Figure 3.9: Ratio of number distributions of produced states for broken and unbro-
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Solid lines correspond to the smaller values of the coupling g than for the dashed
lines.

already investigated the ones deriving from the vacuum change and quantum cor-
rections, but apart from that it is also important to explore the influence of the
rescattering, the perturbative production or the possible rotation of the basis dur-
ing the whole process.

In our analysis we consider 〈χ〉 to vanish all the time but it may not be generally
true. Vev of χ can be affected by the production in the non-adiabatic area, keeping
the condition 〈χ〉 = 0 only asymptotic. When 〈χ〉 6= 0 we can observe rotation of
the basis for fermionic mass eigenstates, which we can now describe in more details.

For the considered superpotential Lagrangian of interactions for fermions can be
written as

Lψint = −gXψXψφ −
1
2gφψXψX − gX

∗ψ̄Xψ̄φ −
1
2gφ

∗ψ̄Xψ̄X =

= ΨTMΨ + Ψ̄TM∗Ψ̄, (3.4.94)

where

Ψ =
(
ψX
ψφ

)
, Ψ̄ =

(
ψ̄X
ψ̄φ

)
, (3.4.95)

M =
(
−1

2gφ −1
2gX

−1
2gX 0

)
. (3.4.96)

Matrix M is explicitly not diagonal, so in order to obtain mass eigenstates we need
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to diagonalize it using the formula

M = UTM̃U, (3.4.97)

where U is some unitary matrix (U−1 = U †) and M̃ is diagonal. In our case these
two matrices are given by

M̃ =
(
g
4(
√
φ2 + 4X2 − φ) 0

0 −g
4(
√
φ2 + 4X2 + φ)

)
, (3.4.98)

U =


− 2X√

4X2+(φ+
√
φ2+4X2)2

2X√
4X2+(

√
φ2+4X2−φ)2

φ+
√
φ2+4X2√

4X2+(φ+
√
φ2+4X2)2

√
φ2+4X2−φ√

4X2+(
√
φ2+4X2−φ)2

 . (3.4.99)

Mass eigenstates, denoted with a tilde, are simply the product of the following
rotation 

Ψ→ Ψ̃ = UΨ
Ψ̄→ ˜̄Ψ = U∗Ψ̄
ΨT → Ψ̃T = ΨTUT

Ψ̄T → ˜̄Ψ
T

= Ψ̄TU †

(3.4.100)

and their masses read

m̃2
X = 1

4g
2
(√
〈φ〉2 + 4〈X〉2 − 〈φ〉

)2
, (3.4.101)

m̃2
φ = 1

4g
2
(√
〈φ〉2 + 4〈X〉2 + 〈φ〉

)2
. (3.4.102)

Kinetic part of the Lagrangian for fermions reads

Lψkin = 1
2 ψ̄φi

/̄∂ψφ + 1
2ψφi

/̄∂ψ̄φ + 1
2 ψ̄Xi

/̄∂ψX + 1
2ψXi

/̄∂ψ̄X =

= i

2Ψ̄T /̄∂4x4Ψ + i

2ΨT /̄∂4x4Ψ̄, (3.4.103)

which after the rotation (3.4.100) transforms into

Lψ = Ψ̃TM̃Ψ̃ + ˜̄Ψ
T
M̃∗ ˜̄Ψ + i

2
˜̄Ψ
T
U †
−1
/̄∂4x4U

−1Ψ̃ + i

2
˜̄Ψ
T
U †
−1
U−1 /̄∂4x4Ψ̃ +

+ i

2Ψ̃TUT−1
/̄∂4x4U

∗−1 ˜̄Ψ + i

2Ψ̃TUT−1
U∗−1 /̄∂4x4

˜̄Ψ. (3.4.104)

We recover canonically normalized kinetic terms as the matrix U is unitary and
together with introducing the matrix V defined as

V = U †
−1
/̄∂4x4U

−1, (3.4.105)
V ∗ = (UT )−1 /̄∂4x4(U∗)−1 (3.4.106)

the whole Lagrangian simplifies to

Lψ = Ψ̃TM̃Ψ̃+ ˜̄Ψ
T
M̃∗ ˜̄Ψ+ i

2
˜̄Ψ
T
V Ψ̃+ i

2
˜̄Ψ
T
/̄∂4x4Ψ̃+ i

2Ψ̃TV ∗ ˜̄Ψ+ i

2Ψ̃T /̄∂4x4
˜̄Ψ. (3.4.107)
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For our time-dependent theory interaction Lagrangian becomes

L̃ψint = i

2
˜̄Ψ
T
U∂0U

†Ψ̃ + i

2Ψ̃TU∗∂0U
T ˜̄Ψ. (3.4.108)

It means that rotation of the basis introduces some new interactions to the theory
given by

L̃ψint = iAX̄X
˜̄ψXψ̃X + iAφ̄φ

˜̄ψφψ̃φ + iAφ̄Xψ̃X
˜̄ψφ + iAX̄φψ̃φ

˜̄ψX , (3.4.109)

where

AX̄X = 2<
−2X (X∗φ̇∗ − Ẋ∗φ∗)√

φ∗2 + 4X∗2

 1√
4X2 + (φ+

√
φ2 + 4X2)2

×

×
(φ∗ +

√
φ∗2 + 4X∗2)2√

4X∗2 + (φ∗2 +
√
φ∗2 + 4X∗2)2

+ (3.4.110)

− 1√
4X2 + (

√
φ2 + 4X2 − φ)2

(
√
φ∗2 + 4X∗2 − φ∗)2√

4X∗2 + (
√
φ∗2 + 4X∗2 − φ∗2)2

 ,
Aφ̄φ = 2<

2X∗ (X
∗φ̇∗ − Ẋ∗φ∗)√
φ∗2 + 4X∗2

 φ+
√
φ2 + 4X2√

4X2 + (φ+
√
φ2 + 4X2)2

×

× φ∗ +
√
φ∗2 + 4X∗2√

4X∗2 + (φ∗2 +
√
φ∗2 + 4X∗2)2

+ (3.4.111)

+
√
φ2 + 4X2 − φ√

4X2 + (
√
φ2 + 4X2 − φ)2

√
φ∗2 + 4X∗2 − φ∗√

4X∗2 + (
√
φ∗2 + 4X∗2 − φ∗2)2

 ,
Aφ̄X = A∗X̄φ, (3.4.112)

AX̄φ = (Xφ̇− Ẋφ)√
φ2 + 4X2

 φ∗ +
√
φ∗2 + 4X∗2√

4X∗2 + (φ∗ +
√
φ∗2 + 4X∗2)2

(φ+
√
φ2 + 4X2)2√

4X2 + (φ2 +
√
φ2 + 4X2)2

+

+
√
φ∗2 + 4X∗2 − φ∗√

4X∗2 + (
√
φ∗2 + 4X∗2 − φ∗)2

(
√
φ2 + 4X2 − φ)2√

4X2 + (
√
φ2 + 4X2 − φ2)2

+

−4|X|2 (X∗φ̇∗ − Ẋ∗φ∗)√
φ∗2 + 4X∗2

 1√
4X2 + (φ+

√
φ2 + 4X2)2

φ∗ +
√
φ∗2 + 4X∗2√

4X∗2 + (φ∗2 +
√
φ∗2 + 4X∗2)2

+

− 1√
4X2 + (

√
φ2 + 4X2 − φ)2

√
φ∗2 + 4X∗2 − φ∗√

4X∗2 + (
√
φ∗2 + 4X∗2 − φ∗2)2

 (3.4.113)

and we use notation that 〈X〉 := X and 〈φ〉 := φ. All the As are complex or even
purely imaginary but it is acceptable as fermions can carry phases. If we assume
linear dependence on time for both vevs:

X = vXt+ iµX , (3.4.114)
φ = vφt+ iµφ, (3.4.115)

there is no additional interactions when all the parameters have similar values
(vX ≈ µX ≈ vφ ≈ µφ) and when both vevs are real or purely imaginary at the
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same time (X ∈ R, φ ∈ R or X ∈ iR, φ ∈ iR).

For the choice of parameters we use throughout the whole Section, g = 1,
v = −0.5, µ = 0.05, number densities of produced states due to vacuum change
combined with quantum effects are of the order nφ, nχ, nψχ ∼ 10−3 and nψφ ∼ 10−5.
For the rotation of the basis we face more parameters and we cannot choose all of
them in a symmetric way for both fields because there is no new effect left then
(L̃ψint = 0). Instead, we can choose them to be just of the same order, for example:
g = 1, vχ = 0.5, vφ = 0.3, µχ = 0.01, µφ = 0.02, and then, if we approximate
number densities using the numerical factors from the Lagrangian, final number
densities coming from the rotation of the basis are of the order of 10−8÷ 10−9. It is
the mixed term that gives the strongest effect. For the opposite choice of parame-
ters we get approximately the same result, which has been also checked for different
combinations of these parameters’ values. It turns out that the overall effect is a few
orders of magnitude smaller than the production connected with the change of the
vacuum combined with quantum corrections.
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Figure 3.10: Time-dependence of the real part, imaginary part and absolute value
of iAφ̄−X for two different choices of free parameters.

Figure 3.10 presents the time-dependence of one of the new A terms for different
choices of our free parameters. Crucial for our analysis is the fact that their influ-
ence on the overall production is localized only in the vicinity of the bottom of the
potential - all of them possess a symmetric or asymmetric δ shape, which means
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they do not influence the asymptotic states determining the final number density of
produced states in this approximation.

To decide whether scatterings of particles during the process of non-perturbative
production is important one needs to compare the mean path 1

Γ with the time spent

in the non-adiabatic area ∆t = v

gnχ
; when 1

Γ � ∆t their effect is sizeable. For the
supersymmetric model with a single coupling possible processes of such scatterings
are

a) ψχψχ → ψφψφ, χχ → ψφψφ, ψχψχ → φφ, χχ → φφ (in both SUSY-breaking
scenarios, see Section 3.4.3),

b) χχ→ ψχψχ (additional process in gravity-mediation scenario).

Their affect is negligible since

Γ−1
ψχψχ→ψφψφ ∝

v4

n3
χ

� v

gnχ
, (3.4.116)

Γ−1
χχ→ψφψφ ∝

v4

n3
χ

� v

gnχ
, (3.4.117)

Γ−1
ψχψχ→φφ ∝

v4

n3
χ

� v

gnχ
, (3.4.118)

Γ−1
χχ→φφ ∝

v4

g4n3
χ

� v

gnχ
, (3.4.119)

Γ−1
χχ→ψχψχ ∝

v8

g4n5
χ

� v

gnχ
(3.4.120)

and nχ is exponential.

Another possible channel of creating particles is perturbative production outside
the non-adiabatic region in the phase space. Direct decays could in principle spoil
the non-perturbative production as too many χ decays could decrease the energy
stored in their sector so much that the trajectory of 〈φ〉 does not bend and just roll
away to infinity.

Usually we investigate perturbative production using Boltzmann equation [31]
but for our purpose it is enough to discuss some simple qualitative estimation with-
out it. If we choose t = 0 to correspond to the beginning of some stage of the
non-perturbative production, it finishes at t ∼ 1/√gv and momentum of produced
φs and χs is of the order

|k| . √gv ≡ kmax. (3.4.121)
At the same time χ’s mass is then of the form

mχ = gφ ∼ gvt &
√
gv, (3.4.122)

which means that the scattering χχ → φφ (2 massive to 2 massless) is allowed,
while φφ → χχ (2 massless to 2 massive) is not in the perturbative limit. The
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cross-section of this allowed process is given by

σ(χ1χ2 → φ3φ4) =

= 1
4v12E1E2

∫ d3k3

(2π)3
d3k4

(2π)3
|M(χ1χ2 → φ3φ4)|2

4E3E4
(2π)4δ4(k1 + k2 − k3 − k4) =

= 1
128π2

1√
s2 − 4m2

χs

∫
dΩ|M|2 ∼ g4

32π
1√

s2 − 4m2
χs
, (3.4.123)

where s ≡ (k1 +k2)2 = (E1 +E2)2− (k1 +k2)2. Then, the actual number of particles
produced perturbatively between the two subsequent non-perturbative productions
can be estimated as∫ 2v/nχ−1/√gv

1/√gv
dt nχσvχχ = g4

64πnχ
∫ 2v/nχ−1/√gv

1/√gv
dt

1
k2

max +m2
χ

∼

∼ g4

64πnχ
∫ 2v/nχ−1/√gv

1/√gv
dt

1
m2
χ

∼ g3

32π
nχ√
gv3

(
1 +O

(
nχ√
gv3

))
∼ (3.4.124)

∼ g4

(4π)4

(
1 +O

(
g

(2π)3

))
� 1,

assuming that k1 = −k2, |k1| ∼ kmax and nχ ∼ (gv)3/2/(2π)3. As the above value
is much smaller than 1, we can conclude that perturbative effects can be safely ne-
glected in our analysis provided that the parameters of the theory are not chosen in
a very peculiar way, which agrees with [24]. The notation used in this paragraph is
presented in the Figure 3.11.

t = 0t = v/nχ v

t = 2v/nχ

φ

t ∼ 1/
√
gv

∫
dt nχσvχχ =?

Figure 3.11: Illustration of the parameters used to describe the perturbative pro-
duction. The gray circle represents the non-perturbative region in the phase space.

3.5 SUSY model with two couplings
In the model with a single coupling only g determines both the strength of

the interactions and the mass of produced states. Therefore it is difficult to settle,
which effect influences the final production in what way. We can extend it by adding
another term with the second coupling h and the third supermultiplet Ψ, which reads

W = g

2ΦX2 + hΦXΨ2. (3.5.1)
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Even though there is some correction to the previous case added our vacuum choice
is still the same: 〈φ〉 6= 0 (〈φ〉as = vt+ iµ)) and 〈χ〉 = 〈ψ〉 = 0, since the scalar
potential reads:

Vscalar = |gχ+ hψ|2|φ|2 +
∣∣∣∣g2χ+ hψ

∣∣∣∣ |χ|2 + h2|φ|2|χ|2. (3.5.2)

Equations of motion for this model are given by:

0 = ∂2φ+
[(
g2 + h2

)
|χ|2 + h2|ψ|2 + gh (χ∗ψ + χψ∗)

]
φ+ 1

2gχ̃
†χ̃†,

0 = ∂2χ+
[(
g2 + h2

)
|φ|2 + 1

2g
2|χ|2 + h2|ψ|2 + 1

2gh (χ∗ψ + χψ∗)
]
χ+

+gh
(
|φ|2 + 1

2 |χ|
2
)
ψ + gφ̃†χ̃† + hφ̃†ψ̃†,

0 = ∂2ψ + gh
(1

2 |χ|
2 + |φ|2

)
χ+ h2

(
|χ|2 + |φ|2

)
ψ + 1

2hφ̃
†χ̃†, (3.5.3)

0 = iσ̄µ∂µφ̃− (gχ∗ + hψ∗)χ̃† − hχ∗ψ̃†,
0 = iσ̄µ∂µψ̃ − hχ∗φ̃† − hφ∗χ̃†,

0 = iσ̄µ∂µχ̃− (gχ∗ + hψ∗)φ̃† − gφ∗χ̃† − hφ∗ψ̃†,

where we can observe explicit mixing of the states χ and ψ. In order to analyse
particle production here we need to diagonalize the mass matrix and to construct
the basis of mass eigenstates.

Introducing new notation in the above formulae:

J†χ =
[1
2g

2|χ|2 + h2|ψ|2 + 1
2gh (χ∗ψ + χψ∗)

]
χ+ 1

2gh|χ|
2ψ + gφ̃†χ̃† + hφ̃†ψ̃†,

J†ψ = 1
2gh|χ|

2χ+ h2|χ|2ψ + 1
2hφ̃

†χ̃†, (3.5.4)

J†χ̃ = (gχ∗ + hψ∗)φ̃†,
J†
ψ̃

= hχ∗φ̃†

and diagonalizing the mass matrix, we obtain equations of motion for mass eigen-
states (bosons: χ′, ψ′, fermions: χ̃′, ψ̃′) of the form:

∂2χ′ +m2
χ′χ
′ + J†χ′ = 0,

∂2ψ′ +m2
ψ′χ
′ + J†ψ′ = 0, (3.5.5)

0 = iσ̄µ∂µχ̃
′ −mχ̃′χ̃

′ − J†χ̃′ ,
0 = iσ̄µ∂µψ̃

′ −mψ̃′ψ̃
′ − J†

ψ̃′
.

Rotation matrices defined as(
χ′

ψ′

)
= U

(
χ
ψ

)
,

(
J†χ′

J†ψ′

)
= U

(
J†χ
J†ψ

)
,

(
χ̃′

ψ̃′

)
= V

(
χ̃

ψ̃

)
,

J†χ̃′
J†
ψ̃′

 = V

(
J†χ̃
J†
ψ̃

)
(3.5.6)
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are of the form:

U =


− 2h√

4h2+(g−
√
g2+4h2)2

√
g2+4h2−g√

4h2+(g−
√
g2+4h2)2

− 2h√
4h2+(g+

√
g2+4h2)2

√
g2+4h2+g√

4h2+(g+
√
g2+4h2)2

 , (3.5.7)

V =


2h√

4h2+(g−
√
g2+4h2)2

√
g2+4h2−g√

4h2+(g−
√
g2+4h2)2

− 2h√
4h2+(g+

√
g2+4h2)2

√
g2+4h2+g√

4h2+(g+
√
g2+4h2)2

 . (3.5.8)

Mass eigenstates are free since there are no interaction terms coming from the
derivative of diagonalizing matrices which are constant, with masses

m2
χ′ = m2

χ̃′ = 1
2 |〈φ〉|

2
(

2h2 + g2 + g
√
g2 + 4h2

)
, (3.5.9)

m2
ψ′ = mψ̃′ = 1

2 |〈φ〉|
2
(

2h2 + g2 − g
√
g2 + 4h2

)
. (3.5.10)

After one "oscillation" number densities of produced species are then given by

nχ′ = nχ̃′ = 2(g̃vφ)3/2

(2π)3 e−πg̃µ
2/v, (3.5.11)

nψ′ = nψ̃′ = 2(h̃vφ)3/2

(2π)3 e−πh̃µ
2/v, (3.5.12)

where

g̃ ≡ 1
2

(
g +

√
g2 + 4h2

)
, (3.5.13)

h̃ ≡ 1
2

∣∣∣∣g −√g2 + 4h2
∣∣∣∣ . (3.5.14)

(3.5.15)

Details of their evolution are presented in the Figures 3.12 and3.13. We can infer
that the influence of g is stronger than h as it changes the behaviour of nk for differ-
ent species more significantly. Moreover, impact parameter µ differentiates between
the two states only for its small values staying indistinguishable asymptotically.
Apart from that we can see that heavier states are produced more abundantly no
matter what is the choice of the parameters g and h.

