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Abstract

In this thesis, exact results in N = 2 super Yang-Mills theories are discussed. Starting from the
exact solution of pure SYM provided by Seiberg and Witten through an elliptic curve construction,
generalizations are discussed such as the inclusion of hypermultiplets. Special emphasis is put on
the selfdual Nf = 4 theory, which will play a central role in remainder. Furthermore, a brief
summary is given of the M-theory construction of Witten to determine the Seiberg-Witten curves
of gauge theories with arbitrary unitary product gauge groups, also dubbed quiver gauge theories.
This provides the necessary introduction to understand the recent developments made by Gaiotto.
Superconformal quiver theories are associated in a very precise manner to punctured Riemann
surfaces Cn,g. Gaiotto’s conjecture that the UV moduli space of the quiver theories equals the
moduli space of the associated Riemann surface is explained in detail. Furthermore, explicit checks
of his proposal are performed by comparing the boundaries of the moduli spaces for Tn,g[A1],
g = 0, 1. We briefly re-examine the M-theory construction in this new light, essentially explaining
the reduction of the elusive 6d (2, 0) theory on Cn,g. At last, the extension to A2 and AN−1 quiver
gauge theories is discussed.
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Chapter 1

Introduction

Yang-Mills theories with N = 2 supersymmetry present an intriguing playground to help under-
stand the non-perturbative dynamics of non-abelian gauge theories, which arise inescapably in the
IR of UV free theories. Starting with the developments of Seiberg and Witten in [59] and [60],
it was realized that the low energy effective actions of a large class of spontaneously broken su-
persymmetric Yang-Mills theories, possibly coupled to hypermultiplets, allow a purely geometrical
description in terms of (hyper)elliptic curves. The basic property of N = 2 gauge theories which
underlies the appearance of elliptic curves is the complex moduli space of vacua on which the effec-
tive action depends holomorphically. A beautiful interplay between physical assumptions and the
mathematical rigidity of complex analysis fixes the effective action completely. An infinite series
of non-perturbative corrections was exactly computed, standing in great contrast to increasingly
difficult explicit instanton calculations.1 Whereas Seiberg and Witten originally studied the low
energy effective behaviour of SU(2) theories coupled to Nf ≤ 4 flavours, the analysis was sub-
sequently generalized to SU(N), SO(N), Sp(N) gauge groups with and without the inclusion of
hypermultiplets[2][9][11][48].

The fact that the appearance of geometry seems a generic property of N = 2 gauge theories leads
to the question whether the elliptic curves are purely auxiliary or if they carry an actual physical
interpretation. A natural place to search for an answer to this question is in the realm of string- or M-
theory, since these theories try to encode our four dimensional world through geometric constructions
in extra dimensions. And indeed, it was found by Witten in [72] that Seiberg-Witten curves can be
constructed in Type IIA or M-theory using certain brane configurations. Whereas four-dimensional
spacetime is wrapped by the branes, they additionally extend in extra dimensions to form the
Seiberg-Witten curves. This insight extended the class of gauge theories described by complex
curves enormously, primarily opening the door to arbitrary product gauge theories.2 But not only
does the M-theory construction give a straightforward recipe to construct Seiberg-Witten curves, it
also naturally knows about rather non-trivial aspects of gauge charges in the theories[31][40]. By
natural it is meant that the natural geometry of M-theory inadvertently explains these fundamental
questions. This demonstrates the power of M-theory in its deep capability of explaining complicated
four-dimensional physics in terms of only two basic objects: the M2 and M5 brane.

The M-theory construction of Witten was further scrutinized by Gaiotto, with success[29].
Gaiotto studied N = 2 superconformal field theories and was able to determine elementary build-
ing blocks, in particular for SU(2) and SU(3) gauge theories but also the road towards SU(N),
to construct product gauge theories in the form of generalized quiver diagrams. Generalized quiver

1In 2002, Nekrasov devised a method to calculate instanton corrections in a more direct manner[45]. Although
this method provides a check on the Seiberg-Witten solution, it will not be discussed in this thesis.

2Witten found the brane constructions for products of unitary gauge groups. See [1] for products of symplectic
and orthogonal gauge groups.
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diagrams are trivalent graphs which provide a convenient depiction of both gauge and flavour symme-
tries and the corresponding matter representations. This realization was subsequently understood to
allow for a natural identification of the quiver theories with genus g Riemann surfaces with a variety
of punctures, corresponding to possible flavour symmetries. A degeneration of the Riemann surface
is interpreted as a weak coupling limit of the gauge theory; different degenerations of the Riemann
surface correspond to different decoupling limits of the gauge theory. This suggests the conjecture
made by Gaiotto: the UV moduli space of the gauge theory coincides with moduli space of these
Riemann surfaces. In particular, the boundaries of the moduli spaces are matched, mathematically
checked through the construction of the Seiberg-Witten curves, and surprising dual descriptions for
certain quiver gauge theories are found. Theories underlying all dual descriptions are denoted by
Tf1,...,fN ,g[AN ], making a clear two quivers are dual whenever the number and type of punctures
and genus coincides. Although in the SU(2) case the possible dual descriptions of a single theory
are relatively mild, the analysis extends to higher rank gauge theories. For general SU(N) quiver
gauge theories, a rich zoo of building blocks exist to produce SCFTs[17]. For these higher rank the-
ories, dual descriptions of a seemingly ordinary SU(N) theory generically include non-Lagrangian
isolated interacting SCFTs whose flavour symmetries are partly gauged and coupled to the rest of
the quiver. This is much in the spirit of Argyres-Seiberg duality [10] and indeed, Argyres-Seiberg
duality is recovered as a special case of this much larger web of dualities.

Apart from the fact the Riemann surfaces provide a useful tool to understand dualities in gauge
theories, they also provide an explicit UV-IR correspondence. The distinction between the exactly
marginal gauge coupling, parametrizing the UV, and the physical gauge coupling as understood
from the Seiberg-Witten curve arises naturally and explains the discrepancy between the original
assumptions of Seiberg-Witten of no renormalization and the explicit calculations in [44] in a beau-
tiful geometrical way. From the M-theory construction, it becomes apparent the Seiberg-Witten
curves are realized as wrapping the Riemann surface in a very particular way: the curves are repre-
sented as k-differentials living in the kth symmetric power of the cotangent bundle of the Riemann
surface for gauge group SU(k). This additional structure is responsible for a correct identification
of UV and IR parameters, and geometrically encodes how S-duality in the UV translates to IR dual
descriptions.

The goal of this thesis is to provide an introduction to the geometric aspects of N = ∈ gauge
theories, culminating in the discussion of Gaiotto’s article. To this end, in Chapter 2 certain aspects
of supersymmetry are briefly reviewed, including the low energy effective action of N = 2 super
Yang-Mills, the anomaly in the U(1)R symmetry and the precise form of the renormalized prepo-
tential following the original argument of Seiberg[57]. In Chapter 3, the Seiberg-Witten solution to
pure SU(2) SYM is extensively discussed, focussing on the elliptic curve construction. As a short
intermezzo, we utilize the solution to understand confinement in N = 1 SYM, which is shown to be
caused by the condensation of magnetic monopoles. We resume with the Seiberg-Witten analysis of
the SU(2) theory coupled to flavours, focussing on qualitative aspects such as the structure of the
moduli spaces, global symmetries and, for Nf = 4, its self-duality properties. At last, we finish the
chapter with a brief discussion of the M-theory construction of Witten, providing the general curve
for an arbitrary unitary product gauge group theory. Having all the tools at hand, Chapter 4 tries to
present a complete discussion of Gaiotto’s ‘N = 2 Dualities’. Starting with the conceptual idea on
how to relate the quivers to Riemann surface, we will provide a thorough quantitative analysis on the
Seiberg-Witten curves corresponding to g = 0, 1 A1 quiver gauge theories. Checks of statements in
the more conceptual sections are performed. We then review the six-dimensional origin of the quiver
theories, and conclude with a discussion of the extension to SU(3) and SU(N) quiver theories.



Chapter 2

Supersymmetry

An essential ingredient in the forthcoming analysis will be supersymmetry. Supersymmetry is a
theoretically proposed symmetry between bosons and fermions. It states that every fermion in a
particular theory must have a boson superpartner and vice versa. In contemporary high energy
physics this concept is ubiquitous. The most important reason for this is that supersymmetry
naturally cures a lot of issues that appear when one renormalizes a quantum field theory. However,
it has also been found to be an indispensable concept in string theories, hence the name superstring
theories. Extended supersymmetry also plays an essential role in the AdS/CFT correspondence.
However, because as of yet no signs have shown up of supersymmetry at experiments, in this thesis
we adopt an opportunistic point of view in which we consider supersymmetry a valuable calculational
tool to uncover exact results in gauge theories, whether or not supersymmetry is realized in nature.
If it is not, at least we hope it teaches us lessons about structures in gauge theories which in the
end are independent of supersymmetry.

In this chapter we will study the exact renormalization of the N = 2 supersymmetric Yang-Mills
action. We will find that holomorphic properties of supersymmetric theories allow us to fix the
precise form of the low energy effective action. That is: we will find an exact expression for all
perturbative contributions and the general form of non-perturbative contributions. Before turning
to this, we briefly introduce some aspects of supersymmetry which include the notion of superspace
and superfields, the N = 2 SYM action and R-symmetry.

The primary source for the first part is [27], which contains among other things a good introduc-
tion to the superfield formalism in N = 1 supersymmetry. The content on extended supersymmetry
primarily comes from [37]. Other references include the standard works on supersymmetry [68] and
[69]. The sections on R-symmetry and renormalization also borrow from the reviews [4], [33] and
[63].

2.1 Superspace and Superfields

Superspace presents a mathematical formalism which allows one to write manifestly supersymmetric
actions, just like Minkowski spacetime allows one to write manifestly Lorentz invariant actions. Su-
perspace is an extension of ordinary Minkowski spacetime: next to the ordinary bosonic coordinates
xµ it also has four Grassmann valued fermionic coordinates θa:

θa =

(
θα
θ̄α̇

)
. (2.1.1)

By construction, this is a Majorana spinor. As such, it provides the minimal amount of independent
components a spinor can have in four dimensions and therefore is the minimal fermionic extension

3



2.1. SUPERSPACE AND SUPERFIELDS 4

of ordinary spacetime. In the following, we will denote the full spinor by θa, whereas its chiral
components will be denoted as θα ≡ θ and θ̄α̇ ≡ θ̄

To gain some intuition in the abstract notion of superspace, we describe the construction of
superspace from the super Poincaré group. To appreciate the construction, we first look at normal
Minkowski spacetime as constructed from the Poincaré group. The Poincaré group consists of
translations and Lorentz transformations and is postulated to be a global symmetry of quantum
field theories. The relation between the group and spacetime is made as follows: if we associate a
point xµ in Minkowski spacetime to a translation element exp (ixµPµ) in the Poincaré group, i.e. we
choose an origin, we can reach every point in Minkowski spacetime by applying a (left) multiplication
with another translation element:

exp (iyµPµ) · exp (ixµPµ) = exp (i(yµ + xµ)Pµ)

⇔ xµ 7→ xµ + yµ.

Since Lorentz transformations keep the origin fixed, any translation followed by a Lorentz trans-
formation will not be a translation. This means that every translation determine a unique right
coset of the Lorentz group, considered as a subgroup of the Poincaré group. Clearly, there are no
more right cosets of Lorentz group than translations determine. Therefore, there is a one-to-one
correspondence between points in Minkowski space and the right cosets of the Lorentz group. This
construction allows for a more general approach to the construction of spacetime: spacetime can
be defined as the set of right cosets of the Lorentz group embedded in some larger group acting on
spacetime.

However, a no-go theorem of Coleman and Mandula states that any additional continuous global
symmetry of a quantum field theory cannot mix in a non-trivial way with the Poincaré group, or
equivalently: acts trivially on spacetime.1 So it seems there is not ‘some larger group’ to act on
spacetime.

Of course, the Coleman-Mandula theorem can be circumvented. This is achieved through the
introduction of a graded or super Lie algebra. Generators of a graded Lie algebra satisfy commutation
or anticommutation relations. More to the point, we introduce the super Poincaré algebra which
has an extra anticommuting spinorial generator, the so-called supercharge:

Qa =

(
Qα
Q̄α̇

)
, α, α̇ = 1, 2

It generates translations in the coordinate θa and mixes the bosonic coordinate xµ with θa, which we
will see in more detail below. The additional commutation relations of the super Poincaré algebra
are given by: [

Pµ, Q
A
a

]
= 0[

Mµν , Q
A
α

]
= −1

2
(σµν)α

βQAβ[
Mµν , Q̄

A
α̇

]
=

1

2
(σ̄µν)α̇

β̇Q̄A
β̇

{QAα , Q̄β̇B} = 2 (σµ)αβ̇ Pµδ
A
B

{QAα , QBβ } = εαβZ
AB

{Q̄Aα̇ , Q̄Bβ̇ } = εα̇β̇
(
Z†
)AB

where we added the capital Latin index to denote the possibility of the introduction of more than one
supercharge. ZAB is called the central charge because it commutes with all other generators of the

1Flavour symmetries, for instance, are internal symmetries of the fields and therefore their generators fully commute
with the Poincaré algebra.
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algebra. It is antisymmetric, such that it necessarily vanishes for N = 1 supersymmetry, N denoting
the number of supercharges. Detailed discussions on the construction of the supersymmetry algebra
may be found in [68] and [69].

Superspace is defined as the space of right cosets of the Lorentz group, now considered as a
subgroup of the super Poincaré group. In analogy with the construction of Minkowski spacetime,
we associate a point in superspace with a translation element in the super Lie group:

exp (ixµPµ) exp (θ̄aQa) (2.1.2)

We still have Pµ as the generator of spacetime translations. However, looking at the action of a
superspace translation generated by Q, we see:

exp (ε̄Q) · exp (θ̄Q) = exp ((ε̄+ θ̄)Q− ε̄γµθPµ)

⇔ (xµ, θ) 7→ (xµ − ε̄γµθ, θ + ε),

where the Baker-Campbell-Hausdorff formula was used. The fact that a translation of ε in fermionic
coordinates also affects the bosonic coordinate xµ is a sign of the mixing of bosons and fermions:
supersymmetry. This is the essence of the implementation of supersymmetry by using the superspace
formalism.

Let us elucidate this a bit by considering the action of a super translation on a superfield.
Superfields Φ(x, θ, θ̄) are defined as differentiable functions on superspace. Since the coordinate θ is
Grassmann valued, the Taylor expansion of Φ in θ is finite. For instance, the highest components of
the superfield could look like:

∼ θ̄2θαλα(x) + θ2θ̄α̇λ̄α̇(x) + θ2θ̄2F (x)

with F (x) a bosonic field and λ a fermion. In general, we will be concerned only with superfields
containing (complex) scalars, spinors or vector fields.

Integrals of arbitrary functions of superfields over superspace, i.e.
∫

dθ̄2dθ2G(Φi, . . . ,Wα), au-
tomatically provide supersymmetry invariant actions. This can be seen from the action of the
superspace translation above which acts on component fields as:

f(xµ)→ f(xµ − ε̄γµθ) = f(xµ) + ∂µf(xµ)ε̄γµθ

With a little work one can now check that the supersymmetry variation of a function of super-
fields contains a total derivative at its highest component. Upon integrating over all of space, the
supersymmetry variation vanishes. Therefore, the superspace integration automatically provides
supersymmetry invariant actions.

As a general superfield contains a large amount of component fields, we usually consider con-
strained superfields. The expansions of the superfields we will use are given in Appendix B. These
constrained superfields are called (anti)chiral as they only depend on θ (θ̄) and a particular combi-
nation:

yµ = xµ ± iθσµθ̄

Highest components of (functions of) chiral superfields are proportional to θ2 and therefore need
only to be integrated over half of superspace to render an action supersymmetric:

∫
dθ2 or

∫
dθ̄2.

In the following we will also call these chiral functions holomorphic.

2.2 Super Yang-Mills Theory

The general N = 2 SYM action is written conveniently in terms of an N = 1 vector and chiral
multiplet. These multiplets are represented respectively by the field strength Wα, a chiral superfield
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which satisfies an additional reality condition, and Φ, a general chiral superfield. Expansions of both
superfields are given in Appendix B. Together, these superfields make up an N = 2 vector multiplet,
containing spins s ≤ 1. The action is:

S =

∫
d4x

[
Im

(
τcl

8π

∫
d2θ WαWα

)
+

1

g2

∫
d2θ d2θ̄ Φ†e−2V Φ

]
(2.2.1)

=Im

∫
d4x

τcl

4π

[∫
d2θ

1

2
WαWα +

∫
d2θ d2θ̄ Φ†e−2V Φ

]
(2.2.2)

with τcl = θ
2π + 4πi

g2 the complexified gauge coupling. The vector superfield V is directly related
to Wα, and therefore does not contain additional fields. The action, then, represents the most
general renormalizable gauge invariant N = 2 action. The gauge indices are suppressed. We will
only consider Wα and Φ to be in the adjoint representation of the gauge group. This means the
superfields are matrix valued in a basis of the Lie algebra {Ta} which is represented by the structure
constants of the Lie algebra: D (Ta)

c
b = if cab.

In this thesis, we will primarily be interested in a low energy effective action. In particular,
we are interested in the Wilsonian effective action. The Wilsonian effective action is obtained by
integrating out certain momentum modes between a UV cutoff ΛUV and an IR cutoff µ, where the
µ symbol is chosen since the IR cutoff determines the scale of the effective theory. The reason to
consider the Wilsonian effective action instead of the 1PI generating functional Γ(φ) is the Wilsonian
renormalization preserves the holomorphicity of the field operators, guaranteeing unbroken super-
symmetry. Furthermore, the effective action is also guaranteed to remain a holomorphic function of
the bare couplings. This allows for powerful non-renormalization theorems[12][61].

We will now derive the general form of the low energy theory for N = 2 SYM. This is achieved
most easily by considering an N = 2 superspace formulation. This requires the introduction of an
extra fermionic coordinate θ̃a. In this formulation the most general pure gauge and renormalizable
N = 2 Yang-Mills action is:

S =
1

4π
Im

(∫
dx4

∫
d2θ d2θ̃

1

2
τ Tr Ψ2

)
(2.2.3)

Here, Ψ is a chiral N = 2 superfield. Expanding in the θ̃ coordinates, it reads:

Ψ(ỹµ, θ, θ̃) = Φ(ỹµ, θ) +
√

2θ̃αWα(ỹµ, θ) + θ̃2G(ỹµ, θ) (2.2.4)

where ỹµ = yµ + iθ̃σµ
¯̃
θ and yµ = xµ + iθσµθ̄. Furthermore, G is an auxiliary N = 1 superfield and

can be written in terms of the fields Φ and V :

G(ỹµ, θ) =

∫
dθ̄2Φ†(ỹµ − iθσµθ̄, θ̄)e−2V (ỹµ−iθσµθ̄,θ,θ̄) (2.2.5)

where the integral should be taken at fixed ỹ such that G remains a function of ỹ and guarantees
Ψ is a chiral N = 2 superfield. The constraint on G makes sure that Ψ2 integrated over half of the
tilde superspace yields the familiar N = 1 superspace action (2.2.2), as can be checked by plugging
in expression (2.2.4) into (2.2.3).

The requirement for N = 2 supersymmetry is, analogously to N = 1 supersymmetry, that
functions integrated over (anti)chiral half of N = 2 superspace should be (anti)chiral. Hence, since
N = 2 supersymmetry is not broken by the renormalization, the action should take the form:

S =
1

4π
Im

(∫
dx4

∫
d2θd2θ̃ F(Ψ)

)
(2.2.6)

The function F(Ψ) is holomorphic in Ψ and is called the prepotential. Its form is thus far constrained
only by holomorphy. To make contact with our N = 1 formulation we may Taylor expand (2.2.6)
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around the superfield Φ. Since this expansion is finite due to the anticommutativity of the fermionic
coordinates, we are still left with an exact form of the action. Integrating over the chiral part of
tilde superspace leaves us with:

S =
1

4π
Im

∫
dx4

[∫
d2θ

1

2
F ′′ab(Φ)WαaW b

α +

∫
d2θ d2θ̄ (Φ†e−2V )aF ′a(Φ)

]
(2.2.7)

The prepotential F(Φ) is now a holomorphic function of the chiral field Φ. Its derivatives with

respect to the Lie algebra valued field Φ = ΦaTa are denoted with a subscript, i.e. F ′a(Φ) = ∂F(Φ)
∂Φa

and F ′′ab(Φ) = ∂2F(Φ)
∂Φa∂Φb

. The indices are to be summed over and replace the trace. We recognize the
renormalized gauge coupling as:

τeffab (Φ) = F ′′ab(Φ) (2.2.8)

In the next chapter we will assume all non-abelian degrees of freedom are frozen out in our low
energy effective action due to a Higgs condensation. The resulting abelian action is given by:

S =
1

4π
Im

∫
dx4

[∫
d2θ

1

2

∂2F(Φ)

∂Φ2
WαWα +

∫
d2θ d2θ̄ Φ†

∂F(Φ)

∂Φ

]
(2.2.9)

Notice that the interaction of the chiral multiplet with the vector multiplet has disappeared because
the adjoint representation of an abelian group is trivial. In the next chapter this action will be
determined exactly.

The superspace formalism renders the action manifestly N = 1 supersymmetric. Traces of the
full N = 2 supersymmetry can be recognized in that the gauge kinetic term and the Kähler potential

K(Φ,Φ†) = Im
(
Φ†F ′(Φ)

)
(2.2.10)

are both dependent on the prepotential. The name Kähler potential derives from the fact that F ′′(φ)
defines a Kähler metric, an internal metric on the space of (scalar) fields, which can be seen from
the expansion of the kinetic terms of the action (2.2.9) in components:

Skin ∼ Im

∫
dx4F ′′(φ)Fµν

(
Fµν − iF̃µν

)
+ F ′′(φ)|∂µφ|2

+ iF ′′(φ)λσµ∂µλ̄− iF ′′(φ)ψσµ∂µψ̄. (2.2.11)

The Kähler metric is related to the Kähler potential as:

ImF ′′(φ) = Im
∂2K(φ, φ†)

∂φ∂(φ)†
(2.2.12)

By virtue of N = 2 supersymmetry the holomorphic prepotential enters in the Kähler metric. This
will be an important ingredient in the exact solution of the low energy action.

We conclude this section by noting that pure N = 2 SYM is a supersymmetric extension of the
Georgi-Glashow model. As such, we expect it to contain ’t Hooft-Polyakov monopoles after a Higgs
condensation. Fermion zero modes in the N = 2 vector multiplet act as supersymmetry generators
on the monopoles and provide supersymmetric partners. Furthermore, due to the Witten effect
dyons of arbitrary charge must appear in the spectrum. We will come back to these statements
in the following chapter. For a review of the non-supersymmetric Georgi-Glashow model and the
appearance of monopoles and dyons in the spectrum, we refer the reader to [5]. For a review of the
supersymmetric case and the action of zero modes on the monopoles and dyons, see [65].
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2.3 Coupling SYM to Matter

Next to the N = 2 vector multiplet there is one other non-gravitational N = 2 multiplet called
the hypermultiplet, containing spins s ≤ 1

2 . Whereas the vector multiplet generalizes the notion
of the gauge bosons of a non-supersymmetric quantum field theory, the hypermultiplet represents
supersymmetric matter. Accordingly, the hypermultiplets appear in the fundamental representation
of the gauge group. More precisely, the hypermultiplet consists of two chiral superfields Q, Q̃ trans-
forming in the fundamental and antifundamental representation of the gauge group respectively.
Again, expansions of the fields are given in Appendix B.

For completeness and later reference we give the part of the N = 2 SU(2) SYM action which is
coupled to a hypermultiplet:

S =

∫
dθ2dθ̄2

(
Q†e−2VQ+ Q̃e2V Q̃†

)
+

∫
dθ2

(√
2Q̃ΦQ+mQ̃Q

)
+ h.c. (2.3.1)

Q and Q̃ are to be read as N dimensional vectors for gauge group SU(N). The coupling between
Φ and Q, Q̃ is required by N = 2 supersymmetry. Using gauge indices, this Yukawa-like term is
written as:

Q̃c(ΦaTa)c
bQb

Note that we use lower indices for the fundamental representation and upper for the antifundamental
representation. Furthermore, the action of Ta is now to be read as ordinary matrix multiplication on
the vectors. Only couplings between several fields in the adjoint gives rise to the structure constant
representation, or equivalently to commutator couplings. We will come back to the hypermultiplet
in Section 3.8.

2.4 R-Symmetry and an Anomaly

The super Poincaré algebra with extended supersymmetry is invariant under unitary rotations of
the supercharges. This symmetry is called R-symmetry. In superspace formalism this symmetry
has a very natural interpretation: it rotates the various fermionic coordinates into each other. This
is the fermionic analogue of the SO(3, 1) group of isometries on the bosonic coordinates. In this
short outset, we mainly follow the analysis of [4] and consequently the formulas given here are taken
(almost) exactly from that paper. We choose to repeat them for they motivate some important
conclusions on which the next chapter will be built.

The R-symmetry group in the case of N = 2 supersymmetry is U(2)R. It may be decomposed
into SU(2)R × U(1)R of which the diagonal U(1)R does not mix the θ and θ̃. The U(1)R action is
defined on the chiral components as:

θ, θ̃ → eiαθ, θ̃

θ̄,
¯̃
θ → e−iαθ̄,

¯̃
θ (2.4.1)

Under the SU(2)R symmetry θ and θ̃ form a doublet. The subgroup U(1)J ⊂ SU(2)R, which is
generated by the diagonal Pauli matrix σ3, acts on the doublet as:(

θ

θ̃

)
→
(
eiαθ

e−iαθ̃

)
(2.4.2)

To find the transformation properties of the various superfields, we first notice that (2.4.1) implies:

d2θ → e−2iαd2θ (2.4.3)
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The differential has opposite charge with respect to the U(1)R as compared to the coordinates
themselves due the fact Grassmann integrations are defined as Grassmann derivations.

For the microscopic action (2.2.2) to be invariant under the U(1)R symmetry, the above men-
tioned transformations on the coordinates imply transformations on the superfields. More concretely,
we see that the Kähler potential part of the Lagrangian is invariant under (2.4.1) and (2.4.3) if it
simultaneously transforms as:

K(θ)→ K(e−iαθ) (2.4.4)

On the other hand, chiral terms such as the gauge kinetic term and the superpotential in (2.3.1)
should carry an R-charge 2 to be invariant:

G(θ)→ e2iαG(e−iαθ) (2.4.5)

To satisfy these constraints in the case of the action (2.2.2) coupled to a hypermultiplet, the super-
fields should transform as:

U(1)R : Wα(θ)→ eiαWα(e−iαθ) Φ(θ)→ e2iαΦ(e−iαθ)

Q(θ)→ Q(e−iαθ) Q̃(θ)→ Q̃(e−iαθ) (2.4.6)

Note that the R-charge of Φ is in principle not constrained by the transformation of the Kähler
potential but chosen such that the (real) vector field does not transform under U(1)R, as we will
see just below. Fixing it at 2, the superpotential term requires Q and Q̃ to be neutral under U(1)R.
Also, a bare mass term for Q and Q̃ explicitly breaks the U(1)R symmetry.

Using the expansions of the superfields as given in Appendix B, the component fields transform
as:

U(1)R : φ→ e2iαφ q → q

χ→ eiαχ ψq → e−iαψq

λ→ eiαλ q̃† → q̃†

Aµ → Aµ ψ†q̃ → eiαψ†q̃ (2.4.7)

We consider the transformation properties of Q̃† instead of Q̃ since it appears in the SU(2)R doublet
with Q, while Q̃ sits in an SU(2)R doublet with Q†.

The action of U(1)J is more easily derived by looking at the transformations of the supercharges
instead of the coordinates, as a sign of the fact we are using an N = 1 language while describing an
N = 2 superspace symmetry. As reviewed in Appendix B, the Weyl spinors in the vector multiplet
transform as a doublet under SU(2)R, whereas the scalar and the vector field transform as singlets.
For the hypermultiplet, the scalars transform in the doublet and the spinors as a singlet. Hence, we
find:

U(1)J : Wα(θ)→ eiαWα(e−iαθ) Φ(θ)→ Φ(e−iαθ)

Q(θ)→ eiαQ(e−iαθ) Q̃(θ)→ eiαQ̃(e−iαθ) (2.4.8)

such that the components transform according to their representation:

U(1)J : φ→ φ q → eiαq

χ→ e−iαχ ψq → ψq

λ→ eiαλ q̃† → e−iαq̃†

Aµ → Aµ ψ†q̃ → ψ†q̃ (2.4.9)



2.4. R-SYMMETRY AND AN ANOMALY 10

We can form a Dirac spinor, which transforms properly under the Lorentz group, from the two Weyl
spinors in the vector multiplet and hypermultiplet respectively as[?]:

ψvD =

(
χ
λ̄

)
, ψhD =

(
ψq
ψ†q̃

)
(2.4.10)

From the action on the component fields, we see that U(1)R acts as a chiral U(1) and that U(1)J
acts as a normal global phase transformation on the Dirac spinors.

Although classically the Lagrangian has all the above mentioned R-symmetries, quantum me-
chanically the chiral U(1)R symmetry will be broken. This anomaly goes under various names in the
literature: the chiral anomaly, the triangle anomaly (after the problematic Feynman diagram) or the
Adler-Bell-Jackiw anomaly (after its finders). In short, the ABJ anomaly states that in the presence
of a background electromagnetic field the current associated to chiral rotations of the fermions is not
conserved quantum mechanically. This may be directly computed from a triangle (loop) diagram
(and assuming local gauge invariance) or by using a trick due to Fujikawa which shows the path
integral measure changes in the presence of an instanton. For an extensive discussion, see Section
7.2 of [67].

The anomaly depends on the the number of chiral (or Weyl) fermions and their representations
under the gauge group. We just state the result for N = 2 supersymmetry, which contains two
Weyl fermions in the adjoint representation, with gauge group SU(N) and Nf hypermultiplets in
the fundamental representation of the gauge group:

∂µj5
µ = −2N −Nf

16π2
F aµν F̃

µν
a (2.4.11)

The independence of the right hand side on the coupling constant shows it is a one-loop contribution.2

It is an old result of Adler and Bardeen in [3] that higher order diagrams do not contribute to the
anomaly. It is known that the right hand side represents a total derivative, which not necessarily
integrates to zero due to the possibility of non-trivial gauge configurations at ∞. See for instance
[19] or [54].

The non-conservation of a current implies the effective Lagrangian changes under the associated
anomalous symmetry transformation, parametrized by an angle α, by:

δLeff = −α(2N −Nf )

16π2
F aµν F̃

µν
a (2.4.12)

Denoting ν as the instanton number, or Pontryagin index, the total action changes as:

∆S = −
∫

d4x
α(2N −Nf )

16π2
F aµν F̃

µν
a

= −2(2N −Nf )να (2.4.13)

In the case of gauge group SU(2) with no added flavours, the shift will amount to ∆S = −8να.
For ν = 1, this corresponds to a shift in the θ angle: θ → θ − 8α. Since physics is periodic in θ,
chiral rotations with α = 2π

8 are a true symmetry of the action. Therefore, we have the following
breakdown of R-symmetry:

SU(2)R × U(1)R/Z2 −→ SU(2)R × Z8/Z2 (2.4.14)

The division by Z2 has been performed because the (anomalous) U(1)R has a non-empty intersection
with U(1)J : a multiplication of the two spinors with a phase eiπ. Furthermore, a non-zero vacuum
expectation value of the Higgs scalar in the vector multiplet will break this R-symmetry even further.

2The fields are scaled such that tree level is at g−2 while one loop is at g0.
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As will be argued in more detail in Section 3.1, the correct parameter to describe the moduli space
of N = 2 SYM is:

u = 〈Trφ2〉 (2.4.15)

Because the R-charge of φ is 2 a non-zero expectation value of φ2 transforms α = 2πn
8 , n odd, as:

φ2 −→ −φ2. (2.4.16)

Therefore, the remaining R-symmetry is:

SU(2)R × Z4/Z2. (2.4.17)

The relevance of knowledge about the remaining unbroken R-symmetry group will become clear
when we will discuss Seiberg-Witten theory.

We conclude this section by noting that a priori, the θ angle may be put to zero in the partition
function. This is achieved by absorbing the θ term in the fermion path integral measure. This
amounts to a chiral rotation of the fermion fields, i.e. a redefinition of the fermions. Because the
Atiyah-Singer index theorem precisely relates the difference of chiral fermion zero modes and the
instanton number, this redefinition is consistent for all instanton configurations. However, we will
see in the next section that for generic values of 〈Trφ2〉 a non-zero θ enters the β function of g and
renormalizes itself due to non-perturbative effects.

