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Abstract

In this thesis I investigate the theory and computational modelling of ultra-

light dark matter. The concept of dark matter arose when it was realised that

astronomical observations were at odds with our understanding of gravity. In

particular, it was noted that the motions of astrophysical objects could not be

accounted for by the gravitational influence of visible matter alone. To explain

astrophysical dynamics, it was inferred that invisible or ‘dark’ matter must also be

present in the universe, and that it must account for the vast majority of all matter.

Dark matter is now a widely accepted paradigm, however, a precise description of

its nature remains elusive.

In the first part of this thesis I explore the theoretical fundamentals of ultra-light

dark matter, highlighting crucial differences between this model and its competitors.

I then focus on the computational modelling of ultra-light dark matter. I describe

a simulation tool, PyUltraLight, developed to model the evolution of astrophysical

objects within the ultra-light dark matter paradigm. I present applications of this

tool on galactic scales, and use these results to support the idea that ultra-light dark

matter may offer a better fit to data than its competitors. Following this, I model

of the collapse of ultra-light dark matter overdensities in an expanding background

using AxioNyx, a code that supports adaptive mesh refinement. Finally, I use these

results to identify deviations between the predictions of the ULDM model and

its competitors. I discuss how such differences may prove useful in assessing the

ability of each model to accurately predict the properties of observed astrophysical

objects.
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Chapter 1

Introduction and Outline

1.1 Introduction

1.1.1 The Need for Dark Matter

In the field of cosmology, we attempt to understand the origins and evolution

of the universe from the Big Bang to the present day. We strive to explain the

constituents of the observable universe, their interactions and evolution within a

self-consistent framework. The field of cosmology has grown enormously over the

past several decades due to both theoretical progress and to the development of

technologies which enable evermore detailed observations of the universe around

us.

At the foundation of our cosmological framework is Einstein’s General Theory

of Relativity [11]. General Relativity describes the mechanism by which massive

objects exert gravitational influence upon one another through the distortion of

spacetime. This theory has stood up to rigorous testing [12, 13, 14], and has

provided novel predictions such as gravitational waves and black holes, which have

since been verified with advanced scientific experiments [15, 16].

While General Relativity does suffer problematic divergences (e.g. within black

holes) and has yet to be unified with quantum field theory [17], its predictive success

has lead to its wide acceptance as the standard framework of the gravitational

interaction within modern cosmology. An important consequence of assuming the

validity of General Relativity within cosmology is that it becomes necessary to in-
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clude a mass component of the universe which does not interact electromagnetically.

We refer to this component as dark matter. Indeed, there are now multiple lines of

evidence that dark matter outweighs baryonic matter by a ratio of approximately

5:1 [18]. In many cases the predictions of General Relativity are indistinguishable

from the predictions of the Newtonian limit, and it is worth noting that dark matter

is also predicted by classical Newtonian gravity.

It is important to contrast this situation to models which attempt to avoid dark

matter altogether through modifications to the gravitational interaction. Often

referred to as MOND (Modified Newtonian Dynamics) [19], such models have not

been able to convincingly resolve the dark matter problem at all scales [20, 21, 22].

As such, the prevailing view remains that General Relativity + dark matter is

indeed the correct cosmological model.

While dark matter is, by definition, invisible, its presence can be inferred

through a number of other observations across a variety of scales. One important

source of evidence for dark matter comes from the study of galactic rotation curves

[23]. In particular, observations of numerous galaxies have shown that the stellar

rotational velocity remains relatively constant with increasing radial distance from

the galactic centre [24, 25]. Indeed, even in the outermost regions with negligible

luminosity, rotation speed does not appear to decrease with radial distance. This

finding cannot be accommodated using visible matter alone, which is observed to

be concentrated in the centre of the galactic halo. Instead, constant rotation curves

imply an approximately spherical distribution of mass in the form of a dark matter

‘halo’, which extends much further than its visible counterpart and accounts for

the majority of the galactic mass [26, 27].

Gravitational lensing, a prediction of General Relativity, provides further evi-

dence of the existence of dark matter [28, 29]. Gravitational lensing refers to the

distortion of spacetime by massive objects. This causes the path of photons from a

distant source to an observer to deviate according to inhomogeneities in the mass

distribution in the intervening space. Thus, images of distant bright sources contain

an imprint of cosmic structure. Gravitational weak-lensing maps of large clusters of

galaxies illustrate that the gravitational potential does not follow the distribution

of the visible mass, providing evidence that these structures are dominated by dark

matter [30, 31, 32]. In some extreme cases, the intra-cluster medium may even
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disassociate entirely from the dark matter [33].

Yet another important source of evidence for the existence of dark matter

comes from measurements of anisotropies in the cosmic microwave background

[CMB] [34]. The CMB comprises the remnant radiation from the time in the

early universe at which photons decoupled from baryonic matter and began to

free-stream. Anisotropies in the CMB reflect overdense and underdense regions of

the primordial plasma prior to decoupling. dark matter and baryonic matter would

have behaved differently in this primordial plasma, as the former would have been

unaffected by electromagnetic interactions with photons. This differing behaviour

is expected to be imprinted upon the CMB, allowing the two matter components

to be distinguished through the study of the CMB power spectrum. Indeed, such

studies have convincingly demonstrated a density field dominated by dark matter

[35, 36].

Taken together, galactic rotation curves, gravitational lensing surveys, and

distortions in the CMB provide convincing evidence for the existence of a large dark

component to the matter content of the universe. Problematically, however, the fact

that this component does not interact electromagnetically does little to constrain

its precise properties. Consequently, an array of widely varied dark matter models

have been proposed in the past few decades, with predictions from each model then

being tested against observations.

1.1.2 The Emergence of the CDM Paradigm

While the existence of dark matter is now widely accepted, the absence of dark

matter signals from direct detection and collider experiments means that the

precise nature of dark matter remains a mystery [37, 38, 39]. Nevertheless, both

cosmological probes and particle physics experiments enable us to rule out some

models, and tightly constrain others. I will now briefly review a range of possible

dark matter candidates, and explain how the commonly accepted CDM paradigm

has emerged as the dominant model of cosmology.

Models of dark matter may be categorised in a number of ways. For example,

dark matter may be of either astrophysical or particulate origin. Examples of

astrophysical dark matter include massive compact halo objects (MACHOs) [40, 41]
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and primordial black holes [42, 43]. By contrast, examples of particulate dark matter

include axions [44, 45], neutrinos [46], or supersymmetric partners to Standard

Model particles [47, 48]. Such particle candidates for dark matter are often referred

to as WIMPs (Weakly Interacting Massive Particles). This reflects the fact that

while such particles do not interact electromagnetically, they do interact under

gravity and may also undergo Weak interactions.

A further important categorisation of dark matter relates to energy scale.

Candidates may be separated into ‘hot’, ‘warm’, or ‘cold’ categories, depending on

their characteristic velocities. An example of a hot dark matter (HDM) candidate

is the neutrino, travelling at velocities approaching the speed of light. By contrast,

stable supersymmetric WIMP particles would travel much slower than the speed of

light, and are thus considered cold dark matter (CDM). Warm dark matter (WDM)

candidates such as light gravitinos exhibit intermediate behaviour.

As previously mentioned, any plausible dark matter model must yield theoret-

ical predictions which are consistent with experimental bounds from a range of

astrophysical measurements. CMB measurements are of great significance here.

Anisotropies in the CMB have now been mapped to a high degree of precision,

providing ever-tightening constraints on dark matter models [49, 50, 51].

