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Abstract

In this thesis I investigate the theory and computational modelling of ultra-
light dark matter. The concept of dark matter arose when it was realised that
astronomical observations were at odds with our understanding of gravity. In
particular, it was noted that the motions of astrophysical objects could not be
accounted for by the gravitational influence of visible matter alone. To explain
astrophysical dynamics, it was inferred that invisible or ‘dark’ matter must also be
present in the universe, and that it must account for the vast majority of all matter.
Dark matter is now a widely accepted paradigm, however, a precise description of
its nature remains elusive.

In the first part of this thesis I explore the theoretical fundamentals of ultra-light
dark matter, highlighting crucial differences between this model and its competitors.
I then focus on the computational modelling of ultra-light dark matter. I describe
a simulation tool, PyUltraLight, developed to model the evolution of astrophysical
objects within the ultra-light dark matter paradigm. I present applications of this
tool on galactic scales, and use these results to support the idea that ultra-light dark
matter may offer a better fit to data than its competitors. Following this, I model
of the collapse of ultra-light dark matter overdensities in an expanding background
using AxioNyx, a code that supports adaptive mesh refinement. Finally, I use these
results to identify deviations between the predictions of the ULDM model and
its competitors. I discuss how such differences may prove useful in assessing the
ability of each model to accurately predict the properties of observed astrophysical

objects.
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Chapter 1

Introduction and Outline

1.1 Introduction

1.1.1 The Need for Dark Matter

In the field of cosmology, we attempt to understand the origins and evolution
of the universe from the Big Bang to the present day. We strive to explain the
constituents of the observable universe, their interactions and evolution within a
self-consistent framework. The field of cosmology has grown enormously over the
past several decades due to both theoretical progress and to the development of
technologies which enable evermore detailed observations of the universe around
us.

At the foundation of our cosmological framework is Einstein’s General Theory
of Relativity [I1]. General Relativity describes the mechanism by which massive
objects exert gravitational influence upon one another through the distortion of
spacetime. This theory has stood up to rigorous testing [12, 13|, 14], and has
provided novel predictions such as gravitational waves and black holes, which have
since been verified with advanced scientific experiments [15] [16].

While General Relativity does suffer problematic divergences (e.g. within black
holes) and has yet to be unified with quantum field theory [17], its predictive success
has lead to its wide acceptance as the standard framework of the gravitational
interaction within modern cosmology. An important consequence of assuming the

validity of General Relativity within cosmology is that it becomes necessary to in-



clude a mass component of the universe which does not interact electromagnetically.
We refer to this component as dark matter. Indeed, there are now multiple lines of
evidence that dark matter outweighs baryonic matter by a ratio of approximately
5:1 [18]. In many cases the predictions of General Relativity are indistinguishable
from the predictions of the Newtonian limit, and it is worth noting that dark matter
is also predicted by classical Newtonian gravity.

It is important to contrast this situation to models which attempt to avoid dark
matter altogether through modifications to the gravitational interaction. Often
referred to as MOND (Modified Newtonian Dynamics) [19], such models have not
been able to convincingly resolve the dark matter problem at all scales [20, 21} 22].
As such, the prevailing view remains that General Relativity + dark matter is
indeed the correct cosmological model.

While dark matter is, by definition, invisible, its presence can be inferred
through a number of other observations across a variety of scales. One important
source of evidence for dark matter comes from the study of galactic rotation curves
[23]. In particular, observations of numerous galaxies have shown that the stellar
rotational velocity remains relatively constant with increasing radial distance from
the galactic centre [24], 25]. Indeed, even in the outermost regions with negligible
luminosity, rotation speed does not appear to decrease with radial distance. This
finding cannot be accommodated using visible matter alone, which is observed to
be concentrated in the centre of the galactic halo. Instead, constant rotation curves
imply an approximately spherical distribution of mass in the form of a dark matter
‘halo’, which extends much further than its visible counterpart and accounts for
the majority of the galactic mass |26} 27].

Gravitational lensing, a prediction of General Relativity, provides further evi-
dence of the existence of dark matter [28, 29]. Gravitational lensing refers to the
distortion of spacetime by massive objects. This causes the path of photons from a
distant source to an observer to deviate according to inhomogeneities in the mass
distribution in the intervening space. Thus, images of distant bright sources contain
an imprint of cosmic structure. Gravitational weak-lensing maps of large clusters of
galaxies illustrate that the gravitational potential does not follow the distribution
of the visible mass, providing evidence that these structures are dominated by dark

matter [30, 31, B2]. In some extreme cases, the intra-cluster medium may even



disassociate entirely from the dark matter [33].

Yet another important source of evidence for the existence of dark matter
comes from measurements of anisotropies in the cosmic microwave background
[CMB] [34]. The CMB comprises the remnant radiation from the time in the
early universe at which photons decoupled from baryonic matter and began to
free-stream. Anisotropies in the CMB reflect overdense and underdense regions of
the primordial plasma prior to decoupling. dark matter and baryonic matter would
have behaved differently in this primordial plasma, as the former would have been
unaffected by electromagnetic interactions with photons. This differing behaviour
is expected to be imprinted upon the CMB, allowing the two matter components
to be distinguished through the study of the CMB power spectrum. Indeed, such
studies have convincingly demonstrated a density field dominated by dark matter
[35], 136].

Taken together, galactic rotation curves, gravitational lensing surveys, and
distortions in the CMB provide convincing evidence for the existence of a large dark
component to the matter content of the universe. Problematically, however, the fact
that this component does not interact electromagnetically does little to constrain
its precise properties. Consequently, an array of widely varied dark matter models
have been proposed in the past few decades, with predictions from each model then

being tested against observations.

1.1.2 The Emergence of the CDM Paradigm

While the existence of dark matter is now widely accepted, the absence of dark
matter signals from direct detection and collider experiments means that the
precise nature of dark matter remains a mystery [37, 38 [39]. Nevertheless, both
cosmological probes and particle physics experiments enable us to rule out some
models, and tightly constrain others. I will now briefly review a range of possible
dark matter candidates, and explain how the commonly accepted CDM paradigm
has emerged as the dominant model of cosmology.

Models of dark matter may be categorised in a number of ways. For example,
dark matter may be of either astrophysical or particulate origin. Examples of

astrophysical dark matter include massive compact halo objects (MACHOs) [40), [41]
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and primordial black holes [42, [43]. By contrast, examples of particulate dark matter
include axions [44, 45], neutrinos [46], or supersymmetric partners to Standard
Model particles [47, 48]. Such particle candidates for dark matter are often referred
to as WIMPs (Weakly Interacting Massive Particles). This reflects the fact that
while such particles do not interact electromagnetically, they do interact under
gravity and may also undergo Weak interactions.

A further important categorisation of dark matter relates to energy scale.
Candidates may be separated into ‘hot’, ‘warm’, or ‘cold’ categories, depending on
their characteristic velocities. An example of a hot dark matter (HDM) candidate
is the neutrino, travelling at velocities approaching the speed of light. By contrast,
stable supersymmetric WIMP particles would travel much slower than the speed of
light, and are thus considered cold dark matter (CDM). Warm dark matter (WDM)

candidates such as light gravitinos exhibit intermediate behaviour.

As previously mentioned, any plausible dark matter model must yield theoret-
ical predictions which are consistent with experimental bounds from a range of
astrophysical measurements. CMB measurements are of great significance here.
Anisotropies in the CMB have now been mapped to a high degree of precision,

providing ever-tightening constraints on dark matter models [49] 50, [51].

Importantly, the latest CMB results disfavour HDM models in which neutrinos
constitute the majority of the dark matter. The relative contribution of neutrinos
to the energy density of the universe, ,h?, is a function of the sum of the light
neutrino masses [52]. The properties of the CMB power spectrum are sensitive to
this value. For neutrinos to account for a substantial proportion of the dark matter,
we would expect ,h% to be similar to the total matter contribution, ,,h?. However,
CMB measurements from the PLANCK collaboration constrain the sum of the
light neutrino masses to » . m,, < 0.54eV at the 95% confidence level, corresponding
to Q,h? < 0.0057. Meanwhile, PLANCK finds ,,h? = 0.1430 & 0.0011 at the 68%
confidence level [50]. Clearly, this discrepancy strongly disfavours neutrino based
HDM models. Similar analyses of CMB data disfavour popular WDM models such
as those based on light gravitinos.ﬂ

Tt should be noted that these constraints are highly model-dependent. Here we assume a
locally Lorentz invariant FRW cosmology [63]. In principle, more exotic cosmological models
would change these constraints.



Consequently, with HDM and WDM models disfavoured, CDM has emerged as
the dominant paradigm for dark matter. While there are a number of possible CDM
candidates, supersymmetric partners to Standard Model particles are perhaps the
most popular [54]. Specifically, models of supersymmetry in which the neutralino
is the lightest stable supersymmetric particle (LSP) provide a natural WIMP dark
matter candidate [55]. This model gained much attention due to the LSP WIMP
candidate conveniently predicting the correct relic abundance to account for dark
matter. This coincidence has historically been referred to as the “WIMP Miracle’.
Moreover, LSPs as WIMPs gained further popularity due to the plausibility of
direct detection in experiments such as the Large Hadron Collider (LHC) [56].

Overall, therefore, CDM has emerged as the favoured model of dark matter,
with plausible WIMP CDM candidates arising naturally from supersymmetric
extensions to the Standard Model of particle physics. In the following sections,
I will describe the successes of the CDM paradigm with respect to astrophysical
predictions, and will also highlight the issues facing CDM which motivate the

search for alternative dark matter models.

1.1.3 Successes of the CDM Paradigm in Astrophysics and
Cosmology

In CDM models, structure formation proceeds hierarchically. That is to say, at the
onset of the matter-dominated epoch, small overdensities in the primordial universe
are able to break free from the expanding background and collapse first, and the
resulting small halos then merge to form larger halos [57]. These larger halos
then seed galaxy formation. This process endures until the epoch of dark energy
domination [58], such that galaxy formation is an ongoing process rather than
one limited to a short time period in the history of the universe. As the universe
expands, collapse of CDM overdensities takes place on larger and larger scales.
Therefore at late times, the characteristic halo mass is larger than at early times,
such that the overall CDM distribution has no preferred mass scale [59]. That
being said, baryonic physics prevents the formation of galaxies below a minimum
mass scale or above a maximum scale [60]. The significance of the precise value of
the minimum mass scales in particular will be discussed in Section [I.1.4.2]
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A number of simulation tools exist with which to model CDM structure forma-
tion [61, [62] 63, 64]. When compared to astrophysical observations from collabora-
tions such as the Sloane Digital Sky Survey (SDSS) [65], CDM simulations have
performed remarkably well in reproducing the large scale filamentary structure and
voids of the cosmic web [66] [67]. Moreover, the consistency of the CDM model with
the results of CMB, galaxy clustering, and weak lensing surveys is well established
[68, 69, [70]. Therefore, at cosmological scales, the CDM model has been shown to
be remarkably consistent with data from a variety of observational probes. Such
consistency at large scales has reinforced the popularity of the CDM paradigm.
However, a number of issues arise for CDM on smaller, galactic scales. I shall

address these issues in the following section.

1.1.4 Problems Facing the CDM Paradigm
1.1.4.1 Absence of Evidence from Direct Detection

While CDM models are able to consistently reproduce features of the large scale
structure of the universe, the question remains as to the nature of the constituent
WIMP particles. As previously mentioned, CDM gained in credibility due to the
so-called “WIMP miracle’, whereby supersymmetry models apprently predicted the
existence of an LSP with a relic abundance of the correct order of magnitude to
account for the missing mass content of the universe [71, [72 [73] [74]. This was of
great significance because the development of supersymmetry was not motivated
by the need to identify a dark matter candidate. Instead, supersymmetry arose as
an elegant solution to a number of unrelated problems within the Standard Model
of particle physics. Namely, supersymmetry provides a framework in which the
stark divide between bosons and fermions is naturally bridged and the light mass
of the Higgs boson arises without fine-tuning [75, [76] [77]. Therefore, the fact that
supersymmetry may also account for cosmological dark matter was seen by many
as confirmation that it must indeed represent physical reality.

In previous decades, evidence of supersymmetry was expected to be readily
accessible with the advent of advanced particle accelerators [78, [79]. However,
after more than a decade of searching at the LHC, evidence of supersymmetry

has yet to be found [80, BT, 82]. Moreover, a slew of non-accelerator based direct-
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detection experiments have also failed to find evidence for an LSP CDM candidate
183, (84, 185, 186, [87].

The lack of evidence for any particle in the GeV-TeV energy range with a
weak-scale cross-section with baryonic matter and the increasingly tight constraints
on viable supersymmetry models [88], 89] motivate the consideration of alternative
models of dark matter. The challenge, therefore, is identifying alternative models
which reproduce the successful predictions of CDM on large scales while explaining
the absence of direct detection evidence. This point will be revisited when 1
introduce ULDM in Section However, before I discuss the ULDM alternative,
I will briefly explicate the astrophysical problems also facing CDM.

1.1.4.2 The Small-Scale Crisis

While the CDM paradigm has been successful in reproducing the observed properties
of large scale cosmological structure, there exist a number of apparent discrepancies
at galactic scales and below. Collectively, these discrepancies are known as the
‘small-scale crisis’ [90, O1].

Perhaps the most studied of the small-scale controversies within CDM is known
as the ‘core-cusp’ problem. This problem arises because CDM-only simulations tend
to generate halos with central density profiles which sharply increase to a central
‘cusp’. This feature is well-described by the semi-analytical Navarro-Frenk-White
(NFW) profile [02]. Conversely, observations seem to favour a flatter central profile
or ‘core’ [93, 94, [95]. Hence, this discrepancy is referred to as the core-cusp problem.

The core-cusp problem is a matter of significant debate, with a variety of
solutions proposed which maintain the CDM framework. For example, it has been
proposed that unsuitable mass estimators may have been used when analysing
observational data, and that this leads to the erroneous detection of a core, when
in reality there is indeed a cusp [06]. Others admit the existence of a core-cusp
discrepancy when CDM-only simulations are compared to data, but contend that
this situation is ameliorated when the effect of baryonic physics is taken into
account [97) 98, [99]. While many possible remedies to the core-cusp problem have
been proposed, it remains a topic of significant debate.

Another widely contested small-scale phenomenon is known as the ‘missing
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satellites problem’ [I00]. The hierarchical structure formation of CDM predicts that
dark matter substructure should be prevalent on sub-galactic scales. Specifically,
this model predicts that the Milky Way should contain ~500 satellites of kpc scale
within its virial radius [I01]. However, observations show that the Milky Way
contains far fewer satellites of this kind. The absence of significant substructure in
observed galaxies has proven difficult to account for within the CDM framework.
Nevertheless, a number of solutions to this apparent shortcoming of CDM have
been proposed. For example, it has been proposed that low-mass CDM subhalos
are prevented from producing significant stellar populations if they accrete most
of their mass after the epoch of reionization. Under such conditions, the missing
satellites problem appears to be ameliorated [102]. It has also been suggested
that expectations of the number of observable satellites have been inflated by not
correctly accounting for the detection efficiency of observational instruments and
the luminosity of low-mass CDM subhalos [103]. Notwithstanding these various
proposals for resolving the missing satellites problem, it remains a thorn in the side

of existing CDM models and promotes the consideration of alternative models.

Yet another significant small-scale vulnerability of CDM is referred to as the
‘too big to fail’ problem [104] [105]. This refers to the fact that high resolution CDM
galaxy simulations predict that galaxies with a stellar mass function similar to that
of the Milky Way should host a number of intermediate mass systems large enough
for significant star formation to occur. By contrast, however, such systems do not
appear in observations. This indicates that if such intermediate systems really
exist, they must have ‘failed’ to generate significant star formation, hence, ‘too big
to fail’. Note that this differs from the missing satellites problem, which concerns
the lack of observed substructure at the smaller end of the mass function. As is the
case with other aspects of the small-scale crisis, this issue is a matter of ongoing
debate. Some contend, for example, that the assumed luminosity function which
leads to the unobserved excesses of substructure is not valid due to gravitationally
induced merging caused by classical dynamical friction [I06]. Others contend that
complex baryonic physics such as stellar feedback can resolve the apparent disparity
between CDM simulations and observations [60]. However, recent research has lead
to tighter constraints on satellite galaxy parameters, seemingly exacerbating the

too big to fail problem and raising the bar for mechanisms proposed to alleviate
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the problem [107].

Though the small-scale crisis of CDM is hotly contested, the lack of a single
elegant framework in which all of its components are convincingly ameliorated is
a strong motivator for exploring alternatives to CDM. In particular, models are
sought which naturally alleviate the small-scale crisis without the need for complex

baryonic physics but reproduce CDM predictions on large scales.

1.1.5 ULDM as an Alternative to CDM

In light of the unresolved problems within the CDM model, there is increasing
motivation to search for alternatives which mitigate these problems, while also
reproducing the successes of CDM. In particular, alternatives should reproduce the
CDM predictions for the large scale structure of the universe, while simultaneously
providing a natural solution to the small-scale crisis. Furthermore, they should
explain the lack of direct-detection evidence and yet be well-motivated from a
particle physics perspective. In this thesis, I will investigate ultra-light dark matter
(ULDM) as an alternative to CDM. Here, I briefly outline the motivation behind
the ULDM paradigm, with reference to the aforementioned successes and failures
of CDM.

The fundamental ULDM hypothesis is that the constituent dark matter particle
is a very light boson, with m ~ 107*2¢V [108]. The key advantage of such a dark
matter candidate is that this extremely small mass corresponds to a kiloparsec
scale de Broglie wavelength. As a result, structure formation on small scales is
precluded by quantum uncertainty - as collapse proceeds past a certain point,
increasing momentum opposes further particle confinement. Importantly, however,
at scales much larger than the de Broglie wavelength, the dynamics of ULDM are
indistinguishable from CDM [109]. Hence, ULDM presents a natural solution to
the small-scale crisis, while retaining the successes of CDM at large scales.

Moreover, the concept of an extremely light boson appears in a number of
scenarios in particle physics. Notably, the QCD axion, which resolves the Strong C-
P problem, is one such example [44]. It has also been proposed that extremely light
bosons could provide a resolution to the problem of lepton anomolous magnetic
moments [110, 111]. As an ultra-light boson, ULDM provides a dark matter
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candidate without recourse to supersymmetric extensions to the Standard Model.
Furthermore, because of its extraordinarily small mass, the absence of direct
detection is naturally explained. Indeed, particles of such small mass could only
decay into photons with the decay rate scaling as the third power of the mass.
Hence, signatures of such decay events would not be expected in instruments such
as the LHC [112].

Overall, therefore, ULDM represents a well-motivated alternative to CDM, which
may provide natural solutions to the small-scale issues of the latter. Meanwhile,
the fact that ULDM and CDM predictions converge on large cosmological scales
guarantee that this model provides a viable candidate to reproduce observations

from probes of cosmological structure formation.

1.2 Outline

The following chapters in this thesis are dedicated to exploring the theory and
computational modelling of ULDM, and analysing the plausibility of this model as
an explanation of the mysterious dark matter component of the universe.

In Chapter [2| T review the fundamental theoretical background of the ULDM
model of dark matter. I also introduce a number of astrophysical features of this
model, which will be relevant to the content of later chapters. I then identify a
number of open questions relating to the ULDM model, which will also be addressed
in subsequent chapters.

In Chapter , [ present the results of work already published in JCAP [9]. This
work describes a simulation tool designed to solve the dynamical equations of the
ULDM model using pseudo-spectral methods. This tool is called PYULTRALIGHT.
I discuss the features and limitations of PYULTRALIGHT, and present a number of
outputs serving as verification and efficiency tests. I also briefly review work which
has since been completed by other research groups in which PYULTRALIGHT has
been adapted for a number of different numerical investigations.

In Chapter [4 I present the results of work already published in PASA [10].
This work addresses the aforementioned core-cusp problem of CDM, and makes use
of astrophysical data from the SPARC database [113] to analyse whether ULDM

or CDM models provide a better fit to the rotation curves of large dwarf galaxies.
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Important in this analysis is the core-halo relationship of ULDM halos (introduced
in Chapter . I also discuss the possibility of variability in this relationship.

In Chapter 5], I discuss material currently in preparation for publication. This
work makes use of the AXIONYX simulation tool [I14]. AXIONYX uses adaptive
mesh refinement to allow for computationally efficient simulation of ULDM physics
in an expanding background. I use this tool to study the collapse of aspherical
overdensities to form ULDM halos. I discuss the process of relaxation and use these
results to postulate mechanisms by which variability in the core-halo relationship
of ULDM may arise. In particular, I address the phenomenon of soliton oscillation
which is observed at late times in the collapse process and has important conse-
quences for global properties of ULDM halos. I also use these simulation results
to investigate the possibility of discerning ULDM signatures in the structure of
the cosmic web through analysis of the anisotropic correlation functions of ULDM
fields in which extended wavefronts are present.

In Chapter [0, I briefly highlight some ongoing work which is in the preliminary
stages. This work concerns the study of angular momentum in ULDM halos formed
by the collapse of rotating overdensities. I also consider statistical tools which may
be applied to distinguish between ULDM and CDM density fields, based on the
presence of extended anisotropic wavefronts in the former.