2.5 Exact Renormalization of the Prepotential

The exact form of the prepotential F(Φ), as introduced in Section 2.2, was determined purely from
symmetry considerations by Seiberg in [57]. It turns out that are no perturbative corrections to
the prepotential apart from a one-loop correction. The non-perturbative corrections originate from
(multi-)instanton contributions.3 The values of the contributions will remain unknown, but the
general form of the expansion is made precise. In this section we will reproduce the reasoning of the
original article [57] that led to its form.

The one-loop beta function for the gauge coupling g of an N = 2 SU(N) gauge theory with Nf
fundamental and antifundamental flavours reads[61]:

β 4π
g2

(µ) = µ
d

dµ

(
4π

g2(µ)

)
=

2N −Nf
2π

(2.5.1)

Notice the theory is UV free for 2N > Nf . We will be concerned in first instance with the pure
gauge theory.

We will first argue that the one-loop beta function is in fact the exact perturbative beta function.
As mentioned in the previous section the anomaly of the chiral current is a total derivative which
not necessarily vanishes due to instantons. Then, however, the low energy perturbative action should
remain invariant under the anomalous U(1)R. In Section 2.2 we gave the general form of the low
energy N = 2 action, which we repeat for convenience:

S =
1

4π
Im

(∫
dx4

∫
d2θd2θ̃ F(Ψ)

)
(2.5.2)

We will look at this theory for scales µ < a, effectively leaving us with a non-interacting massless
abelian theory. If the perturbative Fpert(Ψ) is to be invariant under U(1)R, it should carry R-charge

3For all possible non-perturbative corrections, we only consider instantons. In fact, these will be the leading
non-perturbative corrections in the case we are considering: no unbroken non-abelian gauge groups [58].
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4 from considerations mentioned in the previous section. Therefore, Fpert(Ψ) should be proportional
to Ψ2. Seiberg then considered:

Fpert(Ψ) = Ψ2

[
a1 + a2 log

(
Ψ2

µ2
0

)]
(2.5.3)

which presents the only possible terms compatible with holomorphicity and the U(1)R symmetry as
we will see soon. The bare coupling is defined at the UV cutoff µ0. The constant a1 may be seen
from the microscopic theory to equal:

a1 =
1

2
τcl

with τcl = τ(µ0) the bare complexified gauge coupling. Let us first analyse why this leads to an
action invariant under U(1)R. Clearly, it is proportional to Ψ2. However, the prepotential does vary
under U(1)R:

∆Fpert(Ψ) = 4iαa2Ψ2 (2.5.4)

From (2.5.2) we see that the action then changes proportional to:

∆Spert ∼ Im

(∫
dx4

∫
d2θd2θ̃ iΨ2

)
(2.5.5)

∼
∫

d4xF aµνF
µν
a (2.5.6)

Ignoring non-perturbative effects, this indeed integrates to zero. However, the Lagrangian is not
invariant under the R-symmetry transformation. Comparing with (2.4.12), we can see that a2 is
some numerical factor independent of the gauge coupling. The full perturbative beta function is
now given by:

Fpert(Ψ) =
1

2
τclΨ

2 + a2Ψ2 log

(
Ψ2

µ2
0

)
(2.5.7)

Since a2 is independent of g, we conclude the second term is a one-loop effect. Thus, while demanding
invariance of the perturbative action under U(1)R, we find that the only possible contribution to
the prepotential is a one-loop correction. We conclude that the one-loop beta function (2.5.1) is the
full perturbative beta function. Integrating it from some UV cutoff µ0 down to Higgs expectation
value at which the coupling stops running, we find:

τ(µ0)− τ(a) =
2i

π
log
(µ0

a

)
⇔ τ(a) = τ(µ0) +

i

π
log

(
a2

µ2
0

)
(2.5.8)

We can take the two terms together to obtain:

τ(a) =
i

π
log

(
a2

Λ2

)
(2.5.9)

where we have defined Λ ≡ µ0 e
2πiτ(µ0)/4. Let us remark two things about Λ:

1. At values of the Higgs expectation value a ∼ Λ the gauge coupling g diverges signalling strong
coupling and perturbation theory breaks down.

2. Λ4 is cut-off independent. Indeed, using (2.5.1) with N = 2 and Nf = 0 we find:

∂µ0
Λ4 = 2πie2πiτ(µ0)µ3

0

(
µ0∂µ0

τ(µ0)− 2i

π

)
= 0. (2.5.10)

For this reason, Λ4 is called the dynamically generated scale of the theory and characterizes
the scale at which the coupling becomes strong.
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Now that we know in what regime we can trust the above arguments, it is interesting to look at the
components of τ(a). Writing a = a0e

ir with r some real number, we identify:

4π

g(a)
≡ Imτ(a) =

1

π
log

(
|a|2

Λ2

)
(2.5.11)

θ

2π
≡ Reτ(a) = −2r

π
(2.5.12)

The fact that θ = −4r is non-zero for certain values of a may be traced back to the anomaly. Indeed,
since a has R-charge 2 we indeed retrieve that under a U(1)R transformation on a, θ changes exactly
as anticipated in the previous section. It is in this sense that for generic values of a, or better u, a
non-zero θ parameter exists. Indeed, this is an artefact from the complexification of the IR cut-off.

Now we are curious to learn what happens at strong coupling. As may be seen from (2.5.12),
for a . Λ the gauge coupling becomes negative. Hence, the perturbative form of the action cannot
be the final answer if our theory is to be physical and non-perturbative corrections should become
important. Although these should render the expression for τ(a) positive, the cancellation of infinities
seems to imply we are expanding around the wrong vacuum. In fact, in the next chapter we will
find a description for the strong coupling region which behaves more appropriately.

Again, we recall the fact that in the UV we may trust the form of τpert. Non-perturbative cor-
rections therefore should vanish at large values of a, implying the corrections should be proportional
to a−n for n strictly positive. As the non-perturbative corrections should respect the remaining Z8,
acting as Z4 on a, on the moduli space, the corrections should be of the form:(

Λ

a

)4k

= e
8π2

g(a)2
k

(2.5.13)

where the equality comes from the perturbative β function, showing the typical instanton corrections.
To determine precisely how these contributions modify the prepotential, we note that also the
prepotential should keep alive a Z8 symmetry. This determines k = 1 contribution to be proportional
to Ψ−2. Hence we expect:

Fnon−pert(Ψ) =

∞∑
i=1

ck

(
Λ

Ψ

)4k

Ψ2 (2.5.14)

As argued by Seiberg, higher perturbative corrections around the instanton will be irreconcilable with
the remaining R-symmetry. Anti-instanton contributions to F(Ψ) would lead to terms proportional
to positive powers of Ψ. These blow up at weak coupling and therefore cannot be generated.
However, anti-instantons do generate similar terms for F(Ψ̄).

The above determines the explicit form of the prepotential[?]:

F(Ψ) = Ψ2 i

2π
log

(
Ψ2

Λ2

)
+ Ψ2

∞∑
i=1

ck

(
Λ

Ψ

)4k

. (2.5.15)

Taking the derivative twice with respect to Ψ2, ignoring constant terms and evaluating Ψ on the
vacuum manifold we obtain:

τ(a) =
i

π
log

(
a2

Λ2

)
+

∞∑
i=1

ck

(
Λ

a

)4k

. (2.5.16)

To conclude, we have seen the severe constraints imposed by supersymmetry on the form of the
general low energy effective pure SU(2) N = 2 SYM action. We have solved the theory exactly in
the perturbative regime. However, non-perturbatively there remain unknowns such as the instanton
coefficients in the prepotential. Seiberg and Witten were able to solve for these coefficients exactly
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and therefore have determined the exact form of the action of this theory. Not only is this an
amazing result considering the complexity of this physical system, it turns out there is a wealth of
physics and mathematics hidden in it. The next section will occupy us with a thorough analysis of
the solution provided by Seiberg and Witten.



Chapter 3

Seiberg-Witten Theory

A fundamental achievement in the understanding of N = 2 supersymmetric theories was made in
1994 by Seiberg and Witten. They wrote two articles, in the first of which they gave an exact solution
for the low energy effective Lagrangian of pure N = 2 SYM theory with gauge group SU(2).

The approach of Seiberg and Witten has been to study the moduli space of the low energy theory,
parametrized by the Higgs vacuum expectation value. It turns out the structure of the moduli space
is rather non-trivial yet it is possible to study it very precisely using the power of the holomorphic
formulation while relying on a few physical assumptions. The first four sections of this chapter will
occupy us with determining the precise structure of the moduli space. The most important insight
of Seiberg and Witten was to note that the moduli space of the physical theory is in one-to-one
correspondence with the moduli space of a certain elliptic curve. What is more, physical constraints
on the gauge coupling appear naturally in the elliptic curve description. Exploiting the equivalence
carefully, one can perform a relatively simple analysis on the elliptic curve and calculate to arbitrary
order the prepotential of the physical theory.

We will provide a thorough discussion of the Seiberg-Witten solution to the pure low energy
effective action, focussing on the solution obtained via the elliptic curve construction. Having done
so, we briefly discuss confinement of electric charge through monopole condensation. The fact
that Seiberg and Witten found a quantitative description of this particular process resulting in
confinement, albeit of abelian charges, should be considered as an important motivation for the
study of supersymmetric theories.

In the last sections, we will discuss the generalization of the results of the pure theory. First,
we consider the addition of matter in the form of hypermultiplets as done originally in [60]. New
interesting phenomena will appear and the discussion places the pure case in a broader perspec-
tive. At last, we will discuss an M-theory construction of Seiberg-Witten curves, which provides a
straightforward recipe for the construction of curves for a large class of N = 2 gauge theories.

The literature discussing the first (and sometimes second) paper of Seiberg and Witten is vast.
This chapter borrows elements from many reviews. Of particular good help, next to the original
articles [59] and [60], were [4], [15], [21], [33], [35] and [50].

3.1 The Classical Moduli Space

As already anticipated and explained in the previous chapter we are interested in the low energy
effective action (2.2.7) which we repeat here for convenience:

S =
1

4π
Im

∫
dx4

[∫
d2θ

1

2
Fab(Φ)WαaW b

α +

∫
d2θ d2θ̄ (Φ†)aFa(Φ)

]
(3.1.1)

15
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The microscopic action (2.2.2) contains a scalar potential:

V =
1

g2
Tr
[
φ†, φ

]
(3.1.2)

The vanishing of the scalar potential determines the vacuum of the theory. We see a non-vanishing
expectation value for φ is allowed:

φvac =
1

2

(
a 0
0 −a

)
⇔ φvac =

1

2
aσ3 (3.1.3)

where a may be any complex number. This is called a flat direction of the potential since there exists
a continuous set of vacua, the moduli space of the theory, each of which gives rise to a (distinct)
theory. It is the objective of the first four sections to understand the properties of the effective
theories as we move around the moduli space. Let us first naively discuss a generic theory.

Non-zero values of a break the gauge symmetry spontaneously: SU(2) → U(1). The gauge
bosons A1

µ and A2
µ obtain a mass MW = |a| while A3

µ remains massless.1 Because of N = 2
supersymmetry, also the fermions and the scalar in the vector multiplets corresponding to A1

µ and
A2
µ become massive. Similarly, the fermions and scalars in the same multiplet as A3

µ remain massless.
Therefore, for scales µ < a the W-bosons freeze out and an abelian gauge theory remains. As already
mentioned at the end of Section 2.2, this theory is non-interacting. Since non-interacting massless
theories are conformal, at µ = a a fixed point of the renormalization group flow is reached. See
Figure 3.1.1. We anticipate that for values small values of a ∼ Λ our Lagrangian analysis may

Figure 3.1.1: Schematic running of the coupling constant.

not be adequate, since the theory has been strongly coupled during the process of integrating out
massive modes.

The form of the low energy effective action simplifies to:

S =
1

4π
Im

∫
dx4

[∫
d2θ

1

2

∂2F(Φ)

∂Φ2
WαWα +

∫
d2θ d2θ̄ Φ†

∂F(Φ)

∂Φ

]
(3.1.4)

The metric on the moduli space is given by the Kähler metric as introduced in Section 2.2:

g ≡ ∂2K(a, ā)

∂a∂ā
= ImF ′′(a) ⇒ ds2 = ImF ′′(a) da dā. (3.1.5)

1We use a normalization such that the W-bosons have electric charge 1.
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where the Higgs expectation value plays the role of a local coordinate. In fact, a does not yet provide
a gauge invariant coordinate. This is due to a discrete residual gauge symmetry, the Weyl group of
SU(2), which is defined as:

W (SU(2)) = N(U(1))/U(1)

with N(U(1)) the normalizer of the U(1) ⊂ SU(2) subgroup. It is abstractly isomorphic to Z2 and
acts on U(1) essentially through complex conjugation. This implies its action on φvac:

φvac → −φvac. (3.1.6)

Geometrically, it may be understood as a rotation of an angle π around either the σ1 or σ2 direction.
Clearly, a modulus which does provide a gauge invariant description of the moduli space is given by:

u = 〈Trφ2〉 ≈ 1

2
a2 (3.1.7)

where the approximate sign is to remind us that we only trust our Lagrangian description at large
values of u or a. The metric changes accordingly:

ds2 = ImF ′′(u)
da

du

dā

dū
dudū. (3.1.8)

As a short remark on notation, in the remainder of this thesis we will sometimes still write the
prepotential as a function of a or Φ. The latter notation will generally be used when considering
our theory above the vacuum, whereas the former is a slight abuse of notation.

From Section 2.5 we know the general the form of the prepotential:

F ′′(u) =
i

π
log

(
2u

Λ2

)
+

∞∑
i=1

ck

(
Λ2

2u

)2k

. (3.1.9)

Although explicit instanton calculations in [57] have shown that c1 6= 0, there is a more compelling
argument why the perturbative part cannot be the only contribution to the prepotential. From a
mathematical perspective, a Kähler metric is in particular a Riemannian metric. This means the
metric is positive definite. From a physical point of view, the positivity of the gauge coupling,

4π
g(u)2 = ImF ′′(u) implies the metric should be positive. We thus have the following requirement on

the metric for the theory to make sense:

ImF ′′(u) = Im τ(u) > 0. (3.1.10)

Since τ(u) is holomorphic in u, the metric is harmonic. Harmonic functions satisfy a minimum
and maximum principle. That is, they do not acquire a maximum or minimum at any point in the
interior of the domain they are defined in, except when they are constant. Clearly, Im τ(u) is not a
constant function. Therefore, we see that the positivity requirement leads to a contradiction. Not
giving up on the holomorphy of the prepotential, which would imply a breaking of supersymmetry,
we conclude that the perturbative prepotential cannot be defined globally on the moduli space. We
do see that at large values of u� Λ2 the metric is positive and single valued:

Im τ(u) ∼ 1

π
log

(
|u|
Λ2

)
(3.1.11)

The fact that the gauge coupling is well behaved in this regime should not be surprising since our
perturbative analysis applies and non-perturbative contributions should be unimportant.

To advance our understanding of strongly coupled regime of the moduli space any further, we
need a new tool next to the already proven powerful tool of holomorphy. This turns out to be
electric-magnetic duality.
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3.2 Duality of the Super Yang-Mills Action

In this section we will show the low energy effective action of N = 2 SYM can be written in terms
of different local fields which allow a weakly coupled description in the region of the moduli space
where the original theory is strongly coupled. In Section 3.4 we will present the motivation of
Seiberg and Witten that the degrees of freedom which become important at scales u . Λ2 are the
’t Hooft-Polyakov monopoles and their associated dyons. Before turning to their arguments we first
show it is possible to formulate an electric-magnetically dual description of the low energy effective
action rather similar to the dualization of Maxwell theory. In this case the dual description is more
natural since we do not have to introduce monopoles to our theory.

Because the dualization of SYM is analogous to the Maxwell dualization presented in Appendix
A, we point out the differences. The first difference is that in SYM we not only have an F 2 term, but
also an FF̃ term. However, this term is a total derivative and therefore will not affect the Gaussian
functional integration. We simply obtain:

Im

∫
τ(a)

(
F 2 + iF̃F

)
−→ Im

∫
τD(aD)

(
F 2
D + iF̃DFD

)
. (3.2.1)

where τD(aD) ≡ −1
τ(a) . The real difference between the pure SYM and Maxwell theory is that in SYM

we have to integrate out an entire N = 1 vector multiplet.2 The integrating out of a supermultiplet
is conveniently performed in N = 1 superfield formulation. The gauge kinetic part of the low energy
effective action reads:

S =
1

4π

∫
dx4

(
Im

∫
d2θ

1

2
F ′′(Φ)WαWα

)
. (3.2.2)

To perform the duality transformation we impose the Bianchi identity ImDαWα = 0 by a Lagrange
multiplier in the action:

∆S =
1

4π
Im

∫
dx4

(∫
d2θd2θ̄ VD DαWα

)
(3.2.3)

Considering the real vector superfield VD as a dynamical object, we integrate (3.2.3) by parts.
Adding this to (3.2.2), completing the square and performing the Gaussian functional integral over
the unconstrained Wα, we arrive at the dual description:

S =
1

8π

∫
dx4

(
Im

∫
d2θ

−1

τ(Φ)
Wα
DWDα

)
(3.2.4)

There are some subtleties concerning this duality transformation. For a more careful analysis, see
[15]. We conclude that we have achieved a strong-weak coupling duality transformation in which we
have exchanged electric and magnetic variables, since VD naturally couples to magnetic charges.3

We have to hold our horses for the moment though, since we should also consider what happens to
the chiral multiplet Φ. This may be seen by looking at the transformed gauge coupling:

τD(ΦD) =
−1

τ(Φ)
(3.2.5)

This equation defines ΦD in terms of Φ. We can make this definition more concrete by using the
expression of the gauge coupling in terms of the prepotential:

∂F ′D(ΦD)

∂ΦD
= −

(
∂F ′(Φ)

∂Φ

)−1

(3.2.6)

2The Kähler potential already is in a duality invariant form as we will see soon. This should come as no real
surprise since the low energy Kähler potential does not contain gauge interactions and is neutral under the remaining
U(1) gauge group.

3Notice that this strong weak coupling transformation does not precisely invert the gauge coupling. The inter-
pretation of strong-weak coupling duality clearly works for small values of θ mod 2π. When this is not the case,
strong-weak duality relations will generally be more complicated.
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From this we identify F ′D(ΦD) = −Φ and F ′(Φ) = ΦD. In terms of these dual variables, the Kähler
potential reads:

Im

∫
d2θ d2θ̄ Φ̄F ′(Φ) = Im

∫
d2θ d2θ̄ Φ̄D F ′D(ΦD) (3.2.7)

As expected, it retains the exact same form as it had originally.4 We conclude that the N = 2 SYM
low energy effective action is duality invariant. We summarize the duality transformations:

τ(a) 7→ −1

τ(a)
≡ τD(aD) Φ = −F ′D(ΦD)

Wα ↔Wα
D F ′(Φ) = ΦD (3.2.8)

The reason we use different arrows and equality signs for the different lines is because these trans-
formations are quite different. First of all, the gauge coupling really is mapped onto its inverse. The
double arrow for the gauge superfields signifies the non-locality of the transformation. The chiral
superfield undergoes a redefinition only.

There is another transformation on the fields, which unlike the transformation above, is a real
symmetry of the action: a shift of the θ angle by 2π. This is implemented via:

τ(a) 7→ τ(a) + 1. (3.2.9)

Together with (3.2.8), these transformations generate the full duality group SL(2,Z). A general
SL(2,Z) transformation then acts on τ as:

τ(a) 7→ aτ + b

cτ + d
. (3.2.10)

Using (3.2.6), we may write:

τ(a) =
daD
da

(3.2.11)

We see that (3.2.10) implies an SL(2,Z) action on the chiral superfields:5(
aD
a

)
7→
(
aD(d)
a(d)

)
=

(
a aD + b a
c aD + d a

)
(3.2.12)

In mathematical terms, the vector field (aD(u), a(u)) represents a section of a flat SL(2,Z) bundle
over the u plane. The transformation, translated to the superfields Φ and ΦD, does not affect Kähler
potential as one may check directly. Let us conclude this section with some remarks:

1. There exists an infinite number of dual forms of the low energy action, generated by SL(2,Z)
transformations on the gauge coupling while simultaneously changing the chiral superfields as
in (3.2.12). It means the theory retains its precise form and therefore its precise dynamics in
terms of different variables a(d) and a different coupling τd(a(d)).6 We stress electric-magnetic
duality is a property of the IR Lagrangian.

2. From (3.2.11) it is clear there is the additional freedom of adding a constant to ΦD or Φ
if we take the equation as a definition of the gauge coupling. This extension of SL(2,Z)
naturally appears when we couple the pure theory to hypermultiplets. For the pure case, this
transformation is not consistent with properties of the central charge as we will see in the next
section.

4Notice that for w, z ∈ C: Im w̄z = −Imwz̄.
5In a particular dual representation we will use d to label the representation whereas the subscript D is used to

denote the prepotential term
∂Fd(a(d))

∂a(d)
.

6This statement perhaps seems vacuous since the theory considered is a pure non-interacting abelian gauge theory.
However, we will find out that in the strongly coupled region the theory will become interacting and we do need a
dual U(1) gauge multiplet.
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3. We can rewrite the metric on the moduli space (3.1.8) in terms of the new coordinates as:

ds2 = Im
daD
du

dā

dū
dudū = − i

2

(
daD
du

dā

dū
− da

du

dāD
dū

)
dudū. (3.2.13)

This expression is manifestly duality invariant.

3.3 Central Charge and Dual Theories

In this section we will analyse the duality of the N = 2 SYM action further. First of all, we did
not mention how the collective excitations, the monopole and the dyons, appear in dual descriptions
and how they relate to a certain SL(2,Z) transformation on the vector multiplet. The designated
object to study this is the central charge. As a short intermezzo, we will briefly introduce it.

The central charge was calculated for the case of N = 2 SYM in [73] and for the microscopic
theory found to be:

Z = a (ne + τclnm) (3.3.1)

The absolute value of the central charge determines the mass of a BPS saturated supermultiplet as:

m =
√

2|Z| (3.3.2)

Although we have already seen the functions a(u) and τ(a) receive perturbative and non-perturbative
corrections when considering the full theory, it is believed that the masses of the fields in the low
energy effective action still satisfy a BPS bound, albeit a renormalized version. One good reason
to believe this statement is that a priori the superfields in the UV action (2.2.2) are massless and
therefore belong to a short supersymmetry multiplet. Since the Higgs mechanism does not generate
new degrees of freedom, only a redistribution of them, the massive fields should be BPS saturated.
Furthermore, it is assumed that also quantum corrections do not generate enough degrees of freedom
such that the effective fields will belong to long supermultiplets. Therefore, we expect all states in
the full low energy theory still to be BPS saturated. The low energy version of the BPS bound
reads:

Z =
(
nm ne

)(aD
a

)
= ane + aDnm (3.3.3)

To see why is a rather simple argument, presented in [59]. In short, when you couple a hypermultiplet
to the low energy effective action, you can read of the mass of the hypermultiplet by looking at the
superpotential term. For a hypermultiplet with electric quantum number ne this turns out to be:

m =
√

2ane (3.3.4)

From which we read off the central charge as Z = ane (up to a phase).7 After dualizing the theory
we have a magnetic chiral superfield Φ(d) = ΦD coupling to a magnetically charged hypermultiplet.
This corresponds to a central charge: Z = aDnm. Taking these together for a general dyon leads to
(3.3.3). We note that the stable dyon solutions are such that gcd (nm, ne) = ±1[59].

The physical relevance of the central charge is clear. It provides us with the particle spectrum of
BPS saturated states which may appear in our theory at a given value of u. For fixed u the spectrum
should remain invariant under duality transformations. The only way for the central charge to remain
invariant under a duality transformation is when we choose a different set of quantum numbers:(

aD(d)
a(d)

)
= M

(
aD
a

)
⇒
(
nm(d) ne(d)

)
=
(
nm ne

)
M−1, M ∈ SL(2,Z). (3.3.5)

7In our present normalization of the electric charge, an electric hypermultiplet will have ne = 1
2

, but dyons will
have ne = 1. When we add matter, i.e. electric hypermultiplets, we will change the normalization such that all
charges are integer valued. For now, we follow the conventions of [59].
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Suppose now that we are interested in a local Lagrangian description of a dyon of charge (nm, ne)
with central charge as in (3.3.3). To couple this field locally we use a dual vector multiplet to which
the dyon appears with unit electric charge (nm(d), ne(d)) = (0, 1). It may be checked that the
correct SL(2,Z) transformation is given by:

(
nm(d) ne(d)

)
=
(
nm ne

)( 1+bnm
ne

b

nm ne

)−1

(3.3.6)

Here, b ∈ Z is a parameter such that the upper left entry is an integer. Note this is only possible
when nm and ne are coprime. If k = gcd(nm, ne) > 1, the dual charge vector will be of charge (0, k).
The transformation implies the following dual Higgs field:(

aD(d)
a(d)

)
=

(
1+bnm
ne

b

nm ne

)(
aD
a

)
(3.3.7)

Lastly, the gauge coupling is given by:

τd(a(d)) =
daD(d)

da(d)
=

1+bnm
ne

τ(a) + b

nmτ(a) + ne
(3.3.8)

Of course, if we find an SL(2,Z) transformation changing a strong gauge coupling into a weak gauge
coupling, this procedure can be reversed to find the appropriate quantum numbers of the weakly
coupled field.

The fundamental fields in which the monopoles and dyons appear locally in a Lagrangian descrip-
tion are hypermultiplets.8 This is because magnetic monopoles are charged objects and therefore
enter as matter for the (unbroken) gauge boson. Hence, at a dual magnetic or dyonic description we
obtain a U(1) theory coupled to a hypermultiplet.9 This is nothing but supersymmetric QED. This
theory behaves fundamentally different from the previous spontaneously broken non-abelian theory.
The difference is that QED is IR free as opposed to UV free. The beta function reads[39]:

µ
d

dµ
gd(µ) =

gd(µ)3

8π2
(3.3.9)

Note that, just as the perturbative beta function determined in Section 2.5 was exact at a(u) =∞
due to asymptotic freedom, this beta function is exact at a point where a dyon becomes massless,
i.e. a(d)(u) = 0, because QED is IR free. In the next section we will justify the assumption that
dyons become massless in the strong coupling region of the moduli space. For now, we will just
assume that there is some point u0 in the moduli space at which a dyon becomes massless.

Complexifying the gauge coupling in the usual way (3.3.9) is equivalent to:

µ
d

dµ
τd(µ) = − i

π
(3.3.10)

This can be integrated to give:

τd(a(d)) = − i
π

log

(
a(d)

ΛQED

)
(3.3.11)

with ΛQED some UV cutoff at which the inverse QED gauge coupling vanishes. We will take this
cut-off to be the dynamically generated scale Λ which is an appropriate cut-off in the sense that

8As mentioned in Section 2.2, supersymmetric partners for the ’t Hooft-Polyakov monopoles and dyons arise from
the semiclassical quantization of fermion zero modes of the gauginos in the vector multiplet.

9We silently assume the monopoles are still present in our low energy effective action and could appear in a dual
description. This is actually a false assumption and the observation that they have been integrated out is one of the
key observations in solving the theory.
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a(d)(u0)� Λ, i.e. QED is weakly coupled. We may integrate this expression again to find a relation
between aD(d) and a(d):

aD(d) = c− i

π
a(d) log

(
a(d)

Λ

)
+
i

π
a(d) (3.3.12)

with c a non-zero constant. We can integrate this expression with respect to a(d) to find the dual
prepotential. Hence, assuming there is a point in the moduli space where a dyon becomes massless,
we again are able to solve for the theory in that limit exactly (up to the constant c).

We have now set up all necessary equipment to return to the analysis of the moduli space.
Summarizing, we have shown the low energy effective action of N = 2 SYM is duality invariant.
Furthermore, we have calculated the exact gauge coupling for a theory with a massless dyon. Let
us now see how these tools can be used to the determine the precise moduli space of the theory.

3.4 Monodromies and the Quantum Moduli Space

Thus far, we have obtained a one-complex dimensional moduli space parametrized by the gauge
invariant parameter u. This moduli space is endowed with a Kähler metric which depends on the
low energy information of the physical theory and is dictated by the functions (aD(u), a(u)). As
already anticipated, the classical or perturbative moduli space is not expected to be the real moduli
space of the theory as for one, it would imply a negative gauge coupling in the strong coupling region
u ∼ Λ2. In this section, we will analyse the singular behaviour, in the form of monodromies, of the
functions (aD(u), a(u)). From this analysis we will be able to determine the real or quantum moduli
space of the theory precisely. Before turning to this, let us first describe where the monodromies
originate from.

Since the Wilsonian effective action is obtained with an IR as well as a UV cutoff, singular
behaviour of the prepotential does not originate from typical UV or IR divergences. To understand
where they do come from, we note the following. After the Higgs has condensed all elementary
particles and collective excitations obtain a mass dictated by the BPS bound, except for the unbroken
U(1) vector multiplet. Having integrated out the heavy degrees of freedom, we obtain an effective
Lagrangian at the scale of the Higgs expectation value µ = a(u) at which the coupling stops running.
This is a divergence free Lagrangian which is holomorphic in u. In this sense, even after integrating
out the modes, we may still vary u. If we vary u such that it becomes less than the scale above which
everything is integrated out, we would still have a sensible theory although we could be erroneously
ignoring some light degrees of freedom. However, if it turns out that for some values of the modulus
u particles have become massless, the Wilsonian effective action will exhibit singular behaviour,
stemming from the fact that massless particles have been integrated out.

We now turn to the singular behaviour. The asymptotic form of the section (aD(u), a(u)) at
u→∞ was derived in Section 2.5:

aD(u) =
√

2u
i

π
log

(
2u

Λ2

)
+
i
√

2u

π
(3.4.1)

a(u) =
√

2u (3.4.2)

From the formula of the central charge it follows directly that for u → ∞, the lightest particles
are the W-bosons. All particles with a magnetic charge, like the ’t Hooft-Polyakov monopoles and
the dyons, will be more massive. The proper action is then indeed the non-interacting U(1) gauge
theory, with respect to which the electrically charged W-bosons, before having been integrated out,
would describe the dominant interactions.

The fact that we are considering a correct description of the theory can also be seen from
monodromy properties of the section (aD(u), a(u)). That is; upon circling u = ∞, i.e. u 7→ e2πiu,
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the section transforms as:

aD(u)→ −
√

2u
i

π
log

(
2u

Λ2

)
+ 2
√

2u− i
√

2u

π
= −aD + 2a (3.4.3)

a(u)→ −
√

2u = −a (3.4.4)

The functions do not return to their original value; they are said to have a monodromy. The
monodromy can be phrased in matrix notation as:(

aD
a

)
7→
(
−1 2
0 −1

)(
aD
a

)
= M∞

(
aD
a

)
(3.4.5)

Note that M∞ ∈ SL(2,Z) and acts on τ as a shift in the θ parameter. Therefore the SYM action
remains invariant.

The central charge is kept invariant under the monodromy if we change the quantum numbers of
our states accordingly. In fact, this is as expected and consistent with the discussion in Section 2.4,
namely that the transformation u 7→ e2πiu can be interpreted as a certain shift of the θ angle. Due

Figure 3.4.1: The spectrum of the theory for u → ∞. The W-bosons are the
lightest particles with degenerate masses, which are exchanged under the mon-
odromy M∞. The other particles are dyons of charge (1, n). We suppress a
negative magnetic unit charge, but its monopole and dyons may easily be seen
to map exactly on the spectrum of positive magnetic unit charge. The arrows
indicate the action of the monodromy on the spectrum. The monodromy effec-
tively acts as: (±1, n)→ (∓1, n±2). The spectrum as a whole remains invariant,
however the quantum numbers of states of certain mass change. This figure is
inspired on a figure in [50].

to the Witten effect the electric charge of dyons changes proportionally to shifts of θ angle, as was
originally shown in [71]. The action of the monodromy on the spectrum is depicted in Figure 3.4.1.

An unambiguous description of the theory at u = ∞ is therefore only possible when the fun-
damental variables do not carry any magnetic charge. In this sense, the charged W-bosons10 are
again seen to provide the most convenient variables to describe the low energy theory at large u.
Note that although the monodromy of a(u) exchanges the W-bosons it does not change physical

10Or better: the free electric U(1) vector multiplet, since the W-bosons are not present in the low energy description.
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observables as the mass of the W-bosons. In fact, this monodromy is merely an artefact from our
construction of the u plane and would disappear upon considering instead the a plane. Thus, in
spite of the discussion at the beginning of the section M∞ does not stem from the appearance of
massless particles in the spectrum. It is simply a manifestation of the Witten effect.

It is well known that a monodromy at a certain point on the Riemann sphere implies the existence
of at least one other singularity; otherwise one could “pull the loop over the sphere” and find a zero
monodromy. We expect this additional singular point somewhere in the strong coupling region
u ∼ Λ2, as the weak coupling Lagrangian analysis shows quite clearly none of the known particles
become massless in the large u region. A naive guess would then be the possibility of a point u0

where a(u0) = 0, since this would correspond to a point at which the W-bosons become massless.
However, we have already given an argument why such a point cannot, at least, be the only extra
singularity on the moduli space. Namely, suppose it would be the only extra singularity. Then, the
monodromy matrix around u = 0 would have to be the same as the monodromy at u =∞. But this
implies that a(u) ∼

√
u is a good coordinate at weak and strong coupling in the sense it does not

show any (non-trivial) monodromies. But this means the perturbative gauge coupling also provides
a good metric at strong coupling. As we have discussed, this leads to the unphysical conclusion that
the gauge coupling becomes negative at strong coupling.