3.5.1 Influence of interactions

Again, we are interested in investigating the role of quantum corrections in the
particle production in the extended model. Equations of motion for asymptotic
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Figure 3.12: Occupation number nk for the model with two couplings as a function
of v (top) and µ (bottom).
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Figure 3.13: Occupation number nk for the model with two couplings as a function
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fields read now

0 = φ̈ask + k2φask , (3.5.16)
0 = χ̈

′as
k +

(
k2 +m2

χ′
k

)
χ
′as
k , (3.5.17)

0 = ψ̈
′as
k +

(
k2 +m2

ψ′
k

)
ψ
′as
k , (3.5.18)

0 = ˙̃φask + i|k|φ̃ask , (3.5.19)
0 = ˙̃ψ

′as(+),s
k + is|k|ψ̃

′as(+),s
k + imψ̃′

k
ψ̃
′as(−),s
k , (3.5.20)

0 = ˙̃ψ
′as(−),s
k − is|k|ψ̃

′as(−),s
k + im∗ψ̃′

k
ψ̃
′as(+),s
k , (3.5.21)

0 = ˙̃χ
′as(+),s
k + is|k|χ̃

′as(+),s
k + imχ̃′

k
χ̃
′as(−),s
k , (3.5.22)

0 = ˙̃χ
′as(−),s
k − is|k|χ̃

′as(−),s
k + im∗χ̃′

k
χ̃
′as(+),s
k . (3.5.23)

Having analogous Yang-Feldman equations and inner product relations as for
the case with a single coupling in Section 3.4, we obtain the following occupation
numbers for massive fields

nχ
′

k = 2V |βχ
′

k |2, (3.5.24)
nχ̃
′

k = V
∑
s=±
|βsχ̃

′

k |2, (3.5.25)

nψ
′

k = 2V |βψ
′

k |2, (3.5.26)
nψ̃
′

k = V
∑
s=±
|βsψ̃

′

k |2, (3.5.27)

where

βχ
′

k = −iZχ′
(
χ̇
′out∗
k χ

′in∗
k − χ′out∗k χ̇

′in∗
k

)
, (3.5.28)

βsχ̃
′

k = −Zχ̃′se−iθ
χ̃′
k

(
χ̃
′(+)s,out∗
k χ̃

′(−)s,in∗
k − χ̃

′(−)s,out∗
k χ̃

′(+)s,in∗
k

)
, (3.5.29)

βψ
′

k = −iZψ′
(
ψ̇
′out∗
k ψ

′in∗
k − ψ′out∗k ψ̇

′in∗
k

)
, (3.5.30)

βsψ̃
′

k = −Zψ̃′se−iθ
ψ̃′
k

(
ψ̃
′(+)s,out∗
k ψ̃

′(−)s,in∗
k − ψ̃

′(−)s,out∗
k ψ̃

′(+)s,in∗
k

)
. (3.5.31)

For massless fields it reads

nφ
′

k =
∑
s=±
〈0in|

(
as,out †φ′

k
− 〈as,out †φ′

k
〉
) (
as,outφ′

k
− 〈as,outφ′

k
〉
)
|0in〉 ≈

≈ Zφ′V
∫ d3p

(2π)3

[∣∣∣∣∫ dtφ
′out
k

(
χ′(g2 + h2)χ′in|k+p|χ

′in
p + h2Zψ′ψ

′in
|k+p|ψ

′in
p +

+ghZ1/2
χ′ Z

1/2
ψ′ (χ′in|k+p|ψ

′in
p + ψ

′in
|k+p|χ

′in
p )
)
〈φ′∗〉

∣∣∣2 +

+
∣∣∣∣∫ dtφ

′out
k

(
Zχ′(g2 + h2)χ′in|k+p|χ

′in
p + h2Zψ′ψ

′in
|k+p|ψ

′in
p + (3.5.32)

+ghZ1/2
χ′ Z

1/2
ψ′ (χ′in|k+p|ψ

′in
p + ψ

′in
|k+p|χ

′in
p )
)
〈φ′〉

∣∣∣2 +

+1
4Z

2
χ̃′g

2 ∑
s,q,r

(
1 + rq

p · |k + p|
p|k + p|

) ∣∣∣∣∫ dtφ
′out
k χ̃

′(s)r,in
|k+p| χ̃

′(s)q,in
p

∣∣∣∣2
]
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for boson and

nφ̃
′

k =
∑
s=±
〈0in|as,out †

φ̃′
k

as,out
φ̃′
k

|0in〉 ≈

≈ 1
2Zφ̃′V

∫ d3p

(2π)3

∑
s,r

(
1− srk · p

kp

)
× (3.5.33)

∣∣∣∣∫ dtφ̃
′out
k

(
(gZ1/2

χ′ χ
′in
|k+p| + hZ

1/2
ψ′ ψ

′in
|k+p|)Z

1/2
χ̃′ χ̃

′(s)r,in
p + hZ

1/2
χ′ Z

1/2
ψ̃′
χ
′in
|k+p|ψ̃

′(s)r,in
p

)∣∣∣∣2
for fermion, where we can explicitly see the presence of the new diagrams introduced
by adding a term ”hΦXΨ2” to the superpotential.

Side note: Scale factor in the universe filled with perfect fluid
in terms of cosmic time

Perfect fluid can be described unambiguously by the barotropic parameter w
combining its pressure p and energy density ρ defined as:

w = p

ρ
. (3.5.34)

We can derive the evolution of the scale factor in the universe filled with some
perfect fluid depending solely on this parameter and initial conditions using
continuity and Friedmann equations. For general w 6= −1 we get

ρ(t) = ρ0

(
a

a0

)−3(1+w)
(3.5.35)

and thus the scale factor in terms of cosmic time reads

a(t) = a0

(
t

t0

) 2
3(1+w)

, (3.5.36)

which for a flat space, H2 = 8π
3M2

PL

ρ, transforms into

a = a0

(
1 + 3

2(w + 1)H0(t− t0)
) 2

3(w+1)
. (3.5.37)

If t� t0: a ∝ t
2

3(1+w) .

Value of w determines the way the universe evolves

• w = −1/3: ȧ = a0H0 = const, expansion at a constant rate,

• w > −1/3: ȧ ∝ tα, accelerating expansion,

• w < −1/3: ȧ ∝ 1/t|α|, decelerating expansion.
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3.6 Expanding universe
Due to the lack of energy conservation in curved spacetime, not the one connected

with the explicit time-dependence of the background field but with the expansion
of the universe, transformation of our analysis from the flat to curved spacetimes
needs to be done very carefully. It may even introduce some new processes such
as decays that are forbidden in the flat spacetime because the energy is conserved
there [32].

3.6.1 Production without quantum corrections
Equations of motion for the scalar sector in our model in curved spacetime

without quantum corrections are given by

0 = φ̈+ 3Hφ̇, (3.6.1)

0 = χ̈+ 3Hχ̇− 1
a2∂

2
i χ+ g2|φ|2χ. (3.6.2)

The first one corresponds to the conservation of φ̇ in the comoving volume

0 = d

dt

(
φ̇a3

)
(3.6.3)

and thus the time evolution of φ is given by

φ− φ0 = 2
3(w − 1)

φ̇0

H0

(1 + 3
2(1 + w)H0(t− t0)

)w−1
w+1
− 1

 . (3.6.4)

For different values of the barotropic parameter it means that

• w = 0 (matter domination): φ = φ0 + φ̇0(t− t0) (as in the flat case),

• w = 1
3 (radiation domination): φ = φ0 + φ̇0(t− t0) (as in the flat case),

• w = −1 (scalar field domination, e.g. inflation): φ−φ0 = φ̇0

3H0

(
1− e−3H0(t−t0)

)
.

In order to solve (3.6.2) we need to use the plane wave expansion first

0 = χ̈k + 3Hχ̇k + k

a2χk + g2|φ|2χk, (3.6.5)

where k denotes the momentum not the curvature parameter, and then introduce
some new variable ζk := a3/2χk depending on the cosmic time. It is defined in such
a way to eliminate the term with a single time derivative in (3.6.5) obtaining a very
simple equation of motion instead

0 = ζ̈k + ω2
kζk, (3.6.6)

where
ω2
k = −3

4

(
ȧ

a

)2
− 3

2
ä

a
+ k2

a2 + g2|φ|2. (3.6.7)
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In our model this frequency simplifies to

ω2
k ≈

k2

a2
0

+g2µ2 + 9w
4 H2

0−H0

(
27
4 H

2
0w(1 + w) + 2k

2

a2
0

)
(t−t0)+g2v2(t−t0)2 (3.6.8)

for H0(t − t0) � 1, where H0 =
√

1
3 |v|. This condition assures that the mean

time spent by the 〈φ〉’s trajectory in the non-adiabatic region is smaller than the
Hubble time and it is safe to neglect the expansion of the universe during a single
"oscillation", see Figure 3.14. It can be described by the condition

1
√
gv

<
2

3H(w + 1) , (3.6.9)

where H is a Hubble and w a barotropic parameter. Specific conditions valid in the
periods dominated by different components are presented in the Table 3.2.

non-adiabati


Re t

Im t

t

0

�

1

p

gv

�

2

3(1+w)H

0

t

in

Figure 3.14: Mean time spent by the trajectory of the background in the adiabatic
region compared with the Hubble time.

main component w condition
matter 0 √

gv > 3
2H

radiation 1
3
√
gv > 2H

kinetic term 1 √
gv > 3H

Table 3.2: Conditions allowing for neglecting the expansion of the universe in our
analysis for different dominating components in its energy density budget.
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Figure 3.15: Occupation number nζk for different values of barotropic parameter,
w ∈ {−1, 0, 1} for different ranges on y-axis.

Occupation number presented in the Figure 3.15 is given by

nζk = exp
[
− π

gv

(
k2

a2
0

+ g2µ2 + 9w
4 H2

0

)]
, (3.6.10)

nχk = 1
a3 exp

[
− π

gv

(
k2

a2
0

+ g2µ2 + 9w
4 H2

0

)]
, (3.6.11)
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while the number density reads

nζ = (gv)3/2

(2π)3 a
3
0 exp

[
− π

gv

(
g2µ2 + 9w

4 H2
0

)]
, (3.6.12)

nχ = (gv)3/2

(2π)3

(
a0

a

)3
exp

[
− π

gv

(
g2µ2 + 9w

4 H2
0

)]
. (3.6.13)
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Figure 3.16: The dependence of number density nζ on w, g and v from top to
bottom.

The above formulae hold also for massive fermions as the whole analysis is quasi-
classical, although in this case we observe the cut-off momentum kmax

k2
max/a

2
0 = gv

π
ln(2)− g2µ2 − 9w

4 H2
0 . (3.6.14)
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In this approximation massless states are not produced yet.

Figure 3.17: The dependence of number density nχ on w, g and v from top to bottom
as a function of time.
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3.6.2 Production including quantum corrections
In general, commutation relation for some real scalar field Ψ in curved spacetime

changes to
[Ψ(t,x), Ψ̇(t,y)] = i

a3 δ
3(x− y), (3.6.15)

while the equation of motion reads(
∂2

0 −
1
a2∂

2
i + 3 ȧ

a
∂0 +M2(x)

)
Ψ(x) + JΨ(x) = 0. (3.6.16)

Introducing a new field ψ = a3/2Ψ with the commutation relation

[ψ(t,x), ψ̇(t,y)] = iδ3(x− y), (3.6.17)

once again removes the first derivative term in the above equation transforming it
into (

∂2
0 −

1
a2∂

2
i −

3
2
ä

a
− 3

4H
2 +M2(x)

)
ψ(x) + Jψ(x) = 0 (3.6.18)

with the solution in a form of the Yang-Feldman equation

ψ(x) =
√
Zψas(x)− iZ

x0∫
tas

dy0√−g
∫
d3y[ψas(x), ψas(y)]Jψ(y). (3.6.19)

Again ψas denotes the asymptotic field

ψ(tas,x) =
√
Zψas(tas,x), (3.6.20)

satisfying the free field equation of motion(
∂2

0 −
1
a2∂

2
i −

3
2
ä

a
− 3

4H
2 +M2(x)

)
ψas(x) = 0. (3.6.21)

Following the same procedure as for the flat spacetime, we can finally obtain the
expression describing occupation number of produced ψ states including quantum
corrections

nψk (t) =
∣∣∣∣(βk(t)ain†−k − i

√
Z
∫
d4x
√
−gJψ(x)

[
− βkψin

k (x0) + αkψ
in∗
k (x0)

])
|0in〉

∣∣∣∣2 ,
(3.6.22)

which reads
nψk (t) = V |βk(t)|2 + ... (3.6.23)

for βk 6= 0 and
nψk (t) = 0 + Z

∣∣∣∣∫ d4x
√
−gJψ(x)ψin∗

k (x0)|0in〉
∣∣∣∣2 (3.6.24)

for βk = 0. The presence of the scale factor is encoded in parametrization connecting
Ψ and ψ, the volume of the system V and the new definition of the source term Jψ.

For comoving coordinates Dirac equation in curved spacetime is given by

i
(
γ0∂0 + 1

a
γi∂i −

ȧ

a
γiΣ0i

)
Ψ = mΨ, (3.6.25)
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where Σαβ = 1
4[γα, γβ]5. For FRW metric it reads

i
(
γ0∂0 + 1

a
γi∂i −

3
2Hγ

0
)

Ψ = mΨ. (3.6.26)

Thus, equations of motion for the considered model with the reparametrization
ζk = a3/2χk

θk = a3/2φk

ζ̃k = a3/2ψχk
θ̃k = a3/2ψφk

(3.6.27)

are given by

0 =
[
∂2

0 −
1
a2∂

2
i −

3
2
ä

a
− 3

4

(
ȧ

a

)2]
θ + J†θ , (3.6.28)

0 =
[
∂2

0 −
1
a2∂

2
i −

3
2
ä

a
− 3

4

(
ȧ

a

)2
+ g2|〈φ〉|2

]
ζ + J†ζ , (3.6.29)

0 = i

[
σ̄0∂0 + k

a
σ̄i
]
θ̃k − J†θ̃ , (3.6.30)

0 = i

[
σ̄0∂0 + k

a
σ̄i
]
ζ̃k − g〈φ†〉ζ̃†k − J

†
ζ̃

(3.6.31)

with the source terms of the form

J†θ = a−3
[
g2|ζ|2θ + 1

2a
3/2gζ̃†ζ̃†

]
, (3.6.32)

J†ζ = a−3
[
g2
(1

2 |ζ|
2 + |θ|2 + a3|〈φ〉|2

)
+ ga3/2ζ̃†θ̃†

]
, (3.6.33)

J†
θ̃

= a−3/2gζ†kζ̃
†
k, (3.6.34)

J†
ζ̃

= a−3/2g
(
ζ†kθ̃
†
k + θ†kζ̃k − a3/2〈φ†〉ζ̃k

)
. (3.6.35)

Equations of motion for the free asymptotic fields read

0 = θ̈ask +
[
k2

a2 −
3
2
ä

a
− 3

4

(
ȧ

a

)2]
θask , (3.6.36)

0 = ζ̈ask +
[
k2

a2 ∂
2
i −

3
2
ä

a
− 3

4

(
ȧ

a

)2
+ g2 |〈φ〉|2

]
ζask , (3.6.37)

0 = ˙̃θask + i
k

a
θ̃ask , (3.6.38)

0 = ˙̃ζ(+)s,as
k + is

k

a
ζ̃

(+)s,as
k + ig〈φ†〉ζ̃(−)h,as

k , (3.6.39)

0 = ˙̃ζ(−)s,as
k − isk

a
ζ̃

(−)s,as
k + ig〈φ†〉ζ̃(+)h,as

k , (3.6.40)

where ± labels distinguish between a particle and antiparticle for scalars and indi-
cate the helicity of fermions.

5Σ0i = 1
4[γ0, γi].
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Occupation numbers of massive particles ζ and ζ̃ agree with the case of pro-
duction without quantum corrections at the leading order, while for massless states
they are given by

nθk ≈ g2V
∫ d3p

(2π)3

[
ZθZ

2
ζ

∣∣∣∣∫ dt a−3θout
k ζ in

|k+p|ζ
in
p · g 〈θ∗〉

∣∣∣∣2 +

+ZθZ2
ζ

∣∣∣∣∫ dt a−3θout
k ζ in

|k+p|ζ
in
p · g 〈θ〉

∣∣∣∣2 + (3.6.41)

+1
4ZθZ

2
ζ̃

∑
s,q,r

(
1 + rq

p·(k + p)
p|k + p|

) ∣∣∣∣∫ dt a−3/2θout
k ζ̃

(s)r,in
|k+p| ζ̃

(s)q,in
p

∣∣∣∣2
]

for boson and

nθ̃k ≈ g2V ZζZθ̃Zζ̃

∫ d3p

(2π)3

∑
s,r

1
2

(
1− srk · p

kp

) ∣∣∣∣∫ dt a−3/2θ̃out
k ζ in

|k+p|ζ̃
(s)r,in
p

∣∣∣∣2
(3.6.42)

for fermion, where we can explicitly observe the destructive influence of the scale
factor on the final occupation number for both states.
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Summary of the chapter

• We describe the method of calculating number density of the states produced
due to the time-dependence of the background field based on the asymptotic
approximation of the wave functions and analytic continuation of the time
coordinate. We prove that massless states can be produced as abundantly
as the massive ones due to quantum corrections. We extend our method to
include fermions of different types (Weyl, Majorana and Dirac) and obtain
the general formulae needed for calculating their final number densities. We
introduce the influence of interactions (quantum corrections) on the process
of fermionic production based on the Yang-Feldman formalism.

• We apply the whole method to the supersymmetric model with a single cou-
pling, bosonic and fermionic sector containing both massive and massless fields.
We also compare different possible sources of production (quantum corrections,
perturbative production and rotation of the basis), investigate the one-loop
corrections leading to the physical mass and address the issue of the SUSY-
breaking.

• We extend our considerations to the supersymmetric model with two couplings.

• We show how the expansion of the universe changes our analysis.



Chapter 4

Particle production in adiabatic
approximation for massive
background field - parametric
resonance

Cosmic inflation [33, 34, 35] is a well adopted theory assuming a phase of the ac-
celerated expansion of the scale factor in the early evolution of the Universe, which
solves many problems of the classical cosmological model with the Big Bang [36]
and is compatible with the recent experimental data [37, 38].

Post-inflationary particle production aiming at gaining the radiation dominance
in the Universe is a very complex process that mixes perturbative and non-perturbative
processes [24, 39, 40, 41]. Usually we can distinguish two main stages there:

a) preheating - when exponentially and non-perturbatively produced states typ-
ically correspond to the fields directly interacting with the inflaton, they do
affect the mass term of the inflaton through backreaction effects,

b) reheating (thermalization) [42, 43, 44, 45] - when the inflaton decays perturba-
tively and produced particles end up in thermal equilibrium with a well-defined
temperature.

For recent reviews of post-inflationary particle production see [14] or [43].

This Chapter presents this notion following the classical literature and the Math-
ieu approach, which is in some sense limited to the case when the amplitude of
oscillations is almost constant Φ ≈ Φ0 - apart from some particular cases it is im-
possible to obtain closed-form formulae for the Floquet exponents [14]. Moreover,
we address the issue of parametric resonance following the method from Section 3.1
used previously for the massless background neglecting the influence of quantum
corrections for now. The case including them is the subject of the next chapter.
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4.1 Inflation and post-inflationary particle pro-
duction

Cosmological inflation is a well-grounded hypothesis proposed in 1981 by A. Guth
[36] during his research on magnetic monopoles. It predicts the existence of a period
of accelerated expansion in the early Universe that must end before the beginning of
nucleosynthesis. Field responsible for inflation is called inflaton and it can realize ac-
celerated expansion of the Universe, d

2a

dt2
> 0, by carrying negative pressure1. There

is a plethora of particle physics inflationary scenarios and, while some of them are
consistent with observations, we are unable to chose the "true" one. Nevertheless,
usually it is assumed that after inflation inflaton decays to radiation and some SM
(Standard Model) fields or mediators, which is followed by the usual thermal history
of the Universe with radiation domination, matter domination etc.

Accelerated exponential expansion associated with inflation means that two in-
ertial observers recede with growing velocity, which corresponds to the metric for
one of them that reads

ds2 = −(1− Λr2)dt2 + 1
1− Λr2dr

2 + r2dΩ2,

which is analogous to the black hole metric and describes the de Sitter spacetime.
It requires cosmological constant, Λ, domination and the equation of state p = −ρ,
which dictates almost constant Hubble parameter, H = ȧ

a
∝
√

Λ, and scale factor
exponential in time, eHt.

It has been soon realized that inflationary hypothesis copes with several severe
problems of the present cosmological model dynamically without fine-tuning of the
initial conditions:

a) flatness problem - how to explain the flatness of the Universe?