Finally, in Chapter [7]I summarise the results of this thesis and identify a number

of avenues for future research in ULDM physics.
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Chapter 2

Background and Literature

Review

2.1 ULDM From First Principles

2.1.1 ULDM Candidates in Particle Physics

Within particle physics, the concept of symmetry plays an important role. The
relationships and interactions of particles within the Standard Model are elegantly
described using the mathematical framework of symmetry groups [I15]. Because of
this, physicists often look for fields which display obvious symmetries, as these fit
naturally within the existing mathematical framework. Often, such symmetries are
not exact, but are expected to be broken at some scale. A prototypical example
of this is the phenomenon of neutrino oscillations. The existence of neutrino
oscillations indicates the violation of lepton number conservation at a very low
level [116]. Hence, a good place to start when considering possible new fields is
with a model with an exact symmetry, and to then ask how this symmetry may be

broken to a very small degree.

To see how ULDM fits into this framework, let us consider a massless, spinless

field ¢ with no self-couplings. This field is described by the following action:

1

I
2

/ d*z\/=gg" 0,60, ¢, (2.1)
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where g is the metric tensor. This field has an exact shift symmetry under ¢ — ¢+C,

and is thus an attractive model from a particle physics perspective.

While the ULDM particle should be very light, it must not be precisely massless.
Hence, rather than the action of Equation [2.1] we are interested in actions which
reduce to Equation in the limit that the mass approaches zero. In this way,
ULDM may be considered a small deviation from a simple scalar field model with

an exact shift symmetry.

An explicit example of such a ULDM model is represented by the following

action:

I= / d*z/—g Bﬁgwauqﬁay(ﬁ — m*F?(1 — cos(¢)) | - (2.2)

Here, ¢ is a dimensionless scalar field, which has a periodic shift symmetry of
¢ — ¢ + 2m. Note that when the mass, m, is very small, Equation [2.2f approaches
the form of Equation [2.1| and thus we realise a deeper, non-periodic, approximate
shift symmetry. The constant F' in Equation [2.2 where I’ has dimensions of mass,
is required for dimensional consistency. This constant derives from the vacuum
expectation value of the field, and is thus model-dependent. For most theoretical
particle physics models, F' is bounded below by the grand unified scale and above
by the reduced Planck mass [117];

10'°GeV < F < 10"%GeV. (2.3)

Spinless fields with a periodic shift symmetry arise naturally within a number
of string theory models. Depending on the mass parameter, such fields may provide
candidates for a number of cosmological phenomena including the inflaton field,
dark energy, or the QCD axion [I18]. In the present context of course, we are
interested in a mass parameter m of the correct magnitude to describe dark matter.
There have been various studies undertaken to constrain the ULDM particle mass
via astrophysical observations, however, these constraints still remain a matter of
ongoing debate. Most mass constraints favour m > 10722V [119, 120, 121]. Hence,
I will use Equation as the underlying particle physics model with a fiducial

mass of 10722eV in the remainder of this thesis.
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2.1.2 From Particle Physics to Cosmology

Let us now take a closer look at Equation[2.2] with m = 10722eV. It is necessary that
this mass parameter yields a cosmological energy density of the correct magnitude
to account for dark matter. Furthermore, the choice of m = 10722eV should
yield a value of F' consistent with the predictions of many theoretical models, as
constrained by Equation [2.3]

To see how the field in Equation [2.2|evolves, let us apply the variational principle

to obtain the equations of motion. The variation in the Lagrangian, £, is given by:

oL oL

such that the variation in the action is
5T = / d4xF2\/—_g[ — m?sin(¢)0¢ + ¢ 9,00, (5¢)} —0, (2.5)
where we have used 9,(3¢) = 6(9,¢). Making use of the fact that
V=99"0,00,(06) = 0, [V=99"0,000] — 0, |[V=99" 00|06, (2.0

and noting that the volume integral of the total derivative is zero, we arrive at

5T = / Al F? [ — /—gm?sin(¢) — 31,(\/—_gg‘“’8#<b)} 56 = 0. (2.7)

This yields the generalised equations of motion:
1
V=3

To relate these equations of motion to cosmology, let us now assume the metric

0, [V/=39" 06) + m?sin(9) = 0. (2.8)

tensor of an expanding Friedmann-Lemaitre-Robertson-Walker (FLRW) universe

in the post-inflationary epoch: [122]:
ds® = —dt? + a(t)*dx>. (2.9)
Further, let us assume that ¢ is constant across space, varying in time only. Making
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use of the identity:
1 (0%
a1/\/ -9 = § vV —99 ﬁal/gaﬁy (210>

we arrive at the ULDM equations of motion for an FLRW universe [117]:
¢+ 3H(t)$ + m?sin(¢) = 0, (2.11)

where H(t) = a/a is the Hubble constant and i = ¢ = 1.

Equation indicates that for H > m, ¢ is approximately constant. When
the ULDM field is established through symmetry breaking in the very early universe,
H is indeed much larger than the ULDM mass and the field is therefore initially
overdamped. Later, when H < m, the field begins to oscillate. The initial field
value itself is governed by the details of the symmetry breaking mechanism, and is
therefore model-dependent [123]. Typically, it is assumed that (¢) ~ 1, where ¢ is

dimensionless, and m is as yet a free parameter.

For small field values ¢ < 1, we can approximate the sine term in Equation [2.11]
by the first Taylor series contribution [124]. While this approximation is not exact
for the initial field, I will show that it becomes more accurate as the evolution

proceeds. Hence, we may approximate Equation by:
¢+ 3H(t)d+m?p = 0. (2.12)

Let us assume an ansatz solution of ¢(t) = A cos(mt), where A = A(t). Equation
2.12) may then be re-expressed as:

(A +3HA)cos(mt) — (3mHA 4 2mA) sin(mt) = 0. (2.13)
This equation is automatically satisfied if both of the following conditions are met:

Condition 1: 3HA = —24 (2.14)

Condition 2: A= -3HA (2.15)
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Let us examine the first condition. Noting that d(A?)/dt = 2AA, this implies

d(A?)
dt

= —3HA> (2.16)

We may integrate the above equation to obtain:
d(A%) [ 1 da (-3

A oca (2.18)

This result is important for two reasons. First, we see that the energy density
of the field, p = m?F?A?, scales as a~3. This is the same scaling property as
conventional CDM [I17], which is necessary if ULDM is to replicate CDM on large
scales. Secondly, we see that the amplitude of the field oscillations are damped
as A oc a=%/3. This means that approximating Equation by Equation m
becomes more accurate as expansion proceeds over time.

Let us now return to the second condition, A = —3HA. Substituting the first
condition, 2A = —3H A, into the second, we find that the two are simultaneously
satisfied if HA = AH, or, equivalently,

—3H?

H= R (2.19)

Proceeding as before, we can integrate this equation to obtain:
dH (1 -3
dt— | —= | = [ dt | — 2.2
Jaat () = (3 20

SH ot (2.21)

which is indeed what we expect, since H oc t~! for any t” where p is Constant.ﬂ

INote that while H o piﬁ o t~! for both the radiation and matter dominated epochs,

perit ¢ a~* and a oc t1/2 for a radiation dominated universe, while Perit < a3 and a o t2/3 for a
matter dominated universe.
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Hence, we see that the ansatz solution ¢ = A cos(mt) satisfies both conditions
and (and thus Equation when A% oc a™3. T now use this scaling behavior
with A;—g ~ 1 to compute an order of magnitude estimate of the parameter F' and
the current cosmological ULDM density.

To compute the value of F', we first note that in a radiation-dominated FLRW

universe we have: )
9 & 72g.(T)

— mp, P="—3 T ~ T4, (2.22)
where T is the photon temperature, Mp is the Planck mass, and g¢.(7T") are the
effective degrees of freedom for the energy density [125, 126]. Combining these
expressions, we find that the ULDM field begins to oscillate when H,,. ~ m, or,
roughly

TY. ~m?M3 (2.23)

0oSsc

From Equations [2.22] we also have that the energy density of radiation at this
Meanwhile, the energy density of ULDM is of order m?F™2.
Letting £ represent the ratio of ULDM energy density to radiation energy density,

time is of order T

osc*

we have: -
m-F

TA.

osc

gosc ~ (2.24)

As expansion proceeds, this ratio grows as 1/7" until radiation-matter equality at
Teq ~ 1eV. Hence, we find:
m2F? T,
jﬁ4 jlﬁC.

osc

Combining Equations and finally gives us an estimate of the parameter
F

(2.25)

Telq/Q M}:};/zl

F~ mi/4

~ 10"7GeV, (2.26)

for m = 10722eV. Note that while we have obtained this value from astrophysical
considerations, it conveniently lies within the theoretical acceptable range of
Equation [2.3] This supports the notion of ULDM with the correct mass to account
for dark matter arising naturally from a particle physics model.

[ will now use this approximate value of F' to compute an order of magnitude
estimate of the current ULDM density (normalised by the critical density), Qurpm.o-
We note that HZ,, ~m? and HZ ~ T3 /M?. Furthermore, we note that during the

osc q
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matter dominated epoch we have H o a3, while during the radiation dominated

era we have H o a~*. Putting this together, we have:

118 gq
]-‘}qu ag ( )

Assuming the present day scale factor ag = 1, this yields a value for the scale factor

at matter-radiation equilibrium of

2

. HoM?2

eq T4
eq

(2.28)

Analogously, we can compute the scale factor at the onset of the oscillation of the
ULDM field through:

o2 g
ea _ Josc. 2.29
i, a, (2:29)

Noting that Hys. ~ m and substituting Equation [2.28]into the above, we find:
4 3/4 7794 r2
a, ~ ( z;eq 2) HO{YP. (2.30)
MzZm Ty

Finally, we use puyLpmo ~ m?F?A3 and HZ ~ peito/M3p to obtain

ml/2 2

- (2.31)
T M:?

QurLpmo ~

Substituting values m ~ 10722V, F ~ 10'7GeV, Mp ~ 10"Gev and T, ~ 1eV,

this yields an order of magnitude estimate of

(10—22)1/2(1026)2

=0.1, (2.32)

Which is indeed the correct order of magnitude to account for the observed dark
matter density today [127]. While this is only a rough calculation, it serves to
illustrate the viability of the ULDM model. Constraining the model parameters
further is the subject of much ongoing research, and will be addressed in detail in

the remainder of this thesis.
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In summary, in this section I have demonstrated that the simple particle physics
model of Equation [2.2)corresponds to a feasible ULDM candidate. This model is able
to reproduce the expected cosmological dark matter density while simultaneously
satisfying model-dependent particle physics constraints. In the next section, I will
consider the dynamics of the ULDM field in a more general context, introducing

perturbations around the FLRW metric necessary to seed structure formation.

2.2 ULDM Dynamics

In the previous section, I computed the average global evolution of the ULDM
field in a homogeneous, isotropic FLRW universe. While we expect homogeneity
and isotropy on large cosmological scales, this is not true in general on small
scales. Indeed, local density variations in the early ULDM field are required to

seed gravitational collapse and hence galactic structure formation.

In this section, we take into account local variations in the ULDM field. Because
the ULDM field possesses mass, regions where the field value is large correspond to
mass overdensities, while regions where the field value is small correspond to mass
underdensities. We can take into account the presence of these density variations
by introducing space and time dependent perturbations to the FLRW metric of
an expanding universe. This will lead to modified equations of motion for ULDM,
which will form the theoretical basis for simulation tools designed to model structure

formation and dynamics.

We begin with the generalised equations of motion for the ULDM field, given
in Equation 2.8 As discussed in the previous section, we may approximate the
sinusoidal component by the leading order term of its Taylor expansion, with this
approximation approaching the exact expression as the universe expands. Hence,
we have:

\/L__géy [V=99""0,0] + m*¢ = 0. (2.33)

We now evaluate the above expression using the perturbed FLRW metric,
ds® = —(1+ 2®)dt* + a*(1 — 2®)dx?, (2.34)

19



where ® = ®(x,1) is a small perturbation and a = a(t). Because ® is assumed to
be small, we proceed only to linear order in ® in our analysis. It is helpful to first

employ the identity re-express Equation [2.33] as:
1 « v 14
59” (0908)9" s + 0u(9" D) — m*¢ = 0. (2.35)

We will now examine each of the three terms in the summation separately. The

first term may be written in the following expanded form:

1 4
5 [905(30905)90V8u¢ + 9" (Dig0s)g™ 0

9 (009i3)9™ 006 + 97 (9;038)97 00| (2.36)

where indices ¢ and j run between 1 and 3 only while Greek indices run from 0 to 3.
Because we are expanding to linear order in ®, it is useful to obtain approximate

expressions for the components of the inverse metric tensor as follows:

00 — —(1—2® .
= Z 20) 27

:0

Using these expressions, we find:

9°%(80903) g™ 0,0 = —(1 — 20)Jp(—1 — 2®)(—1 + 2B)9y P, (2.39)
9°%(0;905) 9™ 0,0 = —(1 — 20)9;(—1 — 2@)%(1 + 23)0; ¢, (2.40)
9"%(009i5) 9" 0, ¢ ~ %(1 +20)9(a*(1 — 2®))(—1 + 28) Iy, (2.41)
G 0,0)9" 0,0 ~ (14 20)0,(a(1 - 22)) 51+ 20)0,6 (242

where factors of 3 come from summing over indices ¢ and j. Keeping terms to

linear order in ® only, we find that the first term of Equation [2.35| reduces to:

2B — %@(I)@igb —3H(1 —20)¢, (2.43)
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where H = a/a. Working in a similar fashion to examine the second term in

Equation [2.35, we have:

Du(g"0,0) = 00(9™ 0, 0) + 0:(9" D, 9) (2.44)
~ 0o — (1 —2®)p) + %ai((l +29)0;¢). (2.45)

Again, keeping only terms to first order in ®, we obtain

.. 2 1
— (1 —20) +2d¢ + ;aicbaigzs + ;(

1+ 20)V?¢. (2.46)

Putting together Equations and with the final —m?¢ term we find that,

to linear order in ®, Equation [2.35| reduces to:

— (1 — 20) + 40 — 3H(1 — 20)¢ + %(1 +20)V?p —m?p =0.  (2.47)

We can simplify this expression by dividing through by —(1 — 2®) and again
discarding higher orders in ®:

¢+ 3Hp — 4D — %(1+4®)V2¢+m2(1 +2®)¢p = 0. (2.48)

From here, we must make some assumptions about the nature of the ULDM field
¢ and the gravitational potential ®. Namely, we assume that both ¢ and ® are

slowly varying in space and time. Specifically:

6] << mlgl, (2.49)
|| << m|®|, (2.50)
V| << mlg], (2.51)

where the final assumption also implies |V2¢| << m?|¢|. Furthermore, at late
times in an expanding universe, H << m and a ~ 1. Combining these assumptions,
we are able to neglect a number of terms in Equation and obtain, for a slowly

varying field at late times:
b — V2 +m?(1+28)¢ = 0. (2.52)
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We may solve this using Wentzel-Kramers—Brillouin (WKB) methods, employing

the following ansatz solution:

1
~Vom

Like ¢, 1 is assumed to be slowly varying. Therefore, 1 satisfies the same conditions

¢ (@Z)e_imt + w*eimt) . (253)

as ¢ in Equations [2.49| and [2.51] Hence, we may directly substitute the ansatz

solution into Equation [2.52| while neglecting highly suppressed terms. The outcome

of this process is an equation in ):

R v £
W= Qmw

+ mdy. (2.54)

Note that throughout this derivation we have suppressed factors of A, assuming
h = ¢ = 1. Restoring factors of A, we recover the well-known Schrodinger Equation

of non-relativistic quantum mechanics:
.2

i) = —— V2 + mdip. (2.55)
2m

Hence, in the late universe, the ULDM field may be described by the macroscopic
wavefunction 1 of a Bose-Einstein condensate. It follows that the particle number
density is |1|?, so that the mass density is m||?>. The gravitational potential,

which is sourced by the field itself, then satisfies the Poisson equation:
V20 = 4rGmly|?, (2.56)

Where G is Newton’s gravitational constant.

Overall, therefore, the dynamics of ULDM at late times may be conveniently
described by the coupled Schrédinger-Poisson (Schrodinger-Poisson) differential
equations. It is this system of equations which will form the foundation of the
simulation tools discussed in the remainder of this thesis.

In deriving Equation [2.52, we neglected terms in H since H << m. We also
assumed a ~ 1 since we are primarily concerned with the dynamics of ULDM
at late times. These turn out to be suitable assumptions even at relatively high
redshifts, and Equation provides a good description of ULDM dynamics
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throughout the process of structure formation. While neither Equation [2.52 nor
the Schrodinger-Poisson system depend explicitly on H or a, this does not mean
the dynamics are insensitive to expansion. To see how expansion influences the
dynamics, we may re-cast the Schrodinger-Poisson equations in terms of comoving
coordinates. To do this, we note that the Schrodinger-Poisson equations may be

obtained directly from the following action:
3 d3.fC N J % -1 2 2
S=[dt | &z[L]=[dt T[z(w V=) +m™ (V)* =2mP||°|. (2.57)

We first note that:
(V)2 = V(" V) — "V, (2.58)

Within the action integral, the V(¢*V1)) term corresponds to the integral of a

total derivative, and may therefore be ignored, hence, we have:
de . * ] I % —1 /. xv72 2
S={dt T[zww—w)—m ¢v¢—2mq>|¢|] (2.59)

In comoving coordinates, this becomes

s=[af T i — 0i7) = m a2 VR — 2melf], (200

where now & = Zeom and V = Vom. Applying the variational principle,

oL d oL
——— =0, (2.61)
oY*  dt g
we find:
L. 3 —1y2 3 ;2
3 (2@1/1@ —am” V=Y — 2a°mdY + 3ia azﬂ) =0, (2.62)
while the Poisson equation in comoving coordinates is:
V20 = 4rGma’|tp|*. (2.63)
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Let us now introduce ¢ = 21 such that Equation becomes:

s V)
i) = 2 + mPy (2.64)
and the Poisson equation becomes:
drGm -~
V20 = ”a TP, (2.65)

Note that the physical density is then p = m|i|> = ma=3|¢|2. Equations and
therefore form the comoving Schrodinger-Poisson system, which will be useful

in later sections when simulating ULDM dynamics in an expanding background.

2.3 Astrophysics of ULDM and Open Questions

In this section, I briefly discuss some astrophysical constraints relevant to ULDM,
and outline the key astrophysical problems that ULDM has been proposed to solve.
I will then investigate whether the ULDM model does indeed provide a convincing

solution to these problems using numerical methods in later sections.

2.3.1 The ULDM Halo Profile

In recent years, structure formation simulations have revealed a characteristic
profile for ULDM halos. Typical halos consist of a smooth, coherent core embedded
in an incoherent outer halo possessing granular density fluctuations [128, [129] 130].
The density profile of the inner core closely matches that of the ground state
solution to the Schrédinger-Poisson differential equations [I31]. This ground-state
solution is often referred to as a soliton, and has a smooth, flat density profile at
zero radius. Meanwhile, the average shape of the outer density profile is consistent

with the NFW profile of CDM for which p oc 1/r% at large radii.
The NFW profile is characterised by the following expression [92]:

Po
T T 2
= <1+R—s>
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where py and R, are free parameters, which vary from halo to halo. Meanwhile,

the solitonic profile is well-approximated by [132]:

Pec
2
<1 +0.001 (—) )

Here, p. is the density at r = 0, given by

Pol (1) = = (2.67)

—4
pe = 1.9 x 107a " myy (ki)cc) Mgkpe ™, (2.68)

where a is the cosmological scale factor, r. is the radius at half-maximum density,

and Mgy = m/107%2eV.

Hence, the ULDM profile is often described piecewise, using pso in the centre
and pnpw at large radii. The transition between these two regions appears to be

governed by a universal core-halo mass relation [133]:

Mh >—2/3 .

M.
=5.04 x 1072 (mgM@ My, (2.69)

My,

where M, = (4713, /3)((2)pesic is the virial mass of the halo with ((z) = (187% +

82(Qp(2) — 1) — 39(2n(2) — 1)?)/Qn(2) ~ 200 [134], and M, is the mass within

radius r.. This core-halo mass relation may be alternatively expressed as [132]:

~1/6 ~1/3
re = 1.6a"/? (%) (1()];4]\}2@) may kpe. (2.70)

The existence of a smooth core in ULDM halos has been proposed as a natural
solution to the core-cusp problem introduced in Section [1.1.4.2] However, it is
important to note that the mass of the soliton within r, scales inversely with the
radius. That is to say, heavier solitons tend to be much more ‘peaked’ than their
lighter counterparts. Given this scaling property and the apparent core-halo mass
relation, it has been suggested that in certain regimes, the ULDM profile may
actually exacerbate the core-cusp problem relative to CDM [I33]. This claim will

be investigated in Chapter 4] while the universality of the core-halo mass relation
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will also be addressed in Chapter [f]

2.3.2 Upper and Lower bounds on ULDM halos

There are a number of constraints governing the formation of realistic astrophysical
ULDM halos. These constraints arise due to the scale invariance of the Schrodinger-
Poisson equations, discussed in detail in Appendix [A] Succinctly, if a spherically
symmetric eigenstate of the Schrodinger-Poisson equations is found for an object of
a particular mass, an entire family of solutions may be automatically constructed,
parametrised by mass alone. In the following sections, we will use numerical
solutions of the Schrodinger-Poisson system to derive constraints on ULDM halo

parameters.