The minimal ansatz is then that there are three singularities. From Section 2.4 we know that
the unbroken subgroup H ⊂ U(1)R acts on u as a Z2 symmetry. Hence, the two singularities should
be related: u = ±u0. Seiberg and Witten reasoned that these singularities are unlikely to be caused
by massless W-bosons. There is a rather technical argument why this cannot be the case, which is
given in Section 5.2 of the original paper [59]. We just note it seems unnatural that the W-bosons,
having equal mass formulas, would become massless at different points in the moduli space. We will
in fact see from the explicit solution that a = 0 does not belong to the quantum moduli space.

The only other particles that remain to cause the singularities are the ’t Hooft-Polyakov monopoles
and the dyons. At the time of the original paper, the assumption that a monopole and a dyon become
massless at u = ±u0 worked out consistently and this was taken as evidence the assumption was in
fact the correct one. Not much later though, it was proven in [53] that, assuming supersymmetry is
not broken and the number of singularities on the moduli space is finite, the Seiberg-Witten solution
is the unique solution to the low energy effective action of N = 2 SYM.

Let us first suppose a monopole becomes massless at u0 = Λ2. Assuming the mass of the
monopole varies continuously over the moduli space, in a neighbourhood of u0 the monopole will be
the lightest particle. Our description in terms of a free electric U(1) theory will not be accurate at
all. Instead, we should dualize the theory and couple it to a hypermultiplet. The right variables for
a magnetic U(1) vector multiplet are:(

aD(d)
a(d)

)
=

(
a
−aD

)
, τd(a(d)) =

daD(d)

da(d)
= − 1

τ(a)
. (3.4.6)

From the beta function of QED we also obtained:

aD(d) = c− i

π
a(d) log

(
a(d)

Λ

)
+
i

π
a(d) (3.4.7)

Since the mass of monopole in the dual variables is given by m =
√

2|a(d)|, near the point u = u0

at which the monopole becomes massless a(d) should be of the form:11

a(d) = c(u− u0) (3.4.8)

From (3.4.7) and (3.4.8) we can read off the monodromy at u0. For (u−u0) 7→ e2πi(u−u0) we have:(
aD(d)
a(d)

)
7→
(

1 2
0 1

)(
aD(d)
a(d)

)
(3.4.9)

11The assumption of a simple zero is the only choice consistent with the fact that the monodromies should be in
SL(2,Z) and the form of M∞.
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The monodromy in terms of the original coordinates (aD, a) is obtained by a change of basis as
dictated in this particular case by the S transformation:

Mu0 = S−1

(
1 2
0 1

)
S =

(
1 0
−2 1

)
(3.4.10)

Relating to the terminology we used to interpret M∞, we see that in this region of the moduli
space aD is the right coordinate to describe physics and we should read a = F ′D(aD). Note that
this depends crucially on the nonvanishing integration constant c in (3.4.7). Otherwise, all particles
would have become massless at u0 and we would have trouble to find a suitable description of the
theory.

The question now is what this assumption means for the third singularity. There is an obvious
way to find the monodromy at u = −u0. For a total of three singularities the following equation
must be satisfied:

M∞ = Mu0M−u0 (3.4.11)

One might expect an ordering ambiguity here. In fact, the possible orders are related by the Z2

symmetry. The relation is not preserved due to the non-commutativity of the matrices. This is
explained by noting that the Z2 symmetry also acts on the base point of the monodromy. In
particular, M∞ → M ′∞ due to its dependence on this definition. Equivalently, the relation M∞ =
M−u0Mu0 holds if the massless particle at u = −u0 is now a (1, 1) dyon.

We leave the monodromy condition as a consistency check and exploit the residual Z2 symmetry
to obtain the answer. Since we know the behaviour in a neighbourhood of u = u0, because of the Z2

symmetry there should be a massless particle associated to u = −u0. To probe this neighbourhood,
we send: u 7→ eiπu. The dual Higgs expectation value then reads:

a(d) = −c(u+ u0) (3.4.12)

What are the quantum numbers of this particle? We again use the fact that the unbroken R-
symmetry rotations may be interpreted as shifts in the θ angle. Rotating u by an angle of π
corresponds to rotating a by an angle 1

2π. Remembering from Section 2.4, this corresponds to a
shift in the θ angle with −2π. By the Witten effect, the spectrum will be shifted by one unit in
electric charge. We conclude that the particle responsible for a singularity at u = −u0 should be a
dyon of charge (1,−1).

To determine what kind of monodromy we expect when such a dyon becomes massless, we follow
the same method that was used to determine the monodromy of the magnetic monopole in (3.4.10).
In the dual description the monodromy is the same as in (3.4.9). To transform to our electric
variables (a, aD), we need the change of basis. Since the dyon is related to the original electric
variables as: (

aD(d)
a(d)

)
=

(
−(1 + b) b

1 −1

)(
aD
a

)
, (3.4.13)

we find the monodromy in our original variables to be:

M−u0 =

(
−(1 + b) b

1 −1

)−1(
1 2
0 1

)(
−(1 + b) b

1 −1

)
=

(
−1 2
−2 3

)
. (3.4.14)

The wonderful thing is that this matrix satisfies condition (3.4.11) and therefore provides a highly
non-trivial consistency check on the assumption concerning the presence of only two extra singular-
ities on the moduli space due to magnetically charged objects.

We conclude with some remarks:

1. We have seen that under the assumption a monopole of charge (1, 0) and a dyon of charge
(1,−1) become massless at u = u0 and u = −u0 respectively, the monodromy at infinity
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is correctly reproduced. In principle we would expect that other dyons could also become
massless, especially since the monopole really is equivalent to any dyon modulo 2π rotations
in the θ angle. Since M∞ corresponds to a shift in the θ angle of 4π, we anticipate that a dyon
of charge (1, 2k) becomes massless at u = u0 after we performed the monodromy at u =∞ k
times. The monodromy associated to a general dyon is determined as:

M =

(
1+bnm
ne

b

nm ne

)−1(
1 2
0 1

)(
1+bnm
ne

b

nm ne

)
(3.4.15)

=

(
1 + 2nmne 2n2

e

−2n2
m 1− 2nmne

)
. (3.4.16)

Indeed, we find in complete analogy with the (1, 0) monopole and the (1,−1) dyon that the
monodromies associated to a (1, 2k) and a (1, 2k − 1) dyon satisfy:

M∞ = M (1,2k)
u0

M
(1,2k−1)
−u0

(3.4.17)

with M
(1,2k)
u0 and M

(1,2k−1)
−u0

related respectively to Mu0
and M−u0

through conjugation by
Mk
∞. One also finds that the condition is satisfied with dyons of negative magnetic charge

or one dyon of positive and one dyon of negative magnetic charge. The condition cannot be
satisfied by dyons of magnetic charge |nm| ≥ 2. Note that these statements are only valid if
the semiclassical dyon states exist at strong coupling as well. In fact, the assumption that
these states exist is false and the only states that become massless at strong coupling could be
the unit charge monopole and unit charge dyons. This was pointed out in [26]. We will come
back to this in the next two sections.

2. The appropriate Higgs expectation values in terms of the original variables are:

a(d) = aD (3.4.18)

a(d′) = aD − a ≡ ãD (3.4.19)

In terms of these variables, we find two new local (asymptotic) descriptions of our theory for
which the prepotentials are:

FD(aD) = −a
2
Di

4π
log

(
a2
D

Λ2

)
+

∞∑
k=1

cDk

(aD
Λ

)k
(3.4.20)

F̃D(ãD) = − ã
2
Di

4π
log

(
ã2
D

Λ2

)
+

∞∑
k=1

c̃Dk

(
ãD
Λ

)k
(3.4.21)

The qualitative differences with the prepotential at u =∞ manifest themselves in an opposite
sign of the logarithm, related to the fact that QED is IR free. Furthermore, the infinite sum
appearing in the expressions represents corrections which are not associated to instantons,
since these do not exist for this particular U(1) gauge theory. They reflect corrections of
massive states which have been integrated out to arrive at the particular dual theory. Note
that they vanish altogether at u = ±u0, while one can check that the gauge coupling properly
diverges τD, τ̃D → i∞ at u = ±u0 respectively.

3. The monodromies generate a group Γ(2) ⊂ SL(2,Z). The fact that a subgroup of SL(2,Z)
appears is of course not a coincidence. Since the monodromies merely reflect a bad choice
of local fields, the Kähler metric, which encodes the physics on the moduli space, should be
invariant under monodromies. As already argued, the metric is invariant only under SL(2,Z).12

12Actually, the metric is invariant under SL(2,R). However, for the quantum numbers to remain integer valued the
group must be SL(2,Z), which may be seen from the formula of the central charge.
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The moduli space of the theory is given by all possible values of u: C \ {±Λ2,∞}. Given a
section (aD(d), a(d)) at some u, there exists an entire Γ(2) orbit of physical descriptions. The
correct description is the one such that a(d) is invariant under the monodromy. A crucial
insight of Seiberg and Witten was to note that the thrice punctured u-plane can be thought
of as the fundamental domain of Γ(2):

Mq
∼= H/Γ(2) (3.4.22)

It means there is some one-to-one map u(f) from H/Γ(2) to the thrice puncture u plane.
The monodromies of the gauge coupling suggest: f = τ(u). This realization stands at the
basis of solving the theory. The punctures on the u plane coincide with the cusps 0, 1,∞.
One can check that the cusps are fixed points under Mu0

, M−u0
and M∞ respectively. The

moduli space is depicted in Figure 3.4.2. The cusps correspond to the weakly coupled electric,
magnetic and dyonic descriptions.

Figure 3.4.2: Fundamental domain of Γ(2) ⊂ SL(2,Z).

As a last point, we make a remark about (non) electric-magnetic duality of the pure theory.
Although the monodromies seem to imply Γ(2) orbits of physical descriptions, one has to be
aware we only know about the duality transformation relating the dyons at weak coupling.
For one, no duality transformation between the W-bosons and dyons could exist since they
make up different N = 2 multiplets, in contrast with for instance N = 4 SYM[47]. More
strikingly, as already remarked above and to be discussed below, the strong coupling spectrum
looks completely different from the weak coupling spectrum, preventing any chance on global
electric-magnetic duality of the theory.

3.5 Solution of the Model

It might seem unlikely, with the information obtained thus far, to be able to calculate the instanton
coefficients up to infinite order. However, this is precisely the achievement of Seiberg and Witten.
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The crucial observation was to note that the quantum moduli space Mq of the theory coincides
with the moduli space of a particular elliptic curve. Before giving the prescription for these elliptic
curves, we briefly want to motivate what is the moduli space of a torus which we will see to be
topologically equivalent to an elliptic curve.

First of all, a useful way to view a torus is as C/Λ, with Λ a lattice spanned by two complex
numbers b1, b2 called the periods of the torus. This corresponds to taking a primitive parallelogram
in the lattice and identifying its opposite edges. Without loss of generality, we may take b2 along the
real positive axis and choose b1 and b2 such that: Im b1

b2
> 0. We may now simply rescale the lattice

such that the side on the real axis has length 1. Then the torus is parametrized by one complex
number, which is called the modulus of the torus:

τ =
b1
b2
. (3.5.1)

By construction, the imaginary part of the τ lives in the upper half plane. Two tori are equivalent
if they differ by an SL(2,Z) transformation. This is easily seen from the definition of the original
lattice: C ⊃ Λ = {nb1 +mb2|n,m ∈ Z}. The action of SL(2,Z) is:(

b1
b2

)
→
(
a b
c d

)(
b1
b2

)
(3.5.2)

Since ad − bc = 1 this action preserves the lattice, although the primitive cell may have changed.
Upon scaling the lattice, the action can equivalently be expressed as:

τ → τ ′ =
aτ + b

cτ + d
(3.5.3)

From this perspective, the statement that tori related by such an SL(2,Z) transformation are equiv-
alent should either be interpreted as above or, if one wishes to take this more literal, one should
properly normalize τ . Up to an irrelevant phase, a lattice spanned by a parallelogram with periods
( 1√

Imτ
, 1√

Imτ
τ) is invariant under the action of SL(2,Z) as in (3.5.3). We will always drop this

normalization.
Another useful point of view from which it is clear tori related by an SL(2,Z) transformation are

equivalent is to notice SL(2,Z) is the mapping class group of the torus. In this sense, an SL(2,Z)
transformation on the torus corresponds to a change of homology basis, just like SL(2,Z) action on
τ changes the primitive cell.

We see that the moduli space of inequivalent tori is given by a quotient of the upper half-plane:
H/SL(2,Z). Indeed, this is similar to the moduli space of our theory. To make the correspondence
precise, Seiberg and Witten considered the following elliptic curve:

y2 = (x− Λ2)(x+ Λ2)(x− u) (3.5.4)

This equation defines a one-complex dimensional subspace of C2. This curve turns out to be a genus
one Riemann surface, as may be seen in Figure 3.5.1. The components of the section (aD(u), a(u))
will be determined by integrating an appropriate differential, the so-called Seiberg-Witten differen-
tial, on the a and b cycle respectively. Before we give the explicit expression, let us see why the
moduli space of the theory is the same as that of the elliptic curve.

Obviously, for different values of u we obtain different elliptic curves. However, the moduli space
of the elliptic curve is reduced as well by noticing some symmetries. First of all, the Z2 symmetry
on the moduli space of the physical theory is realized on the curve as a Z4 symmetry on the curve,
of which only a Z2 subgroup acts on u:

u→ −u
x→ −x
y → ±iy
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Figure 3.5.1: The elliptic curve is defined on a double cover of the x plane,
compactified to two Riemann spheres. The branch are chosen between

[
−Λ2,Λ2

]
and [u,∞]. The conventional choice for an independent basis of the homology
of the curve is a cycle circling the branch cut

[
−Λ2,Λ2

]
, which we call the a

cycle. This cycle is defined on the upper sheet. The other cycle, the b cycle,
we choose as entering the branch cut

[
−Λ2,Λ2

]
, continuing on the second sheet

and returning and closing on the first sheet via the cut at [u,∞]. The gluing of
the two Riemann spheres along the cuts leads to a g = 1 Riemann surface. For
definiteness, we define the a cycle to be oriented anti-clockwise while the b cycle
is defined clockwise.

The transformations on x and y precisely implement the usual R-symmetry transformations of a(u)
and aD(u) when u→ −u, as we will see from the solution.13

As u approaches the strong coupling region, the monopole and dyon start to become light. This
is realized on the elliptic curve as the degeneration of a certain cycle. In Figure 3.5.2 these vanishing
cycles are depicted and readily identified with the expectation values of the corresponding magnetic
and dyonic Higgs scalars. Notice that there will also be a degeneration of the curve when u → ∞.
However, we know from the physical theory this should not correspond to a massless particle, but
rather to infinitely massive particles. The proper way to understand this pinching of the torus is to
rescale x → x

u while simultaneously scaling y → y
u3/2 such that the curve is invariant. The strong

coupling singularities then lie at Λ2

u . We therefore see that in these new coordinates, in the limit
u→∞, the a cycle vanishes while the b cycle diverges. Indeed, this is precisely the limit discussed
in the beginning of Section 3.4 where we saw that for u→∞ the ratio aD/a→∞.

Last but not least, we check how the monodromies of the physical theory are realized in elliptic
curve construction. To check this, we analyse what happens to the a and b cycles when u circles
±Λ2. Let us first look at the monodromy at u = Λ2. Notice that looping u around Λ2 may be
viewed as exchanging u and Λ2 twice along the b cycle. Therefore, after the exchange the new b′

cycle is really the same cycle as the original b cycle. However, the a cycle will be transformed.

13It may be seen from the abelian low energy effective action that RaD = Ra.
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Figure 3.5.2: Vanishing cycles. In the limit that u→ Λ2, the b cycle vanishes. In
the limit that u→ −Λ2, the b− a cycle vanishes. The b cycle will correspond to
aD whereas the b−a cycle will correspond to the vanishing of ãD = aD−a. Notice
that the signs appearing in front of a cycle are consequences of the orientations
defined in Figure 3.5.1.

To understand how the a cycle transforms, we note there is an ambiguity when u is about to
cross the branch cut. To avoid this, we should change our branches accordingly. After a rotation of
π we take the new branches to be

[
−Λ2, u

]
and

[
Λ2,∞

]
. With these new branches, we canonically

define the new a′. The a′ cycle now encircles u and u = −Λ2. This corresponds to an a− b cycle in
the original coordinates. Exchanging twice then corresponds to:(

b′

a′

)
=

(
1 0
−2 1

)(
b
a

)
. (3.5.5)

This precisely corresponds to the monodromy of the original theory. Let us also check the mon-
odromy at −Λ2 in a similar manner. The cycle along we are exchanging now corresponds to a− b.
Analogously to the previous, now the a−b remains invariant, i.e. a′−b′ = a−b. After exchanging u
and −Λ2 twice we have for the a cycle: a′ = a− 2(b−a) = 3a− 2b. In matrix notation, we therefore
have: (

b′

a′

)
=

(
−1 2
−2 3

)(
b
a

)
. (3.5.6)

Again, this is exactly the right monodromy. The monodromy at u =∞ is automatically reproduced
by applying the global constraint on the monodromies:

M∞ = Mu0M−u0 (3.5.7)

Hence, elliptic curves related by Γ(2) transformations define the same elliptic curve, although the
homology basis has transformed. We conclude that the moduli space of the elliptic curve precisely
coincides with the moduli space of the physical theory.

We will now quantify the correspondence. First, we have seen that the b and a cycle on the
elliptic curve transform exactly as aD(u) and a(u) under SL(2,Z) and have the same monodromies.
In analogy with the physical theory, we can simply define an SL(2,Z) bundle over the punctured u
plane. In this case, SL(2,Z) acts naturally as the mapping class group of the elliptic curve Eu on the
abstract vector space spanned by the a and b cycle. The fiber on a particular value of the punctured
u plane is then the homology group H1(Eu,C) of the elliptic curve. To relate both sections, we first
note that we may relate the homology group H1(Eu,C) as a space with the space of meromorphic
one-forms on Eu through the pairing:

γ 7→
∮
γ

λ (3.5.8)



3.5. SOLUTION OF THE MODEL 31

where γ ∈ H1(Eu,C) and λ a meromorphic one-form on Eu. To make this relation into a bijection,
we should consider the meromorphic one-forms modulo exact forms (since these will integrate to
zero). Also, the forms should have vanishing residues. We demand this since the paths γ are only
defined up to homotopy. If λ would have a non-zero residue at some point on the elliptic curve, the
pairing would not be invariant once γ crosses a pole of λ.14 There is an obvious differential satisfying
these requirements: the unique holomorphic one-form of the elliptic curve.15 On the torus viewed
as a lattice in C, this holomorphic form is just dz, which naturally integrates on the two cycles to
give the periods of the torus:

b1 =

∮
b

dz (3.5.9)

b2 =

∮
a

dz (3.5.10)

The equivalent differential on the elliptic curve has a different form. There are three useful ways to
see that the correct holomorphic form is given by:

λ1 =
dx

y
(3.5.11)

We briefly state how it may be derived:

1. Since the curve is described in two coordinates, yet is one dimensional, we may choose to
describe its cotangent bundle in terms of x or y coordinate projection. The relation between
these two parametrizations is given by the defining equation for the curve (3.5.4) (which we
abbreviate for ease of notation as f(y) = g(x)):

f ′(y)dy = g′(x)dx (3.5.12)

If the curve has no double zeroes, g′(x) has no zeroes in common with g(x) and we see that
we always have have a non-singular and non-vanishing differential at our disposal:

ω =
dx

y
or ω =

dy

g′(x)
, (3.5.13)

where y =
√
g(x) and similarly g′(x) is considered as a function of y.

2. It is a δ function identity: consider the volume form on C2 dx ∧ dy. We can restrict the form
to the curve by inserting an appropriate δ-function:∫

C2

dx ∧ dy δ(y2 − g(x)) =

∫
Eu

dx

2y
=

∫
Eu

dy

g′(x)
(3.5.14)

Of course, the volume form is non-vanishing and holomorphic on C2. Upon restricting to the
curve we obtain a natural holomorphic non-vanishing differential on the curve Eu ⊂ C2.

3. Alternatively, one may analyse the poles and zeroes of the numerator and the denominator in
(3.5.11). They turn out to coincide and therefore cancel. See chapter 1 and 2 of [62] for more
details.

14This condition will be relaxed when we consider the addition of flavours with non-zero masses. The residues of
the differentials will then correspond to the bare masses of the flavours. Indeed, this is related to the extension of
SL(2,Z) as mentioned at the end of Section 3.2.

15The dimension of the space of holomorphic one-forms on a compact Riemann surface of genus g has dimension g.
See for instance [41] for an introduction to complex curves and Riemann surfaces.
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Analogously to (3.5.10), the period integrals on the elliptic curve become:

b1 =

∮
b

dx

y
(3.5.15)

b2 =

∮
a

dx

y
(3.5.16)

The modulus of the elliptic curve is now given by:

τu =
b1
b2

(3.5.17)

which automatically satisfies: Im τu > 0. We now assume this holds as well for our low energy
theory: Im τ(u) > 0 for all values of u. Then clearly, τ(u) also parametrizes some torus. Secondly,

since τ(u) = daD/du
da/du we see the identification:

daD
du

= f(u)

∮
b

dx

y
(3.5.18)

da

du
= f(u)

∮
a

dx

y
(3.5.19)

makes sense as all symmetries and monodromies agree on the left and right hand side. Here, f(u)
is some constant which will be fixed by asymptotic matching of the identification. Accepting this
identification then fully solves the theory.

It is easy to see (3.5.19) implies:

aD(u) =

∮
b

λ (3.5.20)

a(u) =

∮
a

λ (3.5.21)

with the Seiberg-Witten differential λ, up to exact forms, given by:

λ = −2f

√
x− udx√
x2 − Λ4

= −2f(
xdx

y
− udx

y
) (3.5.22)

Indeed, differentiating either side gives back equation (3.5.19). As a consistency check, we see λ has
vanishing residues since its only pole is double (at ∞) and the sum of residues should vanish of a
meromorphic one-form on a compact Riemann surface vanishes.16

Let us now state the explicit solutions for the functions aD(u), a(u):

aD(u) = −2f

∮
b

√
x− udx√
x2 − Λ4

= −4f

∫ u

Λ2

√
x− udx√
x2 − Λ4

(3.5.23)

a(u) = −2f

∮
a

√
x− udx√
x2 − Λ4

= −4f

∫ Λ2

−Λ2

√
x− udx√
x2 − Λ4

. (3.5.24)

In principle, these functions, together with the knowledge of appropriate dual descriptions at the
cusps in the moduli space, enables us to calculate the (locally defined) prepotentials up to arbitrary
order.

16The easiest way to see this is by determining the divisors of x, y, dx. The divisors of y,dx cancel, such that a
double pole at ∞ of x remains. See Section 2.3 of [62] for more details.
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We can fix the constant by matching the asymptotic behaviour. Near u =∞, the expression for
a becomes:

a(u) ≈ −2f
√
u

∫ Λ2

−Λ2

√
−1dx√
x2 − Λ4

= −2fπ
√
u. (3.5.25)

This the correct behaviour. We may also determine the value of f to produce a(u) =
√

2u:

f =
−1

2
√

2π
. (3.5.26)

Let us also check the expression of aD(u):

aD(u) =

√
2u

π

∫ 1

Λ2/u

dz
√
z − 1√

z2 − u−2Λ4
. (3.5.27)

Here we changed variables x = uz. We can expand the integrand in terms of the small parameter
Λ2/u. The first term corresponds to:

aD(u) ≈
√

2u

π

∫ 1

Λ2/u

dz
√
z − 1

√
z2

z2
(3.5.28)

The formula for aD(u) diverges. Isolating the divergent term, we find the dominant contribution for
u→∞:

aD(u) ≈
√

2u

π

∫ 1

Λ2/u

dzi

z
=

√
2ui

π
log
( u

Λ2

)
(3.5.29)

which indeed corresponds to the divergent part of aD(u) obtained in our semiclassical analysis. In
principle, one can determine higher order corrections in to both a(u) and aD(u). Inverting a(u),
one can then integrate aD(a) to obtain the prepotential F(a). Similarly, one can determine the
corrections to the prepotentials in terms of the monopole and dyonic coordinates, reinterpreting the
functions a(u) and aD(u) properly, while working in the limits u→ ±Λ2.

However, there is a more efficient way to calculate the instanton corrections. It turns out that the
solutions for a(u), aD(u) admit a hypergeometric function representation. Expanding these functions
order by order, one can obtain the instanton corrections up to arbitrary order. It can also be seen
that a(u) 6= 0 for all values of u, such that indeed no singularities appear due to massless gauge
bosons. For these explicit solutions, the reader is referred to [35]. Explicit instanton calculations
agree with the Seiberg-Witten solution[42][45].

3.6 Discussion

In the previous section, we have seen an explicit solution for the prepotential. We have found
that the prepotential can only be interpreted as a local function on the moduli space. For these
local representations, we have provided a recipe through which in principle all perturbative and non-
perturbative (instanton) corrections can be determined. In this sense, the theory is solved exactly. Of
course, there is the possibility of other non-perturbative contributions to the prepotential. However,
as was already mentioned in a footnote in the beginning of Section 2.5, the instantons represent the
dominant non-perturbative contributions.

A second point is more of a remark than a real obstacle, and is made in preparation of Section
3.8. It concerns the normalization of electric charge. For the W-bosons, the electric charge should
be normalized as ne = 2 for the hypermultiplets to have integer electric charge. The effects are
not drastic but should be taken into account. Note that we can effectively absorb the charge
via the central charge formula into a redefinition of a′ = a/2. This leads to a new τ as well:
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τ ′(a) = 2τ(a) = θ(a)
π + 8πi

g2(a) . In these conventions the W-bosons behave as particles of charge

(nm, ne) = (0,±2). Also the dyons obtain an even electric charge. Further consequences are that
under a 2π rotation of θ, τ → τ + 2. This implies the monodromy at infinity will be τ → τ − 4.
Also the monodromies at u = ±u0 will change, which together will now generate Γ0(4). This still is
a sixfold cover of the modular domain, implying equivalent monodromy properties. The curve and
Seiberg-Witten differential change accordingly and are given for instance in [35]. For a comprehensive
discussion of the above, see Section 4.5 of [65].

A third point concerns the spectrum of the theory. Definitely, the semiclassical spectrum consists
of all possible dyons with (nm, ne) = (±1, n) with n some integer. Because of the Γ(2) monodromies
we would expect at any value of u to have an infinite tower of dyon states, related by a Γ(2)
monodromy. However, as already suggested at the end of [59] and worked out in [26], there exists

a boundary between the weak and strong coupling region at which: ImaD(u)
a(u) = 0. This implies

the spectrum collapses from a lattice in the complex plane to the real line. All states decay into
monopoles and dyons. The (1, 0) monopole and the (1,−1) dyon cannot decay because they are the
lightest particles in the spectrum. The curve of marginal stability passes through the monopole and
dyon point since there aD/a = 0 and aD/a = ±1 respectively. The shape of the curve is almost an
ellipse, depicted in Figure 3.6.1. It was convincingly argued in [25] the curve of marginal stability

Figure 3.6.1: The moduli space of the pure theory. The singularities and the
curve of marginal stability are depicted.

is simple and closed, and does not extend to infinity. This was also argued in the short note [49].
Of course, the explicit solution agrees with these observations. As already mentioned above, the
existence of a curve of marginal stability is the final blow to some sort of electric-magnetic duality
of the effective N = 2 Yang-Mills action over the whole of the moduli space.

3.7 Confinement of Electric Charge

One interesting physical result of the solution of N = 2 SYM is that for the first time a quantitative
description has been found for confinement of electric charge through monopole condensation. This
mechanism was conjectured to be responsible for confinement already in the late seventies by Man-
delstam and made more precise by ’t Hooft in [64]. Their conjecture is an electric-magnetically dual
description of the Meissner effect in superconductors. In a superconducting vacuum, electrons have
condensed to form Cooper pairs. These pairs are well described as a scalar field which assumes a
non-zero expectation value in the vacuum. This spontaneously breaks a U(1) gauge symmetry and
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the photons are given a mass by the Higgs mechanism inside the superconductor. However, it has
been found that this theory does allow for stable magnetic flux tubes, Abrikosov vortices, through
the condensate. An appropriate underlying description of these tubes is that they represent bound
states of a monopole and antimonopole connected via the tube. These bound states are confined in
the sense that the (magnetic) force between them increases with the distance.

Motivated by the appearance of magnetic monopoles in non-abelian gauge theories, ’t Hooft
conjectured that the condensation of magnetic monopoles would induce electric vortex tubes with
at the ends a bound state of a quark and an antiquark. This could be a qualitative explanation of
the confinement of electrically charged quarks. Seiberg and Witten found a quantitative description
of this mechanism in N = 2 SYM. Although the discussion of this is not directly relevant for the
remainder of this thesis, it is such an interesting result we decide to include it.

The idea is to break N = 2 SYM theory to a pure N = 1 theory. This is motivated by the fact
that pure N = 1 SYM is believed to generate a mass gap at low energies.17 Furthermore, it has
two inequivalent vacua related by a Z2 symmetry. It is then interesting to see how the low energy
N = 2 theory, whose moduli space we understand completely, flows to the pure N = 1 theory.

To breakN = 2 supersymmetry explicitly, we can simply add a mass term for the chiral superfield
Φ:

W (Φ) = mTr Φ2 (3.7.1)

In the low energy limit, Φ will freeze out and we will indeed be left with a pure N = 1 theory. Also,
the operator will be identified with U = Tr Φ2 and the effective superpotential becomes:

Weff = mU (3.7.2)

where the vev of the scalar component of U is related in the usual way to the scalar component
of Φ: u = 〈Trφ2〉. The expression for the low energy effective superpotential is exact due to a
non-renormalization theorem. See [59].

Clearly, the addition of such a term to the theory will affect the vacuum degeneracy. Reasoning
semi-classically, one would be tempted to argue the real vacuum is now unique and given for a = 0
with a the vacuum expectation value of the scalar component of Φ. However, we have learned
from the previous analysis that this is not what happens in the N = 2 theory. In fact, a(u) does
not vanish anywhere on the moduli space. Also from the N = 1 perspective, we expect a doubly
degenerate vacuum with a mass gap because of its presumed confining phase. The natural place to
search for the N = 1 vacua is the strong coupling region of the N = 2 theory. Indeed, this exhibits
a Z2 symmetry. We should change our description of the N = 2 theory accordingly and take into
account chiral multiplets M and M̃ which constitute a magnetic N = 2 hypermultiplet. The exact
effective superpotential now is:

Weff = mU(ΦD) +
√

2ΦDMM̃ (3.7.3)

Again, this is an exact expression for the superpotential. We can find the vacuum of the theory by
analysing the minimum of the superpotential. Furthermore, the D-term generated by the hypermul-
tiplet should vanish as well, requiring |〈M〉| = |〈M̃〉|. The minimum is obtained by differentiating
the superpotential with respect to the fields and evaluating on the vacuum manifold. We slightly
abuse notation by denoting the vacuum expectation value of the monopole superfields again with
M,M̃ :

aDM = aDM̃ = 0 (3.7.4)

√
2MM̃ +m

du

daD
= 0 (3.7.5)

17For a review, see Section 4 of [50].
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Assuming du
daD
6= 0, which at least near the monopole point is a reasonable assumption since aD(u) is

regular, we see the equations can only be satisfied for non-vanishing values of M, M̃ . Furthermore,
aD should vanish. This is precisely what happens at Λ2.The vacuum expectation values of the
hypermultiplets read:

M = M̃ =
(
−mu′(0)/

√
2
)1/2

. (3.7.6)

This is determined up to U(1) gauge transformations, under which M and M̃ transform oppositely.
The non-zero vevs of the scalar components of M and M̃ give rise to a Higgs mechanism resulting
in a massive magnetic U(1) gauge boson. This is precisely when confinement of electric charge is
expected to occur. We conclude that the N = 2 theory provides an underlying physical explanation
for the mass gap of the N = 1 theory. A similar analysis could be done at the dyon singularity. The
condensation of the dyon gives rise to a mass gapped theory as well, establishing the Z2 symmetry
on the two vacua of the N = 1 theory.

