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A matrix model for a noncommutative formulation of the D = 11 supermembrane
compactified torus
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We introduce aSU (V) regularized matrix model of the noncommutative formulation of fhe= 11 supermembrane compactified on a

torus with non-trivial winding. In this model we show that the sector characterized by the winding nungbér has no local string-like

spikes, and the bosonic sector of the theory has discrete spectrum. We also discuss the spectrum for the complete supersymmetric model.
Keywords: Supermembrane; matrix models; SU(N) regularization; noncommutative geometry.

Presentamos un modelo de regularivacbU (N) de la formulachn no conmutativa de la supermembrana compactada en un toro en el
caso de enrollamiento no trivial. En este modelo demostramos que el sector caracterizadoUpeerel de enrollamienta, # 0 no

tiene configuraciones tipo cuerdas y el sectorOba de la teda tiene espectro discreto. Tar@bidiscutimos el espectro para el modelo
supersingtrico completo.

Descriptores: Supermembrana; modelos matriciales; regular@a&U(N); geometa no conmutativa.

PACS: 11.25.-w; 11.25.Sq; 11.25.Mj; 02.40.Gh

1. Introduction metrical structure one may introduce in an intrinsic way a
symplectic structure on the world volume. One finally may
There has been several attempts to quantize the supermefdrmulate the double compactified D=11 supermembrane as
braneD = 11 in the Light Cone gauge. One of these at- a symplectic noncommutative gauge theory [4,5]. The final
tempts is a non perturbative regularizing model found by Deorm of the Hamiltonian is
Wit, Hoppe and Nicolai [1]. In this approximation, De Wit, 1 - ) o omin
Lusher and Nicolai [2], found that the spectrum of the su- =/ W[(P )®+ (L))" + 1/2W{X™, X"}
permembrane iD = 11 is continuous. This instability of

the theory is due to the existence of singular configurations, + W (D X™)? 4+ 1/2W (F,s)?]
which are string-like configurations, and to the supersymme-
try of the model. De Wit Peeters and Plefka tried to find a + / [1/8VWn? — A(D,II" + {X™, P,,,})]
matrix model of the supermembrane in the case of compacti- ¥
fied target spaces in order to see if this instabilities remained, 1 / * / 7

) : —— [ VWn*F VvWI[—6T_T.D,-0
but they could not obtain a regularized model although by 4 Js e 5 [

heuristical reasoning they were able to see that the spectrum - m =
properties remain unchanged [3]. We will show that is possi- + T T {X™, 0} + A{OT -, 0}] (1)

ble to obtain for the sector of the theory describing non trivialin terms of the original Majorana spinors of the D=11 for-
winding, a matrix model regularization which exhibit stabil- mulation, which may be decomposed in terms of a complex
ity properties. This result does not contradict the one in [3]8-component spinor a§O(7) x U(1). m = 1,...7 are the
since the instability arises from the sector with non trivial indices denoting the scalar fields once the supermembrane is
winding. formulated in the light cone gauge: s = 1,2 are the in-

We start with the Hamiltonian of the compactified D=11 dices related to the two compactified directions of the target
supermembrane ofz’ x S! x S!). The Hamiltonian for space. ¥ is the spatial part of the world volume which is
the double compactified D=11 supermembrane was obtainezssumed to be closed Riemann surface of topolpgy’,
in Ref. 4 and 5 starting from the lagrangian formulation ofandII,. are the conjugate momenta 3" and the connec-
the D=11 supermembrane. It was important to follow step bytion 1-form A, respectively. WhereD, = D, + {A,,}
step the dualization procedure in order to show that the norand 7., = D, A; — DA, + {A;, As}. The bracket{, }
trivial winding of the supermembrane was indeed describeds defined aq*,o} = 2¢°"/n(D,*)(Ds¢) wheren denotes
by the nontrivial bundle over which the gauge field, dual tothe integer which characterizes the non trivial principle bun-
the compactified coordinates, is defined. Having that geodle under consideration.D,. is a tangent space derivative
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Dyo = 119, o VW = {II,,0} r,s=1,2:a =12 withay # 0. Where were used the following definitions:
whered, denotes derivatives with respect to the local coor-