Importantly, the latest CMB results disfavour HDM models in which neutrinos

constitute the majority of the dark matter. The relative contribution of neutrinos

to the energy density of the universe, Ωνh
2, is a function of the sum of the light

neutrino masses [52]. The properties of the CMB power spectrum are sensitive to

this value. For neutrinos to account for a substantial proportion of the dark matter,

we would expect Ωνh
2 to be similar to the total matter contribution, Ωmh

2. However,

CMB measurements from the PLANCK collaboration constrain the sum of the

light neutrino masses to
∑
mν < 0.54eV at the 95% confidence level, corresponding

to Ωνh
2 < 0.0057. Meanwhile, PLANCK finds Ωmh

2 = 0.1430± 0.0011 at the 68%

confidence level [50]. Clearly, this discrepancy strongly disfavours neutrino based

HDM models. Similar analyses of CMB data disfavour popular WDM models such

as those based on light gravitinos.1

1It should be noted that these constraints are highly model-dependent. Here we assume a
locally Lorentz invariant FRW cosmology [53]. In principle, more exotic cosmological models
would change these constraints.
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Consequently, with HDM and WDM models disfavoured, CDM has emerged as

the dominant paradigm for dark matter. While there are a number of possible CDM

candidates, supersymmetric partners to Standard Model particles are perhaps the

most popular [54]. Specifically, models of supersymmetry in which the neutralino

is the lightest stable supersymmetric particle (LSP) provide a natural WIMP dark

matter candidate [55]. This model gained much attention due to the LSP WIMP

candidate conveniently predicting the correct relic abundance to account for dark

matter. This coincidence has historically been referred to as the ‘WIMP Miracle’.

Moreover, LSPs as WIMPs gained further popularity due to the plausibility of

direct detection in experiments such as the Large Hadron Collider (LHC) [56].

Overall, therefore, CDM has emerged as the favoured model of dark matter,

with plausible WIMP CDM candidates arising naturally from supersymmetric

extensions to the Standard Model of particle physics. In the following sections,

I will describe the successes of the CDM paradigm with respect to astrophysical

predictions, and will also highlight the issues facing CDM which motivate the

search for alternative dark matter models.

1.1.3 Successes of the CDM Paradigm in Astrophysics and

Cosmology

In CDM models, structure formation proceeds hierarchically. That is to say, at the

onset of the matter-dominated epoch, small overdensities in the primordial universe

are able to break free from the expanding background and collapse first, and the

resulting small halos then merge to form larger halos [57]. These larger halos

then seed galaxy formation. This process endures until the epoch of dark energy

domination [58], such that galaxy formation is an ongoing process rather than

one limited to a short time period in the history of the universe. As the universe

expands, collapse of CDM overdensities takes place on larger and larger scales.

Therefore at late times, the characteristic halo mass is larger than at early times,

such that the overall CDM distribution has no preferred mass scale [59]. That

being said, baryonic physics prevents the formation of galaxies below a minimum

mass scale or above a maximum scale [60]. The significance of the precise value of

the minimum mass scales in particular will be discussed in Section 1.1.4.2.
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A number of simulation tools exist with which to model CDM structure forma-

tion [61, 62, 63, 64]. When compared to astrophysical observations from collabora-

tions such as the Sloane Digital Sky Survey (SDSS) [65], CDM simulations have

performed remarkably well in reproducing the large scale filamentary structure and

voids of the cosmic web [66, 67]. Moreover, the consistency of the CDM model with

the results of CMB, galaxy clustering, and weak lensing surveys is well established

[68, 69, 70]. Therefore, at cosmological scales, the CDM model has been shown to

be remarkably consistent with data from a variety of observational probes. Such

consistency at large scales has reinforced the popularity of the CDM paradigm.

However, a number of issues arise for CDM on smaller, galactic scales. I shall

address these issues in the following section.

1.1.4 Problems Facing the CDM Paradigm

1.1.4.1 Absence of Evidence from Direct Detection

While CDM models are able to consistently reproduce features of the large scale

structure of the universe, the question remains as to the nature of the constituent

WIMP particles. As previously mentioned, CDM gained in credibility due to the

so-called ‘WIMP miracle’, whereby supersymmetry models apprently predicted the

existence of an LSP with a relic abundance of the correct order of magnitude to

account for the missing mass content of the universe [71, 72, 73, 74]. This was of

great significance because the development of supersymmetry was not motivated

by the need to identify a dark matter candidate. Instead, supersymmetry arose as

an elegant solution to a number of unrelated problems within the Standard Model

of particle physics. Namely, supersymmetry provides a framework in which the

stark divide between bosons and fermions is naturally bridged and the light mass

of the Higgs boson arises without fine-tuning [75, 76, 77]. Therefore, the fact that

supersymmetry may also account for cosmological dark matter was seen by many

as confirmation that it must indeed represent physical reality.

In previous decades, evidence of supersymmetry was expected to be readily

accessible with the advent of advanced particle accelerators [78, 79]. However,

after more than a decade of searching at the LHC, evidence of supersymmetry

has yet to be found [80, 81, 82]. Moreover, a slew of non-accelerator based direct-
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detection experiments have also failed to find evidence for an LSP CDM candidate

[83, 84, 85, 86, 87].

The lack of evidence for any particle in the GeV-TeV energy range with a

weak-scale cross-section with baryonic matter and the increasingly tight constraints

on viable supersymmetry models [88, 89] motivate the consideration of alternative

models of dark matter. The challenge, therefore, is identifying alternative models

which reproduce the successful predictions of CDM on large scales while explaining

the absence of direct detection evidence. This point will be revisited when I

introduce ULDM in Section 1.1.5. However, before I discuss the ULDM alternative,

I will briefly explicate the astrophysical problems also facing CDM.

1.1.4.2 The Small-Scale Crisis

While the CDM paradigm has been successful in reproducing the observed properties

of large scale cosmological structure, there exist a number of apparent discrepancies

at galactic scales and below. Collectively, these discrepancies are known as the

‘small-scale crisis’ [90, 91].

Perhaps the most studied of the small-scale controversies within CDM is known

as the ‘core-cusp’ problem. This problem arises because CDM-only simulations tend

to generate halos with central density profiles which sharply increase to a central

‘cusp’. This feature is well-described by the semi-analytical Navarro-Frenk-White

(NFW) profile [92]. Conversely, observations seem to favour a flatter central profile

or ‘core’ [93, 94, 95]. Hence, this discrepancy is referred to as the core-cusp problem.

The core-cusp problem is a matter of significant debate, with a variety of

solutions proposed which maintain the CDM framework. For example, it has been

proposed that unsuitable mass estimators may have been used when analysing

observational data, and that this leads to the erroneous detection of a core, when

in reality there is indeed a cusp [96]. Others admit the existence of a core-cusp

discrepancy when CDM-only simulations are compared to data, but contend that

this situation is ameliorated when the effect of baryonic physics is taken into

account [97, 98, 99]. While many possible remedies to the core-cusp problem have

been proposed, it remains a topic of significant debate.

Another widely contested small-scale phenomenon is known as the ‘missing
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satellites problem’ [100]. The hierarchical structure formation of CDM predicts that

dark matter substructure should be prevalent on sub-galactic scales. Specifically,

this model predicts that the Milky Way should contain ∼500 satellites of kpc scale

within its virial radius [101]. However, observations show that the Milky Way

contains far fewer satellites of this kind. The absence of significant substructure in

observed galaxies has proven difficult to account for within the CDM framework.