2.3.2.1 Minimum ULDM halo radius

To see how the scaling properties of the Schrodinger-Poisson system give rise to
constraints on ULDM halos, one first numerically computes the density profiles
of the spherically symmetric solutions to the Schrodinger-Poisson equations for
a given mass M [135, 136], 137, 138]. Each solution corresponds to a spherically
symmetric eigenstate, which we will index n. For each eigenstate, one may then
obtain values for the half-mass radius, /2, and the central density, p., for any
value of M. The values of 71/, and p. corresponding to the ground state solution
then represent bounds on the radius and central density of excited states for the

same mass M. Namely, we find [T17]:

2 109M, _
ri/2 = mfn > 0.335 kpc ( Vi ®> 771222, (2.71)
Gm?\° 4 —3 ! 6
pe = ( = ) M*p, < 7.05 Mgpc (W) Mo, (2.72)

where M is the total mass of the object, and f,, and p,, are eigenstate-dependent
constants. For the lowest energy solution ( fo, po), the inequalities become equalities,
and thus constitute bounds on the halo parameters.

Equations and may be used to test ULDM predictions against astro-

physical observations, however, there are a number of caveats to this approach.
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While simulations suggest that typical ULDM halos possess a spherically symmet-
ric ‘core’, the above inequalities assume the the spherically-symmetric solution
represents the entire mass of the object. For large ULDM halos, one expects a
generic halo profile with a small core residing within a larger, incoherent outer
halo. This outer halo is not, in general, spherically symmetric and therefore does
not represent one of the eigenstates discussed above. Hence, these inequalities
are most useful for small astrophysical objects, where the spherically symmetric
core dominates according to Equation [2.69] Furthermore, baryonic physics is not
considered in deriving the above equalities. Hence, they should only be applied
in situations where the mass to light ratio is high. An example of a suitable test
regime is the dwarf spheroidal galaxies of the Local Group with mass-to-light ratios
> 100M/Le. One such study of 36 of these dwarf spheroidals ([139]) yields results
consistent with Equations and for m ~ 10722¢V and M = 3 x 108M,

however further studies are required to provide a convincing agreement.

2.3.2.2 Minimum ULDM halo mass

The inverse mass-radius scaling behaviour of the Schrodinger-Poisson system,
as shown in Equation [2.71] has further physical consequences. In addition to
constraining the half-mass radius for a ULDM halo of total mass M, Equation
2.71] may also be used to derive a lower bound on the value of M. To see this,
we make use of yet another relation arising from the numerical solutions to the

Schrodinger-Poisson system, in this case constraining the virial velocity, vy

,  G*M*m?

Vyir = h2

Wn, (2.73)

where similarly to Equations and 2.72 w, is a constant whose value depends
on the eigenstate n. Specifically, we find that w, decreases for increasing n, with
wp < wp = 0.1.

We also note that gravitational collapse only occurs in the presence of an
overdensity, meaning that the region within a virialised ULDM halo must have
higher density than the average density of the universe. It is typical to assume that

the average internal density within the virial radius is a multiple of the critical
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density [140]:

3H?
Pvir = 200pcrit = 200 <87TG> . (274)

While Equations and [2.74) constrain the virial velocity and the virial overdensity,
we may also constrain the virial radius of a ULDM halo by noting that, as a
consequence of the repulsive nature of the quantum pressure at small scales, the
virial radius must be larger than the de Broglie wavelength of the ULDM constituent
particle. Specifically [T17]:

AdB h
vir 2 = . 2.75
Tvir < 2 MUsiy ( )
Combining Equations and we find:
h? h?
vir 2 S >32 0 2.
TR GMmEr = 3 GMm?’ (2.76)

where we have used the ground state value wy = 0.1 in the second inequality.
Comparing this result to [2.71] where fy = 3.9, we see that this implies that for
the smallest halos, 7y & /2. Consequently, pyir = p1/2 and My, = My, =1 J2M.
Hence, equating p;/, with Equation we have:

200H%r7 , = MG, (2.77)
and substituting Equation for ry /o we find:

HY/2R3/2 : H 1/2 _s/2
M Z 1OW =5 x 10 M@ (7OkmslMpC_1> m22 s (278)

corresponding to a minimum virial mass of My, = M;), = 1/2M = 2.5 x 10" M.
In contrast to CDM models, where a large number of subhalos with masses below
108 M, are expected, the above limit indicates that dark matter subhalos around
globular clusters or ultra-compact dwarf galaxies are not expected [141]. Hence,
ULDM seems to naturally provide a resolution to the missing satellite problem
introduced in Chapter [I}

28



2.3.2.3 Maximum ULDM halo mass

Just as the scaling properties of the Schrodinger-Poisson equations naturally give
rise to a minimum halo mass, they also give rise to a maximum halo mass. Consider
Equation for the half-mass radius 71/5. We now ask what value of M,
contained within this radius would correspond to 71/, approaching the Schwarzschild

radius, rg. That is:
2G M /9 h?
T2 == GMmen' (2.79)

Since 2M,,, = M, this equation can easily be rearranged to show that the

rs

Schwarzschild radius is equal to the half-mass radius when

he
M=—/fn 2.80
Vi (2.80)
Taking the ground state soliton solution f, = fy ~ 3.9 this gives:
Moy = 2.67 x 10 Moms, . (2.81)

Above this mass, a black hole would be expected to form. Note that this calculation
corresponds only to a constraint on the mass of a soliton. As previously mentioned,
large astrophysical ULDM halos are not well-described by the soliton solution
alone, but rather a central solitonic core surrounded by a much larger incoherent
outer halo. Hence, the maximum ULDM halo mass will be much larger than the
upper limit on the central core. This maximum halo mass depends on the core-halo
relation discussed previously. Therefore, let us now combine the core-halo relation
with the upper bound on the soliton mass and compare our results to observations.

The largest observed astrophysical dark matter halos are associated with rich
galaxy clusters and have masses approaching 2 x 10" M, [32, 142]. Taking into
account the apparent core-halo mass relation of Equations and and the
fact that 71/, ~ 1.457. [I32], at z ~ 1 this corresponds to r1/2 ~ 0.0184kpc and
consequently:

Myax (observed) ~ 1.8 x 10 Mom,y, (2.82)

which is well below the limit set by Equation [2.81] Hence, we see that the

astrophysical constraints imposed by the scaling relations of the Schrodinger-Poisson
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system are consistent with the observations of the largest observed cosmological
structures.

Note, however, that the core-halo relation employed above has not been shown
to be universal. That is to say, it is not yet clear whether the core-halo mass
relation (which was determined from simulations of small to medium halos) can be
extrapolated to the largest ULDM halos. Indeed, the possibility of variability in

the core-halo relation will be investigated later in this thesis.

2.3.3 Open Questions

While the preceding section outlines the foundations of the astrophysics of ULDM,
there are a number of outstanding questions yet to be resolved. It is the purpose of
the remainder of this thesis to develop tools with which to address some of these

questions, which I will now briefly summarise.

2.3.3.1 Tools for the simulation of ULDM

In order to understand the complicated dynamics of ULDM in an astrophysical
context, it is necessary to develop computational tools capable of modelling this
behaviour. Importantly, such tools need to be able to capture quantum effects
unique to ULDM. For this reason, n-body simulators traditionally employed in the
case of CDM are unsuitable. In Chapters [3] and [f of this thesis I will introduce a
number of tools designed to model ULDM dynamics governed by the Schrodinger-
Poisson system. These include PYULTRALIGHT, CHPLULTRA, and AXIONYX.

2.3.3.2 Can ULDM solve the core-cusp problem?

It has been predicted that the core-cusp problem introduced in Section may
be ameliorated in ULDM due to the quantum pressure preventing collapse at the
centre of a ULDM halo. However, because of the scaling properties of ULDM, the
radius of a ULDM core scales inversely with mass. It is important to understand
the effect this has at astrophysically observable scales, as it is feasible that in some
regimes the ULDM density may indeed exceed CDM density at the same radius.
This question will be addressed in Chapter [4]
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2.3.3.3 Dynamics of interacting ULDM halos

In the context of cosmological structure formation, it is expected that as the universe
evolves, DM halos will merge to form larger objects. The details of this merger
process in the ULDM model are not yet well-understood, and are expected to differ
from CDM mergers through the presence of macroscopic quantum interference
effects. Mergers will be addressed in Chapter |3| of this thesis.

2.3.3.4 Variability in the core-halo mass relation

As described in Section [2.3.1], simulations of ULDM halos tend to favour a composite
halo structure consisting of a central solitonic core surrounded by an incoherent
outer halo. There appears to be a relationship (Equations , between
the relative masses of these contributions to the overall halo, but whether this
relationship may be extrapolated across a wide range of mass scales is not yet known.
Furthermore, as this relationship is drawn from a statistical average over a number
of simulated halos, it is expected that there will be a certain variance around the
theoretical value for any given halo. Factors which may lead to deviations from
the theoretical value are not yet well-understood, and in Chapter [5| of this thesis I
will address evidence indicating that the core-halo relationship may be violated to

some extent in certain regimes.

2.3.3.5 Characterisation of the solitonic core of ULDM halos

While it has been observed through simulations that ULDM halos tend to possess an
inner core resembling the ground-state (soliton) solution to the Schrédinger-Poisson
system, it is of interest to explore parameters other than the spherically-averaged
density profile of this region in order to establish the extent to which a solitonic
description is applicable. For example, one may expect that asphericities in an
initial overdensity, which collapses to form a ULDM halo, may be imprinted in the
final structure. One may also expect that angular momentum may lead to non-
trivial velocity distributions in the core, differing from the characteristic internal
velocity field of a true soliton. It is also necessary to understand the broader
dynamics of the core region as relaxation occurs following collapse, particularly

any oscillatory effects. These questions will be addressed in Chapter
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2.3.3.6 Other observable signatures of ULDM

In addition to characteristic density profiles of ULDM halos, it is useful to look for
other potentially observable effects which may serve as signatures of the ULDM
model. In particular, the wave-like behaviour of ULDM on scales similar to the
de Broglie wavelength may lead to observable interference effects in some regimes.
The presence of such interference effects and statistical methods to analyse them
are discussed in Chapters [3] and [5
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Chapter 3

PyUltraLight: A Pseudo-Spectral
Solver for ULDM Dynamics

This chapter is an adaptation of

Faber Edwards, Emily Kendall, Shaun Hotchkiss, Richard Easther
PyUltraLight: A Pseudo-Spectral Solver for Ultralight Dark Matter
Dynamics
JCAP No. 10 (2018) [9]

Copyright 2018 IOP Publishing Ltd and Sissa Medialab

3.1 Introduction

As discussed in Chapters [I] and 2], CDM has been the prevailing model of dark
matter for at least the past two decades. This describes a cosmology with simple,
pressureless, noninteracting dark matter comprised of WIMPs. This model, however
appears to be at odds with observations at small astrophysical scales [143]. The
potential shortcomings of simple CDM scenarios motivate investigations of more
novel dark matter scenarios. In particular, ultra-light dark matter (ULDM), is an
increasingly well-studied possibility.E]

As also discussed Chapters[I]and 2, ULDM models are motivated by fundamental

'ULDM is also variously known as fuzzy dark matter (FDM), BEC dark matter, scalar field
dark matter (SFDM), axion dark matter, and ¥ dark matter.
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theories possessing approximate shift symmetries [144], 123]. Moreover, ULDM may
naturally resolve the small-scale problems of ACDM as the Heisenberg uncertainty
principle suppresses gravitational collapse on length scales shorter than the de
Broglie wavelength of the ULDM particle. In this regime the mass of the ULDM
particle becomes correlated with astrophysical observables; if it is of order 10722 eV,

structure is suppressed at kiloparsec scales and below [108§].

Given the presence of a fundamental lengthscale, the behaviour of ULDM is
more complex than that of simple dark matter scenarios whose cosmologically
relevant interactions are purely gravitational. Physically, the effective short-scale
pressure and condensate-like properties of ULDM create new dynamical possibilities
for ULDM scenarios, such as purely pressure supported soliton-like solutions [145],
and superposition or interference during interactions between condensate-like halos
[146]. Consequently, modelling dark matter dynamics in ULDM scenarios is
more challenging than in simple cold dark matter models, but it is critical to
understanding complex ULDM physics.

In the non-relativistic regime, the dynamics of ULDM can be reduced to the
Schrodinger-Poisson system, where the complex variable ¢ describes the local
density of ULDM quanta, while the Poisson equation describes the local gravita-
tional potential. Many approaches have been taken to this problem, including both
modifications of existing cosmological simulation codes and the development of
new codes specifically designed for ULDM systems. One widely used approach is
the Madelung fluid formulation of the Schrodinger-Poisson system [147] which has
a quantum pressure term that can be treated numerically in a variety of ways. In
Ref. [I48], the cosmological code GADGET [149] is modified to treat the quantum
pressure as an effective particle-particle interaction and the resulting code, AXION-
GADGET is publicly available [I50]. Ref. [I51] modifies a non-public extension of
GADGET, P-GADGET3 to treat the quantum pressure term via smoothed-particle
hydrodynamics (SPH) routines. The SPH approach is also used in Ref. [I52], while
a particle-mesh approach was implemented in [153]. Nyx [I54] was modified in
[146] to study merging ULDM solitonic cores, GALACTICUS [I55] was modified
in [156] to study the effects of tidal stripping and dynamical friction on ULDM
halos, AREPO [I57] was modified in [I58] to study the core-mass relationship and
turbulence characteristics of ULDM halos, and ¢AMER [159, 160] was modified
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[129] to perform a detailed study of structure formation in ULDM cosmologies.

In this chapter I introduce PYULTRALIGHTf] a stand-alone Python-based
pseudospectral Schrodinger-Poisson solver. The key advantage of this code is that
it reproduces many of the key findings of more complicated cosmological simulation
codes within a desktop computing environment. Hence, it may provide a valuable
cross-check on more complex implementations, as well as serve as a basis for further

development of such codes within the computational cosmology community.

PYULTRALIGHT is based on a symmetrised-split-step (leapfrog) solver for time
evolution, and uses a pseudospectral Fourier algorithm to solve the Poisson equation
for the gravitational potential at each stepE| This algorithm has second order
accurate time integration steps and sub-percent level energy conservation, while the
wavefunction normalisation is conserved to machine precision. As a pseudospectral
code, linear differential operators are computed by direct multiplication in the
Fourier domain, while nonlinear terms are evaluated in position space. Consequently,
PYULTRALIGHT is free from noise associated with spatial derivatives computed
via finite-differencing. There is a necessary computational cost associated with
the Fourier and inverse Fourier transforms but these transforms are optimised in
PYULTRALIGHT through the use of the pyFFTW pythonic wrapper around the
C-based FFTW subroutine library [167, 168]. As the FFTW libraries offer full
parallelisation, PYULTRALIGHT is currently designed to take advantage of multiple
cores on a user PC or shared-memory environment. Full MPI compatibility has
not yet been implemented as we have not found a need to run simulations in a
distributed-memory cluster environment, however future releases may address this
possibility. We note that some modifications to PyUltraliight developed by other
research groups have successfully implemented MPI compatibility [I69]. This will

be discussed later in more detail.

2The initial code development for PyUltraLight was completed as part of an MSc thesis by
Faber Edwards, with contributions by Shaun Hotchkiss and Richard Easther [161]. Further code
development was then undertaken by myself, as well as the entirety of the analysis, verification
and written work presented here.

3A similar methodology was described in Ref. [162]; at the time of writing this code has
not been released. Spectral methods are often used to solve the Poisson equation in large scale
structure simulations, while the PSPECTRE code [I63] provides a pseudospectral solver for the
evolution of the inflaton and fields coupled to it during parametric resonance and preheating after
inflation [164) 165 [166].
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In the following sections, I first describe the implementation of the Schrodinger-
Poisson system in PYULTRALIGHT, referring the reader to Section for a review
of the derivation of the Schrodinger-Poisson equations in this context. I then
describe testing and verification procedures applied to the code. I reproduce a
selection of results from a variety of other ULDM simulations and discuss the

energy conservation and accuracy as a function of spatial resolution.

3.2 The rescaled Schrodinger-Poisson Equations

The Schrodinger-Poisson system which describes the non-relativistic dynamics of
ULDM is as given by:
ihp = —h—2v2¢ + m®, (3.1)
2m
where 1 is interpreted as the macroscopic wavefunction of a Bose-Einstein conden-
sate. It follows that the particle number density of the condensate is given by [¢|?,
so its mass density is simply m|i|?>. The local gravitational potential thus satisfies

the Poisson equation,
V20 = 4nGml|y|?, (3.2)

where GG is Newton’s gravitational constant. The coupled equations and
together form the nonlinear Schrodinger-Poisson system. While Equations and
[3.2] are valid for open boundary conditions, PYULTRALIGHT is designed to solve
the Schrodinger-Poisson system under periodic boundary conditions. In this case
the correct form of equation [3.2] is

V20 = 4nGm (v 2 — ([¥]?), (3.3)

where we subtract the average density from the right hand side of the Poisson
equation. The form of Equation is a consequence of Gauss’ law and the fact
that the surface integral of the gradient of the field around the perimeter of the
simulation grid is identically zero when periodic boundary conditions are imposed
[170).

It is helpful to recast the Schrodinger-Poisson system (equations and

in terms of adimensional quantities. In keeping with Refs [132] [162] we introduce
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length, time, and mass scales as follows:

8rh2  \ 4 102 eV 2
L=(—20 ) ~qo1 (/20 & 4
(3m2Hng0> ( m ) pe (3 )
1
8 2
T=(———) ~75 .
<3H§Qm0) 75.5 Gyr, (3.5)
1 8t \7(h\? 10736V \ 2
M=—(—— —) =7x10"[————) M 3.6
G(3H§Qmo) (m) - ( m ) o (36)

where m is the mass of the ultra-light scalar field, Hy is the present-day Hubble
parameter, GG is Newton’s gravitational constant and €2, is the present-day matter
fraction of the energy density of the universe. We recast equations [3.1] and [3.2] in

terms of the dimensionless quantities

z , mT ;L

Dropping the primes for notational convenience, we see that the coupled differential

equations of the Schrodinger-Poisson system under periodic boundary conditions

reduce to

i (F 1) = —%V%(f, 1)+ O(F, (T, 1), (3.8)
V2O(Z,t) = dn ([0 (2, 1)]* — (J0(Z, 1)), (3.9)

where it is understood that all quantities involved are dimensionless. We can
recover dimensionful quantities via the “dictionary” provided by equations [4.7] to

[4.8] For example, the integrated mass of the system, My, is given by
My = M/d3x|¢|2. (3.10)
Likewise, the mass density at any point is given by
p= ML) (3.11)

By dimensional analysis, we can easily restore dimensionful units to any of the
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quantities calculated by the code. In particular, in the following sections it is to be
understood that
E=ML’T? E,pqe, v=LT"" Veoge, (3.12)

where F and v represent energy and velocity, respectively. PYULTRALIGHT works
internally with these dimensionless quantities, but can receive initial conditions
and generates output in physical units. Henceforth, we will often refer to [1|* as
the density, where it is understood that this is in fact a dimensionless quantity

related to the physical mass density via the constant of proportionality given by

equation [3.11]

3.3 Dynamical Evolution in PyUltraLight

Dynamical evolution within PYULTRALIGHT progresses via a symmetrised split-
step Fourier process on an N x N x N grid with periodic spatial boundary con-
ditions [T To understand this method, first consider the exact expression for the

unitary time evolution of the wavefunction according to equation namely

t+h 1
W(F t+h) =T exp [—z/ dt’ {—§v2 + (7, t’)H W(F, 1), (3.13)

where T is the time-ordering symbol. For a sufficiently small timestep h, the

trapezoidal rule gives the approximation

t+h h
/ dt'®(7, 1) ~ E(é(f,t—l—h) + O(7, t)) (3.14)
t
We can therefore write the approximate form of equation as

Y(F t+ h) ~ exp [zg (v? — &(Z,t+h) — B, t))} (@), (3.15)

4PYULTRALIGHT is publicly available under a BSD licence. The full repository, including
supplementary files such as the code used to generate soliton profiles, is available on GitHub
at https://github.com/auckland-cosmo/PyUltralightl PYULTRALIGHT makes use of the
pyFFTW pythonic wrapper around the FFTW C-based fast Fourier transform libraries. Both
pyFFTW and FFTW are freely-available and PYULTRALIGHT has been used successfully on
both Mac OS and Linux systems, as well as a shared-memory cluster environment. We welcome
advice and feedback from users.
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Note that the exponential in equation [3.15| omits the time-ordering symbol, and is
only equivalent to its time-ordered counterpart to order h2.

