

New results on fully corrected dijet asymmetry in Pb+Pb collisions with ATLAS

Dennis V. Perepelitsa (on behalf of the ATLAS Collaboration)¹

Physics Department, Brookhaven National Laboratory, Upton NY, 11973 USA

Abstract

The phenomenon of events containing highly asymmetric dijet pairs is one of the most striking results in heavy ion physics, providing the first direct observation of in-medium jet energy loss at the Large Hadron Collider. Detailed measurements of a centrality-dependent dijet imbalance in 2.76 TeV Pb+Pb collisions using data collected by the ATLAS detector in the 2011 LHC heavy ion run are presented. The new analysis provides a measurement, fully corrected for detector effects to the particle level, of the centrality- and leading jet transverse momentum- (p_T -) dependence of the dijet p_T balance distribution, compared to an analogous measurement in pp collisions at the same center-of-mass energy.

Keywords: heavy ion physics, jet quenching, dijet asymmetry, energy loss

1. Introduction

Since the beginning of the heavy ion physics program at the Large Hadron Collider (LHC), measurements of the energy balance of dijets in lead–lead (Pb+Pb) collisions have been a valuable way to probe the differential energy loss of fast partons traversing the hot nuclear medium. Since the outgoing partons from a hard parton–parton scattering early in the collision generally traverse a different path length, they lose different amounts of energy. This phenomenon is typically quantified through the distribution of the dijet asymmetry values $A_J \equiv (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$ and dijet p_T balance ratio $x_J \equiv p_{T,2}/p_{T,1}$, where $p_{T,1}$ and $p_{T,2}$ indicate the transverse momentum of the leading and subleading jet in the event, respectively.

Initial measurements of A_J and x_J distributions in Pb+Pb collisions showed that they are modified in a centrality-dependent manner due to this path-length dependent energy loss [1], while remaining unmodified in $p+Pb$ collisions [2]. Although these have generated much theoretical interest [3], the measured distributions have typically not been corrected for detector effects, making direct comparisons with jet quenching calculations ambiguous. Recent advances in jet measurement techniques in heavy ion collisions, including a quantitative determination of the heavy ion jet energy scale in ATLAS [4], have enabled more sophisticated measurements. This proceedings presents an updated measurement of the dijet p_T balance ratio in Pb+Pb and pp collisions [5] as a function of centrality and leading jet p_T , in which the distributions have been fully corrected to the particle level. Together with measurements of modified single and multi-jet production rates [6], these observables can provide a more complete picture of energy loss in the hot nuclear medium.

¹A list of members of the ATLAS Collaboration and acknowledgements can be found at the end of this issue.

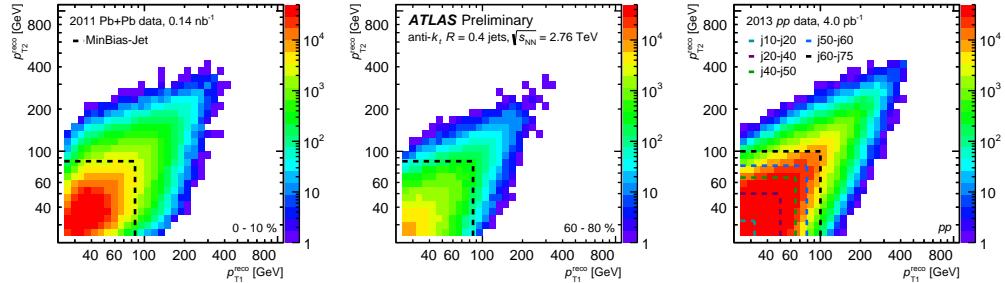


Fig. 1. Symmetrized distributions of the leading and subleading jet p_T in central (left) and peripheral (center) Pb+Pb collisions and in pp collisions (right), from Ref. [5]. The dashed lines indicate boundaries used in selecting different triggers.