Present energy density of the Universe is very close to the critical value, ρcr,
which corresponds to the vanishing curvature of space (Euclidean space). Ac-
tual limit reads: |Ω0−1| < 0.02, where Ω = ρ

ρcr
= k

a2H2 +1 and "0" corresponds

to the present time. Function "Ω0−1" grows in time2, which requires significant
fine-tuning. It can be estimated that if right after Big Bang ρBB

ρcr,BB
= 99, 99%,

it would be observed at present that ρ0

ρcr,0
= 10−11%, which corresponds to the

considerable curvature.

Inflationary solution:
During inflation energy density of the inflaton is more or less constant, while for
other components (inhomogeneities, curvature, SM particles etc.) it strongly

1It follows from the Friedmann equation that d2a
dt2 > 0 corresponds to ρ+ 3p < 0

2For RD a ∝ t1/2 and |Ω− 1| ∝ a2, while for MD a ∝ t2/3 and |Ω− 1| ∝ a.
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depends on time making them negligible during inflation. It makes the Uni-
verse flat, symmetric and empty3 after inflation.

b) horizon problem - why the Universe is isotropic and CMB so homogeneous?

It follows from the observations of CMB (Cosmic Microwave Background) that
its temperature fluctuations are of the order ∆T

T
∼ 10−5 on large scales. Re-

gions connected causally at the moment of CMB formation include sections
around ∆θ ≈ 2o now. So there were about 105 separated regions at the moment
of recombination in which observed inhomogeneities are ∼ 10−5 at present.

Inflationary solution:
In inflationary theory expansion of the Universe was initially slow enough to
enable communication between the regions within our horizon and equalize
the temperature there as well.

c) magnetic monopole problem - why no magnetic monopoles are observed?

According to the GUT theory in the early Universe lots of heavy, non-relativistic
and stable magnetic monopoles should be created but they have not been ob-
served so far. They are hypothetically produced before radiation domination,
ρRD ∝ a−4, and their density behaves like ρmono ∝ 1

a3 , which means that even
if their initial abundance is very low they should dominate energy density of
the Universe right away. Apart from the monopoles it concerns also moduli
and gravitinos.

Inflationary solution:
It is assumed that inflation occurs after the hypothetical production of the
monopoles. Rapid expansion of the Universe leads to the decrease of the
observed monopoles’ density by many orders of magnitude.

4.1.1 Early models of inflation
Observed problem of magnetic monopoles lead Guth to its solution by the decay

of false vacuum in the early Universe followed by the inflation driven by the scalar
field. At the same time Starobinsky developed his model of inflation from the per-
spective of modified gravity. Both scenarios predict the de Sitter epoch but differ
in details.

Starobinsky noticed that quantum corrections to general relativity should be
significant for the early Universe, which resulted in corrections to Einstein-Hilbert
action quadratic in the Ricci scalar R and f(R) modification of gravity [46]. For
large curvature it leads to the existence of the effective cosmological constant, which
Starobinsky identified with the de Sitter epoch in the early Universe. It dealt with

3It is only filled with quantum fluctuations.
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the problems of the hitherto cosmological model and introduced some specific cor-
rections to the CMB spectrum that can be calculated. Starobinsky used the action

S = 1
2

∫
d4x

(
R + R2

6M2

)
, (4.1.1)

which corresponds to the potential V (φ) = Λ4
(

1− e−
√

2/3φ/MPL

)2
in the Einstein

frame. Inflationary observables for this model are equal to: ns = 1− 2
N

and r = 12
N2 ,

which for 50 < N < 60 are in agreement with the experimental data from PLANCK.

Guth based his inflationary hypothesis on the metastable false vacuum with huge
positive energy in the early Universe that behaves like cosmological constant. Posi-
tive energy corresponds to negative pressure, which causes accelerated expansion of
the Universe with fixed energy density. The fate of this false vacuum is to decay via
quantum tunnelling into the true vacuum. Guth realized that there is a problem
with reheating after inflation in his model - there was no radiation produced during
nucleation of the bubbles. The only possibility of producing radiation there would
be during the collisions of the bubbles but there are too rare, when inflation lasts
long enough to solve cosmological problems.

4.1.2 Slow-roll inflation
Problem with bubble collisions was solved at the same time by Linde [47], Al-

brecht and Steinhardt [48] with so-called new inflation scenario. Their idea was to
drive inflation by the slow roll of the scalar field on the slope of the potential (slow-
roll inflation), which ends with the reheating phase described by the oscillations of
the field around the minimum of the potential, see Figure 4.1.

Figure 4.1: Scheme of the slow-roll inflation from [23].

Assuming that inflaton φ is minimally coupled to gravity and that its interactions
with other fields become significant after inflation, its action reads

L = 1
2∂µφ∂

µφ− V (φ). (4.1.2)
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Then energy-stress tensor defined as

T µν = ∂µφ∂νφ− Lgµν (4.1.3)

corresponds to energy density and pressure of the scalar field of the form

ρφ = 1
2 φ̇

2 + V (φ), (4.1.4)

pφ = 1
2 φ̇

2 − V (φ), (4.1.5)

assuming FRW metric and vanishing spatial derivatives ∂iφ→ 0. From T µν;ν = 0 we
obtain the equation of motion for the inflaton

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0. (4.1.6)

Slow-roll means that during inflation kinetic energy of inflaton is much smaller than
its potential energy, Ekin � Epot, which corresponds to the approximate de Sitter:
ρφ ≈ V (φ) and pφ ≈ −V (φ). Friedmann equation translates then into

H2 = 8π
3M2

PL

V (φ) (4.1.7)

and the equation of motion simplifies to

3Hφ̇+ V ′(φ) = 0. (4.1.8)

We can define two slow-roll parameters

ε = M2
PL

16π

(
V ′

V

)2

, (4.1.9)

η ≡ M2
PL

8π
|V ′′|
V

, (4.1.10)

that are very small during inflation, 1
3ε � 1 and 1

3 |η| � 1, and their growth con-
strains its end. They originate from the need that during slow-roll inflation kinetic
energy has to be much smaller than potential energy (ε) and that second time deriva-
tive of inflaton is much smaller than the first one (η). Inflation ends when one of
these parameters is of the order of one.

Duration of inflation can be characterized by the number of e-folds

N ≡ log
(
afin
aini

)
(4.1.11)

describing exponential growth of the Universe. For the slow-roll inflation it is equal
to

N =
φfin∫
φini

H

φ̇
dφ = 2

√
π

MPL

φfin∫
φini

dφ√
ε
. (4.1.12)

Depending on the inflationary scenario and the details of reheating we needN ∼ 50÷ 70.



4.1 Inflation and post-inflationary particle production 75

4.1.3 Reheating
Temperature of the Universe decreases significantly during inflation but after-

wards the Universe is dominated by inflaton and gets reheated in the reheating
process. Huge potential energy of the inflaton is then transferred onto the SM
particles or the mediators, including electromagnetic radiation, starting radiation
domination epoch this way. Reheating is a very complicated multi-stage process,
which incorporates the end of inflation in a very natural way.

For simplicity we can describe reheating perturbatively as oscillations of the
inflaton around the minimum of the potential φ0 with the amplitude decreasing in
time right after the breakdown of the slow-roll regime. Equation of motion for the
inflaton reads then

φ̈+ 3Hφ̇+ Γφφ̇+ V ′(φ) = 0 (4.1.13)

with4 V ≈ 1
2ω

2(φ − φ0)2. At the beginning of reheating energy density is accumu-
lated in the inflaton but it gets attenuated by two effects - expansion of the Universe
(H) and the decay of the inflaton (Γφ).

Averaging over time we obtain the equation of state of dust with p = 0. Asymp-
totically for mt� 1 it corresponds to the solution of the form

φ(t)→ φ0

a3/2(t) sin(mt) = mPL√
3πmt

sin(mt), (4.1.14)

where a(t) ≈ t2/3.

Equation of motion for quadratic potential reads

φ̈φ̇+ 3Hφ̇2 + Γφφ̇2 + ω2(φ− φ0)φ̇ = (4.1.15)

=
(1

2 φ̇
2
).

+ 1
2ω

2
(
(φ− φ0)2

).
+ (3H + Γφ) φ̇2 = 0. (4.1.16)

We can rewrite it using

ρφ = 1
2 φ̇

2 + V (φ) = 〈12 φ̇
2〉+ 〈12ω

2(φ− φ0)2〉 = 〈φ̇2〉 (4.1.17)

to finally get
ρ̇φ + (3H + Γφ) ρφ = 0. (4.1.18)

For small coupling Γφ is typically smaller than H at the end of inflation, which
means that at the beginning of reheating decays are negligible in comparison with
the expansion of the Universe. As H decreases production of particles becomes more
effective and at time when H = Γφ produced states gain thermal distribution with
so-called reheating temperature:

TRH ∼ (ΓφMPL)1/2. (4.1.19)

Since Γφ is proportional to some power of the coupling, which in general is small,
perturbative reheating is very ineffective and TRH can be surprisingly much smaller

4Even if the potential is not quadratic, we can approximate it by this expression around its
minimum.
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that the scale of inflation. Nevertheless, TRH is not the maximal temperature
reached during reheating, this one is denoted as TMAX and is proportional to
TMAX ∼ (TRHM)1/2, where M is the scale of inflation.

4.1.4 Preheating
Perturbative approach is unfortunately incomplete as it ignores the fact that

rapid oscillations of inflaton can take place far beyond the equilibrium and lead to
the parametric resonance (preheating). Apart from that it does not take into consid-
eration the nature of inflaton at the beginning of the oscillation phase - it is rather
a coherent oscillating homogeneous field, not a superposition of asymptotic states.
Large amplitude of oscillations indicates that we can treat inflaton as a classical
background in which χ quantum states are produced.

Preheating involves production of particles under extreme conditions - high en-
ergy, instabilities, non-linearities. It concerns the non-adiabatic and non-perturbative
stage of coherent oscillations during which the masses of produced states can change
rapidly in time and even become larger than the mass of inflaton.

The idea of preheating can be illustrated based on very simple model of interac-
tions

Lint = −1
2g

2χ2φ2, (4.1.20)

where χ is some SM field or the mediator. For simplicity we can neglect expansion
of the Universe as it is reasonable to assume that the period of oscillations is shorter
that the Hubble time H−1, see Section 3.6.

Quantum modes of the field χ̂

χ̂(t,x) = 1
(2π)3/2

∫
d3k(χ∗kâkeikx + χkâ

†
ke
−ikx) (4.1.21)

fulfil equation of motion

χ̈k + (k2 +m2
χ + g2Φ2 sin2(mt))χk = 0, (4.1.22)

where Φ is the amplitude of oscillations. This equation is called Mathieu equation

χ′′k + (Ak − 2q cos(2z))χk = 0 (4.1.23)

with

z = mt, (4.1.24)

Ak =
k2 +m2

χ

m2 + 2q, (4.1.25)

q = g2Φ2

4m2 (4.1.26)

and prime denoting the derivative over z. We can consider its solutions mode after
mode remembering that exponential growth of the mode corresponds to particle
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production. Mathieu equation is unstable for some values of k and leads to expo-
nential growth of χk ∝ eµkz, where µk are Floquet exponents.

For small values of q (q � 1) resonance occurs in the narrow area around k = m,
thus it is called narrow resonance. It is much more effective for q � 1, when also
modes with k → 0 are produced, and it is called broad resonance then. Production
has to be non-adiabatic, which is equivalent to breaking the WKB approximation
for the evolution of our field χk ∝ e±i

∫
ωkdt holding for

dω2
k

dt
6 2ω3

k, (4.1.27)

where
ωk =

√
k2 +m2

χ + g2Φ2(t) sin2(mt). (4.1.28)
It means that modes with momentum

k2 6
2

3
√

3
gmΦ−m2

χ (4.1.29)

are produced each time φ approaches zero.

Figure 4.2: Instability bands of Mathieu equation on the A-q plane. Figure copied
from [40].

4.1.5 Observables
Theory of inflation predicts that all the visible structures of the Universe have

their origin in the quantum fluctuations from the inflationary epoch. If their dis-
tribution is Gaussian, all the statistical information about primordial fluctuation is
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specified by the power spectrum (two-point correlation function). Such a spectrum
depends on two parameters: spectral index ns that measures the deviation of the
spectrum from the exact scale invariance (de Sitter universe) and tensor-to-scalar
ratio r. Hypothetical primordial non-gaussianity may be encoded in higher order
correlation functions - for a single field inflation should be small, while for multifield
inflation or single field with non-trivial kinetic term and broken slow-roll conditions
could be non negligible.

The most important measure of primordial fluctuations is power spectrum for R
(gauge-invariant comoving curvature scalar), PR(k), that is directly connected with
density fluctuations:

〈RkRk′〉 = (2π)3δ(k + k′)PR(k), (4.1.30)

∆2
s ≡ ∆2

R = k3

2π2PR(k) (4.1.31)

with the normalization condition for the dimensionless spectrum ∆2
R(k):

〈RR〉 =
∞∫
0

∆2
R(k)d ln k, where 〈...〉 denotes the average over all possible parameters.

Scale dependence of the spectrum is determined by the spectral index:

ns ≡
d ln ∆2

s

d ln k , (4.1.32)

which for ns = 1 corresponds to the exact scale-invariance.

We also define power spectrum of both polarizations of tensor metric fluctuations
hij, h ∈ {h×, h+}, as

〈hkhk′〉 = (2π)3δ(k + k′)Ph(k), (4.1.33)

∆2
h = k3

2π2Ph(k). (4.1.34)

Sumarically, tensor power spectrum is equal to ∆2
t = 2∆2

h and can be normalized in
comparison to the scalar spectrum via tensor-to-scalar ratio

r ≡ ∆2
t (k)

∆2
s(k) . (4.1.35)

Since ∆2
s(k) is fixed and ∆2

t (k) ∝ H2 ≈ V , r translates into the inflationary energy
scale

H = 2.54× 1013GeV
(

r

0.01

)1/2
. (4.1.36)

4.2 Results for scalars
Our analysis based on the method presented in Section 3.1 starts with the sim-

plest scalar model of post-inflationary production with inflaton φ and coupled field
χ, both real scalars,

L = 1
2 (∂φ)2 + 1

2 (∂χ)2 − 1
2m

2φ2 − 1
2g

2φ2χ2. (4.2.1)
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Time evolution of the inflaton can be described as

φ(t) = φ0 cos [m(t− t0)] = (−1)jφ0 cos [m(t− tj)] = (−1)jφ0 sin [m(t− tj − t∗)],
(4.2.2)

where

tj ≡ t0 + j
π

m
, j = 0, 1, 2, ... (4.2.3)

t∗ ≡
π

2m (4.2.4)

and j stands for the number of oscillations. For tj inflaton reaches the maximal am-
plitude and t∗ corresponds to the transition between the minimum and maximum
of the oscillations, see Figure 4.3.
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Figure 4.3: Oscillations of the inflaton and our notation.

Effective production of particles occurs when the non-adiabatic condition is sat-
isfied, namely ∣∣∣∣∣ ω̇kω2

k

∣∣∣∣∣
k∼0

& 1 (4.2.5)

with ωk ≡
√

k2 + g2φ2(t). As long as m� g|φ0| it means

|φ| .
√
m|φ0|
g
∼

√√√√vj∗

g
≡ ∆φj, (4.2.6)

where vj∗ ≡ |φ̇(t = tj + t∗)|. So each time the production process lasts for

∆tj ∼
∆φj
vj∗
∼ 1√

gvj∗
(4.2.7)

for t ∼ tj ± (t∗ −∆tj) we cannot use the usual approximate WKB solution for the
modes of our coupled field χ

χk(t) ∼
1√

2ωk(t)

(
Ake

−i
∫ t

dt′ωk(t′) +Bke
+i
∫ t

dt′ωk(t′)
)
, (4.2.8)
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where Ak and Bk are constants satisfying the normalization condition
|Ak|2 − |Bk|2 = 1. We label the mode valid around t ∼ tj as χjk. Mode for the
subsequent oscillation χj

′

k (t), valid around t ∼ tj′ = tj + 2(j′ − j)t∗, can be con-
nected with χjk(t) via linear combination

χj
′

k (t) = αj
′j∗
k χjk(t)− β

j′j∗
k χj∗k (t), 5 (4.2.9)

where αj
′j
k and βj

′j
k are Bogoliubov coefficients

αj
′j
k =

(
χj
′

k , χ
j
k

)
, (4.2.10)

βj
′j
k =

(
χj
′

k , χ
j∗
k

)
, (4.2.11)

satisfying
∣∣∣αj′jk ∣∣∣2 − ∣∣∣βj′jk ∣∣∣2 = 1.

Number density of produced states can be expressed as

njk =
∣∣∣βj0k ∣∣∣2 , (4.2.12)

what establishes the recurrence equation for the occupation number of produced
states

njk =
∣∣∣βj,j−1
k

∣∣∣2+
(

1 + 2
∣∣∣βj,j−1
k

∣∣∣2)nj−1
k +2

∣∣∣βj,j−1
k

∣∣∣√1 +
∣∣∣βj,j−1
k

∣∣∣2√nj−1
k

(
1 + nj−1

k

)
cos θj,j−1

k ,

(4.2.13)
where θj,j−1

k ≡ Argαj,j−1
k βj,j−1∗

k αj−1,0
k βj−1,0

k is some phase. According to [40], the last
term can be neglected because the stochastic contribution can be averaged to zero.
Following the method from [49], we can express β coefficient between the subsequent
oscillations as

∣∣∣βl+1,l
k

∣∣∣2 ∼ exp
[
−π k

2

gvl∗

]
= exp

[
−π k2

gm|φ0|

]
≡ ∆l

k, (4.2.14)

so (4.2.13) can be expressed as

njk ∼ ∆j−1
k +

(
1 + 2∆j−1

k

)
nj−1
k , (4.2.15)

which is equivalent to

njk + 1
2 ∼

(
nj−1
k + 1

2

) (
1 + 2∆j−1

k

)
. (4.2.16)

It indicates that since we can think of ∆l
k as

(1 d.o.f.)× (Boltzmann suppression factor), (4.2.17)

the first factor in (4.2.16) means that each time after χ field exits the non-adiabatic
area 1 d.o.f. is added. The second term states that 2 d.o.f.s are added per original
1 d.o.f. after the non-adiabatic period, see also Figure 4.4.

5There is no summation over j.
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Figure 4.4: The scheme of the resonant production.

For nlk � 1 relation (4.2.16) can be approximated as [49]

njk ∼ 3j−1 exp
[
−πk

2

gv0
∗
Fj

]
(4.2.18)

with Fj ≡ 1 + 2
3

j−1∑
l=1

v0
∗
vl∗
∼ 2j + 1

3 , which for late times (j � 1) is proportional to

nj ∼ n1 · 3j−1
(

3
2j

)3/2

, (4.2.19)

see Appendix B.

4.3 Results for fermions
It has been already proved that not only bosons but also fermions undergo pre-

heating and one of the main differences between them is the possibility of creating
very heavy fermions from much lighter inflatons, if they are oscillating coherently
[50, 51].

If we consider Majorana fermions ψ coupled to the background scalar field φ,
Lagrangian changes to

L = 1
2 (∂φ)2 + ψ†σ̄µi∂µψ −

1
2m

2φ2 − 1
2yφψψ −

1
2yφψ

†ψ†. (4.3.1)
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Figure 4.5: Ratio nj/n1 as a function of j for a massive background field according
to (4.2.19).

We can expand the field operator ψ as6

ψ(t,x) =
∑
s=±

∫ d3k

(2π)3 e
ik·xesk

(
ψ

(+)s
k (t)ask − se−iθkψ

(−)s∗
k (t)as†−k

)
, (4.3.4)

where ψ(±)s
k and ask are wave functions and creation/annihilation operators respec-

tively.