The linear differential operator in equation [3.15] acts naturally in Fourier space,
while the nonlinear potential term is simplest to evaluate in position space. By
splitting the exponential we can evaluate each term in its natural domain. Such a

splitting is valid when the timestep is small, and is represented as

Y(Z,t+h) ~ exp {—%@(f,t—l—h)} exp [%Vz} exp [—%Cb(f, t)] W(Z,t). (3.16)
This splitting can be understood thusly: first, a half timestep is taken in which
only the nonlinear potential operator acts, followed by a full timestep in the linear
term. The potential field is then updated, and a final half timestep in the nonlinear
term is performed. Using the Baker-Campbell-Hausdorff formula to express the
product of exponentials in equation [3.16| as a single exponential and keeping only
terms to order h? we find:

12

exp [lg (V2 — O(Z, t+h) — O(7, t)) + %2 [VQ, (7, t)] -5

[VZ,cp(f,Hh)H .

(3.17)
Making use of the fact that ®(Z,t + h) ~ ®(Z,t) + h®d(Z,t) we see that the
commutators in equation cancel at O(h?) and the expression matches ,
with the dominant error term appearing at O(h?).

Evaluation of equation [3.16] within PYULTRALIGHT thus proceeds as follows:
Initially, the nonlinear term acts in position space for one half-timestep. The result
is Fourier transformed, and a full timestep is taken with the differential operator
applied in the Fourier domain. The potential field is then updated in accordance
with equation [3.9) After an inverse Fourier transform a final half timestep is
taken with the updated nonlinear term acting in position space to give the new
field configuration. This procedure is known as the symmetrised split-step Fourier
method, and used widely in fields such as nonlinear fiber optics [I71, 172] 173].

The algorithm can be represented schematically as

Y(Z, t+h) = exp [—%@(f,t—kh)} F~lexp {_ka]} Fexp [—%@(f, t)] W(Z, 1),
(3.18)
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where the order of operations runs from right to left, " and F'~! denote the discrete
Fourier transform and its inverse, and k is the wavenumber in the Fourier domain.
The potential field is updated following the inverse Fourier transform in equation
B.I8] via
— — 1 —
O(Z,t+h) = F! (_ﬁ) F 4| (7, t))?, (3.19)

where 1(Z,t;) is the field configuration at this halfway point in the full timestep.
We explicitly set the £ = 0 Fourier mode to zero prior to the final inverse Fourier
transform; as a consequence there is no need to subtract the global average density
from the local value in Equation [3.19, in contrast to Equation [3.3, The final
operation in equation only changes the phase of 1, so we could replace ¥ (Z, t;)
with ¢ (Z,t+h) in equation with no change in meaning. PYULTRALIGHT
makes an additional simplification to the symmetrised split-step Fourier method
by combining the consecutive half-steps in the nonlinear term into a single full
step. Consequently, only the first and last operations involve actual half steps.

Schematically this becomes:

Y(t+nh) = exp [4—%@] (H exp [—ih®] exp {%Vﬂ) exp {—%Cb] ¥(t), (3.20)
where @ is updated at each step via equation Attention is drawn to the
sign difference between the first and last operators. The positive sign in the last
operator is a consequence of the grouping of the preceding consecutive half steps.

From a computational perspective, the numerical Fourier transforms are likely
to be the rate-limiting step in any pseudospectral code. In PYULTRALIGHT the
discrete Fourier transform (DFT) and its inverse are implemented via pyFFTW, a
pythonic wrapper for the C-based FF'TW subroutine library which efficiently imple-
ments both real and complex DFTs [167, 168, [174]. This allows PYULTRALIGHT
to combine the flexibility of a notebook based modelling tool with the efficiency of
a carefully tuned, compiled numerical library. FF'TW is fully parallelised and its
support for multithreading is inherited by pyFFTW and accessed within PyUL-
TRALIGHT; the number of threads used by the pyfftw. FFTW class is determined
by the Python multiprocessing routines which are used to ascertain the number of

available CPU cores. In addition, PYULTRALIGHT uses the NumExpr package to
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parallelise operations on array objects within the simulation [175].

3.4 Initial Conditions: Soliton Profiles

PYULTRALIGHT specifies the initial dark matter configuration as a superposition
of an arbitrary number of solitonic halos, with arbitrary (user-defined) velocities
and phases. This is necessarily an idealisation, given that realistic dark matter
halos will not map directly to the solitonic solutions, but it provides an excellent
“playground” in which to explore ULDM dynamics, and the initialisation routines
within PYULTRALIGHT can be easily augmented to accommodate a wider range
of scenarios. The initial field configuration is built by loading a NumPy array file
encoding a solitonic solution to the Schrodinger-Poisson system and the correspond-
ing position mass, velocity, and phase parameters each specified by the user within
the accompanying Jupyter notebook.

In practice, only a finite range of halo masses can be supported within a given
simulation — the radius of a solitonic halo is inversely proportional to its mass,
so resolving a light halo interacting with a very massive halo would require an
extremely fine spatial mesh. However, PYULTRALIGHT also allows the user to
specify a fixed, external potential which does not take part in the dynamics. At this
point only a central 1/r potential is supported but this would be easily generalised.
It should be noted that because PYULTRALIGHT enforces periodic boundary
conditions, care must be taken in cases where solitons approach the boundaries of
the simulation grid. If a soliton were to cross the boundary during a simulation
in which a Newtonian central potential is implemented, the forces exerted during
the crossing would be unphysical. For studies of orbital stability this is unlikely
to cause any problems, as in these circumstances material collapses toward the
centre of the simulation grid rather than crossing the boundaries. However, the
user should ensure that solitons are initialised sufficiently far from the boundary
for the purposes of each simulation on a case-by-case basis. In situations where a
significant portion of the total mass is expected to be ejected, such as the merger
of multiple solitons to form a larger halo, care should be taken to ensure that mass
ejected above the escape velocity is not recaptured as it re-enters the grid from the

other side. For studies of this kind, an absorbing sponge at the grid boundaries is
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perhaps more suitable than periodic boundary conditions, though this has not yet

been implemented in PYULTRALIGHT.

The soliton profile used to generate the initial conditions in PYULTRALIGHT is
found by first imposing spherical symmetry in the Schrodinger-Poisson equations

and assuming time independence in the radial density profile [162]:
V(T ) — PP f(r), ®(Z,t) = o(r), (3.21)

where r = |Z|. Introducing @(r) := ¢(r) + 3, equations 3.8 and [3.9| reduce to

0= —5"(r) =~ f'(r) + $(r)(r) (322)
0=¢"(r) + 2B () — Anf () (3.23)

where primes denote derivatives with respect to r. Note that this system contains
no arbitrary constants, so the underlying profile is effectively universal and is loaded
as a pre-computed array by PYULTRALIGHT, rather than computed from scratch
with each code execution. The soliton profile numpy array file is included with
PYULTRALIGHT, however, an auxiliary program SOLITON_SOLUTION.PY is also
supplied, from which this array can be generated; it uses a fourth-order Runge-
Kutta algorithm to solve the coupled profile equations. We set f(r)|._,=1, while
smoothness requires that first derivatives of f(r) and @(r) vanish at the origin. We
then use the shooting method to search for solutions of f(r) and ¢(r) satisfying
the boundary conditions lim, . ¢(r) = 0 and lim,_, f(r) = 0, varying &(r)|,_,
until we obtain a solution of f(r) which approaches zero at the maximal specified
radius, 7,,. The value of § is then calculated by assuming that ¢(r) goes as —c¢/r

at large radii, where c is a constant. Under this assumption, we can write
G(rm) =——+8, c=120"(rm). (3.24)

We thus obtain the full solution (Z,t) = €' f(r). Having initially chosen
f(r)],—o = 1, we may then generalise to f(r)|,_, = &, where « is an arbitrary pos-

itive real number. It is easily verified that if e’ f(r) is a solution to the spherically
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symmetric Schrodinger-Poisson system, then g(r) is also a solution, where

g(r) = e Maf(Var). (3.25)

A more detailed discussion of the scaling properties of the Schrodinger-Poisson
system is given in Appendix [A] We thus have a family of spherically symmetric
soliton solutions to the dimensionless Schrodinger-Poisson system; the dimension-
less soliton mass is proportional to y/a and the full width at half maximum is
proportional to 1/4/a. Since the size of the soliton scales inversely with the mass,
the most massive soliton in the solution puts a lower bound on the required spatial
resolution.

The Schrodinger equation is not trivially form invariant under Galilean boosts
but we can enforce Galilean covariance through the addition of a velocity-dependent

phase factor,

W(F, 1) = af (ValE — t]) el (oo i) (3.26)

To construct the initial field configuration, PYULTRALIGHT, loads the NumPy
array encoding the radial profile f(r) for the f(r)|,_, =1 case. Equation is
then used to transform the this solution into soliton(s) with user-specified values
position, mass, and velocity specified, via the accompanying Jupyter notebook.

The user may also add an additional constant phase factor if desired.

3.4.1 Choosing the Timestep

The Courant-Friedrichs-Lewy (CFL) condition is an upper bound on the timestep
(as a function of grid-spacing) that must be satisfied by many partial differential
equation solvers based on finite-differencing [I76] and is often cited in numerical
analyses of ULDM via the Schrédinger-Poisson system, see e.g. Ref. [146]. However,
the CFL condition expresses a causality constraint, and is generally only strictly
applicable to hyperbolic PDEs, whereas the Schrodinger-Poisson has only a first
order time derivative, even though it is effectively the nonrelativistic limit of the
Klein-Gordon equation. Moreover, because PYULTRALIGHT computes spatial
derivatives via a pseudospectral method, technically it is unconditionally stable

[I77]. Our split-step algorithm is second order in the timestep, and its value will
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always be an empirical tradeoff between computational cost and convergence to
the apparent limit in which step is arbitrarily small. Consequently, the user is

encouraged to validate their choice of timestep via case-by-case convergence testing.

The default timestep in PYULTRALIGHT is fixed with reference to the fluid
interpretation of the Schrédinger-Poisson system [117]. The fluid interpretation is
often used to recast the Schrodinger-Poisson system in the form of the Madelung
equations [I78] - a hydrodynamical representation of the system. The first step is
to define:

V= /pe?, =V (3.27)

and to treat ¢ as a fluid velocity. From this perspective, if the phase difference be-

tween two adjacent grid points exceeds 7, the fluid will appear to move “backwards”
across the grid. We thus set the default timestep, At, so that fluid travelling at
this maximum velocity traverses one grid space, Ax, per timestep, or
Ax)?
At = (A7) . (3.28)

™

This is a choice, rather than a strict constraint on At. However, if the “fluid”
approaches velocities where the phase appears to switch direction, the configuration
is approaching the point where the simulation grid is too coarse to fully resolve the
dynamics. Hence, a timestep much smaller than this value may offer little practical
advantage. However, in some cases the breakdown may occur in regions of the
simulation volume that are of little physical interest, and the user is free to choose

a larger timestep via the ’step_factor’ parameter in the Jupyter notebook.

Alternatively, Ref. [I58] fixes the timestep by ensuring that neither of the
unitary operators in Equation lead to a phase change of more than 7 for a
single grid point over one timestep. However, because the pseudo-spectral algorithm
does not compare the phase of a single gridpoint at different points in time, this
choice of timestep is not a requirement for stability. This method gives the following

constraints:
(3.29)

2
Af < [ 27 72<AI) ],
®mal‘ T

where the second of these constraints is generally the stricter of the two, and is

equivalent to our default choice of timestep up to a multiplicative factor of O(1).
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Our experience is that specifying the timestep via Equation [3.2§] is suitable for
the majority of simulation scenarios, and we explore convergence in more detail in

Section 3.7

3.5 ULDM Dynamics with PyUltraLight

In this section, we validate PYULTRALIGHT by reproducing results from previous
studies of ULDM dynamics, demonstrating interference effects and effective repulsive
forces arising from the wavelike nature of ULDM. In addition we study the evolution
of the velocity field of a solitonic core orbiting within a Newtonian central potential,
showing that the stable orbital configuration is an irrotational Riemann-S ellipsoid.
Finally, we demonstrate that PYULTRALIGHT delivers sub-percent level energy

conservation for a selection of dynamical scenarios.

3.5.1 Interference Patterns During Soliton Collisions

The outcomes of ULDM soliton collisions depend critically on whether the total
energy of the isolated binary system is positive or negative. With a positive total
energy the solitons pass through each other, emerging largely undisturbed from their
initial configurations and the wavefunctions describing the solitons are superposed
during the collision, yielding distinctive interference patterns.

Following [146], we consider the head-on collision of two solitons with mass ratio
1 = 2 and high relative velocity. While we work in dimensionless code units, it
should be noted that a dimensionful velocity can be restored from the code velocity
by multiplying through by LT, the scale parameters defined in Equations and
[3.5 This simple case of a head-on soliton collision can be treated approximately.
Starting from equation we write the total wavefunction of the binary system

in terms of dimensionless quantities along the collision axis as

(. t) = anf (e — a1 — vyt])el(@strn e —foieso)
+ an( /_Oé2|ZL’ Ty — Uzt|)6i(a26t+v2(:rfx2)*%v§t)7 (330)

where x1 and x5 are the initial central positions of the solitons, v; and v, are the
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Figure 3.1: Comparison of theoretical and numerical density profiles at time of
maximal interference for head-on collision of two solitons with mass ratio yu = 2
and no relative phase difference. The solitons have dimensionless masses 5 and
10, with an initial separation of 4 code units and relative velocity of 20 code units.
The simulation resolution is 256® in a box of side-length 8.

soliton velocities, d is a constant relative phase term and as = 4 o, parameterising
the density profiles as discussed in Section [3.4] For convenience we set v; = —vy
and r; = —xo. We expect that the interference effects will be maximised when
two components of the wavefunction are centred at the same location, such that
x1 + vt = —x9 — vot = 0. This corresponds to a time t, = |z1/vi| = |x2/vo|, where
in this simplified model we do not account for distortions caused by the accelerating
or compactifying effects that the gravitational interaction has on the soliton profiles

as they approach one another. The dimensionless density is then given by

(.t = of | f(Varx)® + 16 f(2y/ar2)*+
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8f(v/arx) f(2\/a1z) cos (—30zlﬁ ‘? + 2ux + (5) } . (3.31)
1
Figure [3.1| shows the dimensionless density profile at the time of maximal interfer-
ence for two solitons with mass ratio 2 and phase difference 6 = 0. The numerical
result obtained using PYULTRALIGHT closely matches the theoretical prediction
of equation [3.31} Small disparities between the numerical and theoretical profiles
may be attributed to the effect of gravitational contraction not included in the
theoretical prediction of equation [3.31] and to a small offset in the true time of
maximal interference due to the solitons accelerating as they fall together. We do
not expect an exact match, but we have verified that PYULTRALIGHT qualitatively
reproduces the wave interference effects of the ULDM model. With the exception
of [146], few studies of ULDM dynamics have investigated the interference patterns
generated by colliding solitons in this way. In some cases, this is because the
algorithm employed to simulate the dynamics is not capable of reproducing such
effects. An example of this is given in [I53], where it is demonstrated that the
coarse-grained nature of the particle-mesh method renders the algorithm incapable

of reproducing detailed interference patterns such as those shown here.

3.5.2 Effective Forces From Destructive Interference

As demonstrated in [162], the wavelike properties of ULDM give rise to effective
forces which can dramatically affect the dynamics of core collisions. These effective
forces arise as a result of interference phenomena, rather than because of any local
interactions the ULDM model might incorporate. Figure |3.2| shows the results of a
head-on collision between two solitons, where in one instance the solitons have no
initial phase difference, and in the other instance a phase difference of 7 is applied
in the initial conditions. In this simulation, solitons of mass 20 are initialised with
relative velocity 20 and initial separation 1.2 (code units). The solitons are allowed
to collide, and contours of the density profile along the plane of symmetry are
displayed. In one case (top) there is no phase offset between the initial solitons,
while in the second the phases differ by 7. In the latter case, the phase shift creates
an effective repulsive force between the two solitons. It can be seen in the second

frame that as the solitons approach one another, the m phase shift results in a
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Figure 3.2: Head-on collisions between solitons of mass 20, initial relative velocity
20, and initial separation 1.2 in code units. Plots show contours of constant density;
time progresses from left to right across each row and is indicated in code units
for each frame. The upper panel shows solutons initially in phase; the effective
repulsive force generated by a 7 phase shift can be seen in the lower panel.

slowing of the approach accompanied by a deformation of the density profile, acting
so as to avoid contact between the solitons. Dissimilarly, in the case where there is
no phase shift, the solitons readily collide and merge to form a single contiguous
density profile prior to re-separating. Further discussion of this phenomenon and

its possible observational consequences can be found in [162].

3.5.3 Tidal Disruption of Solitons Orbiting a Central Po-

tential

PyYULTRALIGHT allows the inclusion of a static potential equivalent to a point-
mass at the centre of the simulation region. There is no backreaction on this mass
as a result of the ULDM dynamics, and its “mirror images” within the periodic
coordinate systems are not accounted for within the overall gravitational potential.
While a potential of this form does not necessarily accurately emulate that which

we might expect from a realistic galaxy or dark matter halo, it provides a starting

48



point for a study of the stability of satellite dark matter halos orbiting a much
larger object. In particular, this includes the investigation of lifespans of dwarf
satellite galaxies orbiting much larger objects (including the Milky Way) which are
a key to understanding whether ULDM models can resolve the so-called missing

satellites problem [90].
An extensive study of the tidal disruption of ULDM solitonic cores orbiting a

central potential has recently been undertaken in [I79] and we reproduce just one

of their results here. To do this, we again adopt Equation |3.27 namely:

P = \/ﬁew, U

v, (3.32)

where we are working in dimensionless code units. Using these definitions, the
Schrodinger-Poisson system can be recast in terms of hydrodynamical quantities
in the so-called Madelung representation. The Madelung equations resemble the
continuity and Euler equations of classical fluid dynamics, with the addition of a
‘quantum pressure’ term accounting for resistance against gravitational collapse.
The Madelung formalism is discussed in detail in [I78], 180} 18T, 182]. Because this
hydrodynamical formulation defines the fluid velocity as the gradient of the phase
of the field ¥, problems arise when ¢ = 0, where the phase is not well defined.
Because of this issue, the Madelung and Schrodinger representations are not strictly
equivalent unless a quantisation condition is imposed, as discussed in [I83]. We do
not consider the subtleties of the Madelung representation here, as it is sufficient
for our purposes to consider the fluid velocity in the region of a solitonic core,
where no field nodes are presentﬂ For a discussion of the possible remedies to
the ‘nodes problem’, the reader is referred to Chapter 15.3 of [I84]. Where the
Madelung representation is well defined, i.e. where the phase is a smoothly varying
function, the velocity field of the Schrodinger-Poisson system is strictly irrotational,
V x ¢ = 0. If a radially symmetric soliton is initialised in a circular orbit around a
Newtonian potential, there will be initial transient behaviour as the spherical profile
becomes elongated along the radial direction of the central potential. Meanwhile,

the velocity field corresponding to the overall orbital motion of the soliton will be

5Tt should be noted that, restoring dimensionful units, the fluid velocity # is related to the
ususal quantum mechanical probability current j through |7 = j = h/2mi [* Vi) — pVh¥]
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superposed with the internal velocity field, combining so as to produce a net flow
with vanishing curl.

The family of Riemann-S ellipsoids describe non-axisymmetric uniformly ro-
tating bodies whose internal velocity fields have vanishing curl [185]. Therefore,
it is the characteristic internal velocity field of a Riemann-S ellipsoid which we
expect to arise during our simulation of a soliton orbiting a central mass. It is
found in [179] that an initially spherical solitonic core without self-rotation will
gradually spin up to form a tidally-locked ellipsoid with an irrotational internal
velocity field when orbiting a host mass. We reproduce this result using PyUL-
TRALIGHT. Figure [3.3| shows the internal velocity field of a solitonic satellite after
one complete revolution around a host mass. The soliton has become elongated
along the radial line connecting it to the host, indicating that it is tidally locked,
while the velocity field within the tidal radius is visibly irrotational and bears the

qualitative trademarks of the Riemann-S ellipsoid as presented in Figure 2 of [186].
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Figure 3.3: Contours of constant density for a solitonic core after one revolution
around a central potential. Contours are superimposed upon the internal velocity
field (with the bulk motion subtracted). This velocity field is qualitatively that of
an irrotational Riemann-S ellipsoid, and the deformation of the density profile of
the soliton along the radial direction (red arrow) is visible. The host:satellite mass
ratio is approximately 55; simulation resolution is 2563.
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Figure 3.4: Left: Evolution of the density profile of a solitonic core at equally spaced
times as it undergoes tidal disruption in a potential centred at the red cross. Right:
Evolution of the components of the total energy of the system; times correspond
to the labeled density profile snapshots. All quantities are in dimensionless code
units.

It should be noted that the wider velocity field is not expected to be accurately
predicted in a simulation of this kind, though the field within the tidal radius is
well-modelled. This is because the initial soliton density profile is defined only
out to a given cutoff radius, beyond which the v field value is set identically
to zero. As mentioned previously, the Madelung hydrodynamical formulation of
the Schrodinger-Poisson system is not valid where v = 0. Because of this, we
focus primarily on the internal velocity field within the high density region of the
solitonic core. As we have seen, in this region PYULTRALIGHT is able to accurately

reproduce the expected velocity field characteristics.

