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Abstract
Digital–analog quantum computation (DAQC) has recently been proposed as an alternative to the
standard paradigm of digital quantum computation (DQC). DAQC generates entanglement
through a continuous or analog evolution of the whole device, rather than by applying two-qubit
gates. This manuscript describes an in-depth analysis of errors in DAQC implementing Ising
Hamiltonians used for arbitrary computations, which was missing from the previous literature,
revealing that, overall, DAQC errors scale less favorably compared to those in DQC. As
demonstrated, for an all-to-all connectivity, the leading error source for DAQC scales likeΘ(N4),
while for the digital case, it scales likeO(N2) for implementing an arbitrary Hamiltonian
evolution. We further illustrate this result with our own simulations of the Quantum Fourier
Transform, which in the previous literature were based on unrealistic parameter choices, biasing
the result in favor of DAQC, and were limited to system sizes of up to only seven qubits. On the
other hand, we develop a specific DAQC protocol for a star connectivity, which shows an advantage
for the particular case of a GHZ state generation protocol.

1. Introduction

Digital–analog quantum computation (DAQC) has recently emerged as a new paradigm for quantum
computation [1–7], posing an alternative to standard digital quantum computation (DQC). DAQC is
compelling because it combines the natural evolution of a quantum device, generated by a given entangling
Hamiltonian, with engineered control only over single-qubit gates (SQGs) to perform quantum
computations. The working assumption is that the analog evolution of the device is more robust against
control errors than two-qubit gates (TQGs) [8], which are the typical entangling operations utilized in DQC.
DAQC has been claimed to be more resilient to noise and faster than DQC, e.g for implementing the
quantum Fourier transform (QFT) routine [4, 5].

In this manuscript, we revisit these statements by performing the first detailed analysis of error scaling in
DAQC for the inhomogeneous Ising model (which is the universal DAQC technique used in [1–7]),
considering important sources such as control errors due to an imperfect characterization of the analog
Hamiltonian. We also study for the first time the scaling of depth in quantum algorithms when implemented
with Ising DAQC. While the error scaling is dependent on the connectivity of the device, our analysis is
applicable to any connectivity. Specifically, for an all-to-all (ATA) qubit connectivity, we find that, while any
two-qubit Hamiltonian can be implemented using at mostO(N2) TQGs in DQC, DAQC introduces, in
general,Θ(N4) two-qubit terms which are prone to error. These scalings are valid for generic quantum
algorithms, and they arise precisely from the fact that the analog evolution comprises all qubits. Therefore,
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our analysis concludes that the scaling of errors in DAQC is fundamentally worse than in DQC for arbitrary
algorithms. We apply this analysis to the specific case of the QFT, finding that DQC requiresΘ(N2)
two-qubit terms for the full algorithm while DAQC introducesΘ(N5). We also find that the execution time
of the QFT circuit for DAQC isΘ(N2.05), considerably worse than for DQC, for which execution time scales
asΘ(N). We confirm these results with simulation.

Thus, while Ising DAQC is often portrayed in the literature as a promising alternative to the digital case,
we counter this view by presenting the first comprehensive analysis of its scaling properties, its execution
speed, and of the impact of errors on its performance as compared to the digital approach. As argued in [9]
these factors are essential for evaluating the performance of quantum computation in the NISQ era. Previous
studies on DAQC, particularly those regarding the digital–analog QFT [4–6], have relied predominantly on
simulations where chosen gate parameters favored DAQC and which were limited to very small system sizes,
preventing a rigorous comparison. Additionally, in this manuscript, we refute claims that DAQC ‘can
enhance the depth of the implementation of a quantum algorithm [QFT]’ [4]. By demonstrating that DAQC
has a significantly faster error scaling than digital, we show how it underperforms DQC even for relatively
small devices. We further confirm this result by conducting simulations based on realistic parameters, thus
uncovering fundamental limitations in DAQC for the Ising model compared to DQC.

In this manuscript: (i) we provide an analysis of the error scaling of Ising DAQC with the number of
qubits of the device, considering a detailed account of the number of operations introduced, and identifying
and accounting for major sources of error. This analysis is valid for any algorithm or device connectivity. (ii)
Using this analysis, we study the scaling of errors when implementing the QFT routine using DAQC in an
ATA connectivity, and conclude that it is extremely unfavorable with respect to its digital version, refuting
previous claims found in [4, 5]. (iii) We demonstrate that, under certain specific conditions—related to both
the protocol and the connectivity of the architecture—DAQC can be implemented with a minimal number
of analog blocks, significantly enhancing its performance. This is exemplified through the generation of GHZ
states on a tailored star architecture, where only a single analog block is required, allowing DAQC to scale
favorably compared to the digital approach. (iv) We confirm our results both analytically and with numerical
simulations. Throughout our study, we consider the two versions of DAQC proposed in the literature:
stepwise DAQC, consisting of a sequential approach where all the interactions are simultaneously switched
on and off between layers of single qubit gates, simplifying the theoretical analysis, and banged DAQC, where
an always-on multi-qubit interaction is overlapped with fast single-qubit pulses.

2. Problem statement

In this section, we sketch a brief explanation of the DAQC method described in [1], which is the basis for the
methods in [2, 3] and further used for the digital–analog algorithms studied in [4–7]4. For a more detailed
explanation of the method, we direct the reader to appendix A.

We assume that we can physically implement the evolution of the qubits’ state under a given
Hamiltonian, acting on all qubits, which we call the resource Hamiltonian, of the form

H̄C =
∑

( j,k)∈C

ḡjkZ
jZk . (1)

The continuous evolution of all qubits under the resource Hamiltonian, for some tunable time t, is called
an analog block:

UH̄C (t) = exp(−i t H̄C) . (2)

The goal of DAQC is to, using only analog blocks and SQGs, effectively engineer the evolution under a
different Hamiltonian, which we call the target Hamiltonian, of the form

HC =
∑

( j,k)∈C

gjkZ
jZk . (3)

4 Note that a digital–analog quantum circuit can be defined in different ways, i.e. any circuit in which digital and analog operations
are utilized could be called digital–analog [8]. Additionally, different definitions of analog evolution may exist, like a continuous evol-
ution comprising less than all the qubits of the device [10]. However, in this manuscript, we focus our attention on the method called
‘Digital–Analog Quantum Computation’ laid out in [1] and further utilized in [2–7]. This provides a universal compilation technique to
execute any quantum computation, based on an analog evolution comprising all qubits combined with SQGs, by effectively implement
an inhomogeneous Ising model Hamiltonian.
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Figure 1. Digital–analog circuit consisting of c analog blocks. Each analog block runs for time tmn, and is preceded and followed
by the gates XmXn, for each pair of connected qubits (m,n) ∈ C. More details on the construction of a DAQC circuit can be found
in appendix A.

This can be done by constructing a quantum circuit that interleaves c analog blocks and specific
sequences of SQGs, where c is the number of couplings of the device, as shown in figure 1. The sequences of
SQG are, specifically, pairs of gates XmXn executed before and after each analog block, for each pair of
connected qubits (m,n) ∈ C. Their purpose is to effectively change the sign of some of the coupling
coefficients of the resource Hamiltonian (1) in each analog block (2). These positive and negative coefficients
are combined by executing each analog block for the appropriate time, in order to effectively engineer an
evolution under the target Hamiltonian (3). The time that each analog block in the quantum circuit must be
executed for is calculated via the matrix equation

t=M−1Gtf , (4)

where t is the vector of times of the analog evolutions, with each element tβ being the time that the βth
analog block must be executed for;M is a matrix whose elements areMαβ =+1 (−1) if the effective
coupling corresponding to the αth coupling, during the βth analog block, is positive (negative); G is a vector
whose elements are Gβ =

ḡβ
gβ
, where ḡβ ,gβ are the coefficients in equations (1) and (3) respectively; and tf is

the desired evolution time under the target Hamiltonian (3).
This construction of a digital–analog circuit requires the analog blocks to be ‘turned on and off ’

sequentially to allow for the execution of layers of SQGs. However, there is an alternative paradigm called
banged DAQC (bDAQC), which requires the analog interaction to be on throughout the whole quantum
circuit, with SQGs being applied simultaneously to it. Given that, in general, the SQGs’ Hamiltonians do not
commute with that of the analog evolution, it introduces an error intrinsic to bDAQC in the computation.
The reasoning is that this would be supposed to reduce the errors associated with ‘turning the analog blocks
on and off ’ [1]. More details on this paradigm can be found in appendix A.4.

In this manuscript, we set out to study the scaling of the errors in Ising DAQC as the size of the
computation (i.e. the number of qubits) grows, and compare it to that of DQC. Additionally, we apply this
analysis to two illustrative examples: the QFT routine and the GHZ state preparation, along with simulations
of both.

3. Error scaling in DAQC

The DAQC method introduces errors that differ from those in DQC in several ways. In this section, we study
how these errors scale with the number of couplings and of qubits of the device, and how they compare to
the DQC paradigm.

We focus our analysis on the coherent errors related to imperfect control parameters, given that these are
ubiquitous across quantum computing platforms, whereas the nature of incoherent environmental errors
can vastly change across them. However, we make some general remarks on the latter in section 3.1.3.

3.1. Analog blocks
Even assuming that the implementation of analog evolution under the resource Hamiltonian (see
equation (1)) yields two-qubit terms more accurate than those of TQGs, in this section we argue that the
number of such two-qubit terms grows so quickly with the number of qubits that any possible advantage is
quickly negated.

Performing a DAQC algorithm requires, as explained in section 2 and further detailed in appendix A, to
construct a digital–analog quantum circuit with c analog blocks for each target Hamiltonian that needs to be
implemented, where c is the total number of couplings. As an example, we provide the digital–analog circuit
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Figure 2. Schematic representation of error sources in a DAQC algorithm: (a) the number of analog blocks per implementation of
a target HamiltonianHA, for an ATA device with 4 qubits and resource Hamiltonian H̄A, for which c= 6; (b) errors associated to
each analog block, modeled as an uncertainty in the starting and finishing times of application t0, tF (ramp-up and ramp-down
errors), and by an error in the coupling coefficients ḡ; (c) the number of two-qubit terms prone to mischaracterization present in
an analog block, for an ATA device with 4 qubits and resource Hamiltonian HA.

for implementing a target Hamiltonian on a four-qubit device with ATA connectivity, for which c= 6, in
figure 2(a).

3.1.1. Ramp-up and ramp-down errors
Calibration errors can be produced when switching on and off the analog blocks [11], a process during which
the evolution differs from the ideal square pulse necessarily assumed in theory. Such errors can be modeled
as an uncertainty in the time t of application of the resource Hamiltonian (see figure 2(b)). Additionally, the
ramp-up and ramp-down procedure can introduce other types of error, such as leakage to
non-computational states [12, 13].

These errors are particularly relevant within sDAQC, which requires ramping up and down the resource
Hamiltonian’s coupling coefficients repeatedly during the algorithm, whereas bDAQC mitigates this error by
requiring it only at the beginning and end of the execution of the circuit.

