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A matrix model for a noncommutative formulation of the D = 11D = 11D = 11 supermembrane
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We introduce aSU(N) regularized matrix model of the noncommutative formulation of theD = 11 supermembrane compactified on a
torus with non-trivial winding. In this model we show that the sector characterized by the winding numbern 6= 0 has no local string-like
spikes, and the bosonic sector of the theory has discrete spectrum. We also discuss the spectrum for the complete supersymmetric model.
Keywords: Supermembrane; matrix models; SU(N) regularization; noncommutative geometry.

Presentamos un modelo de regularización SU(N) de la formulacíon no conmutativa de la supermembrana compactada en un toro en el
caso de enrollamiento no trivial. En este modelo demostramos que el sector caracterizado por el número de enrollamienton 6= 0 no
tiene configuraciones tipo cuerdas y el sector bosónico de la teoŕıa tiene espectro discreto. También discutimos el espectro para el modelo
supersiḿetrico completo.
Descriptores: Supermembrana; modelos matriciales; regularización SU(N); geometrı́a no conmutativa.
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1. Introduction

There has been several attempts to quantize the supermem-
braneD = 11 in the Light Cone gauge. One of these at-
tempts is a non perturbative regularizing model found by De
Wit, Hoppe and Nicolai [1]. In this approximation, De Wit,
Lüsher and Nicolai [2], found that the spectrum of the su-
permembrane inD = 11 is continuous. This instability of
the theory is due to the existence of singular configurations,
which are string-like configurations, and to the supersymme-
try of the model. De Wit Peeters and Plefka tried to find a
matrix model of the supermembrane in the case of compacti-
fied target spaces in order to see if this instabilities remained,
but they could not obtain a regularized model although by
heuristical reasoning they were able to see that the spectrum
properties remain unchanged [3]. We will show that is possi-
ble to obtain for the sector of the theory describing non trivial
winding, a matrix model regularization which exhibit stabil-
ity properties. This result does not contradict the one in [3]
since the instability arises from the sector with non trivial
winding.

We start with the Hamiltonian of the compactified D=11
supermembrane on(R9 × S1 × S1). The Hamiltonian for
the double compactified D=11 supermembrane was obtained
in Ref. 4 and 5 starting from the lagrangian formulation of
the D=11 supermembrane. It was important to follow step by
step the dualization procedure in order to show that the non-
trivial winding of the supermembrane was indeed described
by the nontrivial bundle over which the gauge field, dual to
the compactified coordinates, is defined. Having that geo-

metrical structure one may introduce in an intrinsic way a
symplectic structure on the world volume. One finally may
formulate the double compactified D=11 supermembrane as
a symplectic noncommutative gauge theory [4, 5]. The final
form of the Hamiltonian is

H =
∫

Σ

1
2
√

W
[(Pm)2 + (Πr)2 + 1/2W{Xm, Xn}2

+ W (DrX
m)2 + 1/2W (Frs)2]

+
∫

Σ

[1/8
√

Wn2 − Λ(DrΠr + {Xm, Pm})]

− 1
4

∫

Σ

√
Wn∗F +

∫

Σ

√
W [−θΓ−ΓrDrθ

+ θΓ−Γm{Xm, θ}+ Λ{θΓ−, θ}] (1)

in terms of the original Majorana spinors of the D=11 for-
mulation, which may be decomposed in terms of a complex
8-component spinor ofSO(7) × U(1). m = 1, ...7 are the
indices denoting the scalar fields once the supermembrane is
formulated in the light cone gauge.r, s = 1, 2 are the in-
dices related to the two compactified directions of the target
space. Σ is the spatial part of the world volume which is
assumed to be closed Riemann surface of topologyg. PM

andΠr are the conjugate momenta toXM and the connec-
tion 1-formAr respectively. Where,Dr = Dr + {Ar, }
andFrs = DrAs − DsAr + {Ar,As}. The bracket{, }
is defined as{∗, ¦} = 2εsr/n(Dr∗)(Ds¦) wheren denotes
the integer which characterizes the non trivial principle bun-
dle under consideration.Dr is a tangent space derivative
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Dr¦ = Π̂a
r∂a ¦ /

√
W = {Π̂r, ¦} r, s = 1, 2 : a = 1, 2.

where∂a denotes derivatives with respect to the local coor-
dinates of the world volume whilêΠa

r = εau∂uΠr is a zwei-
bein defined from the minimal solution of the Hamiltonian of
the theory. It satisfiesεrsΠ̂a

r Π̂b
sεab = n

√
W .