dinates of the world volume whilH® = €243, 1, is a zwei- XM= X"ATy, Ay = ATy, 4)
bein defined from the minimal solution of the Hamiltonian of . . ) N
the theory. It satisfieg *TI* T e, — ny/IV respectively to their conjugate momeni® = P™AT,
. ritsta . ro rA H _ A i
Our model consists in the following: Multivalued fields @1d 1I" = "1y using [T, Tc] = fpcTa with

dimn—cofBc = gBc- In order to see the existence of lo-
cal singular configurations, it is important to come back to
the global condition which was imposed in order to obtain
the Hamiltonian of the model under consideration . It was

are decomposed on a fixed but multivalued backgroun
which is a minimum of the hamiltoniail, and a single-
valued field A, without transitions over the surfaég, as it
follows, A, = II, + A,.. We expand on an ortonormal com-
plete basig’4 which is an eigenfunction of the operatbr.. »
We only make the expansion over the single-valued fields. /EW F=0. ®)
Multivalued backgroundl, is absorved in the definition of R o )
covariant derivatives. We can define, the structure constantshe annihilation of that term (5) which is perfectly valid
associated to the infinite group of the area preserving diffeowhen we formulate our model over a fixed non trivial line
morphisms,(DPA) ag{, = [ d?c\/w {Y4,Ys} YC. They bu_ndle, has important consequences Wlth_respept to the non-
also verify thatD, Y, = /\fAYB and)\fA — \404p, Where existence _of the local strlng-!|ke c_onflguratlons vylth Zero en-
Y, is chosen the Fourier basis for the torus, V\ﬁh the €rgy density. To analyze this point let us see first what oc-
local coordinates oveE. In this case the new elements Curs for the compactified membrane without that assumption.
xe, = —igS ,_, are specific elements of the full group Wlthout the_ e_lssumptlon (5)3 there are Iocgl string-like config-
of structure ébnsténts, whete = (0, 1), (1,0). urations arising from following configurations:

X"=X"(X(01,02)), Ar=—1,+ f(X(01,02)). (6)

2. Results

These configurations depend on an arbitrary uniform map
This model can be regularized by truncation of the indicesX (o1, 02). After some calculations one can show that the
A = 1,..N and aproximating the structure constants of thehamiltonian density of (1) over those configurations becomes
infinite group of diffeomorphisms by the structure constantszero. Hence the compactified supermembrane allows local
of SU(N) group. The new elemenits , which appear as a string like spikes with zero energy. Let us now discuss the
consequence of the process of target space compagctificatisector of the theory arising from the imposition of the global
can be also regularized as they are particular structure cogondition (5). In the SU(N) model, the singular configura-
stants of the full group, DPA. The SU(N) regularized hamilto-tions (6) do not arise becausk. is single valued in distinc-
nian for a dual supermembrane compactified on a torus wittion to IL. which is necessarily multivalued ov&r. String-
non-trivial winding is (see for details Ref. 6), like configurations appear as zeros of the bosonic potential

V(X, .A) which can be rewritten as:

1
H =tr(=—— (P"™ Ty P2 Ty + " TI1, T, ~
(ol 0FmLo+ 0% 20 AaX™A =0 with r=1,2
2 ~ ~
+ (P™)? 4 (IN?) + Tz [X, X2 and i 1/AVAIN AT — VA AT
7 16m2N3
> +fAcABAC =0,
+ L(i[T%,7X”L]T,\/T _ [A’”XMDQ e
8m2N3 N S -
\ which is only satisfied for
1 2
* 16n2Ne (A, A+ 8" Ad =0, XxmA=0; =0, P1=0 (7)
i([TVS AT v, — [Ty, AT-v.))* + n 3 Hence there are not string-like configurations of zero energy
N _ drN density for this model, [6]. The constraint which is included
A(X™, P] — L[Tv LT v, + [ALTL]) in the hamiltonian determind@&“’b)b #0 andHé"’O) which,
N " together the gauge condition, allow a canonical redudtign
mo o — m — of the hamiltonian. After this reduction the canonical mo-
+ A7 N3 (Wy—ym[X™, W] = Uy [A,, V] menta contribution becomes non-trivial, however, as they are
. i positive, we can bound the mass operator