3.1.2. Two-qubit terms in analog blocks
The resource Hamiltonian considered should be descriptive of the natural dynamics of the device. However,
there might be several sources of characterization errors associated to their implementation:

• The resource Hamiltonian might still be an approximation to the actual dynamics for some quantum com-
puting platforms. This is the case, for example, in superconducting qubit devices where the native dynamics
are described with a Bose–Hubbard Hamiltonian [14], and the qubitized form of the Hamiltonian is still an
approximation to it [15, 16]. In this case, a qubitized form of the Hamiltonian reduced to two-qubit inter-
actions is in general valid only at relatively short times after the activation of an analog block. In appendix E,
we study in detail how this is the case for superconducting qubits, where extra terms coupling pairs of qubits
that are not directly coupled appear in the qubitized Hamiltonian, as well as other terms coupling three and
more qubits. The coupling strength of these parasitic terms represents a significant fraction of the desired
interaction strength, especially at larger desired coupling strengths.

• The parameters of the resourceHamiltonianmight be inaccurately characterized. By definition, the resource
Hamiltonian H̄C contains c coupling coefficients, ḡjk. This means that the execution of each analog
block introduces c terms that have a potential mischaracterization error, even assuming that the physical
Hamiltonian will always have the exact form as in equation (1). Such an error can be modeled as an uncer-
tainty in the coupling coefficients ḡ of the resource Hamiltonian (see figure 2(b)).
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As an example of the latter, we show the equivalence of one analog block as two-qubit ZZ terms,

ZZ(ϕ) = eiϕZ
j Zk

=


ϕ 0 0 0
0 −ϕ 0 0
0 0 −ϕ 0
0 0 0 ϕ

 , (5)

on a four-qubit device with ATA connectivity in figure 2(c). In general, the calibration of a large number of
digital gates is simpler compared to the calibration of an analog block of the same size, since we can calibrate
each gate individually. In this regard, the precise many-body Hamiltonian identification needed for the
successful characterization of an analog block is still the subject of ongoing research [14, 17–19].

We know that the implementation of a target Hamiltonian requires c analog blocks (figure 2(a)), and that
each analog block introduces c two-qubit terms (figure 2(c)). Thus, the total number of two-qubit terms
needed to implement a target Hamiltonian is c2. As an example, for the ATA connectivity, for which
c=Θ(N2), the total number of error-prone two-qubit terms introduced isΘ(N4) in the general case. On the
other hand, implementing an equivalent computation in the DQC paradigm would require a minimum of
Ω(1) and, in the worst case,O(N2) TQGs, yielding a considerably slower scaling of the errors. Therefore, we
conclude that Ising DAQC is unfavorable when compared to DQC for executing arbitrary quantum
algorithms, which is where it should excel given that it is a universal paradigm for quantum computation.

In terms of fidelities, the fact that DAQC for the Ising model introduces c2 two-qubit terms, as opposed
to DQC introducing only c, implies that no matter how high the fidelity of a two-qubit term in DAQC is, it
will inevitably underperform DQC beyond some finite (typically small) system size. This follows from the
assumption that each error is independent [20], and therefore the contribution of all two-qubit terms to the
total fidelity of the computation, F, is given by

F= f n , (6)

where f is the fidelity of each two-qubit term, and n is the number of such terms. By equating the fidelities of
DAQC and DQC for the implementation of one target Hamiltonian,

f c
2

DAQC = f cDQC , (7)

assuming that fDAQC > fDQC, and solving for the critical number of connections cc at which DAQC
underperforms DQC, we obtain

cc =
log fDQC
log fDAQC

. (8)

This means that, necessarily, the two fidelities cross at some device size for which c= cc even if
fDAQC ≫ fDQC. For the ATA connectivity case, where the number of connections scales as c= N(N− 1)/2,
solving for the critical number of qubits Nc at which DAQC underperforms DQC gives

Nc =
1+

√
1+ 8 log fDQC

log fDAQC

2
. (9)

To illustrate, even in the highly favorable case where two-qubit terms in an analog block have a fidelity of
fDAQC = 0.99 and DQC TQGs have a much lower fidelity of fDQC = 0.9, DAQC for the Ising model would
already underperform for systems as small as Nc ⩾ 6. This highlights that, despite potentially better fidelity
per operation, DAQC’s inherently worse scaling for the Ising model in the number of error-prone terms
ensures that it will always lose to DQC beyond a modest system size. A more detailed discussion on the
compound fidelity of DAQC compared to DQC can be found in section 3.5.

3.1.3. Environmental errors
As in the digital case, the dynamics of analog blocks are subject to the impact of its environment, which
produces decoherence and information losses. While the environment responsible for the coherence decay is
the same in both the digital and DAQC cases, the analog blocks may dissipate in a more complex and
potentially faster way specifically at longer timescales, where the presence of non-local decaying channels
involving multiple neighboring qubits may become increasingly relevant [21–24]. Depending on the physical
implementation of the qubit states, many-body effects related to collective decay can arise in a variety of
physical systems, such as e.g atom arrays [25, 26], quantum dots [27] and also in superconducting
circuits [28, 29].
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3.2. Depth and duration
The depth of a digital quantum circuit is defined as the number of distinct timesteps at which gates are
applied [30]. It constitutes a measure of how long it takes to execute the quantum circuit, because each gate
generally has a fixed duration.

In the DAQC framework, the number of distinct timesteps is not directly related to how long it takes to
execute a quantum circuit, because each analog block in general has a different duration. Therefore, we need
to sum the duration of the analog blocks and layers of SQGs. Recall that the vector of the analog block times
is calculated via the matrixM−1 (see equation (4)), and no general statements can be made on the form of
M−1. Thus, the duration of DAQC algorithms must be calculated and studied on a case-by-case basis. In
section 5, we calculate numerically the total runtime of the algorithms that we explore in this manuscript. In
the previous literature, there is no quantitative study of the duration of DAQC circuits, and in fact, in
section 5.2.1, we find contradictions with previous statements of DAQC circuits being faster than DQC
circuits.

3.3. SQGs
The DAQC method introduces extra X gates to simulate one target Hamiltonian. From the method
presented in [1] or, e.g from figure 2(a), it is straightforward to see thatΘ(1) X gates are introduced per
analog block. Thus, the number of extra SQGs introduced per target Hamiltonian isΘ(c).

3.4. bDAQC non-commutativity errors
As discussed in section 2, and in appendix A.4 in more detail, the bDAQC paradigm does not require to
switch on and off the analog blocks repeatedly, but only requires the activation of a single block during the
whole protocol, thus reducing the ramp-up and ramp-down errors. However, in bDAQC, the
non-commutativity of SQGs with the resource Hamiltonian also introduces an error, which would only
disappear for infinitely fast SQGs [1]. The non-commutativity error is different for the boundary analog
blocks (the first and the last of the DAQC circuit) and the central analog blocks. In this section, we only focus
on the central analog blocks because there areΘ(c) of them per target Hamiltonian, whereas there are only 2
boundary analog blocks per circuit.

Specifically, when a SQG generated by a Hamiltonian Ha
s applied for some time∆t, Ua = exp(−iHa

s∆t),
is applied on qubit a, the error introduced is given by [1]

ecentral =
∥∥∥1− e−i H̄∆t/2e−iHa

s∆te−i H̄∆t/2ei(H̄+Ha
s )∆t
∥∥∥ (10)

=
(∆t)3

4
∥[[H̄,Ha

s ] ,H̄+ 2Ha
s ]∥+O

(
(∆t)4

)
. (11)

In the following, we work out the explicit dependence on∆t by carefully analyzing equation (11). If a
SQG has a given rotation angle (for example, if it is a π-rotation around the X axis), the amplitude of its
generator Hamiltonian is inversely proportional to the SQG’s time: Ha

s =
π

2∆tX. Since the Hamiltonian that
generates the SQG, Ha

s , appears twice in the nested commutators of equation (11), we find that the explicit
dependence of the error ecentral on the SQG gate time∆t is linear, ecentral =Θ(∆t). This result is in
contradiction with previous literature [1, 4], where it is stated to have a significantly better scaling of
O((∆t)3).

Additionally, the resource Hamiltonian H̄ also appears twice in the nested commutators. Thus, there is an
additional dependence with the degree of qubit a (i.e. the number of couplings) and with the resource
Hamiltonian’s coupling coefficients.

Specifically, the infidelity introduced by the non-commutativity of a gate Xa with the resource
Hamiltonian H̄ is

ϵcentral =Θ
(
daḡ∆t+ d2aḡ

2∆t2
)
, (12)

where da is the degree of qubit a, and ḡ is the coupling coefficient of the resource Hamiltonian (assumed to
be homogeneous for simplicity). A detailed derivation of the scaling given in equation (12) is provided in
appendix F.

3.5. Compound fidelity
In this subsection, we aim to write approximate formulas for the fidelities of DQC, sDAQC and bDAQC that
account for the scaling of all the sources of error studied in this section, and their individual infidelity
contributions. In order to do so, we make two assumptions:

6
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1. Each one- and two-qubit term in an evolution operator U corresponding to a SQG, TQG or analog block
has a fidelity f < 1 arising from control errors, which is independent of all other operations [20].

2. The main source of decoherence is thermal relaxation, and we consider a simple Markovian model for it,
such that the fidelity per qubit for an algorithm that requires a time t has the approximate form
FT1 ≈ e−t/T1 , where T1 is the relaxation time. Additionally, we consider this infidelity to be independent
for each qubit, and also independent from their unitary dynamics (disregarding the complex decaying
channels that can arise in DAQC, as discussed in section 3.1.3).

Under these assumptions, the approximate total fidelity of a digital circuit implementing one given target
Hamiltonian withO(c) terms on a device with c couplings is

FDQC ≈
(
fTQG

)nTQT
× e−Nttot/T1

(13)

=
(
fTQG

)O(c)

× e−Nttot/T1 ,
(14)

where fTQG is the fidelity of each TQG, nTQT is the number of two-qubit terms (i.e. of TQGs) and ttot is the
total execution time of the circuit. The compound fidelity FDQC in equation (14) accounts for that of the
TQGs, and decoherence due to thermal relaxation.

On the other hand, the approximate fidelity of a stepwise digital–analog circuit implementing the same
target Hamiltonian is given by

FsDAQC ≈
[(

framp

)
×
(
fcoupling

)]nTQT
×
(
fSQG

)nSQG
× e−Nttot/T1 ,

(15)

=
[(

framp

)
×
(
fcoupling

)]c2
×
(
fSQG

)Θ(c)

× e−Nttot/T1 ,

(16)

where f ramp is the fidelity associated with the ramp-up and ramp-down errors, f coupling is the fidelity
associated with the mischaracterization of ḡ, f SQG is the fidelity of SQGs, and nSQG is the number of SQGs.

Finally, the approximate fidelity of a banged digital–analog circuit implementing said target
Hamiltonian is

FbDAQC ≈
[(

framp

)c
×
(
fcoupling

)nTQT]
×
(
fSQG

)nSQG
× e−Nttot/T1

× (1− ϵcentral)
nAB .