Fermionic character of produced fields changes Bogoliubov coefficients [16] to

αs,j
′j

k = ψ
j′(+)s∗
k ψ

j(+)s
k + ψ

j′(−)s∗
k ψ

j(−)s
k , (4.3.5)

βs,j
′j

k = −se−iθk
(
ψ
j′(+)s∗
k ψ

j(−)s∗
k − ψj

′(−)s∗
k ψ

j(+)s∗
k

)
, (4.3.6)

satisfying normalization condition
∣∣∣αs,j′jk

∣∣∣2 +
∣∣∣βs,j′jk

∣∣∣2 = 1. Bogoliubov transformation
for the wave functions acquires the following form

ψ
j′(+)s
k = αs,j

′j∗
k ψ

j(+)s
k − se−iθkβs,j

′j∗
k ψ

j(−)s∗
k , (4.3.7)

ψ
j′(−)s
k = se−iθkβs,j

′j∗
k ψ

j(+)s∗
k + αs,j

′j∗
k ψ

j(−)s
k , (4.3.8)

with eiθk ≡ (k1 + ik2)/
√

(k1)2 + (k2)2. The wave function satisfies a following equa-
tion of motion

0 = ψ̇
(±)s
k ± iskψ(±)s

k + iyφψ
(∓)s
k . (4.3.9)

6Inner product is defined as ∣∣∣ψ(+)s
k

∣∣∣2 +
∣∣∣ψ(−)s
k

∣∣∣2 = 1 (4.3.2)

and we have the following commutation relations

{ask, ark′} =
{
as†k , a

r†
k′

}
= 0,

{
ask, a

r†
k′

}
= (2π)3δsrδ3(k− k′), (4.3.3)

where esk is the helicity eigenspinor.
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In analogy to the scalar case, we can find the recurrence equation

βs,j0k = αs,j,j−1
k βs,j−1,0

k + βs,j,j−1
k αs,j−1,0∗

k (4.3.10)

and represent the distribution of produced ψ particles as

ns,jk =
∣∣∣βs,j,j−1

k

∣∣∣2 +
(

1− 2
∣∣∣βj,j−1

k

∣∣∣2)ns,j−1
k + (4.3.11)

+2
∣∣∣βs,j,j−1

k

∣∣∣√1−
∣∣∣βs,j,j−1

k

∣∣∣2√ns,j−1
k

(
1− ns,j−1

k

)
cos θs,j,j−1

k ,

where θs,j,j−1
k ≡ Arg αs,j,j−1

k βs,j,j−1∗
k αs,j−1,0

k βs,j−1,0
k . Once again we finally approxi-

mate the distribution as

ns,jk ∼
1
2 −

1
2
(
1− 2e−πk2/ym|φ0|

)j
, (4.3.12)

which is consistent with Pauli exclusion principle: 0 < ns,jk < 1 for any j, because
0 < ∆̃l

k < 1 for any l.
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Summary of the chapter

• We introduce the concept of inflation and post-inflationary particle production
following the classical literature [24, 39, 40, 41]. We describe general advan-
tages of the inflationary models and the idea of slow-roll inflation. Moreover,
we look more carefully at the main stages of post-inflationary production:
reheating and preheating.

• We develop the method used in the case of massless background to include
massive background neglecting quantum corrections (the framework including
them is the subject of Chapter 5). Obtained results are consistent with the
literature.



Chapter 5

Particle production in interacting
theory for massive background
field

Usually preheating is considered to proceed because of the direct coupling be-
tween the inflaton and other fields, whose production affects inflaton’s mass term
but it is not always the case - it is possible to observe successful particle production
even without the direct coupling, see Chapter 3. In our analysis there we prove that
production of such light states can be abundant, even if they are massless, because
of the quantum corrections.

In general, it is important to investigate carefully the role of light fields present
in the model in the course of preheating. It has been proven that their influence on
the process of particle production and energy transfer is of high importance during
[52, 53, 54] and after inflation for instance for multi-field inflation models and for
curvaton scenarios [55, 56, 57].

Our goal in this Chapter is to develop the results from Chapter 3 in the pre-
heating scenarios with additional light sector. There is one fundamental difference
between these two analyses - our previous results possess some artificial infinite
growth coming from the approximation by asymptotic field, which we want to avoid
now using the theory of interacting field.

5.1 Theory of interacting field
Usually defined occupation number operator Nk ≡ a†kak assumes that produced

states can be treated as free fields, see Section 2.4, so their equations of motion
are linear. But what is interesting from our point of view happens when this lin-
earity gets spoiled, which corresponds to the interactions between particles, and
non-perturbative effects become important. In such a case we need to define num-
ber operator in a proper way using the theory of interacting fields, which takes into
account all these non-linear effects. In this Section we focus on the case of the scalar
field as it is useful for our further analysis, for the fermionic case see Appendix C.
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5.1.1 Real scalar field
Our starting point is the Lagrangian (2.4.1) with the general potential V de-

scribing all the interactions

L = 1
2(∂φ)2 − 1

2m
2
0φ

2 − V [φ, (other fields)], (5.1.1)

where m0 is a bare mass of φ. Equation of motion reads then

0 = (∂2 +m2
0)φ+ ∂V

∂φ
= (∂2 +M2)φ+ J, (5.1.2)

where M denotes the physical mass that in general can be time-dependent1 and
should be a complex number, while

J ≡ (m2
0 −M2)φ+ ∂V

∂φ
(5.1.3)

stands for the source term that could be an operator. Its solution is the Yang-
Feldman equation (see Appendix A)

φ(x) = φ(t)(x)−
x0∫
t

d4y i[φ(t)(x), φ(t)(y)]J(y), (5.1.4)

where φ(t)(x) is an asymptotic free field defined at x0 = t. When φ does not carry
a vev, 〈0as|φ |0as〉 ≡ 〈φ〉 = 0, this asymptotic field can be decomposed into modes

φ(t)(x) =
∫ d3k

(2π)3 e
ik·x

(
φ

(t)
k a

(t)
k + φ

(t)∗
k a

(t)†
−k

)
(5.1.5)

fulfilling harmonic oscillator equation with ω2
k = k2 +M2.

From (5.1.4) we can infer the relation between two asymptotic fields defined at
times x0 = t and x0 = tin

φ(t)(x) = φin(x)−
t∫

tin

d4y i[φin(x), φin(y)]J(y), (5.1.6)

where we introduce the notation φin(x) ≡ φ(tin)(x). Its inner product with the mode
function,

(
φ(t), φ

(t)
k

)
, results in the Bogoliubov transformation that reads [16]

a
(t)
k = αka

in
k + βka

in†
−k −

t∫
tin

d4y i[αkain
k + βka

in†
−k, φ(y)]J(y), (5.1.7)

with the Bogoliubov coefficients defined as

αk = αk(t, tin) ≡ (φ(t)
k , φ

in
k ), (5.1.8)

βk = βk(t, tin) ≡ (φ(t)
k , φ

in∗
k ). (5.1.9)

1In principle physical mass M can depend both on time and space coordinates but we focus on
its time-dependence as it is a more common case in cosmological considerations and it is simpler
at the same time.
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For the wave function it means that

φ
(t)
k = α∗kφ

as
k − β∗kφas∗

k . (5.1.10)

Corresponding Hamiltonian

H =
∫
d3x

[1
2 φ̇

2 + 1
2(∇φ)2 + 1

2m
2
0φ

2 + V
]

(5.1.11)

in terms of the field φ(t)(x) defined by (5.1.6) gains a very complicated structure,
see Appendix D, which simplifies when the Bogoliubov coefficients are of the form:

αk(t) =
√

Ωin
k

2ωk
+ 1

2 , (5.1.12)

βk(t) = Λin∗
k

|Λin
k |

√
Ωin
k

2ωk
− 1

2 , (5.1.13)

where2

Ωin
k ≡ |φ̇in

k |2 + ω2
k|φin

k |2, (5.1.14)
Λin
k ≡ (φ̇in

k )2 + ω2
k(φin

k )2. (5.1.15)

Hamiltonian can be diagonalized in the kinetic terms then and reads

H =
∫ d3k

(2π)3 ωk

(
a

(t)†
k a

(t)
k + 1

2(2π)3δ3(k = 0)
)

+
∫
d3x

[1
2(m2

0 −M2)φ2 + V
]
.

(5.1.16)
Second integral describes the effective potential and the term with Dirac delta cor-
responds to the zero-point energy in our theory, which means that the operator

Nk(t) ≡ a
(t)†
k a

(t)
k (5.1.17)

is actually the number operator. Note that these are not the same creation and
annihilation operators as in the free field theory but the ones defined by (5.1.7),
which implies that

Nk(t) = 1
2ωk

( ˙̂
φ†k

˙̂
φk + ω2

kφ̂
†
kφ̂k

)
+ i

2

(
φ̂†k

˙̂
φk − ˙̂

φ†kφ̂k

)
≡ 1

2
[
N+

k (t) +N−k (t)
]
.

(5.1.18)
HereN±k (t) = a

(t)†
k a

(t)
k ±a

(t)†
−k a

(t)
−k, N+

k denotes a total andN−k a net number of particles
with momentum between k and -k and hat denotes the Fourier transformation

φ̂k(t) ≡
∫
d3xe−ik·xφ(t,x). (5.1.19)

2Functions Ωin
k and Λin

k are related by the condition:

|Ωin
k |2 − |Λin

k |2 = ω2
k.
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Side note: Energy budget in a classical system

Classically the total Hamiltonian of the system, H, can be described as

H = NE + Veff + V0, (5.1.20)

where Veff an effective potential, V0 a zero-point energy, E is a one-particle
energy and N number of particles.

Actual expressions for N±k (t) read

N+
k (t) = 1

ωk

( ˙̂
φ†k

˙̂
φk + ω2

kφ̂
†
kφ̂k

)
− (2π)3δ3(k = 0), (5.1.21)

N−k (t) = i
(
φ̂†k

˙̂
φk − ˙̂

φ†kφ̂k

)
+ (2π)3δ3(k = 0), (5.1.22)

where the zero point term represents the volume of the system

(2π)3δ3(k = 0) =
∫
d3xeik·x|k=0 =

∫
d3x = V. (5.1.23)

Thus, final occupation numbers are of the form

n+
k = N+

k
V

= 1
ωk

( 1
V

˙̂
φ†k

˙̂
φk + ω2

k ·
1
V
φ̂†kφ̂k

)
− 1, (5.1.24)

n−k = N−k
V

= i
( 1
V
φ̂†k

˙̂
φk −

1
V

˙̂
φ†kφ̂k

)
+ 1, (5.1.25)

nk = 1
2ωk

( 1
V

˙̂
φ†k

˙̂
φk + ω2

k ·
1
V
φ̂†kφ̂k

)
+ i

2

( 1
V
φ̂†k

˙̂
φk −

1
V

˙̂
φ†kφ̂k

)
. (5.1.26)

Thus far we assumed that φ does not have a vev. If it is not a case and
〈φ〉 ≡ 〈0in|φ |0in〉 6= 0 the Yang-Feldman equation for a real scalar changes to

φ(x) = 〈φas(x) 〉 + φ̃as(x)−
x0∫
tas

d4y i[φ̃as(x), φ̃as(y)]J(y) =

= 〈φ(x) 〉 + φ̃as(x)−
x0∫
tas

d4y i[φ̃as(x), φ̃as(y)] (J(y)− 〈J(y)〉) , (5.1.27)

where we divide the asymptotic field φas into the background 〈φas 〉 and the quantum
fluctuation φ̃as (〈 φ̃as 〉 = 0), which in turn can be decomposed into modes

φ̃as(x) =
∫ d3k

(2π)3 e
ik·x

(
φas
k a

as
k + φas∗

k aas†
−k

)
. (5.1.28)
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Note that (5.1.27) can be rewritten as

φ(x) = 〈φ(x) 〉 +
φ̃as(x)−

t∫
tas

d4y i[φ̃as(x), φ̃as(y)] (J(y)− 〈J(y)〉)
+

−
x0∫
t

d4y i[φ̃as(x), φ̃as(y)] (J(y)− 〈J(y)〉) , (5.1.29)

which implies that

φ̃(t)(x)− 〈 φ̃(t)(x) 〉 = φ̃as(x)−
t∫

tas

d4y i[φ̃as(x), φ̃as(y)] (J(y)− 〈J(y)〉) (5.1.30)

and results in the Bogoliubov transformation of the form

a
(t)
k − 〈 a

(t)
k 〉 = αk(t)aas

k + βk(t)aas†
−k (5.1.31)

−
t∫

tas

d4y i[α(t)aas
k + βk(t)aas†

−k, φ
as(y)] (J(y)− 〈J(y)〉) .

So the overall difference between the cases with and without the vev is the following
shift: a(t)

k → a
(t)
k − 〈 a

(t)
k 〉 and J → J −〈J〉, while the final results are the same. For

details see Appendix D.

5.1.2 Complex scalar field
When φ is a complex scalar there are a few changes in the previous reasoning

but the overall result for (5.1.21) and (5.1.22) stays the same. We start with the
Lagrangian

L = |∂φ|2 −m2
0|φ|2 − V [φ, φ†] (5.1.32)

with the corresponding equation of motion

0 = (∂2 +m2
0)φ+ ∂V

∂φ†
= (∂2 +M2)φ+ J†, (5.1.33)

where again M can depend on time and

J† ≡ (m2
0 −M2)φ+ ∂V

∂φ†
. (5.1.34)

Yang-Feldman equation slightly changes its form

φ(x) = φ(t)(x)−
∫ x0

t
d4y i[φ(t)(x), φ(t)†(y)]J†(y), (5.1.35)

where
φ(t)(x) =

∫ d3k

(2π)3 e
ik·x

(
φ

(t)
k a

(t)
k + φ

(t)∗
k b

(t)†
−k

)
(5.1.36)

and b(t)†
−k denotes a creation operator for an anti-state.
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Bogoliubov transformation reads now

a
(t)
k = αk(t)ain

k + βk(t)bin†
−k −

∫ t

tin
d4y i[α(t)ain

k + βk(t)bin†
−k, φ

in(y)]J†(y),(5.1.37)

b
(t)†
−k = β∗k(t)ain

k + α∗k(t)b
in†
−k −

∫ t

tin
d4y i[β∗(t)ain

k + α∗k(t)b
in†
−k, φ

in(y)]J†(y),(5.1.38)

where the Bogoliubov coefficients are still defined by (5.1.8) and (5.1.9) and can be
chosen as before, (5.1.12) and (5.1.13), to diagonalize the Hamiltonian

H(t) =
∫
d3x

(
|φ̇(t,x)|2 + |∇φ(t,x)|2 +m2

0|φ(t,x)|2 + V (t,x)
)

= (5.1.39)

=
∫ d3k

(2π)3ωk(t)
(
a

(t)†
k a

(t)
k + b

(t)
−kb

(t)†
−k

)
+
∫
d3x

[
(m2

0 −M2)φ(t,x) + V (t,x)
]
.

Previous N±k (t) becomes N±k (t) = a
(t)†
k a

(t)
k ± b

(t)†
−k b

(t)
−k now but it does not change

the final number of produced states in comparison with the case of real scalar.

5.2 Numerical results for multi-scalar systems
In each particular model we are in the end interested in time-dependence of the

background (inflaton) and evolution of particle number density for all considered
species

n(t) =
∫ d3k

(2π)3
〈Nk〉
V

=
∫ d3k

(2π)3nk, (5.2.1)

where V is the volume of the system and nk the distribution.

In our numerical analysis we follow the procedure described in the previous Sec-
tion - we consider some time range and solve equations of motion for all the states
for the initial time calculating also their number density. We repeat this step for
slightly later time but now taking into account the backreaction of previously pro-
duced states on the evolution of the background and all the species coming from the
induced potential connected with the non-zero energy density. Iteratively we reach
the final time.

However, there is an important subtlety in this calculation, which can be pre-
sented based on the real scalar case. Time evolution of all the distributions there is
determined by time evolution of bilinear products of field operators: 〈 ˙̂

φ†k
˙̂
φk〉, 〈φ̂†kφ̂k〉

and 〈φ̂†k
˙̂
φk〉, whose equations of motion read

〈φ̂†kφ̂k〉· = 〈 ˙̂
φ†kφ̂k〉+ 〈φ̂†k

˙̂
φk〉, (5.2.2)

〈φ̂†k
˙̂
φk〉· = 〈 ˙̂

φ†k
˙̂
φk〉+ 〈φ̂†k

¨̂
φk〉 = 〈 ˙̂

φ†k
˙̂
φk〉 − ω2

k〈φ̂
†
kφ̂k〉 − 〈φ̂†kĴk〉, (5.2.3)

〈 ˙̂
φ†k

˙̂
φk〉· = 〈 ¨̂φ†k

˙̂
φk〉+ 〈 ˙̂

φ†k
¨̂
φk〉 = −ω2

k(〈
˙̂
φ†kφ̂k〉+ 〈φ̂†k

˙̂
φk〉)− 〈 ˙̂

φ†kĴk〉 − 〈Ĵ†k
˙̂
φk〉.(5.2.4)

Physical mass of φ is of the form

0 = 〈φ̂†kĴk〉 = (m2 −M2)〈φ̂†kφ̂k〉+
∫
d3xe−ik·x

〈
φ̂†k
dV (x)
dφ

〉
(5.2.5)
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in order to compensate the infinite part of mass correction.

In the following Subsections we present our numerical results for some specific
models.

5.2.1 Two-scalar system
As the first application we consider a simple theory of two scalar fields φ and χ

L = 1
2(∂φ)2 + 1

2(∂χ)2 − 1
2m

2
φφ

2 − 1
2m

2
χχ

2 − 1
4g

2φ2χ2, (5.2.6)

which is important because it can be compared with other methods present in the
literature. In this system we have the field φ being the inflaton with time-varying
vev 〈0in|φ |0in〉 = 〈φ(t)〉 and another field χ with vanishing vev, for instance some
mediator between the inflaton and the SM. We assume that inflaton is much heavier
than the other field, mφ � mχ.

Asymptotically quantum effects can be neglected and the vacuum solution for
(5.2.6) is linear in time

〈φ〉 = vt+ iµ, (5.2.7)

where v is a velocity in the φ-space and µ an impact parameter. For the description
of particle production in such a case with asymptotic approximation see Chapter 3.