Our model consists in the following: Multivalued fields
are decomposed on a fixed but multivalued background
which is a minimum of the hamiltonian̂Πr and a single-
valued fieldAr without transitions over the surface,Σ, as it
follows, Ãr = Π̂r + Ar. We expand on an ortonormal com-
plete basisYA which is an eigenfunction of the operatorDr.
We only make the expansion over the single-valued fields.
Multivalued background̂Πr is absorved in the definition of
covariant derivatives. We can define, the structure constants
associated to the infinite group of the area preserving diffeo-
morphisms,(DPA) asgC

AB =
∫

d2σ
√

ω {YA, YB}Y C . They
also verify thatDrYA = λB

rAYB andλB
rA = λrAδAB , where

YA is chosen the Fourier basis for the torus, withΠ̂r the
local coordinates overΣ. In this case the new elements
λc

rA = −igC
Vr,A−Vr

are specific elements of the full group
of structure constants, whereVr = (0, 1), (1, 0).

2. Results

This model can be regularized by truncation of the indices
A = 1, ..N and aproximating the structure constants of the
infinite group of diffeomorphisms by the structure constants
of SU(N) group. The new elementsλc

rA which appear as a
consequence of the process of target space compactification
can be also regularized as they are particular structure con-
stants of the full group, DPA. The SU(N) regularized hamilto-
nian for a dual supermembrane compactified on a torus with
non-trivial winding is (see for details Ref. 6),

H =tr(
1

2N3
(P 0mT0P

0
mT0 + Πr0T0Π−0

r T0

+ (Pm)2 + (Π)2r) +
n2

16π2N3
[Xm, Xn]2

+
n2

8π2N3
(

i

N
[TVr , X

m]T−Vr − [Ar, X
m])2

+
n2

16π2N3
([Ar,As] +

1
8
n2

i

N
([TVs ,Ar]T−Vs − [TVr ,As]T−Vr ))

2 +
n

4πN3

Λ([Xm, Pm]− i

N
[TVr ,Πr]T−Vr + [Ar, Πr])

+
in

4πN3
(Ψγ−γm[Xm, Ψ]−Ψγ−γr[Ar,Ψ]

+ Λ[Ψγ−,Ψ]− i

N
Ψγ−γr[TVr , Ψ]T−Vr )), (2)

restricted to the gauge fixing condition

A1 = A(a1,0)
1 T(a1,0), A2 = A(a1,a2)

2 T(a1,a2), (3)

with a2 6= 0. Where were used the following definitions:

Xm = XmATA, Ar = AA
r TA, (4)

respectively to their conjugate momentaPm = PmATA

and Πr = ΠrATA using [TB , TC ] = fA
BCTA with

limN→∞fA
BC = gA

BC . In order to see the existence of lo-
cal singular configurations, it is important to come back to
the global condition which was imposed in order to obtain
the Hamiltonian of the model under consideration . It was

∫

Σ

√
W ∗F = 0. (5)

The annihilation of that term (5) which is perfectly valid
when we formulate our model over a fixed non trivial line
bundle, has important consequences with respect to the non-
existence of the local string-like configurations with zero en-
ergy density. To analyze this point let us see first what oc-
curs for the compactified membrane without that assumption.
Without the assumption (5), there are local string-like config-
urations arising from following configurations:

Xm=Xm(X(σ1, σ2)), Ar=− Π̂r + fr(X(σ1, σ2)). (6)

These configurations depend on an arbitrary uniform map
X(σ1, σ2). After some calculations one can show that the
hamiltonian density of (1) over those configurations becomes
zero. Hence the compactified supermembrane allows local
string like spikes with zero energy. Let us now discuss the
sector of the theory arising from the imposition of the global
condition (5). In the SU(N) model, the singular configura-
tions (6) do not arise becauseAr is single valued in distinc-
tion to Π̂r which is necessarily multivalued overΣ. String-
like configurations appear as zeros of the bosonic potential
V (X,A) which can be rewritten as:

λ̃rAXmA = 0 with r = 1, 2

and k−1/2(Vr×A)λ̃rAAA
s − k−1/2(Vs×A)λ̃sAAA

r

+fA
BCAB

r AC
s = 0,

which is only satisfied for

AA
r = 0; XmA = 0; ΠA

r = 0; PA
m = 0. (7)

Hence there are not string-like configurations of zero energy
density for this model, [6]. The constraint which is included
in the hamiltonian determinesΠ(a,b)