(17)

=

[(
framp

)c
×
(
fcoupling

)c2]
×
(
fSQG

)Θ(c)

× e−Nttot/T1

× (1− ϵcentral)
c
,

(18)

where nAB is the number of analog blocks. In this case, the contribution to infidelity from ramp-up and
ramp-down errors gets significantly reduced, while the infidelity from non-commutativity is introduced.

As discussed in section 3.1.2, the dominant factor in determining the overall fidelity is the scaling of the
number of error sources. A faster-growing accumulation of errors in one paradigm ensures that it will
eventually underperform the others, typically at a small system size, regardless of the single-operation
fidelity f.

7



Quantum Sci. Technol. 10 (2025) 035029 V Pina Canelles et al

Figure 3. Digital circuit for the QFT on a device with five qubits, comprising H, Rz(θ) and ZZ(ϕ) gates, (a) on an ATA
connectivity, and (b) on a star-connectivity, where SWAP gates have been introduced as necessary. Target Hamiltonians as
required by DAQC are highlighted.

4. Illustrative examples: QFT and GHZ state generation

In this section, we apply the analysis above to two algorithms: the QFT routine and the GHZ state
generation. We have chosen QFT as a representative example because it has been said in the literature to
provide an advantage when compared to DQC [4, 5], which we here disprove, exemplifying our claim that
DAQC is ineffective for executing arbitrary algorithms. On the other hand, we have chosen the GHZ state
preparation as an example of the extremely specific circumstances under which DAQC can actually provide
an advantage. We confirm our findings with simulations in section 5.

4.1. QFT

The QFT is a quantum routine that acts on a quantum state |x⟩=
∑2N−1

i=0 xi |i⟩, where |i⟩ are computational

basis states, and maps it to a Fourier-transformed quantum state
∑2N−1

i=0 yi |i⟩, with

yk =
1√
N

N−1∑
j=0

xjω
jk
N , k= 0,1,2,3 . . . ,N− 1 , (19)

where ωN = e2π i/N. A digital quantum circuit for this routine is depicted in figure 3(a) using the Hadamard
(H), and phase Rz(θ) SQGs,

H=
1√
2

(
1 1
1 −1

)
, (20)

Rz (θ) = e−i θ2 Z =

(
1 0
0 eiθ

)
, (21)

as well as the ZZ(ϕ) TQG (5).

4.1.1. ATA QFT
Following the analysis in section 3, we study the scaling of errors for the digital–analog QFT routine in an
ATA connectivity device, and compare them to those of a purely digital implementation, in table 1(a). The
step-by-step derivation of these scalings can be found in appendix G.1. The most notable is that of the

8
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Table 1. Scaling of the error sources in DQC and DAQC with the number of qubits N, from which the total fidelity of the quantum
circuit can be calculated using equations (13), (15) and (17) for DQC, sDAQC and bDAQC respectively, for the following algorithms:
(a) QFT on an ATA connectivity, for which all sources of error scale better in DQC than in DAQC; (b) QFT on a star-connectivity, for
which the sources of error in DAQC scale better than in the ATA case, with an advantage with respect to DQC in the time of execution;
and (c) GHZ state preparation on a star-connectivity, for which we do not consider bDAQC (and therefore also not its associated error
ϵcentral) given that it contains only one analog block, and all the sources of error in DAQC scale similarly or better than those in DQC.

(a) ATA-QFT

nAB nTQT nSQG t ϵcentral

DQC — O(N2) O(N) O(N) —
sDAQC O(N3) O(N5) O(N3) O(N2.05) —
bDAQC O(N3) O(N5) O(N3) O(N2.05) O(N2)

(b) Star-QFT

nAB nTQT nSQG t ϵcentral

DQC — O(N2) O(N) O(N2) —
sDAQC O(N2) O(N3) O(N2) O(N) —
bDAQC O(N2) O(N3) O(N2) O(N) O(1)

(c) Star-GHZ

nAB nTQT nSQG t

DQC — O(N) O(N) O(N)
sDAQC 1 O(N) O(N) O(1)

number of two-qubit terms, which isΘ(N2) for the digital case while it isΘ(N5) for the digital–analog case,
rendering the DAQC implementation of the algorithm extremely unfavorable.

This result directly contradicts claims made in [4] that ‘the fidelity of the DQC decreases faster than the
fidelity of the DAQC [QFT] with the number of qubits of the system’. This is only apparently the case from
the data in [4] because:

1. The parameters used in the simulations are extremely favorable for DAQC: the fidelity of the TQGs is
chosen to be fTQG = 98.1%, while a two-qubit analog block equivalent to that gate has fanalog = 99.96%.
These fidelities have been calculated using the error parameters provided in [4] and averaging over 10 000
noisy operations,

2. The simulations in [4] reach only up to seven qubits, right before DQC would significantly outperform
DAQC at 8 qubits or more. This evidences that, even for parameters that are very favorable to DAQC,
DQC quickly outperforms it due to its fundamentally better scaling.

Regarding the duration of the quantum circuits, the fact that it scales significantly worse in DAQC
(approximately quadratically with N) than in DQC (linear with N) also directly contradicts the claim made
in [4] that the authors ‘have shown that the DAQC paradigm can enhance the depth of the implementation
of a quantum algorithm [QFT].’

Finally, we predict that bDAQC provides no advantage with respect to sDAQC, given that the intrinsic
error introduced scales too quickly (see the contribution of this source of error to the total fidelity in
equation (18)).

This unfavorable scaling of the errors in digital–analog QFT also affect the digital–analog
implementations described for the Quantum Phase Estimation [5] and Harrow-Hassidim-Lloyd [6]
algorithms, given that both use QFT as a subroutine.

4.1.2. Star QFT
We have developed a DAQC protocol that is specifically tailored to a device with star connectivity, where one
qubit is directly coupled to many others. This protocol, which we describe in detail in appendix H, is optimal
in terms of the number of analog blocks required and their durations, potentially providing significant
improvements when compared to the ATA connectivity. In this subsection, we discuss the scaling of errors of
the implementation of digital–analog QFT applied on such a device using this optimal protocol (see
figure 3(b) for the digital quantum circuit of this algorithm). Similarly to the case of ATA-QFT, a summary of
the error scalings of star-QFT can be found in table 1(b) whereas a step-by-step derivation can be found in
appendix G.2.
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Figure 4. Quantum circuits implementing the GHZ state preparation protocol on a star-connectivity with five qubits: (a) in the
DQC paradigm, (b) in the sDAQC paradigm.

As expected, the errors for star-QFT scale slower when compared to the ATA-QFT. However, the scaling is
generally still worse than in DQC. In detail, the number of two-qubit terms isΘ(N2) in the digital case and
Θ(N3) in the digital–analog one.

In this case, the duration of the algorithm scales linearly in DAQC while it scales quadratically in DQC,
so it presents an advantage in that regard. Additionally, the intrinsic error introduced by bDAQC is smaller
than that introduced by the two-qubit terms, so bDAQC has the potential of outperforming sDAQC.

4.2. GHZ state preparation
In this subsection, we introduce another example of a digital–analog quantum algorithm and describe the
DAQC protocol for generating the maximally entangled Greenberger–Horne–Zeilinger (GHZ) state [31] in a
star-connectivity device with N qubits,

|GHZN⟩=
|0⟩⊗N + |1⟩⊗N

√
2

. (22)

In figure 4(a), we show the digital circuit for generating the GHZ state on N = 5 qubits by utilizing
ZZ(−π

4 ) gates. We can write the N − 1 consecutive ZZ gates appearing in the digital circuit as the evolution
operator

U= e−i
∑N

j=1
π
4 Z

0Zj

, (23)

where we have set the time of the evolution tf =
π
4g . Writing a digital–analog circuit for this algorithm is now

possible following the method described in appendix H.
In this section we assume the resource Hamiltonian is homogeneous, i.e. all its coupling coefficients

ḡ≡ ḡ0j are equal, and also that they are independent of the number of qubits N. This entails that the
digital–analog quantum circuit only requires one analog block with appropriate runtime (see figure 4(b)),
which is given by the relation between the coefficients of the target and the resource Hamiltonians, t= g/ḡ.
This runtime t is independent of the number of qubits, whereas the number of TQGs needed in the digital
paradigm, and thus also the runtime of the algorithm, scales linearly with the number of qubits. A
comparison of the scaling of the digital–analog and the purely digital implementations of this algorithm can
be found in table 1(c). In this case, we do not consider bDAQC (and therefore also not its associated error
ϵcentral), because only one analog block is present and thus bDAQC presents no advantage.

For this algorithm, we can see that DAQC scales similarly to the DQC paradigm for two-qubit terms, and
better for execution time. This is because, in this case, the target and resource Hamiltonians are related just
by a multiplicative factor, and thus just one analog block is required to simulate the target Hamiltonian.

10
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Therefore, we argue that the cases in whichΘ(1) analog blocks are required to executeΘ(c) two-qubit terms
are the ones in which digital–analog circuits excel. However, such cases do not require the universal DAQC
compilation method at all.

5. Numerical simulations

After studying the scaling of the sources of error of the three algorithms in section 4, we validate our findings
through numerical simulations under a certain error model for different numbers of qubits, and extract
average execution fidelities as well as durations of circuit execution.

5.1. Error model andmethods
DQC employs single- and TQGs, whereas DAQC employs SQGs and analog blocks. As discussed in section 3,
we model the errors caused by all these operations by introducing errors in their control parameters. We
introduce a coherent and an incoherent contribution of these control errors to the total infidelity by
implementing two different modifications to the control parameters: (1) systematic errors that are constant
throughout each noisy simulation of the quantum circuit and (2) stochastic errors that are randomly chosen
every time an operation gets applied.

For each SQG generated by a Hamiltonian Ha
s , UHa

s
(θ) = exp(−iθHa

s ), we modify the angle of the
rotation as

θ→ θ ′ = θ× (1+∆θ+ δθ) , (24)

where∆θ is the systematic error, and δθ is the stochastic error.
For each TQG, ZZ(ϕ) = exp(−iϕZjZk), we modify the phase of the rotation as

ϕ → ϕ ′ = ϕ × (1+∆ϕ + δϕ) , (25)

where∆ϕ is the systematic error, and δϕ is the stochastic error.
Finally, for each analog block, UH̄C (t) = exp(−i t

∑
ḡjkZjZk), we modify the runtime and coupling

coefficients of the resource Hamiltonian as

t→ t ′ = t× (1+∆t+ δt) , (26)

ḡ→ ḡ ′ = ḡ× (1+∆ḡ+ δḡ) , (27)

where∆t,∆ḡ (systematic), and δt, δḡ (stochastic) are unitless.
For the case of QFT, because we are interested in the fidelity of the process regardless of the initial state,

we compute the ideal unitary implemented by the quantum circuit, and average over the erroneous unitaries’
fidelities. We define the fidelity of one erroneous unitary U with respect to its ideal Ũ as its average fidelity
over all possible initial states [32],

FU =
n+

∣∣Tr(Ũ†U
)∣∣2

n(n+ 1)
, (28)

where n= 2N is the dimensionality of the Hilbert space.
On the other hand, for the case of the GHZ state preparation, because we are interested in the final state

only, we compute the ideal state and average over the erroneous states’ fidelities. We define the fidelity of one
erroneous final state |ψ⟩ with respect to its ideal state (22) as:

Fψ = |⟨ψ|GHZN⟩|2 . (29)

For the sake of specificity, we choose the error parameters of the simulations to match those of a
state-of-the-art superconducting QPU. We sample all errors from a Gaussian distributionN (µ= 0,σ2)
centered around 0, where σ2 is chosen so that each type of operation has a given average fidelity: 99.99% for
SQGs, 99.9% for TQGs, and 99.95% for each two qubit term in analog blocks. These figures are calculated
executing the erroneous gates 10000 times, and averaging the resulting erroneous unitaries’ fidelities
according to equation (28).