3.6 Energy Conservation

Physically, we require that the overall energy in the system will be conserved. This
provides a test on the numerical performance of PYULTRALIGHT, and we find that
even at relatively low spatial resolution we see sub-percent level energy conservation
for all the dynamical scenarios considered here. In this section, we express the

energy of the Schrodinger-Poisson system in terms of the variables 1) and ® and
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Figure 3.5: Evolution of the components of the total energy of a binary soliton
system with each soliton in an elliptical orbit around the common centre of mass.

discuss its decomposition into individual constituents calculated separately within

the code. We then present results for a variety of configurations.

We begin by defining a suitable action which yields the full Schrodinger-Poisson
system through its corresponding Euler-Lagrange equations. We find that variation

of
1 1 . .
S:/dt/Rs dr — {§|V<I>|2+<I>|¢|2+§|Wz|2+%(w*—ww*)} (3.33)

with respect to @, ¢* and 1) yields equations [3.9] and the conjugate of equation
3.8] respectively. The integrand of equation [3.33]is the Lagrangian density, £, from

which we can derive the conserved energy in the usual way:

oL . oL .. OL.
Eip = a3 {—. + == *+—.q>—£}. 3.34
tot /R3 X 8@/}¢ 8¢*w 9 ( )

Evaluating this expression, we obtain:

1 1
Bue= [ s {3170 + oluP + 5 vur ] (3.39
R3
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Figure 3.6: Energy conservation as a function of simulation resolution for a binary
solitons orbiting their common centre of mass. AFE}y,; is the difference between
the current total energy and the initial total energy for the configuration. The
ratio of this difference to the initial integrated energy is plotted on the y axis for
each resolution.

= / d*x {lv«bvq)) - l@v% + @y + lvw*vw) - lz/J*VQ@D}
RS 2 2 2 2
(3.36)

_ / P {1q>|¢y2— 1¢*V2w}, (3.37)
- 2 2

where in the last step we have used Stokes” Theorem as well as the Poisson equation
to perform simplifications. Because we are working with the dimensionless
quantities defined in equation it is easy to see that this quantity is related
to the physical energy through multiplication by a constant factor of L>T—*G 1.
It should be noted that equation is not equivalent to the expectation value
of the Schrodinger Hamiltonian, which is itself not a conserved quantity of the

Schrodinger-Poisson system and is given by
N 1
(H) :/ d*x {<I>|w\2 - §¢*v2¢}. (3.38)
R3
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Figure 3.7: Energy conservation as a function of simulation resolution for a soliton
undergoing significant tidal disruption in a Newtonian central potential. AFE},q; is
the difference between the current total energy and the initial total energy for the
configuration. The ratio of this difference to the initial integrated energy is plotted
on the y axis for each resolution.

The two terms in the integral are calculated separately within the code. The
first term is the gravitational potential energy of the Schrodinger-Poisson system,
Egp. As discussed in [117], the second term may be decomposed into contributions
which may be considered separately as kinetic and ‘quantum’ energies, Fx and
Eq. However, for our purposes it is sufficient to consider only their combined
contribution. When PYULTRALIGHT includes the central potential of a central
point mass we have additional energy contributions. The gravitational potential
energy from self-interactions is calculated separately from the gravitational potential
energy due to the central potential.

Figures [3.4) and demonstrate energy conservation for two scenarios. The
first case shows the evolution of the energy of a single soliton undergoing significant
tidal disruption within a Newtonian central potential. For this simulation a soliton
of mass 12 in code units was initialised at a radial distance of 3 code units from

the centre of a Newtonian central potential generated by a central mass of 1000
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code units. As the soliton is disrupted, the kinetic energy increases, while the
gravitational energy due to the central potential decreases, as expected. Meanwhile,
the gravitational potential energy from self-interactions gradually increases toward
zero as the disruption continues. In this case the sum of the individual energy

components is conserved to 1 part in 10° at a resolution of 256°.

Figure[3.5demonstrates the evolution of the energy of a binary system of solitons
in elliptical orbits around their common centre of mass over three orbital periods.
In dimensionless code units, the soliton masses are 22, the initial separation 2, and
the initial relative velocity was 3.6. At points of closest approach the kinetic energy
increases as the solitons speed up, while the potential energy due to self-interaction
decreases commensurately such that the total energy is conserved. In this scenario
no central potential has been included. As the solitons reach the first point of
closest approach, they become slightly deformed, exciting oscillatory modes which
are manifested in Figure [3.5] as small scale oscillations superposed on the global
behaviour. Figure demonstrates the relationship between the total integrated
energy and the grid resolution for the same binary system of solitons used to
generate Figure |3.5] The vertical axis shows the ratio of the deviation in the total
energy to the initial value of the energy, where the deviation is measured as the
difference between the current and initial values. Energy is conserved at sub-percent
level even at low resolutions (96%), and increasing grid resolution greatly improves

accuracy.

Figure demonstrates the improvement in energy conservation with increasing
grid resolution for a single soliton tidally disrupted in a Newtonian central potential,
with the same set up as used in Figure Namely, a single soliton of mass 12 code
units is initialised at a distance of 3 code units from a central mass, M = 1000.
The initial velocity of the soliton is \/M_/r where 7 is the radial distance of the
soliton from the central mass. The duration of the simulation is 0.5 code units so
that the soliton undergoes significant tidal disruption as demonstrated in Figure
. While we see that energy is conserved at sub-percent level even for 643 grid
resolution, the qualitative behaviour of the mass density distribution in this case
is not correct, so we conclude that this resolution is insufficient for convergence
despite good energy conservation. This highlights the importance of a multifaceted

approach to convergence testing. At 2563, energy is conserved to parts in 107°.
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3.7 Spatial and Temporal Resolution

We now examine the convergence of the v field configuration as a function of spatial
resolution and timestep in a typical simulation. We initialise PYULTRALIGHT with
two diametrically opposed solitons orbiting a large Newtonian central potential,

running until the solitons are tidally disrupted, as shown in Figure [3.8]

(&) o %c

0 ° A

Figure 3.8: The configuration used to test the sensitivity of solutions to the spatial
and temporal resolution. Two solitons of mass m = 20 are initialised at radial
distances r = 2 from a central mass with M = 1000 moving in opposite directions
with initial speeds |v| = /M /r, corresponding to clockwise orbits around the
central mass. The box size is 10, while the total duration is 0.25 (all quantities in
code units). Time runs from left to right.

To examine the sensitivity of the ¢ field configuration to the spatial resolution,
we first run at 256% with the default timestep. We then re-run at resolutions from
643 to 3203 with the timestep fixed to the 256% value and downsample the final
outputs to 643. We sort the resulting values by the density at the corresponding
spatial location, and plot differences in the phase and the magnitude of v relative
to the values of the 320° run as shown in Figure (bottom). The convergence is
poor at 643, but improves with resolution, to the point that there is little difference
between the 256 and 320° cases.

To examine the sensitivity of the the 1 field configuration to the timestep, we
take the same default simulation at 2563, and then compare this to runs with
timesteps 0.1, 10, and 50 times the default and down-sample the final output arrays
to 643. We sort sort the array values in order of the v field magnitude in the run
with the smallest timestep and in Figure we show the difference in the phase

and magnitude of ¢ as a function of the timestep. The difference between the
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results with the default timestep and a value 10 times smaller are negligible; and
there is reasonable agreement between the default case and those with the timestep
boosted by a factor of 10. However, when the timestep is increased by a factor of

50 the accuracy of both the phase and magnitude data are significantly reduced.
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Figure 3.9: Top: Deviation of the phase of ¢ compared to the highest resolution
result (320%). Field values are arranged in order of increasing magnitude from left
to right. A slight improvement in phase convergence can be seen for higher density
regions to the right. Bottom: Improving convergence of [¢| with increased spatial
resolution for the simulation shown in Figure |3.8

Figure shows profiles of the density through the simulation volume, as a
function of spatial resolution and timestep. Each plot represents the density profile

down the axis of symmetry of the initial configuration (vertical axis in Figure [3.8])
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Phase deviation (from 0.1 x default)

Density

Figure 3.10: Top: Phase deviation of v, relative to solution with timestep 0.1
times default, sorted by the density. There is excellent agreement with the default
timestep, and reasonable convergence at steps up to 10 times the default, with
better accuracy in high density regions. Bottom: Difference in magnitude of
Y, relative to the solution with timestep 0.1 times default. Again we see good
convergence with the default timestep, and tolerable agreement in high density
regions when the step is a factor of 10 or less than default.

after approximately half a revolution around the central potential, or t=0.28 code
units — slightly after the final frame in Figure [3.8]- when the solitons have become
distorted due to tidal forces, but are not yet completely disrupted. We see that as
the timestep is varied from 0.1 to 50 times the default value, the results with the

default and the shorter timestep are virtually indistinguishable, and results are still
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Figure 3.11: Top: Effect of decreasing the spatial resolution on the density profile
at half a revolution. Bottom: Effect of increasing the timestep on the density

profile at half a revolution.

reasonably accurate at 10 times the default timestep, with small deviations at high
densities. We also see that as the spatial resolution is decreased from 3203 to 643,

the lowest resolution performs poorly, but there is good convergence at resolutions

of 1923 and above.
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3.8 Discussion and Outlook

PYULTRALIGHT is an accurate, flexible and easy to use tool for studying the
dynamics of ultra-light dark matter governed by the Schrodinger-Poisson system of
equations. The code makes use of a pseudospectral symmetrised split-step Fourier
methodology, in which all spatial derivatives are treated via explicit multiplication in
the Fourier domain, thereby avoiding difficulties associated with finite-differencing
methods.

Energy conservation within PYULTRALIGHT is excellent, at sub-percent level
for simulations run at 1283, with even better performance as resolution is increased.
The code captures complex phenomena resulting from the wave-like properties of
ultra-light dark matter, including the interference patterns arising during high-
velocity collisions of solitonic cores, and effective forces observed in cases where
the colliding cores are out of phase. These phenomena can be clearly observed at
relatively low spatial resolution, avoiding the need for high-performance computing
infrastructure to study the fundamental behaviour of ULDM systems in simple
configurations. This makes PYULTRALIGHT a useful tool for investigating the
dynamics of ULDM systems.

PyUrLTrRALIGHT is Python-based, and as such is particularly simple to un-
derstand and use. The accompanying Jupyter notebook allows for the efficient
adjustment of simulation parameters, and offers a useful browser interface for quick
visualisation of simulation results. While Python-based, the code makes use of
low-level language resources, namely the FFTW libraries through the use of the
Pythonic pyFFTW wrapper and will operate at ~ 80% efficiency on a 16 core
desktop workstation, suggesting that it is computationally efficient.

The current implementation of PYULTRALIGHT is already a useful tool for
simulating dynamical ULDM systems and exploring their dynamics. However, there
is much scope for improvement. In particular, future releases may incorporate a
variable timestep and more sophisticated physics, including explicit self-interactions
in the axion sector or additional matter components. Augmented versions of the
code may also include higher-order generalisations of the pseudo-spectral method,
such as those used in [187].

Since its release, the utility of PYULTRALIGHT has been confirmed as the code
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has been used and adapted by a number of research groups. Of particular interest is
a variation of PYULTRALIGHT implemented in the Chapel programming language
[188]. Named CcHPLULTRA, development of this code is described in Ref. [169).
This implementation is easily scalable, with successful testing completed in both
simple laptop-only simulations as well as large simulations on high-performance
Chapel infrastructure utilising hundreds of processors. CHPLULTRA is currently
being used to study mergers within binary ULDM systems [189] (in preparation).

A further interesting adaptation of PYULTRALIGHT is presented in Ref. [190].
In this case, the code is modified in order to simulate the interaction of ULDM
solitons with a black hole. This is of particular interest given that many observed
galaxies tend to possess a supermassive black hole at their centre, at which point
a ULDM halo is typically thought to be solitonic in nature. Interestingly, this
adaptation of PYULTRALIGHT was used to demonstrate that black holes in the
centres of solitons exhibit stochastic motion driven by excitations to the ULDM field
sourced by the ULDM-black hole interactions. Evidence of novel phenomena such
as this motivate further studies of this kind, perhaps utilising more sophisticated
modifications of PYULTRALIGHT. Indeed, interest in this topic has already begun
to build; see, for example, [191].

Recently, yet another adaptation of PyUltraLight has been developed, named
PyYSIULTRALIGHT [192]. In this case a quartic self-interaction term is included in
order to explore a wider class of ULDM models.

We also note that PYULTRALIGHT has proven useful for modeling physics
outside of ULDM. In particular, a generalisation of PYULTRALIGHT has been
used to model the gravitational fragmentation of the inflaton condensate [193].
This study of nonlinear dynamics in the very early universe illustrates the broad
applicability of the PYULTRALIGHT tool.

It is anticipated that additional variations of PYULTRALIGHT will continue to
be developed, with the features of each variation tailored to a particular problem
in ULDM physics. While PYULTRALIGHT is particularly useful for simulations of
galactic scale physics, it is not well-adapted to large scale cosmological simulations
in an expanding background. This is due to the fixed resolution of the compu-
tational grid, which corresponds to decreasing spatial resolution as the physical

size of the simulation region increases with time. In Chapter [} I will introduce
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a recently developed ULDM simulator which employs adaptive mesh refinement
(AMR) to overcome this obstacle. Tools which make use of AMR are bulky and
necessarily more computationally expensive, so while they have the advantage of
variable resolution, there remains a demand for simple, standalone tools such as
PYULTRALIGHT for addressing a variety of problems in ULDM physics. Indeed,
we are currently aware of a variety of ongoing projects in which PYULTRLIGHT is

being employed.
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Chapter 4

The Core-Cusp Problem
Revisited: ULDM vs. CDM

This chapter is an adaptation of

Emily Kendall and Richard Easther
The core-cusp problem revisited: ULDM vs. CDM
Publ. Astron. Soc. Austral. 37 (2020) [10]
Copyright Astronomical Society of Australia 2020; published by Cambridge University

Press

4.1 Introduction

As discussed in Chapter [1}, the CDM dark matter model successfully accounts for
the large scale structure of the universe [194] and the spectrum of anisotropies in the
microwave background [195] 196], 197, 198, 199] 18, 200]. Nevertheless, the so-called
“small-scale crisis” remains a challenge [00]. A key issue is the apparent tension
between the central density profiles of dark matter halos in simulations containing
only gravitationally interacting CDM, and those inferred from observational data.
Simulations tend to produce ‘cuspy’ central density profiles [92], which grow as
1/r at small radii, but observational data appears to favour flattened central cores
[201]. The tension between the two is widely known as the “core-cusp problem”
[202, 203, 96].
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The seriousness of the core-cusp problem is the subject of ongoing debate, see,
for example, Ref. [204]. Nevertheless, the wider category of “small-scale” problems
in standard CDM, along with tighter constraints from direct-detection experiments
[205], motivate the study of alternative dark matter models such as ULDM, which
may naturally ameliorate tensions on small scales due to macroscopic quantum
phenomena.

As reviewed in Ref. [I17], current constraints prefer a ULDM particle mass of
O(~ 10722eV), corresponding to a kiloparsec-scale de Broglie wavelength. ULDM
thus exhibits novel wave-like behaviour on astrophysically interesting scales. ULDM
simulations suggest that realistic astrophysical halos have an inner core consisting
of a kiloparsec-scale Bose-Einstein condensate, surrounded by a virialised outer
halo [146, 128]. The outer region resembles a standard CDM halo, which is
well approximated by the Navarro—Frenk—White (NFW) profile characteristic of
collisionless CDM, and most commonly associated with WIMP dark matter [92].
Because the (solitonic) profiles of the inner condensates are smooth, it has been
suggested that ULDM can resolve the core-cusp problem without the need to
invoke baryonic astrophysics. However, solitonic density profiles obey an inverse
mass-radius scaling law. Therefore, it has been suggested that the density of the
ULDM halo might, in fact, exceed that of an analogous NFW halo over a finite
range of small radii in larger galaxies. In particular, Ref [133] concludes that
CDM-only NFW profiles may outperform ULDM profiles for galaxies with halo
masses My, > 10 M [[]

To further explore the possible worsening of the core-cusp problem in ULDM,
we examine the effect of scatter in the core-halo mass scaling relation. Starting
from the semi-analytic density profile of Ref. [133], we look at the scatter in the
parameters implied by Ref. [132]. We show that the resulting statistical variability
may ease concerns that the core-cusp problem is exacerbated for ULDM relative to
CDM for “large dwarf” galaxies.

Our analysis also highlights a number of caveats that apply to all such discussions.
First, the incoherent outer regions of ULDM halos are subject to strong fluctuations,

both temporally and spatially. These are not captured by semi-analytic halo density

'Ref [133] refers to these galaxies as “large dwarfs”, though we note that the upper limit on
this category is around 102M,), approaching estimates of the Milky Way mass [206].
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profiles and we argue that these fluctuations may accentuate the intrinsic scatter in
halo parameters. Moreover, baryonic feedback is known to be significant for dwarf
galaxies [97, 204] and neither the NF'W or ULDM profiles incorporate this effect.
Consequently, we caution against attempting to discriminate between ULDM and
CDM models based on DM-only simplified theoretical profiles.

Observationally, we find that neither semi-analytic ULDM halos (for ULDM
particle mass 0.8 — 2.5 x 10722 eV) nor NFW halos provide a particularly convinc-
ing fit to rotation curves of large dwarf galaxies in the SPARC database [113].
Moreover, many rotation curves are extracted from a few data points with signifi-
cant uncertainties and which only span a small range of radial distances, further
complicating attempts to draw robust conclusions. These issues are exacerbated
by the relatively large number of free parameters in the theoretical models. For
instance, a ULDM mass parameter of 10723 eV seemingly ameliorates the core-cusp
problem in galaxies exhibiting a steep decrease in rotation velocity at small radii,
but such a small mass is in tension with other constraints. Consequently, the
primary conclusion to be drawn from this type of parameter-fitting exercise seems
to be that analyses of the core-cusp problem (and potentially other “small scale”
anomalies) based on simplified semi-analytic DM-only models cannot meaningfully
test these scenarios, especially when observational data is limited and detailed

numerical simulations with baryonic feedback are lacking.

The structure of this chapter is as follows. In Section [£.2] we review the
construction of semi-analytic density profiles for both the ULDM and CDM models
and briefly discuss aspects of realistic ULDM halos which are not captured by the
semi-analytic model. In Section we compare the semi-analytic density profiles
for ULDM and CDM halos in the dwarf galaxy mass range 10* — 102 M, taking
into account statistical variation in both the NF'W concentration parameter and the
ULDM core-halo mass relation. We then compare the radial velocity profiles inferred
from these density profiles with astrophysical data from the SPARC database [113].
We conclude in Section 4.5
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4.2 Semi-Analytic Halos

We begin by looking at the semi-analytic parametrisations of ULDM and CDM
halos. The well known NFW profile of CDM [92] 207] is given by

puew(r) = — L0 (4.1)
& (1+%)

At small radii the profile is proportional to 1/r, while at large radii it goes as
1/r3. The parameters py and R, vary from halo to halo; py can be interpreted as a
characteristic density, while R, is the scale radius and determines the distance from

the centre at which the transition between the ‘small r’ and ‘large 7’ limits occurs.

The NFW halo is assumed to be radially symmetric, and requires truncation
at a finite radius in order to prevent the integrated mass diverging as r — oo.
The truncation is typically set by the virial radius, which is itself determined
approximately via the spherical top-hat collapse model describing the evolution of
a uniform spherical overdensity in a smooth expanding background [140, 208 209].
Gravitational collapse of the overdensity halts when virial equilibrium is reached.
In this scenario the corresponding virial radius is the radius at which the mean
internal density is A perit(t). Here peit(t) is the critical density of the universe at
time t. The factor A, is of order 10? and while different conventions exist, we make

the common choice A, = 200 [210] in what follows.

Once the virial radius is specified as the outer limit of the halo, Equation
completely determines the density profile for given p, and R,. For any given virial
mass, there is a range of corresponding NF'W density profiles, with the distributions
of pgp and R, emerging from the mass-concentration-redshift relation seen in N-body

simulations and observations 211, 212].

Whereas CDM halos can be described by NFW distributions, a different ap-
proach must be taken in the case of ULDM. ULDM dynamics is governed by the
Schrodinger-Poisson system of coupled differential equations. In a static background,

they take the dimensionless form

i) = —%v% + O, (4.2)
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V20 = 4r |y, (4.3)

where 1) is the ULDM wavefunction, ® is the Newtonian potential, and the density
p o |¢|%. The solitonic ground state profile cannot be written down analytically,
but given a numerically computed spherically symmetric profile ¢ for ¢(0) = 1,

the full family of solutions is then given by

V() = (V) (4.4)

where 7 is a scaling parameter and the dimensionless mass of the soliton is pro-
portional to /v, while the dimensionless radius is proportional to 1/,/y. The
dimensionless density [1)|? and dimensionless radius z can be transformed into

dimensionful quantities by

p =MLY, (4.5)
r= Lz, (4.6)
where
8wh? 1 1072eV) 2
— ~ 121 k 4
£~ (o) =2 () e a7
and
1
1 1 "1 h\?
M= (o) ()
10-2 eV 2

Ref. [133] gives a piecewise parameterization of the generic ULDM profile

p(r) = poalr),  0ST <7 (4.9)

PNFW(T); T'a S r S Tvir,

where pgo1(7) is the appropriately scaled density profile of the ground state soliton
solution. The contribution from the solitonic core and the overall virial mass is

predicted to obey a scaling relationship [132, [I35] which sets the central density,
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pe, of a ULDM halo with virial mass, M. This yields an expression relating the

core size to the velocity dispersion, and finally to the halo virial massﬂ

25

= =
o (6]
Log(p) (code units)

w

o

Figure 4.1: Illustration of the scale of the fluctuations present in the incoherent
outer halo for a merger of 8 randomly located solitons. The contour plot represents
the (log,, scaled) local density across a slice through the centre of the final halo.
In this plot, distance is not log-scaled, and we see that the spatial size of the
fluctuations is of the same order of magnitude as the solitonic core itself.