Nevertheless, a number of solutions to this apparent shortcoming of CDM have

been proposed. For example, it has been proposed that low-mass CDM subhalos

are prevented from producing significant stellar populations if they accrete most

of their mass after the epoch of reionization. Under such conditions, the missing

satellites problem appears to be ameliorated [102]. It has also been suggested

that expectations of the number of observable satellites have been inflated by not

correctly accounting for the detection efficiency of observational instruments and

the luminosity of low-mass CDM subhalos [103]. Notwithstanding these various

proposals for resolving the missing satellites problem, it remains a thorn in the side

of existing CDM models and promotes the consideration of alternative models.

Yet another significant small-scale vulnerability of CDM is referred to as the

‘too big to fail’ problem [104, 105]. This refers to the fact that high resolution CDM

galaxy simulations predict that galaxies with a stellar mass function similar to that

of the Milky Way should host a number of intermediate mass systems large enough

for significant star formation to occur. By contrast, however, such systems do not

appear in observations. This indicates that if such intermediate systems really

exist, they must have ‘failed’ to generate significant star formation, hence, ‘too big

to fail’. Note that this differs from the missing satellites problem, which concerns

the lack of observed substructure at the smaller end of the mass function. As is the

case with other aspects of the small-scale crisis, this issue is a matter of ongoing

debate. Some contend, for example, that the assumed luminosity function which

leads to the unobserved excesses of substructure is not valid due to gravitationally

induced merging caused by classical dynamical friction [106]. Others contend that

complex baryonic physics such as stellar feedback can resolve the apparent disparity

between CDM simulations and observations [60]. However, recent research has lead

to tighter constraints on satellite galaxy parameters, seemingly exacerbating the

too big to fail problem and raising the bar for mechanisms proposed to alleviate
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the problem [107].

Though the small-scale crisis of CDM is hotly contested, the lack of a single

elegant framework in which all of its components are convincingly ameliorated is

a strong motivator for exploring alternatives to CDM. In particular, models are

sought which naturally alleviate the small-scale crisis without the need for complex

baryonic physics but reproduce CDM predictions on large scales.

1.1.5 ULDM as an Alternative to CDM

In light of the unresolved problems within the CDM model, there is increasing

motivation to search for alternatives which mitigate these problems, while also

reproducing the successes of CDM. In particular, alternatives should reproduce the

CDM predictions for the large scale structure of the universe, while simultaneously

providing a natural solution to the small-scale crisis. Furthermore, they should

explain the lack of direct-detection evidence and yet be well-motivated from a

particle physics perspective. In this thesis, I will investigate ultra-light dark matter

(ULDM) as an alternative to CDM. Here, I briefly outline the motivation behind

the ULDM paradigm, with reference to the aforementioned successes and failures

of CDM.

The fundamental ULDM hypothesis is that the constituent dark matter particle

is a very light boson, with m ∼ 10−22eV [108]. The key advantage of such a dark

matter candidate is that this extremely small mass corresponds to a kiloparsec

scale de Broglie wavelength. As a result, structure formation on small scales is

precluded by quantum uncertainty - as collapse proceeds past a certain point,

increasing momentum opposes further particle confinement. Importantly, however,

at scales much larger than the de Broglie wavelength, the dynamics of ULDM are

indistinguishable from CDM [109]. Hence, ULDM presents a natural solution to

the small-scale crisis, while retaining the successes of CDM at large scales.

Moreover, the concept of an extremely light boson appears in a number of

scenarios in particle physics. Notably, the QCD axion, which resolves the Strong C-

P problem, is one such example [44]. It has also been proposed that extremely light

bosons could provide a resolution to the problem of lepton anomolous magnetic

moments [110, 111]. As an ultra-light boson, ULDM provides a dark matter
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candidate without recourse to supersymmetric extensions to the Standard Model.

Furthermore, because of its extraordinarily small mass, the absence of direct

detection is naturally explained. Indeed, particles of such small mass could only

decay into photons with the decay rate scaling as the third power of the mass.

Hence, signatures of such decay events would not be expected in instruments such

as the LHC [112].

Overall, therefore, ULDM represents a well-motivated alternative to CDM, which

may provide natural solutions to the small-scale issues of the latter. Meanwhile,

the fact that ULDM and CDM predictions converge on large cosmological scales

guarantee that this model provides a viable candidate to reproduce observations

from probes of cosmological structure formation.

1.2 Outline

The following chapters in this thesis are dedicated to exploring the theory and

computational modelling of ULDM, and analysing the plausibility of this model as

an explanation of the mysterious dark matter component of the universe.

In Chapter 2, I review the fundamental theoretical background of the ULDM

model of dark matter. I also introduce a number of astrophysical features of this

model, which will be relevant to the content of later chapters. I then identify a

number of open questions relating to the ULDM model, which will also be addressed

in subsequent chapters.

In Chapter 3, I present the results of work already published in JCAP [9]. This

work describes a simulation tool designed to solve the dynamical equations of the

ULDM model using pseudo-spectral methods. This tool is called PyUltraLight.

I discuss the features and limitations of PyUltraLight, and present a number of

outputs serving as verification and efficiency tests. I also briefly review work which

has since been completed by other research groups in which PyUltraLight has

been adapted for a number of different numerical investigations.

In Chapter 4, I present the results of work already published in PASA [10].

This work addresses the aforementioned core-cusp problem of CDM, and makes use

of astrophysical data from the SPARC database [113] to analyse whether ULDM

or CDM models provide a better fit to the rotation curves of large dwarf galaxies.
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Important in this analysis is the core-halo relationship of ULDM halos (introduced

in Chapter 2). I also discuss the possibility of variability in this relationship.

In Chapter 5, I discuss material currently in preparation for publication. This

work makes use of the AxioNyx simulation tool [114]. AxioNyx uses adaptive

mesh refinement to allow for computationally efficient simulation of ULDM physics

in an expanding background. I use this tool to study the collapse of aspherical

overdensities to form ULDM halos. I discuss the process of relaxation and use these

results to postulate mechanisms by which variability in the core-halo relationship

of ULDM may arise. In particular, I address the phenomenon of soliton oscillation

which is observed at late times in the collapse process and has important conse-

quences for global properties of ULDM halos. I also use these simulation results

to investigate the possibility of discerning ULDM signatures in the structure of

the cosmic web through analysis of the anisotropic correlation functions of ULDM

fields in which extended wavefronts are present.

In Chapter 6, I briefly highlight some ongoing work which is in the preliminary

stages. This work concerns the study of angular momentum in ULDM halos formed

by the collapse of rotating overdensities. I also consider statistical tools which may

be applied to distinguish between ULDM and CDM density fields, based on the

presence of extended anisotropic wavefronts in the former.

Finally, in Chapter 7 I summarise the results of this thesis and identify a number

of avenues for future research in ULDM physics.
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Chapter 2

Background and Literature

Review

2.1 ULDM From First Principles

2.1.1 ULDM Candidates in Particle Physics

Within particle physics, the concept of symmetry plays an important role. The

relationships and interactions of particles within the Standard Model are elegantly

described using the mathematical framework of symmetry groups [115]. Because of

this, physicists often look for fields which display obvious symmetries, as these fit

naturally within the existing mathematical framework. Often, such symmetries are

not exact, but are expected to be broken at some scale. A prototypical example

of this is the phenomenon of neutrino oscillations. The existence of neutrino

oscillations indicates the violation of lepton number conservation at a very low

level [116]. Hence, a good place to start when considering possible new fields is

with a model with an exact symmetry, and to then ask how this symmetry may be

broken to a very small degree.

To see how ULDM fits into this framework, let us consider a massless, spinless

field φ with no self-couplings. This field is described by the following action:

I =
1

2

∫
d4x
√−ggµν∂µφ∂νφ, (2.1)
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where g is the metric tensor. This field has an exact shift symmetry under φ→ φ+C,

and is thus an attractive model from a particle physics perspective.