+ Ay W) - STy, [T, Ty, () )

_ N o pr = Hr — Tr(=z PATo P Ty + 0T 0T, (8)

restricted to the gauge fixing condition f f (2N3 0 0 0 o)

(a1,0) (a1,a2) by an operatog: without the constraint. If the resulting
A=Ay a0y, A2 = Ay Tar.a2)»  (3)  which is defined in the whole spad®V, is bounded from
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below and has a compact resolvent, the same properties a@ad its complex conjugate is
valid for p, which is valid only in the interior of an open

M toni —A )
coneK C R™ . If we denote the hamiltonian by U =wic = (0, —ixt4, 0, —x?) (14)
nw=-Ax —A4+V(X,A) 9)

) ] i Written in terms ofy# the total hamiltonian of the system is
acting on L2(X, A) € RM, and define rigorously: as
the self-adjoint Friedrichs extension @f, C>°(R*)), in or- Lo om 1~ o 1 14
der to show thajs has compact resolvent we must see the H :(Z[X X+ §(DTX )2 + g"Q + 1(7:7-(9)2)[
properties ofV (X, A), (see Ref. 7 for details): Firstly we A A o A e
can note thal/ (X, A) is positive. Secondly the potential = 2(C¢)arp (Xar X5) +i(Afe)aax i Xh

—0i i Bm _ B _ Lo
V(X,A) = 0ifand only it X*™ =0 and AP =0for — (A1) aaX4XS (15)
all indicesB, m, r. This was shown previously when we dis-
cussed that there are no local string-like configurations. The . -
. . . Where we have made the following definitions,
third property that fill the requeriments farto be compact
is that the potential’ (X, A) — oo when(X,A) — oo in ;

m
every direction. Let see this third requeriment in more detail.  Cé = ——=— fcI-T,, X™P
We wri 4m/2N3
e write
Bm _ Bm. fA _ A mn i
X Ro™T5 A = Ry (10) AG = V/aNG (fac(iAL + Ag)P

with ¢B™ ¢4 angular variables ang > 0. The proof con- AmvV2N
sists in showing that + (id1a + )\zA)B5ésts). (16)

inf V(R¢,RYp) > o0 as R — oo. (11) o ) ]

(6, ¥)ET We have explicitly evaluated the spectrum of this hamilto-

As a consequence of this third property the resolvent ofian on a subspace of the whole physical configuration space,
11 is compact so the spectrum of this sector consists of purg®™ — x 28V with 28 x 2% associated to the matrix
isolated positive eigenvalues of finite multiplicity. This en- representation of spinors, aid® — 1 to the SU(N) group.
sures that the resolvent of the bosonic sector of the theorlf turns out that the spectrum of the superymmetric model is
Hp is also compact so the spectrum is discrete [7]. We nowdiscrete. We will present a general proof in a forthcoming
consider the supersymmetric extension of the hamiltonian. paper. [8]

3. The supersymmetric model .
4. Conclusions

If we write the fermionic potential without considering the
constraint We showed that it is possible to obtainSd/(N) matrix
v B G A ymBC !”r_mdel formulation of thg supermembrane (;Iual in compact-
Fermionic BCT="Im ified spaces for non trivial winding. For this sector of the
+ fpABY_ 7,0 £ N4y~ 4] (12)  theory there are not string-like configurations of zero energy
density which cause instabilities in the theory. We showed

Each spinor can beA(_axpressed in terms of an eight compléat the bosonic sector of the spectrum of the theory is dis-
components spinoy”: crete. We also discussed the spectrum of the supersymmet-

—ixA ric model. Explicit calculations have been performed over
A 0 a subspace of the physical configuration space. Our results
o= x4 (13) point out that the spectrum of the supersymmetric model is
0 discrete.
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