This core-halo mass relation was introduced in Chapter [2|and can be understood
simply by matching the virial velocities of the core and the wider halo (see Appendix
for details). At z = 0, we may recast Equations and from Chapter |2| to

2The authors of [132] suggest the following general expression:
M, = (|E|/M)"?, (4.10)

where the core mass M, is determined by the total energy, E, and the total mass of the halo, M
where « is a constant of order unity. They then explain that the right hand side of the equation
represents the halo velocity dispersion, while the left hand side represents the inverse core size
due to soliton scaling laws. By invoking the virial condition of the spherical collapse model, the
authors then construct the redshift dependent relationship between the solitonic core mass and
the halo virial mass for a ULDM halo.
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obtain:

M. 4/3
pe = 2.9 x 105 Mg kpce ™ (W) may?, (4.11)
and
M. \ /3 X
r. = 1.6 kpc ( e ) Moy (4.12)
109M,

where 7, is the radius at which the density is half of the central value, and mys is

given by mgy = m/107?2 eV where m is the ULDM particle mass.

While the piecewise semi-analytic ULDM profile is a useful tool, one should be
mindful of its limitations. For example, while a number of studies have attempted
to establish ‘universal’ properties of ULDM halos, many of these analyses generated
ULDM halos through the mergers of smaller compact objects [146, [158]. This
method of halo assembly is not representative of a realistic structure formation
process, however it has the advantage of avoiding the computational difficulty of
undertaking large-scale ULDM cosmological simulations. For this reason there is
currently limited information from which to draw robust conclusions about the
properties of astrophysical ULDM halos. In particular, universal application of
the core-halo mass relation cannot be fully justified until more work is done to
understand the characteristic timescales associated with the formation of quantum
pressure-supported cores in scenarios including condensation from a fluctuating
background, gravitational collapse in an expanding background, and mergers of
objects with and without stable central cores. Moreover, it is difficult to accurately
predict the effect that baryonic feedback will have on the formation of solitonic
cores in halos of different masses, which could be significant at small radii in the

present context.

Halo substructure is likewise missing from the semi-analytic model presented
above. In simulations of soliton mergers the resulting halos have turbulent outer
regions, with fluctuations on scales comparable to the core size, as illustrated
in Figure 4.1} In addition to the fluctuations inherent in a large ULDM halo,
smaller halos are likely to orbit or interact with larger halos. This substructure
is not captured by the semi-analytic model described above, and predictions for
tracer velocity profiles may thus not match those of realistic astrophysical objects.

Furthermore, temporal fluctuations in the core density are also missing from the
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semi-analytic model. Realistic halo cores are not exact soliton solutions of the
Schrodinger-Poisson equation, they interact non-trivially with the fluctuating NFW-
like outer halo, and their central densities can vary with time by as much as a
factor of two [128].

Taken together, these limitations suggest that the core-halo mass relation of
the semi-analytic model should not be interpreted as an inviolable rule, but as
a statement about the averaged characteristics of a statistical distribution. To
estimate the variance corresponding to this distribution, we can consider a range
of possible central densities for a given virial mass (somewhat analogous to the
scatter in NFW concentration parameters [207]). The results of Ref. [132] indicate
that a scatter in the core mass M, of up to £50% is possible for a given virial
mass. Unfortunately, the small sample size and limited halo mass range (M, ~
108 —10™ M) found in [132] preclude a detailed analysis of the statistical properties
of realistic astrophysical halos, but future simulations (especially those including

baryonic feedback) should lead to improved predictions for this distribution.

To partially account for statistical variance in halo properties, one can allow for
variation in the radius at which the solitonic profile of the ULDM halo transitions
into an NFW profile. This is acknowledged in Ref [I33] and is captured by the
parameter «: the transition radius, r,, is given by r, = ar., with 3 < a < 4.
For a given theoretical halo, an adjustment to the transition radius should be
accompanied by changes in the parameters of the outer NFW halo, so as to

maintain the core-halo mass ratio.

Thus, by taking the central soliton density and transition radius as variable
parameters, we can create a range of plausible ULDM halo profiles for a given halo
by using the virial mass to predict p., and assuming variation of £50% around this
central value. Given specific values for the central density and transition parameter
a, the solitonic piece of the ULDM profile is then completely specified, and its
mass can be calculated. The remainder of the virial mass must be accounted for
by the NF'W tail of the profile. By matching the densities of the NF'W tail to the
inner soliton at the transition radius, the values of R, and pg for the NFW tail are

obtained.
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4.3 ULDM and CDM Halos and Astrophysical
Data

We now compare the radial profiles of ULDM halos to NFW halos using the
semi-analytic profiles described above, focusing on masses in the range 10! and
102 Mg, which may show an apparent worsening of the core-cusp problem [133].
Figure [4.2| compares such halos; the shaded blue region represents the ULDM
halos for which the core-halo mass relation has a scatter M. = M., £50% range,
where M, is the theoretical prediction for the core mass. Note that because higher
central densities correspond to narrower soliton profiles, the shaded region possesses
‘crossover points’ near the transition from the solitonic to NFW profile, appearing
somewhat skewed from the median line. Were we to vary more parameters in the
model (such as transition radius and axion mass), we would see a broadening of the
shaded region, such that the median line would be fully encompassed by the shaded
region. Because we are here focusing primarily on the core mass (and therefore
central density), we illustrate only the changes in density profile attributable to
this, hence the restricted range of profiles shown as the shaded blue region.

The Schrodinger-Poisson soliton scaling relations show that the M, = M, £50%
mass range corresponds to a range of ,/4 <y < 9v,/4, where 7, is the theoretical
prediction of the square root of the dimensionless central density. Consequently,
there is a large variation in the central density and thus widely varying predictions
for the ULDM profiles. We fix v = 3.5 (in the middle of the predicted range) which
does not affect the central density as the core lies well within the solitonic region.
Changing the value of a will, however, affect the predicted velocity profiles for
each halo. We do not attempt to fit this parameter to data in this Section; the
previously discussed limitations of the semi-analytic models employed here suggest
that this would be unlikely to be a meaningful exercise. The blue ULDM profiles
are compared to the red shaded regions of Figure [4.2] showing the 20 variation
about the theoretical prediction for the concentration parameter of the NFW halo
with the same virial mass [207].

Following Ref [133], we plot to a minimum radius of r/r.;, = 10~* and for the
same choices of myy. For any My, the NF'W halo density will inevitably exceed
that of the ULDM halo at very small radii, though the threshold for this transition
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Figure 4.2: Density profiles as a function of radius (normalised to the virial radius)
for ULDM and NFW halos of masses 10" M, (top) and 10'2 M, (bottom). The
left panel represents the results for moy = 0.8, while the right panel corresponds to
myy = 2.5. The transition radius is fixed at r, = 3.5 * r.. The blue shaded region
represents the ULDM profile with M. = M, £50% M,,,, while the solid blue line
represents the ULDM profile when the theoretical core-halo mass relation is taken
to be exact. The red shaded region represents the range of NF'W profiles for a halo
of the same virial mass with a 20 variation around the median (solid red line).

may be arbitrarily small, and not observationally relevant. However, we note that
the apparent worsening of the core-cusp discrepancy does depend on the choice of

inner radial cutoff.

From Figure we see that for halo masses of 10! M, there is a wide range of
M, for which the ULDM profile is ‘less cuspy’ than its NFW counterpart. For a halo
mass of 1012 M, and a ULDM particle mass mg; = 0.8 the range of plausible ULDM
profiles likewise includes those which are ‘less cuspy’ than the corresponding NF'W
profile. At higher particle mass (mgy = 2.5) for 102 M, halos, the NFW profiles
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tend to be less peaked than corresponding ULDM profiles at radial distances in
the range 1074 < r/ry, < 1.

To assess the suitability of these semi-analytic profiles, we compare to obser-
vations drawn from the SPARC database. Because observations yield the (line of
sight) velocity distributions of tracer stars as a function of galactocentric radius
rather than the halo density itself, we must first transform our theoretical density
profiles into velocity profiles. In so doing, we acknowledge that the effects of
non-circular motion and kinematic irregularities constitute a non-trivial source of
random error in observed velocities, which should be kept in mind especially when

working with limited data sets.

NGC4157
NGC3893
NGC0289
ESO079-G014
UGC06973
NGC1090
NGC3726
NGC6946
NGC6015
NGC4088
NGC3949
NGC4051
UGC09037
NGC3917
- NGC2403
uUGC00128
NGC3972

lOZj

Vpm (km/s)

1071 10° 10! 102
r (kpc)

Figure 4.3: Velocity distributions for galaxies with maximum velocities in the range
125 < v < 175kms ™! in the SPARC database. Data at innermost radii is limited
for these galaxies, making it difficult to determine the overall characteristics of
the profiles. The SPARC data is plotted alongside theoretical NFW (shaded blue)
and ULDM (shaded red) profiles, assuming a virial mass of 1012Mg, may = 2.5,
and +50% scatter in the ULDM core-halo mass relation and +20 scatter in NFW
concentration. Galaxies in the legend are ordered from highest maximum velocity
(top) to lowest (bottom).
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We convert density profiles to velocity distributions [213] via

AG [T
V(r)? = == p(r')rdr’, (4.13)
T Jo
where
V2 = Vd2isk + VI)Qulge + V:;as + Vh2alo' (414)

The SPARC database contains photometric data for 175 galaxies and rotation
curves from Hy/H,, studies. The disk and bulge velocities in the SPARC database
are given for T = 1 My / Ly at 3.6 um. However, the greatest source of uncertainty
in mass modelling is the assumed stellar mass-to-light ratio, Y, [I13]. As in [133],
we assume a constant value of T, = 0.2Mg, /Ly at 3.6 um, likewise noting that
this constitutes a non-trivial source of uncertainty. Moreover, there is significant
uncertainty in the SPARC data itself. Error bars are omitted in the following
graphs for ease of viewing, however, they are discussed in Section [4.6]

The characteristics of the velocity profiles in the SPARC database vary widely
from galaxy to galaxy; however we qualitatively identify two subsets of galaxies;

those with maximum tracer velocities 75 < v < 125kms™!

, and those for which
125 < v < 175kms™'. The former group tends to exhibit a strong steepening in the
radial velocity profile toward the inner halo, while the profiles for the latter group
are comparatively ﬂatﬁ. We assume that higher asymptotic velocities correspond to
a larger halo mass, and consider halo masses in the range 10 — 102 M, expecting
that masses at the top end of the range will give a better match to galaxies with
higher asymptotic velocities.

In Figure 4.3 we see that galaxies with asymptotic velocities at the higher end
of the range do not always exhibit a pronounced steepening of the velocity profile
at small radii. Indeed in some cases there is simply no data at small radii. From
this figure we see that while a halo mass of 1012M,, with mg, = 2.5 provides a
reasonable fit to the data at radii > 10kpc, it is difficult to judge the fit at small
radii, where the ULDM and NF'W profiles differ most strongly, due to a lack of data.
Furthermore, while the data at higher radii seems to be relatively clustered, there

are significant deviations within the limited data that exists at small radii. For

3We exclude data for which the velocities calculated according to Equation are inconsistent
- this can occur due to the uncertainty in the assumption for Y1,.
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example, the curves for NGC1090 and NGC6946 are widely disparate at small radii,
but seem to converge at larger radii. Attempting to fit such data to a single set of
model parameters would be of limited utility without a much more comprehensive
data set from which statistical outliers could be properly identified. Furthermore,
we note that there are substantial changes in theoretical ULDM velocity profiles
under variation in the ULDM particle mass. The scale of these changes is exhibited
in As such, we remark that analyses of the sort presented here would benefit
greatly from tighter constraints on the ULDM particle mass.

By contrast, for galaxies with smaller maximum velocities (75 < v < 125 kms '),
there is more data at smaller radii. For such galaxies we see the steepening rotation
curves characteristic of cored density profiles, as shown in Figure In this case,
choosing parameters such that the theoretical profiles overlap with the data at
small radii is easy (in this case mgy = 0.1, M5 x 101 M), however it is not clear
whether the behaviour of this profile would fit data at larger radii were it available.
Furthermore, while the choice mgs = 0.1 provides a reasonable fit to the data in
this case, a ULDM particle mass mgy; = 0.1 is in tension with constraints from
the Lyman-a forest, as well as high-redshift UV luminosity function comparisong]
[214), 215] 216, 217, 218]. It must be acknowledged, however, that baryonic feedback
is expected to have the greatest impact in the innermost regions of realistic halos.
As such, agreement between our semi-analytic DM-only model and observational
data at small radii should be interpreted cautiously, especially since this is also the
region where assumptions regarding the stellar mass to light ratio have the greatest

significance.

4.4 Impact of ULDM Particle Mass on Halo Ve-
locity Profiles

Figure|4.5|demonstrates the scale of the changes to the velocity profiles of theoretical
ULDM halos under changes in the ULDM particle mass. In order to perform a
meaningful parameter fitting exercise, observational data would be required to span

the wide range of radii illustrated here. In this way, the regions of the rotation

40.8 < mgy < 2.5 is preferred by current constraints, as mentioned in [133]
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Figure 4.4: Velocity distributions for galaxies with maximum velocities in the range
75 < v < 125kms™' in the SPARC database. Data at outer radii is limited for
these galaxies, making it difficult to determine the overall characteristics of the
profiles. The SPARC data is plotted along with theoretical NFW (shaded blue)
and ULDM (shaded red) profiles, assuming a virial mass of 5 x 1014 Mg, mgy = 0.1,
and +50% scatter in the ULDM core-halo mass relation and 420 scatter in NFW
concentration. Galaxies in the legend are ordered from highest maximum velocity
(top left) to lowest (bottom right).

curves most sensitive to the assumption for the ULDM particle mass could be
tested simultaneously. Presently available data, when binned according to e.g.
maximum velocity, is likely to yield disparate preferences for the ULDM particle
mass, as illustrated in Figures and [£.4] Further work to constrain the plausible
range of the particle mass will make comparisons of the ULDM and CDM models

with astrophysical data more effective.

4.5 Conclusions

The ULDM model has gained attention in part because it may offer a solution to
the CDM core-cusp problem. However, in some cases ULDM profiles can actually

have higher densities than their NF'W counterparts at observationally relevant
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Figure 4.5: Plot demonstrating the effect of changing the ULDM particle mass
assumption on the velocity profiles for halos of mass 10*2M,,.

radii in the interior of halos with mass M > 10'?M, where the central density is
determined by the theoretical core-halo mass relation. However, apparent statistical
spread in the ULDM core-halo mass relation [I32] leads to a sizeable range of
plausible central densities for a halo of any given mass. Furthermore, analyses
of oscillations of the cores of ULDM halos on timescales much smaller than the
relaxation time have demonstrated significant fluctuations in central density [12§].
This suggests that theoretical core-halo mass relations should not be interpreted
too literally for any individual ULDM halo, and this should be taken into account
when performing model-selection analyses. The limited available simulation data
means that the exact features of the distribution of halo properties in ULDM are
poorly characterised. Nevertheless, it remains apparent that core masses at the
lower end of the plausible range could mitigate the apparent worsening of the

core-cusp discrepancy for ULDM halos.

When the spread in the theoretical core-halo relation is accounted for, com-
parisons of theoretical ULDM and NFW profiles to the SPARC database yield

inconclusive results as far as interior regions of the halos are concerned. Parameters
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can be easily chosen to provide a superficial fit to given subsets of data. However,
the available data often do not span a large enough range of radial values to assess
the relative merits of the UDLM and NFW profiles over the whole profile. In
particular, rotation curves in the SPARC database that exhibit a strong steepening
at small radii often lack data at large radii. Conversely, rotation curves that include
data at large radii often lack measurements at small radii. However, from our
restricted analysis, it appears that neither the theoretical ULDM nor CDM model
can reliably reproduce the data across a broad range. Wide deviations at small
galactocentric radii cannot be accounted for by random measurement errors, and
suggest that sophisticated modelling of baryonic physics will be necessary before
any conclusions can be reasonably drawn. The lack of baryonic physics in both the
semi-analytic CDM and ULDM models is significant, as are other limitations due

to poorly characterised statistics and simplistic assumptions about halo modelling.

In principle, one could perform a Bayesian Information Criterion (BIC) analysis
to determine which of the ULDM or NFW models is more strongly favoured by
the data [219]. The model with the lowest BIC, defined as

BIC=FkInN—-2InL, (4.15)

is preferred. Here £, N, and k are the maximised likelihood function, the sample
size, and the number of model parameters, respectively. The utility of BIC or other
model selection tools, however, is hampered by the lack of comprehensive data,
the high number of free parameters (the stellar mass to light ratio in the SPARC
data, virial mass assumptions of the galactic halos, ULDM particle mass, NFW
concentration parameter, UDLM soliton to NFW transition radius and variation
in the ULDM core-halo mass relation), and the omission of baryonic feedback in
ULDM simulations. Indeed, BIC analyses are known to be compromised when the
sample size of the data is not sufficiently large in comparison to the number of free
parameters in the model. Because of this limitation, and large and unquantified
systematic biases in both the observational data and theoretical predictions, such
analyses are premature at this point. Previous studies such as Ref. [220] of the
core-halo mass relation and the fitting of semi-analytical profiles to galaxy data

also emphasise the necessarily preliminary and tentative nature of all analyses of
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ULDM-derived rotation curves.

To summarise, the parameter space describing “typical” ULDM halos is larger
than simple semi-analytical models suggest. It is necessary to constrain this
parameter space in order to make robust model selection possible. Tightening the
constraints on the plausible ULDM particle mass [221], 222], 223] and obtaining
additional spectroscopic data with improved uncertainties covering a greater halo
mass range and radius would be of tremendous benefit in this regard. Such
improved data can be expected from future surveys [224]. In addition, better
ULDM cosmological structure formation simulations are needed to improve the
understanding of ULDM halo evolution [225] 226], [152] and these should also
incorporate baryonic feedback. Thus, the key conclusion to be drawn from this work
is that more information from simulations and astrophysical observations is needed,
as is more sophisticated incorporation of baryonic effects within semi-analytic
models of both ULDM and CDM, before the relative successes of each model can be
fairly compared. Indeed, recent work identifies a sizeable dispersion in the core-halo
mass relation for simulated ULDM halos, and finds that this dispersion increases
with halo mass [227]. The authors emphasise that observational constraints on the
ULDM particle mass must take into account an additional uncertainty of the order
of 50% on the core-halo mass relation for halos exceeding 10° M. Furthermore,
recent observational studies again conclude that ‘cored’ central density profiles
are preferred, but emphasise the need to further study dissipative processes in the
gas-rich, early phases of galaxy evolution in order to fully understand the inner

density profiles of galactic halos [22§].

4.6 Errors in SPARC Data

As discussed in Section the uncertainties associated with the SPARC rotation
curves for the galaxies studied here make it difficult to draw robust conclusions as
to the suitability of one or the other dark matter model. Indeed, sources of error
quoted in the SPARC database relate not only to the random error in measured line-
of-site velocities, but also to errors on the galaxy distance measurement, inclination,
and total luminosity. Furthermore, inaccuracy in the assumed stellar mass-to-light

ratio may lead to skewed velocity decompositions, a systematic effect that could
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exceed the stochastic measurement errors.
Figures and [£.7] show the error bars associated with the low asymptotic
velocity (75 < v < 125kms™") and high asymptotic velocity (125 < v < 175kms ™)

measurements, respectively.
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Figure 4.6: Radial distributions for galaxies with maximum velocities in the range
75 < v < 125kms ™" in the SPARC database. The average velocity curve is shown
by the bold black line. Large uncertainties coupled with a wide spread of data at
small radii limit the utility of this data set for determining the precise details of
small scale structure in dark matter halos.

In Figure 4.6, we see large error bars at small radii. It is precisely this regime in
which accurate velocity profiles are needed to assess the significance of the core-cusp
discrepancy - a key differentiating factor between ULDM and CDM models as
illustrated in Figure Hence, more comprehensive, accurate data in this regime
would be of tremendous benefit. Furthermore, in Figure [£.4] we also observe that
at higher radii, the ULDM model exhibits a characteristic dip in the radial velocity
profile. The observational data does not extend far enough into the high radius
regime to reveal whether such features exist in astrophysical structures. Indeed,
the data in this case tapers off at galactocentric radii exceeding around 10kpc.