3.8 Adding Matter

The exact solution for the prepotential of pure SU(2) theory has inspired a great deal of effort into
the study of other, more complicated N = 2 gauge theories. It has turned out the methods and
insights of Seiberg and Witten are applicable to a huge class of N = 2 theories, which subsequently
have been solved for exactly. For instance, the curves for arbitrary rank classical gauge groups have
been found. See [2] and [9] on the generalization to SU(N) gauge groups and [11] for SO(N) and
Sp(N) gauge groups. Although the curves are found using a similar analysis as the original analysis
of Seiberg and Witten, it was Witten again who found a more general and insightful construction in
Type IIA string theory (or M-theory) in [72]. In the next section, we will briefly mention the most
important elements of his analysis. Here, we comment on an interesting aspect of the generalization
to higher rank SU(N) groups stemming from a richer singularity structure of the higher rank theories,
without plunging into a quantitative analysis.

In the case of higher rank gauge groups, the Coulomb branch of a spontaneously broken gauge
theory will be a higher dimensional manifold. For instance, a generic Higgs expectation value will
spontaneously break SU(N) to U(1)N−1 corresponding to a Coulomb branch of complex dimension
N − 1. The full quantum moduli space of the low energy theory then corresponds to the moduli
space of genus g = N − 1 curves, where every torus represents a U(1) theory. The period matrix of
the elliptic curve represents the set of gauge couplings corresponding to the U(1) subgroups. It is a
matrix of dimension N − 1×N − 1 matrix τij which carries the information about the ratios a and
b periods:

g∑
j=1

τijaj = bi (3.8.1)

where we warn the reader aj and bi are separately matrices, since they depend on another index
k = 1, . . . , g corresponding to a choice of holomorphic one-form on the Riemann surface. See for
instance [21].

Massless particles appear generically along complex codimension one submanifolds of the Coulomb
branch, since there exists a dual description in which a generic dyon is electrically charged with
respect to one of the U(1) gauge groups.18 This implies one may expect intersections of these
codimension one manifolds leading to theories of several U(1) vector multiplets coupled to several
electric, magnetic or dyonic hypermultiplets.

18In the case of SU(N) theories, the duality group which keeps the Kähler metric invariant is Sp(2N−2). Its action
on τij is precisely as SL(2,Z) in the SU(2) case. The statement is there exists some A ∈ Sp(2N − 2) which sends a
generic charge vector: ~n 7→ (k, 0, . . . , 0) with k = gcd(ni). This is a straightforward generalization of the statement
for SU(2) in Section 3.3.
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Interestingly, it was argued in [8] that mutually non-local states become massless at submanifolds
of the Coulomb branch, and an explicit example in the case of SU(3) gauge group was provided.
This insight has led to a new type of superconformal theory in which U(1) vector multiplets are
simultaneously coupled to massless electric and magnetic hypermultiplets.

In this section, however, we will discuss the other obvious generalization of the analysis, namely
the addition of matter in the fundamental representation of the gauge group as first considered
for SU(2) in the ‘second’ paper [60] of Seiberg and Witten. For a generalization to SU(N) gauge
groups, see [48]. We will not discuss or give the curves corresponding to the matter included
theories, since again the M-theory construction of the next section provides a much more general
way of understanding these. However, some qualitative aspects of the theories coupled to matter
are interesting and put the pure case in a somewhat broader perspective. For this, we mainly use
the original paper by Seiberg and Witten [60], especially Sections 5, 6, 7, 8 and 10. Furthermore,
elements of the reviews [46] and [65] are used.

3.8.1 Global Symmetries of Nf ≤ 4

We will only consider UV free theories. The exact perturbative beta function for N = 2 SYM with
gauge group SU(N) coupled to Nf massless flavours in the fundamental representation is given by:

β 4π
g2

(µ) =
2N −Nf

2π
(3.8.2)

UV free theories are seen to correspond to Nf ≤ 3. For Nf = 4 the one-loop beta function vanishes.
To include matter in an N = 2 invariant way, we couple the vector multiplet to hypermultiplets as
in Section 2.3. Although the moduli space is extended with a Higgs branch, we will only focus on
the Coulomb branch. Much information about the structure of the Coulomb branch can be obtained
by a careful analysis of the (quantum) global symmetries. Let us therefore first see what are the
global symmetries of a theory coupled to Nf flavours.

First of all, we have the U(2)R symmetry. As discussed in Section 2.4, its U(1)R subgroup is
anomalous. It follows from the general expression of the anomaly (2.4.11) that for gauge group
SU(2) and Nf fermions in the fundamental representation, the surviving R-symmetry group is:

SU(2)R × Z8−2Nf /Z2 (3.8.3)

In Table 3.1, the residual R-symmetries for 1 ≤ Nf ≤ 4 are shown. The U(1)R symmetry is broken

Nf 1 2 3 4
H Z3 Z2 none U(1)R

Table 3.1: The unbroken R-symmetry group H ⊂ U(1)R as a function of the
number of flavours added to the theory.

altogether for non-vanishing bare masses of the hypermultiplets. The other global symmetry is
flavour symmetry. We repeat the superpotential of the hypermultiplet with explicit gauge indices:

W =

Nf∑
i=1

√
2Q̃ai Φ b

a Qib +miQ̃
a
i Qia. (3.8.4)

For non-zero and equal mi both the superpotential and the kinetic terms of the hypermultiplets are
invariant under a U(Nf ) flavour symmetry. For unequal masses it generically reduces to a product

U(1)Nf . Notice that Q and Q̃ carry opposite flavour charges with respect to the U(1) flavour
symmetries.
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Since hypermultiplets must appear in short representations of the N = 2 algebra, massive hy-
permultiplets inescapably saturate a BPS bound. The BPS bound of the pure theory has to be
adjusted to account for non-vanishing bare masses. To determine the contribution of these hyper-
multiplets one could construct the supercurrents of the explicit supersymmetry transformations on
the component fields of this flavoured SU(2) super Yang-Mills theory. Then one can construct by
hand the supercharges and calculate the central charges. For the pure theory we already quoted the
result in Section 3.3 from [73]. A similar calculation can be done including hypermultiplets. Some
details of this calculation are given in [4]. We will not perform the calculation but rather motivate
the answer.

Writing the superpotential in terms of a single hypermultiplet Q1,2 and Q̃1,2, giving Φ its usual
expectation value and expanding the superpotential (and its hermitian conjugate), we obtain:

W +W † = Q̃1(m+
√

2a)Q1 + Q̃2(m−
√

2a)Q2

+ Q∗1(−m+
√

2a)Q̃∗1 +Q∗2(−m−
√

2a)Q̃∗2 (3.8.5)

The minus signs in front of the bare masses appear due to the transposition performed, which adds a
minus sign because the SU(2) inner product is antisymmetric. One might worry that the expression
seems to imply a breaking of SU(2)R symmetry. For this, note that an SU(2)R doublet is made up
from (the scalars of):

Q =

(
Q1

Q2

)
and Q̃† =

(
Q̃∗2
Q̃∗1

)
(3.8.6)

where these are the SU(2) gauge spinors and SU(2)R mixes both the upper (lower) components.
See Section 2.4 for more details on the action of N = 2 R-symmetry on the hypermultiplet. We
conclude the BPS masses do respect the SU(2)R symmetry, as desired of course.

Then we see that the upper and lower components of the spinor have effective masses:

mBPS
± = |m±

√
2a| (3.8.7)

For a single quark, we should therefore adjust the central charge as:

Z = ane + aDnm + S
m√

2
, (3.8.8)

where S = ±1 for Q, Q̃† and Q̃,Q† respectively and ensures the SU(2)R will not be broken. This is
easily extended to Nf massive quarks:

Z = ane + aDnm +

Nf∑
i=1

Si
mi√

2
, (3.8.9)

where quark Qi has U(1) flavour charge Sj = 1 if j = i and otherwise Sj = 0. This is the low energy
effective BPS bound due to a non-renormalization theorem for the superpotential.

For gauge group SU(2) there is a flavour symmetry enhancement possible broken by non-
vanishing bare masses. Namely, pseudo-reality of the fundamental representation of SU(2) implies
it is isomorphic to its complex conjugate. Therefore, we may combine Q and Q̃ into a single 2Nf di-

mensional spinor Q̂ transforming in the fundamental representation [34]. For a single hypermultiplet
this spinor is represented as:

Q̂ =

(
Q

Q̃∗

)
=

(
Q

σGQ̃

)
(3.8.10)

Our conventions have shifted slightly with respect to the discussion in Section 2.3; we have redefined
Q̃t → Q̃. See Appendix C for the motivation and details. The action of σG = iσ2 is on the SU(2)
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gauge indices. Notice this action can be expressed explicitly as (σG) ba Q̃b which is equivalent to
Qbεba.

It is shown in the Appendix of [34] that the hypermultiplet Lagrangian can be rewritten in terms

of Q̂ as follows:

L =

∫
dθ2dθ̄2

(
Q† Q̃†σ†G

)
e−2V

(
Q

σGQ̃

)
+∫

dθ2 1√
2

(
Qt Q̃tσtG

)
σGΦ

(
0 1
1 0

)(
Q

σGQ̃

)
+ h.c. (3.8.11)

We suppress gauge indices and use vector/matrix notation for the flavour indices. The kinetic part
of the Lagrangian is manifestly invariant under a U(2) flavour symmetry. However, the Yukawa term
only respects an SO(2) symmetry. This can be seen by noticing the flavour matrix is symmetric,
and only an SO(2) ⊂ U(2) preserves a symmetric orthogonal combination of the fields.

This construction generalizes straightforwardly to an arbitrary number of flavours:19

Q̂t =
(
Q1 · · · QNf σGQ̃1 . . . σGQ̃Nf

)
(3.8.12)

The kinetic term, then, exhibits a full U(2Nf ) flavour symmetry. However, the Yukawa coupling

only preserves an SO(2Nf ) subgroup. The superpotential becomes in terms of Q̂:

W =
1√
2
Q̂tσGΦ

(
0 1Nf

1Nf 0

)
Q̂ (3.8.13)

This ends our discussion of the global symmetries.

3.8.2 Moduli Spaces of Nf ≤ 3

A new feature of the flavoured theories is that new singularities appear on the moduli space at which
an electric hypermultiplet becomes massless. In particular, for large bare masses mi � Λ, so that we
trust our semiclassical analysis, we have massless hypermultiplets whenever a = ±mi√

2
. The massless

quarks will cause a monodromy in the formula of aD exactly as the formula for a general dyon
dictates as in (3.3.12) (with new electric charge normalization), however with an additive constant.
More precisely, near a = a0 = mi√

2
the section reads:

aD ∼ c−
i

2π
(a− a0) log (a− a0) (3.8.14)

a ∼ a0 (3.8.15)

where we omit all subleading terms except the constant. Sending (a − a0) → e2πi(a − a0), we find
the monodromy:

aD → aD + a− a0 (3.8.16)

a→ a (3.8.17)

The fact that monodromies now not only mix the sections (aD(u), a(u)) but also include the addition
of constants a0 = mi√

2
enlarges our duality group and has some remarkable effects. A general

monodromy will now act as: (
1Nf ∅
C M

)mi√
2

aD
a

 (3.8.18)

19We use the transposition t to denote transpositions on both flavour and gauge indices. Which is meant should be
clear from the context.
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with M ∈ SL(2,Z) and C a constant integer valued 2× 1 vector. Consider the new central charge
written as an inner product:

Z =
(
Si nm ne

)mi√
2

aD
a

 (3.8.19)

Since the central charge should remain invariant under a monodromy M , the charge vector should
transform under M−1. It can be checked from the general form of the monodromy matrix in (3.8.18)
this implies that not only nm and ne will mix among themselves, but also Si can receive contributions
from nm and ne. For instance, under a particular monodromy a semiclassical monopole may obtain
a non-vanishing S-charge proportional to its magnetic charge. However, as argued by Seiberg and
Witten, the range of S-charges of monopoles is bounded.

This follows from the quantization of fermion zero modes of the hypermultiplet fermions. These
act on the monopole as gamma matrices, themselves transforming in the vector representation of
the flavour symmetry SO(2Nf ). Therefore, the monopoles live in a spinor representation of the
flavour symmetry group SO(2Nf ).20 Clearly, this is a finite representation. Therefore, there is a
maximum amount of flavour charge the monopoles could have obtained from the action of fermion
zero modes. This implies that for a certain amount of monodromies, the spectrum has to jump, i.e.
the monopole crosses some wall of marginal stability and decays.

Somehow, solitons split up in particles with and without magnetic charge, possibly with a global
flavour charge. This strange sounding phenomenon will be needed to understand the singularity
structure of the theory. In fact, we have already encountered a similar phenomenon in the pure
theory. There, however, the curve of marginal stability appeared at strong coupling and no global
flavour charges (dis)appeared.

As in [60], we start with the analysis of Nf = 3 moduli space. We look at the theory for large
masses mi � Λ such that we can analyse the singularity caused by the hypermultiplet semiclassically.
For equal hypermultiplet bare masses, we know there is a U(3) flavour symmetry. This means that
the singularity appears in a 3 of SU(3) ⊂ U(3). Flowing down to the strong coupling region, the
flavours freeze out and we effectively obtain the pure theory. Thus, at strong coupling we just have
the (1, 0) monopole and the (1, 2) dyon, which do not carry any flavour charge and therefore appear
in the singlet 1 of SU(3).

Consider now adiabatically lowering the bare masses towards the strong coupling region. For
mi = 0, we expect the hypers to become light near u ∼ Λ2 in analogy with the pure theory.
Furthermore, the flavour symmetry is enhanced to SO(6). The quarks, classically, transform in
the 6 dimensional vector representation of SO(6) whereas the monopole and the dyon transform
in 4 dimensional spinor representation of Spin(6) ∼= SU(4). Furthermore, there is no residual R-
symmetry on the moduli space as seen from Table 3.1. These two facts imply a big change in the
singularity spectrum. Without knowing the details, the singularity spectrum can be guessed. The
only way a 3 and two 1 singularities can combine into representations of SU(4) without losing their
global non-abelian charges is as a 4 and a 1. The minimal and coprime quantum numbers associated
to these states are (1, 0) which is a multiplicity 4 singularity and (2, 1) which has multiplicity 1
respectively. For details on this, see Section 5 of [60].

Semiclassically there is no real distinction between the monopole and the dyon point: for m� Λ,
near u ∼ Λ2 = (m3Λ3)1/2, rotating the m by 2π interchanges the monopole and the dyon. Hence,
there is no obvious way to determine which of the singlets has combined with the triplet. We
conclude that the moduli space of Nf = 3 is much more intricate than that of the pure theory. Also,
we have now experienced first hand the transformation of an elementary particles into solitons by
letting the hypermultiplet singularities drop to the strong coupling region.

20Semiclassically, there are also four bosonic zero modes corresponding to the electric charge and the spatial position
of the center of mass of the monopole. These are invariant under the flavour symmetry. However, a dyon with even
(odd) electric charge transforms in the spinor (cospinor) representation of SO(2Nf ). See [60] for more details. For a
brief introduction on the above, see [65].
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For Nf = 2 a similar story holds. For large values of the bare masses, the hypers are in doublets of
the U(2) flavour symmetry, whereas the monopole and dyon point transform as singlets. As the bare
masses approach zero, the flavour symmetry is enhanced to SO(4) ∼= SU(2)× SU(2). Also, the R-
symmetry has remained as a Z2 symmetry. The only way the doublet can combine with the singlets
to correctly reproduce the singularity spectrum when turning on masses and respect the residual
R-symmetry when the masses are zero is to split up and combine into a left and right handed doublet
with the soliton singularities: (2, 1) and (1, 2) under SO(4), both singularities with multiplicity 2.
To transform as a doublet under the enhanced flavour symmetry, the quantum numbers of the fields
are again restricted. The minimal choice corresponds to (1, 0) and (1, 1).

For Nf = 1 the enhanced symmetry is SO(2), i.e. there are only singlets. This is consistent
with the residual R-symmetry, which implies a threefold symmetry between the singularities. Due
to the R-symmetry and its relation to the Witten effect, the quark singularity must have attained a
magnetic charge. A minimal consistent set of quantum numbers would be (1, 0), (1, 1) and (1, 2).

There is a consistency check on the above mentioned arguments for the singularity structure.
Namely, instead of viewing the theories separately, one could also try to obtain the singularity
structure of the theories Nf ≤ 2 by turning on one mass at a time in massless Nf = 3 and sending
it off to infinity. This is done in Section 7 of [60] and indeed agrees with the results obtained above.
For instance, we can flow from the massless Nf = 3 theory to Nf = 2 by turning on m3. In the 4
singularity, we had 4 monopoles all of which transform in SO(6) ∼= SU(4). The non-zero mass lifts
two of the zero modes and breaks the flavour symmetry:

SO(6) −→ SO(4)× SO(2) ⇔ SU(4) −→ SU(2)× SU(2)× U(1) (3.8.20)

This corresponds to the breaking of the 4 into two doublets: (2, 1, 1
2 ) and (1, 2,− 1

2 ) while the singlet
singularity remains. Note that the 4 singularity has split due to the opposite charges of the doublets
with respect to the U(1). Since we expect a singularity at large u when we increase the mass,
we associate the SO(6) singlet, originally the bound state of monopoles (2, 1), to have become an
elementary quark flowing away to infinity.

3.8.3 Nf = 4 Theory

Having seen the qualitative differences between the pure theory and the theory coupled to hyper-
multiplets, we will discuss the theory of most relevance to the next chapter: the case of Nf = 4.
This theory is special for a number of reasons.

First of all, if the flavours are massless the one-loop beta function vanishes. In their original

paper, Seiberg and Witten assumed: τ
SU(2)
UV = τ

U(1)
IR . This in fact turns out to be true only when

τ
SU(2)
UV = i∞. If not, there is a non-zero (finite) renormalization as was first shown by explicit

calculation in [43]. Although the same authors suggested a new form of the renormalized prepotential
in [44], they were unable to calculate the contributions. It took a while, but the contributions were
calculated up to infinite order by Nekrasov in [45]. The calculation of the (finite) renormalization
for massless Nf = 4 is written down explicitly in the appendix of [36]. The relation between the UV
and IR gauge couplings is as follows:

(2πi)τIR = (2πi)τUV − log 16 +

(
1

2
qUV +

13

64
q2
UV +

23

192
q3
UV + . . .

)
(3.8.21)

Here, qUV = e2πiτUV . For now, we conclude that this renormalization is due to the inherent scheme
dependence of renormalization which makes a definition of a UV gauge coupling ambiguous, and
therefore the relation between the IR and UV is not necessarily as Seiberg and Witten assumed. We
will have more to say about this in Section 4.2.

Due to the fact the renormalization is finite and has no scale dependence, for all practical purposes
we may treat τUV as an exactly marginal operator. This validates the original analysis of Nf = 4 of
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Seiberg and Witten and all their conclusions, if we read their gauge coupling τ as τIR.21

So let us give the original conclusions on Nf = 4. We will write τ ≡ τIR. The section retains its
classical form:

aD(u) = τa (3.8.22)

a(u) =
1

2

√
2u (3.8.23)

These functions show no monodromy except for the monodromies at infinity and at a = 0 which
now is part of the moduli space. Hence, a is a good global coordinate (except at a = 0) and we are
able to obtain a global description for Nf = 4. Also we note that these solutions do not signify a
jumping phenomenon, since τ is independent of a. This gives hope for self-duality of Nf = 4: the
semiclassical BPS spectrum is protected against decay.

The massless classical theory has an enhanced flavour symmetry group SO(8). Clearly, the
normal vector representation of this theory is 8 dimensional, and we will denote it by 8v. Unlike
the previous cases however, the two irreducible spinor representations of SO(8) are 8 dimensional as
well. We will denote them as 8s and 8c. As already mentioned above, dyons of even electric charge
transform 8s and dyons of odd electric charge transform in 8c.

The fact that the dimensions of the three irreducible representations match implies an operation
triality which permutes the representations among each other. Seiberg and Witten conjecture that
Nf = 4 theory is self-dual under the action of the semidirect product Spin(8)oSL(2,Z).22 The state-
ment is that the theory is electric-magnetically dual all over the moduli space as long as we choose
an appropriate flavour symmetry representation for the fundamental fields under consideration.

Let us point out some differences with the moduli spaces of Nf ≤ 3. The Coulomb branch
of Nf = 4 as parametrized by u is of no significance any more to the gauge coupling, since its
renormalization is independent of the Higgs expectation value. Instead, there is a simple relation
between the UV moduli space and the IR given as above. Moving to the strong coupling region of
the IR moduli space cannot be done by changing u as in the Nf ≤ 3 theories. Rather, we should
slightly change τUV in the UV Lagrangian and then flow to the IR. Starting at τUV = i∞, if all bare
masses are equal to zero, all magnetic monopoles and dyons will be much heavier than our electric
variables. However, if we change τUV towards strong coupling, the roles get reversed. Since we
know that the IR theories admit duality transformations we can still obtain a sensible Lagrangian
in the IR, which again directly relates to the UV. Hence, although in principle we only have proof of
duality in the IR, it seems the strong coupling region of the UV moduli (for which we a priori have
no Lagrangian description) turns out to have a weakly coupled IR description in terms of differently
charged particles. We see that the conformal theories, accompanied by the Seiberg-Witten analysis,
can be used as probes for the UV moduli space. Note that this depends crucially on the fact the
semi-classical spectrum does not jump, where dyons and magnetic monopole solutions provide the
first evidence of a duality in the spectrum. More evidence for the conjectured SL(2,Z) duality can
be found by searching for stable (p, q) states in the spectrum, p, q coprime. Indeed, these become
light whenever τ ∼ − qp , provided we make sure the flavour symmetry representations are correctly
adjusted. We will have something to say on these at the end of this section.

At last, we turn to massive Nf = 4 theory. Conformal invariance is broken, the gauge coupling
τ is renormalized perturbatively and obtains an a dependence[44]. Furthermore, the flavour sym-
metry is generically broken to SO(8) → U(1)4, where U(1)4 is associated to the Cartan of SO(8).

21In [44] it is also argued we should reinterpret u. We refer the reader to Section 3 of their paper for an explicit
expression. We just note that as long as we calculate the prepotential as a function of a, by integrating aD(a), we
escape the need to worry about a redefinition of u. Whenever it appears in the following analysis, we regard it as a
dummy variable with no direct relation to the modulus u we used for Nf ≤ 3.

22The permutation group S3 is isomorphic to SL(2,Z2). This provides an action of SL(2,Z) on Spin(8). Most
easily, this action is seen on the Dynkin diagram. S3 permutations of the roots of the Cartan subalgebra correspond
to the different representations. See the appendix of [55] for a detailed analysis.
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Triality can then be understood as an action on the mass parameters. To see this, consider the two
transformations

m1 → m1

m2 → m2

m3 → m3

m4 → −m4 (3.8.24)

and

m1 →
1

2
(m1 +m2 +m3 +m4)

m2 →
1

2
(m1 +m2 −m3 −m4)

m3 →
1

2
(m1 −m2 +m3 −m4)

m4 →
1

2
(m1 −m2 −m3 +m4) (3.8.25)

These transformations generate S3. The claim is that the above transformations should be applied
accompanying respectively a T or S transformation on the gauge coupling. We provide circumstantial
evidence of the assertion.23

We start with a simple example. Consider mi = (m, 0, 0, 0). For values m � Λ, this theory
is described near u ∼ m2 by a hypermultiplet coupled to an electric vector multiplet. At strong
coupling, it is described by massless Nf = 3, i.e. a 4 (1, 0) monopole or a 1 (2, 1) dyon. Suppose now
we perform the triality transformation (3.8.24). Clearly, the vector representation which describes
the hypermultiplet is invariant nuder this. However, from the perspective of perturbedNf = 4, two of
the fermion zero modes are lifted by the non-vanishing mass. This breaks SO(8)→ SO(6)×SO(2) by
a mass term. Replacing m→ −m corresponds to exchanging the spinor and cospinor representation.
Hence, this triality transformation should accompany an SL(2,Z) transformation acting trivially on
electric variables but shifts the electric charge of monopoles by an odd integer: an odd power of T .

Let us also consider (3.8.25) on our particular state, schematically depicted in Figure 3.8.1. It
maps to m′i = (m,m,m,m). This new parametrization carries exactly the same global symmetries
as the previous mi = (m, 0, 0, 0) since U(4) ∼= SO(6)×U(1), but now the hypermultiplets transform
in a 4 and the two singlets are the monopole and dyon from the pure theory instead of the single
hypermultiplet and the singlet dyon. We conclude that, since non-abelian flavour changes cannot
change, the monopoles of the original description are now described by massive mass degenerate
hypermultiplets. The moduli spaces of these theories are identical and we say they are actually dual
descriptions related by an S-duality transformation combined with a triality transformation.

A more general example is the equivalence of the global symmetries of (m,m, µ, µ) which has
global symmetry U(2)×U(2) and (m+µ,m−µ, 0, 0) which has global symmetry SO(4)×U(1)×U(1).
One can easily verify that (3.8.25) maps the two parametrizations onto each other. See Figure 3.8.2.

Of particular interest for the next chapter will be to consider a particular (maximal) flavour
symmetry subgroup SO(4) × SO(4) ⊂ SO(8) of massless Nf = 4. The SO(4) subgroups split up
into the product product of SO(4) ∼= SU(2)×SU(2). We can associate a mass parameter to each of
the SU(2) flavour symmetry subgroups. Notice these mass parameters should be: µ1,2 = m1 ±m2

and µ3,4 = m3 ±m4. The non-zero bare masses will break the flavour symmetry. However, we can
observe what happens when performing (3.8.25) on the slightly perturbed Hamiltonian. We see that
the particles with bare mass µ1 = m1 +m2 and µ4 = m3 −m4 are invariant whereas µ2 and µ3 are

23The masses will be related in a certain way to the weights of the Cartan SU(2)×SU(2)×SU(2)×SU(2) ⊂ SO(8).
For an extensive treatment on the action of triality from a mathematical perspective we refer to the appendix of [55].
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Figure 3.8.1: Singularity structure of the moduli spaces of Nf = 4 with
(m, 0, 0, 0) (left) and Nf = 4 with (m,m,m,m). The moduli space on the left
consists of the strong coupling region of massless Nf = 3. Hence, the (2, 1) sin-
glet appears with multiplicity one, whereas the (1, 0) singularity has multiplicity
4. At large u, there is a single (0, 1) singularity, which is charged under a U(1)
flavour symmetry. The strong coupling region of the moduli space on the right is
that of the pure theory. The monopole and dyon singularities have multiplicity
1 and live in the singlet of the global flavour symmetry while the four hypermul-
tiplets at weak coupling appear in a (0, 1) singularity with multiplicity 4. The
global symmetries match: SO(6)×U(1) ∼= U(4). The arrows indicate the action
of (3.8.25), together with τ → − 1

τ

exchanged. Changing the sign of m4 by (3.8.24) we see µ3 and µ4 are exchanged. Therefore, we see
that triality permutes the flavour symmetry subgroups SU(2)i among each other. This will be of
utmost importance in the next chapter, where we will repeat this statement a bit more carefully.

This completes our global analysis of the Seiberg-Witten solution to the theory coupled to hy-
permultiplets. From this point on, elliptic curves are introduced such that the moduli spaces of the
elliptic curves are in exact agreement with the moduli space of the theory. These are employed to
calculate the central charges and prepotential in a similar manner as the pure case.

We conclude this section with two remarks:

1. In the article [56] the existence is checked of monopole and dyon bound states of magnetic
charge 2 in N = 2 SYM for Nf ≤ 4. It was concluded that such a state indeed exists in
Nf = 3 for odd electric charge, and appears in the singlet of SU(4) precisely as predicted by
Seiberg and Witten. Furthermore, Nf = 4 contains bound states of magnetic charge 2 for odd
and even values of the electric charge, living in the vector and singlet representation of the
flavour symmetry respectively. This provides evidence for the expected self-duality of Nf = 4,
where the states of (2, 2k) are expected to be dual to W-bosons and states of (2, 2k + 1) to
hypermultiplets.

2. In a paper by Argyres [6] superconformal theories are embedded into higher rank asymp-
totically free theories. More precisely, the marginal couplings of the SCFT are regarded as
the extra Coulomb branch parameter of the asymptotically free theory. It is shown that the
S-duality properties of the SCFT arise from global symmetries on the Coulomb branch of
the asymptotically free theory. This is a strong argument in favour of the exactly self-dual
properties of an SCFT, not just of its mass spectrum.
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Figure 3.8.2: Singularity structure of the moduli spaces of Nf = 4 with
(m,m, µ, µ) (left) and Nf = 4 with (m+ µ,m− µ, 0, 0). Notice the strong cou-
pling region of the left moduli space is just the strong coupling region of the pure
theory. The monopole and dyon singularities have multiplicity 1 and live in the
singlet of the global flavour symmetry while the hypermultiplets at weak coupling
live in doublets (have multiplicity 2). The strong coupling region of the moduli
space on the right is that of Nf = 2. Now the monopole and dyon singularity
appear in the doublet of the global symmetry whereas the hypermultiplets live
in singlets. The global symmetries match: U(2)×U(2) ∼= SO(4)×U(1)×U(1).
Note that the strong coupling singularities lie at the scale Λ of Nf = 0 respec-
tively Λ′ of massless Nf = 2.

3.9 Seiberg-Witten Curves from M-Theory

In this section we provide a short recapitulation of the second section of [72], in which a convenient
construction in Type IIA string theory and M-theory is provided to determine the Seiberg-Witten
curves for a large class of product unitary gauge group theories. For generalizations to other classical
Lie groups, see for instance [1].

The Seiberg-Witten curve arose in the context of four-dimensional field theory as an auxiliary
geometrical object. In string theory and M-theory, the extra dimensions are employed to embed the
curve in actual spacetime. This is achieved in Type IIA string theory by a configuration of D4 and
NS5 branes as depicted in Figure 3.9.1. The world volumes of the branes are summarized as:

D4 : 01236

NS5 : 012345

Apart from the semi-infinite D4 branes at either end of the chain, the D4 branes are of finite
extent in the x6 direction and therefore will appear macroscopically as objects with three spatial
dimensions. At length scales much larger than the separation of the NS5 branes, the NS5 brane
dynamics decouple and the brane configuration describes a four dimensional N = 2 gauge theory
with gauge group

∏n
a=1 SU(ka) where ka represents the number of D4 branes suspended between

the a− 1th and ath NS5 brane.24

The particle spectrum appears as excitations of strings stretching between pairs of branes. For
instance, the vector multiplet in the four dimensional theory can be understood as coming from

24One might expect a U(ka) gauge symmetry but a constraint on the positions of the D4 branes on either side of
the NS5 brane freezes out an entire U(1) vector multiplet.
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Figure 3.9.1: Type IIA construction of an SU(3)×SU(2)×SU(2) gauge theory
where the first and last gauge group are both coupled to two fundamentals. The v
coordinate is a holomorphic combination of the coordinates (x4, x5): v = x4+ix5.

strings stretching between D4 branes which are suspended between the same pair of NS5 branes, such
that they have Chan-Paton indices associated to the ka ⊗ k̄a, equivalently adjoint, representation.
If these D4 branes are coincident, there is a non-abelian gauge symmetry SU(ka). Generically, we
will look at separated D4 branes which spontaneously break the gauge symmetry to the maximal
torus. The separation between the D4 branes determines the vacuum expectation value of the Higgs
scalar. The massless U(1)i vector multiplet originates from strings with both ends on the same D4.

Fundamental hypermultiplets arise from strings stretching between the semi-infinite D4 branes
and the D4 branes suspended between the first or last two NS5 branes. Similarly, bifundamental
hypermultiplets originate from strings stretching between two D4 branes on different sides of an
NS5 brane. The (bare) masses of the hypermultiplets depend on the (average) separation of the D4
branes.

This configuration is lifted to M-theory by replacing x6 with the holomorphic combination s =
x6 + ix10, x10 being the M-theory S1 coordinate. This lift is convenient as we will be able to
describe the construction in terms of a single object, the M5 brane. Indeed, the NS5 brane and
the D4 brane may lift to an M5 brane when the D4 brane is interpreted as an M5 brane wrapping
the S1. Hence, an M5 brane, albeit with a rather complicated worldvolume, could describe the
entire Type IIA set-up.25 In short, it extends in the R3,1 and is fixed on R3, reflecting respectively
Poincaré invariance and the SU(2)R R-symmetry of the four dimensional theory. Furthermore, it
spans a two dimensional surface Σ ⊂ Q4 with Q4 = R3 × S1 the remainder of spacetime.26 This
surface actually needs to be a Riemann surface for N = 2 supersymmetry to be preserved in the four
dimensional theory. For more details on these statements, see [31]. We will see that a polynomial
relation between the complex (v, e−s) coordinates of Q4 will determine the surface. Indeed, this will
be identified with the Seiberg-Witten curve.

Since M-theory does not contain strings as fundamental objects, one might wonder how BPS
states are included in the theory. This is possible through the inclusion of minimal area M2 branes,
or membranes. The following discussion summarizes qualitatively the more elaborate discussions
of the inclusion of membranes in [40] and [31]. By similar considerations as above, the M2 branes

25The perspective more closely related to Type IIA is that of a collection of sets of ka parallel M5 branes intersected
by transverse M5 branes. Supposing all ka = k the picture one should have is that of k M5 branes wrapping a cylinder
(x6, x10) ∈ R × S1 and four dimensional spacetime, while being intersected at points t1, . . . , tn by n transverse M5
branes. We will employ this point of view as well, in the next chapter, as it eases the analysis of the (low energy)
worldvolume theory.