2. Data selection and jet reconstruction

The data used in this work comprise 0.14 nb^{-1} of Pb+Pb data at $\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$ and 4.0 pb^{-1} of pp data at $\sqrt{s} = 2.76 \text{ TeV}$ delivered by the LHC in 2011 and 2013, respectively. The ATLAS detector is described in detail in Ref. [7]. The hermetic, large-acceptance calorimeter system, which includes liquid argon (LAr) electromagnetic and hadronic calorimeters, and a steel-scintillator hadronic calorimeter, provided the jet energy measurement. The Pb+Pb data were selected using a combination of a minimum bias trigger, defined by a minimum amount of energy in the calorimeter system or a coincidence in the zero-degree calorimeters situated far downstream of the interaction point, and a hardware-based jet trigger. The centrality of Pb+Pb collisions is characterized using the sum of transverse energy in the forward calorimeter modules, situated at $3.2 < |\eta| < 4.9^2$. In pp collisions, the data were selected using high-level jet triggers with increasing p_T thresholds, in which the highest-threshold trigger sampled the full luminosity.

Jets were reconstructed according to a procedure that closely follows those used for previous measurements in Pb+Pb and pp collisions [8]. Calorimeter cells were collected into $\Delta\eta \times \Delta\phi = 0.1 \times 0.1$ towers at the electromagnetic scale. An iterative procedure was used to determine the underlying event (UE) energy density in an η - and calorimeter layer-dependent manner, while excluding jets from that estimate. For this measurement, the UE estimation procedure was extended to allow for possible third- and fourth-order modulations of the energy density due to flow. Jets were defined by the application of the anti- k_t algorithm with $R = 0.4$ to the towers, with the kinematics of the jet updated to remove the UE contribution. The jet p_T was corrected for the response of the calorimeter with a calibration derived from simulation and for an additional, small data-to-simulation difference derived from *in situ* studies of the jet response [4].

3. Data analysis, corrections and systematics

Events selected for analysis were required to have the leading and sub-leading jet within $|\eta| < 2.1$, with $p_{T,1} > 100 \text{ GeV}$ and $p_{T,2} > 25 \text{ GeV}$. Furthermore, the dijet configuration was required to be back-to-back as given by $|\Delta\phi| > 7\pi/8$. The triggered samples were weighted by their respective luminosity (in pp collisions) or corrected for their respective scaledowns (in Pb+Pb collisions) and used to populate the two-jet ($p_{T,1}, p_{T,2}$) spectrum. Each $p_{T,1}$ range was populated using only the highest-statistics trigger which was efficient in that range. The resulting distributions were symmetrized along the $p_{T,1} = p_{T,2}$ axis to allow the unfolding to properly treat instances where the leading/subleading classification switched due to the fluctuations in the UE and response. Figure 1 shows representative two-jet distributions in Pb+Pb and pp collisions.

²ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z -axis along the beam pipe. The x -axis points from the IP to the centre of the LHC ring, and the y -axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z -axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

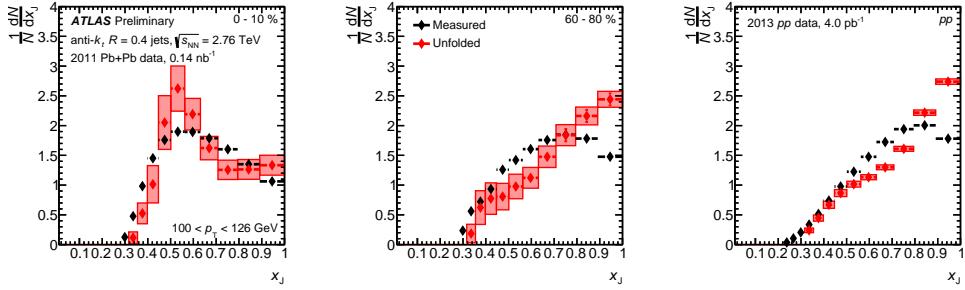


Fig. 2. Example of per-dijet x_J distributions at the detector-level (black) and after unfolding to the particle level (red), shown for $p_{T,1} > 100$ GeV dijets in central (left) and peripheral (center) Pb+Pb collisions and in pp collisions (right), from Ref. [5].