From the limited number of galaxies for which data approaches this regime (in
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particular UGC03580, UGC01230, NGC3769, NGC1003), there does not seem to
be a tendency toward a dip. The error bars are relatively constrained in this high
radius region, as shown in Figure so the absence of a dip arguably weakens
support for the ULDM model. More data at higher radii is required to make a
strong determination on this point.

Meanwhile, in Figure [£.7], the spread of data at high radius is within the scale
of the error bars, but at smaller radii the data is not encompassed by random
measurement error alone. This spread of data may suggest that grouping galaxies
based on asymptotic velocities alone is an insufficient method of characterisation.
However, there is very limited data in this sample at small radii, so both larger
data sets and comprehensive modelling of baryonic effects in high density inner

regions are required to resolve this issue.
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Figure 4.7: Radial distributions for galaxies with maximum velocities in the range
125 < v < 175kms™! in the SPARC database. The average profile is shown
in the bold black line. The limited number of galaxies with high asymptotic
velocities makes it difficult to judge typical galaxy characteristics in this regime.
Furthermore, we see that data at small radii is lacking, and for that which is
available, the variation in velocity profiles cannot be accounted for by random error
in the measured velocities alone.
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Chapter 5

Collapse of Aspherical
Overdensities in the ULDM

Model: Evidence for Variability
in the Core-Halo Mass Relation

This chapter is an adaptation of

Emily Kendall, Richard Easther
Collapse of Aspherical Overdensities in the ULDM Model: Evidence
for Variability in the Core-Halo Mass Relation
(Manuscript in preparation)

5.1 Introduction

In this chapter I investigate the collapse of aspherical ULDM overdensities in an
expanding background. I study the properties of the ULDM halos formed by this
collapse process, investigating whether traces of asphericity present in the initial
overdensity are imprinted in the collapsed objects. I also investigate the process
of ‘soliton oscillation’, which has been previously observed in Refs. [229] 230, 231]

and shown to persist well after collapse has taken place.
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Of particular interest is the effect these phenomena may have on variability
in the core-halo mass relation [232, 233, 132]. Indeed, should asphericity be
present within the central region of collapsed ULDM objects, this region cannot
accurately be modelled by the soliton solution to the Schrodinger-Poisson equations.
Accordingly, variability around the theoretical core-halo mass relation (in which
the core is modelled as a soliton) is expected. Moreover, given the oscillations of
this (approximately) solitonic core, the core-halo mass relation must indeed vary
over time. It is the purpose of this work to estimate the extent of this variability.

In order to perform this analysis, I first initialise a spherically-symmetric,
isolated Gaussian overdensity within the AXIONYX AMR simulation tool [114].
This overdensity is allowed to collapse from redshift z = 99 to z < 1, assuming
a matter-dominated universe in which the evolution of the scale factor, a, obeys
a o t?/3. 1 then gradually augment the initial conditions in order to ‘flatten’ the
initial overdensity along one axis, and gauge the effect this flattening has on the
collapse process and final ULDM halo parameters.

The remainder of this chapter is organised as follows. I first give a brief
introduction to the AXIONYX simulation suite in Section [5.2] and discuss simulation
setup parameters in Section [5.3] I then present the results in and analyse
the effect of asphericity and soliton oscillations on the core-halo mass relation. I
conclude in 5.5

5.2 AxioNyx: AMR Solver for ULDM Dynamics

While fixed-grid pseudospectral solvers such as PYULTRALIGHT are useful for
simulating ULDM physics on a static background, they suffer from decreasing spatial
resolution in an expanding background. In the context of ULDM, it is important
that resolution is maintained at the scale of the de Broglie wavelength in order
to properly model macroscopic quantum phenomena. This becomes increasingly
difficult with a fixed-grid solver when processes such as overdensity collapse over a
large range of redshifts are simulated, and is generally computationally prohibitive.

To overcome this, Adaptive Mesh Refinement (AMR) may be used. This
technique allows for selected regions of the simulation grid to be computed at

higher resolution than others. For example, regions of high density or velocity
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may trigger refinement, while regions of low density are computed on a base-level
coarse grid. This ensures computational efficiency while maintaining the necessary
resolution in regions in which important physics is modelled. AXIONYX is an AMR
solver designed for ULDM simulations. It is built on top of the NYX cosmology
AMR simulator [I54], which is itself built upon the AMREX framework [234].
While AXIONYX inherits support for simulating CDM and baryonic matter from
NvYX, it is the only the new ULDM functionality which I employ here. Specifically,
AXIONYX utilises both pseudospectral and finite-differencing methods to solve the
Schrédinger-Poisson system on the root grid, while using finite-differencing alone
to solve the Schrodinger-Poisson system in refined regions where periodic boundary
conditions no longer apply.

AXIONYX provides a simple C++ header file for specifying the spatial parame-
ters of an initial a ULDM overdensity field. The comoving cosmological critical
density and Hubble constant are also specified here, and by default the critical
density sets the uniform background density field. In this work I also make use of
a separately computed Gaussian random field, which is then called by the header
file to initialise a background with random small perturbations around the critical
density. A separate input file is used to specify parameters such as root grid
resolution, comoving grid size, initial and final redshifts, FDM to CDM ratios, and
refinement criteria. In this work I begin all simulations at z = 99 (a = 0.01) on a
5123 base grid. The critical density is pese(a) = a™ x 1.36 x 10" MgyMpce ™ with
Hy = 70kms~'Mpc™! and mgs = 1.

5.3 Flattened Ellipsoidal Overdensities

To begin, we take a spherical Gaussian overdensity, and gradually augment this

through flattening along one axis. For a grid of coordinates (z,y, z), we define:

e VET AT R and m:\/(g)2+(%)2+(3)2. (5.1)

c
In this work, we take a = b and define the flattening parameter f as:

a—=c¢

F=2=c (5.2)

a
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We explore different flattening scenarios by setting 0.0 < f < 0.5, while keeping

the product abc constant such that:

1\ 3
a=b= (—) , and c=a(l—f). (5.3)

1—f
Finally, we introduce a characteristic radius r, to control the width of the flattened
Gaussian. This is kept constant throughout the simulations at

init X 0.165L
Tech = at—, (5.4)
V2

where L is the comoving side length of the simulation box and the value of rq,
is chosen such that the overdensity is large enough to collapse but does not take
up enough of the root simulation grid to be disrupted by the periodic boundary
conditions. All simulations are initialised at z = 99, corresponding to a;,;; = 0.01.
The initial density field is then defined as:

2
p(l’, Y, Z) = Perit (1 + 61 exp (_TLQH)) ) (55)

ch
where (14 61)peis is the initial maximum overdensity at the centre of the Gaussian.
While this field initialisation is used for the first round of simulations, we also

perform another series of simulations using an alternative initial field, namely

2

Patt (T, Y, 2) = Perit (1 + dy exp (—:i{) + 502G (x,y, z)) , (5.6)

c

where the final term in the sum, d,G(z,y, ), represents a Gaussian random field
which is introduced in order to break the symmetry in the simulation to a low degree.
We choose 05 < 1, ensuring that the principal overdensity remains dominant. The
same Gaussian random field is used for each simulation, and is read in at runtime
from a separately generated array. The Gaussian random field used here is not
intended to replicate the density field of the early universe, but to provide an

explicit symmetry-breaking mechanism without the need to introduce particles.

We will refer to the simulations which utilise Equations and as the

‘unperturbed case” and ‘perturbed case’, respectively. We will consider their results
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separately in the next section.

5.4 Results

5.4.1 Unperturbed Case

We first consider the case where the background field is constant, as in Equation
.5l We find that AXIONYX preserves symmetry to a high degree, such that
the collapsed halos do not produce the typical incoherent outer regions seen in
other simulations (see, for example, Figure . Indeed, the random fluctuations,
which are characteristic of the incoherent outer regions of ULDM halos must
be seeded by some explicit symmetry-breaking mechanism. This may be the
introduction of CDM or baryonic matter particles, or, as we shall explore in the
next section, the introduction of additional small random perturbations to the
background. Notwithstanding the unphysically high preservation of symmetry of
these simulations, they provide a useful test regime in which to explore the role
that the initial overdensity shape plays in halo formation.

We simulate collapse for initial overdensities characterised by flattening param-
eters f = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. We choose 6; = 0.1 and L = 1.0Mpc.
Density plots of the initial configurations are shown in Figure |5.1} Running these
simulations from a = 0.01 to @ = 0.6 (99 < z < 0.67), we first find that increasing
the flattening parameter leads to a delayed collapse. This phenomenon is illustrated
in Figure 5.2l We consider ‘collapse’ to have occured at the first peak in the
overdensity curve. After this point, the central soliton-like core has formed, and
begins to oscillate.

Figure [5.2] clearly illustrates that as flattening increases, the first peak in
overdensity shifts to a higher scale factor (lower redshift). Figure is also
presented to more clearly illustrate the late-time oscillation phase for the two
extreme cases, f = 0.0 and f = 0.5. Indeed, it is known that in triaxial collapse
scenarios, collapse occurs most slowly along the longest axis, leading to phenomena
such as the colloquial ‘Zel’dovich pancake’ [235] 236]. As we increase the flattening
parameter in these simulations, the length of the longest axis increases, and it is

therefore expected that the collapse process takes longer to complete.

87



X (kpc)

x (kpc)

X (Kpc)

z=99.00

z=99.00

z=99.00

z=99.00

1.48 x 108

1.46 x 10

1.44 x 108

1.42 x 108

1.4 x 108

1.38 x 10®

2=199.00
1.36 x 10®

1.48 x 108

1.46 x 10®

1.44 x 108

1.42 x 10®

1.4 x10°

1.38 x 108

z=99.00

8
vy . 0 > o 1.36 x 10

Density (Mo kpc™3)

?)

ty (Mokpc

Dens

Density (Mo kpc™3)

Figure 5.1: Ilustrations of the initial field configurations in the unperturbed case.
The x — z plane is chosen such that the effect of increasing the flattening parameter

is visible.
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Figure 5.2: Plot of maximum overdensity as a function of the scale factor for
initial overdensities with varying flattening parameter. Increasing the flattening
parameter leads to a delayed collapse.
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Figure 5.3: Plot of maximum overdensity as a function of the scale factor for initial
overdensities with f = 0.0 and f = 0.5 only. The oscillation phase is clearly visible
here.

It can also be observed in Figure [5.2] that the height of the overdensity peaks

decrease with increasing flattening parameter. Given that the mass of each initial
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overdensity is the same, this implies that the core regions of the collapsed halos
have differing characteristics, and thus lends support to the idea of variation around
the theoretical core-halo mass relation. We illustrate the systematic decrease in
peak height as f increases in Figure where we use the third peak as a typical
example. Caution should be taken when analysing this figure, as each peak occurs
at a different redshift. However, this figure serves as a helpful illustration of the
overall phenomenon. The precise mechanism which leads to decreased peak height
with increased flattening is unclear at this stage. However, it is anticipated that

this may be elucidated through an eigenstate decomposition, such as that outlined

in Ref. [237].
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Figure 5.4: Comparison of density profiles at the third overdensity peak for
increasing flattening parameter in the unperturbed case. For higher flattening
values, a lower central density is achieved. Similar plots are obtained for other
peaks.

Returning to Figure [5.2] we consider now the oscillation phase which begins
after the first peak in the overdensity curve. This occurs due to the excess kinetic
energy of infalling matter exciting ULDM field modes above the ground state. As a
consequence, the inner region of the halo is not described by the time-independent

soliton solution, as is often assumed in constructing theoretical piece-wise ULDM
halo profiles [133].
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Instead, the inner halo oscillates between a soliton-like profile and a more
distorted superposition of excited states. To see how the morphology of the inner
density profile changes, we consider the time interval between the first two peaks in
the f = 0.0 overdensity curve. We illustrate the spherically-averaged density profile
at the first and second peaks as red dotted curves in Figure Meanwhile, density
profiles from the inter-peak interval are shown in black. Though the inner halo
appears roughly solitonic at overdensity peaks, the morphology varies markedly
during the inter-peak interval.

Note that the profile at a = 0.468 in Figure has a dramatic dip in density
outside of the solitonic core. This is a consequence of the highly symmetric
configuration, which results in a profile with concentric overdensity rings after
collapse occurs. This is a manifestation of the gravitational cooling mechanism
through which the collapsed object gradually emits excess energy. This configuration
is illustrated in Figure In Section we will consider how explicit symmetry

breaking affects this phenomenon.
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Figure 5.5: Illustration of concentric overdensity rings propagating outward after
collapse occurs for the f = 0 unperturbed case. Refinement grids are also shown.
Shortly after collapse (left) the rings have yet to spread through the whole simulation
region. At late times (right) we see that the spread has increased. Through this
gravitational cooling mechanism the collapsed halo is able to radiate excess energy.

The dramatic variability in the morphology of the inner halo during the extended

91

Density (Mo kpc™3)



post-collapse oscillation phase is of great significance here. This variability suggests
that the piece-wise ‘solitonic core + NFW outer halo’ construction for ULDM halos
[133] is not universally valid. Moreover, this diminishes the applicability of the
theoretical core-halo mass relation [132] 238], which implicitly assumes a piece-wise
‘solitonic core + NFW outer halo’ profile.

These results are supported by a number of other recent studies. In Ref. [239],
it is found that the perturbation of a ULDM halo core by excited field modes
can lead to a significant variability in the mass contained within the inner halo.
Oscillating solitonic cores are also found in Ref. [240]. Our results suggest that
further study of the variable morphology of the radial density profile during the
oscillation phase is required, as this is likely to have direct observable consequences.
Ultimately, this oscillatory behaviour suggests that the ULDM model may be
compatible with a wide diversity of observed dark matter halos, which CDM may

struggle to accommodate [241].
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Figure 5.6: Variation in the spherically-averaged halo density profile between the
first two peaks of the overdensity curve for the f = 0.0 collapse scenario.

While Figure |5.6 illustrates that even for a spherically symmetric case there
exists significant deviation from a solitonic inner profile, we expect even greater

discrepancy when the initial overdensity is not spherically symmetric. This is
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because we anticipate that remnants of ellipticity (or in this case, flattening) will
be present in the collapsed object, at least at early stages post-collapse. To see
this, we consider the profile at successive peaks in the overdensity curve for one of
the f # 0 cases. We choose the overdensity peaks because, as illustrated in Figure
5.6l it is here that inner profile most closely resembles that of a soliton.

In Figure we illustrate the density profiles in the x and z directions for the
first three overdensity peaks in the f = 0.2 case. We have chosen f = 0.2 for the
sake of example, but note that similar results are obtained for other values of the
flattening parameter. Importantly, though f = 0.2 is not a particularly extreme
flattening parameter, we are still able to observe remnants of this flattening in
Figure In particular, we see that the profiles in the z direction are consistently
narrower than those in the x direction, corresponding to the flattening direction
in the initial overdensity. Moreover, there is no indication that this asphericity
decreases quickly with time as it is still clearly observable at the third peak.

The fact that asphericity in the initial overdensity profile may be imprinted
within collapsed objects is of great significance. Indeed, it is known that over-
densities in Gaussian random field initial conditions (as in the early universe) are
inherently triaxial [242]. Hence, our results suggest that asphericicity may be found
in the central regions of ULDM halos, even in the late universe. Our simulations
here act as proof of principle for this phenomenon, but we leave further investigation
to more comprehensive simulations with cosmological initial conditions.

The simulations in the unperturbed case illustrate that variations in the shape
of the initial overdensities can lead to dramatic changes in their evolution and
collapse processes. Of particular importance is the fact that remnants of initial
ellipticity remain after collapse has occured, and may therefore lead to variation
around the theoretical core-halo relation. Moreover, irrespective of the precise
shape of the initial overdensity, we have seen that the post-collapse oscillation
phase causes variation in the morphology of the inner halos. This leads to further
deviation from the theoretical core-halo relation, which assumes a solitonic inner
density profile.

In order to assess the degree to which the core-halo relationship may vary, we
will now perform simulations in the perturbed case. Because the symmetry is

explicitly broken in this case, we anticipate that the results will be closer to realistic
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Figure 5.7: Density profiles in the x and z directions at the first three overdensity
peaks for f = 0.2. In each case, we see that the inner profile in the z direction is
systematically narrower than in the z direction.

astrophysical halos, which possess incoherent granular structure in the outer halo.

5.4.2 Perturbed Case

In this section, we perform simulations of overdensity collapse in the presence of a
small-amplitude Gaussian random field, in accordance with Equation [5.6f We note
that a Gaussian random background is more physically realistic than the perfectly
smooth background of the previous section, though our overall setup still involves
an artificially large central overdensity to ensure collapse. The perturbation of the
background also serves to break the symmetry to a small degree, enabling more
complex interference effects to give rise to incoherent substructure in the outer
regions of collapsed halos. For these simulations, we choose comoving box side
length L = 2.0 Mpc and d; = 0.15. These parameters result in halos with virial
mass of order 10°M,. Meanwhile, &5 is chosen such that the maximum amplitude
of fluctuations in the Gaussian random field is approximately 10% of that of the
primary overdensity.

The initial configuration for the f = 0 case is shown in the left of Figure[5.8 We

94



x (kpc)

see that the introduction of the Gaussian random background does not significantly
impact the shape of the primary overdensity. However, it does serve to break the
symmetry to a small degree. On the right of Figure [5.8| we see a typical density
field at late times. In this case, we see that the concentric rings around the central
overdensity have been slightly perturbed, but overall remain quite stable under this
small perturbation. Moreover, we see that the solitonic peak is off-centre. This is
indeed to be expected, as stochastic motion of the core has been observed in other

ULDM simulations, and is a consequence of the interference of excited field modes

[243].
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Figure 5.8: Left: initial field configuration for the perturbed case with f = 0. Right:
late time density distribution, showing off-centre core and asphericity in the outer
profile.

While we do not observe the typical granular outer halo structure in Figure 5.8
it is important to note that in a full cosmological structure formation simulation,
the propagating rings around neighbouring collapsing overdensities would interfere.
This would lead to the formation of the granular outer halos typical of ULDM.
This phenomenon is not captured in these simulations of isolated collapse, yet our
small perturbation does yield a small degree of asphericity.

As discussed in the previous section, the core region is not expected to remain

solitonic throughout the oscillatory phase, and indeed we have shown that significant
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changes in the morphology of the inner halo may occur. Nevertheless, the density
profiles at the overdensity peaks provide a useful test case, as these profiles here
appear to be roughly solitonic.

We identify our choices of three clear overdensity peaks for each value of f in
Figure 5.9 In these plots, it can be observed that when f is large, there is clear
evidence of triaxial collapse in the changes in slope of the overdensity curveﬂ

For each chosen output, we calculate the virial mass and radius of each collapsed
halo according to the average internal density criterion p = 200pq. From this
virial mass, we compute the predicted core radius using Equation We then
compare this to the observed value of the core radius, and compute the deviation
as:

5, = T'c (true) — Te (predicted) % 100%. (5.7)
Tc (true)
We also use Equation to construct a solitonic fit to the observed inner profile.

We illustrate a representative example of this process for the first peak in the

f =0 case in Figure [5.10] while similar plots for the remaining peaks are given
in Appendix [C| In all cases, we see that while the halo profile appears to possess
the characteristic solitonic core surrounded by an NFW type halo, the core region
is actually slightly narrower than the theoretical soliton, indicating a slightly
‘compressed’ configuration. We also observe varying degrees of granularity in the
outer halo. We note that because these simulations involve the collapse of isolated
halos, the granularity in the outer region is not fully captured. This is due to
the lack of interference effects of matter propagating outward from neighbouring
collapsing overdensities. In each figure we also observe a density plateau at large
radial distances. This plateau occurs when the density approaches the critical
density, confirming that the simulation box is sufficiently large to encompass the
whole halo.

We summarise our results in Table 5.1 While this small sample is insufficient
for a full statistical analysis of variability in the core-halo mass relation, it serves as
a useful illustration of the relevant phenomena at play. We find that the theoretical

core-halo relation systematically predicts a larger value of r. than is observed.

INote that the circles identifying the choice of density profiles may in some cases be shifted
slightly from the maxima of the curve, as full field outputs are not saved at every individual
timestep.
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Figure 5.9: Curves of maximum overdensity at late times in the perturbed case.
Choices of peaks are illustrated as circles on each curve. For f = 0.4 and f = 0.5,
evidence of triaxial collapse is observed as changes to the slope of the overdensity
curve.

Indeed, §,, often exceeds 100%. This means that the solitonic cores predicted by
the theoretical relation are systematically wider, with lower central densities than
our simulated results. This is unsurprising, as we have selected outputs at the

peaks of the overdensity oscillation phase. As previously discussed, the morphology
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Figure 5.10: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).

of the central halo varies widely during this phase, and it is natural to expect a
narrower profile than that of the soliton at the maxima, transitioning to a wider

profile as the overdensity curve begins to decrease.

Peak 1 | Peak 2 | Peak 3
f=0.01|-133% | -8% -68%
f=0.1/|-136% | -131% | -140%
f=021-121% | -79%% -90%
f=03] -63% -62% -76%
f=041] 8% -56% -53%
f=05] -89% -90% -63%

Table 5.1: Percentage deviation between predicted and actual core radii (d,,) at the
first three peaks in overdensity for each value of f. Negative values indicate cores
which are narrower, with higher central densities than the theoretical prediction.