This choice for the fidelities of each operation entails considerably better SQGs than TQGs, and analog
blocks that introduce less error per two-qubit term than each TQG. Additionally, in the case of bDAQC, the
error associated with the runtimes is applied only in the first and last analog blocks of the quantum circuit

11
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Figure 5. Top row: fidelity of DQC, sDAQC and bDAQC algorithms as a function of the number of qubits for the following
algorithms: (a) ATA-QFT, for which both versions of DAQC perform worse than DQC; (b) star-QFT, for which both versions of
DAQC perform worse than DQC, but bDAQC performs better than sDAQC for N> 6; and (c) star-GHZ, for which sDAQC
performs better than DQC. Bottom row: duration of the DQC and sDAQC circuits of algorithms, calculated numerically by
summing all the times of each SQG layer∆t= 5ns and the elements of the vector of runtimes t (DAQC), and by summing the
times of each TQG layer tTQG = 50ns and SQG layer (DQC), as a function of the number of qubits: (d) ATA-QFT, for which we
have fit the data to the closest signomial expression,O(N2.05), and the DAQC algorithm’s execution is longer than DQC for the
whole range; (e) star-QFT, for which the DQC algorithm’s execution is longer than DAQC for N> 25; and (f) star-GHZ, for
which the DQC algorithm’s execution always is longer than DAQC.

(see section 3.1.1). Finally, all the values of σ are also chosen so that the coherent errors account for 25% of
the infidelity per operation, and incoherent errors account for 75% of it.

We simulate the circuits for digital and digital–analog ATA-QFT, star-QFT and Star-GHZ, and compute
the noisy fidelities for each case, after applying the errors described above. We do this by running 1000
iterations of noisy circuits, computing the resulting erroneous unitaries and final states according to
equations (28) and (29), respectively, and averaging to obtain ⟨FU⟩ in the case of QFT or ⟨Fψ ⟩ in the case of
the GHZ state preparation.

The quantum circuits must be compiled to a specific basis gate set, which may be different for each
quantum computing platform. For specificity, we focus our simulations on one consisting of
superconducting qubits. Therefore, the native SQGs that we assume can be implemented in the devices are
the Rz gate (21) and the Rxy gate,

Ra
xy (θ,ϕ) = e−i θ2 (cosϕX

a+sinϕYa) . (30)

For superconducting quantum computers, the Ra
xy(θ,ϕ) gate can be physically implemented via a

microwave drive [33]. The gate Ra
z(θ) does not need to be physically implemented because it can be

accounted for virtually by readjusting the phase of the subsequent gates applied on qubit a [34]. On the other
hand, the native TQG we assume is the ZZjk(ϕ) gate (5).

We set the resource Hamiltonians to be homogeneous, with coupling coefficient ḡ= 10 MHz, and the
SQG times to be∆t= 5 ns. On the other hand, we assume that the time it takes to implement a TQG does
not depend on the phase of its rotation, and it is tTQG = 50 ns, as is realistic for superconducting transmon
qubits coupled via tuneable couplers.

5.2. Results
Considering the error model and methods prepresented, we have performed our simulations using the
open-source quantum computing library Qiskit [35] and the results are presented in figure 5.
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In the top row of figure 5, we plot the fidelity of the digital and digital–analog computations for each
algorithm we have studied (ATA-QFT5, star-QFT and Star-GHZ), as a function of the number of qubits.

Likewise, in the bottom row of figure 5, we plot the times of execution of the quantum circuits as a
function of the number of qubits. For the case of DAQC, these are calculated numerically by summing all the
elements of the vector of analog runtimes, t resulting from equation (4), and the times of the SQG layers. On
the other hand, for the case of DQC, they are calculated numerically by summing the times of SQG layers and
of TQG layers. SQG and TQG times are those laid out in section 5.1; respectively,∆t= 5ns and tTQG = 50ns.
Because we do not need to actually simulate the quantum circuits, we can extend these figures to a higher
number of qubits. The times of bDAQC circuits are not represented because they overlap those of sDAQC.

We proceed to discuss these results in detail for each algorithm.

5.2.1. ATA QFT
As can be seen from figure 5(a), the fidelities of QFT in both DAQC paradigms are below the fidelity in DQC
over the entire range of the number of qubitsN studied. One reason is that, even though each two-qubit term
in analog blocks is more error-robust, the number of two-qubit terms is much bigger than in DQC (recall the
scalings in section 4.1.1). For example, in the case of N = 3, DQC has 3 two-qubit terms whereas DAQC has
18 of them. Additionally, in DAQC, the two-qubit terms are repeatedly applied on the same pairs of qubits,
leading to a higher accumulation of coherent errors throughout the computation [36]. The much worse
scaling of DAQC compared to DQC only exacerbates the difference in fidelity for a bigger number of qubits.
This is expected from the estimation of compound fidelity (equations (14), (16) and (18)), as all factors (the
number of analog blocks, the number of two-qubit terms and the number of SQGs) have a worse scaling in
the DAQC paradigms, and bDAQC introduces a significant extra error compared to sDAQC. As discussed in
section 3.1.2, the worse scaling of all error sources in the DAQC paradigms guarantees that it underperforms
DQC in terms of overall execution fidelity, regardless of the fidelities of individual operations being higher.

Regarding the time of the computation, plotted in figure 5(d), we have fit the data to the best signomial
expression6, which gives a scaling ofΘ(N2.05), whereas the computation time for DQC scales linearly as
expected. The detrimental impact of decoherence is therefore much larger for DAQC than for DQC.

5.2.2. Star QFT
From figure 5(b), one can see that the fidelities for DAQC are also below the DQC fidelity for the whole
range of N studied in this case. However, the fidelities of DAQC are higher with respect to the ATA case, as
was expected from the analysis of the error scaling in appendix G.2. Thus, we see explicitly the dependence of
the performance of DAQC on the connectivity and the compilation used for the digital–analog circuit. This
result is in accordance with our estimations for the compound fidelity (equations (14), (16) and (18)), given
that, similarly to the case of the ATA-QFT, all factors still scale better in DQC than in DAQC. Additionally, in
this case, the intrinsic error associated with bDAQC scales slower than the error associated with the analog
blocks (see table 1(c)), so the trade-off is favorable to bDAQC and it outperforms sDAQC for N > 6.

As for the time of computation, in figure 5(e), we see that for DAQC, it grows linearly, while for DQC, it
grows quadratically, in such a way that for N > 25, the duration of the digital algorithm surpasses that of the
digital–analog, as predicted in section 4.1.2. This is because, in DQC, the application of TQGs must be
sequential since all of them involve the central qubit.

In this case, while the infidelity coming from control errors is greater for DAQC, there may be a trade-off
with the infidelity arising from decoherence and other environmental noise related to the time of execution
of the quantum circuits, which is greater for DQC than for DAQC for a big enough number of qubits. The
total fidelity under both sources of noise is calculated approximately in appendix J, where we conclude that
the trade-off can be favorable for DAQC for certain ranges of parameters, for example, if the execution of
TQGs is extremely slow, and/or if the relaxation time T1 of the qubits is extremely short.

5 For ATA-QFT, we skip the case of N= 4. This is because, as explained in [1], the matrix M that results for the ATA connectivity with
N= 4 is not invertible, and thus the times of the analog blocks cannot be calculated via equation (4). Furthermore, also for ATA-QFT,
we simulate the bDAQC circuit only for 3, 5 and 6 qubits as those are the only cases in which the compilation described in [1] can be
applied. For anyN> 6, equation (4) may return negative runtimes for the analog blocks. Indeed, the ATA-QFT needs the implementation
of analog blocks with negative runtimes, which is not physical. A protocol for obtaining a digital–analog circuit with only non-negative
runtimes is given in [2], though it requires the construction of an M matrix whose size grows exponentially with the number of qubits,
thus rendering it impractical.
6 Additionally, a spike is present in the range N ∈ (5,8). This non-monotonic behavior is due to a property of the matrixM for the ATA
connectivity: usually, its inverseM−1 has a balance of positive and negative elements that makes it so the contributions to analog times are
partially cancelled in equation (4); however, for N= 6,7 in the ATA connectivity, its elements are all negative and positive, respectively.
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5.2.3. Star GHZ state preparation
In figure 5(c), we can see that the fidelities of sDAQC are better than those of DQC. This result agrees with
our prediction regarding the fidelities of DQC (14) and sDAQC (16) made in section 4.2, given that the
number of two-qubit terms is the same in both cases and the analog evolution is, by construction, more
resilient to the control errors.

Additionally, and as expected, the time of the digital–analog algorithm is constant whereas that of the
digital algorithm scales linearly with N (see figure 5(f)). This is because, in a way, the digital–analog
algorithm is parallelizing all the two-qubit terms while the digital algorithm requires that we apply them
sequentially, one after the other.

Therefore, DAQC presents an advantage with respect to DQC when we can express the evolution of many
consecutive TQGs in a digital algorithm as a very reduced number of analog blocks, and combining them
with SQGs, i.e. in the few cases in which the resource Hamiltonian is similar to the target Hamiltonian.

6. Conclusions

In the past few years, the DAQC paradigm has been presented as an alternative path to perform universal
quantum computation that combines the robustness of analog quantum computing with the flexibility of the
digital approach [1–7].

In this manuscript we have benchmarked its performance by analyzing, both analytically and
numerically, the scaling of errors with respect to the digital case. Furthermore, we have considered the most
general situation, i.e. regardless of the connectivity or the algorithm to be implemented. Our analysis shows a
clearly disadvantageous error scaling of DAQC for the Ising model with respect to the digital case, primarily
due to the number of analog blocks needed to engineer one target Hamiltonian, and the number of
two-qubit terms introduced per each analog block. While for DAQC the implementation of one target
Hamiltonian entails the introduction of c2 two-qubit terms (where c is the number of couplings of the
device), for DQC it only entails, at most, the introduction of c two-qubit terms.