While the ULDM particle should be very light, it must not be precisely massless.

Hence, rather than the action of Equation 2.1, we are interested in actions which

reduce to Equation 2.1 in the limit that the mass approaches zero. In this way,

ULDM may be considered a small deviation from a simple scalar field model with

an exact shift symmetry.

An explicit example of such a ULDM model is represented by the following

action:

I =

∫
d4x
√−g

[
1

2
F 2gµν∂µφ∂νφ−m2F 2

(
1− cos(φ)

)]
. (2.2)

Here, φ is a dimensionless scalar field, which has a periodic shift symmetry of

φ→ φ+ 2π. Note that when the mass, m, is very small, Equation 2.2 approaches

the form of Equation 2.1 and thus we realise a deeper, non-periodic, approximate

shift symmetry. The constant F in Equation 2.2, where F has dimensions of mass,

is required for dimensional consistency. This constant derives from the vacuum

expectation value of the field, and is thus model-dependent. For most theoretical

particle physics models, F is bounded below by the grand unified scale and above

by the reduced Planck mass [117];

1016GeV . F . 1018GeV. (2.3)

Spinless fields with a periodic shift symmetry arise naturally within a number

of string theory models. Depending on the mass parameter, such fields may provide

candidates for a number of cosmological phenomena including the inflaton field,

dark energy, or the QCD axion [118]. In the present context of course, we are

interested in a mass parameter m of the correct magnitude to describe dark matter.

There have been various studies undertaken to constrain the ULDM particle mass

via astrophysical observations, however, these constraints still remain a matter of

ongoing debate. Most mass constraints favour m & 10−22eV [119, 120, 121]. Hence,

I will use Equation 2.2 as the underlying particle physics model with a fiducial

mass of 10−22eV in the remainder of this thesis.
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2.1.2 From Particle Physics to Cosmology

Let us now take a closer look at Equation 2.2, with m = 10−22eV. It is necessary that

this mass parameter yields a cosmological energy density of the correct magnitude

to account for dark matter. Furthermore, the choice of m = 10−22eV should

yield a value of F consistent with the predictions of many theoretical models, as

constrained by Equation 2.3.

To see how the field in Equation 2.2 evolves, let us apply the variational principle

to obtain the equations of motion. The variation in the Lagrangian, L, is given by:

δL =
∂L
∂φ

δφ+
∂L

∂(∂γφ)
δ(∂γφ), (2.4)

such that the variation in the action is

δI =

∫
d4xF 2

√−g
[
−m2 sin(φ)δφ+ gµν∂µφ∂ν

(
δφ
)]

= 0, (2.5)

where we have used ∂ν(δφ) = δ(∂νφ). Making use of the fact that

√−ggµν∂µφ∂ν(δφ) = ∂ν

[√−ggµν∂µφδφ]− ∂ν[√−ggµν∂µφ]δφ, (2.6)

and noting that the volume integral of the total derivative is zero, we arrive at

δI =

∫
d4xF 2

[
−√−gm2 sin(φ)− ∂ν

(√−ggµν∂µφ)]δφ = 0. (2.7)

This yields the generalised equations of motion:

1√−g∂ν
[√−ggµν∂µφ]+m2 sin(φ) = 0. (2.8)

To relate these equations of motion to cosmology, let us now assume the metric

tensor of an expanding Friedmann–Lemâıtre-Robertson–Walker (FLRW) universe

in the post-inflationary epoch: [122]:

ds2 = −dt2 + a(t)2dx2. (2.9)

Further, let us assume that φ is constant across space, varying in time only. Making
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use of the identity:

∂ν
√−g =

1

2

√−ggαβ∂νgαβ, (2.10)

we arrive at the ULDM equations of motion for an FLRW universe [117]:

φ̈+ 3H(t)φ̇+m2 sin(φ) = 0, (2.11)

where H(t) = ȧ/a is the Hubble constant and ~ = c = 1.

Equation 2.11 indicates that for H � m, φ is approximately constant. When

the ULDM field is established through symmetry breaking in the very early universe,

H is indeed much larger than the ULDM mass and the field is therefore initially

overdamped. Later, when H . m, the field begins to oscillate. The initial field

value itself is governed by the details of the symmetry breaking mechanism, and is

therefore model-dependent [123]. Typically, it is assumed that 〈φ〉 ∼ 1, where φ is

dimensionless, and m is as yet a free parameter.

For small field values φ . 1, we can approximate the sine term in Equation 2.11

by the first Taylor series contribution [124]. While this approximation is not exact

for the initial field, I will show that it becomes more accurate as the evolution

proceeds. Hence, we may approximate Equation 2.11 by:

φ̈+ 3H(t)φ̇+m2φ = 0. (2.12)

Let us assume an ansatz solution of φ(t) = A cos(mt), where A = A(t). Equation

2.12 may then be re-expressed as:

(Ä+ 3HȦ) cos(mt)− (3mHA+ 2mȦ) sin(mt) = 0. (2.13)

This equation is automatically satisfied if both of the following conditions are met:

Condition 1 : 3HA = −2Ȧ (2.14)

Condition 2 : Ä = −3HA (2.15)
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Let us examine the first condition. Noting that d(A2)/dt = 2AȦ, this implies

d(A2)

dt
= −3HA2. (2.16)

We may integrate the above equation to obtain:∫
dt
d(A2)

dt

(
1

A2

)
=

∫
dt
da

dt

(−3

a

)
, (2.17)

∴ A2 ∝ a−3. (2.18)

This result is important for two reasons. First, we see that the energy density

of the field, ρ = m2F 2A2, scales as a−3. This is the same scaling property as

conventional CDM [117], which is necessary if ULDM is to replicate CDM on large

scales. Secondly, we see that the amplitude of the field oscillations are damped

as A ∝ a−2/3. This means that approximating Equation 2.11 by Equation 2.12

becomes more accurate as expansion proceeds over time.

Let us now return to the second condition, Ä = −3HA. Substituting the first

condition, 2Ȧ = −3HA, into the second, we find that the two are simultaneously

satisfied if ḢA = ȦH, or, equivalently,

Ḣ =
−3H2

2
. (2.19)

Proceeding as before, we can integrate this equation to obtain:∫
dt
dH

dt

(
1

H2

)
=

∫
dt

(−3

2

)
, (2.20)

∴ H ∝ t−1, (2.21)

which is indeed what we expect, since H ∝ t−1 for any tp where p is constant.1

1Note that while H ∝ ρ
1/2
crit ∝ t−1 for both the radiation and matter dominated epochs,

ρcrit ∝ a−4 and a ∝ t1/2 for a radiation dominated universe, while ρcrit ∝ a−3 and a ∝ t2/3 for a
matter dominated universe.
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Hence, we see that the ansatz solution φ = A cos(mt) satisfies both conditions 2.14

and 2.15 (and thus Equation 2.12) when A2 ∝ a−3. I now use this scaling behavior

with At=0 ∼ 1 to compute an order of magnitude estimate of the parameter F and

the current cosmological ULDM density.

To compute the value of F , we first note that in a radiation-dominated FLRW

universe we have:

H2 =
8π

3M2
P

ρ, ρ =
π2ge(T )

30
T 4 ∼ T 4, (2.22)

where T is the photon temperature, MP is the Planck mass, and ge(T ) are the

effective degrees of freedom for the energy density [125, 126]. Combining these

expressions, we find that the ULDM field begins to oscillate when Hosc ∼ m, or,

roughly

T 4
osc ∼ m2M2

P (2.23)

From Equations 2.22, we also have that the energy density of radiation at this

time is of order T 4
osc. Meanwhile, the energy density of ULDM is of order m2F 2.