Corresponding Figures are presented in Appendix [C]

While we have analysed the core-halo variability only at peaks in the overdensity
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curve, we expect further variation throughout the oscillation phase. In particular,
we expect that at the minima of the oscillation phase, the predicted core radius
would be smaller than the actual value. However, it is difficult to properly quantify
this effect when the morphology of the core does not closely resemble a soliton.
One additional observation from Table [(5.1] is that the theoretical core-halo
relation appears to perform worst for the most spherical halos (f = 0.1 and
f =0.1). We note that these are also the instances in which the maximum halo
overdensity is the highest. Further analysis is required to determine whether this

is an indication that the core-halo relation varies as a function of halo mass.

5.5 Discussion

We have investigated the origins of deviation in the theoretical ULDM core-halo
mass relation in isolated collapse scenarios. We make use of the AXIONYX code
to perform these collapse simulations, enabling grid refinement around small core
structures.

We have shown that even in the case of a spherically symmetric initial overden-
sity, the post-collapse oscillation phase naturally leads to deviations between the
predicted and actual core profiles. This is because the oscillation phase involves
complicated interference of excited eigenstates of the Schrodinger-Poisson system.
The morphology of the core varies widely during this phase, and cannot reliably
be modelled with a solitonic profile. We note that these results are supported by
other studies, which have found similar core-halo variation, such as Ref. [227]. Our
results motivate further investigation of post-collapse cores using an eigenstate
decomposition method.

We have also shown that asphericity in the initial overdensity may be imprinted
in the collapsed halo, further increasing tension between the theoretical ULDM
halo piece-wise construction, which assumes a spherically symmetric solitonic core.

Though we have not performed a full statistical analysis of variation in the
core-halo relation, which would require cosmological initial conditions, we have
shown that the collapse of isolated overdensities can easily result in halos wherein
the actual core radius differs from the predicted value by over 100%. Given this

variability, we conclude that the dynamics of collapsed ULDM halos are such that a
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wide variety of halo characteristics are naturally accommodated. This may be useful
in reconciling theoretical models with the large variability found in astrophysical
observations. By contrast, this is difficult to achieve in CDM models, which do not

involve macroscopic quantum interference.
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Chapter 6

Ongoing Investigations

6.1 Statistical Signatures of Anisotropies in the
ULDM Density Distribution

One unique characteristic of the ULDM model is the presence of extended wavefronts,
which arise during events such as overdensity collapse or halo collisions. Such
wavefronts are a manifestation of the macroscopic quantum behaviour of ULDM, and
do not have an analogue within CDM. Indeed, recent high-resolution cosmological
simulations suggest the presence of additional structure in the filaments of the
cosmic web in the ULDM model as compared to CDM. This is again due to quantum
interference effects [244].

Such extended anisotropies cannot be completely characterised using the 2-point
correlator, which is typically employed to analyse the statistics of the distribution
of matter in the universe [245, 246| 247]. Instead, in order to comprehensively
characterise these unique structures, we require a statistical tool which preserves
information about anisotropy [248]. A natural candidate here is the traceless tidal
tensor (TTT).

The traceless tidal tensor at each point in a density field gives the deformation of
the corresponding volume element relative to purely spherical expansion or collapse.
It is therefore an ideal tool to characterise fields in which structures possessing
directional dependence arise. Following [249], to see how this is calculated for a

density field p(x), we first construct the dimensionless overdensity field §(x):
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= ——, (6.1)

We then take the Fourier transform to obtain the dimensionless density contrast
in Fourier space, d(k). From here we can calculate the peculiar gravitational field
from the Poisson equation, and finally compute the tidal tensor as the Hessian of

the peculiar gravitational potential. In Fourier space we have:

o(k) = k726(k),  Tyy(k) = kiky (k). (6.2)

At each point, the dimensionless density contrast is given by the trace of the tidal

tensor. Therefore, in order to isolate tidal effects, we compute the Fourier space
TTT:

7,00 = 7,00 - *%)

Finally, we perform an inverse Fourier transform to obtain the T'TT in real space.

I;. (6.3)

In order to make use of the TTT for statistical analysis of simulation output
data, we randomly select a sample of several thousand grid points at which we
compute the TTT and diagonalise it to find the eigenvalues, A1, A2, A3, and unit
eigenvectors ey, e, es. We label the eigenvalues such that A\; > Ay > \3. Because
these are the eigenvalues of the traceless tensor, we also have A\; > 0 and A3 < 0,

while Ay may be either positive or negative.

Having obtained the eigenvalues of the TTT at each of our sample grid points,
we may examine their probability distributions, and use this to differentiate between

fields with differing anisotropic features.

In general, we expect the presence of repeated anisotropic structures such as
wavefronts to induce peaks in the probability distributions of the eigenvalues, as
in such cases there will be a number of volume elements exhibiting the same
characteristic anisotropic deformation. To illustrate this, we consider two artificial
distributions. The first distribution is simply a Gaussian random field, while the
second is a 2-dimensional plane wavefront, generated by p(x,y, z) = sin” (z). Figure
shows the eigenvalue distributions for the two cases. For the Gaussian random

field, in which the statistical fluctuations are isotropic, the eigenvalues themselves
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are characterised by Gaussian distributions. Meanwhile, the 2-dimensional plane
wavefront yields eigenvalue distributions with distinct, prominent peaks. The exact
position and height of the peaks will, in general, depend on the precise parameters

of the waveform.

Gaussian — A Plane wave — A

6 Ay 10 A A
—_— A3 A3
5 - 8
4_
g 6
34 -3
44
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14 2 P . k. ) 4
0 — 0 -
-20 -15 -1.0 -05 00 05 10 15 20 -2.0 -15 -1.0 -05 00 05 1.0 15 2.0
A A

Figure 6.1: Probability distributions of the eigenvalues of the traceless tidal tensor

for sample density distributions. Left: Gaussian random field, Right: p(z,y, z) =
.2

sin” (x).

As a preliminary study, we examine the distribution of eigenvalues of the
TTT for density distributions arising from collapsing ellipsoidal overdensities in
PyUrLTRALIGHT. We run the same simulation twice, changing only the value of
the ULDM particle mass by one order of magnitude between the two simulations.
As this is simply a proof-of-principle demonstration, we work in dimensionless code
units and do not ascribe physical parameters to these simulations.

Near the onset of collapse, we obtain density distributions with differing proper-
ties depending on the ULDM particle mass. We illustrate a characteristic example
of the (log) density fields obtained near the onset of collapse in the two cases in
Figure 6.2l In the left of this figure, we see that broad wavefronts are present in
the small ULDM mass case. This is to be expected as this case corresponds to the
larger de Broglie wavelength. By contrast, the wavefronts illustrated on the right
of the figure have a smaller wavelength, corresponding to the larger ULDM mass
case.

From each of the density distributions illustrated in Figure 6.2, we draw a
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Figure 6.2: Snapshots of the log-scaled density field near the onset of collapse for
the small ULDM mass case (left), and the case where this mass is increased by an
order of magnitude (right).

sample of 15,000 randomly chosen grid points at which to compute the TTT of
the (log-scaled) density field. We then compute the eigenvalues at each point. We
divide the obtained eigenvalue range {—0.5,0.5} into 1500 bins, tallying the number
of points which fall into each bin. We represent the outcome of this procedure using
the scattered points in Figure [6.3] Because of the finite number of samples, we
then apply a smoothing method to obtain a continuous distribution. In this case,
we overlay the binned points with a best-fit cubic spline interpolation. The degree
of smoothing will of course affect the visible level of substructure, however we
note that the smoothing procedure applied here is sufficient to identify qualitative
differences in the probability distributions of the two cases, which is sufficient for

this proof-of-principle analysis.

Our results are presented in Figure 6.3, where the differences in the distributions
for the smaller (left) and larger (right) ULDM mass cases are clearly visible. In
particular, we see that the distribution of Ay has a higher peak around zero in
the larger mass case, while the distributions of A\; and A3 possess small peaks at
values away from zero which are not present in the smaller mass case. Instead, the

distributions in the smaller mass case are indicative of a density field where the
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anisotropies are smoothed on a larger scale, as expected.
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Figure 6.3: Probability distributions of the eigenvalues of the TTT for the smaller
ULDM mass (left) and larger ULDM mass (right).

Clearly, much more work is required in order to apply these methods to physically
realistic scenarios. However, the preliminary study presented here illustrates that
the statistics of the T'TT may serve as a useful quantitative tool for characterising the
substructure of density distributions arising in ULDM models. Indeed, developing
analysis techniques based on statistics beyond the two-point correlation function
is anticipated to be of great utility in the context of current and upcoming weak
lensing surveys [250]. Further investigation, including a detailed analysis of the
anisotropic 2-point correlation functions of the eigenvalues of the TTT are planned

for future work, using outputs generated using AXIONYX.

6.2 Effects of Angular Momentum on ULDM Halo

Core Formation

As discussed in detail in Chapter [ there is reason to believe that the ‘typical’
ULDM halo core may not be well-described by the ground-state soliton solution

to the Schrodinger-Poisson equations. One factor which may have important
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implications for halo core properties is angular momentum, which we have yet to
explore in detail.

In Chapter [3, we briefly studied the internal velocity field of a soliton orbiting
a central potential, and showed that it possessed the characteristics of the non-
axisymmetric Riemann-S ellipsoid. However, this scenario only involved a tidally-
locked soliton. More complex behaviours are expected when angular momentum
is imparted to a halo through, for example, merger dynamics. It is necessary to
understand the velocity distribution in the cores of such ULDM halos in order to
characterise them as truly ‘solitonic’, rather than simply possessing profiles similar
to that of the soliton under spherical averaging. In this section, we briefly outline
a method for imparting angular momentum to collapsing ULDM overdensities. We
intend to employ this method in future research using AxioNyx.

In order to initialise an ellipsoidal overdensity with zero net angular momentum,
as was done in Chapter 5, we may simply set the phase of the ULDM field to
zero throughout the simulation region. By contrast, in order to impart angular
momentum to the ellipsoid, we also construct a second ellipsoid to control the
phase of the ULDM field. This phase ellipsoid is concentric with the overdensity
ellipsoid, and has a magnitude following an ellipsoidal Gaussian distribution with
the same three axis parameters as the overdensity itself. Critically, however, we
offset the orientations of the two ellipsoids by a non-zero angle.

We then assign a phase 6 to each field point, with the magnitude of the phase
determined by the amplitude 6, of the phase ellipsoid at that grid position. That
is, ¥ — ¥ x exp(if). Because the velocity of the ULDM field is given by v = V§,
this process imparts rotational velocity to the original ellipsoidal overdensity. By
varying the amplitude of the phase ellipsoid, we can change the magnitude of the
angular momentum imparted to the overdensity.

We illustrate the outcome of this setup applied to PYULTRALIGHT ellipsoidal
overdensities at the onset of collapse in Figure (again in dimensionless code
units). From left to right we increase the angular momentum from zero, observing
a corresponding distortion of the wavefronts in the density field (top), and an
increasingly complicated internal velocity field (bottom).

In the zero angular momentum case, we see that at early times there is a

competition between matter infalling under gravitational collapse and outgoing
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Figure 6.4: Top: density contours corresponding to an ellipsoidal overdensity
initialised with increasing angular momentum (from zero on the left), on a 1283
grid. Bottom: corresponding internal velocity fields of internal 50 grid region.

wavefronts due to quantum interference. This initial velocity distribution is clearly
distorted due to rotation as angular momentum increases to the right. This, in
turn, results in a proportion of the matter which would otherwise be propagating
outward attaining a rotational velocity component, which is likely to affect core
formation. Indeed, we expect that the late-time non-trivial velocity distributions in
the core of the collapsed object. This ongoing activity is likely to have implications
for the core-halo mass relation, particularly in regards to the criteria under which
a halo may be considered to be ‘relaxed’. Indeed, above a certain initial angular

momentum threshold, we expect collapse to be prevented entirely.

A detailed study of the internal velocity fields of halo cores will be undertaken
in future work using the AXIONYX simulation tool. Focus will be directed to the

implications of angular momentum on the core-halo structure of ULDM, as well as
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the identification of potentially observable astrophysical signatures.
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Chapter 7
Conclusions and Discussion

In this thesis I have investigated the theory and computational modelling of ultra-
light dark matter (ULDM). Macroscopic quantum effects in this model seem to
present a natural solution to many aspects of the ‘small-scale crisis’ in the competing
CDM model. In order to verify whether the ULDM model does indeed provide a
more suitable dark matter candidate than CDM, I have highlighted the need for

detailed numerical analysis of ULDM dynamics.

In Chapter [3 I introduced the simulation tool PYULTRALIGHT, which has
proved useful in investigating ULDM dynamics on galactic scales. Using PYUL-
TRALIGHT, we have been able to generate ULDM halos with the characteristic
solitonic core + incoherent outer halo configuration. We have also been able to
investigate merger scenarios in the ULDM model, and verify the outputs of the
code by comparison to analytic models in simple test cases. PYULTRALIGHT is
available for public download, and has since been modified to treat a number of
specific problems within ULDM phenomenology. I anticipate further adaptations
of this code to be developed, with modifications tailored to specific problems in
ULDM physics.

In Chapter [, I investigated the implications of the theoretical core-halo mass
relation of ULDM halos in the context of the core-cusp problem. I showed that
whether the ULDM model is able to outperform CDM in reproducing observations
of galaxies from the SPARC database is largely dependent on the degree of scatter

around the theoretical core-halo relation. I concluded that further investigation
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of typical ULDM halo characteristics and more extensive observational data are
needed in order to settle this debate.

In Chapter [ I studied the applicability of the theoretical core-halo mass
relation to halos formed by collapse of ellipsoidal overdensities in AXIONYX. I found
multiple lines of evidence for significant scatter about the theoretical prediction.
In particular, I found that oscillations within the cores of collapsed ULDM objects
can lead to dramatic variations in the morphology of the inner halo profile, which
has direct implications for the applicability of the core-halo mass relation. I also
found that asphericity in the initial overdensity may be imprinted in the halo cores
post-collapse, further increasing tension with the traditional solitonic core + NFW
outer halo assumption used to derive the theoretical core-halo mass relation.

Finally, in Chapter [6], I introduced a number of avenues for ongoing research.
One such avenue involves the development of statistical tools beyond the two-point
correlation function, which take into account the presence of anisotropies. It is
anticipated that the statistics of the eigenvalue distributions of the traceless tidal
tensor may prove useful in characterising wavelike anisotropies in the ULDM model.
I also briefly introduced angular momentum in ULDM halos, which I anticipate will
further affect the applicability of the theoretical core-halo mass relation. Detailed
studies of angular momentum within ULDM halos are planned for future work.

There remains a broad range of phenomenology within the ULDM model
which has yet to be investigated in detail. Scope for further research includes
the introduction of baryonic physics such as stellar formation and feedback into
ULDM-only models, as well as an exploration of mixtures of different dark matter
components. As more advanced simulation tools continue to be developed, I
anticipate a wide range of important investigations to be undertaken in the near

future.
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Appendix A

Scaling Properties of the

Shrodinger-Poisson System

The coupled differential equations of the Schrodinger-Poisson system obey a partic-
ularly simple scale invariance [251], [129]. To see this, let us suppress factors of m,
h and G for notational convenience (these factors can be restored later), and write

the Schrodinger-Poisson system as:

i = —%v% + O, (A1)
V20 = 47|y, (A.2)

where ¢ = 1(x,t) and & = P§(x,t). If we consider only spherically symmetric

solutions, the Schrodinger-Poisson system becomes:

L 1dp
L imiur (A4)
arz v ‘

where ¢» = ¢(r,t) and & = P®(r,t). Let us now suppose we have a spherically
symmetric solution of the form v (r,t) = ¢ f(r). Substituting this solution into

the Poisson equation ({A.4) we obtain:

d*®(r)
dr?

= 4r| f(r)]%, (A.5)

111



which automatically gives

d*o(y/ar) i 2

where « is some positive constant. Using the chain rule, this may also be expressed

d*®(y/ar
# = dnalf(Var) (A.7)
Now imagine that we have another function of the form g(r,t) = e!*af(\/ar).

For this function to also satisfy the Poisson equation (A.4)), we require:

as

d*®(r
T amlg(r)]? = ama|(var) P (A8)
Comparing Equations [A.7] and [A.§] this condition translates to

Po(yar)  d*®(r)
@ dr? dr?

(A.9)

Integrating twice with respect to r gives us a scaling condition on ® for g(r,t) to

satisfy the Poisson equation:
a®(var) = o(r). (A.10)
Let us now consider the Schrodinger equation. Substituting the known solution,
Y(r,t) = et f(r) into the Schrodinger equation , we obtain:

LRI |

_Bf(r>:_2 dr2

O(r) f(r), (A.11)

which automatically gives us

- sstvar) = —3 S+ atvan ivan (A12)

In order that g(r,t) = e'’'af(\/ar) also satisfy Equation we require:

— () = -2V o f(v/an). (A13)
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Dividing through by o? this gives:

1% +a o) f(Var). (A.14)

0
— Bf(Var) = 5
Comparing Equation with Equation we see that this is true if

d*f(\/ar) d*f(Var) (A.15)

@ Yd(Jar)?

and

O(r) = ad(v/ar). (A.16)

Equation[A.15]is true by the chain rule, while Equation [A.16]is the same requirement
given in Equation for g(r,t) to satisfy the Poisson equation.

Hence, a single spherically symmetric solution to the Schrédinger-Poisson system
of the form 1 (r,t) = €' f(r) admits an entire family of solutions, characterised by
the single scaling parameter a. The ground-state solutions are referred to as solitons.
The « scaling of the solitons has important consequences for calculating mass,
radius and density parameters for ULDM halos. One quantity of particular interest
is the ‘core radius’, r., defined as the radius at which the density drops to one half
its central value. Let us compare how this radius compares for Schrodinger-Poisson

solutions parametrised by .

The central density for a soliton with o = 1 is given by p.1 = |f(0)|?, while for
arbitrary a we have p., = | f(0)|*>. The densities at . are therefore
f(0)]?
oo = 2O e (A17)
e 250
a
P(re)a = — = 2lf(Vares)|?. (A.18)
Combining these expressions, we find:
a?|f(0)?
) = EOL — o2y, )2 = 0217 are) (A.19)
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which therefore implies a scaling relationship for the core radius:

1
Tea = ﬁrc’l. (AQO)
Note that this means that solitons with larger central densities have a smaller
core radius. In other words, their density distributions are more ‘peaked’. Having
obtained the scaling relationship for the core radius, we can calculate the scaling

also for the core mass, M., defined as the mass within r.. We have:

M,, = 47 / U2 2dr (A.21)
0

and

M, = 4x / 202 f(Var) Fdr. (A.22)
0

Letting x = /ar this integral becomes

M, — 47y / " 2\ (2)Pde = VaM... (A.23)
0

Overall, therefore, there exists a class of spherically symmetric ground state
solutions paramaterised by « for which the central density, core mass, and core
radius scale as p. o a?, M. oc /a and 7, < 1//a, respectively [252]. Often, we
will find it a convenient alternative to parametrise by M., in which case r. o< 1/M,

and p, oc M.
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Appendix B

Core-halo Mass Relation

The core-halo mass relation can be simply interpreted as the statement that the
average internal velocity of a tracer mass in the core must be equal to the virial
velocity of a tracer mass in the wider halo. If this were not the case, and instead
the average velocity were higher within the core, these higher velocity particles
would move outward, resulting in dynamical mass redistribution within the halo.
During this process, the halo would not be in equilibrium and would thus not be

virialised.

From the virial theorem we have that Ex = —1/2 Ep, where Ex and Ep

represent kinetic and potential energies, respectively. Alternatively we can write:

1 1GM?
_Mo 2:_ tot
2 T TR,

where G is the gravitational constant, M;,; and R, are the total mass and radius,

(B.1)

and v? is the mean of the squares of individual tracer velocities. Demanding that

v? is the same for the core as for the total virialised halo allows us to then write:

2 GMvir . GMcore

v 2Rvir B 2Rcore
Mcm’eRvir
— Repre = ——. B.2
Mvir ( )

We know from the soliton scaling properties that Ro. oc M_! = and since My, =

core’

115



4/3 TR3. p, we also have Ry, o< My,'/?. Hence, Equation becomes

R2 Rvir
core
Mvir
1/3
R2 Mvir /
- core X M.
vir

— Rco'r’e 0. <Mvir_2/3> 2

— Rcore X Mvir_1/3- (B3)

With this scaling relation in mind, the constant of proportionality may be deter-

mined through analysis of simulated halos.
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Figure C.1: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).
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Figure C.2: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).
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Figure C.3: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).
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Figure C.4: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.5: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.6: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).
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Figure C.7: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

120




Density (M kpc=3)

Density (Mo kpc™3)

109 é e Predicted core profile
e Soliton fit to data
Predicted rc

1081 NN e Actual rc
---------- Virial radius
107
Flattening = 0.2
6 Scale factor = 0.263
10 Myir = 1.753e+09M o
re error = -90%

=
o
[l

104

10-1 | Rt 10! 102

Radius (kpc)
Figure C.8: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.9: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).
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Figure C.10: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.11: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.12: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.13: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.14: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.15: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.16: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.17: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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