To illustrate our scaling analysis, we have analyzed the performance of DAQC with respect to the digital
case for two different algorithms, the QFT and the GHZ state preparation algorithm, on two different
connectivities: ATA and a star configuration. We have consistently found DAQC to be less efficient in terms
of fidelities when implementing two-body Ising Hamiltonians, except for the case in which the device’s
resource Hamiltonian closely matches the algorithm’s target Hamiltonian. In this situation, it can be argued
that the resulting quantum circuit corresponds to a purely analog implementation, with SQGs applied before
and after the analog evolution (see, e.g figure 4(b)). While this implies the need for tailoring the device’s
connectivity to match that of the algorithm, this case shows a promising advantage as it parallelizes the
two-qubit interactions that would otherwise be applied sequentially in the digital paradigm, and takes full
advantage of the potentially more error-resilient analog evolution. This approach, however, does not require
the DAQC universal compilation technique at all. Thus, we foresee potential areas of application of
digital–analog techniques in quantum simulation [2, 8, 37–43] and variational algorithms in which fast
generation of entanglement across the whole device is desirable [37, 44–46]. For ‘generic’ algorithms, where
DAQC should excel given its universality, we have shown that it is unfavorable, fundamentally contradicting
claims of DAQC improving the errors of quantum computations from the previous literature [4, 5].
Therefore, future work should be focused on either the potential areas of applicability of DAQC mentioned
above, or on the specific case of quantum algorithms running on devices whose respective target and
resource Hamiltonians share a structure that allows for a significant reduction of the errors introduced.
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Appendix A. Digital–analog quantum computation (DAQC) with arbitrary connectivity

Currently existing DAQC algorithms which can be implemented using two-body Ising Hamiltonians have
been developed for an ATA qubit connectivity [1, 2, 4, 5, 7] and for a one-dimensional qubit chain with
nearest neighbor couplings [2, 3]. However, promising quantum computing architectures like those based on
superconducting qubits consist of planar devices where only local interactions with nearest neighbors can be
natively implemented. In this section we provide a generalization by developing a protocol for implementing
universal DAQC on a device with an arbitrary connectivity. A more succinct method to achieve such a
general protocol is described in [2], which utilizes the ATA case as a starting point. For the sake of
completeness, in this section we describe our method from the ground up.

A.1. Resource and target Hamiltonian
Throughout this manuscript, we distinguish between resource and target Hamiltonians:

• The resource Hamiltonian is the entangling Hamiltonian according to which the qubits of a device evolve
naturally, when all interactions are turned on [1]. Its coupling coefficients are assumed to be constant and
non-tunable during the computation, though they can be turned on or off simultaneously as desired. In the
following, we denote resource Hamiltonians as H̄.

• The target Hamiltonian is the entangling Hamiltonian that generates a specific unitary which we wish to
implement. Its coupling coefficients can be chosen arbitrarily, depending on the computation to be imple-
mented. We denote target Hamiltonians as H.

We assume that the resource Hamiltonians are of ZZ-Ising type and that the target Hamiltonians that we
wish to implement are also of the ZZ-Ising type,

H̄C =
∑

( j,k)∈C

ḡjkZ
jZk , (A1)

HC =
∑

( j,k)∈C

gjkZ
jZk , (A2)

where, formally, we have defined the connectivity of a device (i.e. that of its resource Hamiltonian) as the
collection of c pairs of qubits that are connected, and we write it as C = {( j,k)}, where j,k are qubit indices
and k> j. Additionally, Zj is the Pauli-Z operator acting on qubit j,

Z=

(
1 0
0 −1

)
, (A3)

and ḡjk (g jk) are the coupling coefficients of the resource (target) Hamiltonian. A method for other types of
two-body Hamiltonians is given in [2], which, utilizing significantly more resources, is able to engineer target
Hamiltonians with arbitrary Pauli operators using resource Hamiltonians with other arbitrary Pauli
operators. In this manuscript we study algorithms that require only ZZ-type target Hamiltonians, so the
assumptions of equations (A1) and (A2) are valid for our purposes.

An analog block is the multi-qubit entangling operation consisting on the evolution of all qubits under
the resource Hamiltonian, for a finite and tunable time t,

UH̄C (t) = exp(−i t H̄C) . (A4)

The evolution unitary UHC under the target Hamiltonian HC , for some time tf, is given by

UHC

(
tf
)
= exp

(
−i tfHC

)
(A5)

= exp

−i tf
∑

( j,k)∈C

gjkZ
jZk

 (A6)

=
∏

( j,k)∈C

exp
(
−i tf gjkZ

jZk
)
, (A7)

which is equivalent to implementing c two-qubit ZZ(ϕjk gates as in equation (5) (see figure 6). The set of
operations comprising such unitaries UHC and arbitrary SQGs is universal [1]. Therefore, any quantum
algorithm can be written as a combination of SQGs and the evolution under such target Hamiltonians,
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Figure 6. Digital circuit comprising ZZjk(ϕjk) gates, equivalent to the evolution (A7) under a given target Hamiltonian (A2), for
some time tf, in a device with four qubits and ATA connectivity.

which themselves can be expressed as combinations of SQGs and analog blocks as we will explain in the
following subsections. Thus, analog blocks along with SQGs are universal.

In the following subsections, we explain how one can effectively implement an arbitrary target
Hamiltonian by making use of SQGs and a given resource Hamiltonian.

A.2. The stepwise digital–analog quantum circuit
The digital–analog quantum circuit we will describe in this subsection is constructed in the so-called stepwise
DAQC (sDAQC) paradigm [1], as opposed to the banged DAQC (bDAQC) paradigm [1, 7] that will be
discussed in appendix A.4. The defining characteristic of sDAQC is our ability to implement analog blocks
with a defined beginning and end, by turning on and off all the interactions simultaneously.

The resource Hamiltonian’s coupling coefficients {ḡjk}( j,k)∈C are fixed by definition, though we assume
that the qubits of the device can interact for a certain time t under the resource Hamiltonian in
equation (A1) [1]. Because of this, we are only left with tuning the time of the evolution. The core idea of a
DAQC protocol is to find a way to effectively engineer the desired coefficients of the target Hamiltonian,
{gjk}, by tuning the times of the analog blocks of a digital–analog quantum circuit (see equation (A4)),
which can comprise analog blocks and SQGs. Inspired by the methods of [1, 3], we construct a
digital–analog quantum circuit which contains c analog blocks, each running for some time tmn (with the
indicesm,n running over the number of qubits, similarly to j,k), that implies a transformation

{tmn}(m,n)∈C −→
{
gjk
}
( j,k)∈C . (A8)

We will provide the method for calculating the appropriate runtimes {tmn} which effectively implement
the correct coefficients {gjk} in appendix A.3, and for now concentrate on the construction of the DAQC
circuit.

For the sake of clarity, we denote qubit indices as (j, k) or (m, n) as a shorthand notation for connected
qubit pairs in the set C. We start our considerations with a quantum circuit that consists of c analog blocks,
each running for some time tmn. In order to be able to implement a target Hamiltonian with arbitrary
coefficients, firstly we need to effectively modify the signs of the coupling coefficients within each analog
block. This is because we use the combined evolution of these different effective analog blocks, with modified
signs, to engineer the arbitrary target Hamiltonian. To this end, we will interleave X gates in between the
analog blocks, and make use of the identity [30]

XaZbXa = (−1)δab Zb , (A9)

where X is the Pauli-X operator,

X=

(
0 1
1 0

)
. (A10)

Then, placing an Xa gate before and after an analog block has the effect of flipping the signs of all the
terms in H̄C involving the qubit a, effectively implementing a different Hamiltonian, H̄ ′

C

UH̄ ′
C
(t) = Xa exp(−i tH̄C)X

a (A11)

= Xa exp

−i t
∑
( j,k)

ḡjkZ
jZk

Xa (A12)

= exp

−i t
∑
( j,k)

ḡjkX
aZjZkXa

 (A13)
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= exp

−i t
∑
( j,k)

(−1)δaj+δak ḡjkZ
jZk

 , (A14)

where we have used the property Rei tHR† = ei tRHR
†
, provided that R is unitary [47]. Using this procedure, we

can implement effective Hamiltonians that differ from the resource Hamiltonian by one or more sign flips, in
each of the c analog blocks of the circuit.

Assume our quantum circuit is similar to that of figure 1, where each of the analog blocks is preceded and
followed by X gates placed on the same connected qubits appearing in the connectivity C. This specific way
of placing the X gates will allow us in the next subsection to derive the explicit relationship between the times
of the analog blocks and the coefficients of the target Hamiltonian. The evolution of a quantum state
according to this circuit is given by

UDAQC =
∏
(m,n)

XmXn exp(−i tmnH̄C)X
mXn (A15)

=
∏
(m,n)

exp(−i tmnX
mXnH̄CX

mXn) (A16)

=
∏
(m,n)

exp

(
− i
∑
( j,k)

tmn ḡjkX
mXnZjZkXmXn

)
. (A17)

A.3. Runtimes of the analog blocks in stepwise DAQC
We now turn towards the calculation of the runtimes tmn of the analog blocks. Utilizing equation (A9), we
can write equation (A17) as

UDAQC =
∏
(m,n)

exp

(
− i
∑
( j,k)

tmn ḡjk(−1)δmj+δmk+δnj+δnkZjZk

)
(A18)

=
∏
(m,n)

exp

−i
∑
( j,k)

tmn ḡjkMmnjkZ
jZk

 (A19)

= exp

−i
∑
(m,n)

∑
( j,k)

tmn ḡjkMmnjkZ
jZk

 . (A20)

We have defined the tensorMmnjk ≡ (−1)δmj+δmk+δnj+δnk containing c elements taking the values±1. We
can convert these elementsMmnjk into a c× c matrix with entriesMαβ by ‘vectorizing’ the pairs of coupled
qubits (m,n)→ α; ( j,k)→ β characterized by a single index each, as explained in appendix B. This also
‘vectorizes’ the times tmn → t and the coupling coefficients ḡjk → ḡ, gjk → g.

The interpretation of the sign of a given elementMαβ is the following: ifMαβ =+1 (−1), it means that
the effective coupling corresponding to the αth coupling, during the βth analog block, is positive (negative).

Let us compare now equation (A20), which is the evolution we implement through the DAQC protocol,
with equation (A7), which is the evolution under the target Hamiltonian we wish to simulate. They are equal
if the following matrix equation is fulfilled,

G tf =Mt , (A21)

where we define each element of G as Gβ ≡ gβ
ḡβ
.

The runtimes of each analog block can therefore be calculated, such that, effectively, the time evolution
under the target Hamiltonian is implemented, by inverting the matrixM,

t=M−1G tf . (A22)

Equation (A22) allows us to find a vector of times t of the analog blocks such that the circuit described
above effectively implements the evolution under the desired target Hamiltonian, provided that the matrixM
is invertible. This invertibility must be studied on a case-by-case basis, and, in cases in whichM is not
invertible, the SQG placement may be shifted to produce a different matrixM, in this case invertible, while
still making the DAQC protocol universal [1].