Letting ξ represent the ratio of ULDM energy density to radiation energy density,

we have:

ξosc ∼
m2F 2

T 4
osc

. (2.24)

As expansion proceeds, this ratio grows as 1/T until radiation-matter equality at

Teq ∼ 1eV. Hence, we find:
m2F 2

T 4
osc

∼ Teq
Tosc

. (2.25)

Combining Equations 2.23 and 2.25 finally gives us an estimate of the parameter

F :

F ∼ T
1/2
eq M

3/4
P

m1/4
∼ 1017GeV, (2.26)

for m = 10−22eV. Note that while we have obtained this value from astrophysical

considerations, it conveniently lies within the theoretical acceptable range of

Equation 2.3. This supports the notion of ULDM with the correct mass to account

for dark matter arising naturally from a particle physics model.

I will now use this approximate value of F to compute an order of magnitude

estimate of the current ULDM density (normalised by the critical density), ΩULDM,0.

We note that H2
osc ∼ m2 and H2

eq ∼ T 4
eq/M

2
p . Furthermore, we note that during the
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matter dominated epoch we have H ∝ a−3, while during the radiation dominated

era we have H ∝ a−4. Putting this together, we have:

H2
0

H2
eq

=
a3eq
a30
. (2.27)

Assuming the present day scale factor a0 = 1, this yields a value for the scale factor

at matter-radiation equilibrium of

a3eq ∼
H0M

2
P

T 4
eq

. (2.28)

Analogously, we can compute the scale factor at the onset of the oscillation of the

ULDM field through:
H2

eq

H2
osc

=
a3osc
a3eq

. (2.29)

Noting that Hosc ∼ m and substituting Equation 2.28 into the above, we find:

a3osc ∼
(

T 4
eq

M2
pm

2

)3/4
H2

0M
2
P

T 4
eq

. (2.30)

Finally, we use ρULDM,0 ∼ m2F 2A2
0 and H2

0 ∼ ρcrit,0/M
2
P to obtain

ΩULDM,0 ∼
m1/2F 2

TeqM
3/2
P

. (2.31)

Substituting values m ∼ 10−22eV, F ∼ 1017GeV, MP ∼ 1019Gev and Teq ∼ 1eV,

this yields an order of magnitude estimate of

ΩULDM,0 ∼
(10−22)1/2(1026)2

(1028)3/2
= 0.1, (2.32)

Which is indeed the correct order of magnitude to account for the observed dark

matter density today [127]. While this is only a rough calculation, it serves to

illustrate the viability of the ULDM model. Constraining the model parameters

further is the subject of much ongoing research, and will be addressed in detail in

the remainder of this thesis.
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In summary, in this section I have demonstrated that the simple particle physics

model of Equation 2.2 corresponds to a feasible ULDM candidate. This model is able

to reproduce the expected cosmological dark matter density while simultaneously

satisfying model-dependent particle physics constraints. In the next section, I will

consider the dynamics of the ULDM field in a more general context, introducing

perturbations around the FLRW metric necessary to seed structure formation.

2.2 ULDM Dynamics

In the previous section, I computed the average global evolution of the ULDM

field in a homogeneous, isotropic FLRW universe. While we expect homogeneity

and isotropy on large cosmological scales, this is not true in general on small

scales. Indeed, local density variations in the early ULDM field are required to

seed gravitational collapse and hence galactic structure formation.

In this section, we take into account local variations in the ULDM field. Because

the ULDM field possesses mass, regions where the field value is large correspond to

mass overdensities, while regions where the field value is small correspond to mass

underdensities. We can take into account the presence of these density variations

by introducing space and time dependent perturbations to the FLRW metric of

an expanding universe. This will lead to modified equations of motion for ULDM,

which will form the theoretical basis for simulation tools designed to model structure

formation and dynamics.

We begin with the generalised equations of motion for the ULDM field, given

in Equation 2.8. As discussed in the previous section, we may approximate the

sinusoidal component by the leading order term of its Taylor expansion, with this

approximation approaching the exact expression as the universe expands. Hence,

we have:
1√−g∂ν

[√−ggµν∂µφ]+m2φ = 0. (2.33)

We now evaluate the above expression using the perturbed FLRW metric,

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Φ)dx2, (2.34)
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where Φ = Φ(x, t) is a small perturbation and a = a(t). Because Φ is assumed to

be small, we proceed only to linear order in Φ in our analysis. It is helpful to first

employ the identity 2.10 re-express Equation 2.33 as:

1

2
gαβ(∂µgαβ)gµν∂νφ+ ∂µ(gµν∂νφ)−m2φ = 0. (2.35)

We will now examine each of the three terms in the summation separately. The

first term may be written in the following expanded form:

1

2

[
g0β(∂0g0β)g0ν∂νφ+ g0β(∂ig0β)giν∂νφ

+ giβ(∂0giβ)g0ν∂νφ+ giβ(∂jgiβ)gjν∂νφ
]
, (2.36)

where indices i and j run between 1 and 3 only while Greek indices run from 0 to 3.

Because we are expanding to linear order in Φ, it is useful to obtain approximate

expressions for the components of the inverse metric tensor as follows:

g00 =
−1

1 + 2Φ
= −

∞∑
n=0

(−2Φ)n ≈ −(1− 2Φ), (2.37)

gii =
1

a2(1− 2Φ)
=

1

a2

∞∑
n=0

(2Φ)n ≈ 1

a2
(1 + 2Φ). (2.38)

Using these expressions, we find:

g0β(∂0g0β)g0ν∂νφ ≈ −(1− 2Φ)∂0(−1− 2Φ)(−1 + 2Φ)∂0Φ, (2.39)

g0β(∂ig0β)giν∂νφ ≈ −(1− 2Φ)∂i(−1− 2Φ)
1

a2
(1 + 2Φ)∂iφ, (2.40)

giβ(∂0giβ)g0ν∂νφ ≈
3

a2
(1 + 2Φ)∂0(a

2(1− 2Φ))(−1 + 2Φ)∂0φ, (2.41)

giβ(∂jgiβ)gjν∂νφ ≈
3

a2
(1 + 2Φ)∂j(a

2(1− 2Φ))
1

a2
(1 + 2Φ)∂jφ (2.42)

where factors of 3 come from summing over indices i and j. Keeping terms to

linear order in Φ only, we find that the first term of Equation 2.35 reduces to:

2Φ̇φ̇− 2

a2
∂iΦ∂iφ− 3H(1− 2Φ)φ̇, (2.43)
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where H = ȧ/a. Working in a similar fashion to examine the second term in

Equation 2.35, we have:

∂µ(gµν∂νφ) = ∂0(g
0ν∂νφ) + ∂i(g

iν∂νφ) (2.44)

≈ ∂0
(
− (1− 2Φ)φ̇

)
+

1

a2
∂i
(
(1 + 2Φ)∂iφ

)
. (2.45)

Again, keeping only terms to first order in Φ, we obtain

− φ̈(1− 2Φ) + 2Φ̇φ̇+
2

a2
∂iΦ∂iφ+

1

a2
(1 + 2Φ)∇2φ. (2.46)

Putting together Equations 2.43 and 2.46 with the final −m2φ term we find that,

to linear order in Φ, Equation 2.35 reduces to:

− φ̈(1− 2Φ) + 4Φ̇φ̇− 3H(1− 2Φ)φ̇+
1

a2
(1 + 2Φ)∇2φ−m2φ = 0. (2.47)