Due to the presence of low- p_T reconstructed jets which arise from UE fluctuations in Pb+Pb collisions, the $(p_{T,1}, p_{T,2})$ distribution contains a residual contribution from the combinatoric pairing of leading jets with UE fluctuations. These pairings were found to occur when the UE fluctuations sit atop third- and fourth-order flow maxima, and the residual contribution was therefore modeled as $C(\Delta\phi) = Y(1 + 2c_3 \cos 3\Delta\phi + 2c_4 \cos 4\Delta\phi)$. For each $(p_{T,1}, p_{T,2})$ interval, the values of c_3, c_4 and Y were constrained in the region $\Delta\phi < 1.4$ and used to estimate and subtract the combinatoric contribution in the signal region $\Delta\phi > 7\pi/8$. This contribution was 10% at the lowest x_J values in central collisions, and smaller elsewhere.

Monte Carlo simulations of hard scattering events, including a full GEANT4 simulation of the detector, were used to evaluate the performance of the dijet measurement [9]. PYTHIA was used to generate pp event samples [10], and a separate sample of PYTHIA events was overlaid onto Pb+Pb minimum bias data. To include possible correlations in the response of the leading and subleading jets, four-dimensional response matrices were generated between the particle-level and reconstructed jet pairs. A Bayesian unfolding procedure [11] was used to correct the bin migration in the measured $(p_{T,1}, p_{T,2})$ distributions. The number of iterations was chosen by checking the stability against additional iterations and performing a refolding test.

For each $p_{T,1}$ and centrality selection, the unfolded $(p_{T,1}, p_{T,2})$ distributions were projected into x_J distributions. Figure 2 shows an example of x_J distributions before and after the unfolding procedure. Systematic uncertainties on the results were evaluated in the following ways: response matrices were generated with variations in the jet energy scale and resolution (most important at high- p_T and in central collisions); the number of unfolding iterations was varied and the prior x_J distribution in simulation was reweighted (most important at low- p_T and in peripheral collisions); the two-jet response was factorized into the product of the single jet response; and the procedure for determining the combinatoric dijet contribution was varied.

4. Dijet asymmetry results

Figure 3 summarizes the corrected dijet p_T balance distributions. The left-most panels of Figure 3 show how the x_J distribution for $100 < p_{T,1} < 126$ GeV dijets evolves with selections on event centrality. In the most peripheral Pb+Pb collisions, the x_J distributions are largest at unity and fall off at lower x_J values. They are consistent with the analogous distributions in pp collisions and indicate predominantly balanced dijet configurations. With increasingly more-central event selections, the x_J distribution shifts to lower values of x_J , indicating a higher prevalence of very asymmetric dijet configurations. In the most central events, the x_J distributions develop a peak near $x_J \approx 0.5$. Thus, in these events the most common dijet configuration after quenching is when the subleading jet has half the p_T of the leading jet.

The right-most panels of Figure 3 show how the x_J distribution in the most central collisions evolves with selections on the leading jet p_T . As shown above, for $100 < p_{T,1} < 126$ GeV dijets, the x_J distribution in 0-10% Pb+Pb events is substantially different from that in pp collisions. However, for systematically higher $p_{T,1}$ selections, the x_J distributions in Pb+Pb collisions shift to larger values of x_J . For $p_{T,1} > 200$ GeV, the x_J distribution in central events is peaked at unity, and is qualitatively similar to that in pp collisions. This