26The given form of Q4 holds for unitary gauge groups, the case we are interested in.
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should be embedded holomorphically into Q4 with respect to some complex structure. This complex
structure should be orthogonal to the complex structure through which the Σ ⊂ Q4 is embedded.27

Note that the M2 brane in this way constitutes a worldline in R3,1 and spans a two dimensional
surface in R3 × S1, while being fixed on the remaining R3. We will call this surface D and denote
its boundary by ∂D = Γ. Assuming the winding number of Γ along S1 is zero, we can associate the
closed loop Γ to a homology class [γ] ∈ H1(Σ,Z). Indeed, the homology class will correspond to the
charge of a BPS particle with respect to a particular (combination of) U(1) gauge group(s).

The surface area of an M2 brane with boundary Γ is calculated as:

S(Γ) =

∫
D

dS ≥
∫
D

|ds ∧ dv| ≥ |
∫
D

ds ∧ dv| = |
∫

Γ

v(s)ds| (3.9.1)

Here, dS is the natural volume form on D, the first inequality follows from the fact the volume form
splits up into two positive (semi-)definite forms (see Section 2 of [40] for an explicit calculation or
Section 3 of [31] for a rather general treatment), the second inequality is just the triangle inequality
and in the last equality Stokes’ theorem was used. We write v(s) because v will be determined in
terms of s through the defining equation for Σ.

The two conditions are equivalent to the requirement the surface D is holomorphic with respect
to a complex structure orthogonal to that of Σ and that the phase of ds∧dv on D is constant. Hence,
the minimization of the membrane surface respects N = 2 supersymmetry of the four dimensional
theory while the requirement of a constant phase is the geometric realization of the saturation of
the BPS bound. We conclude that minimal area membranes correspond to BPS states in the four
dimensional theory. The differential vds is accordingly identified with the Seiberg-Witten differential
and the central charge is given by:

ZΓ =

∫
Γ

v ds (3.9.2)

Having found the general construction of N = 2 gauge theories in M-theory, let us highlight a couple
of physically interesting properties and provide a curve for a general product gauge theory.

The gauge coupling τa = θa
2π + 4πi

g2a
of the gauge group between the a − 1th and ath NS5 brane

can be expressed in terms of the coordinates (v, s):

− iτa = sa(v)− sa−1(v) (3.9.3)

Here, the v dependence of sa is not determined by the curve equation. Rather, the positions of the
NS5 branes depend on v due to the fact the D4 branes create dimples in the NS5 brane. Only far
away from the D4 brane disturbances, the v → ∞ limit, the brane diagram of Figure 3.9.1 should
be taken seriously. The dependence of sa on v is calculated to be:

sa(v) = (ka+1 − ka) log v + c (3.9.4)

representing the pulling and pushing of D4 branes on either side of the NS5 brane. Note that the
NS5 brane seems only well defined in the limit v →∞ when ka − ka−1 = 0. When this requirement
is not met, the NS5 brane position sa(v) diverges. However, Witten gave this divergence a satisfying
physical interpretation.

Namely, if we plug (3.9.4) into (3.9.3) we obtain the well known one-loop formula for the gauge
coupling of a theory with gauge group SU(ka) coupled to ka+1+ka−1 flavours. Hence, the divergence
of the NS5 brane position is identified with the usual divergence of the one-loop gauge coupling τ
of an asymptotically free theory at weak coupling.

27If both manifolds are embedded with respect to the same complex structure, in particular their intersection will be
holomorphically embedded with respect to the complex structure. This implies the intersection will be a one complex
dimensional curve instead of a one real dimensional curve, which is the case we will be interested in. The fact that
such an orthogonal structure indeed exists stems from the fact that Q4 is hyper-Kähler. The argument is taken from
[31].
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Since Im s = x10 is a periodic variable, in the following we will use a single-valued form of s given
by t = e−s. In terms of t the gauge coupling becomes:

τα =
1

i
log

(
ta
ta−1

)
(3.9.5)

Notice that in this case weak coupling corresponds, as expected, to xa−1
6 → −∞ (ta−1 → ∞) or

xa6 →∞ (ta → 0), i.e. infinite separation of the NS5 in the Type IIA picture. As x6 generically has
non-trivial v dependence as in (3.9.4), we note that weak coupling corresponds to v → ∞ except
when the theory is conformal.

As motivated in [72], a general form of the Seiberg-Witten curve is given by:

tn+1 + f1(v)tn + . . .+ fn(v)t+ 1 = 0 (3.9.6)

with deg(fa) = r+1 with r the rank of the ath gauge group or, equivalently, the number of D4 branes
between a− 1th and ath NS5 brane. The v dependent roots of the polynomial in t are interpreted as
the positions of the NS5 branes, while the roots of the fi correspond to the positions of D4 branes
between the i − 1th and the ith NS5 brane. The inclusion of semi-infinite D4 branes on the right
(left) side of the brane diagram is achieved by taking for the lowest (highest) degree coefficients
polynomials in v of appropriate degree. We will see explicit examples in the next chapter. The two
highest degree coefficients of the polynomials fi parametrize the UV gauge couplings and the bare
masses of the bifundamentals respectively, while the other r parameters parametrize the Coulomb
branch.

We conclude with a simple example of pure SU(2) theory and compare the M-theory results to
the original results of Seiberg and Witten. The curve is given by:

t2 + (v2 + u′)t+ 1 = 0 (3.9.7)

Note a linear term in v is absent, as appropriate because of the absence of bifundamentals. Indeed,
for any curve one can use the freedom to shift the coordinate v to cancel one unphysical bare mass
parameter.

The curve can be rewritten more conveniently for comparison as:

t̃2 =
1

4
(v2 + u′)2 − 1 (3.9.8)

With t̃ a shifted version of t and u′ a Coulomb branch parameter. Rescaling y = Λ2t̃ and x = Λ√
2
v

and redefining u = − Λ√
2
u′, we obtain a more familiar form:

y2 = (x2 − u)2 − Λ4 (3.9.9)

Although this is not the original curve Seiberg and Witten used, this form turned out to be more
convenient for generalization and was first derived in [2] and [9]. It is equivalent to the curve derived
originally by Seiberg and Witten in their second paper [60], where they used different conventions
suited to the inclusion of hypermultiplets. To see this, one can show that for some suitable scalings
of u and Λ, the roots of the curves are mapped onto each other via a Möbius transformation.



Chapter 4

Gaiotto Dualities

A great step forward in our understanding of the structure of N = 2 gauge theories, especially how
to understand and find dual descriptions of a particular SCFT, was only made recently by Davide
Gaiotto in [29]. Essentially, Gaiotto has discovered an underlying structure in the Seiberg-Witten
curves which turns out to be a very general feature of a large class of N = 2 SCFTs.

In the first section we will introduce quiver gauge theories, all of type A1, and discuss their S-
duality properties qualitatively. The analysis relies on the original argument of Seiberg and Witten
for S-duality of Nf = 4 theory and a careful analysis of the behaviour of the global symmetries
under S-duality.

After this, we will introduce a geometric perspective on these quiver theories. In particular,
the quiver diagrams can be understood as certain Riemann surfaces Cn,g with n punctures and g
holes. Punctures will be associated to flavour symmetries, whereas tubes will be seen to correspond
to gauge groups. This picture culminates in a conjecture by Gaiotto: the moduli space of exactly
marginal couplings is equal to the moduli space of these Riemann surfaces. The S-duality group
is identified with the mapping class group MCG[Cn,g] of the Riemann surface. In the process, a
full renormalization of the UV gauge coupling for Nf = 4 is obtained using a well known geometric
relation between the modular parameter of an elliptic curve and the cross ratio of a four-punctured
Riemann surface.

In the third section, we will provide a detailed analysis of the quantitative form of these state-
ments by constructing the Seiberg-Witten curves for the quiver gauge theories using methods in-
troduced in Section 3.8. We will consider explicit expression of these curves in the g = 0, 1 case
and shortly comment on the higher genus generalization. Along the way, we will explicitly work out
examples and provide consistency checks on the statements made.

In the fourth section, we will discuss the six-dimensional construction of the quiver theories. The
basic elements of this construction were already discussed in Section 3.9. However, the framework
of Gaiotto puts the construction in a slightly different light, as we will see.

At last, we will discuss the generalization to higher rank gauge groups. We will focus in particular
on the A2 case, while briefly commenting on AN−1.

The main source for this chapter is the original article by Gaiotto [29]. A nice and instructive, and
definitely more accessible review has recently been given by Tachikawa in [65]. Also, a lecture given
by Gaiotto at the PiTP summer school in 2010 provides a good introduction to the original paper.
This video lecture is freely accessible at http://www.sns.ias.edu/pitp2/. Further references will
be given along the way.
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4.1 Quiver Gauge Theories

In this section, we will introduce the Sicilian quiver diagrams which we will use to represent our gauge
theories. Some concepts which are essential to this construction, such as enhancement of flavour
symmetry, the bifundamental and trifundamental representations and gauging flavour indices, are
explained in Section 3.8 and in Appendix C respectively.

A quiver diagram provides a convenient way to represent a gauge theory with a product gauge
group coupled to matter in a particular representation. We know that four dimensional (non-
gravitational) theories with N = 2 supersymmetry are described by vector multiplets and hyper-
multiplets. To draw a quiver diagram for N = 2 theories, then, requires knowledge of the product
gauge group and the matter representations:∏

a

Ga,
⊕
i

ni
(
Ri ⊕ R̄i

)
(4.1.1)

A Lagrangian description can be given whenever there is a weakly coupled (dual) frame. The form
of this Lagrangian is essentially the one introduced in Sections 2.2 and 2.3. In this section, we
will only consider products of SU(2) gauge groups coupled to four flavours in the fundamental
representation. An example of such a theory is described by the quiver diagram in Figure 4.1.1.
The circles denote gauge groups whereas the squares represent fundamental flavours coupled to the

Figure 4.1.1: Quiver representation of an SU(2) × SU(2) gauge theory. Both
gauge groups are coupled to two fundamental flavours and one bifundamental,
effectively providing both gauge groups with four flavours.

particular gauge group. The number in the square denotes the number of flavours or, equivalently,
the number of hypermultiplets. Furthermore, lines in between gauge groups denote matter in a
bifundamental representation of the gauge groups. A general bifundamental of the gauge group
SU(N1)×SU(N2) transforms in the (N1, N̄2)⊕(N̄1, N2). This corresponds to a single hypermultiplet
in the bifundamental representation.1

The quiver theory in Figure 4.1.1 is superconformal. To see this, note that the bifundamental
hypermultiplet effectively provides two fundamental hypermultiplets to both of the gauge groups.
Furthermore, both gauge groups are supplied with an additional two fundamental flavours, such
that they both see four fundamental hypermultiplets.

An important observation in the case of SU(2) gauge symmetry is that a bifundamental, sitting
in a real representation of the gauge group, has an enhanced flavour symmetry of USp(2) ∼= SU(2),
while two fundamental flavours with vanishing bare mass have an enhanced flavour symmetry of
SO(4) ∼= SU(2) × SU(2).2 These enhancements suggest a new, Sicilian quiver diagram in which
also the flavour symmetries are manifest.3 The original quiver diagram as depicted in Figure 4.1.1 is

1Conventional quiver diagrams use directed arrows to distinguish between representations and their complex conju-
gates. With these conventions, our single line would have to be replaced by two opposite pointing arrows representing
the two chiral multiplets which make up the hypermultiplet. Keeping this in mind, our notation is unambiguous and
we stick to it for its simplicity.

2The tensor product of two pseudoreal representations is real. This follows most easily from the fact the SU(2)×
SU(2) invariant relation: Q∗ij = εimεjnQ

mn, which provides a non-trivial reality condition. The discussion on the
enhancement of flavour symmetry in Section 3.8 readily applies to real representations. In this case, the flavour matrix
will be antisymmetric. Therefore the enhanced symmetry is now USp(2) = U(2) ∩ Sp(2,C). See [34].

3This nomenclature was proposed in [22], because the trivalent vertex bears a resemblance to a triskelion, a figure
dominating the Sicilian flag. And probably the homestead of the author has something to do with it.
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now represented as in Figure 4.1.2. The crucial idea is to identify the trivalent vertex as a building

Figure 4.1.2: Sicilian quiver representation of the quiver in Figure 4.1.1. Not
only the gauge symmetry, but also the flavour symmetry is explicitly shown.

block for general SCFTs with SU(2) gauge groups. If one diagonally gauges the flavour symmetries
of two trivalent vertices, the resulting theory is superconformal. Repeating this process produces
arbitrary trivalent networks of gauge theories with exactly marginal couplings. Let us identify the
distinct ways such a trivalent vertex may appear in a gauge theory. This is discussed in detail in
Appendix C.

1. The first possibility is that the vertex represents a half hypermultiplet in the trifundamental
representation 21 ⊗ 22 ⊗ 23 of three gauge groups SU(2)1 × SU(2)2 × SU(2)3. This effectively
provides four half hypermultiplets in the fundamental representation to each of the gauge
groups.

2. Taking one of the gauge couplings τ1 → i∞, the gauge symmetry SU(2)1 becomes a global
symmetry SU(2)a. We will be left with two half hypermultiplets in the bifundamental rep-
resentation of the remaining gauge groups: 2a ⊗ (22 ⊗ 23). A possible mass parameter for
the bifundamental corresponds to the Coulomb branch parameter of the very weakly coupled
gauge group: m2

a = u1. Its vanishing corresponds to an enhanced flavour symmetry of USp(2)
for the bifundamental, in correspondence with the enhanced gauge symmetry of SU(2) when
the Coulomb branch parameter vanishes.

3. Coupling a second gauge group very weakly gives us four half hypermultiplets in the funda-
mental representation of the remaining gauge group: (2a⊗2b)⊗23. We recognize the enhanced
flavour symmetry SU(2)a × SU(2)b of the fundamental flavours.

4. The simplest and last interpretation is that of eight half hypermultiplets not coupled to any
gauge field. It does carry a flavour symmetry SU(2)a × SU(2)b × SU(2)c. We will call this
object the anfundamental.

The list given here is represented in Figure 4.1.3. We presented the results in the order in which
they were derived in the appendix. We will build our theories starting from the anfundamentals and
gauging diagonal subgroups of pairs of SU(2) flavour symmetries.

Let us see how this works for the known superconformal field theory N = 2 SU(2) with Nf = 4.
We take two anfundamentals, both associated to three bare mass parameters whose combinations
correspond to the bare masses of the eight half hypermultiplets: Qijk, Q

′
lmn.4 Now we weakly gauge

one of the flavour groups of both anfundamentals. The bare masses associated to the gauged flavour
group takes the role of the Coulomb branch parameter u of the vector multiplet. Taking the diagonal
of the gauged flavour symmetry essentially glues the anfundamentals together. If the remaining bare
masses are put to zero, the (manifest) flavour symmetry is SO(4) × SO(4). In fact, we know the

4More details can be found in Appendix C.
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Figure 4.1.3: From the upper left corner, left to right, the Sicilian quiver dia-
grams corresponding to a trifundamental, a bifundamental, a fundamental and
an anfundamental are shown. Theories built by gauging diagonal subgroups of
the flavour symmetry of a pair of anfundamentals provide automatically SCFTs.

flavour symmetry of Nf = 4 to be larger: Gf = SO(8). The choice to look at only this particular
subgroup is, as we have seen above, the possibility to easily construct SCFTs. Furthermore, the
full Cartan of SO(8) is still visible in this subgroup, which is the flavour symmetry subgroup of
importance for non-vanishing bare masses.

The quiver representation for Nf = 4 is drawn in Figure 4.1.4. As already noted in Section 3.8,

Figure 4.1.4: Quiver representation of Nf = 4 theory. Note the arrangement of
flavour symmetry groups. This particular flavour symmetry arrangement corre-
sponds to the vector representation 8v.

this theory is SL(2,Z) invariant as long as we combine duality transformations with triality. It was
also shown that triality permutes the bare masses corresponding to the SU(2) flavour symmetry
groups. In the notation of the previous sections, we would associate (µa, µb, µc, µd) to SU(2)a ×
SU(2)b × SU(2)c × SU(2)d respectively. Whereas Figure 4.1.4 represents an electric description of
four hypermultiplets coupled to an (electric) vector multiplet, a suitable description for τ = i∞,
in Figure 4.1.5 the monopole and dyon descriptions are shown which are suitable descriptions near
τ = 0 and τ = 1 respectively.

We now proceed to build more complicated quiver gauge theories. At least in the limit where
all gauge groups but one are very weakly coupled we should retrieve the familiar S-duality of the
Nf = 4 theory. However, it is a priori not clear whether the full theory also has an S-duality acting
on it. Naively, one could guess the moduli space of an SU(2) × SU(2) theory, where both gauge
groups are coupled to four fundamental flavours, to be the Cartesian product of the separate moduli
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Figure 4.1.5: Quiver diagram for Nf = 4 theory. The flavour symmetry arrange-
ments correspond to the spinor representation 8s and the cospinor representation
8c respectively.

spaces: M = H/SL(2,Z) × H/SL(2,Z). As already found in [7] by Argyres this turns out to be
too naive a guess. The S-duality groups of the separate SU(2) factors do not commute. However,
there does exist an S-duality group for the product gauge theory as was originally found in the same
paper.5

We can demonstrate the non-commutativity of the S-duality groups rather easily by using the
formulation of Gaiotto. Let us assume the gauge coupling of the second gauge group is very weak, i.e.
τ2 = i∞. Then we may effectively view it as decoupled, leaving us with a single SU(2) gauge group
with flavour symmetry SU(2)a × SU(2)b × SU(2)c × SU(2)2. The representation of the remaining
matter is thus: 21⊗ (2a ⊗ 2b ⊕ 2c ⊗ 22). Keeping the gauge coupling τ2 very weak, we may bring τ1
to the strongly coupled region. To arrive at a weakly coupled dual description at the cusps τ = 0, 1
we should permute the flavour symmetry groups. This is just the Nf = 4 triality, leaving us with
the representations 21 ⊗ (2a ⊗ 2c ⊕ 2b ⊕ 22) and 21 ⊗ (2a ⊗ 22 ⊕ 2c ⊗ 2b).

We could now imagine doing the same while keeping the first gauge coupling very weak. In
Figure 4.1.6 part of the S-dualities are depicted. Note that every quiver diagram corresponds to
some weakly coupled cusp in the moduli space. Therefore, at each dual description we can safely
perform an S-duality at either node to obtain a new weakly coupled description of the theory.
One can verify that the naive expectation of commuting S-duality groups turns out to be false:
1 ◦ 2 6= 2 ◦ 1. However, the weakly coupled theories are related by an S-duality transformation, as
long as we do not pay attention to the gauge group labelling. This can be justified in the sense that
a gauge symmetry does not represent a physical global symmetry of the theory but rather eliminates
unphysical degrees of freedom. We conclude it is impossible to keep track of the gauge group while
moving around the UV moduli space.

Performing all possible permutations on the masses associated to the SU(2)5 flavour symmetry is
clearly a closed process. This would correspond to 5 ·

(
4
2

)
= 30 different weakly coupled descriptions

of a single theory. Notice that we do not count purely T-dual theories since these theories do not
represent a different physical description but rather comprise the Witten effect. Not surprisingly,
yet a rather beautiful mathematical fact is that this number of vertices precisely corresponds to
an icosidodecahedron, which is an icosahedron with truncated vertices such that the closed figure
consists of twenty identical triangles and twelve identical pentagons. This polyhedron represents the
boundary of the UV moduli space.

We see that the naive assumption of the moduli space to be a product of two upper half planes
was far too simple, which would only have corresponded to a total of 3 · 3 = 9 weakly coupled
descriptions. The original conclusion of Argyres in [7] about the S-dual properties of this theory is
that twenty distinct weakly coupled descriptions exist. This is precisely the number of vertices in
a dodecahedron, consisting of twelve pentagonal faces. If combined with triality, this turns into an

5The methods Argyres used were quite different from Gaiotto’s construction. Therefore, comparing the statements
would provide a consistency check on either construction. We will see below that their conclusions agree.
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Figure 4.1.6: S-dualities of SU(2)1 × SU(2)2. In the middle left side is the
theory with two weakly coupled gauge groups. Going up or down, we identify
the action of triality on either one of the gauge groups, while performing S or
ST transformation on the gauge coupling. The pentagon on the right side shows
the non-commutativity of the separate S-duality groups of the gauge groups.

icosidodecahedron, by truncating vertices, in accordance with Gaiotto’s construction. All in all, we
conclude Gaiotto’s method provides a simple strategy to exhibit (all) S-dual descriptions of a single
theory.

Before turning to the geometric interpretation, we consider an additional example since, if
Gaiotto’s construction is correct, it predicts an interesting new aspect of duality. This happens
when we consider three gauge groups: SU(2)1 × SU(2)2 × SU(2)3. We have represented it in Fig-
ure 4.1.7. This diagram is labelled to correspond to weak coupling of all three gauge couplings:

Figure 4.1.7: Quiver diagram of the superconformal SU(2)1 × SU(2)2 × SU(2)3

theory.

(τ1, τ2, τ3) = (i∞, i∞, i∞). We now play a similar game as in the previous quiver. First we hold
τ2 arbitrarily weak such that we effectively have two separate Nf = 4 theories with representations
21⊗ (2a ⊗ 2b ⊕ 2c ⊗ 22) and 23⊗ (2d ⊗ 22 ⊕ 2e ⊗ 2f ). Performing S-duality transformations at both
edges permutes the mass parameters µa, µb, µc and µd, µe, µf among themselves. This is similar to
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the previous example. However, we may also imagine coupling both SU(2)1 and SU(2)2 arbitrarily
weak. The representations of the hypermultiplets are then: 22⊗ (21 ⊗ 2c ⊕ 2d ⊗ 23). Performing an
electric-magnetic, or in this case an electric-dyon exchange, we obtain a fully gauged trifundamental:
22⊗ (21 ⊗ 23 ⊕ 2d ⊗ 2c) when reinstating the gauge groups. This corresponds to the quiver depicted
in Figure 4.1.8.

Although the total flavour symmetry does not change, we have unexpectedly obtained very
different matter representations in a certain corner of the UV moduli space. This is a beautiful
example suggesting a more general perspective on duality. Triality and SL(2,Z) transformations do
not only permute mass parameters with different couplings in the IR, also matter representations
may have their flavour symmetry exchanged for an extra gauge symmetry.

Figure 4.1.8: Quiver representation of SU(2)1×SU(2)2×SU(2)3 theory. Notice
that at this cusp in the moduli space, instead of two bifundamentals and 4
fundamentals, we have one trifundamental and six fundamental flavours.

The above mentioned peculiarities are part of an exhaustive list of dualities that can appear in
product gauge theories with gauge group SU(2). From this point on, we can consider any particular
linear quiver as depicted in or even quivers with loops. There is a simple formula to calculate the
dimension of the UV moduli space, in the SU(2) case also equal to the dimension of the Coulomb
branch. We denote the theory associated to the quiver Tn,g[A1] where n denotes the number of
external legs (SU(2) flavour symmetries) and g the number of loops in the quiver, then:

dim M(Tn,g[A1]) = n− 3 + 3g (4.1.2)

To obtain such a theory, one has to glue together n−2+2g anfundamentals. Gaiotto has conjectured
that every superconformal SU(2) quiver theory with g loops and n flavour groups is some weakly
coupled description of a single theory Tn,g[A1]. Furthermore, the space of exactly marginal couplings
of these theories, or the UV moduli space, corresponds to the moduli space of a Riemann surface
with n punctures and g holes. We will make this correspondence more precise in the following
section.

We conclude this section by noting that the degeneration of theory Tn,g[A1] can occur in two
distinct ways: Tn,g[A1]→ Tn+2,g−1[A1] in the case of breaking of a loop or Tn,g[A1]→ Tn′+1,g′ [A1]×
Tn−n′+1,g−g′ [A1] in the case of breaking of a linear piece. The cusp at which all gauge groups are
weakly coupled results in a degeneration of the theory into n − 2 + 2g anfundamentals. We will
analyse these degenerations quantitatively in Section 4.3.
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4.2 A Geometric Realization of Duality

In this section the relation between the quiver theories and Riemann surfaces will be explained. We
will introduce some necessary mathematical concepts relating to moduli spaces of Riemann surfaces
and elliptic functions. Due to the low dimensionality of these geometrical objects, we can approach
the subject in a conceptual (and visual) manner. However, the formal theory behind these concepts
is vast. The reader is referred to the literature for a solid mathematical understanding. For a review
on Riemann surfaces (and algebraic curves) and their differential geometry of particular use and not
too assuming were [41] and [24]. These two references also give a good review on the Riemann-Roch
theorem, which will be used as well in this section. A pedagogical review on the mapping class group
can be found in Part 1 of [23]. Part 2 of the same book describes in detail the Riemann moduli
space, Teichmüller space, quadratic and Beltrami differentials and the interconnections between
these concepts. See [18] for a classical discussion on elliptic and modular functions. For the cutting
and sewing of Riemann surfaces, see for instance Section 9.3 of [51].

As mentioned at the end of the previous section, we can associate the tuple (n, g) to a quiver
theory. The number of flavour symmetries is denoted by n, while g corresponds to the number of
loops in the quiver. If we fatten up the lines making up the quiver, we obtain a genus g Riemann
surface with n punctures. The anfundamentals are identified with thrice punctured Riemann spheres,
a limit of a pairs of pants in which the boundary components shrink to a point. See Figure 4.2.1.
Gauging diagonal flavour symmetries of anfundamentals is now interpreted as the sewing of thrice

Figure 4.2.1: On the left a pairs of pants and a thrice punctured sphere are
depicted. These represent the geometrical analogue of the anfundamentals and
can be glued together to form more general Riemann surfaces. On the right, a
tube is depicted, whose geodesic is of length l ∼ |q|. When |q| → 0 the tube
pinches and two disjoint pieces of the original Riemann surface are left, both
with an extra puncture.

punctured spheres. More precisely, we take on two thrice punctured spheres local coordinates z1, z2

near a puncture, cut out a disc around each puncture and sew the two surfaces together through
the sewing equation z1z2 = q. Here, q is a complex parameter whose absolute value defines the
radius of the cut-out discs and its phase corresponds to a possible twist. For instance, applying this
procedure to two thrice punctured spheres leads to a four punctured sphere. Furthermore, it follows
that if |q| → 0 the four punctured sphere degenerates to two thrice punctured spheres.

Sometimes a degenerating Riemann surface is said to consist of very long tubes connecting the
thrice punctured spheres. This picture is equivalent to the picture above; consider the regions
around the punctures of the thrice punctured spheres to be |z1| < 1 and z2 < 1 in which the the
cut-out discs of radius q lies. The annulus {|q| < |zi| < 1} represents the regions which are to be
identified according to the sewing equation z1z2 = q. We can perform the coordinate transformation
z1 = e−iw and z2 = qeiw such that in terms of w the annulus is mapped to {log |q| < Imw < 0}
and w ' w + 2π. In terms of w then, the tube connecting the spheres becomes a cylinder whose
length diverges in the |q| → 0 limit. This is just the conformal, or holomorphic, map from a disc to
a semi-infinite cylinder via the complex logarithm.
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Yet another point of view which we will frequently use is that the degeneration of a surface can be
interpreted as the collision of a number of punctures. This is a consequence of the fact that after the
sewing the coordinates of punctures, except for three which are fixed by conformal transformations,
depend on q. The limit in which |q| → 0 can for instance correspond to the collision of a number of
punctures with coordinates zi ∼ q with z = 0.

From the considerations above, it it clear that the complex structure of the surface depends on
q. This determines q as a so-called Fenchel-Nielsen coordinate on Teichmüller space, which is the
moduli space of marked Riemann surfaces up to SL(2,C) transformations. The complex dimension
of this space is:6

dim Tn,g = n− 3 + 3g (4.2.1)

This dimension corresponds precisely to the dimension of the UV moduli space of the quiver theories
with n external legs and g loops. This is no coincidence: just as in the construction of quiver theories
from anfundamentals, a Riemann surface Cn,g can be constructed from n− 2 + 2g thrice punctured
spheres by connecting them with n − 3 + 3g tubes. To each tube is related a complex parameter
qi, a Fenchel-Nielsen coordinate, whose absolute value determines the radius of the tube and whose
phase determines the twist. These tube parameters exhaust all free parameters: if we disconnect
the tubes, we will be left with n − 2 + 2g thrice punctured spheres, which are rigid and therefore
carry no free parameters. Hence, the Teichmüller space of Cn,g is of complex dimension n− 3 + 3g.
The sewing parameters will be related to the exactly marginal gauge couplings of the quiver theory,
where a degenerating Riemann surface will correspond to the decoupling limit of a gauge group in
the quiver.

We can now make Gaiotto’s conjecture more precise: the moduli space of the theory Tn,g[A1],
the parameter space of exactly marginal (UV) gauge couplings, equals the Riemann moduli space
Mn,g which is related to Teichmüller space as:

Mn,g = Tn,g/MCG(Cn,g) (4.2.2)

with MCG(Cn,g) the mapping class group of the Riemann surface which is interpreted as the group
of S-dualities of the theory: it permutes punctures and acts on closed curves or arcs on the Riemann
surface through Dehn twists. As discussed, the first evidence for this conjecture is the fact that
the dimensions match. In the next section we will provide quantitative evidence for the conjecture.
However, let us first investigate a couple of simple examples qualitatively.

We start, as usual, with Nf = 4 theory. The moduli space of this theory is shown in Figure 4.2.2.
The shaded domain on the left shows the combined SL(2,Z) and triality operations, exhibiting full
self-duality, while the other shows the moduli space without the triality operation, exhibiting the
three weakly coupled cusps. We will give two independent arguments why these are also the moduli
spaces of the four punctured sphere C4,0 with equivalent or inequivalent punctures respectively. The
first argument will not use the formula (4.2.2). The reason we do mention it is because through it,
we obtain a full (finite) renormalization of the ‘exactly marginal’ gauge coupling.

As shown in Figure 4.2.3, there are three possible degenerations of a four-punctured sphere.
Through the cutting and sewing operations q appears as a coordinate of the fourth point on the
sphere. For q → 0, 1,∞ we obtain the three possible degenerations of the four punctured sphere
into two thrice punctured spheres. We have performed coordinate transformations such that a
degeneration always corresponds to the collision of a point with z = 0. We have q → 0, q′ = 1− q →
0 or q′′ = 1

q → 0 corresponding to a weakly coupled electric, magnetic and dyonic description
respectively. The relation with the quiver is obvious. Taking a decoupling limit in the quiver
corresponds to the degeneration of the Riemann surface. It seems natural to relate: q(d) = e2πiτ(d)

with d denoting a particular dual frame. In fact, we will find this relation from the M-theory
construction in the next section. We warn the reader that this relation only holds at weak coupling.

6This formula is defined for all Riemann surfaces except C1,0, C2,0, C3,0, C0,1. Our quiver theories automatically
fulfil these requirements.
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Figure 4.2.2: Fundamental domains of SL(2,Z) and Γ(2). The three cusps in
H/SL(2,Z) represent the electric, magnetic and dyonic weakly coupled descrip-
tions.

A conformal invariant is given by the cross ratio of the punctures. We can take the cross ratio
to be:

q = (q, 1; 0,∞) (4.2.3)

This will be the primary object of interest in the next section, as it provides a convenient parametriza-
tion of the gauge couplings independent of SL(2,C) transformations on the punctures. Note that
it is defined on the Riemann sphere. Therefore, we can use it as a convenient object only for g = 0
quivers.

One can still consider S-duality transformations on this object, however its implementation
changes slightly. Instead of SL(2,C) coordinate transformations one now permutes the punctures to
obtain a dual description. For instance, permuting 1 and 0 or 0 and∞ can be seen to correspond to
the magnetic and dyonic description and accordingly. These two permutations generate the anhar-
monic group, isomorphic to S3. Let us recall the appropriate dual descriptions for the monopole and
dyon in terms of the IR gauge coupling τ and compare them with the appropriate, i.e. q(d) → 0,
cross ratios:

S : τ → −1

τ
⇒ q → 1− q (4.2.4)

STS : τ → τ

1− τ
⇒ q → 1

q
(4.2.5)

If we take this implication seriously, the above behaviour shows q is invariant under a Γ(2) action on
τ . There exists a natural function of τ with the exact same behaviour that q exhibits: the modular
λ(τ) function. In fact, λ(τ) provides a biholomorphic map between q ∈ Ĉ\{0, 1,∞} and τ ∈ H/Γ(2).
Therefore, the moduli space of the Riemann surface is in one-to-one correspondence with the moduli
space of the gauge coupling τ . We conclude we have found an alternative, geometric realization of
S-duality on the gauge coupling through the anharmonic group action on the cross ratio. Note that
if we were to take the punctures equivalent, i.e. forget about triality, we would take analogously:
q = j(τ) which is invariant under a full SL(2,Z) action on τ . Then, j(τ) would be a modulus of the
Riemann surface and indeed provides a biholomorphic map between q ∈ C and H/SL(2,Z).