We can simplify this expression by dividing through by −(1 − 2Φ) and again

discarding higher orders in Φ:

φ̈+ 3Hφ̇− 4Φ̇φ̇− 1

a2
(1 + 4Φ)∇2φ+m2(1 + 2Φ)φ = 0. (2.48)

From here, we must make some assumptions about the nature of the ULDM field

φ and the gravitational potential Φ. Namely, we assume that both φ and Φ are

slowly varying in space and time. Specifically:

|φ̇| << m|φ|, (2.49)

|Φ̇| << m|Φ|, (2.50)

|∇φ| << m|φ|, (2.51)

where the final assumption also implies |∇2φ| << m2|φ|. Furthermore, at late

times in an expanding universe, H << m and a ∼ 1. Combining these assumptions,

we are able to neglect a number of terms in Equation 2.48 and obtain, for a slowly

varying field at late times:

φ̈−∇2φ+m2(1 + 2Φ)φ = 0. (2.52)
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We may solve this using Wentzel–Kramers–Brillouin (WKB) methods, employing

the following ansatz solution:

φ =
1√
2m

(
ψe−imt + ψ∗eimt

)
. (2.53)

Like φ, ψ is assumed to be slowly varying. Therefore, ψ satisfies the same conditions

as φ in Equations 2.49 and 2.51. Hence, we may directly substitute the ansatz

solution into Equation 2.52 while neglecting highly suppressed terms. The outcome

of this process is an equation in ψ:

iψ̇ =
−∇2ψ

2m
+mΦψ. (2.54)

Note that throughout this derivation we have suppressed factors of ~, assuming

~ = c = 1. Restoring factors of ~, we recover the well-known Schrödinger Equation

of non-relativistic quantum mechanics:

i~ψ̇ =
−~2
2m
∇2ψ +mΦψ. (2.55)

Hence, in the late universe, the ULDM field may be described by the macroscopic

wavefunction ψ of a Bose-Einstein condensate. It follows that the particle number

density is |ψ|2, so that the mass density is m|ψ|2. The gravitational potential,

which is sourced by the field itself, then satisfies the Poisson equation:

∇2Φ = 4πGm|ψ|2, (2.56)

Where G is Newton’s gravitational constant.

Overall, therefore, the dynamics of ULDM at late times may be conveniently

described by the coupled Schrödinger-Poisson (Schrödinger-Poisson) differential

equations. It is this system of equations which will form the foundation of the

simulation tools discussed in the remainder of this thesis.

In deriving Equation 2.52, we neglected terms in H since H << m. We also

assumed a ∼ 1 since we are primarily concerned with the dynamics of ULDM

at late times. These turn out to be suitable assumptions even at relatively high

redshifts, and Equation 2.52 provides a good description of ULDM dynamics
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throughout the process of structure formation. While neither Equation 2.52 nor

the Schrödinger-Poisson system depend explicitly on H or a, this does not mean

the dynamics are insensitive to expansion. To see how expansion influences the

dynamics, we may re-cast the Schrödinger-Poisson equations in terms of comoving

coordinates. To do this, we note that the Schrödinger-Poisson equations may be

obtained directly from the following action:

S =

∫
dt

∫
d3x
[
L
]

=

∫
dt

∫
d3x

2

[
i(ψ∗ψ̇−ψψ̇∗)+m−1(∇ψ)2−2mΦ|ψ|2

]
. (2.57)

We first note that:

(∇ψ)2 = ∇(ψ∗∇ψ)− ψ∗∇2ψ. (2.58)

Within the action integral, the ∇(ψ∗∇ψ) term corresponds to the integral of a

total derivative, and may therefore be ignored, hence, we have:

S =

∫
dt

∫
d3x

2

[
i(ψ∗ψ̇ − ψψ̇∗)−m−1ψ∗∇2ψ − 2mΦ|ψ|2

]
. (2.59)

In comoving coordinates, this becomes

S =

∫
dt

∫
a3d3x

2

[
i(ψ∗ψ̇ − ψψ̇∗)−m−1a−2ψ∗∇2ψ − 2mΦ|ψ|2

]
, (2.60)

where now x = xcom and ∇ = ∇com. Applying the variational principle,

∂L
∂ψ∗
− d

dt

∂L
∂ψ̇∗

= 0, (2.61)

we find:
1

2

(
2iψ̇a3 − am−1∇2ψ − 2a3mΦψ + 3ia2ȧψ

)
= 0, (2.62)

while the Poisson equation in comoving coordinates is:

∇2Φ = 4πGma2|ψ|2. (2.63)
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Let us now introduce ψ̃ = a3/2ψ such that Equation 2.62 becomes:

i ˙̃ψ =
∇2ψ̃

2ma2
+mΦψ (2.64)

and the Poisson equation becomes:

∇2Φ =
4πGm

a
|ψ̃|2. (2.65)

Note that the physical density is then ρ = m|ψ|2 = ma−3|ψ̃|2. Equations 2.64 and

2.65 therefore form the comoving Schrödinger-Poisson system, which will be useful

in later sections when simulating ULDM dynamics in an expanding background.

2.3 Astrophysics of ULDM and Open Questions

In this section, I briefly discuss some astrophysical constraints relevant to ULDM,

and outline the key astrophysical problems that ULDM has been proposed to solve.

I will then investigate whether the ULDM model does indeed provide a convincing

solution to these problems using numerical methods in later sections.

2.3.1 The ULDM Halo Profile

In recent years, structure formation simulations have revealed a characteristic

profile for ULDM halos. Typical halos consist of a smooth, coherent core embedded

in an incoherent outer halo possessing granular density fluctuations [128, 129, 130].

The density profile of the inner core closely matches that of the ground state

solution to the Schrödinger-Poisson differential equations [131]. This ground-state

solution is often referred to as a soliton, and has a smooth, flat density profile at

zero radius. Meanwhile, the average shape of the outer density profile is consistent

with the NFW profile of CDM for which ρ ∝ 1/r3 at large radii.

The NFW profile is characterised by the following expression [92]:

ρNFW(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 , (2.66)
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where ρ0 and Rs are free parameters, which vary from halo to halo. Meanwhile,

the solitonic profile is well-approximated by [132]:

ρsol(r) =
ρc(

1 + 0.091
(
r
rc

)2)8 . (2.67)

Here, ρc is the density at r = 0, given by

ρc = 1.9× 107a−1m−222

(
rc

kpc

)−4
M�kpc−3, (2.68)

where a is the cosmological scale factor, rc is the radius at half-maximum density,

and m22 = m/10−22eV.

Hence, the ULDM profile is often described piecewise, using ρsol in the centre

and ρNFW at large radii. The transition between these two regions appears to be

governed by a universal core-halo mass relation [133]:

Mc

Mh

= 5.04× 10−2
(

Mh

109M�

)−2/3
m−122 , (2.69)

where Mh = (4πr3vir/3)ζ(z)ρcrit is the virial mass of the halo with ζ(z) = (18π2 +

82(Ωm(z)− 1)− 39(Ωm(z)− 1)2)/Ωm(z) ∼ 200 [134], and Mc is the mass within

radius rc. This core-halo mass relation may be alternatively expressed as [132]:

rc = 1.6a1/2
(
ζ(z)

ζ(0)

)−1/6(
Mh

109M�

)−1/3
m−122 kpc. (2.70)

The existence of a smooth core in ULDM halos has been proposed as a natural

solution to the core-cusp problem introduced in Section 1.1.4.2. However, it is

important to note that the mass of the soliton within rc scales inversely with the

radius. That is to say, heavier solitons tend to be much more ‘peaked’ than their

lighter counterparts. Given this scaling property and the apparent core-halo mass

relation, it has been suggested that in certain regimes, the ULDM profile may

actually exacerbate the core-cusp problem relative to CDM [133]. This claim will

be investigated in Chapter 4, while the universality of the core-halo mass relation
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will also be addressed in Chapter 5.