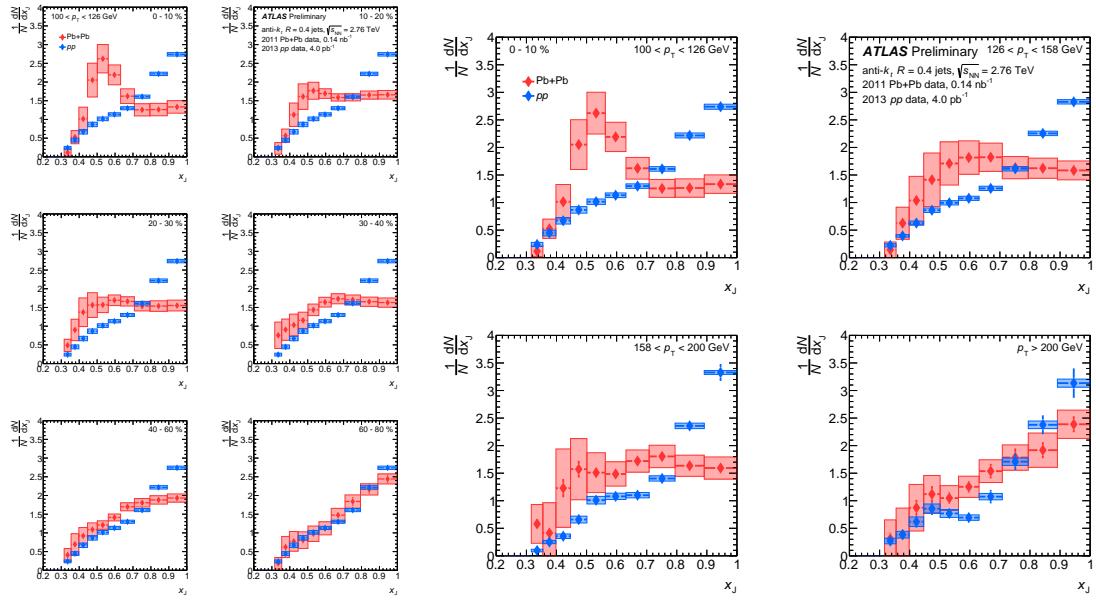


Fig. 3. Per-dijet pair x_J distributions in $\text{Pb}+\text{Pb}$ (red) and pp collisions (blue), fully corrected to the particle level, from Ref. [5]. The vertical lines and boxes show the statistical and systematic uncertainties, respectively. a) $p_{\text{T},1} > 100$ GeV dijet events, each panel showing a different $\text{Pb}+\text{Pb}$ centrality selection. b) 0-10% $\text{Pb}+\text{Pb}$ events, each panel showing a different selection on $p_{\text{T},1}$.

indicates that for systematically higher selections on the leading jet p_{T} , while both jets may be individually quenched, the most likely dijet configurations are nevertheless balanced. The observed $p_{\text{T},1}$ dependence may suggest, for example, a decrease in the fractional energy loss with increasing p_{T} .

5. Conclusion

This work presents an updated measurement of the dijet transverse momentum balance distributions in $\text{Pb}+\text{Pb}$ collisions with the ATLAS detector at the LHC. The distributions have been corrected for detector effects to the particle level, and are presented as a function of the event centrality and leading jet p_{T} . For dijets with $p_{\text{T},1} > 100$ GeV in the most central collisions, the typical configurations are strongly asymmetric compared to that in pp collisions at the same collision energy. However, in peripheral collisions or at higher $p_{\text{T},1}$ (> 200 GeV), the distributions are qualitatively similar to those in pp collisions, providing insight into the differential path-length-dependent energy loss in the hot nuclear matter created in these collisions.

References

- [1] ATLAS Collaboration, Phys. Rev. Lett. 105 (2010) 252303; CMS Collaboration, Eur. Phys. J. C74 (2014) 2951.
- [2] CMS Collaboration, Phys. Rev. C84 (2011) 024906.
- [3] C. E. Coleman-Smith, B. Müller, Phys. Rev. C86 (2012) 054901; Y. He, I. Vitev, B.-W. Zhang, Phys. Lett. B713 (2012) 224–232; C. Young, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C84 (2011) 024907.
- [4] ATLAS Collaboration, ATLAS-CONF-2015-016, <http://cdsweb.cern.ch/record/2008677>.
- [5] ATLAS Collaboration, ATLAS-CONF-2015-052, <http://cdsweb.cern.ch/record/2055673>.
- [6] ATLAS Collaboration, Phys. Rev. Lett. 114 (2015) 072302; ATLAS Collaboration, ATLAS-CONF-2015-021, <http://cdsweb.cern.ch/record/2029371>; ATLAS Collaboration, Phys. Lett. B751 (2015) 376
- [7] ATLAS Collaboration, JINST 3 (2008) S08003.
- [8] ATLAS Collaboration, Phys. Lett. B719 (2013) 220; ATLAS Collaboration, Phys. Lett. B748 (2015) 392.
- [9] S. Agostinelli et al., Nucl. Instrum. Meth. A 506 (2003) 250; ATLAS Collaboration, Eur. Phys. J. C70 (2010) 823.
- [10] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605 (2006) 026; Comput. Phys. Commun. 178 (2008) 852.
- [11] G. D'Agostini, Nucl. Instrum. Meth. A362 (1995) 487.