In the two-scalar system number operators are of the form:

N
(+)
φk (t) = 1

ωφk

(
˙̃φ†k

˙̃φk + ω2
φkφ̃

†
kφ̃k

)
− V, (5.2.8)

N
(−)
φk (t) = i

(
φ̃†k

˙̃φk − ˙̃φ†kφ̃k

)
+ V (5.2.9)

(5.2.10)

for φ and

N
(+)
χk (t) = 1

ωχk

(
χ̇†kχ̇k + ω2

φkχ
†
kχk

)
− V, (5.2.11)

N
(−)
χk (t) = i

(
χ†kχ̇k − χ̇†kχk

)
+ V (5.2.12)

for χ, where φ̃ ≡ φ− 〈φ〉. We can rewrite their form to

1
V
N

(+)
φk (t) = Aφk +Bφk, (5.2.13)

1
V
N

(−)
φk (t) = Cφk + C†φk, (5.2.14)

1
V
N

(+)
χk (t) = Aχk +Bχk, (5.2.15)

1
V
N

(−)
χk (t) = Cχk + C†χk, (5.2.16)
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introducing a new set of operators3

Aφk ≡
1
V
· 1
ωφk

˙̃φ†k
˙̃φk −

1
2 , (5.2.21)

Bφk ≡
1
V
· ωφkφ̃†kφ̃k −

1
2 , (5.2.22)

Cφk ≡
1
V
· iφ̃†k

˙̃φk + 1
2 , (5.2.23)

Aχk ≡
1
V
· 1
ωχk

χ̇†kχ̇k −
1
2 , (5.2.24)

Bχk ≡
1
V
· ωχkχ†kχk −

1
2 , (5.2.25)

Cχk ≡
1
V
· iχ†kχ̇k + 1

2 . (5.2.26)

Using the approximation

〈 ˙̃φ†kχp1χp2 〉 = 〈 ˙̃φ†k 〉 〈χp1χp2〉+O(g2) = 0 +O(g2), (5.2.27)
〈 ˙̃φ†kφ̃p1χp2χp3 〉 = 〈 ˙̃φ†kφ̃p1 〉 〈χp2χp3〉+O(g2) (5.2.28)

and momentum conservation4

〈 ˙̃φ†kφ̃p1 〉 = 1
V
· (2π)3δ3(k− p1) 〈 ˙̃φ†kφ̃k 〉 , (5.2.32)

〈χp2χp3〉 = 1
V
· (2π)3δ3(p2 + p3) 〈χ†p3χp3 〉 , (5.2.33)

we can obtain time derivatives of new operators, see Appendix E, and equation of
3Their vevs vanish for WKB type solutions

φ̃k(x0 = tin) = φ̃in
k (x0 = tin) = φin

k a
in
k + φin∗

k ain†
−k, (5.2.17)

χk(x0 = tin) = χin
k (x0 = tin) = χin

k a
in
k + χin∗

k ain†
−k, (5.2.18)

where

φin
k (x0) ∼ 1√

2ωφk(x0)
exp

[
−i
∫ x0

tin
dt′ωφk(t′)

]
, (5.2.19)

χin
k (x0) ∼ 1√

2ωχk(x0)
exp

[
−i
∫ x0

tin
dt′ωχk(t′)

]
. (5.2.20)

4Momentum conservation indicates that for instance

〈X̂†pX̂p′〉 = Cp(2π)3δ3(p− p′), (5.2.29)

where Cp is some numerical factor. For p′ = p:

〈X̂†pX̂p〉 = V · Cp (5.2.30)

and thus
Cp = 1

V
〈X̂†pX̂p〉. (5.2.31)
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motion for the background

0 = 〈 φ̈ 〉 +M2
φ 〈φ〉+ 〈Jφ〉 ≈ 〈 φ̈ 〉 +

(
m2
φ + 1

2g
2
∫ d3p

(2π)3
1
ωχk

(
〈Bχk〉+ 1

2

))
〈φ〉

(5.2.34)
both up to the order O(g4).

Choosing the physical masses as

M2
φ = m2

φ + 1
2g

2
∫ d3p

(2π)3
〈Bχp〉
ωχk

, (5.2.35)

M2
χ = m2

χ + 1
2g

2 〈φ〉2 + 1
2g

2
∫ d3p

(2π)3
〈Bφp〉
ωφk

(5.2.36)

simplifies the final differential equation we need to solve deleting the source terms,
see Appendix E.

Finally, we obtain the formulas for the physical masses

M2
φ = m2

φ + 1
2g

2
∫ d3p

(2π)3

[
1
V
〈χ̂†pχ̂p〉 −

1
2ωχp

]
, (5.2.37)

M2
χ = m2

φ + 1
2g

2〈φ〉2 + 1
2g

2
∫ d3p

(2π)3

[
1
V
〈φ̂†pφ̂p〉 −

1
2ωφp

]
(5.2.38)

and the set of differential equations

0 = 〈φ̈〉+M2
φ〈φ〉, (5.2.39)

〈φ̂†kφ̂k〉· = 〈 ˙̂
φ†kφ̂k〉+ 〈φ̂†k

˙̂
φk〉, (5.2.40)

〈φ̂†k
˙̂
φk〉· = 〈 ˙̂

φ†k
˙̂
φk〉 − ω2

φk〈φ̂
†
kφ̂k〉, (5.2.41)

〈 ˙̂
φ†k

˙̂
φk〉· = −ω2

φk(〈
˙̂
φ†kφ̂k〉+ 〈φ̂†k

˙̂
φk〉), (5.2.42)

〈χ̂†kχ̂k〉· = 〈 ˙̂χ†kχ̂k〉+ 〈χ̂†k ˙̂χk〉, (5.2.43)
〈χ̂†k ˙̂χk〉· = 〈 ˙̂χ†k ˙̂χk〉 − ω2

χk〈χ̂
†
kχ̂k〉, (5.2.44)

〈 ˙̂χ†k ˙̂χk〉· = −ω2
χk(〈 ˙̂χ†kχ̂k〉+ 〈χ̂†k ˙̂χk〉), (5.2.45)

whose solutions put into (5.2.8)-(5.2.12) allow to compute number densities of pro-
duced states.

Figure 5.1 presents our numerical results for the two-scalar system for some cho-
sen values of free parameters. We can see that both species, φ and χ, are produced
and abundance of the lighter states is greater as it is easier to produce them. More-
over, for some specific choices of parameters energy transfer between the background
and the particles associated with inflaton, φ̃, is that small they can be even neglected
in the general picture.

Our numerical results presented in Figure 5.1 are consistent with the analytical
predictions from [24]. From their estimation of the number density of produced χ
particles we can infer

n(1)
χ ∼

1
(2π)3 (gmφ〈φ(0)〉)3/2 ∼ 4× 10−9. (5.2.46)
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Figure 5.1: Time evolution of number density of produced states for g = 0.1,
mφ = 0.001, φ (t = 0) = 1, φ̇(t = 0) = 0 in the system with two scalars. Chosen
values of parameters correspond to mφ ∼ 5 × 1014 GeV and φ(t = 0) = 0.04MPL,
where MPL denotes the Planck mass.

Besides, it is difficult to describe analytically the indirect production of states like φ̃.

We are also in agreement with [49] and their expression for the number density
of produced states

n(j)
χ ∼ n(1)

χ · 3j−1
(5

2

)3/2 1
j5/2 , (5.2.47)

where j denotes the number of oscillations. Based on the Figure 5.1 we can take
j ∼ 10, which according to the above formula corresponds to

n(10)
χ ∼ n(1)

χ ·
39

23 ∼ 2.5 · 103 (5.2.48)

and is consistent with our results. We can also notice that oscillations cease around
the time when 1

2m
2
φ〈φj〉2 ∼ ρ(j)

χ ∼ g〈φj〉n(j)
χ .

Produced states are not in thermal equilibrium but we can estimate some max-
imal reheating temperature

Tmax
R ∼

(30ρR
g∗π2

)1/4
(5.2.49)

under the assumption that all the energy from the background is transferred to the
light sector. These light states interact then with each other, and maybe with some
other particles neglected in our simple Lagrangian, gaining thermal distribution in
the end. In the formula above ρR denotes energy density of the relativistic particles
and g∗ ∼ O(102) the number of relativistic degrees of freedom. The values of the
couplings we consider are big enough to use the relation ρ = mn for the energy
density, while the mass of χ is chosen as in Table 5.1. Thus, our final results for
Tmax
R are also presented in Table 5.1.
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mχ ρχ Tmax
R

125 10−6 1.3 · 10−2

700 5.7 · 10−6 2 · 10−2

Table 5.1: Maximal reheating temperature and energy density of produced states
for two reasonable choices of χ mass, both in GeV. Number densities correspond to
Figure 5.1: nφ ≈ 3.96 · 10−2 GeV and nχ ≈ 8.2 · 10−9 GeV, and we assume that
mφ = 1016 GeV.

5.2.2 System with the additional light sector

It is often in the analysis of preheating that the light fields not coupled directly to
the inflaton are not taken into account. But it turns out that their presence can affect
the features of preheating as they may be produced abundantly via interactions with
some field directly coupled to the background, which is produced through parametric
resonance. We can realize this scenario by adding to (5.2.6) a sector of very light
fields ξn (mφ � mχ,mξ) not coupled to φ and the time-varying background 〈φ〉 at
the tree-level

L = 1
2(∂φ)2 + 1

2(∂χ)2 − 1
2m

2
φφ

2 − 1
2m

2
χχ

2 − 1
4g

2φ2χ2

+
∑
n

1
2(∂ξn)2 −

∑
n

1
2m

2
ξξ

2
n −

∑
n

1
4y

2χ2ξ2
n. (5.2.50)

Other fields, χ and ξn, do not have a vev and they are produced in two ways - χ
resonantly and ξn via the interactions with χ.

Up to the fourth order in couplings the physical mass of ξn reads

M2
ξ = m2

ξ + 1
2y

2
∫ d3p

(2π)3

(
1
V
〈χ̂†pχ̂p〉 −

1
2ωχp

)
+O(y4, y2g2, g4). (5.2.51)

Indeed, we notice that ξn can affect the background through the operator 〈χ†pχp〉 in
their mass term.

Results for only one additional field ξ are presented in Figure 5.2. In fact, we
notice that all the states are produced effectively here, even ξ due to enhanced back-
reaction effects related to the strong coupling. However, parameters are chosen in
this figure in such a way we can observe quenching of the preheating - energy trans-
fer stops when the final number density of ξ is comparable to the one for χ, nξ ∼ nχ.

Our expectation is that the energy transfer would be the most effective towards
very light ξn fields and the more ξn we have, the more energy is transferred there.
Nothing could be more wrong. We can infer from the Figure 5.3 that the more light
species are present in the system, the larger the final value of |〈φ〉| we obtain, which
means smaller energy transfer that could be even terminated. The reason is the
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Figure 5.2: Behaviour of the number density of produced states (top) and the back-
ground (bottom) in the system with additional light sector for g = 0.1, y = 1, n = 1,
mφ = 0.001, φ(t = 0) = 1, φ̇(t = 0) = 0.

form of χ’s physical mass

M2
χ = m2

χ + 1
2g

2〈φ〉2 + 1
2g

2
∫ d3p

(2π)3

(
1
V
〈φ̂†pφ̂p〉 −

1
2ωφp

)
+

+1
2y

2∑
n

(
1
V
〈ξ̂†npξ̂np〉 −

1
2ωξp

)
+O(y4, y2g2, g4), (5.2.52)

which translates into

M2
χ ≈ m2

χ + 1
2g

2〈φ〉2 + 1
2g

2
∫ d3p

(2π)3
1

2ωφp
1
V

〈
N

(+)
φp

〉
+ 1

2y
2∑

n

(
1

2ωξnp
1
V

〈
N

(+)
ξnp

〉)
+

+O(y4, y2g2, g4), (5.2.53)

using the approximation ˙̂
Xp ∼ −iωXpX̂p for X = φ, ξn. Once φ and ξn are pro-

duced they automatically affect χ’s effective mass making it bigger and as a result
χ particle production area becomes smaller. Production of χ is then suppressed,
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which means that too big production of states not coupled to the background, ξn,
damps the production of particles directly coupled to the background, χ.
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Figure 5.3: Envelope function of the time-dependence of the background 〈φ〉 for
g = 0.1, y = 1, mφ = 0.001, φ(t = 0) = 1, φ̇(t = 0) = 0 for different numbers of
light fields ξn: n ∈ {1, 2, 5, 7}.

Above mass corrections correspond to the square of so-called plasma frequency,
which is a critical value settling if the wave of χ particles can enter X’s plasma or
not. If X particles possess masses big enough,

∫ d3p

(2π)3
〈N (+)

k 〉
2ωXpV

∝ nX
MX

. (5.2.54)

Furthermore, for the thermal distribution for massless states5

1
V
〈N (+)

Xp 〉 = 2 1
ep/T − 1 (5.2.55)

it corresponds to the thermal mass that reads
∫ d3p

(2π)3

(
1
V
〈X̂†pX̂p〉 −

1
2ωXp

)
∼ T 2

6 .

Assuming that χ or ξ is the Higgs field means that Higgs is the mediator or the
light field in the scenario at hand. Table 5.2 gathers the maximal reheating temper-
ature and energy densities for each state as for the two-scalar system. Comparing
it with the Table 5.1 proves that adding the light sector rises Tmax

R lowering the
number density of φ particles.

5Factor 2 results from the existence of states with k and −k momenta.
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mχ mξ nξ ρχ ρξ Tmax
R

125 100 1.21 · 10−5 1.24 · 10−3 1.21 · 10−3 0.93 · 10−1

700 125 1.21 · 10−5 6.94 · 10−3 1.51 · 10−3 1.26 · 10−1

Table 5.2: Maximal reheating temperature and energy density of produced states for
two reasonable choices of χ and ξ mass, both in GeV. Number densities correspond
to Figure 5.2: nφ ≈ 1.82 · 10−9 GeV and nχ ≈ 9.91 · 10−6 GeV, and we assume that
mφ = 1016 GeV.

5.3 Discussion

5.3.1 Role of the couplings
Both couplings, g and y, affect the details of particle production in different way,

because their role in the model is different - g couples χ to φ and the background
〈φ〉, while y couples the light sector ξn to χ.

Figure 5.4 presents what happens with the features of preheating if we change
the coupling y with fixed g. We can see that the initial stage of particle production
of χ and φ states is not sensitive to the change of y, only the final abundance of
these states responses to its variation - the bigger y is, the smaller abundance we
observe. Behaviour of ξn’s production differs as both initial and final stages are
affected by the change of y. In Figure 5.5 we can see that the bigger the value of y
is, the higher abundance of ξ we end up with and that the energy transfer is more
effective as the value of y decreases.

produced states varying g varying y
χ, φ both initial and final stages does not influence the initial stage

are strongly influenced: of preheating but
g ↑ ⇔ nφ ↑, nχ ↑ influences the final nχ and nφ:

y ↑ ⇔ nfinal
χ ↓, nfinal

φ ↓

ξn both initial and final stages both initial and final stages
are strongly influenced are strongly influenced

g ↑ ⇔ nξ ↑ y ↑ ⇔ ninitial
ξ ↑

g ↑ ⇔ nfinal
ξ ↓

energy transfer g ↑⇔ energy transfer from 〈φ〉 ↑ y ↑⇔ energy transfer from 〈φ〉 ↓

Table 5.3: Influence of the value of couplings g and y on the details of the production
of all the species and the energy transfer.

Greater g corresponds to the bigger production of χ and φ on both stages, which
is in agreement with intuition - g controls φ’s mass term and thus influence the
production of χ via parametric resonance. In the case of ξ initial growth of number
density is stronger when g is bigger, but the final value of its number density, nfinal

ξ ,
behaves in an opposite way. Also the energy transfer from the background is more
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effective as g gets bigger.

Particular values of these two parameters also play significant role in obtaining
nfinal
ξ ∼ nfinal

χ , which states the condition for quenching preheating.
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Figure 5.4: Number density of produced states χ, φ and ξ for g = 0.1, n = 1,
mφ = 0.001, φ(t = 0) = 1, φ̇(t = 0) = 0 and different values of y coupling. For the
values y = 0.7 and y = 1 we observe quenching of the energy transfer.
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Figure 5.5: Envelope of the time evolution of the background 〈φ〉 for g = 0.1, n = 1,
mφ = 0.001, φ(t = 0) = 1, φ̇(t = 0) = 0 and different values of y coupling. For the
values y = 0.7 and y = 1 we observe quenching of the energy transfer.

old method new method
S. Enomoto, O. Fuksińska, Z. Lalak: 1412.7442 O. Czerwińska, S. Enomoto, Z. Lalak: 1701.00015

massless background massive background
asymptotic approximation interacting field theory

secularity for massless states no secularity

Table 5.4: Comparison between the old and new methods of describing particle
production used in this dissertation. New denotes the interacting theory described
here and old - asymptotic approximation presented in [16] and Chapter 3.

5.3.2 Secularity - comparison with our previous work
Our results from Chapter 3 show that the production of particles not directly

connected to the source can be abundant due to quantum corrections (secondary
effect). However, it seems to include some artificial behaviour at the late stages of
the resonant particle production as we observe linear or even quadratic growth of
number densities of massless particles resulting in their infinite production. This
effect is known as secular growth and comes from an inappropriate perturbative
expansion, even in presence of weak coupling. In general it is not very difficult to
overcome this minor inaccuracy and there are a lot of ways to improve one’s calcu-
lation as long as the condition of universality is fulfilled - late-time behaviour has
to be insensitive to the chosen initial conditions.

Our previous approach assumed that to obtain number densities of produced
states solutions should be expanded around asymptotic free fields. In order to avoid
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such secularity perturbative expansion has to be applied not to solutions but to
equations of motion [58] and non-linear effects without any significant approxima-
tions have to be included for the sake of universality. This secularity is caused by
time integral of the interaction effects with the Green functions - at the late stages
particle production is overestimated because it complies "inverse decay" processes.
To improve our framework we need to represent the number densities by the original
interacting fields, not by the asymptotic ones, and take into account mass correc-
tions as we do in this chapter. Notwithstanding, the results possessing secularity
are still applicable for the early stages of particle production.
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Figure 5.6: Time evolution of number density of produced states (top) and the back-
ground 〈φ〉 (bottom) for a new and old methods for g = 1, mφ = 0.001, φ(t = 0) = 1,
φ̇(t = 0) = 0. New denotes the interacting theory described here and old - asymp-
totic approximation presented in [16] and Chapter 3.
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In the Figure 5.6 we compare these two methods for the Lagrangian (5.2.6).

5.3.3 Instant preheating
On first sight it seems that our considerations may be similar to the process of

instant preheating [42] but it is not the case. In the instant preheating scenario the
system consists of three fields - background φ, χ interacting with the background
and some other field ψ not coupled to φ. It is based on the assumption that χ
particles produced within one-time oscillation of φ field decay instantly to ψ before
the next oscillation of φ begins. So as in our case ψ particles can be also produced
even though there is no direct interaction between φ and ψ, but the mechanism of
production is different - decay instead of quantum corrections, and quenching of
preheating originates in the rapid decay not in a plasma gas effect.

Table 5.5 compares our work with instant preheating in a very general way.

our work instant preheating
inflaton’s behaviour oscillations no oscillations

mechanism of production quantum corrections decay
origin of the quenching backreaction rapid decay

Table 5.5: Brief comparison between instant preheating and our considerations.
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Summary of the chapter

• We develop the results from Chapter 3 in two preheating scenarios with fields
coupled indirectly to the background, two-scalar system and system with ad-
ditional light sector, using the theory of interacting field.

• We investigate the role of the couplings in these models discussing the con-
ditions for obtaining successful quenching of the energy transfer between the
background and the dynamical sector.

• We discuss the profits of using theory of interacting field, which allows to avoid
artificial infinite growth coming from the approximation by asymptotic field
seen before.

• We compare our analysis with instant preheating, which artificially seems to
be related.



Chapter 6

Gravitational reheating and its
cosmological consequences

Cosmological inflation is usually realized by assuming some couplings between
the inflaton and matter fields to obtain a proper reheating scenario. However, when
these couplings are strong, it may lead to non-trivial loop corrections to inflationary
potential, which in principle may spoil its flatness ruining the very basis of the in-
flationary concept. In consequence, this could even spoil the predictions of inflation
[59].

This motivates the studies of alternative models of reheating with gravitational
reheating, which is another example of particle production in the time-dependent
background, as a prime example. In this scenario post-inflationary production of
particles proceeds only due to gravitational interactions [6, 60, 61, 62, 63, 64].

In particular it is interesting to consider instant transition between de-Sitter evo-
lution and a decelerating universe, which produces quantum modes of scalar fields
capable of dominating the Universe and increasing its temperature sufficiently at
some point. Moreover, in this scenario the inflaton does not need to be coupled to
any Standard Model degree of freedom and therefore it may be a part of a dark
sector, which can combine several cosmological open questions - inflation, dark mat-
ter (DM) and dark energy (DE) - at once. In our study we exploit this scenario to
investigate its possible phenomenological consequences regardless of the particular
structure of the dark and inflationary sector. We introduce a dark inflaton as it
couples to SM only gravitationally and is a component of the dark sector. Our dark
inflation is followed by the domination of a perfect fluid with a barotropic parameter
w and then by the usual radiation and matter domination.