2.3.2 Upper and Lower bounds on ULDM halos

There are a number of constraints governing the formation of realistic astrophysical

ULDM halos. These constraints arise due to the scale invariance of the Schrödinger-

Poisson equations, discussed in detail in Appendix A. Succinctly, if a spherically

symmetric eigenstate of the Schrödinger-Poisson equations is found for an object of

a particular mass, an entire family of solutions may be automatically constructed,

parametrised by mass alone. In the following sections, we will use numerical

solutions of the Schrödinger-Poisson system to derive constraints on ULDM halo

parameters.

2.3.2.1 Minimum ULDM halo radius

To see how the scaling properties of the Schrödinger-Poisson system give rise to

constraints on ULDM halos, one first numerically computes the density profiles

of the spherically symmetric solutions to the Schrödinger-Poisson equations for

a given mass M [135, 136, 137, 138]. Each solution corresponds to a spherically

symmetric eigenstate, which we will index n. For each eigenstate, one may then

obtain values for the half-mass radius, r1/2, and the central density, ρc, for any

value of M . The values of r1/2 and ρc corresponding to the ground state solution

then represent bounds on the radius and central density of excited states for the

same mass M . Namely, we find [117]:

r1/2 =
~2

GMm2
fn ≥ 0.335 kpc

(
109M�
M

)
m−222 , (2.71)

ρc =

(
Gm2

~2

)3

M4ρn ≤ 7.05 M�pc−3
(

M

109M�

)4

m6
22, (2.72)

where M is the total mass of the object, and fn and ρn are eigenstate-dependent

constants. For the lowest energy solution (f0, ρ0), the inequalities become equalities,

and thus constitute bounds on the halo parameters.

Equations 2.71 and 2.72 may be used to test ULDM predictions against astro-

physical observations, however, there are a number of caveats to this approach.
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While simulations suggest that typical ULDM halos possess a spherically symmet-

ric ‘core’, the above inequalities assume the the spherically-symmetric solution

represents the entire mass of the object. For large ULDM halos, one expects a

generic halo profile with a small core residing within a larger, incoherent outer

halo. This outer halo is not, in general, spherically symmetric and therefore does

not represent one of the eigenstates discussed above. Hence, these inequalities

are most useful for small astrophysical objects, where the spherically symmetric

core dominates according to Equation 2.69. Furthermore, baryonic physics is not

considered in deriving the above equalities. Hence, they should only be applied

in situations where the mass to light ratio is high. An example of a suitable test

regime is the dwarf spheroidal galaxies of the Local Group with mass-to-light ratios

≥ 100M�/L�. One such study of 36 of these dwarf spheroidals ([139]) yields results

consistent with Equations 2.71 and 2.72 for m ≈ 10−22eV and M & 3 × 108M�,

however further studies are required to provide a convincing agreement.

2.3.2.2 Minimum ULDM halo mass

The inverse mass-radius scaling behaviour of the Schrödinger-Poisson system,

as shown in Equation 2.71, has further physical consequences. In addition to

constraining the half-mass radius for a ULDM halo of total mass M , Equation

2.71 may also be used to derive a lower bound on the value of M . To see this,

we make use of yet another relation arising from the numerical solutions to the

Schrödinger-Poisson system, in this case constraining the virial velocity, vvir:

v2vir =
G2M2m2

~2
ωn, (2.73)

where similarly to Equations 2.71 and 2.72, ωn is a constant whose value depends

on the eigenstate n. Specifically, we find that ωn decreases for increasing n, with

ωn < ω0 ≈ 0.1.

We also note that gravitational collapse only occurs in the presence of an

overdensity, meaning that the region within a virialised ULDM halo must have

higher density than the average density of the universe. It is typical to assume that

the average internal density within the virial radius is a multiple of the critical
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density [140]:

ρ̄vir = 200ρcrit = 200

(
3H2

8πG

)
. (2.74)

While Equations 2.73 and 2.74 constrain the virial velocity and the virial overdensity,

we may also constrain the virial radius of a ULDM halo by noting that, as a

consequence of the repulsive nature of the quantum pressure at small scales, the

virial radius must be larger than the de Broglie wavelength of the ULDM constituent

particle. Specifically [117]:

rvir &
λdB
2π

=
~

mvvir
. (2.75)

Combining Equations 2.73 and 2.75 we find:

rvir &
~2

GMm2
ω−1n ≥ 3.2

~2

GMm2
, (2.76)

where we have used the ground state value ω0 = 0.1 in the second inequality.

Comparing this result to 2.71, where f0 = 3.9, we see that this implies that for

the smallest halos, rvir ≈ r1/2. Consequently, ρ̄vir ≈ ρ̄1/2 and Mvir ≈M1/2 = 1/2M .

Hence, equating ρ̄1/2 with Equation 2.74, we have:

200H2r21/2 = MG, (2.77)

and substituting Equation 2.71 for r1/2 we find:

M & 10
H1/2~3/2

Gm3/2
= 5× 107M�

(
H

70kms−1Mpc−1

)1/2

m
−3/2
22 , (2.78)

corresponding to a minimum virial mass of Mvir ≈M1/2 = 1/2M = 2.5× 107M�.

In contrast to CDM models, where a large number of subhalos with masses below

108M� are expected, the above limit indicates that dark matter subhalos around

globular clusters or ultra-compact dwarf galaxies are not expected [141]. Hence,

ULDM seems to naturally provide a resolution to the missing satellite problem

introduced in Chapter 1.
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2.3.2.3 Maximum ULDM halo mass

Just as the scaling properties of the Schrödinger-Poisson equations naturally give

rise to a minimum halo mass, they also give rise to a maximum halo mass. Consider

Equation 2.71 for the half-mass radius r1/2. We now ask what value of M1/2

contained within this radius would correspond to r1/2 approaching the Schwarzschild

radius, rS. That is:

rS =
2GM1/2

c2
=

~2

GMm2
fn. (2.79)

Since 2M1/2 = M , this equation can easily be rearranged to show that the

Schwarzschild radius is equal to the half-mass radius when

M =
~c
Gm

√
fn. (2.80)

Taking the ground state soliton solution fn = f0 ≈ 3.9 this gives:

Mmax ≈ 2.67× 1012M�m
−1
22 . (2.81)

Above this mass, a black hole would be expected to form. Note that this calculation

corresponds only to a constraint on the mass of a soliton. As previously mentioned,

large astrophysical ULDM halos are not well-described by the soliton solution

alone, but rather a central solitonic core surrounded by a much larger incoherent

outer halo. Hence, the maximum ULDM halo mass will be much larger than the

upper limit on the central core. This maximum halo mass depends on the core-halo

relation discussed previously. Therefore, let us now combine the core-halo relation

with the upper bound on the soliton mass and compare our results to observations.

The largest observed astrophysical dark matter halos are associated with rich

galaxy clusters and have masses approaching 2 × 1015M� [32, 142]. Taking into

account the apparent core-halo mass relation of Equations 2.69 and 2.70 and the

fact that r1/2 ∼ 1.45rc [132], at z ∼ 1 this corresponds to r1/2 ∼ 0.0184kpc and

consequently:

Mmax(observed) ∼ 1.8× 1010M�m
−2
22 , (2.82)

which is well below the limit set by Equation 2.81. Hence, we see that the

astrophysical constraints imposed by the scaling relations of the Schrödinger-Poisson
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system are consistent with the observations of the largest observed cosmological

structures.