The case in which the resource Hamiltonian does not have only 2-body terms, but rather up toM-body
terms withM⩾ 3, is described in appendix C. Alternatively, an efficient way to effectively get rid of all
odd-body terms (if present) in the resource Hamiltonian is explained in appendix D.
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Figure 7. Schematic of the quantum circuit implementing a banged DAQC algorithm, with the analog evolution running
throughout the whole computation. The analog block times t ′α in between SQGs have been modified according to
equations (A23) and (A24).

A.4. Banged DAQC
In addition to sDAQC, which was described in the subsection above, another paradigm exists to perform an
approximate DAQC, called banged DAQC (bDAQC) [1, 7]. The idea is that SQGs are applied simultaneously
to an analog block, which runs throughout the whole circuit (see figure 7). The motivation behind bDAQC is
that it does not require us to ‘turn on and off ’ the analog Hamiltonian throughout the quantum circuit, but
rather it stays constantly on from beginning to end. Repeatedly turning the analog blocks on and off
introduces, for example, coherent errors such as leakage to non-computational states [12, 13]. In addition,
such a procedure also suffers from calibration errors because each time an analog block is turned on, it needs
a fine-tuned calibration of the control pulse parameters, upon which the unitary evolution is sensitive [11].

Consequently, a slight modification in the analog times between the layers of SQGs is required [1].
Specifically, for a quantum circuit with l analog blocks, the first and last (referred to as ‘boundary’) analog
block times are modified by the single qubit gate duration∆t to

t ′1,l = t1,l −
3

2
∆t , (A23)

and the rest (referred to as ‘central’) of analog blocks’ times are modified to

t ′α = tα−∆t , α ∈ {2, . . . , l− 1} . (A24)

The evolution under the simultaneous SQGs and analog block is given by

UH̄+Hs
(∆t) = exp(−i∆t [H̄+Hs]) , (A25)

where Hs is the Hamiltonian that generates the SQGs. In general, H̄ and Hs might not commute. This
introduces a reverse Trotter error [1], due to which the bDAQC computation is not exactly equal to the
evolution generated by the target Hamiltonian anymore. This error depends, among other things, on the
duration of the SQGs∆t, and it is different for the boundary analog blocks and for the central analog blocks,
due to different Trotterization methods. Keep in mind that, usually, the term Trotter error is used in the case
in which the ideal evolution is that of non-commuting Hamiltonians acting simultaneously, and is
introduced when ‘splitting’ it into sequential evolutions under each individual Hamiltonian [48, 49].
However, we use it in the reverse case: the ideal evolution is that of the sequential application of the
Hamiltonians, and the error is introduced when applying them simultaneously.

Consequently, there is a trade-off between the errors arising from turning on and off the analog blocks
being eliminated, and the Trotter error being introduced.

We study this intrinsic error associated with bDAQC, and its scaling, in more detail in section 3.4.

Appendix B. The sign matrix M

The set of elementsMmnjk has four indices. Let us ‘reorder’ these elements in such a way that they can be
arranged into a matrix, so that we will be able to invert it. In order to do that, we vectorize the pairs of indices
(m,n)→ α and ( j,k)→ β, assigning to each pair a single number, ordered from smallest to biggestm (j),
then from smallest to biggest n (k). For example, for an ATA 3-qubit device:

(m,n) = (0,1)→ α= 1 , (B1)
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(m,n) = (0,2)→ α= 2 , (B2)

(m,n) = (1,2)→ α= 3 . (B3)

This way, each pair of indices (m, n) is uniquely mapped to a single index α. The same is done with each
pair of indices (j, k), which is uniquely mapped into a single index β. This way, we are also able to mapMmnjk

toMαβ .
The general formula for this mapping in the ATA case for N qubits is [1]

(m,n)→ α= N(m− 1)−m(m+ 1)/2+ n , (B4)

( j,k)→ β = N( j− 1)− j( j+ 1)/2+ k . (B5)

On the other hand, the inverse transformation α→ (m,n) is given by:

n= 1+H1

[α
N

]
+H1

[
α

2N− 2

]
+H1

[
α

3N− 5

]
+ · · ·+H1

[
α

N(N− 1)/2

]
, (B6)

m= α−N(n− 1)+
n(n+ 1)

2
, (B7)

where H1 is the Heaviside step function at 1,

H1 [x] =

{
0 x< 1
1 x⩾ 1

(B8)

Note that these inverse transformations are incorrect in [1].

Appendix C. DAQC for Hamiltonians with up toM-body terms

In appendix A, we have laid out a method for performing DAQC using an Ising Hamiltonian with two-body
terms. In this section, we generalize this method for the case of resource Hamiltonians that have additional,
up toM-body terms. We characterize such a Hamiltonian by the collection of pairs of connected qubits
( j,k) ∈ C2, the collection of triplets of connected qubits ( j,k, l) ∈ C3... in general, Cb, and their corresponding
coupling strengths ḡb

H̄M =
∑
( j,k)

ḡ2jkZ
jZk +

∑
( j,k,l)

ḡ3jklZ
jZkZl + · · · (C1)

Each Cb has cb elements. This way, the total connectivity of theM-body resource Hamiltonian is

C =
M⋃
b=2

Cb , (C2)

which has a total of c=
∑M

b cb elements. As a specific example, the total number of terms, c, appearing in an
ATA Hamiltonian with up toM-body terms is given by:

c=

(
N

2

)
+

(
N

3

)
+ . . .+

(
N

M

)
. (C3)

If we are able to use the resource Hamiltonian (C1) to implement an arbitrary target Hamiltonian with
the same structure,

HM =
∑
( j,k)

g2jkZ
jZk +

∑
( j,k,l)

g3jklZ
jZkZl + . . . , (C4)

then we can get rid of the higher body terms by setting gb = 0 for all b> 2. Alternatively, if our problem at
hand has such higher body terms, we can use them to our advantage. Such interaction terms may appear, e.g
in fermionic [50, 51] and lattice gauge theory quantum simulations [52], and quantum optimization
[53–55].

Let us construct a digital–analog quantum circuit consisting of c analog blocks. The first c2 analog blocks
are preceded and followed by XmXn gates, in exactly the same way as described in appendix A (see figure 1).
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The following c3 analog blocks are preceded and followed by XmXnXp gates, with (m,n,p) ∈ C3. This pattern
is repeated until the analog blocks are exhausted. This quantum circuit is a generalization of the one
described in appendix A, for which we were restricting ourselves to C = C2.

This way, the unitary evolution of such a circuit is

UDAQC =
∏
(m,n)

XmXn exp

i t2mn

∑
( j,k)

ḡ2jkZ
jZk +

∑
( j,k,l)

ḡ3jklZ
jZkZl + . . .

XmXn

×
∏

(m,n,p)

XmXnXp exp

i t3mnp

∑
( j,k)

ḡ2jkZ
jZk +

∑
( j,k,l)

ḡ3jklZ
jZkZl + . . .

XmXnXp · · ·

(C5)

=
∏
(m,n)

exp

i t2mn

∑
( j,k)

M(2,2)
jkmn ḡ

2
jkZ

jZk +
∑
( j,k,l)

M(3,2)
jklmnḡ

3
jklZ

jZkZl + . . .


×
∏

(m,n,p)

exp

i t3mnp

∑
( j,k)

M(2,3)
jkmnpḡ

2
jkZ

jZk +
∑
( j,k,l)

M(3,3)
jklmnpḡ

3
jklZ

jZkZl + . . .

 · · · ,

(C6)

where we have introduced the collections of elementsM(a,b)
jk...mn..., which can take on the values±1. These

elements are calculated as

M(a,b)
jk...mn... = (−1)α ,where α=

∑
ν={j,k...}
µ={m,n...}

δνµ , (C7)

for which the ones in equation (A20) are a special case with ν = {i, j} and µ= {m,n}. Now, each of these
collections of elements can be rearranged into a matrixM(a,b) of dimensions ca × cb, following a process
similar to the one in appendix B. When comparing our DAQC evolution (C6) and the evolution under the
target Hamiltonian (C4) for some time tf, we can see that they are equal when the following set of matrix
equations holds:

tfG
2 =M(2,2) t2 +M(2,3) t3 + · · ·

tfG
3 =M(3,2) t2 +M(3,3) t3 + · · ·

... =
... +

... +
. . .

(C8)

Again, equation (A21) is a special case of this set of equations, in which we restrict ourselves only to the
first term of the RHS of the first equation. This set of equations can be written as just one matrix equation,
where a joint matrix of dimensions c× c appears, comprising all theM(a,b) matrices:

tf

G
2

G3

...

=

M(2,2) M(2,3) · · ·
M(3,2) M(3,3) · · ·

...
...

. . .


t

2

t3

...

 , (C9)

which we can write as tfGjoint =Mjointtjoint for compactness. By solving this equation through the inversion of
the joint matrixMjoint, we can calculate the time each analog block must run for in our digital–analog circuit:

tjoint =M−1
jointGjointtf . (C10)

Expressing the relationship between the times and the couplings of the target Hamiltonian in this single
equation is very useful, because then the only condition we need to impose for this relation to hold is the
invertibility of the joint matrix, as opposed to the invertibility of each individualM(a,b) matrix.

Appendix D. Cancelling undesired odd-body terms in the resource Hamiltonian

By substituting an analog block of time t by two analog blocks of time t/2 each, and placing X gates on all
qubits before and after one of the two analog blocks (see figure 8), we can effectively cancel all odd-body
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Figure 8. Digital–analog circuit implementing an analog block with all odd-body terms cancelled, for a five-qubit device.

terms. This is because flipping the sign of the couplings of all qubits leaves the even-body terms untouched,
but flips the sign of all odd-body terms, as exemplified here for two- and three-body terms:

(
N∏

m=0

Xm

)
ZjZk

(
N∏

m=0

Xm

)
= (−1)2ZjZk = ZjZk , (D1)(

N∏
m=0

Xm

)
ZjZkZl

(
N∏

m=0

Xm

)
= (−1)3ZjZkZl =−ZjZkZl . (D2)

Thus, evolving by times t/2 with the original and flipped signs cancels all odd-body terms, while evolving
according to all even-body terms for a total time t. This procedure introduces, at most, 2N single-qubit gates
(SQGs) per analog block, while leaving the total analog times intact. The SQG depth is increased, at most, by
two per analog block.

Appendix E. Resource Hamiltonian with superconducting qubits

One of the leading platforms for large-scale quantum computing are superconducting circuits based on
transmon qubits [20, 56, 57]. More recently, tunable coupler [58] based architectures have become the
leading transmon platform [20, 56, 59, 60] due to their ability to better control the qubit interactions [12].
Moreover, such architectures natively implement an adiabatic ZZ interaction [61], as required for the
implementation of DAQC with the resource Hamiltonian from equation (1). However, [62] has
demonstrated that when taking into account the fabrication precision, transmon arrays (without tunable
couplers) may exhibit significant many-body interactions in the idling regime, suggesting that implementing
sufficiently strong, purely two-body interactions is not straightforward. We therefore analyze whether
current state-of-the-art transmon processors with tunable couplers can mitigate this issue and be used to
implement the two-body resource Hamiltonian from equation (1).