There is one other important reason to study gravitational particle production
- the uncertainty in the thermal history of the Universe excludes the precise calcu-
lation of the exact moment of the horizon crossing of the pivot scale [65, 66]. The
number of e-folds before the end of inflation at the pivot scale horizon crossing, N?,
depends on the energy scale at which radiation starts to dominate, ρth, which can
vary from ρth ∼ ρend (an instant reheating scenario) to ρth ∼ MeV4 (radiation has
to dominate before the Big Bang Nucleosynthesis1). This ambiguity significantly

1This condition is the most stringent current experimental constraint on the temperature of
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affects N? and therefore also the predictions of inflationary models. In the dark
inflationary scenario reheating temperature is a precise function of inflationary pa-
rameters, such as scale of inflation and the post-inflationary equation of state, which
makes the results more precise.

Moreover, an attractive feature of the dark inflationary scenario is its simplicity.
Most reheating mechanisms require the existence of additional couplings between
the inflaton and matter fields, while gravitational particle production always occurs,
with or without them, at the end of inflation, regardless of the form of the infla-
tionary potential. Therefore dark inflation can decrease the amount of new physics
needed in order to explain the matter content of the present Universe.

In this chapter we use the convention 8πG = M−2
p , where Mp = 2.435 × 1018

GeV is the reduced Planck mass.

6.1 Dark inflation with gravitational reheating
In order to investigate the gravitational particle production during the transition

era between the de-Sitter expansion, which is a good approximation of the cosmic
inflation era, and a decelerating universe we consider the evolution of the inflaton
and a scale factor as a function of a conformal time η.

As shown in [6], the energy density of radiation generated by gravitational par-
ticle production for the inflaton minimally coupled to gravity is equal to

ρr = H4
inf

128π2

(
aend
a

)4
I , (6.1.1)

where Hinf is the value of the Hubble parameter at the plateau and aend is the value
of the scale factor at the and of inflation. Integral I is defined by

I = −
x∫

−∞

dx1

x∫
−∞

dx2 log(|x1 − x2|)
dṼ (x1)
dx1

dṼ (x2)
dx2

, (6.1.2)

Ṽ (x) =
fxxf − 1

2f
2
x

f 2 , (6.1.3)

f(Hinfη) = a2(η) , (6.1.4)

where Ṽ is a rescaled Ricci scalar, x = Hinfa and fx = df

dx
. The upper limit for the

integration of I corresponds to the moment when Ṽ < 1 and the notion of particle
is well-defined at all times.

Gravitational particle production rate can be estimated analytically by investi-
gating the instant transition between de-Sitter universe and a decelerating solution,
for instance radiation domination [6] or domination of the kinetic energy of a free

reheating. BBN occurs at the MeV scale [67] and the exact temperature varies from 0.7MeV to
5MeV[68, 69].
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scalar field [60]. Our analysis is more general as we assume that the decelerating
universe is filled with any perfect fluid with a constant barotropic parameter w and
thus we can describe the evolution of f(x) in the following way

f(x) =


1
x2 x < −1, de Sitter
a0 + a1x+ a2x

2 + a3x
3 −1 < x < x0 − 1, transition

b0(b1 + x)
4

3w+1 x0 − 1 < x, general w 6= −1/3
, (6.1.5)

where x0 is the transition time between the de-Sitter and decelerating solutions.

Side note: Scale factor in the universe filled with perfect fluid
in terms of conformal time

The scale factor in terms of conformal time reads:a(η) = a0
(
1 + 3w+1

3(w+1)

(
η
η0
− 1

)) 2
3w+1 for w 6= −1

3

a(η) = a0 exp
(
η
η0
− 1

)
for w = −1

3

, (6.1.6)

with a0, t0 and η0 describing chosen initial conditions.

For the de Sitter phase w is equal to −1 and the Hubble parameter is constant
H = Hinf , so the evolution of the scale factor in terms of cosmic and conformal
time can be expressed as:

a(t) = a0e
Hinf(t−t0), (6.1.7)

a(η) = a0

1− a0Hinf(η − η0) (6.1.8)

with t0, η0 and a0 being the constants of integration again.

Our ai and bi coefficients can be calculated using continuity conditions for f(x),
f ′(x) and f ′′(x) at x = −1 and x = x0− 1, which makes the Ricci scalar continuous
throughout the whole period. We assume that the transition under consideration
occurs within the Hubble time, which means x0 < 1 and it follows that:

a0 = 1
4
(
29− 8w + 3w2

)
− 1 + w

2x0
, (6.1.9)

a1 = 3
4

(47
3 − 8w + 3w2

)
− 31 + w

2x0
, (6.1.10)

a2 = 3
4
(
9− 8w + 3w2

)
− 31 + w

2x0
, (6.1.11)

a3 = 1
4
(
5− 8w + 3w2

)
− 1 + w

2x0
, (6.1.12)

b0 =
( 2

1 + 3w

)− 4
1+3w

, (6.1.13)

b1 = 3(1 + w)
1 + 3w . (6.1.14)
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For the w = −1/3 case after the transition (x > x0 − 1) f(x) = b0 exp(b1x− 1) for
and the continuity conditions imply that b0 = 1/2 and b1 = 2 up to O(x0) terms,
while ai coefficients stay the same as for w 6= −1/3.

The biggest contribution to I comes from integration around the transition time,
for x ∈ (x0 − 1,−1), so it can be estimated by

I ' 9(w + 1)2 log
( 1
x0

)
. (6.1.15)

The hitherto results are fully consistent with [6, 60].

Interesting is also to consider the transition between two de Sitter space-times
with different values of Hinf (two subsequent inflationary events at different energy
scales) for which f = b0/(x+ b1)2 for x > x0−1. It turns out that the ai coefficients
satisfy (6.1.9)-(6.1.12), which means there is no x−1

0 term corresponding to I ∝ x2
0

for such a case resulting in a strong suppression of particle production, since we
assume x0 � 1.

Following (6.1.1) the energy density of radiation produced at the end of the dark
inflation can be estimated as

ρr ' H4
inf

9Neff(1 + w)2

128π2

(
aend
a

)4
log

( 1
x0

)
, (6.1.16)

where Neff denotes number of scalar species produced gravitationall for an infla-
ton minimally coupled to gravity2. Non-minimal coupling results in an additional
numerical coefficient in (6.1.16) that is absorbed into Neff . We want to keep our
considerations as model-independent as possible so we simply include a wide range
of possible values of Neff and show the consequences of each choice. For example,
in a specific case of a scalar-tensor theory with a non-minimal coupling of the form
ξφ2R we would have Neff = N(1 − 6ξ)2. Thus, the gravitational particle produc-
tion can be strongly suppressed by the non-minimal coupling close to the conformal
value. The log(1/x0) term should be of order of unity [6] and it is neglected in the
further part of this analysis.

As gravitational particle production is highly inefficient in comparison with most
of the other mechanisms of reheating [60], dark inflation leads to the universe ini-
tially dominated by the inflaton field which needs to be taken care of in order to
end up with the viable thermal history of the Universe. In such a case to obtain
a proper radiation-domination (RD), which is necessary at least during the BBN
era, we need the energy density of the inflaton redshifting faster than radiation after
inflation. This means that dark inflation changes the thermal history of the Universe
by introducing a long period of inflaton domination in the post-inflationary era but
before RD. We assume that the inflaton field may be treated as a perfect fluid with
constant barotropic parameter w and we limit ourselves to w ∈]1/3, 1] due to the
presumption about its redshift.

2Both fermions and vectors may be also produced during the transition between two gravita-
tional vacua but energy densities related to them are too small to significantly contribute to the
reheating of the Universe.
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6.1.1 Inflationary parameters
The universe does not reheat at once when radiation is produced but when it

stars to dominate the energy density of the universe, which means that the reheating
temperature TR fulfils the condition ρr = ρφ. It gives us the expression for the energy
density of inflaton

ρφ = 3H2
infM

2
p

(
aend
a

)3(1+w)
, (6.1.17)

where aend is the scale factor at the end of inflation. Combining (6.1.16) and (6.1.17)
we obtain the scale factor at the moment of reheating

aR = aend

(
128π2M2

p

3Neff(1 + w)2H2
inf

) 1
3w−1

(6.1.18)

and the radiation energy density at that time

ρR ≡ ρr(aR) = 3H2
infM

2
p

(
128π2M2

p

3Neff(1 + w)2H2
inf

)− 3(w+1)
3w−1

. (6.1.19)

Finally it gives us the reheating temperature

TR
Mp

=
(

90
π2g∗(TR)

)1/4 ( 128π2

3Neff(1 + w)2

)− 3(1+w)
4(3w−1)

(
Hinf

Mp

) 3w+1
3w−1

, (6.1.20)

which is presented as a function of the barotropic parameter w for some particular
values ofHinf and Neff in Figure 6.1. We can infer from it that reheating temperature
grows with the barotropic parameter for fixed values of Hinf and Neff - it corresponds
to radiation starting to dominate earlier as the inflaton redshifts away faster.

Successful BBN requires that radiation must dominate the Universe before its
beginning around TBBN ≈ 1MeV [70, 71], which sets a constraint on the values of TR
and Hinf . However, radiation domination does not mean that there are no inflaton
remnants present at the MeV scale, so the overall and the usual radiation domination
Hubble parameters read

H2 = 1
3M2

p

(ρr + ρφ) , H2
r = 1

3M2
p

ρr = 1
3M2

p

π2

30g∗T
4 . (6.1.21)

Then the upper bound on H from BBN can be expressed as [72, 73]
(
H

Hr

)2∣∣∣∣∣
T=TBBN

≤ 1 + 7
43∆Nνeff ≡ α ≈ 1.038 , (6.1.22)

where ∆Nνeff = 3.28− 3.046 denotes the difference between the measured value and
SM prediction for the effective number of neutrinos. In terms of the scale factor it
means that

α− 1 ≥ ρφ
ρr

∣∣∣∣∣
T=TBBN

= ρφ
ρr

∣∣∣∣∣
T=TR

(
aBBN

aR

)4−3(1+w)
=
(
aBBN

aR

)1−3w
. (6.1.23)
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Figure 6.1: Temperature of reheating, TR, as a function of w for some fixed values
of inflationary scale Hinf with Neff ∈ {10−2, 1, 100} from top to bottom. Neff = 10−2

corresponds to the nearly conformal non-minimal coupling to gravity (ξ ' 1/6),
Neff = 1 to ξ = 0 and N = 1 (SM scenario), while N = 100 matches to the
supersymmetric models with ξ = 0.
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We can approximate the energy density of the universe at the moment of BBN by

ρBBN ≈ ρr(aBBN) = π2

30g∗ (TBBN)T 4
BBN , (6.1.24)

which combined with (6.1.16) specifies the value of the scale factor then

aBBN = aend
Hinf

ρ
1/4
BBN

(
9Neff(1 + w)2

128π2

) 1
4

. (6.1.25)

All of the above finally results in the limit on the scale of inflation

Hinf

Mp

≥

(α− 1)−
1

3w−1

(
1
3ρBBN

)1/4

Mp

(
3Neff(1 + w)2

128π2

)− 3
4

1+w
3w−1


3w−1
3w+1

, (6.1.26)

preserving the proper BBN, which translates into the analogous constraint on the
temperature of reheating

TR ≥
(

30
π2g?(TR)

)1/4

(α− 1)−
1

3w−1 ρ
1
4
BBN . (6.1.27)

The above limit turns out to be Neff-independent.

Our lower limit on the scale of inflation corresponds to the usual radiation dom-
ination starting slightly above the BBN temperature, see Figure 6.2. In this figure
we can also see that the minimal reheating temperature is a decreasing function of
w as expected - inflaton remaining after the end of inflation needs more time to
redshift away enough for small w. Moreover, there are two constraints included in
this figure. The first one is that the minimal Hinf allowed is already higher than the
upper bound from the CMB polarization (Hinf . HCMB

inf = 8.5× 1013 [74]) for lower
values of w, which automatically excludes them. The second one Hinf . HBBN

inf ,
also present in Figure 6.3, arises from the necessity not to overproduce gravitational
waves (see Section 6.2) as it would contribute to radiation and eventually spoil BBN
predictions.

We can make an interesting observation in the context of the Higgs instabil-
ity [75, 76] analyzing Figure 6.3. For some part of the parameter space obtained
scales of inflation can be smaller than the GUT scale but if they are greater than
the barrier between the electroweak vacuum and the true high energy minimum of
the Higgs potential (Hinf & 1010 − 1012 GeV), the field would be pushed into the
deeper minimum during inflation [77, 78]. This is true assuming that SM is valid
at least up to the instability scale because any physics beyond SM below it would
allow a higher scale of inflation.

Another parameter characterizing the inflationary scenarios that we can limit in
our considerations about the dark inflation is the number of e-folds before the end
of inflation at the pivot scale horizon crossing [65, 66]

N? ' 67− log
(

k?
a0H0

)
+ 1

4 log
(
Vhor
M4

p

)
+ 1

4 log
(
Vhor
ρend

)
+ 1− 3w

12(1 + w) log
(
ρth
ρend

)
,

(6.1.28)
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Figure 6.2: The minimal reheating temperature TR not spoiling the proper BBN
(solid green line) together with TR corresponding to maximal inflationary scale al-
lowed by CMB polarization data for different values of Neff (Neff = 10−2 dot-dashed,
Neff = 1 dashed and Neff = 102 dotted blue lines) and maximal TR not spoiling the
BBN with overproduction of GWs (Neff = 10−2 dot-dashed, Neff = 1 dashed and
Neff = 102 dotted red lines). The allowed range of reheating temperatures lies
between TR(HCMB/BBN

inf ) and TR(Hmin
inf ).

Figure 6.3: The minimal inflationary scale Hmin
inf not spoiling the proper BBN for dif-

ferent values of Neff (Neff = 10−2 dot-dashed, Neff = 1 dashed and Neff = 102 dotted
green lines) together with the maximal HCMB

inf allowed by current CMB polarization
data (solid blue line) and the maximal HBBN

inf not spoiling the BBN with overpro-
duction of GWs (Neff = 10−2 dot-dashed, Neff = 1 dashed and Neff = 102 dotted red
lines). The allowed range of inflationary Hubble scales lies between HCMB/BBN

inf and
Hmin

inf .
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where k? denotes the pivot scale, a0H0 is the inverse of the comoving Hubble radius
at present, Vhor is the value of the inflaton potential at the horizon crossing, ρend
is the energy density (energy scale) at the end of inflation, ρth describes the energy
scale at which radiation starts to dominate, while w defines the equation of state
after inflation but before the radiation domination era.

For the dark inflation scenario Vhor ∼ ρend ∼ 3H2
inf and ρth = ρR, which together

with k? = 0.002Mpc−1 and ρr defined by (6.1.19) results in

N? ' 64.82 + 1
4 ln

(
128π2

Neff(1 + w)2

)
. (6.1.29)

This value does not directly depend on Hinf , which reduces its uncertainty as Hinf
varies from the GUT scale to the MeV scale in different models of inflation. For
dark inflation N? depends only on two free parameters of the model, namely w and
Neff , and this dependence is logarithmic so it does not influence the change of N?

much, see Figure 6.4. As for the range of these two - w has to be larger than 1/3
in order to provide sufficient redshift of the inflaton after inflation, while Neff may
vary from Neff = 1 for SM minimally coupled gravity to Neff ≈ 100 for MSSM. In
the case of non-minimal coupling for the inflatonNeff can acquire even greater values.

There is one subtlety in the reasoning above as the scale of inflation does not
necessarily need to be of the same order of magnitude as ρend, for example for the
big field models. In case of m2φ2 inflation the value of Vhor may be two orders of
magnitude bigger than ρend. Even though the large field models are disfavoured by
the data it is interesting to investigate the influence of the hierarchy between Vhor
and ρend on (6.1.29) and assume the relation ρend = ζVhor. Then

N? ' 64.82 + 1
4 ln

(
128π2

Neff(1 + w)2

)
+ 1

6
1 + 3w
1 + w

log(ζ) . (6.1.30)

Logarithmic dependence on ζ means that the deviation from (6.1.29) is not very
strong - for the extreme case with w = 1 and ζ = 10−2 the difference is equal to
−2/3, which is not a very altering correction. Apart from that it seems that ζ . 1
is a grounded assumption for a huge class of inflationary models consistent with
observations, for example Starobinsky inflation, α-attractors or ξ-attractors.

Another parameter testing the viability of the inflationary model is the tensor-
to-scalar ratio r characterizing the ratio between tensor and scalar power spectrum,
see Section 4.1, which according to the data should be rather small with the present
upper bound r < 0.09 [38]. There is a correspondence between r and the inflationary
scale described by the power spectrum normalization condition

r

0.01 =
(
Hinf

ΛCOBE

)2
(6.1.31)

with ΛCOBE = 2.54×1013GeV. Therefore, we can translate our bound on inflationary
scale (6.1.26) to the one on the tensor-to-scalar ratio

r

0.01 >
(

Mp

ΛCOBE

)2
(α− 1)−

1
3w−1

(
1
3ρBBN

)1/4

Mp

(
3Neff(1 + w)2

128π2

)− 3
4

1+w
3w−1


2 3w−1

3w+1

.(6.1.32)
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Figure 6.4 presents the values of rmin as a function of N and w and shows that dark
inflation is compatible with the experimental data as long as the value of w is not
very small.

Figure 6.4: The values of N? (left) and rmin (right) as a function of w for several
values on Neff listed in the right panel. We can infer from the behaviour of tensor-to-
scalar ratio that most of specific realizations of the inflationary sector can be made
consistent with these constraints as it is natural to obtain r . 0.1 here.

6.2 Gravitational waves
Inflationary scenarios predict also the features of produced background of primor-

dial gravitational waves (GW) represented by the tensor fluctuations of the metric
tensor. They could be observed in the polarization of the CMB and could exclude
or confirm different inflationary models.

For simplicity we assume a scale invariant primordial power spectrum that can
be approximated as in [79] for the dark inflation scenario

PGW(k) = 2H2
inf

π2M2
p

, (6.2.1)

but we need its present shape in order to compare it with observations. The present
GW spectrum can be described by [80]

ΩGWh
2(k, τ0) =


k2

12a2
0H

2
0
PGW(k)T 2

T(k, τ0) for k ≤ kR

k2

12a2
0H

2
0
PGW(k)T 2

T(k, τ0)
(
k
kR

) 6w−2
3w+1 for kR < k ≤ kend

, (6.2.2)

where T 2
T(k, τ0) is the transfer function [81, 82], kend is the highest reachable scale

and kR = aRH(aR), which during radiation domination era can be computed us-
ing (6.1.18)-(6.1.21). Behaviour for kR < k ≤ kend comes from the period of



114 Gravitational reheating and its cosmological consequences

w-domination after inflation.

The role of the transfer function is to describe the evolution of GWs in the late
history of the Universe starting from matter domination era. These waves reenter
the horizon at late times and very small scale which corresponds to a very low
frequency f ≈ 10−17 − 10−18 Hz. This sets an upper limit on the inflationary scale
with the current value Hinf . 8.5 × 10−13. However, we are focused in GWs that
reeenter the horizon much earlier - during the domination of inflaton after inflation,
because GWs redshift much slower than the background then, which results in an
enhanced abundance at present. The transfer function reads

T 2
T(k, τ0) = 3Ωmj1(kτ0)

kτ0

√√√√1 + 1.36
(
k

keq

)
+ 2.5

(
k

keq

)2

, (6.2.3)

where Ωm is the present matter abundance, keq corresponds to matter-radiation
equality and j1(x) ≈ (

√
2x)−1 is the spherical Bessel function. Scale kend may be

obtained using (6.1.18)-(6.1.21) again

kend
kR

= aendH(aend)
aRH(aR) = 1

2

(
ρend
ρR

) 1
2−

1
3(1+w)

= 1
2

(
128π2M2

p

3Neff(1 + w)2H2
inf

) 1+3w
2(1−3w)

. (6.2.4)

For dark inflation we observe the increase of GW density ΩGWh
2 for high fre-

quencies, which may have observational consequences in the future. Unfortunately, if
inflaton is minimally coupled to gravity (Neff ≥ 1), it would be impossible to observe
this additional increase in the near future, see Figure 6.5. However, in the case of
non-minimal coupling close to its conformal value (Neff � 1) this new feature can be
reached by LIGO or future spaced based experiments in coming years, see Figure 6.6.