In the next section we will argue that the Seiberg-Witten curve of this theory is given as a
double cover of the Riemann surface. The identification q = λ(τ) appears naturally in this context
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Figure 4.2.3: The three distinct ways in which the Riemann surface may degener-
ate. We have performed SL(2,C) transformations such that in the coordinates at
hand, the sewing parameter always collides with 0. The four points are labelled
in the same way as the original quiver: while the upper diagram describes the
electric description, the left diagram describes a weakly coupled dyon of ne = 2k
and the right diagram a weakly coupled dyon of ne = 2k + 1.

through a well-known relation between the cross ratio of punctures on a Riemann surface and the
cross ratio of the Weierstrass half-periods of the elliptic curve considered as double cover of the same
surface. This is briefly mentioned in Section 2.1 of [32]. As will be elucidated in the next section,
this identification relates a UV parameter q, the cross ratio of the punctures of Cn,0, with an IR
parameter τ , the modulus of the Seiberg-Witten curve. At least for massless Nf = 4, we will see
that this purely geometric IR-UV relation encompasses the full finite renormalization alluded on in
Section 3.8. It can be directly compared to Nekrasov’s explicit calculation in [45], and for example
in the appendix of [36] found to be equivalent.

The more general calculation of the moduli space of a Riemann surface can be done with (4.2.2).
For the case of Nf = 4 the Teichmüller space T4,0

∼= H. The mapping class group of a four-punctured
sphere is PSL(2,Z) if we take the punctures to be equivalent and Γ(2)/±1 if we take the punctures
to be inequivalent.7 The distinction stems from the fact that the mapping class group may permute
punctures. If the punctures are equivalent, these permutations are irrelevant. However, if the
punctures are inequivalent the a and b cycles transform non-trivially under permutations and only a
Γ(2) democracy survives, much alike the pure Seiberg-Witten monodromies. More generally, it can
be shown that for C ′n,0 and Cn,0 the Riemann surfaces with inequivalent and equivalent punctures
respectively,

MCG(Cn,0)/MCG(C ′n,0) ∼= Sn

Note that in the case of n = 4 we found the permutation group is in fact SL(2,Z)/Γ(2) ∼= S3. This
anomaly is explained by the isomorphism S4/V ∼= S3 with V the Klein group. The division by the
Klein group follows from the fact that the cross ratio is invariant under this group. For n > 4 there
will also be symmetries but they will not constitute a normal subgroup.

Another example for which we can easily see the conjecture holds is the case of N = 4 SYM,
or equivalently N = 2 SYM coupled to one hypermultiplet in the adjoint representation. The
corresponding quiver and Riemann surface are depicted in Figure 4.2.4. We first note that unlike

7See Section 2.2.5 of [23] for a detailed derivation of the mapping class group of the four-punctured sphere. Note
we interpret C4,0 = C0,1/Z2, with Z2 denoting the hyperelliptic involution of the torus. Indeed, this action fixes four
points, corresponding to the punctures of C4,0.
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Figure 4.2.4: Quiver diagram for N = 4 SYM and the corresponding Riemann
surface. The remaining flavour symmetry show it is a real representation, as
required for the adjoint representation.

the massless Seiberg-Witten curves[60], the Riemann surface (Gaiotto curve) is clearly different for
N = 4 and Nf = 4 theory. This is already a nice result, although it demonstrates only a tiny part
of the power of Gaiotto’s construction as we will see in later sections.

The quiver is constructed by taking one anfundamental and gauging a diagonal subgroup of two
flavour symmetries of the same anfundamental: SU(2)a × SU(2)b × SU(2)c → SU(2)a × SU(2)1.
The original anfundamental representation of the flavour symmetry groups changes accordingly:

2a ⊗ 2b ⊗ 2c → 2a ⊗ (31 ⊕ 11) .

Hence, we obtain one hypermultiplet in the adjoint of SU(2)1, while another hypermultiplet appears
in the singlet and is completely decoupled. Effectively, this then is N = 2∗ theory: N = 4 SYM
perturbed with a bare mass term associated to the adjoint hypermultiplet. It is well known that
the Lagrangian corresponding to this theory has an SU(4)R R-symmetry. The presence of this
symmetry is not manifest in Gaiotto’s construction but can be derived from the SU(2)R and flavour
symmetry. See for instance Section 2.1.2 of [65] or a generic review on AdS/CFT.
N = 4 SYM is expected to be fully SL(2,Z) invariant without the need for triality. Therefore, its

moduli space, characterized by the familiar gauge coupling τ , is given by H/SL(2,Z). The Riemann
surface corresponding to this theory is a once punctured torus. The once punctured torus and an
ordinary torus are very much alike. In particular, their Teichmüller spaces and mapping class groups
coincide.8 The Riemann moduli space of the torus is: M0,1 = H/SL(2,Z). Hence, we see that this
example works out consistently.

Now that we have seen two illustrations of the conjecture of Gaiotto, let us delve into the
equivalence of the moduli spaces a little more by comparing the exactly marginal deformations of
the gauge theory with deformations of the Riemann surface. An exactly marginal deformation on
the N = 2 theory is implemented by:

L → L+ δτi

∫
d2θ d2θ̃ Tr Ψ2

i + c.c. (4.2.6)

with Ψi denoting the N = 2 vector multiplet associated to the ith gauge group. Equivalently, an
exactly marginal deformation corresponds to the insertion of the operator Tr Ψ2

i into a correlation
function. Hence, if one considers marginal deformations of the gauge theory as above, arbitrary
correlators in the gauge theory should be adjusted as:

〈X〉 → 〈Tr Ψ2
iX〉 (4.2.7)

8The mapping class group requires a base point. For C1,1 we can choose this point at the puncture. It is easy
to see the simple closed curves of C1,1 precisely match those of C0,1, and therefore their mapping class groups are
equivalent.
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We will identify the prepotential term with ui = 〈Tr Ψ2
i 〉. Hence, an insertion of the Coulomb branch

parameter in a correlator is related to the deformations of the gauge theory. We will come back to
this statement at the end of this section. However, first we very briefly discuss the deformations of
a Riemann surface.

Deforming a marked Riemann surface means a change of position in Teichmüller space Tn,g. Two
Riemann surfaces which differ by a conformal transformation define the same point in Teichmüller
space. A non-trivial deformations of a Riemann surface is achieved by the use of a quasiconformal
transformation, which maps circles to ellipses. Quasiconformal maps, in fact, play a primary role in
the infinitesimal deformation of a Riemann surface, and are therefore closely related to the tangent
space of Tn,g. More precisely, sections of the tangent space of Tn,g are represented by (−1, 1)
differentials on the Riemann surface. These are called Beltrami differentials and have the following
form:

µ ≡ µ(z)
dz̄

dz
=
fz̄dz̄

fzdz
(4.2.8)

with f a quasiconformal map. Note that fz̄ should be non-vanishing in order to constitute a non-
trivial deformation. This is in accordance with the well known relation between holomorphic and
conformal maps on Riemann surfaces.For the calculation of a finite deformation the natural candidate
that appears is a quadratic or (2, 0) differential, locally represented as φ = φ(z)dz2 where φ(z)
has simple poles at the punctures. These are elements of the cotangent bundle of Teichmüller
space. The Riemann-Roch theorem can be used to find that indeed the dimension of the space of
quadratic differentials coincides with the dimension of Teichmüller space. An explicit formula for
this dimension, as well as the dimension of k-differentials with prescribed poles, can be found in [17].

On the Riemann surface, the quadratic differential contracts with Beltrami differential to a
volume form on the Riemann surface:

〈µ, φ〉 =

∫
Σ

φ(z)
fz̄
fz
|dz|2 (4.2.9)

As we have seen, S-duality has a geometric realization on the Riemann surface. The information
encoded in 〈µ, φ〉 is therefore manifestly S-duality invariant. It will turn out that the Seiberg-Witten
curves are naturally represented by quadratic differentials with simple poles at the punctures. There
exists a particular form of the Beltrami differential on a collar (a long tube), found in [74] and used
in this context in [16].9 The Coulomb branch parameters will be packaged by these quadratic
differentials in such a way that when a quadratic differentials is integrated against a Beltrami
differential, the Coulomb branch parameter comes out.

This completes the connection between the gauge theory deformations and the deformations
of the Riemann surface. In the previous references more details can be found, although the first
describes it in a non-physical context, while the second describes in context of the AGT relation. In
the latter, the energy momentum tensor of the CFT will be identified with a quadratic differential
on the gauge theory side.

4.3 Mathematical Description

In this section we will quantify the claims made in the previous sections by constructing the Seiberg-
Witten curves for the quiver theories. Through an unorthodox reparametrization of the curves, an
underlying structure of the curve is found: the Gaiotto curve. We start by revisiting the Nf = 4
massless and massive theory, show the curves as constructed in M-theory and comment on properties.

9Actually, these references describe the Beltrami differential containing a factor z, while the quadratic differentials
contain a factor z−2. We redefine the quadratic differential to contain only a factor z−1, a simple pole, while having the
Beltrami differential independent of z. This modification should be harmless; for one, the inner product is insensitive
to it.
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Next to the fact that the S-duality properties of this theory are used to deduce S-duality properties
of all other (A1) quiver theories, its construction also exhibits much of the details we will encounter
in more general quiver theories. We follow the original article of Gaiotto [29], while also borrowing
elements from Section 9 of the review [65].

4.3.1 Massless T4,0[A1]

The curve for massless Nf = 4 is given in complex coordinates (v, t) ∈ C× C4,0:

v2t2 + c1(v2 − u)t+ c2v
2 = 0 (4.3.1)

A more convenient form for our purposes is obtained by collecting powers of v:

(t− 1)(t− q)v2 = ut (4.3.2)

In this parametrization, the four punctures of C4,0 will be seen to correspond to t = 0, q, 1,∞. Notice
t and v are rescaled to eliminate one combination of the constants c1 and c2. The other combination,
parametrized by q, cannot be scaled away and is a dimensionless modulus of the theory. This is
a manifestation of the fact we are considering a conformal field theory. The UV gauge coupling is
determined by q. More precisely, from Section 3.9 we have:

τ ≡ θ

π
+

8πi

g2
=

1

iπ
log q (4.3.3)

where we have adjusted the normalization by a factor of π for later convenience. Notice that weak
coupling corresponds to q → 0. Let us rewrite the curve in terms of x = v

t :

t(t− 1)(t− q)x2 = u (4.3.4)

The corresponding Seiberg-Witten differential is given by:

λ = v(t)
dt

t

=

√
u√

t(t− 1)(t− q)
dt

= xdt (4.3.5)

For the time being, we have chosen a positive root of v. Up to some multiplicative factor

∂λ

∂u
=

dt√
ut(t− 1)(t− q)

(4.3.6)

is a holomorphic differential. This is most easily seen by introducing the auxiliary curve:

y2 = ut(t− 1)(t− q) (4.3.7)

This is a more familiar form of the elliptic curve and we indeed see (4.3.6) corresponds to the unique
holomorphic differential on the curve.10 Note that in this case, already (4.3.5) is a holomorphic dif-
ferential with respect to the curve since it differs only by a rescaling from ∂uλ. This is a consequence
of conformal invariance, which implies:

τU(1) =
∂aD
∂a

=
aD
a

= τ (4.3.8)

10The appearance of the auxiliary curve may seem unnatural at this point. In the following, when we discuss more
general quivers, the origin of the auxiliary curve and its role will become clear. For now, it should be regarded as a
convenient curve encapturing the modular parameter of the Seiberg-Witten curve.
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Figure 4.3.1: The canonical basis of a and b cycles on the auxiliary curve (4.3.7).
We define the orientations of the cycles such that Imτ > 0.

The trivial u dependence is special to massless Nf = 4. Upon generalization, we will always derive
an auxiliary curve from the Seiberg-Witten curve which encodes all low energy physics and depends
on all Coulomb branch and mass parameters. The ∂uiλ provide a basis of holomorphic differentials,
whose periods determine the IR gauge couplings.

Let us briefly derive (4.3.3) from the auxiliary curve. Defining the a and b cycle on this curve in
the usual way, see Figure 4.3.1, we find for q → 0:

b1 =

∮
a

dt√
ut(t− 1)(t− q)

∼
∮
t=0

dt

t
√
u(t− 1)

=
2πi

i
√
u

(4.3.9)

b2 =

∮
b

dt√
ut(t− 1)(t− q)

= 2

∫ q

1

dt√
ut(t− 1)(t− q)

∼ 2

i
√
u

log q (4.3.10)

We can read of the complex structure of the Seiberg-Witten curve:

τU(1) =
b2
b1

=
1

πi
log q (4.3.11)

This is in accordance with (4.3.3). We conclude that the Seiberg-Witten curve at weak coupling
implies no renormalization and find τU(1) = τ , and we have q = eiπτ justifying the relation between
the sewing parameter and the UV gauge coupling in Section 4.2. However, as already mentioned in
previous sections, for more generic values of τ there is a finite renormalization. The exact renormal-
ization is obtained by interpreting q as the cross ratio of the punctures on the base manifold C4,0 and
relating it in a natural way to the modulus of its double covering, the elliptic curve, by q = λ(τU(1)).
This relation can be inverted to obtain the full renormalization of the low energy coupling. Part of
the expansion can be found at the end of Section 3.8.

We want to stress that q = eiπτ is only a UV parameter. As such, it cannot be defined un-
ambiguously due to the inherent scheme dependence of renormalization. We understand it as an
object merely parametrizing the space of exactly marginal gauge couplings. The Seiberg-Witten
modulus is the true physical gauge coupling. Its relation to this particular UV parameter is just a
convenient scheme which has a geometric interpretation. In the massless case, we obtain a direct
relation between the UV and IR gauge coupling. However, this relation will hold in the massive
case only when u � mi, such that the gauge coupling has long stopped running before the masses
become important. In this case, the geometric relation provides a finite renormalization between two
UV couplings obtained through different schemes: the UV coupling as read from the Seiberg-Witten
curve at large u, τ = limu→∞ τU(1), and the UV coupling as calculated from the Riemann surface
cross ratio. More about this point can be found in Section 9.2 of [65] and references therein.

From the previous section, we have learned a twofold geometric realization of S-duality. Either,
one may permute punctures and interpret the cross ratio as parametrizing the gauge coupling.
Another equivalent perspective was provided as the change of coordinates and the interpretation of
the coordinates of the punctures as parametrizing the gauge couplings. Both perspectives are useful.
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The latter perspective is implemented on the Seiberg-Witten curve as:

(t, x)→ (1− t, x)

(t, x)→
(

1

t
,−t2x

)
(4.3.12)

Under these transformations we obtain similar curves as in (4.3.4) with transformed coordinates
of the punctures: (q, 1; 0,∞) → (1 − q, 0; 1,∞) and (q, 1; 0,∞) → (1/q, 1;∞, 0). Note that the
Seiberg-Witten differential retains its canonical form under these transformations.11

Gaiotto performs one more coordinate transformation, a general SL(2,C) transformation on
t→ at+b

ct+d , to bring the puncture at infinity to a finite value. Under this transformation we also have:

x→ (ct+ d)2x. The cross ratio of the points remains invariant. The curve becomes:

x2 =
u

∆4(t)
(4.3.13)

This is not the most convenient form to perform explicit calculations. However, we will also use this
notation, for two reasons: the general form does allow one to keep track of the general structure
of the curve. Furthermore, it provides a great ease of notation in the more general quiver theories.
The subscript of the polynomial in t denotes its degree. The Seiberg-Witten differential is given
by: λ = xdt. This is the simplest example of the generic form of curves we will find for Tn,g[A1]
theories: x2 = φ2(t) with Seiberg-Witten differential λ =

√
φ2dt.

From the discussion in Section 4.2, we know the natural representative of sections of the cotangent
bundle of Teichmüller space are quadratic differentials on the Riemann surface with simple poles at
the punctures. Indeed, (4.3.13) provides us with the natural candidate:

λ2 =
u

∆4(t)
dt2 (4.3.14)

The Seiberg-Witten curves are reinterpreted as sections of the symmetric square of the cotangent
bundle T ∗C4,0 of a Riemann surface, or equivalently as sections of the cotangent bundle of Te-
ichmüller space where (x, t) specify the coordinates in the fiber and the base manifold respectively.
Note that this is consistent with the original coordinates (v, t) ∈ C×C4,0 in the trivial bundle, which
however does not reflect the extra structure of the cotangent bundle. This additional structure is
responsible for the better handle on the UV-IR relation, already experienced in examples above,
through the geometric realization of S-duality which tells us how the Seiberg-Witten curves change
when we choose a different coordinate frame on the base surface.

4.3.2 Massive T4,0[A1]

Before generalizing this construction to arbitrary quiver gauge theories, let us also look at the curve
with non-zero bare masses:

(v −m1)(v −m2)t2 + c1(v2 − u)t+ c2(v −m3)(v −m4) = 0 (4.3.15)

As in the massless case, we collect powers of v:

(at̃2 + t̃+ 1)v2 =
(
a(m1 +m2)t̃2 +m3 +m4

)
v −

(
am1m2t̃

2 − ut̃+m3m4

)
a(t̃− t+)(t̃− t−)v2 = M2(t̃)v − U2(t̃) (4.3.16)

11One may observe that x behaves as a modular form of weight 2. This is nothing new: modular forms were also
employed as coefficients in the Seiberg-Witten curve of Nf = 4 in the original article [60]. We have now simply
integrated them within the coordinates.
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where we have rescaled t̃ = c1
c2
t, a = c2

c21
which will be related to the cross ratio and in the second line

we abbreviated notation according to [29]. Note that all mass parameters are described by M2(t̃).
Furthermore, U2(t̃) contains all Coulomb branch parameters and, at the highest and lowest power
of t̃ contains bare mass parameters of the fundamental hypermultiplets. As will be justified in more
detail below when considering the general case, the full flavour symmetry of the theory becomes
manifest in the curve only when we shift away the linear term in v. We obtain:

v2 =
−a(t̃− t+)(t̃− t−)U2(t̃) + 1

4M
2
2 (t̃)

a2(t̃− t+)2(t̃− t−)2
(4.3.17)

Under this shift, the Seiberg-Witten differential becomes:

λ± = ±

√
−a(t̃− t+)(t̃− t−)U2(t̃) + 1

4M
2
2 (t̃)

a(t̃− t+)(t̃− t−)

dt̃

t̃
+

M2(t̃)

2a(t̃− t+)(t̃− t−)

dt̃

t̃
(4.3.18)

This differential has simple poles at t̃ = 0,∞, t+, t−. It is not difficult to check that the residues
will correspond to linear combinations of the mass parameters and do not depend on the Coulomb
branch parameter u, as desired. Moreover, the second term in the differential contributes to the
residues in a manner precisely as the first square root term and is independent of the Coulomb
branch parameter. Therefore, concerning the low energy theory, the second term only constitutes a
shift in flavour charge proportional to the number number of cycles, i.e. the gauge charges. Through
a redefinition of the flavour charges we can put this term to zero. We are left with the following
differential:

λ± = ±

√
−a(t̃− t+)(t̃− t−)U2(t̃) + 1

4M
2
2 (t̃)

a(t̃− t+)(t̃− t−)

dt̃

t̃
(4.3.19)

In the limit of a→ 0 the residues of this differential have a clear interpretation:

Rest=0 λ± = ±m3 −m4

2

Rest=∞ λ± = ±m1 −m2

2

Rest=t− λ± = ±m1 +m2

2
+O(a)

Rest=t+ λ± = ±m3 +m4

2
+O(a) (4.3.20)

These are the Cartan weights of the U(1)4 ⊂ SO(8) flavour symmetry subgroup, corresponding to
the masses of the eight half hypermultiplets. See Section 3.8. We note that the reason the linear
combinations of masses at t = 0,∞ do not receive corrections is because the separate contributions
to the two masses precisely cancel. The limit a → 0 corresponds to weak coupling. To see this, let
us rewrite the differential:

λ2 =
P4(t)

(t− q)2(t− 1)2

dt2

t2
(4.3.21)

where q = t+
t−

, we absorbed all constants in P4(t) and we again rescaled all t̃ and denote the rescaled

coordinate again with t.12 By looking at the formula for q, it is indeed easy to see that for a → 0
q(a) ∼ a justifying the assumption. The residues of this new differential will be unchanged, but the
locations of the residues at t+ and t− are changed to q and 1 respectively. Furthermore, we see that
the true mass parameters of the hypermultiplets, the residues of the Seiberg-Witten differential,
are not precisely equal to the bare mass parameters but receive a finite renormalization through an

12An explicit expression for the differential is given in Appendix D.
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expansion in q. Again, this is a manifestation of the now familiar ambiguity in UV parameters and
the true low energy physical parameters.

S-duality acts on the massive curve in the same way as in the massless case ((4.3.12)). In the
above formulation, it is also directly clear how S-duality acts on the mass parameters. It permutes
the poles, which effectively permutes the residues as can be clearly seen from (4.3.20). We conclude
this particular realization of S-duality automatically acts as triality on the Cartan weights of SO(8).

Low energy information like the gauge coupling and Coulomb branch parameters is encoded in
the auxiliary curve:

ỹ2 = −a(t̃− t+)(t̃− t−)U2(t̃) +
1

4
M2

2 (t̃)

or y2 = P4(t) (4.3.22)

The appearance of the auxiliary curve is more natural now: it simply represents the numerator of
the full Seiberg-Witten curve, which indeed is solely responsible for the low energy gauge coupling
since its zeroes determine the branch cuts. Furthermore, we see that in the massless Nf = 4 theory,
the coincidence of the punctures on the Riemann surface with the branch points of the auxiliary
curve is, in fact, a coincidence: in general the zeroes of the numerator are not equal to the zeroes of
denominator. Again,

∂uλ ∼
dt√

−a(t̃− t+)(t̃− t−)U2(t̃) + 1
4M

2
2 (t)

(4.3.23)

corresponds to the, in this case only, holomorphic differential on the Seiberg-Witten curve and is
manifestly holomorphic with respect to the auxiliary curve.

We conclude our analysis with a canonical form of the Seiberg-Witten curve for the massive
theory:

λ2 =
P

(0)
4 (t)

t2(t− 1)2(t− q)2
dt2 +

c(a)u

t(t− 1)(t− q)
dt2 (4.3.24)

where P
(0)
4 (t) contains only mass parameters and the cross ratio while the simple pole part depends

only on the Coulomb branch parameter. Through this particular parametrization, the massless is
curve is manifestly regained upon putting all mass parameters to zero. The constant is given by:

c(a) = 1
a t−

. For the explicit expression of P
(0)
4 (t), see Appendix D.

Using the explicit expression, one can take the decoupling limit a→ 0 which shows the differential
correctly degenerates into a differential of the form:

λ2 =
P2(t)

t2(t− 1)2
dt2 (4.3.25)

with residues:

Rest=0 λ± = ±
√
u (4.3.26)

Rest=1 λ± = ±m1 +m2

2
(4.3.27)

Rest=∞ λ± = ±m1 −m2

2
(4.3.28)

Hence, we see that the Coulomb branch parameter of the decoupled gauge group plays, as desired,
the role of the mass parameter of the new flavour symmetry. Note that the surviving differential,
describing a thrice punctured sphere, is the ‘left’ side of the quiver. We could have also rescaled
t → qt, such that in the q → 0 limit, the residues would have been the Coulomb branch parameter
and the m3,4 part.
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4.3.3 Massless Tm,0[A1]

From this point on, we can relatively easily generalize to arbitrary (linear) quiver theories. A
massless linear quiver describing a gauge theory with n separate SU(2) gauge groups has Seiberg-
Witten curve:

v2tn+1 + c1(v2 − u1)tn + . . .+ cn(v2 − un)t+ cn+1v
2 = 0 (4.3.29)

with (v, t) ∈ C× Cn,0. In analogy with the Nf = 4 case, we collect powers of v:

an+1

n∏
a=0

(t̃− ta)v2 = Un−1(t̃)t̃ (4.3.30)

with Un−1(t) = un + a2cn−1un−1t̃+ . . .+ anc1u1t̃
n−1. We again rescaled t̃ = cn

cn+1
t and have defined

ai =
ci−1
n+1

cin
. The ta represent the asymptotic (v → ∞) positions of the NS5 branes. They also

determine the UV gauge coupling as:

τa =
1

iπ
log

(
ta+1

ta

)
(4.3.31)

We can put t0 = 1 upon a further rescaling of t̃. The sewing parameters are related to the ta as:

ta = 1 · q1 · · · qa (4.3.32)

Indeed, this corresponds (in the standard dual frame) to the identification: qa = eiπτa . We adjust
our coordinates similarly as in the Nf = 4 case and perform a last SL(2,C) transformation to obtain:

λ2 =
Un−1(t)

∆n+3(t)
dt2 (4.3.33)

y2 = Un−1(t)∆n+3(t) (4.3.34)

The n cross ratios qi of the n+ 3 roots of ∆n+3(t) parametrize the n UV gauge couplings as above.
The remaining constant an+1 is absorbed in ∆. The moduli space is equal to the moduli space of an
n punctured sphere Mn,0 with S-duality group MCG(Cn,0). Again, the cross ratios qi = e2πiτi UV

are related to the UV couplings and generically do not coincide with the Seiberg-Witten gauge
couplings.

4.3.4 Massive Tm,0[A1]

Let us add mass parameters in a similar manner as in the example of Nf = 4:

an+1

n∏
a=0

(t̃− ta)v2 = Mn+1(t̃)v + Un+1(t̃) (4.3.35)

The explicit expressions for the polynomials are:

Mn+1(t̃) = an+1(m1 +m2)t̃n+1 + an−1c2m3t̃
n−1 + . . .+mn+1t̃+mn+2 +mn+3 (4.3.36)

Un+1(t) = −an+1m1m2t̃
n+1 + anc1u1t̃

n + . . .+ a2cn−1un−1t̃
2 + unt̃−mn+2mn+3 (4.3.37)

Note that, although the n + 2 coefficients of Mn+1 and the highest and lowest power of Un+1 in
principle are all mass parameters, we used the freedom to shift v → v+ v0 to reduce to the physical
n + 3 mass parameters, corresponding to the number of external legs for an n gauge group linear
quiver.
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Let us briefly justify the remark made in the massive Nf = 4 case that the Seiberg-Witten
differential corresponding to the unshifted curve does not exhibit its full flavour symmetry. The
Seiberg-Witten differential is easily calculated as:

λ± =
Mn+1 ±

√
M2
n+1 + 4an+1

∏n
a=0(t̃− ta)Un+1

2an+1

∏n
a=0(t̃− ta)

dt̃

t̃
(4.3.38)

For t̃ = t1, . . . , tn−1 only λ+ has a non-vanishing residue, obscuring the Cartan U(1) ⊂ SU(2)
flavour symmetry subgroup of the bifundamental. The residues at t = 0,∞, t0, tn, corresponding
to the masses of the fundamental hypermultiplets, obscure the real SO(4) flavour symmetry in a
similar manner.

To cure this, we perform a similar shift as in the Nf = 4 case to rid ourselves of the linear term

in v. Sending v → v + Mn+1

2an+1
∏n
a=0(t̃−ta)

the quadratic differential reads:

λ2 =
an+1

∏n
a=0(t̃− ta)Un+1 + 1

4M
2
n+1(

an+1

∏n
a=0(t̃− ta)

)2 dt̃2

t̃2
=

P2n+2(t)

(t− 1)2(t− t1)2 · · · (t− tn)2

dt2

t2
(4.3.39)

→ P2n+2(t)

∆2
n+3(t)

dt2 (4.3.40)

where we redefined the flavour charges to get the differential in its canonical form. Furthermore, in
the second equality we absorbed all constants into P2n+2, rescaled t̃→ t such that the ta = 1·q1 · · · qa.
Notice that P2n+2 depends on 2n + 3 parameters corresponding to n + 3 mass parameters and n

Coulomb branch parameters. Let us recover the massless curve by defining: P2n+2(z) = P
(0)
2n+2(z) +

∆2
n+3(z)Un−1(z) where for all mass parameters vanishing, P

(0)
2n+2(z) = 0.

The auxiliary curve is given by:

y2 = an+1

n∏
a=0

(t̃− ta)Un+1 +
1

4
M2
n+1 → P2n+2(t) (4.3.41)

which defines a double cover of an n + 3 punctured sphere of genus g = n, corresponding to the
number of gauge groups. A basis of holomorphic differentials on this curve is given by:

∂uiλ± ∼ ±
t̃n−idt√

an+1

∏n
a=0(t̃− ta)Un+1(t) + 1

4M
2
n+1(t)

= ± t̃
n−idt

y
(4.3.42)

This basis is n dimensional.13

We have already explicitly seen the Seiberg-Witten curve for Nf = 4 theory degenerates properly
into the quadratic differentials associated to thrice punctured spheres and have all desired properties.
Here, we want to extend this analysis to a general linear quiver. To this end, let us look at a general
degeneration of the quiver, say at the ith node of a linear quiver with n gauge groups. First of all,
for n gauge groups, we have n + 3 punctures. Let us assume we are in a dual frame in which the
punctures t0, . . . , ti−1 are colliding with t = 0. Indeed, this dual frame is obtained by a standard
sewing process which has the consequence all coordinates of punctures for a ≤ i− 1 are dependent
on qi.

14 We can choose our gauge couplings associated to the punctures such that:

ta < |qi| for a ≤ i− 1 (4.3.43)

ta > 1 for a > i− 1 (4.3.44)

13The holomorphicity on the zeroes of y follows from similar reasons as provided in Section 3.5. The fact the
differential is holomorphic also at t =∞ follows from the minimal value of the difference in degree of numerator and
denominator: n+ 1− (n− i) ≥ 2 for all i ∈ {1, . . . , n}.

14Here we break the convention that t0 = 1.
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Taking |qi| → 0 implies the following behaviour of ∆:

∆2
n+3 → t2(i+1)∆2

n−i+2 (4.3.45)

Now, during the degeneration process, at all times we want the residues of the colliding punctures to
remain finite since they correspond to physical masses. Let us look a bit more closely at an explicit
form of ∆, from which we can clearly see the behaviour of the residues. For definiteness, we look
near some point ta while taking the limit that all the punctures tj , j ≤ i− 1 are colliding:

λ2 ∼ P2n+2(ta)

t2ia (t− ta)2(ta − ti)2 · · · (ta − tn)2
dt2 (4.3.46)

Since the limit implies ta → 0, we can infer from the physical consideration of finite masses how the
numerator should behave:

P2n+2(t)→ t2iP2n−2i+2(t) (4.3.47)

Although this behaviour is qualitatively inferred, we have shown earlier the explicit expression for
Nf = 4 indeed exhibits this behaviour. Although explicit expressions for these curves tend to get
rather complicated very quickly, in principle one can perform checks as we did in the previous
with suitable software. One might also ponder about an inductive proof by reducing every Seiberg-
Witten curve to the Nf = 4 curve. Looking at the explicit expression for the curve associated to an
SU(2)× SU(2) theory and following its degeneration towards Nf = 4 should provide some insight.
As the deadlines are closing in, the author himself cannot bring up the time to look at it before
handing in the thesis.

The behaviour of P2n+2 shows the auxiliary curve pinches, since its discriminant vanishes. In
particular, the ith b cycle diverges, corresponding to the divergence of BPS masses of solitons charged
with respect to the decoupling gauge group. This is just the phenomenon we have already seen in the
pure theory, namely that at weak coupling the soliton masses grow proportional tom ∼ − log |qi| ∼ τi
when |qi| → 0 (cf. Section 4.2). The Seiberg-Witten curve has become:

λ2 =
P2n−2i+2(t)

∆2
n−i+3

dt2 (4.3.48)

This indeed corresponds to a quiver with n− i gauge groups, as expected.
Sending all gauge couplings to very weak coupling, we obtain a collection of n+1 thrice punctured

spheres described by:

x2 =
P2(z)

∆2
3(z)

(4.3.49)

This curve depends on mass parameters for the half hypers only, which depending on its origin in
the original quiver might correspond to Coulomb branch parameters of decoupled gauge groups or
mass parameters associated to flavour symmetry groups.

4.3.5 Tm,1[A1]

The extension to quiver theories of g = 1 is implemented using a construction of Witten given in
Section 4 of [72]. We will not describe the construction in detail but rather state the result. At the
end, we will also briefly comment on the extension to arbitrary genus quivers.