1 b 6= 0 andΠ(a,0)
2 which,

together the gauge condition, allow a canonical reductionHR

of the hamiltonian. After this reduction the canonical mo-
menta contribution becomes non-trivial, however, as they are
positive, we can bound the mass operator

µR = HR − Tr(
1

2N3
P 0

mT0P
0
mT0 + Π0

rT0Π0
rT0) (8)

by an operatorµ without the constraint. If the resultingµ
which is defined in the whole spaceRM , is bounded from
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below and has a compact resolvent, the same properties are
valid for µR, which is valid only in the interior of an open
coneK ⊂ RM . If we denote the hamiltonian by

µ = −∆X −∆A + V (X,A) (9)

acting onL2(X,A) ∈ RM , and define rigorouslyµ as
the self-adjoint Friedrichs extension of(µ, C∞c (RM )), in or-
der to show thatµ has compact resolvent we must see the
properties ofV (X,A), (see Ref. 7 for details): Firstly we
can note thatV (X,A) is positive. Secondly the potential
V (X,A) = 0 if and only if XBm = 0 and AB

r = 0 for
all indicesB,m, r. This was shown previously when we dis-
cussed that there are no local string-like configurations. The
third property that fill the requeriments forµ to be compact
is that the potentialV (X, A) → ∞ when(X,A) → ∞ in
every direction. Let see this third requeriment in more detail.
We write

XBm = RφBm;AA
r = RψA

r , (10)

with φBm, ψA
r angular variables andR > 0. The proof con-

sists in showing that

inf
(φ,ψ)∈T

V (Rφ, Rψ) →∞ as R →∞. (11)

As a consequence of this third property the resolvent of
µ is compact so the spectrum of this sector consists of pure
isolated positive eigenvalues of finite multiplicity. This en-
sures that the resolvent of the bosonic sector of the theory
HR is also compact so the spectrum is discrete [7]. We now
consider the supersymmetric extension of the hamiltonian.

3. The supersymmetric model

If we write the fermionic potential without considering the
constraint

VFermionic =Ψ
(−A)

[−fA
BCγ−γmXmBΨC

+ fC
ABAB

r γ−γrΨC + λrAγ−γrΨA] (12)

Each spinor can be expressed in terms of an eight complex
components spinorχA:

ΨA =




−iχA

0
χ†A

0


 (13)

and its complex conjugate is

Ψ
A

= ΨtC =
(
0, −iχ†A, 0, −χA

)
(14)

Written in terms ofχA the total hamiltonian of the system is

H =(
1
4
[Xm, Xn]2 +

1
2
(D̃rX

mA)2 +
1
8
n2 +

1
4
(FA

rs)
2)I

− 2(CA
C )α′β′(χ

†A
α′ χ

C
β′) + i(AA

1C)ααχ†Aα χ†Cα

− i(A∗A1C)ααχA
αχC

α , (15)

where we have made the following definitions,

CA
C =

in

4π
√

2N3
fA

BCΓ−ΓmXmB

AA
C =

in

4π
√

2N3
(fA

BC(iA1 +A2)B

+ (iλ1A + λ2A)BδA
CI8×8). (16)

We have explicitly evaluated the spectrum of this hamilto-
nian on a subspace of the whole physical configuration space,
28(N2−1) × 28(N2−1), with 28 × 28 associated to the matrix
representation of spinors, andN2 − 1 to theSU(N) group.
It turns out that the spectrum of the superymmetric model is
discrete. We will present a general proof in a forthcoming
paper. [8]

4. Conclusions

We showed that it is possible to obtain aSU(N) matrix
model formulation of the supermembrane dual in compact-
ified spaces for non trivial winding. For this sector of the
theory there are not string-like configurations of zero energy
density which cause instabilities in the theory. We showed
that the bosonic sector of the spectrum of the theory is dis-
crete. We also discussed the spectrum of the supersymmet-
ric model. Explicit calculations have been performed over
a subspace of the physical configuration space. Our results
point out that the spectrum of the supersymmetric model is
discrete.
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6. M.P. Garćıa del Moral and A. Restuccia, hep-th/0103261.
“On the Spectrum of a Noncommutative Formulation of the
D=11 Supermembrane with Winding”. (To be published in
Phys.Rev.D.)

7. L. Boulton, M.P. Garćıa del Moral, I.Mart́ın, and A. Restuccia.
“On the Spectrum of a Matrix Model For theD = 11 Super-
membrane Compactified on a Torus with Non-trivial Winding”
hep-th/0109153. (To be published inClass. Quant. Gravity.)
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