In our analysis for illustrative purpose we focus on the case with w = 1 as the
effect of the amplification of ΩGW due to w-domination period is the strongest here.

As Neff � 1 can be realized by inflaton non-minimally coupled to gravity ξφ2R
for ξ very close to the conformal value features of GWs signal can not only probe
thermal history of the Universe but also the presence of non-minimal coupling.

In Figures 6.2 and 6.3 we include additional upper bound preserving standard
BBN from the overproduction of GWs. It could be caused by the smaller redshift of
GWs during inflaton dominated period than during radiation domination [61], which
ends up with GWs effectively contributing as extra radiation at BBN. Its present
abundance is limited by observations and, as we can see n Figure 6.2 and 6.3, for big
values of w it constraints the parameter space even more than the usual CMB bound.

Our assumption in this section is that the spectrum of primordial gravitational
waves is completely scale-independent, which seems to be consistent with observa-
tions. Scale dependence is described by the spectral index nT and strongly depends
on the considered inflationary scenario. For the small field models currently favored
by the data nT is small, which corresponds to quasiscale independence. In fact,
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Figure 6.5: Gravitational wave energy density, ΩGWh
2, for w = Neff = 1 and several

values of Hinf . The reach of current experiments using BBN data [83, 84], present
and planned LIGO capabilities [85, 86, 87] and European Pulsar Timing Array [88]
is marked. Also planned reach of future experiments LISA (with the most optimistic
configuration A5M5) [82], BBO and DECIGO [89], SKA [90] and CMB polarization
[91, 92] is shown.

Figure 6.6: Gravitational wave energy density, ΩGWh
2, for fixed w = 1, several

values of Neff and maximal Hinf allowed.

non-zero index would not influence the above results much and our analysis stays
as model-independent as it can be.
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Summary of chapter

• We introduce the concept of dark inflation driven by a field coupled to the SM
only gravitationally and investigate its cosmological consequences. Such a field
does not fully decay after inflation and can dominate the energy density of the
universe for some time after inflation resulting in the presence of additional
era before RD in the thermal history of the Universe.

• We discuss gravitational reheating in this scenario in a very general way re-
gardless of the precise dynamics of the inflationary sector. It is realized by
purely gravitational particle production during the transition between a de-
Sitter inflationary era and a post-inflationary era dominated by a perfect fluid
with some barotropic parameter w. In order to obtain the standard thermal
history at later times energy density of the remaining inflaton has to redshift
faster than radiation, which results in w > 1/3.

• We calculate several inflationary parameters - scale of inflation, temperature
of reheating, tensor-to-scalar ratio and number of e-folds - for our model and
describe their meaning for the cosmological predictions. For example, we argue
that N? does not depend strongly on Hinf and w being almost constant for all
considered examples, which defines the thermal history of the Universe more
accurately.

• We also present experimental bounds on the inflationary scale. There are
two competing upper bounds - the usual one originating in the upper limit on
tensor-to-scalar ratio and the one coming from the demand not to overproduce
gravitational waves during inflaton domination. As for the lower limit on Hinf ,
it corresponds to the remaining inflaton redshifting fast enough in order not
to spoil BBN.

• We obtain the evolution of the primordial gravitational waves generated during
inflation with an amplification of the signal during the w-domination period.
We discuss the possibility of measuring this effect by the present and forth-
coming experiments focusing on the w = 1 case as it produces the strongest
signal - only in the case of Neff � 1 their reach includes the region of amplifi-
cation, otherwise signal is strengthened for too high frequencies. Neff � 1 can
be realized by nearly conformal non-minimal coupling to gravity.
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Summary

The aim of this dissertation is to study cosmological particle production in time-
dependent backgrounds. We consider various realisations of this problem starting
from the adiabatic approximation for massless and then massive backgrounds, fol-
lowed by the interacting theory describing the intermediate period of production in
a more accurate way and gravitational reheating with an instant period of particle
creation in the end.

In Chapter 3 we describe the method of calculating number density of the states
produced due to the time-dependence of the background field based on the asymp-
totic approximation of the wave functions and analytic continuation of the time coor-
dinate. We prove that massless states can be produced as abundantly as the massive
ones due to quantum corrections. We extend our method to include fermions of dif-
ferent types (Weyl, Majorana and Dirac) and obtain the general formulae needed for
calculating their final number densities. We introduce the influence of interactions
(quantum corrections) on the process of fermionic production based on the Yang-
Feldman formalism. We apply the whole method to the supersymmetric model with
a single coupling, bosonic and fermionic sector containing both massive and massless
fields. We also compare different possible sources of production (quantum correc-
tions, perturbative production and rotation of the basis), investigate the one-loop
corrections leading to the physical mass and address the issue of the supersymmetry-
breaking terms. We extend our considerations to the supersymmetric model with
two couplings. We show how the expansion of the universe changes our analysis.

In Chapter 4 we introduce the concept of inflation and post-inflationary particle
production following the classical literature [24, 39, 40, 41]. We describe general
advantages of the inflationary models and the idea of slow-roll inflation. Moreover,
we look more carefully at the main stages of post-inflationary production: reheating
and preheating. We develop the method used in the case of massless background to
include massive background neglecting quantum corrections. Obtained results are
consistent with the literature.

In Chapter 5 we develop the results from Chapter 3 in two preheating scenarios
with fields coupled indirectly to the background, two-scalar system and system with
additional light sector, using the theory of interacting fields. We investigate the role
of the couplings in these models discussing the conditions for obtaining successful
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quenching of the energy transfer between the background and the dynamical sector.
We discuss the profits of using theory of interacting field, which allows to avoid
artificial infinite growth coming from the approximation by asymptotic field seen
before. Moreover, we compare our analysis with instant preheating, which turns out
to be related in a sense.

In Chapter 6 we introduce the concept of dark inflation driven by a field coupled
to the SM only gravitationally and investigate its cosmological consequences. Such
a field does not fully decay after inflation and can dominate the energy density of
the universe for some time after inflation resulting in the presence of an additional
era before RD in the thermal history of the Universe. We discuss gravitational re-
heating in this scenario in a very general way regardless of the precise dynamics
of the inflationary sector. It is realized by purely gravitational particle production
during the transition between a de-Sitter inflationary era and a post-inflationary
era dominated by a perfect fluid with certain barotropic parameter w. In order
to obtain the standard thermal history at later times the energy density of the re-
maining inflaton has to redshift faster than radiation, which results in w > 1/3.
We calculate several inflationary parameters - scale of inflation, temperature of re-
heating, tensor-to-scalar ratio and number of e-folds - in our model and describe
their meaning for the cosmological predictions. For example, we argue that N? does
not depend strongly on Hinf and w being almost constant for all considered exam-
ples, which defines the thermal history of the Universe more accurately. We also
present experimental bounds on the inflationary scale. There are two competing
upper bounds - the usual one originating in the upper limit on tensor-to-scalar ratio
and the one coming from the demand not to overproduce gravitational waves during
inflaton domination. As for the lower limit on Hinf , it corresponds to the remaining
inflaton redshifting fast enough in order not to spoil BBN. Moreover, we obtain the
evolution of the primordial gravitational waves generated during inflation with an
amplification of the signal during the w-domination period. We discuss the possi-
bility of measuring this effect by the present and forthcoming experiments focusing
on the w = 1 case as it produces the strongest signal - only in the case of Neff � 1
their reach includes the region of amplification, otherwise signal is strengthened for
too high frequencies. Neff � 1 can be realized by nearly conformal non-minimal
coupling to gravity.

There are several ways of completing our analysis in the future. One idea we con-
sider is to add the non-minimal coupling between the scalar field and Ricci scalar and
analyse the production of particles accompanying Higgs inflation using our method.
Apart from that one could investigate for instance higher order corrections and tem-
perature corrections in the considered models.

What seems to be the most interesting future prospect at the moment is to
compare our strictly time-dependent analysis with position-dependent one, such as
1D scattering, which has been investigated in [93] using Bogoliubov transformation.
Both [93] and [94] present general upper and lower limits on the Bogoliubov co-
efficients in such a case. Particular cosmological realisation of the simple position
dependent system could be given by a cosmic string interacting with the Higgs field,
which is the subject of our ongoing investigation.
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To conclude, the main novel results of the dissertation are:

I. We prove that the massless states, for which the standard Bogoliubov coeffi-
cient β is equal to zero, can be produced as abundantly as the massive ones
with β 6= 0 due to quantum corrections [Chapter 3].

II. We discuss the conditions for obtaining successful quenching of the energy
transfer between the background and the dynamical sector in the theories
including some light sector in the framework of the theory of interacting field
[Chapter 5].

III. We investigate instant gravitational reheating in the dark inflation scenario in
a very general way regardless of the precise dynamics of the inflationary sector
obtaining the inflationary observables and gravitational waves signals that can
fit the experimental data for the reasonable choice of the parameters [Chapter
6].



Appendix A

Yang-Feldman equation

We can express any function f(x) as

f(x) =
∫
d4yδ(4)(x− y)f(y), (A.1)

where δ-function is a product of two other δ-functions:

δ(x0 − y0) = ∂x0 [θ(x0 − y0)− g(y0)] ≡ Θx0
tas(y0), (A.2)

δ(3)(~x− ~y) = 1
i

[
φ(y0, ~y), φ̇(x0, ~x)

]
x0=y0

(A.3)

with g(y0) being some general function - without loss of generality we can choose
g(y0) = θ(tas − y0). After integrating by parts f(x) reads

f(x) = ∂x0
∫
d4yΘx0

tas(y0)i〈∗|[φ̇(x), φ(y)]|∗〉f(y)−
∫
d4yΘx0

tasi〈∗|[φ̈(x), φ(y)]|∗〉f(y).
(A.4)

Following φ’s equation of motion:

φ̈−∇2φ+M2φ+ J = 0, (A.5)

we get

f(x) = (∂x0 )2
∫
d4yΘx0

tas(y0)i〈∗|[φ(x), φ(y)]|∗〉f(y) + (A.6)

+
∫
d4yΘx0

tasi〈∗|[(−∇2 +M2)φ(x) + J(x), φ(y)]|∗〉f(y).

Finally:

f(x) =
(
(∂x)2 +M2

) ∫
d4yG(tas)[φ, φ]xyf(y) +

∫
d4yG(tas)[J, φ]xyf(y), (A.7)

where 〈∗|∗〉 = 1 and G(tas)[X,φ]xy ≡ Θx0
tas(y0)i〈∗|[X(x), φ(y)]|∗〉.

On the other hand equation of motion can be expressed as

0 =
(
∂2 +M2

)
φ(x) + J(x) =

(
∂2 +M2

)
φ(x) + J(x) + f(x)− f(x), (A.8)

which using (A.7) turns into:

0 =
(
(∂x)2 +M2

)(
φ(x) +

∫
d4yG(tas)[φ, φ]xyf(y)

)
+∫

d4yG(tas)[J, φ]xyf(y) + J(x)− f(x), (A.9)
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where [A,B]xy ≡ [A(x), B(y)]. In order to keep it identically zero, we should choose:

f(x) =
∫
d4y

(
1−G(tas)[J, φ]

)−1

xy
J(y) = (A.10)

= J(x) +
∫
d4yG(tas)[J, φ]xyJ(y) +

∫
d4yd4zG(tas)[J, φ]xyG(tas)[J, φ]yzJ(z) + ...

and φ(x) in the form of Yang-Feldman equation:

φ(x) =
√
Zφas −

∫
d4yd4zG(tas)[φ, φ]xy

(
1−G(tas)[J, φ]

)−1

yz
J(z). (A.11)

φas(x) is an asymptotic free field,(
∂2 +M2

)
φas(x) = 0, (A.12)

defined by the relation

φ(x0 = tas) =
√
Zφas(x0 = tas). (A.13)

Keeping only the terms with up to one commutator under the integral, we get
a simplified version of Yang-Feldman equation:

φ(x) ≈
√
Zφas(x)− iZ

x0∫
tas

dy0
∫
d3y [φas, φas]xy J(y). (A.14)

Commutation relation for the field:[
φ̇(t, ~x), φ(t, ~y)

]
= −iδ(3)(~x− ~y) (A.15)

for t = tas translates into: [
φas(x), φ̇as(y)

]
= i

Z
δ(3)(~x− ~y). (A.16)
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Number density for the j-th
resonant particle production using
the saddle point method

Equation (4.2.16) for the distribution of produced particles can be expressed as

njk + 1
2 ∼

(
n0
k + 1

2

) j−1∏
l=0

(
1 + 2∆l

k

)
, (B.1)

which for n0
k = 0 and ∆l

k ∼ ∆0
k = e−πk

2/gm|φ0| transforms into

njk ∼
1
2
(
1 + 2∆0

k

)j
− 1

2 ∼
1
2

j∑
l=1

j!
l!(j − l)! · 2

le−lπk
2/gm|φ0|. (B.2)

Thus, the number density is of the form

nj ∼
∫ d3k

(2π)3
1
2

j∑
l=1

j!
l!(j − l)! · 2

le−lπk
2/gm|φ0| = (B.3)

= (gm|φ0|)3/2

(2π)3 ·
j∑
l=1

j!
l!(j − l)!

2l−1

l3/2
≡ (gm|φ0|)3/2

(2π)3 ·Rj.

Factor multiplying Rj is just n1, so we can interpret Rj as the deviation from the
first production.

For j � 1 we can use the following approximations
j∑
l=1
∼

j∫
1

dl, (B.4)

l! ∼
√

2πl(l/e)l, (B.5)

which results in

Rj ∼
j∫

1

dl
1√
2π

jj+1/2

ll+1/2(j − l)j−l+1/2
2l−1

l3/2
≡ jj+1/2
√

2π
·

j∫
1

dl ef(l) =

= jj+1/2
√

2π
·

j∫
1

dl exp
[
f(l̄) + f ′(l̄)(l − l̄) + 1

2f
′′(l̄)(l − l̄)2 + · · ·

]
. (B.6)
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If we choose l̄ = 2j − 1
3 +O(1/j): f ′(l̄) ∼ 0 and

Rj ∼
jj+1/2
√

2π
·
∫ j

1
dl exp

[
f(l̄) + 1

2f
′′(l̄)(l − l̄)2 + · · ·

]
∼ jj+1/2
√

2π
· ef(l̄)

√
2π
−f ′′(l̄)

=

= jj+1/2

l̄l̄+1/2(j − l̄)j−l̄+1/2
2l̄−1

l̄3/2
1√

1
l̄
− 2

l̄2
+ 1

j−l̄ −
1

2(j−l̄)2

∼ 3j
2

(
3
2j

)3/2

(B.7)

we finally obtain

nj ∼ n1 · 3j
2

(
3
2j

)3/2

. (B.8)



Appendix C

Fermions in the theory of
interacting field

Apart from bosons we can also consider the production of fermions in the frame-
work of interacting fields. The simplest Lagrangian for Dirac fermion useful in this
case reads

L = ξ†iσ̄µ∂µξ + ηiσµ∂µη
† −m0ηξ −m∗0ξ†η† − V [ξ, ξ†, η, η†]. (C.1)

Corresponding equations of motion are of the form

0 = iσ̄µ∂µξ −m∗0η† −
∂

∂ξ†
V = iσ̄µ∂µξ −M∗η† − J†ξ , (C.2)

0 = iσµ∂µη
† −m0ξ −

∂

∂η
V = iσµ∂µη

† −Mξ − Jη, (C.3)

where M = M(t) is a time-dependent physical mass and

J†ξ ≡ (m∗0 −M∗)η† + ∂V

∂ξ†
, (C.4)

Jη ≡ (m0 −M)ξ + ∂V

∂η
(C.5)

are the source terms.

Yang-Feldman equation for the fermionic sector can be written in a condensed
way

(
ξ(x)
η†(x)

)
=
(
ξas(x)
ηas†(x)

)
−

x0∫
tas

d4yi

(
{ξas(x), ηas(y)} {ξas(x), ξas†(y)}
{ηas†(x), ηas(y)} {ηas†(x), ξas†(y)}

)(
Jη(y)
J†ξ (y)

)
(C.6)

with the following decomposition of the asymptotic fields into modes

ξas(x) =
∫ d3k

(2π)3 e
ik·x ∑

s=±
esk
(
uas,s
k aas,s

k + vas,s∗
k bas,s†

−k

)
, (C.7)

ηas†(x) =
∫ d3k

(2π)3 e
ik·x ∑

s=±
σ̄0esk

(
vas,s
k aas,s

k − uas,s∗
k bas,s†

−k

)
. (C.8)
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Equations of motion for the modes read

0 = u̇as,s
k − is|k|uas,s

k + iM∗vas,s
k , (C.9)

0 = v̇as,s
k + is|k|vas,s

k + iMuas,s
k (C.10)

and they are normalized by

|uas,s
k (t)|2 + |vas,s

k (t)|2 = 1. (C.11)

Bogoliubov transformation for creation/annihilation operators becomes1(
a

(t),s
k
b

(t),s†
−k

)
=
(

αsk(t) βsk(t)
−βs∗k (t) αs∗k (t)

)[(
aas,s

k
bas,s†
−k

)

−i
t∫
tas
d4y

(
{aas,s

k , ηas(y)} {aas,s
k , ξas†(y)}

{bas,s†
−k , ηas(y)} {bas,s†

−k , ξas†(y)}

)(
Jη(y)
J†ξ (y)

)]
, (C.13)

where

αsk(t) ≡ u
(t),s∗
k uas,s

k + v
(t),s∗
k vas,s

k , (C.14)
βsk(t) ≡ u

(t),s∗
k vas,s∗

k − v(t),s∗
k uas,s∗

k (C.15)

with normalization condition changing its sign to

|αsk(t)|2 + |βsk(t)|2 = 1. (C.16)

Relation (C.13) can be again transformed to(
a

(t),s
k
b

(t),s†
−k

)
=
∫
d3xe−ik·x

(
αsk(t) βsk(t)
−βs∗k (t) αs∗k (t)

)(
uas,s∗
k (t) vas,s∗

k (t)
vas,s
k (t) −uas,s

k (t)

)
·

·
(
es†k σ̄

0 0
0 es†k

)(
ξ(t,x)
η†(t,x)

)
, (C.17)

which is useful for evaluating the number of produced states.