The Seiberg-Witten curve is now given in coordinates (v, s) ∈ C × Cn,1. Previously, we used
t to parametrize the punctured sphere, since it was single-valued in the M-theory x10 coordinate.
Since now both x6 and x10 are periodic, we will have to consider doubly periodic functions of s to
construct Seiberg-Witten curves:

v2 = f2(s) (4.3.50)
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with Seiberg-Witten differential vds. The function f2(s) has n simple poles on the torus and is
constructed from Weierstrass elliptic functions ℘(s, τ).15 For instance, one can construct doubly

periodic functions with simple poles by taking f2 ∼ ℘′

℘ .
As the dimension of Teichmüller space for Cn,1 has dimension n, one might be worried about

the number of free parameters in f2(s). Since the sum of residues of a meromorphic function on
a compact Riemann surface should vanish, it seems that f2(s) only depends on n − 1 independent
parameters.16 This problem is solved by understanding the Seiberg-Witten curve as a quadratic
differential, as we are used to. The residues of a quadratic differential at its simple poles are not
constrained and therefore f2(s) truly has n independent parameters. For an example of a g = 1
quiver, see Figure 4.3.2.

Figure 4.3.2: Quiver diagram for SU(2)4 theory. The UV gauge couplings are
given as τa ∼ sa+1−sa. Note that the sum corresponds to the modular parameter
of the torus: |τ1|+ |τ2|+ |τ3|+ |τ4| = |τ |.

Including mass parameters involves, as usual, a linear term in v:

v2 = f1(s)v + f2(s) (4.3.51)

with f1(s) again doubly periodic function with simple poles at the n points, whose residues corre-
spond to hypermultiplet mass parameters.17 We make the usual shift to rid ourselves of the linear
term in v to obtain again:

v2 = f2(s)− f1(s)2

4
(4.3.52)

x2 = φ2(z) (4.3.53)

where we have written the second equality to demonstrate the reappearance of the canonical form
of the Seiberg-Witten curve, even for g = 1 quivers. Thus, φ2(z) is a quadratic differential on the

15The function field of doubly periodic functions has been proved to be C(℘, ℘′). See Section 3.5 of [18].
16For some analytical properties of elliptic functions, see Chapter 20 of [70].
17Again, one might worry about the fact that the residues of f1(s) sum to zero, leaving n − 1 physical mass

parameters instead of the desired n independent parameters. This worry is in fact justified for higher rank theories.
In that case, the problem is cured by taking (v, s) ∈ E where E represents a non-trivial C (the v plane) bundle over
Cn,1 instead of the above mentioned spacetime. This more general construction allows the possibility the masses to
sum to any constant, leaving n independent mass parameters. For the precise construction of the particular bundle,
see [72]. In the case at hand, we have no need for this construction since we can shift the linear term which makes
the mass parameters into coefficients of double poles. The coefficients of double poles on a compact Riemann surface
are of course unconstrained.
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torus with n double poles on the punctures with coefficients the mass parameters. Again (x, z)
naturally live in T ∗Cn,1. Choosing an origin, φ2(z) can be split into a part with double poles,
depending on mass parameters only, and a part with simple poles, corresponding to the Coulomb
branch parameters. Let us explicitly write this canonical form of a g = 1 quiver:

x2 =

n∑
i=1

{
m2
i℘(z − zi, τ) + ui

℘′(z − zi, τ)

℘(z − zi, τ) + 1
3π

2

}
(4.3.54)

with τ the modular parameter of Cn,1. The addition of the factor 1
3π

2 in the denominator is needed
for a proper degeneration of the curve to a linear quiver, as we will see below. Note that it does not
affect the locations of the original poles, but does introduce new poles[?]. We are somewhat breaking
conventions here by taking a sum of double poles instead of a product as we did with the linear
quivers. Of course, these conventions yield equivalent differentials. However, one should recognize
that the ui now actually parametrize linear combinations of the Coulomb branch parameters instead
and hence the label i should not be mistaken as labelling a gauge group.

The degenerations of an n punctured torus are twofold. It can pinch of its handle and degenerate
into an n+ 2 punctured sphere. Alternatively, punctures may collide, leaving a punctured torus and
a punctured sphere. When the handle of the torus pinches, one effectively loses the periodicity in the
x6 direction. Hence, we expect the Weierstrass elliptic function to degenerate into a singly periodic
function of x10. Furthermore, the Seiberg-Witten differential is expected to have attained two new
poles corresponding to the new flavour symmetry. Let us sketch this degeneration by considering an
explicit formula for the Weierstrass elliptic function:

℘(z, τ) =
1

z2
+

∑
n2+m2 6=0

{
1

(z + n+mτ)2
− 1

(n+mτ)2

}
(4.3.55)

For τ →∞, it may be seen that the function reduces as:18

m2
i℘(z − zi, τ)dz2 → m2

i

[
π2

sin2(π(z − zi))
− π2

3

]
dz2 (4.3.56)

= −m
2
i

4

 π2(
e
π(s−si)

2 − e−
π(s−si)

2

)2 −
π2

3

ds2 (4.3.57)

= −m
2
i

4

[
π2eπsit

(t− eπsi)2 −
π2

3

]
dt2

t2
(4.3.58)

∼ m2
i

[
π2t

(t− ti)2
− π2

3

]
dt2

t2
(4.3.59)

Notice we have identified z = − i
2s, where we used the factor of 2 to make sure the differential only

has one pole as x10 → x10 + 2π. Hence, we see that the ℘ functions degenerate appropriately to
single-valued functions on the punctured sphere with double poles at ti and t = 0,∞. Note that the
residues for t = 0 and t = ∞ are equal, as they should be since they correspond to the Coulomb
branch parameter of the decoupling gauge group.

18For instance, see the comments at the end of Chapter 3 of [18].
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A similar analysis holds for the ℘′/℘, where we find:

℘′(z − zi, τ)

℘(z − zi, τ) + 1
3π

2
dz2 → −2π cos(π(z − zi))

sin(π(z − zi))
dz2 (4.3.60)

∼ e2πiz + e2πizi

e2πiz − e2πizi
dz2 (4.3.61)

∼ t+ eπsi

t− eπsi
dt2

t2
(4.3.62)

where we forget about some constants multiplying the entire differential. The simple poles at z = zi
carry over in a similar manner to simple poles at t = ti. The double poles at t = 0,∞ make the
Coulomb branch parameter associated to the decoupling gauge group into a real mas parameter, as
desired. We therefore see that the curve for (n, 1) properly degenerates to a curve for (n+ 2, 0).

For the other degeneration, the collision of m punctures, it is now easy to see that the Seiberg-
Witten curve degenerates appropriately. Looking at (4.3.54), we see that form punctures colliding, m
of the Weierstrass elliptic functions coincide. Hence, the Seiberg-Witten curve describes a Cn−m+1,1

theory where the new mass parameter is a sum of the old mass parameters m = m2
1 + . . .+m2

m and
new Coulomb branch parameter u = u1 + . . .+ um. Notice that such a limit of colliding punctures
represents a strong coupling limit of the original quiver, i.e. τ1, . . . , τm−1 → 0 and corresponds to a
weakly coupled quiver in an appropriate dual frame. See Figure 4.3.3 for an example, depicted in
the form of trivalent graphs.

Figure 4.3.3: Two perspectives on the degeneration of a C6,1 → C4,1 × C4,0.
Gauge groups are indicated by numbers and the (relevant) flavour symmetries
by letters. This degeneration scenario can be reached by elementary S-duality
moves: first, we very weakly couple all gauge groups but 6 such that we can
perform an S-duality around this node exchanging the legs 5 and A. Then we
perform a similar move at node 5, now exchanging 1 and C. Reinstating all
gauge groups, one can check that a trifundamental has appeared in 21⊗ 24⊗ 25,
where gauge group 5 connects the C4,1 and C4,0 theory. Decoupling 5 leaves us
with the expected degeneration.

The other perspective on the degeneration of the Cn,1 is that one obtains a Cm+1,0 theory. To see
the Seiberg-Witten curve adjusts appropriately to a curve for this theory as well, we note that from
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this point of view the n− (m+ 1) punctures combine with the punctures of a pinching torus. The
curve degenerates properly as can be seen from a combination of the degeneration of the Weierstrass
elliptic functions as above and the further degeneration of a linear quiver as described in the previous
section.

To conclude this section, we note that the extension to arbitrary genus theories requires mero-
morphic functions on general (compact) Riemann surfaces. These are provided by Riemann theta
functions, which are direct generalizations of the Weierstrass elliptic function to Riemann surfaces
of arbitrary genus.

4.4 Summary: A Six Dimensional Construction

We have seen that the Tn,g[A1] theories described in the previous, and higher rank theories as well,
can be constructed in M-theory. In Section 3.9 M5 branes were used to construct the Seiberg-Witten
curves, while extending in 3+1 dimensions. Minimal area M2 branes whose boundaries end on non-
trivial cycles of the Seiberg-Witten curve were identified with BPS excitations of the four dimensional
theory. In this section, we take a closer look at this M-theory construction inspired by the results of
Gaiotto. We will highlight a few essential aspects of the higher dimensional construction. A much
more complete review is presented in [20]. A detailed analysis of the 6d N = (2, 0) theory is given
in Sections 2 and 3 of [13]. An insightful and unassuming discussion of the construction is given in
Section 6 of [65]. Further references to the vast literature on the present subject are given in the
three references above.

The 6d N = (2, 0) A1 arises from the low energy dynamics of two M5 branes extending in R5,1

while being parallel in the transverse R5.19 The notation for the number of supersymmetries reflects
the number of chiral and antichiral supercharges respectively. A theory whose supersymmetry
transformations consist only of chiral supercharges is possible in six dimensions, as opposed to four
dimensions, since spinors and their charge conjugates are of the same chirality.20

The presence of the M5 branes breaks the global symmetry to SO(10, 1)→ SO(5, 1)× SO(5)R,
where our notation already suggests the transverse SO(5) symmetry is interpreted as the R-symmetry
of the theory. The supercharges transform in spinor representations of both symmetry groups, which
are the fundamental representations of the groups SU∗(4) ∼= SO(5, 1) and USp(4) ∼= SO(5). We
denote the supercharges accordingly as Qαa with α = 1, . . . , 4 a fundamental SU∗(4) index and
a = 1, . . . , 4 a vector USp(4) index. Therefore, Qαa has sixteen complex components. Although a
normal Majorana condition is not possible in six dimensions because the charge conjugation matrix
satisfies (C β

α )∗C γ
β = −δ γα , due to the pseudoreal nature of the R-symmetry representation it is

possible to impose a symplectic Majorana condition. The symplectic Majorana constraint reads:

(Qαa)∗ = ΩabC β
αQβb (4.4.1)

with Ωab the invariant antisymmetric tensor of USp(4), which satisfies ΩabΩbc = δac . Consistency of
the condition requires an additional constraint on Ω:

(Ωab)∗ = −Ωab (4.4.2)

The symplectic Majorana condition halves the number of supercharges such that we now have sixteen
real supercharges, the maximum number of supersymmetries in a gauge theory. This corresponds
to a six dimensional N = (2, 0) with (symplectic) Majorana-Weyl supercharges.21

19An An theory is realized by taking n+ 1 parallel M5 branes.
20See Appendix B of [52] or the first section of the chapter “Supergravity, Brane Dynamics and String Duality” in

[46] for detailed analyses.
21We used a top-down approach in deriving the supercharges of the 6d theory. We could have also used a bottom-

up approach, starting with two six-dimensional Weyl supercharges[?]. The R-symmetry group of the (∈, ′) theory,
U(2), would then have been enhanced to USp(4) by the symplectic Majorana constraint one can impose on charge
conjugates. Note that this enhancement is possible because the supercharges and their charge conjugates are of the
same chirality.
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The sixteen supercharges, acting on the vacuum, generate sixteen states comprising the so-called
tensor multiplet. It can be seen to consist of five scalars, four Weyl fermions and a spin 1 particle
corresponding to an antisymmetric tensor boson Bµν whose field strength is a self-dual three form.
See Table 4.1 for the representations they form under the helicity group SO(4) ∼= SU(2) × SU(2)
and the R-symmetry SO(5) ∼= USp(4). Note that although the field strength corresponding to the

tensor boson (3, 1; 1)
Weyl fermion (2, 1; 4)

scalars (1, 1; 5)

Table 4.1: Representations of the field content of the 6d (2, 0) theory under the
helicity group SO(4) ⊂ SO(5, 1) and the R-symmetry group SO(5) ∼= USp(4).
Note that the number of fermionic and bosonic degrees of freedom matches.

tensor boson has ten independent components, the boson transforms only under an SU(2) ⊂ SO(4)
helicity subgroup corresponding to three physical polarizations. The five scalars are understood as
the degrees of freedom associated to the position of the M5 brane in the transverse R5, while the
fermions arise as Goldstinos associated to the broken supercharges of 11-dimensional M-theory[?].
Upon dimensional reduction from six to four dimensions, the six dimensional self-dual field strength
will be related to the four dimensional field strength as:

H5µν = Fµν , H6µν = F̃µν (4.4.3)

Due to self-duality of H only one U(1) field strength arises in the dimensional reduction.
To arrive at the four dimensional theory characterized by the Gaiotto and Seiberg-Witten curve,

the following dimensional reduction was proposed in [29]. We compactify the theory on Cn,g, a Rie-
mann surface describing the particular quiver theory we are interested in. Of the global symmetries,
only a subgroup remains:

SO(3, 1)× SO(2)C × SO(3)R × SO(2)R
∼= SU(2)× SU(2)× SO(2)C × SU(2)R × SO(2)R

Note that the splitting of the R-symmetry is by choice for reasons which will become clear below.
Under this decomposition the supercharges transform as:(

(2, 1) 1
2
⊕ (1, 2)− 1

2

)
⊗
(

2 1
2
⊕ 2− 1

2

)
+

where we have decomposed all groups in SU(2) and SO(2) groups. The subscripts denote the charges
of the representations with respect to the SO(2) groups.

We want to twist the theory as to obtain supercharges on four-dimensional spacetime which
are invariant under SO(2)C holonomies of the Riemann surface. This is achieved by twisting the
holonomy group as SO(2)′C = ∆ (SO(2)C × SO(2)R), leading to the global symmetry: SO(3, 1) ×
SO(3)R × SO(2)′C . The supercharges now transform as:

(2, 1, 2)1 ⊕ (2, 1, 2)0 ⊕ (1, 2, 2)0 ⊕ (1, 2, 2)−1 (4.4.4)

The supercharges in the representations with charge 0 with respect to the twisted SO(2)′C holonomy
algebra are labelled by two SU(2) indices: QαA, Q̄

α̇
A. Here, α, α̇, A = 1, 2 are the indices corre-

sponding to the chiral and antichiral part of the Poincaré group and the R-symmetry respectively.
This indeed provides us with the eight real supercharges of four-dimensional N = 2 supersymmetry.

From the twisted superalgebra, it can be seen that chiral operators in the gauge theory correspond
to holomorphic sections on the Riemann surface. This is indeed the relation between the (2, 0)
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Figure 4.4.1: Lifts of simple arcs or closed curves on the Riemann surface Cn,g to
the Seiberg-Witten curve. The points at which the arc end are the branch points
of Σ, and should not be mistaken for punctures of the Riemann surface. Indeed,
although the UV data depends only on the Gaiotto curve, the BPS masses as
obtained from the SW curve depend also on the zeroes of φ2(z). Degenerations
of the SW curve are correlated with the degenerations of the Riemann surface,
as explained in Section 4.3.

differentials and the Coulomb branch parameters ui we described in the previous sections. The
SO(2)R charge of the Coulomb branch parameter becomes the holonomy charge of the quadratic
differential after the twist. For more details on this, the reader is referred to [20] and [29].

From the M-theory perspective, the four dimensional A1 quiver theories are described by two
M5 branes extending in R3,1. Furthermore, they wrap a Riemann surface of genus g while being
intersected at n points t = ta by transverse M5 branes, wrapping C∗ and R3,1. This gives the
Seiberg-Witten curve in (x, z) ∈ T ∗Cn,g as a cover of a punctured Riemann surface Cn,g.

22 At low
energy the transverse M5 branes decouple and are visible only as codimension two defects on the
Riemann surface. The curve describing the low energy theory, the positions of the M5 branes, is
given by:

x2 = φ2(z) (4.4.5)

with appropriate poles at the punctures. Furthermore, it is assumed that the four-dimensional
limit of the reduction depends only on the complex structure of the Riemann surface. That is, the
metric on the surface to which the six dimensional theory is sensitive, is of no relevance to the four
dimensional dynamics.

M2 branes are suspended between the parallel M5 branes which project onto the Riemann surface
as strings. This leaves the possibility for two possible types of strings: arcs between punctures or
simple closed curves. On the Seiberg-Witten curve these curves lift to a closed loop or two closed
loops respectively. These should represent M2 brane boundaries, such that we find the allowed
topologies for the M2 brane is either a disc or a cylinder (annulus). See Figure 4.4.1. The disc
represents BPS states from hypermultiplets whereas the cylinder topology naturally describes W-
bosons. This was first noted in [40] and [31].

This concludes our discussion of the M-theory in construction in Gaiotto’s light. Many more
technical details associated to this construction and translations from the 6d to 4d theory can be
found in [20].

4.5 Generalizations

So far, we have extensively discussed Gaiotto dualities and their origin in the case of SU(2) gauge
groups. In this section we will discuss the generalization to gauge groups SU(3) and SU(N). We
will focus on qualitative and quantitative very much alike the first three sections of this chapter.

22The assumption here is that the reduction of the M5 branes on the cylinder is equivalent to the reduction on
the sphere with two extra punctures. In other words, the punctures at t = 0,∞ on the sphere are equivalent to the
punctures created by the transverse M5 branes.
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However, the analysis will be considerably reduced to the mere highlighting of structures appearing.
For full details, we refer to the original of Gaiotto [29].

4.5.1 T(f1,f3),g[A2]

The simplest SCFT with a rank 2 gauge group is the theory with SU(3) gauge group coupled to six
flavours in the (anti)fundamental representation, i.e. six hypermultiplets each constituting a 3⊕ 3̄.
The theory has a U(6) flavour symmetry which does not enhance because representations of SU(N)
for N ≥ 3 are complex.

This theory does not share the S-duality properties of SU(2) Nf = 4. Instead of being fully
SL(2,Z) invariant, it is only invariant under a subgroup Γ0(2) ⊂ SL(2,Z) as found in [48]. This
implies the existence of an infinite coupling point in the moduli space, which a priori is not related to
some dual description á la Nf = 4. However, only recently Argyres and Seiberg found a surprising
interpretation of the infinite coupling point in [10]. They showed evidence that at the infinite
coupling point, a weakly coupled SU(2) gauge theory emerges. This gauge group is coupled to one
fundamental hypermultiplet and an isolated rank 1 SCFT with E6 flavour symmetry by gauging the
SU(2) part of the SU(2) × SU(6) ⊂ E6 maximal subgroup.23 Note that the global symmetries of
the theories match: U(6) ∼= SU(6) × SO(2). For more details about the evidence for this duality,
we refer to the original article [10]. This new type of duality is called Argyres-Seiberg duality.

Gaiotto’s insight was to identify, as in the SU(2) case, building blocks to build arbitrarily compli-
cated A2 superconformal field theories and relate them again to certain punctured Riemann surfaces.
Although we will first use Argyres-Seiberg duality to motivate the construction, the identification
of the quiver theories with certain Riemann surfaces will in fact allow us to derive Argyres-Seiberg
duality from the more familiar A1 S-duality.

To identify the building blocks for A2 theories, we start with SU(3)3 gauge theory with flavour
symmetry U(1)4 × SU(3)2 as depicted in Figure 4.5.1.24 Due to the fact bifundamentals live in a
(3, 3̄)1 ⊕ (3̄, 3)−1 representation, they provide three hypermultiplets to either of the gauge groups
they are coupled to. Together with the fundamentals then, all gauge couplings are exactly marginal.

Keeping the gauge couplings at the first and last node very weak, we can imagine bringing the
middle gauge coupling towards strong coupling. We then perform an Argyres-Seiberg duality and
arrive in a new weakly coupled theory. In the dual diagram, we have split the SU(6) maximal flavour
symmetry subgroup into a subgroup SU(3)×SU(3) ⊂ SU(6) and identify these with the very weakly
coupled gauge groups of the original theory. Note that the U(1) subgroups of the bifundamentals
in the original quiver now appear as (a combination of) the SO(2) flavour symmetry of the single
fundamental and the commutant U(1) of the SU(3)×SU(3) ⊂ SU(6). Taking the SU(2) and SU(3)
couplings to zero, the single fundamental decouples and we obtain an object with a naive flavour
symmetry of SU(3)× SU(3)× SU(2)× U(1). That is, we now have a representation:

(3, 3̄, 2)1 ⊕ (3̄, 3, 2)−1

We would have expected to obtain the isolated rank 1 theory with E6 flavour symmetry. The misstep
resides in the fact we have only considered a flavour symmetry subgroup, while forgetting about the
2⊗ 20 additional generators of E6.

It turns out that the SU(2)× U(1) combines with those additional generators, that are singlets
under the SU(3)× SU(3), to form an additional SU(3) symmetry. The group SU(3)a × SU(3)b ×
SU(3)c is indeed contained in E6, as can most easily seen from the (extended) Dynkin diagram in
Figure 4.5.4. The matter representations under this subgroup read:

(3a, 3b, 3c)⊕ (3̄a, 3̄b, 3̄c)

23The missing generators of E6 can be represented in a 2⊗20 representation of SU(2)×SU(6). Indeed, the number
of generators matches: 78 = 3 + 35 + 40.

24N fundamental flavours carry an SU(N) × U(1) symmetry, while bifundamentals only carry a U(1) flavour
symmetry in the case of SU(N), N ≥ 3 gauge groups.
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Figure 4.5.1: Generalized quiver diagram of SU(3)3 theory and its Argyres-
Seiberg dual theory. The filled dots represent SU(3) gauge groups whereas open
dots represent the gauged SU(2) ⊂ SU(3). Furthermore, we use the number 1
and 3 to represent a U(1) and SU(3) flavour symmetry respectively. One has to
keep in mind an extra U(1) flavour symmetry in the gauged SU(2), corresponding
to the commutant U(1) of the SU(3)× SU(3) ⊂ SU(6).

Figure 4.5.2: Building blocks for T(f1,f3),g[A2] theories. The 1 and 3 stand for a
U(1) and SU(3) flavour symmetry respectively. Next to the gauging of diagonal
SU(3) flavour symmetries, one can also gauge any SU(2) ⊂ SU(3) and couple it
to a single fundamental hypermultiplet. On the right, a naively non-conformal
theory is shown. It is conformal, since the trivalent vertex on the right is already
the isolated SCFT which provides only three flavours to the gauge group it is
coupled to.

Weakly gauging two of the SU(3) flavour symmetries of the E6 theory gives back the right super-
conformal quiver in Figure 4.5.1. We conclude that gauging an SU(3) flavour symmetry of the E6

theory provides three fundamental hypermultiplets to the new gauge group, precisely as does the
weak gauging of the flavour symmetry of a bifundamental block.25 Hence, we can use the E6 theory
and the bifundamental block to build superconformal field theories.

The two quivers associated to the bifundamental block and the E6 theory are shown in Figure
4.5.2. The crucial observation is that all the three SU(3) ⊂ E6 subgroups are identical, again
manifest from the extended Dynkin diagram in Figure 4.5.4. By gauging any flavour SU(3) of an
E6 with either another E6 or a bifundamental block, the resulting theory will be conformal. Gauging
any SU(2) subgroup of an SU(3) flavour symmetry and coupling it to a single fundamental will keep
the quiver conformal as well.

This insight opens up a huge zoo of new superconformal theories, and many duality relations
among them. In fact, Gaiotto has conjectured a simple classification to determine all dual theories.26

One simply counts the number of U(1) flavour symmetries, f1, and SU(3) flavour symmetries, f3.
As usual, the loops in the quiver are denoted by g. The claim is that all possible topologies of quiver
diagrams characterized by these three numbers are weakly coupled descriptions of a single theory

25These statements are checked by explicit calculations. See [17] and references therein.
26This conjecture is checked in his paper [29] by determining the Seiberg-Witten curve of a particular theory using

the M-theory construction, and checking whether the dual theories match all the possible cusps/degenerations of the
curve, as performed in the previous section for the A1 case.
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T(f1,f3),g[A2]. The space of exactly marginal couplings of the theory coincides with the moduli space
of a Riemann surface with two types of punctures: M(f1,f3),g. S-duality acts on the punctures as a
permutation group on equal type punctures.

We call the punctures associated to U(1) flavour symmetries type I punctures while the punc-
tures associated to SU(3) flavour symmetries the type III punctures. Note that the E6 theory is
represented by a thrice type III punctured sphere, while the bifundamental block is represented by a
sphere with two type III punctures and one type I puncture. Gauging diagonal subgroups amounts
to the cutting and sewing procedure described in Section 4.2 of type III punctures, except when one
gauges an SU(2) ⊂ SU(3) and couples it to a single fundamental. In this case, the gauging amounts
to the splitting of an f3 puncture into two f1 punctures.

Degenerations are twofold:

1. An SU(3) gauge group becomes very weakly coupled. It is not difficult to see, for instance
from Figure 4.5.1, that this implies the collision of a certain number of type I punctures with
one Type III puncture. These punctures merge into a single type III puncture associated to
the new SU(3) flavour symmetry. Alternatively, from a general quiver one can always gauge
an SU(2) ⊂ SU(3) of all flavour symmetries such that the resulting Riemann surface contains
only type I punctures. Indeed, this amounts to the replacement of all type III punctures by
two type I punctures, as above. Then, a weakly coupled SU(3) corresponds to the collision of
n type I punctures for n ≥ 3.

2. The special case of the collision of two type I punctures corresponds to a very weakly coupled
SU(2) gauge group in the quiver.27 Indeed, this is just the observation from Section 4.2 that
the collision of two type I punctures corresponds to a very weakly coupled SU(2) gauge group.
In the decoupling limit of the SU(2) group, an SU(3) flavour symmetry is left, whereas the
sphere that splits off has two type I punctures plus an ‘irregular’[17] puncture corresponding
to the decoupled SU(2) ⊂ SU(3).

3. At last, there may be collisions between two (or more) type III punctures. In some particular
dual frame, this could correspond to an SU(3) gauge group becoming very weakly coupled and
an E6 theory splits off.

A remarkable consequence of the Riemann surface interpretation is that Argyres-Seiberg duality
derives from S-duality of SU(2) gauge groups. Namely, consider the Nf = 6 theory. It is represented
by the Riemann surface in Figure 4.5.3. The collision of a type I with a type III puncture is easily
identified with the τ → i∞ limit. However, the strong coupling point of the SU(3) is reached by
colliding the two type I punctures. As noted above, the collision of two type I punctures implies an
SU(2) gauge group is becoming very weakly coupled. But this SU(2) gauge group is not manifest in
the original quiver. Instead, a weakly coupled SU(2) gauge group emerges when the original SU(3) is
strongly coupled. Moreover, upon decoupling the SU(2) a thrice type III punctured Riemann surface
appears.28 See Figure 4.5.3. The two lower type III punctures represent the SU(3)×SU(3) ⊂ SU(6)
full Nf = 6 flavour symmetry. The third type III puncture is associated to another SU(3) flavour
symmetry. However, these three punctures are equivalent. This means that any pair of the remaining
SU(3) flavour groups are in fact part of an SU(6) flavour symmetry. The only way for these pairings
to be possible is in fact when the full flavour symmetry is E6. This is most clear when one looks
at the (extended) Dynkin diagram. See Figure 4.5.4. We conclude that S-duality of SU(2) and the
equivalence of SU(3) punctures directly implies a weakly coupled dual description of the infinite

27Type I punctures are indistinguishable from the SU(2) punctures, understood as the fact that the structure of
punctures is in direct correspondence with the size of the Cartan subalgebra. We will have more to about this in the
next section.

28The reason why a new type III puncture arises is explained by a careful analysis of degenerations of quivers with
superconformal ‘tails’. We will come back to this in the next section. One may also consult sections 12.2 and 12.3 of
[65].
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Figure 4.5.3: Two weak coupling limits of the Nf = 6 theory interpreted as
collisions of punctures on the Riemann surface C(2,2),0. The dots represent the
U(1) flavour symmetries, whereas the squares the SU(3) flavour symmetries. On
the right, the full degeneration of the middle Riemann surface is shown. The star
represents the irregular puncture corresponding to a decoupled SU(2) ⊂ SU(3).

Figure 4.5.4: Extended Dynkin diagrams for E6. Deleting any cell provides
the Dynkin diagram of a maximal subgroup. On the top, the maximal SU(3)3

subgroup is manifest. On the bottom, we see that any pair of SU(3)’s can be
embedded in an SU(6) while leaving one SU(2).

coupling point of Nf = 6 theory which has E6 flavour symmetry, of which an SU(2) subgroup is
gauged. This is in full agreement with the original arguments of Argyres in Seiberg.

Similar games can be played with more general quiver theories to understand the emergence of
E7 and E8 theories as dual descriptions of simple linear quivers consisting only of A type gauge
groups and fundamental hypermultiplets, confirming the conjecture of Seiberg and Argyres in [10].
Gaiotto showed already in his paper [29] how to find the E7 theory. See also [66] of Tachikawa
for a particular clear explanation how the E6,7,8 theories appear as weakly coupled descriptions of
ordinary linear quivers.

We briefly mention some quantitative aspects of the T(f1,f3),0[A2] theories. The generic form of
the Seiberg-Witten curve is given by:

x3 = φ2(t)x+ φ3(t) (4.5.1)

As usual, the Seiberg-Witten differential is λ = xdt, φ2(t)dt2 is a quadratic differential and φ3(t)dt3

cubic differential on the Riemann surface C(f1,f3),0. In this sense, the Seiberg-Witten curve is
parametrized as a threefold cover Σ of T ∗C(f1,f3),0. Explicit expressions for these differentials in the
massless case are:

φ2(t) =
U

(2)
f1+f3−4(t)

∆f1(t)∆f3(t)
(4.5.2)

φ3(t) =
U

(3)
f1+2f3−6(t)

∆f1(t)∆2
f3

(t)
(4.5.3)
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while in the massive case we in general have:

φ2(t) =
P

(2)
2f1+2f3−4(t)

∆2
f1

(t)∆2
f3

(t)
(4.5.4)

φ3(t) =
P

(3)
3f1+3f3−6(t)

∆3
f1

(t)∆3
f3

(t)
(4.5.5)

Let us comment briefly on the form. First of all, the (2, 3) superscripts on the U polynomials denote
the Coulomb branch parameters associated to the rank 2 gauge theory: u2

i = 〈Φ2
i 〉 and u3

i = 〈Φ3
i 〉.29

The subscripts of these polynomials simply denote the degree and can be traced back to the number
of SU(2) and SU(3) gauge groups and the number of E6 theories in the quiver.

More interestingly, we see that the quadratic differential does not ‘see’ the special punctures; it
has simple poles at all punctures. The cubic differential does distinguish between the two types, and
has double poles at the type III punctures. Note that this does not lead to a non-vanishing residue
of the Seiberg-Witten differential. However, it does make sure that when an SU(3) group decouples,
the resulting flavour symmetry has two independent mass parameters, as required by the Cartan.

If an SU(2) subgroup of all SU(3) flavour symmetry groups is gauged, we can simply replace all
type III punctures by two type I punctures and the cubic will have simple poles all the same. Notice
then that the gauge coupling moduli space will be the moduli space of a Riemann surface with equal
punctures: i.e. our familiar Mf1+f3,0. From this it is quite clear the UV moduli spaces carry in
fact little information about the theory in question, as a complicated theory consisting of isolated
E6 rank 1 theories and SU(3) and SU(2) gauge groups in fact has the exact same moduli space as
a ‘simple’ linear A1 theory. The additional information about the possible fixtures and cylinders
appearing whenever the Riemann surface degenerates is encoded in the Seiberg-Witten curves. This
interplay of the UV and IR is beautifully contained in the cotangent bundle of the Riemann surface.

This concludes the essence of the quantitative analysis of the T(f1,f3),g[A2] theories. There are
many subtleties we have overstepped, and we have not considered higher genus quivers. For this,
the reader is referred to the original article [29].

4.5.2 T(fa),g[AN−1]

In this section, we briefly mention some aspects of the analysis of more general quivers with A type
gauge groups. Quite surprisingly, Gaiotto has found out much about the structure of the moduli
spaces of these theories and the possible dual frames by straightforwardly generalizing his approach
to A1,2 quivers. The mere fact that this generalization seems to work demonstrates the extreme
power of the Gaiotto curves.