To this purpose, we model each transmon as an anharmonic oscillator of the form

Hi = ωi a
†
i ai +

αi
2 a

†
i a

†
i ai ai , where a

(†)
i are bosonic annihilation (creation) operators of the transmon with

index i, ωi is its frequency, and αi is its anharmonicity. The interactions between the transmons are
implemented via capacitive coupling, modeled via the interaction Hamiltonian Hij =−gij(a

†
i − ai)(a

†
j − aj),

where the coupling constant gij = βij
√
ωiωj, where βij is a constant dependent on the capacitances of the

transmons. The tunable coupler is implemented via an additional transmon, with the main difference being
that the frequency of the tunable coupler ωc can be tuned via the application of external magnetic flux, thus
inducing or cancelling any interaction between computational transmons. In order to distinguish the tunable

coupler transmons from the computational transmons, we will use the annihilation (creation) operators b(†)i

for the tunable coupler degrees of freedom. All together the Hamiltonian of a system of Nq computational
transmons (indexed with q) coupled via Nc tunable couplers (indexed with c) is the sum of terms
representing each computational transmon (Hq

i ), tunable coupler (H
c
i ) and the capacitive coupling terms
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Figure 9. Absolute values of all possible couplingsΩ(n)
i1...in

defined in equation (E3), on a four-qubit star architecture (see figure 10
for the qubit labeling). For simplicity, the frequencies of all coupler transmons (on the x-axis) are equal. Different marker
shapes are used to discern between couplings of different orders. The parameters of the Hamiltonian in equation (E2) are
inspired by the experimental implementations in [12, 63]. More specifically, ωq

0,1,2,3 = [4.571,4.734,4.728,4.725]GHz,

α
q
0,1,2,3 = [−0.200,−0.199,−0.196,−0.208]GHz, αc

(0,1),(0,2),(0,3)
= [−0.094,−0.098,−0.099]GHz with the dimensionless

coupling coefficients βqc
(0,1),(0,2),(0,3)

= [0.0149,0.0146,0.0150], βcq
(0,1),(0,2),(0,3)

= [0.0154,0.0151,0.0150],

β
qq
(0,1),(0,2),(0,3)

= [0.001,0.001,0.001].

between all the elements (Hqc
ij , H

cq
ij and Hqq

ij ), or more explicitly

Hfull =Hq +Hc +Hqc +Hcq +Hqq (E1)

= h̄

Nq∑
i=1

(
ω
q
i a

†
i ai +

α
q
i

2
a†i a

†
i ai ai

)

+ h̄
Nc∑
i=1

(
ωc
i b

†
i bi +

αc
i

2
b†i b

†
i bi bi

)
+ h̄
∑
(i,j)

gqcij

(
a†i − ai

)(
b†j − bj

)
+ h̄
∑
(i,j)

gcqij

(
b†i − bi

)(
a†j − aj

)
+ h̄
∑
(i,j)

gqqij

(
a†i − ai

)(
a†j − aj

)
,

(E2)

with the sum over coupled transmons denoted by
∑

(i,j). Crucially, the qubit degrees of freedom are encoded
in the eigenstates of the Hamiltonian in equation (E2), and identified via the maximum overlap rule [12].
After removing the single-qubit terms, the interaction part of the qubitized Hamiltonian is

Hqb =

Nq∑
i,j=1

Ω
(2)
ij ZiZj +

Nq∑
i,j,k=1

Ω
(3)
ijk ZiZjZk +

Nq∑
i,j,k,l=1

Ω
(4)
ijklZiZjZkZl + . . . , (E3)

also known as the τ -Hamiltonian in the context of many-body localization theory [62]. The vector of the
eigenenergies E of the Hamiltonian from equation (E2) restricted to the computational basis is related to the

coefficients Ω(n)
i1...in

via the dot product Ω(n)
i1...in

= 2−NqE ·Zi1...in , where Zi1...in is the diagonal of the
corresponding Nq-qubit Pauli operator [62]. We perform this analysis for Nq = 4 computational transmons

arranged in a star connectivity and plot the magnitudes of the coupling coefficients Ω(n)
i1...in

in figure 9.
Figure 9 displays the effective Z-type couplings as the interaction is turned ‘on’ by tuning the coupler

frequencies ωc
(0,1),(0,2),(0,3) closer to the qubit frequencies ω

q
0,1,2,3. The results in figure 9 clearly indicate a

hierarchy of coupling strengths, as also observed in [62]. The most prominent are the desired two-qubit
couplings between the directly coupled qubits and the strongest parasitic couplings are the two-qubit
couplings between uncoupled transmons and 3-body interactions between directly coupled qubits. We can
clearly see that the magnitude of the parasitic couplings represents a significant fraction of the desired
interaction strength, especially at larger desired coupling strengths. Figure 9 therefore reveals an inherent
trade-off where stronger desired interactions will induce larger errors due to parasitic coupling terms, but
weaker two-body interactions will also require longer analog block durations, making the system more
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vulnerable to decoherence. The presented results demonstrate that, even with the introduction of tunable
couplers, the implementation of a purely two-body Hamiltonian in an array of capacitively coupled
transmons remains challenging.

Appendix F. Derivation of bDAQC non-commutativity error

In reference [1], it is shown that the first and last analog blocks (i.e. a constant number of analog blocks) of a
digital–analog circuit introduce errors eboundary =O(∆t2).

Each central analog block, however, is shown to introduce an error

ecentral =
∥∥∥1− e−i H̄∆t/2e−iHs∆te−i H̄∆t/2ei(H̄+Hs)∆t

∥∥∥ (F1)

=
(∆t)3

4
∥[[H̄,Hs] ,H̄+ 2Hs]∥+O

(
∆t4
)
, (F2)

where Hs is the Hamiltonian generating the SQG that overlaps the resource Hamiltonian. Let’s assume that
this SQG is an Xa gate, and thus Hs =

π
2∆tX

a. By explicitly plugging this, and the resource Hamiltonian
H̄=

∑
j,k ḡjkZ

jZk into (F2), we can get the explicit expression of ecentral. The innermost commutator in
equation (F2) is

[H̄,Hs] =

[
d∑

k=1

ḡZaZk,
π

2∆t
Xa

]
(F3)

=
dḡπ

2∆t

[
ZaZk,Xa

]
(F4)

=
dḡiπ

∆t
YaZk . (F5)

Plugging this into the outermost commutator yields

[[H̄,Hs] ,H̄+ 2Hs] =
dḡπi

∆t

[
YaZk,H̄+ 2Hs

]
(F6)

=
dḡπi

∆t

([
YaZk,H̄

]
+
[
YaZk,2Hs

])
. (F7)

Each of the two commutators above yields:

[YaZa,H̄] =

[
YaZa,

d∑
k=1

ḡZaZk

]
(F8)

= 2dḡiXaIk (F9)

[YaZa,2Hs] =
[
YaZa,

π

∆t
Xa
]

(F10)

=
−2π i

∆t
ZaZk . (F11)

Computing the total infidelity, we get

ecentral =
(∆t)3

4

√
(dḡ)4

(
2π

∆t

)2

+(2dḡ)2
( π
∆t

)4
. (F12)

Appendix G. Detailed error analysis of digital–analog QFT and GHZ state preparation

G.1. ATA-QFT error analysis
In order to translate the digital QFT into the digital–analog paradigm, we must first identify the target
Hamiltonians we need to implement. We do that by taking the biggest blocks of consecutive ZZ(ϕ) gates. As
an example, we show the first and last such target Hamiltonians for the ATA-QFT in figure 3(a), and from
that it becomes clear that N − 1 such blocks are needed.

The sources of possible errors were specified in section 3 and their effects on the compound fidelity
summarized in equations (16) and (18). For an ATA device, the number of couplings c is given by
c= N(N− 1)/2. For the digital–analog ATA-QFT, we therefore find the following scaling behavior with the
number of qubits N:
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1. Number of analog blocks: the ATA-QFT circuit is constructed asO(N) target Hamiltonians. Each target
Hamiltonian requires c=O(N2) analog blocks (see section 3.1). Thus, the total number of analog blocks
isO(N3).

2. Number of two-qubit terms: each analog block contains c=O(N2) two-qubit terms (see section 3.1.2).
Thus, the total number of two qubit terms in all the analog blocks isO(N5).

3. Duration: the digital ATA-QFT can be implemented in depthO(N) [64, 65]. On the other hand, the total
duration of the DAQC algorithm depends on the resulting matrixM for each case, and thus we cannot
say anything about it a priori (see section 3.2). We numerically compute the duration of this algorithm in
section 5, and, by fitting a curve to the simulated data, we extract a scaling of the durationO(N2.05).

4. Number of SQGs: each target Hamiltonian requires c=O(N2) X gates (see section 3.3). Thus, the total
number of SQGs isO(N3).

5. bDAQC non-commutativity: each qubit has a degree d=O(N), so from equation (12), and setting∆t, ḡ
to be constant, each analog block introduces an error that scales as ϵcentral =O(N2) (see section 3.4).
There areO(N3) analog blocks, so the contribution from bDAQC to the compound fidelity in
equation (18) scales as (1−O(N2))O(N3).

The worse error scaling for DAQC in the case of ATA-QFT is, in part, a result of the sparsity of two-qubit
terms in QFT. DQC requires only one TQG for each non-zero term of the target Hamiltonians; however,
DAQC is introducing superfluous analog blocks needed to effectively cancel the non-zero couplings of the
resource Hamiltonian. On top of that, each of these analog blocks introduces a large number of two-qubit
terms, as compared to just one two-qubit term per TQG.

G.2. Star-QFT error analysis
In this subsection, we analyze the scaling of the error sources for the digital–analog QFT implemented on a
star-connectivity, using the optimized protocol of appendix H, and work out the improvement compared to
the ATA-QFT.

Implementing the QFT on a star-connectivity introduces the need for SWAP gates placed between each
target Hamiltonian, as can be seen in figure 3(b), and each SWAP gate requires six additional analog blocks
when translated to a digital–analog implementation (see appendix I).

For a star-connectivity device, the number of couplings c is again given by c= N− 1. For the
digital–analog star-QFT, we therefore find the following scaling behavior with the number of qubits N:

1. Number of analog blocks: similarly to the ATA-QFT, the star-QFT circuit is constructed asO(N) target
Hamiltonians. However, in this case, each target Hamiltonian requires c=O(N) analog blocks, because
the other analog blocks get cancelled. On the other hand, in total, the need forO(N) SWAP gates
introducesO(N) analog blocks. Thus, the total number of analog blocks isO(N2).

2. Number of two-qubit terms: each analog block contains c=O(N) two-qubit terms. Therefore, the total
number of two-qubit terms in all the analog blocks isO(N3).