Corresponding Hamiltonian

H(t) =
∫
d3x

(
−ξ†iσ̄i∂iξ − ηiσi∂iη† +m0ηξ +m∗0ξ

†η† + V
)

= (C.18)

=
∫ d3k

(2π)3

∑
s=±

ωk(t)
(
a

(t)†
k a

(t)
k − b

(t)
−kb

(t)†
−k

)
+
∫
d3x

[
(m0 −M)ηξ + (m∗0 −M∗)ξ†η† + V

]
(C.19)

1This is equivalent to the following Bogoliubov transformation for the wave functions(
u

(t),s
k

v
(t),s∗
k

)
=
(

αs∗k (t) βs∗k (t)
−βsk(t) αsk(t)

)(
uas,s
k

vas,s∗
k

)
. (C.12)
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can be diagonalized provided the Bogoliubov coefficients are of the form

αsk(t) =

√√√√1
2 + Ein,s

k

2ωk
, (C.20)

βk(t) = F in,s∗
k

|F in,s
k |

√√√√1
2 −

Ein,s
k

2ωk
, (C.21)

where

Ein,s
k (t) ≡ −sk(|uin,s

k |2 − |v
in,s
k |2) +muin,s

k vin,s∗
k +m∗uin,s∗

k vin,s
k , (C.22)

F in,s
k (t) ≡ −2skuin,s

k vin,s
k −muin,s 2

k +m∗vin,s 2
k . (C.23)

Finally, total and net numbers of particles with helicity s in terms of the inter-
acting fields read

N
+(s)
k (t) = a

(t),s†
k a

(t),s
k + b

(t),s
−k b

(t),s†
−k =

=
∫
d3xd3yeik·(x−y) 1

ωk

[
−skξ†(x)σ̄0esk · e

s†
k σ̄

0ξ(y) + skη(x)esk · e
s†
k η
†(y) +

+Mη(x)esk · e
s†
k σ̄

0ξ(y) +M∗ξ†(x)σ̄0esk · e
s†
k η
†(y)

]
= (C.24)

=
∫
d3xd3yeik·(x−y) 1

2ωk

[
−skξ†(x)

(
σ̄0 − ski

|k|
σ̄i
)
ξ(y) + skη(x)

(
σ0 + ski

|k|
σi
)
η†(y)+

+Mη(x)
(

1− ski

|k|
σ0σ̄i

)
ξ(y) +M∗ξ†(x)

(
1 + ski

|k|
σ̄0σi

)
η†(y)

]
,

N
−(s)
k (t) = a

(t),s†
k a

(t),s
k − b(t),s

−k b
(t),s†
−k =

=
∫
d3xd3yeik·(x−y)

[
ξ†(x)σ̄0esk · e

s†
k σ̄

0ξ(y) + η(x)esk · e
s†
k η
†(y)

]
= (C.25)

=
∫
d3xd3yeik·(x−y) · 1

2

[
ξ†(x)

(
σ̄0 − ski

|k|
σ̄i
)
ξ(y) + η(x)

(
σ0 + ski

|k|
σi
)
η†(y)

]
,

which summed over helicities become

N+
k (t) =

∑
s=±

(
a

(t),s†
k a

(t),s
k + b

(t),s
−k b

(t),s†
−k

)
= (C.26)

=
∫
d3xd3yeik·(x−y) 1

ωk

[
ξ†(x)kiσ̄iξ(y) + η(x)kiσiη†(y) +Mη(x)ξ(y) +M∗ξ†(x)η†(y)

]
,

N−k (t) =
∑
s=±

(
a

(t),s†
k a

(t),s
k − b(t),s

−k b
(t),s†
−k

)
=
∫
d3xd3yeik·(x−y)

[
ξ†(x)σ̄0ξ(y) + η(x)σ0η†(y)

]
(C.27)

and Nk(t) = 1
2
(
N+

k (t) +N−k (t)
)
still holds.

In the case of Majorana fermion ξ Lagrangian simplifies to

L = ξ†iσ̄µ∂µξ −
1
2m0ξξ −

1
2m

∗
0ξ
†ξ† − V [ξ, ξ†] (C.28)
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with the equation of motion

0 = iσ̄µ∂µξ −m∗0ξ† −
∂

∂ξ†
V = iσ̄µ∂µξ −M∗ξ† − J†ξ , (C.29)

where M = M(t) denotes a physical mass and

J†ξ = (m∗0 −M∗)ξ† + ∂V

∂ξ†
. (C.30)

Yang-Feldman equation reads now
(
ξ(x)
ξ†(x)

)
=
(
ξas(x)
ξas†(x)

)
−

x0∫
tas

d4yi

(
{ξas(x), ξas(y)} {ξas(x), ξas†(y)}
{ξas†(x), ξas(y)} {ξas†(x), ξas†(y)}

)(
Jξ(y)
J†ξ (y)

)
,

(C.31)
where

ξas(x) =
∫ d3k

(2π)3 e
ik·x ∑

s=±
esk
(
uas,s
k aas,s

k + se−iθkvas,s∗
k aas,s†

−k

)
(C.32)

and

0 = u̇as,s
k − is|k|uas,s

k + iM∗vas,s
k , (C.33)

0 = v̇as,s
k + is|k|vas,s

k + iMuas,s
k . (C.34)

Finally, total and net numbers of particles with helicity s in terms of the inter-
acting fields read

N
+(s)
k (t) = a

(t),s†
k a

(t),s
k + a

(t),s
−k a

(t),s†
−k =

=
∫
d3xd3yeik·(x−y) · 1

ωk

[
−skξ†(x)σ̄0esk · e

s†
k σ̄

0ξ(y)+

+1
2Mξ(x)esk · e

s†
k σ̄

0ξ(y)] + 1
2M

∗ξ†(x)σ̄0esk · e
s†
k ξ
†(y)

]
= (C.35)

=
∫
d3xd3yeik·(x−y) · 1

2ωk

[
−skξ†(x)

(
σ̄0 − ski

|k|
σ̄i
)
ξ(y)+

+1
2Mξ(x)

(
1− ski

|k|
σ0σ̄i

)
ξ(y) + 1

2M
∗ξ†(x)

(
1 + ski

|k|
σ̄0σi

)
ξ†(y)

]
,

N
−(s)
k (t) = a

(t),s†
k a

(t),s
k − a(t),s

−k a
(t),s†
−k =

∫
d3xd3yeik·(x−y) · ξ†(x)σ̄0esk · e

s†
k σ̄

0ξ(y) =

=
∫
d3xd3yeik·(x−y) · 1

2ξ
†(x)

(
σ̄0 − ski

|k|
σ̄i
)
ξ(y), (C.36)

which summed over helicities become

N+
k (t) =

∑
s=±

(
a

(t),s†
k a

(t),s
k + a

(t),s
−k a

(t),s†
−k

)
= (C.37)

=
∫
d3xd3yeik·(x−y) 1

ωk

[
ξ†(x)kiσ̄iξ(y) + 1

2Mξ(x)ξ(y) + 1
2M

∗ξ†(x)ξ†(y)
]
,

N−k (t) =
∑
s=±

(
a

(t),s†
k a

(t),s
k − a(t),s

−k a
(t),s†
−k

)
=
∫
d3xd3yeik·(x−y) · ξ†(x)σ̄0ξ(y).

(C.38)
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So the transformation that links Dirac and Majorana cases is of the form:

η → ξ, (C.39)
bas,s

k → se−iθkaas,s
k . (C.40)



Appendix D

Diagonalized Hamiltonian in the
theory of interacting field

The actual form of the Hamiltonian (5.1.11) for a real scalar field in the inter-
acting field theory reads:

H(t) =
∫
d3x

[1
2 φ̇

2(t,x) + 1
2(∇φ(t,x))2 + 1

2m
2
0φ

2(t,x) + V (t,x)
]

= (D.1)

=
∫
d3x

1
2

φ̇in(t,x)− i
t∫

tin

d4y[φ̇in(t,x), φin(y)]J(y)
2

+

+1
2

∇φin(t,x)− i
t∫

tin

d4y[∇φin(t,x), φin(y)]J(y)
2

+

+1
2M

2

φin(t,x)− i
t∫

tin

d4y[φin(t,x), φin(y)]J(y)
2

+

+1
2(m2

0 −M2)φ2(t,x) + V (t,x)
]

= (D.2)

=
∫ d3k

(2π)3
1
2
[
Ωin
k (t)(ain†

k ain
k + ain

−ka
in†
−k) + Λin

k (t)ain
−ka

in
k + Λin∗

k (t)ain†
k ain†

−k+

+i
t∫

tin

d4yeik·y
{(

Ωin
k (t)φin

k (y0)− Λin
k (t)φin∗

k (y0)
)
ain

k +

+
(
Λin∗
k (t)φin

k (y0)− Ωin
k (t)φin∗

k (y0)
)
ain†
−k

}
J(y) +

+i
t∫

tin

d4yeik·yJ(y)
{(

Ωin
k (t)φin

k (y0)− Λin
k (t)φin∗

k (y0)
)
ain

k +

+
(
Λin∗
k (t)φin

k (y0)− Ωin
k (t)φin∗

k (y0)
)
ain†
−k

}
+

+
t∫

tin

d4yd4zeik·(y−z)J(y)
{

Ωin
k (t)

(
φin
k (y0)φin∗

k (z0) + φin∗
k (y0)φin

k (z0)
)

+

−Λin
k (t)φin∗

k (y0)φin∗
k (z0)− Λin∗

k (t)φin
k (y0)φin

k (z0)
}
J(z)

]
+

+
∫
d3x

[1
2(m2

0 −M2)φ2(t,x) + V (t,x)
]
. (D.3)
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For a real scalar with non-vanishing vev it is convenient to formulate this calcu-
lation in terms of "vectors"

Aas
k =

(
aas

k
aas†
−k

)
, A

(t)
k =

(
a

(t)
k

a
(t)†
−k

)
(D.4)

and

Φas
k =

(
φas
k

φas∗
k

)
. (D.5)

Bogoliubov transformation can be simplified then to

A
(t)
k − 〈A

(t)
k 〉 = Bk

Aas
k −

t∫
tas

d4y i[Aas
k , φ

as(y)] (J(y)− 〈J(y)〉)
 , (D.6)

where

Bk =
(
αk βk
β∗k α∗k

)
(D.7)

is a matrix composed of the Bogoliubov coefficients.

Relation between the interacting field defined at time t and tin can be expressed
as

φ(t,x) = 〈φ(t,x) 〉 +
∫ d3k

(2π)3 e
ik·x(Φin

k )T
Ain

k −
t∫

tin

d4y i[Ain
k , φ

in(y)] (J(y)− 〈J(y)〉)
 =

= 〈φ(t,x) 〉 +
∫ d3k

(2π)3 e
ik·x(Φin

k )TB−1
k

[
A

(t)
k − 〈A

(t)
k 〉

]
, (D.8)

while its derivative reads

φ̇(x)
∣∣∣
x0→t

= 〈 φ̇(t,x) 〉 +
∫ d3k

(2π)3 e
ik·x(Φ̇in

k )TB−1
k

[
A

(t)
k − 〈A

(t)
k 〉

]
. (D.9)

Therefore the Hamiltonian

H(t) =
∫
d3x

[1
2 φ̇

2(t,x) + 1
2(∇φ(t,x))2 + 1

2m
2
0φ

2(t,x) + V (t,x)
]

(D.10)

in the framework of interacting fields reads

H(t) =
∫
d3x

(1
2 〈 φ̇

〉
2 + 1

2M
2 〈φ〉2 + 1

2(m2
0 −M2)φ2 + V

)
+

+
∫ d3k

(2π)3 (2π)3δ3(k)1
2
[(
〈 φ̇ 〉 (Φ̇in

k )T + ω2
k 〈φ 〉 (Φin

k )T
)
B−1
k

(
A

(t)
k − 〈A

(t)
k 〉

)
+ (h.c.)

]
+

+
∫ d3k

(2π)3
1
2
(
A

(t)†
k − 〈A(t)†

k 〉
)
B†−1
k EkB−1

k

(
A

(t)
k − 〈A

(t)
k 〉

)
. (D.11)
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It is useful to rewrite it as

H(t) =
∫
d3x

(1
2 〈 φ̇

〉
2 + 1

2M
2 〈φ〉2 + 1

2(m2
0 −M2)φ2 + V

)
+

−
∫ d3k

(2π)3 (2π)3δ3(k)1
2
[(
〈 φ̇ 〉 (Φ̇in

k )T + ω2
k 〈φ 〉 (Φin

k )T
)
B−1
k 〈A

(t)
k 〉 + (h.c.)

]
+

+
∫ d3k

(2π)3
1
2 〈A

(t)†
k 〉 B†−1

k EkB−1
k 〈A

(t)
k 〉 +

∫ d3k

(2π)3
1
2A

(t)†
k B

†−1
k EkB−1

k A
(t)
k +

+
∫ d3k

(2π)3
1
2
[{

(2π)3δ3(k)
(
〈 φ̇ 〉 (Φ̇in

k )T + ω2
k 〈φ 〉 (Φin

k )T
)

(D.12)

− 〈A(t)†
k 〉 B†−1

k Ek
}
B−1
k A

(t)
k + (h.c.)

]
,

where

Ek ≡ (Φ̇in
k )∗(Φ̇in

k )T + ω2
k(Φin

k )∗(Φin
k )T =

(
Ωin
k Λin∗

k

Λin
k Ωin

k

)
, (D.13)

Ωin
k ≡ |φ̇in

k |2 + ω2
k|φin

k |2, (D.14)
Λin
k ≡ (φ̇in

k )2 + ω2
k(φin

k )2. (D.15)

In order to diagonalize the Hamiltonian (D.12) these two conditions need to be
fulfilled

(2π)3δ3(k)
(
〈 φ̇ 〉 (Φ̇in

k )T + ω2
k 〈φ 〉 (Φin

k )T
)
− 〈A(t)†

k 〉 B−1
k Ek = 0, (D.16)

2Ωin
k αkβk − Λin

k β
2
k − Λin∗

k α2
k = 0. (D.17)

The second one means that the off-diagonal part of the term B†−1
k EkB−1

k needs to be
zero. Combining these two conditions with proper normalization |αk|2 − |βk|2 = 1,
we obtain the Bogoliubov coefficients of the form

|βk|2 = Ωin
k

2ωk
− 1

2 , (D.18)

αk = Ωin
k + ωk
Λin∗
k

βk (D.19)

and
〈A(t)

k 〉 = (2π)3δ3(k) · BkE−1
k

(
(Φ̇in

k )∗ 〈 φ̇ 〉 + (Φin
k )∗ω2

k 〈φ 〉
)
. (D.20)

Diagonalized Hamiltonian reads then

H(t) =
∫ d3k

(2π)3
ωk
2
(
a

(t)†
k a

(t)
k + a

(t)
−ka

(t)†
k

)
+
∫
d3x

(1
2(m2

0 −M2)φ2 + V
)
, (D.21)

which suggests that as in the non-vev case number of produced particles is of the
form

Nk(t) ≡ a
(t)†
k a

(t)
k . (D.22)

Note that all terms with the vev disappear here due to the condition (D.16).

Using the inner product relation for the wave function

i
(
(Φin

k )∗(Φ̇in
k )T − (Φ̇in

k )∗(Φin
k )T

)
=
(

1 0
0 −1

)
, (D.23)
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(D.8) transforms into

A
(t)
k = 〈A(t)

k 〉 + Bk
(

1
−1

)∫
d3xe−ik·xi

[
(Φin

k )∗(φ̇− 〈 φ̇ 〉)− (Φ̇in
k )∗(φ− 〈φ 〉)

]
=
∫
d3xe−ik·xBk

(
1
−1

)
i
[
(Φin

k )∗φ̇− (Φ̇in
k )∗φ

]
. (D.24)

Final expressions for total and net numbers of particles are of the form

N+
k (t) = A

(t)†
k A

(t)
k = a

(t)†
k a

(t)
k + a

(t)
−ka

(t)†
−k =

=
∫
d3xeik·(x−y) 1

ωk

(
φ̇(t,x)φ̇(t,y) + ω2

kφ(t,x)φ(t,y)
)
, (D.25)

N−k (t) = A
(t)†
k

(
1
−1

)
A

(t)
k = a

(t)†
k a

(t)
k − a

(t)
−ka

(t)†
−k =

=
∫
d3xeik·(x−y)i

(
φ(t,x)φ̇(t,y)− φ̇(t,x)φ(t,y)

)
, (D.26)

which are the same as in the non-vev case.
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Details of the calculation for the
two-scalar system in the theory of
interacting field

Time derivatives of the operators introduced to describe number operator for all
the species read

〈Aφk〉· = −
ω̇φk
ωφk

(
〈Aφk〉+ 1

2

)
+ i

ωφk

(
ω2
φk +m2

φ −M2
φ + (E.1)

+1
2g

2
∫ d3p

(2π)3
1
ωχp

(
〈Bχp〉+ 1

2

))(
〈Cφk 〉 − 〈C†φk 〉

)
,

〈Bφk〉· =
ω̇φk
ωφk

(
〈Bφk〉+ 1

2

)
− iωφk

(
〈Cφk 〉 − 〈C†φk 〉

)
, (E.2)

〈Cφk〉· = iωφk (〈Aφk〉 − 〈Bφk〉)−
i

ωφk

(
m2
φ −M2

φ+

+1
2g

2
∫ d3p

(2π)3
1
ωχp

(
〈Bχp〉+ 1

2

))(
〈Bφk〉+ 1

2

)
, (E.3)

〈Aχk〉· = −
ω̇χk
ωχk

(
〈Aχk〉+ 1

2

)
+ i

ωχk

(
ω2
χk +m2

χ −M2
χ + 1

2g
2 〈φ〉2 +

+1
2g

2
∫ d3p

(2π)3
1
ωφp

(
〈Bφp〉+ 1

2

))(
〈Cχk 〉 − 〈C†χk 〉

)
, (E.4)

〈Bχk〉· =
ω̇χk
ωχk

(
〈Bχk〉+ 1

2

)
− iωχk

(
〈Cχk 〉 − 〈C†χk 〉

)
, (E.5)

〈Cχk〉· = iωφk (〈Aχk〉 − 〈Bχk〉)−
i

ωχk

(
m2
χ −M2

χ+

+1
2g

2 〈φ〉2 + 1
2g

2
∫ d3p

(2π)3
1
ωφp

(
〈Bφp〉+ 1

2

))(
〈Bχk〉+ 1

2

)
. (E.6)

Choosing physical masses of φ and χ as (5.2.35) and (5.2.36) we can obtain the
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set of simplified equations of motion

〈 φ̈ 〉 = −M2
φ 〈φ〉+O(g4), (E.7)

〈Aφk〉· = −
ω̇φk
ωφk

(
〈Aφk〉+ 1

2

)
+ iωφk

(
〈Cφk 〉 − 〈C†φk 〉

)
+O(g4), (E.8)

〈Bφk〉· =
ω̇φk
ωφk

(
〈Bφk〉+ 1

2

)
− iωφk

(
〈Cφk 〉 − 〈C†φk 〉

)
+O(g4), (E.9)

〈Cφk〉· = iωφk (〈Aφk〉 − 〈Bφk〉) +O(g4), (E.10)

〈Aχk〉· = −
ω̇χk
ωχk

(
〈Aχk〉+ 1

2

)
+ iωχk

(
〈Cχk 〉 − 〈C†χk 〉

)
+O(g4), (E.11)

〈Bχk〉· =
ω̇χk
ωχk

(
〈Bχk〉+ 1

2

)
− iωχk

(
〈Cχk 〉 − 〈C†χk 〉

)
+O(g4), (E.12)

〈Cχk〉· = iωφk (〈Aχk〉 − 〈Bχk〉) +O(g4), (E.13)

where

ω̇φk
ωφk

= 1
2ω2

φk

· 1
2g

2
∫ d3p

(2π)3

(
g2 〈φ〉 〈 φ̇ 〉

2ω3
χp

− i
(
〈Cχp 〉 − 〈C†χp 〉

))
+O(g4),

(E.14)
ω̇χp
ωχp

= 1
2ω2

χk

·
[
2g2 〈φ〉 〈 φ̇ 〉 − 1

2g
2
∫ d3p

(2π)3 i
(
〈Cφp 〉 − 〈C†φp 〉

)]
+O(g4).

(E.15)

Putting it together an evaluating up to the fourth order in coupling results in the
final form of differential equations we need to solve (5.2.39)-(5.2.45).

In the above analysis we neglect the divergent terms

1
2g

2
∫ d3p

(2π)3
1

2ωk
(E.16)

due to the chosen convention. Usually these terms are regularized and included in
the bare masses that are constant in time. However, in this case the divergent part
is time-dependent, so our regularization corresponds to the time-dependent bare
masses. If we take mφ = mχ = 0,

1
2g

2
∫ d3p

(2π)3
1

2ωk
∝ g2M2 ∝ g4, (E.17)

so we may also justify neglecting these terms by perturbation theory and our order
of approximation.
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