Since the Seiberg-Witten curves are already fully available for the case we consider, linear quivers
of unitary gauge groups, let us point out what is new in the analysis. Again, new information is
contained in the structure of punctures on the Gaiotto curve. Let us first state the curve for
generalized SU(N) theories:

F (x, z) = xN −
N∑
i=2

xN−iφi(z) (4.5.6)

This curve is an N fold cover of the Riemann surface, on which the Seiberg-Witten differential
λ = xdz is defined. The φi(z)dz

i are degree i differentials which have poles at the n punctures of
the Riemann surface Cn,g. For a massless curve, these poles are restricted to be of order pi < i.
Inserting mass deformations gives the differentials poles of order pi = i. The residue of the Seiberg-
Witten differential at a particular puncture will be some linear combination of the mass deformations

29It is again a straightforward application of the Riemann-Roch theorem to find that the dimension of the space of
quadratic respectively cubic differentials equals the number of dimension 2 and 3 operators parametrizing the Coulomb
branch of the gauge theory. For the explicit formula, see [17].
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Figure 4.5.5: A superconformal SU(6) quiver with tails. The left tail describes a
full puncture with SU(6) flavour symmetry, described by the associated Young
tableau. The right tail corresponds to the partition 6 = 2 + 2 + 2 producing a
Young tableau with an SU(2) symmetry, in accordance with the insertion of the
extra two fundamental flavours.

at that puncture. We note that for an N-fold cover, λ in general has N residues which have to sum
to zero. Indeed, this gives N − 1 independent mass parameters in accordance with the rank (Cartan
weights) of an SU(N) flavour symmetry. This is also reflected in the absence of an xN−1 term in the
Seiberg-Witten curve. The explicit form of the φi is given by appropriate generalizations of (4.5.5).

We have already seen in the A2 case one has to deal with different types of punctures. In the
SU(N) case, we will generalize the idea of a particular puncture on a Riemann surface. Consider a
mass deformed curve. Its Seiberg-Witten differential has n simple poles at the punctures. On Σ, at
every puncture it has a residue at all N sheets giving a maximum of N − 1 independent residues. If
this is the case, one has flavour symmetry group SU(N). However, some of these residues may be
equal signifying a flavour symmetry with smaller rank.

For the quiver theories we consider, there is a simple way to make manifest the correct flavour
symmetry at a particular puncture. A general A type superconformal quiver is a linear quiver with
n gauge groups:

SU(k1)× · · · × SU(ki)× SU(N)j × SU(ki+j+1)× · · · × SU(kn)

For this quiver to be conformal at every node the equation 2kl = kl−1kl+1 +ml should hold, where
ml are possibly additional fundamentals and k0 = kn+1 = 0. Furthermore, without loss of generality
we take ki, ki+j+1 < N . The middle piece is a generic SU(N) quiver, whereas the two ends are the
tails. The ranks of the gauge groups in the tails must monotonically decrease towards the ends for
the quiver to remain conformal.

Information about the flavour symmetry of this quiver is contained in the differences sl = kl−kl−1

for 0 ≤ l ≤ i+ 1 and s′l = kl − kl+1 for i+ j ≤ l ≤ n+ 1. Indeed, sl counts how many fundamentals
have to be added at each node l for the quiver to be conformal. Restricting the story to one tail,
we note that

∑i+1
l=0 sl = N , hence sl provides a partition of N . Furthermore, sl can be seen to be

monotonically increasing. We can therefore naturally associate a Young diagram to the partition
made by sl, where sl determines the width of a row and we build the Young diagram top-down.
The symmetry associated to such a Young diagram is G = S (

∏
l U(nl)) with nl the number of

columns with equal height. The S removes a diagonal U(1). This construction precisely determines
the correct flavour symmetry for the punctures and is illustrated in Figure 4.5.5.

The construction can be applied to any linear quiver of unitary gauge groups. The corresponding
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Figure 4.5.6: Dual weakly coupled description of the strong coupling point of
Figure 4.5.5. The collision of five basic punctures implies an SU(5) tail is weakly
coupled. Decoupling it leaves a puncture of partition 6 = (6 − 5) + 1 + . . . + 1;
a full puncture, implying it was weakly gauged in an SU(6) flavour symmetry
group. The global symmetries match: U(6)×U(2)×U(1)3 ∼= SU(6)× SU(2)×
U(1)4×U(1) where the last U(1) factor stems from the ungauged U(1) ⊂ SU(6)

Riemann surface will have two generic punctures accompanied by two additional simple punctures.
Furthermore, the number of bifundamentals determines the number of additional simple punctures.

The moduli spaces of these theories are rich and can be conveniently studied by looking at
collisions of various types of punctures on the Riemann surface. For instance in the case of an
SU(N) quiver theory with generic tails, the collision of m < N − 1 punctures corresponds to the
weak coupling limit of an SU(m) gauge group coupled to a superconformal tail consisting only at
the end of single hypermultiplet in the fundamental of SU(2). This leaves behind a puncture of
SU(m) flavour symmetry, corresponding to the partition N = (N −m) + 1 + . . .+ 1. This happens
in Figure 4.5.5 when two or four simple punctures collide.

More interesting is when m = N−1 punctures collide. This corresponds to some strong coupling
limit of an SU(N) group. In the Figure 4.5.6, the total number of simple punctures is 5. The
collision of all five punctures produces a sphere with two full punctures and the SU(2) Young
tableau. However, the collision of five punctures we also know to correspond to a weakly coupled
superconformal SU(5) tail. We see a generalization of Argyres-Seiberg duality, where the SU(5) is
weakly gauged within the SU(6) flavour symmetry subgroup of some interacting SCFT with full
flavour symmetry SU(6)2 × SU(2). Unlike the original Argyres-Seiberg duality where the SU(6)×
SU(2) subgroup enhances to a full E6 flavour symmetry, this flavour symmetry is not expected to
enhance. The dual quiver is depicted in Figure 4.5.6.

We want to finish by mentioning the already famous TN theory or fixture. Consider a linear
quiver of N − 2 SU(N) gauge groups, with at both ends N fundamentals. The associated Riemann
surface has N−1 simple punctures and two full punctures. The collision of N−1 punctures is a strong
coupling limit of the original quiver, while in a dual description a weakly coupled superconformal
SU(N−1) tail appears. As usual, we interpret this as the statement that there was an SU(N−1) ⊂
SU(N) weakly gauged which splits of as a tail [N −1]×SU(N −2)× . . .×SU(2) coupled to a single
fundamental, while leaving a triangular SU(N)3 theory. The triangular theory is called TN and
represents an interacting superconformal field theory with an flavour symmetry subgroup SU(N)3,
which does not enhance generically.

There are simple rules to obtain the correct degrees of the poles of the degree i differentials at
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a particular puncture, depending on whether one considers the massless or massive Seiberg-Witten
curve. For these rules, we refer to [17]. In the same paper, the interested reader may also find an
extensive discussion on possible degenerations of the above described quivers, punctures that appear
after a full degeneration and the allowed punctures on the set of thrice punctured spheres, i.e. the
allowed building blocks for these quiver theories.



Chapter 5

Summary and Outlook

In this thesis the geometrical nature of N = 2 super Yang-Mills theories stood central. In chapter
one, the essential ingredients were provided which underlie the celebrated exact solution of the low
energy effective pure SU(2) action by Seiberg and Witten. The geometrical nature of this theory
emerged from the smoothness of its quantum moduli space, which was shown to be equivalent to the
moduli space of a certain elliptic curve. In particular, the monodromies of the gauge coupling and
the physical requirement that Imτ(u) > 0 suggested its identification with the modular parameter
of the elliptic curve. This insight turned out to be sufficient to solve for the full low energy theory.
A fundamental aspect of the theory is that although the theory is smoothly connected all over the
moduli space, appropriate physical descriptions require different local coordinates on the moduli
space or in more physical terms: electric-magnetic dual descriptions. Whereas physics described in
a Lagrangian is inescapably a local construct, the Seiberg-Witten curves give a first indication of
how to think about a global description of gauge (a family of) theories.

The solution begged for the natural question: does this construction generalize to more general
N = 2 gauge theories? The answer turned out to be positive. The inclusion of hypermultiplets
showed a much richer singularity structure on moduli space leading to unexpected physical con-
clusions, primarily attributed to an intricate web of walls of marginal stability. Perhaps the most
accessible, yet interesting theory is the theory with four flavours of hypermultiplets. Due to its
vanishing beta function a more direct relation between the space of abelian IR and non-abelian UV
theories could be obtained. In fact, the spectrum of the IR theory shows signs of SL(2,Z) duality
as long as flavour symmetry representations are appropriately permuted. The absence of lines of
marginal stability guarantee the semiclassical BPS spectrum remains intact as one moves towards
strong coupling, in contrast to the theories with less flavours. The duality properties of the IR theory
and its spectrum can be regarded as rudimentary evidence of duality in the non-abelian UV theory.
More evidence, or eventually proof, would be interesting in the sense it would enable us to better
understand the microscopic dynamics of non-abelian theories.

Interestingly, the class of theories described by elliptic curves greatly enhanced when Witten
discovered the Seiberg-Witten curves could be realized in extra space dimensions in the context
of M-theory. Moreover, M-theory naturally incorporates particular details of the four dimensional
theories, which from the four-dimensional perspective appeared somewhat ad hoc.

Gaiotto showed an even more thrilling aspect of the M-theory construction. The Seiberg-Witten
curves which describe the physics on the Coulomb branch can be understood as covers of a punctured
Riemann surface. There is even more structure to it, as the Seiberg-Witten curves are realized as
a collection of k-differentials living in the kth symmetric product of the cotangent bundle of the
Riemann surface where k = 1, . . . , N for a general quiver gauge theory with largest rank group
SU(N). An intuitive idea about the boundaries of the moduli space was given by conjecturing
the degenerations of the base Riemann surface correspond to all weakly coupled descriptions of the
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theory. This led to the discovery of unexpected dual descriptions of a single theory, in which for
N > 2 also non-Lagrangian theories appeared. At the very least, it is remarkable that one starts
with a seemingly innocent gauge theory and ends up with completely new SCFTs which would have
been hard to guess as a dual description. It would be interesting to better understand these non-
Lagrangian theories, as this might teach us about other paradigms than weakly coupled Lagrangian
analysis in which to describe physics.

On the one hand, it is satisfying that M-theory knows so much about complicated structures ap-
pearing gauge theories and allows relative ease in obtaining results through the brane constructions.
On the other hand, of course, extra dimensions still reside in the metaphysical corner of theoretical
physics. Especially in the light of emergent geometry and gravity from CFTs in recent years, one
might wonder about the implication arrows in the case of the M-theory description and the four
dimensional gauge dynamics. In particular, does the geometry emerge from the gauge dynamics or
are gauge dynamics fundamentally geometric?

Gaiotto’s perspective on N = 2 gauge theories has opened many doors. We try to present a
list of references which originate from and have been inspired by [29]. Since this is a very active
area of research the list should not be understood as being up-to-date, due to the simple fact the
author has not been able during the thesis to reach cutting-edge science. Rather, he presents a list
of references, some perhaps a bit dated, which are connected to [29] and deserve further study. In
no particular order:

1. One of the first papers following N = 2 dualities was the proposal for a rather interesting
correspondence, the already celebrated AGT correspondence [36]. The correspondence states
that integrals over partition functions of the 4d A1 quiver gauge theories obtained by reducing
the 6d N = (2, 0) on a Riemann surface Cn,g are equivalent to correlators in 2d Liouville field
theories defined on the same Riemann surface. This correspondence has spurred much research
into possible generalizations and also explanations of the origin of the correspondence. For
instance, a similar relation between the superconformal AN−1 theories and Toda conformal
field theories was found shortly after the original discovery[75], while a recent claim for a proof
of the correspondence can be found in [38].

2. Holographic duals of quiver gauge theories have been described in [30]. It would be interesting
to see how non-Lagrangian SCFTs, appearing in the large N-limit, are described in terms of
their gravity duals.

3. The phenomenon of wall-crossing in N = 2 gauge theories has been studied in this new
language. A series of papers describes the development. For instance, see [20].

4. Other interesting directions include the breaking of supersymmetry to N = 1 by giving a mass
to the chiral multiplet, or coupling only a N = 1 vector multiplet to a theory. This has been
investigated in [22] in the context of the TN theory. Understanding the theories with less
flavours in the context of the Riemann surfaces was described in [28].

5. Lastly, a recent classification of UV complete N = 2 gauge theories was given in [14]. Also, it
is mentioned of each of theories whether they have a Seiberg-Witten solution.



Appendix A

Electric-magnetic Duality

A peculiar symmetry of the source free Maxwell equations is the symmetry in the exchange of electric
and magnetic fields. Although the physical relevance of electric-magnetic duality in the Maxwell
action is as of yet unclear, the spontaneously broken non-abelian gauge theories studied in this thesis
also exhibit a form of electric-magnetic duality on the Coulomb branch. In the gauge theories we
study this duality is more natural because magnetic monopoles appear in the spectrum. Since the
dualization of the gauge theories is very similar to the ordinary Maxwell duality, we briefly review
Maxwell duality in this appendix.

Consider the classical Maxwell action given by:

S =

∫
dx4 1

g2
FµνFµν +AµJ

µ
e (A.0.1)

with Fµν the antisymmetric field strength tensor and where we have added an electric source.
Determining the equations of motion we find the inhomogeneous Maxwell equations, while we write
down the homogeneous equation as well:

∂µF
µν = Jνe

∂µF̃
µν = 0 (A.0.2)

Here, F̃µν = 1
2εµνρσF

ρσ is the Hodge dual of the field strength. The homogeneous equation is non-
dynamical and is automatically satisfied by the definition of the field strength in terms of the vector
potential Aµ:

Fµν = ∂µAν − ∂νAµ (A.0.3)

We may treat the field strength as unconstrained if we instead impose the Bianchi identity via a
Lagrange multiplier ADµ in the action:

S =

∫
dx4 1

g2
FµνFµν +ADν ∂µF̃

µν (A.0.4)

On the level of the partition function the Lagrange multiplier implies a change of the functional
integration measure:

∫
DFµνDADµ instead of

∫
DAµ. In the presence of a magnetic source, the

Maxwell equations would look like:

∂µF
µν = Jνe

∂µF̃
µν = Jνm,
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We now recognize the second term in (A.0.4) as corresponding to a (magnetic) photon coupling to a
magnetic current. Indeed, interpreting ADµ as an actual dynamical field we may integrate the source
term by parts. A Gaussian functional integral over Fµν remains. Performing it, we find:

S =

∫
dx4 1

g2
D

FµνD FDµν +ADν ∂µF
µν
D (A.0.5)

where now FDµν = ∂µA
D
ν − ∂νADµ and 1

gD
= g.

Comparing the action (A.0.1) with (A.0.5), we see few, yet important differences. First of all the
similarities between the two actions suggest an equivalent physical theory. The variables, however,
are fundamentally different in the sense that AD couples to magnetic charges and A couples to
electric charges. Furthermore, the magnetic theory has a coupling constant proportional to the
inverse of the electric theory, exhibiting a strong-weak duality.



Appendix B

Supersymmetry Multiplets and
Superfields Expansions

In this section we will discuss the N = 2 BPS representations: the vector multiplet and the hyper-
multiplet.

B.1 Vector and Hypermultiplet

The component fields of the vector multiplet are given by:

Aµ
λ ψ

φ

The multiplet consists of a massless vector, two Weyl fermions and a complex scalar. It can be
understood in N = 1 language as the union of a chiral and vector multiplet.

The component fields of the hypermultiplet are given by:

ψq
q q̃†

ψ†q̃

It consists of two complex scalars and two Weyl fermions.
The rows of the tables show the action of SU(2)R R-symmetry. Both multiplets are BPS satu-

rated, meaning they are annihilated by half of the N = 2 supercharges.

B.2 Expansion of Superfields

We will give the component expansions of the superfields. Conventions concerning factors of i, of 2
and minus signs differ in the literature. We adopt conventions from [5]. Other references are [27]
and [37]. Irrespective of the conventions, the structure of the expansions is the same and this is all
we are interested in.

The chiral multiplet is contained in the chiral superfield:

Φ(y, θ) = φ(y) + θχ(y) + θ2F (y) (B.2.1)

= φ(x) + θχ(x) + θ2F (x) + iθ̄σ̄µθ∂µφ(x)− i

2
θ2θ̄σ̄µ∂µχ(x) +

1

4
θ2θ̄2∂µ∂µφ(x) (B.2.2)
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where yµ = xµ − iθσµθ̄ and in the second line we expanded around xµ. F (x) is an auxiliary field
needed to obtain an off-shell realization of supersymmetry. This expansion is precisely the same for
the chiral superfields Q, Q̃ making up the hypermultiplet.

The vector multiplet is contained in the real superfield:

V (x, θ, θ̄) = −θ̄σ̄µθAµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ̄2θ̄2D(x) (B.2.3)

where we have calculated the vector field in a particular gauge, the so-called Wess-Zumino gauge.
Similarly as in the chiral multiplet, D is an auxiliary field. Due to the gauge, every term in the
vector superfield contains some power of the anticommuting coordinates and we can consider:

eV = 1− θ̄σ̄µθAµ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2

(
D +

1

2
AµA

µ

)
(B.2.4)

This particular form for the vector superfield is useful to describe interactions with chiral multiplets.
The gauge kinetic part is conventionally represented by the chiral superfield:

Wα = −iλα + θαD −
i

2
(σµσ̄νθ)α Fµν + θ2

(
σµ∂µλ̄

)
α

(B.2.5)

which obeys a reality condition. For more details, and the relation between V and W we refer to
[27].



Appendix C

Half Hypers, Bifundamentals and
Trifundamentals

In this section we provide the Lagrangians for a half-hyper multiplet and subsequently use it to write
down the Lagrangian for a trifundamental (half) hypermultiplet. Then, we take one decoupling limit
at a time to arrive via the bifundamental and fundamental Lagrangian to the superpotential for the
anfundamental. We follow the treatment as given in [34]. We use slightly different conventions: in
[34] the Lie algebra is defined in mathematical conventions: the generators are antihermitian. We
use physics conventions: hermitian generators.

As discussed in Section 2.3 and Section 3.8, a full N = 2 hypermultiplet for any gauge group is
represented by two chiral multiplets:

Qfh =

(
Q

Q̃∗

)
(C.0.1)

Our notation differs slightly from the one used in Section 2.4: we have redefined Q̃ → Q̃t. These
are the conventions of [34]. They are convenient especially to relate Q and Q̃ without the excessive
use of daggers and other confusing notation.

An obvious way to reduce the degrees of freedom of such a hypermultiplet is to remove one of
the chiral multiplets from which it is constructed. This is in a sense what one would call a half
hypermultiplet. However, the price will be high: we will lose a manifest N = 2 supersymmetry.
This loss of supersymmetry may be avoided by choosing a smarter constraint. We will relate Q and
Q̃ in what resembles a Majorana constraint on a spinor to lose the superfluous degrees of freedom.
To do just this, we define an antilinear involution τ . It is chosen to be antilinear since it has to
map a representation R to its complex conjugate R∗. By demanding invariance under τ of the full
hypermultiplet, we will obtain a half-hypermultiplet. Therefore, we want τ to be representation
preserving. Since R is pseudoreal, τ , being antilinear, preserves the representation if it also contains
a σ2. Then τ is defined as:

τ(Qfh) = σ2 ⊗ σI(Qfh)∗ (C.0.2)

Here, σI acts on the components of Qfh and reads:

σI =

(
0 −1
1 0

)
(C.0.3)

whereas σ2 acts on the gauge doublets, the components within Qfh. The complex conjugation has
to be taken after the action of σ2 ⊗ σI . One can work out the action of τ explicitly to find:

τ(Qfh) =
(
σ2Q̃ −σ2Q

∗) (C.0.4)
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From this one may easily see τ2 = 1. Hence, the eigenvalues of τ are ±1. From (C.0.4) it follows
that eigenvectors of τ obey Q̃ = ±σ2Q. The half-hypermultiplet, written as a full hypermultiplet,
is given by:

Qhh =

(
Q

±σ2Q
∗

)
(C.0.5)

with eigenvalues ±1 under τ .
We can then construct the Lagrangian for the half hypermultiplet by plugging in the constraint

(C.0.5) into the hypermultiplet Lagrangian from Section 2.3. We rewrite the kinetic term for Q̃
slightly, namely we transpose Q̃ and scale −2V → V to obtain:

S =

∫
dθ2dθ̄2

(
Q†eVQ+ Q̃te−V Q̃∗

)
+ 2
√

2Re

∫
dθ2

(
Q̃tΦQ

)
(C.0.6)

Let us apply the constraint in the kinetic term for Q̃:

Q̃te−V Q̃∗ = Qtσt2e
−V σ∗2Q

∗

= Qtσ−1
2 e−V σ2Q

∗

= QteV
t

Q∗

= Q†eVQ (C.0.7)

Here, we used the fact that the vector superfield is expanded in a basis of hermitian generators
Ta. Since the representation is pseudoreal, σ2Taσ2 = −T ∗a = −T ta. The total Lagrangian for a half
hypermultiplet then equals:

S =

∫
dθ2dθ̄2

(
2Q†eVQ

)
± 2
√

2Re

∫
dθ2

(
Qtσt2ΦQ

)
(C.0.8)

N = 2 supersymmetry is preserved; the supercharges now relate Q,Q∗ instead of Q, Q̃∗. It means
that the SU(2)R now acts on the doublet (q,±σ2q

∗); the quark and the antiquark are now in the
same supersymmetry multiplet instead of two separates.

Now, it is easy to construct a trifundamental half hypermultiplet, the building stone of the
Gaiotto construction of SU(2) quiver gauge theories. We simply couple the half hyper to three
SU(2) gauge fields:

S =

∫
dθ2dθ̄2

(
Q∗abce

(V1)a
a′Qa

′bc +Q∗abce
(V2)b

b′Qab
′c +Q∗abce

(V3)c
c′Qabc

′
)

±
√

2Re

∫
dθ2

(
Qabc(Φ1)aa

′
Q bc
a′ +Qabc(Φ2)bb

′
Qa c

b′ +Qabc(Φ3)cc
′
Qabc′

)
(C.0.9)

Notice one can lower and raise SU(2) indices with the ε tensor. We use this to rewrite the superpo-
tential for later convenience:

W = εbb
′
εcc
′
Qabc(Φ1)aa

′
Qa′b′c′ + εaa

′
εcc
′
Qabc(Φ2)bb

′
Qa′b′c′ + εaa

′
εbb
′
Qabc(Φ3)cc

′
Qa′b′c′ (C.0.10)

A half hypermultiplet in the trifundamental representation effectively provides four half hypers for
each of the gauge groups.

The Coulomb branch parameter associated to the symmetry breaking play the role of a bare mass
for the bifundamental hyper. Sending this parameter to zero can be interpreted in two ways. One
can say the gauge symmetry is restored and the situation has returned to the previous. However,
as explained in Section 3.8, we can also see it as causing an enhanced flavour symmetry. This
interpretation obviously holds only when the original gauge group was very weakly coupled. Both
enhanced symmetries are SU(2).
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Let us now see how we can reduce these trifundamentals to bifundamentals and fundamentals.
To reach a bifundamental we want to get rid of one of the gauge symmetries. Let us spontaneously
break the first gauge symmetry by setting (Φ1)aa′ = m1(σ3)aa′ . To rewrite the superpotential in this
form, we make use of two identities:

εbb
′
εcc
′
Qabc(Φ1)aa

′
Qa′b′c′ = −Qabc(Φ1)aa′Q

a′bc

= εbb
′
εcc
′
εa
′d′Qabc(Φ1)ad′Qa′bc

= m1Q
bc

2 Q1bc +m1Q
bc

1 Q2bc

= 2m1Q̃
bcQbc (C.0.11)

where we defined:

Qbc = Q1bc = −Q2
bc

Q̃bc = Q2bc = Q1
bc (C.0.12)

The remaining Yukawa couplings become in terms of (C.0.12):

εaa
′
εcc
′
Qabc(Φ2)bb

′
Qa′b′c′ = εcc

′
(
−Q1bc(Φ2)bb

′
Q2b′c′ +Q2bc(Φ2)bb

′
Q1b′c′

)
= −2εcc

′
Q̃bc(Φ2)bb

′
Qb′c′ (C.0.13)

Here we used the convention ε12 = −ε12 = −1. Thus, (C.0.11) and (C.0.13) give:

W = 2m1QbcQ̃
bc − 2εcc

′
Q̃bc(Φ2)bb

′
Qb′c′ − 2εbb

′
Q̃bc(Φ2)cc

′
Qb′c′ (C.0.14)

Interestingly, we have recovered a superpotential for a bifundamental hypermultiplet with bare mass
m1. It is easy to see that the kinetic terms also reduce to those of a bifundamental. After symmetry
breaking, we are left with an abelian vector multiplet. This means within the vector multiplet, there
will be no interactions since they all live in the adjoint. By N = 2 supersymmetry, in low energy,
there cannot be a coupling between the abelian vector multiplet and the bifundamental. Effectively
then, we reduced a full SU(2) gauge symmetry to a U(1) global symmetry. To this U(1) we may
associate the bare mas parameter. Setting it to zero corresponds from the bifundamental hyper
point of view as to an enhanced flavour symmetry. In this case, since the bifundamental is in a
real representation of the gauge groups, it has an enhanced flavour symmetry of USp(1) ∼= SU(2).
The derivation of this is very analogous to the derivation of the enhanced flavour symmetry of an
ordinary fundamental given in Section 3.8.

We continue to Higgs the second gauge group as well: (Φ2)bb′ = m2(σ3)bb′ . Instead of continuing
with the expression (C.0.14), we return to equation (C.0.10). We will massage it a little bit further
into a convenient form. Note that the first term may be rewritten as follows:

εbb
′
εcc
′
Qabc(Φ1)aa

′
Qa′b′c′ = −Q bc

a (Φ1)aa′Q
a′

b′c′

= Q bc
a (σ2) fa′(Φ1) aa′(σ2) ae Q

a′

b′c′

= (Φ1)a
′

aQ
abcQa′bc (C.0.15)

We use this notation now for both terms:

W = m1(σ3)a
′

aδ
b′

b Q
abcQa′b′c + δa

′

a m2(σ3)b
′

bQ
abcQa′b′c + εaa

′
εbb
′
Qabc(Φ3)cc

′
Qa′b′c′ (C.0.16)

The a and b indices should be read as flavour indices whereas the c index remains a gauge index.
We see that this Lagrangian corresponds to four half hypermultiplets or two full hypermultiplets
coupled to an SU(2) gauge field. The bare masses of the four half hypers are given by all possible
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combinations of ±m1 ±m2 as may be seen directly upon summing over the indices or recognizing a
tensor (Kronecker) product between the Kronecker delta and σ3. If the bare masses vanish, there is
an enhanced SO(4) flavour symmetry.

Finally then, let us also break the last SU(2) gauge symmetry by choosing: (Φ3)cc′ = m3(σ3)cc′ .
The superpotential becomes:

W = m1(σ3)a
′

aδ
b′

b δ
c′

c Q
abcQa′b′c′ + δa

′

a m2(σ3)b
′

bδ
c′

c Q
abcQa′b′c′ + δa

′

a δ
b′

b m3(σ3)c
′

cQ
abcQa′b′c′ (C.0.17)

All gauge indices have turned into flavour indices. For each chosen triple of SU(2) indices we have
a half hyper with mass ±m1 ±m2 ±m3 where for instance m1 +m2 +m3 corresponds to Q111.

The theory described by (C.0.17) has no kinetic terms. It is the T3,0 building block of Gaiotto
represented by Figure C.0.1. Notice that we can associate the mass parameters of the of the flavour

Figure C.0.1: Quiver representation of.

groups to the Coulomb branch parameters. The mass parameters break the flavour symmetry to its
Cartan subgroup.



Appendix D

Explicit Expression Quadratic
Differential

λ2 =

1
4

(
(m1 +m2)t2 + 1

a
1(

−1−
√

1−4a
2a

)2 (m3 +m4)

)2

(t− 1)2(t− q(a))2t2

−
(t− 1)(t− q(a))

(
m1m2t

2 + u
a

1(
−1−

√
1−4a

2a

) t+ 1
a

1(
−1−

√
1−4a

2a

)2m3m4

)
(t− 1)2(t− q(a))2t2

dt2

with

q(a) =
−1 +

√
1− 4a

−1−
√

1− 4a
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Populaire Samenvatting

In de afgelopen eeuw is onze kennis van de natuur dramatisch toegenomen. En van de grote ont-
dekkingen is de quantum theorie geweest, de taal waarin de natuur zich op zeer kleine schalen laat
beschrijven. Men kan stellen dat het belangrijkste product van het quantum-denken het standaard
model is, dat beschrijft hoe de op dit moment aan ons bekende bouwstenen van de natuur met
elkaar wisselwerken. Theoretische voorspellingen die op een groot aantal cijfers achter de komma
overeenkomen met gemeten waardes zijn het standaardmodel niet vreemd. De grootste experimenten
op aarde meten aan het standaard model, meest recent het LHC experiment in Genve. Maar niet
alleen de significantie is opmerkelijk, ook de interne logica lijkt natuurgetrouw. Recent is dit opnieuw
gebleken bij de vondst van het voorspelde Higgs-boson.

Ondanks al deze triomfen zijn er toch nog onbevredigende aspecten aan het standaard model.
Men hoort vaak in de populaire media over de clash tussen de quantum theorie en de theorie van
de zwaartekracht, maar zelfs binnen het standaard model, een consistente quantum theorie, zijn er
onbegrepen zaken. Men kan het standaard model abstract en sluitend formuleren, doch zodra men
het zijn gang laat gaan gebeuren er zaken waar wij wiskundig gezien maar moeilijk vat op kunnen
krijgen. En van de zaken die we eigenlijk niet begrijpen is de zogenaamde opsluiting van quarks.
Ook al durven we te zeggen dat we de natuur op haar fundamentele schaal begrijpen als bestaande
uit onder andere quarks, blijkt op atomaire schalen dat quarks niet meer als elementaire bouwstenen
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maar slechts in pakketjes van twee (bijv. pionen) of drie (bijv. het proton en neutron) voorkomen.
Men zegt ook wel dat de theorie die interacties tussen de quarks beschrijft op de schaal van het
proton sterk gekoppeld is. Onze wiskundige beschrijving, visueel begrepen in de vorm van Feynman
diagrammen, is alleen toepasbaar in het regime van de zwak gekoppelde systemen. Om de dynamica
van sterk gekoppelde systemen te begrijpen zijn andere wiskundige methodes nodig. En methode
heet (S)-dualiteit. Dualiteit wordt hier begrepen als de equivalentie van twee fysische beschrijvingen
van een enkele, onderliggende theorie. Een bekend voorbeeld hiervan is de elektrisch-magnetische
dualiteit, het duidelijkst te zien in de bronvrije Maxwell vergelijkingen die geheel symmetrisch zijn
in het elektrisch en magnetisch veld. In de aanwezigheid van magnetische monopolen kan sterker
worden gesteld dat onder uitwisseling van de elektrische en magnetische geladen vrijheidsgraden
en de elektrisch en magnetisch velden een equivalente beschrijving van elektromagnetisme wordt
verkregen. Het enige verschil schuilt in het feit dat de constante die de sterkte van de koppeling
bepaalt genverteerd wordt. Dit betekent dat een sterk gekoppelde beschrijving ingewisseld wordt
voor een zwak gekoppelde beschrijving en vice versa. Zo een S-dualiteit zou ons dus kunnen helpen de
sterk gekoppelde systemen te begrijpen in termen van nieuwe variabelen. Merk op dat zo een dualiteit
volledig discontinu is; wiskundig gezien kunnen we met S-dualiteit theorien slechts begrijpen wanneer
deze extreem zwak of extreem sterk gekoppeld zijn en is er in principe geen (fysische) interpolatie
tussen de extremen.

De grote ontdekking van Seiberg en Witten is geweest dat een enkele (supersymmetrische) quan-
tumvelden theorie op drie gesoleerde punten als zwak gekoppeld kan worden begrepen in termen van
telkens andere variabelen. Bovendien, de pracht van de ontdekking komt naar voren in het feit dat
de interpolatie tussen deze drie punten geometrisch van aard is. Meer precies kan de fysische theorie
begrepen worden als een vervormbare donut. Slechts wanneer n van de twee cirkels waaruit de donut
bestaat een oneindige lengte krijgt, bestaat er een mathematische beschrijving van de fysica. Echter,
de interpolatie tussen de extremen wordt nu begrepen als de vervorming van een donut. Ook al is
het niet direct duidelijk hoe dit zich in fysica laat vertalen, wel levert dit inzicht een duidelijker
beeld van het gebied tussen de extremen.

Het is niet de eerste keer dat geometrie opduikt als een natuurlijke beschrijving van fysische
systemen. Eerder werd door Einstein gerealiseerd dat zwaartekracht een puur geometrische verk-
laring heeft. Het is echter wel opmerkelijker dat geometrie in quantumvelden theorien opduikt dan
in de verklaring voor de zwaartekracht, aangezien zwaartekracht als eigenschap van ruimtetijd zelf
wordt gezien, van nature geometrische begrippen, terwijl de dynamica van quantumvelden theorien
niet direct lijkt gerelateerd aan geometrie. Toch lijken er nauwe verbanden te zijn tussen de ge-
ometrische vormen van Seiberg en Witten, en Gaiottos werk dat daar op heeft voortgeborduurd, en
ruimtetijd zelf. Het onderzoeken van deze relatie is niet onderdeel van de scriptie. Wel wordt er een
uitgebreide beschrijving gegeven van het werk van Seiberg, Witten en Gaiotto waarin geometrie de
hoofdrol speelt en de verschillende extremen met elkaar verbindt.
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