3. Duration: the digital star-QFT can be implemented in depthO(N2). In the digital–analog circuit, the nth
target Hamiltonian has n null coupling coefficients (meaning that gjk = 0), which eliminates n− 1 analog
blocks (recalling the discussion of equation (H4)). In addition, the difference between one coupling
coefficient and the next decreases exponentially (see the exponentially decreasing phases in figure 3(b)).
Recall from equation (H4) that the analog times are proportional to the difference between the coefficient
of each term in the Hamiltonian and the following. Thus, the contribution to the analog times of each
target Hamiltonian is asymptotically constant, and the duration of the whole algorithm is decreased to
O(N).

4. Number of SQGs: each target Hamiltonian requiresO(N) X gates. Thus, the total number of SQGs is
O(N2).

5. bDAQC non-commutativity: each external qubit, on which X gates are applied, has one coupling, so
from equation (12), each analog block introduces an infidelity that scales asO(1), when∆t, ḡ are set to be
constant. There areO(N2) analog blocks, so the contribution to the compound fidelity (see
equation (18)) introduced by bDAQC scales as (1−O(1))O(N2).

The errors for star-QFT scale slower when compared to the ATA-QFT, but the scaling is generally still
worse than in DQC. This is because, even though the number of analog blocks scales similarly to the number

24



Quantum Sci. Technol. 10 (2025) 035029 V Pina Canelles et al

of TQGs required for the DQC algorithm, each analog block introduces more two-qubit terms that are prone
to mischaracterization.

In this case, the duration of the algorithm scales linearly in DAQC while it scales quadratically in DQC,
so it presents an advantage in that regard. Additionally, the intrinsic error introduced by bDAQC is smaller
than that introduced by the two-qubit terms, so bDAQC has the potential of a bigger improvement than in
the ATA case.

Appendix H. Optimized DAQC on a device with a star-connectivity

As discussed in the previous section, some of the error sources present in DAQC are sensitive to the number
of analog blocks required within the protocol, and to the total time of the quantum circuit.

While the protocol described in [1] can work for any arbitrary connectivity, ad hoc protocols can be
developed for specific connectivities using fewer analog blocks and, consequently, shorter algorithm
runtimes. For example, in [3], an optimized DAQC protocol is developed for a device with a
nearest-neighbors connectivity in an open, one-dimensional graph, which reduces the number of analog
blocks, and also their runtimes.

On the other hand, we focus on a device with a so-called star-connectivity, where a central qubit is
coupled to N − 1 other external qubits (see figure 10(a)). We can write said connectivity as
S = {(0,1),(0,2), . . . ,(0,N− 1)}, where we label the central qubit with index 0. Algaba et al [66], e.g
describes how an effective star-connectivity device can be built out of superconducting circuits.

The main idea behind the optimized DAQC protocol [3] is to place the X gates in such a way that we
obtain an (N− 1)× (N− 1) sign matrixM, that relates the coupling coefficients of the resource and target
Hamiltonians to the analog times according to equation (4), of the form

M=



1 1 1 · · · 1 1 1
−1 1 1 · · · 1 1 1
−1 −1 1 · · · 1 1 1
...

...
...

. . .
...

...
...

−1 −1 −1 · · · 1 1 1
−1 −1 −1 · · · −1 1 1
−1 −1 −1 · · · −1 −1 1


, (H1)

i.e. a matrix with its elements being 1 on and above the diagonal, and−1 below the diagonal.
Recall the definition of the vector G from equation (4), with elements Gβ = gβ/ḡβ . We reorder and

express, without loss of generality, the elements of vector G in such a way that the following conditions are
met,

Gβ ⩾ 0 , (H2)

Gβ ⩾ Gβ+1 . (H3)

For the first condition to be met, we may need to shift the phase of the evolution, ϕβ → ϕ ′
β = ϕβ − 2π, in

order to change the signs of the target coefficients (recall that ϕβ = tfgβ mod (2π)). Through this
transformation, we can change the sign of Gβ without affecting said unitary evolution. For the second
condition, we may need to change the order of the labels of the coefficients in G. Under these conditions, it is
proven in [3] that the inverseM−1 yields runtimes for the analog blocks (see equation (4)) given by

tα
tf

=
Gα−Gα+1

2
, (H4)

tN−1

tf
=

G1 +GN−1

2
. (H5)

Also in [3], it is proven that these equations lead to the minimum number of analog blocks, running for a
minimal time, required to implement a given target Hamiltonian. One can see in equation (H4) how the
number of analog blocks gets reduced if k elements of G are equal, which makes k− 1 elements of t equal to
zero. Also, one can see how the time of each analog block tα gets reduced as the difference between Gα and
Gα+1 gets smaller. Then, our task is to find the correct placement of the X gates in our digital–analog circuit,
in order to obtain anM matrix of the form (H1) for a star-connectivity.
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Figure 10. (a) Scheme of a five qubit device with star-connectivity. Each node corresponds to a qubit, and each edge to a coupling
(i.e. to a ḡjZ0Zj term in H̄S ). (b) Quantum circuit for an optimized sDAQC protocol on a star-connectivity device with five qubits.

According to the interpretation of theM matrix from appendix A.3, a digital–analog quantum circuit
corresponding to the matrixM can be constructed by flipping all but one couplings in the first analog block,
and flipping one less coupling in the subsequent analog blocks. An example of such a circuit for 5 qubits is
given in figure 10.

Additionally, recall our discussion of non-commutativity errors in bDAQC in section 3.4 and their
dependence on the qubits’ degree. This protocol also minimizes the number of overlapping ZjZa terms with
the Xa gates introduced, given that they are only acting on the external qubits, which have degree d= 1.
Compared against other connectivities, qubits in an ATA connectivity have d= N− 1, and in a
one-dimensional chain they have d= 2. Thus, this protocol also minimizes the error introduced by the
non-commutativity of the resource Hamiltonian and the single-qubit terms.

Such optimized protocols have been described only for the one-dimensional open chain (in [3]) and for
the star-connectivity (in this manuscript) so far. This is because, in general, it is not possible to change the
sign of just one coupling in an arbitrary connectivity without changing the others, which is required to get
the necessaryM matrix (H1). Take, for example, a square lattice: to flip a coupling between two qubits, we
place X gates on one of the qubits involved, but this flips three additional couplings. To correct these
additional flipped signs, we can place X gates on the three other qubits involved, but this flips three
additional signs each. For such a reason, it is not possible to flip the sign of a coupling in an isolated way in
an arbitrary connectivity.

Appendix I. Digital–analog SWAP gates on a star-connectivity

The SWAP gate acts on two qubits by exchanging their states, |j⟩|k⟩ → |k⟩|j⟩

SWAP=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (I1)

A SWAP gate applied on the central qubit and one of the external qubits can be expressed in terms of
two-qubit Pauli rotations as:

SWAP= exp
(
i
π

4

(
X0Xk +Y0Yk +Z0Zk

))
(I2)

= exp
(
i
π

4
X0Xk

)
exp
(
i
π

4
Y0Yk

)
exp
(
i
π

4
Z0Zk

)
(I3)

=
[
H0Hk exp

(
i
π

4
Z0Zk

)
H0Hk

]
×
[
S0SkH0Hk exp

(
i
π

4
Z0Zk

)
HkH0S†kS†0

]
× exp

(
i
π

4
Z0Zk

)
. (I4)
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In the last equality, we have decomposed the SWAP gate into three different evolutions under a Z0Zk

Hamiltonian, each of which we can interpret as a target Hamiltonian with all couplings gjk = 0 except for
g0k =

π
4tf
. Following the optimized DAQC protocol described in appendix H, each of these target

Hamiltonians requires two analog blocks, accounting for a total of 6 analog blocks needed to implement a
SWAP gate.

Appendix J. Trade-off between control errors and environmental noise in star-QFT

While the DQC algorithm for the star-QFT has a better performance than DAQC regarding the infidelity
coming from control errors (see figure 5(b)), it has a longer execution time (see figure 5(e)). In turn, long
execution times imply that the algorithm becomes more affected by environmental decoherence, so a
trade-off may arise for a large enough number of qubits, in which decoherence accounts for a bigger effect on
the infidelity.

Table 2. Parameters of the fitting of the curve (J2) to the data in figure 11. The parameter f is smaller for DAQC in part because, even
though the fidelity per two-qubit term was chosen to be higher for DAQC in the simulations, their successive action on the same pairs of
qubits throughout the algorithm accumulates coherent errors, thus effectively decreasing their overall fidelity [36]. Similarly, the
parameter b is worse than the scaling of the number of two-qubit terms predicted in appendix G.2 for the three paradigms because of
this accumulation of coherent errors, and from the absorption of the secondary sources of error into a single parameter.

f a b c

DQC 0.99986 0.92985 2.3882 −1.58× 10−4

sDAQC 0.99831 0.06445 3.8571 −2.94× 10−4

bDAQC 0.99858 0.42443 2.8559 −0.02373

In order to analyze such a trade-off, we study the relationship between the scaling of both sources of
infidelity. We assume, like we did in section 3.5, that the main source of decoherence is thermal relaxation,
and consider a simple Markovian model for it. Additionally, we consider this infidelity to be independent for
each qubit, and also independent from their unitary dynamics. Therefore, the total fidelity of the
computation is given by

Ftotal ≈ ⟨FU⟩× e−Nt/T1 , (J1)

where FU is the unitary evolution’s fidelity, as defined in equation (28) and represented in figure 5(b), N is
the number of qubits, t is the execution time of the quantum circuit and T1 is the thermal relaxation time.
While approximate, this expression can give us insight into the interplay between the scaling of the two
sources of infidelity.

In order to extend ⟨FU⟩ to a higher number of qubits, for which the effects of decoherence become more
relevant, we fit the fidelity data of figure 5(e) for DQC, sDAQC and bDAQC to a function of the form

⟨FU⟩ ≈ f a(N
b) + c , (J2)

where we have assumed that each operation incurs in an independent infidelity, and where f,a,b, c are the
parameters resulting from the function fitting, which are given in table 2. We plot the fitted curves on top of
the simulated data in figure 11.

Finally, in figure 12, we plot the resulting total fidelity calculated as in equation (J1) for different
scenarios, in which TQGs have execution times of 50, 150 and 300ns, and in which T1 is either 50 or 500µs.
For the regime in which T1 is very short, and the time of the TQGs is very long, the trade-off is favorable to
DAQC, as can be seen in figure 12(b), for which T1 = 50µs, and DAQC outperforms DQC for tTQG = 150 ns
and tTQG = 300 ns.
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Figure 11. Average fidelity of the star-QFT algorithm for DQC, sDAQC and bDAQC, considering control errors, obtained in
section 5. The dashed lines represent the fitted curves of the form (J2).

Figure 12. Approximate total fidelity of the star-QFT algorithm, calculated according to equation (J1), in the DQC, sDAQC and
bDAQC paradigms, for different execution times of the TQGs, and (a) a relatively large T1 = 500µs, and (b) a relatively small
T1 = 50µs. The trade-off between control errors and decoherence can be favorable to DAQC in a parameter regime with very
limited T1 and very long TQGs, as can be seen in (b), where DAQC outperforms DQC for N> 11 when tTQG = 0.15µs, and for
N> 5 when tTQG = 0.3µs.
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