Note, however, that the core-halo relation employed above has not been shown

to be universal. That is to say, it is not yet clear whether the core-halo mass

relation (which was determined from simulations of small to medium halos) can be

extrapolated to the largest ULDM halos. Indeed, the possibility of variability in

the core-halo relation will be investigated later in this thesis.

2.3.3 Open Questions

While the preceding section outlines the foundations of the astrophysics of ULDM,

there are a number of outstanding questions yet to be resolved. It is the purpose of

the remainder of this thesis to develop tools with which to address some of these

questions, which I will now briefly summarise.

2.3.3.1 Tools for the simulation of ULDM

In order to understand the complicated dynamics of ULDM in an astrophysical

context, it is necessary to develop computational tools capable of modelling this

behaviour. Importantly, such tools need to be able to capture quantum effects

unique to ULDM. For this reason, n-body simulators traditionally employed in the

case of CDM are unsuitable. In Chapters 3, and 5 of this thesis I will introduce a

number of tools designed to model ULDM dynamics governed by the Schrödinger-

Poisson system. These include PyUltraLight, chplUltra, and AxioNyx.

2.3.3.2 Can ULDM solve the core-cusp problem?

It has been predicted that the core-cusp problem introduced in Section 1.1.4.2 may

be ameliorated in ULDM due to the quantum pressure preventing collapse at the

centre of a ULDM halo. However, because of the scaling properties of ULDM, the

radius of a ULDM core scales inversely with mass. It is important to understand

the effect this has at astrophysically observable scales, as it is feasible that in some

regimes the ULDM density may indeed exceed CDM density at the same radius.

This question will be addressed in Chapter 4.
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2.3.3.3 Dynamics of interacting ULDM halos

In the context of cosmological structure formation, it is expected that as the universe

evolves, DM halos will merge to form larger objects. The details of this merger

process in the ULDM model are not yet well-understood, and are expected to differ

from CDM mergers through the presence of macroscopic quantum interference

effects. Mergers will be addressed in Chapter 3 of this thesis.

2.3.3.4 Variability in the core-halo mass relation

As described in Section 2.3.1, simulations of ULDM halos tend to favour a composite

halo structure consisting of a central solitonic core surrounded by an incoherent

outer halo. There appears to be a relationship (Equations 2.69, 2.70) between

the relative masses of these contributions to the overall halo, but whether this

relationship may be extrapolated across a wide range of mass scales is not yet known.

Furthermore, as this relationship is drawn from a statistical average over a number

of simulated halos, it is expected that there will be a certain variance around the

theoretical value for any given halo. Factors which may lead to deviations from

the theoretical value are not yet well-understood, and in Chapter 5 of this thesis I

will address evidence indicating that the core-halo relationship may be violated to

some extent in certain regimes.

2.3.3.5 Characterisation of the solitonic core of ULDM halos

While it has been observed through simulations that ULDM halos tend to possess an

inner core resembling the ground-state (soliton) solution to the Schrödinger-Poisson

system, it is of interest to explore parameters other than the spherically-averaged

density profile of this region in order to establish the extent to which a solitonic

description is applicable. For example, one may expect that asphericities in an

initial overdensity, which collapses to form a ULDM halo, may be imprinted in the

final structure. One may also expect that angular momentum may lead to non-

trivial velocity distributions in the core, differing from the characteristic internal

velocity field of a true soliton. It is also necessary to understand the broader

dynamics of the core region as relaxation occurs following collapse, particularly

any oscillatory effects. These questions will be addressed in Chapter 5.
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2.3.3.6 Other observable signatures of ULDM

In addition to characteristic density profiles of ULDM halos, it is useful to look for

other potentially observable effects which may serve as signatures of the ULDM

model. In particular, the wave-like behaviour of ULDM on scales similar to the

de Broglie wavelength may lead to observable interference effects in some regimes.

The presence of such interference effects and statistical methods to analyse them

are discussed in Chapters 3 and 5.
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Chapter 3

PyUltraLight: A Pseudo-Spectral

Solver for ULDM Dynamics

This chapter is an adaptation of

Faber Edwards, Emily Kendall, Shaun Hotchkiss, Richard Easther
PyUltraLight: A Pseudo-Spectral Solver for Ultralight Dark Matter

Dynamics
JCAP No. 10 (2018) [9]

Copyright 2018 IOP Publishing Ltd and Sissa Medialab

3.1 Introduction

As discussed in Chapters 1 and 2, CDM has been the prevailing model of dark

matter for at least the past two decades. This describes a cosmology with simple,

pressureless, noninteracting dark matter comprised of WIMPs. This model, however

appears to be at odds with observations at small astrophysical scales [143]. The

potential shortcomings of simple CDM scenarios motivate investigations of more

novel dark matter scenarios. In particular, ultra-light dark matter (ULDM), is an

increasingly well-studied possibility.1

As also discussed Chapters 1 and 2, ULDM models are motivated by fundamental

1ULDM is also variously known as fuzzy dark matter (FDM), BEC dark matter, scalar field
dark matter (SFDM), axion dark matter, and Ψ dark matter.
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theories possessing approximate shift symmetries [144, 123]. Moreover, ULDM may

naturally resolve the small-scale problems of ΛCDM as the Heisenberg uncertainty

principle suppresses gravitational collapse on length scales shorter than the de

Broglie wavelength of the ULDM particle. In this regime the mass of the ULDM

particle becomes correlated with astrophysical observables; if it is of order 10−22 eV,

structure is suppressed at kiloparsec scales and below [108].

Given the presence of a fundamental lengthscale, the behaviour of ULDM is

more complex than that of simple dark matter scenarios whose cosmologically

relevant interactions are purely gravitational. Physically, the effective short-scale

pressure and condensate-like properties of ULDM create new dynamical possibilities

for ULDM scenarios, such as purely pressure supported soliton-like solutions [145],

and superposition or interference during interactions between condensate-like halos

[146]. Consequently, modelling dark matter dynamics in ULDM scenarios is

more challenging than in simple cold dark matter models, but it is critical to

understanding complex ULDM physics.

In the non-relativistic regime, the dynamics of ULDM can be reduced to the

Schrödinger-Poisson system, where the complex variable ψ describes the local

density of ULDM quanta, while the Poisson equation describes the local gravita-

tional potential. Many approaches have been taken to this problem, including both

modifications of existing cosmological simulation codes and the development of

new codes specifically designed for ULDM systems. One widely used approach is

the Madelung fluid formulation of the Schrödinger-Poisson system [147] which has

a quantum pressure term that can be treated numerically in a variety of ways. In

Ref. [148], the cosmological code gadget [149] is modified to treat the quantum

pressure as an effective particle-particle interaction and the resulting code, axion-

gadget is publicly available [150]. Ref. [151] modifies a non-public extension of

gadget, p-gadget3 to treat the quantum pressure term via smoothed-particle

hydrodynamics (SPH) routines. The SPH approach is also used in Ref. [152], while

a particle-mesh approach was implemented in [153]. Nyx [154] was modified in

[146] to study merging ULDM solitonic cores, Galacticus [155] was modified

in [156] to study the effects of tidal stripping and dynamical friction on ULDM

halos, arepo [157] was modified in [158] to study the core-mass relationship and

turbulence characteristics of ULDM halos, and gamer [159, 160] was modified
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[129] to perform a detailed study of structure formation in ULDM cosmologies.

In this chapter I introduce PyUltraLight,2 a stand-alone Python-based

pseudospectral Schrödinger-Poisson solver. The key advantage of this code is that

it reproduces many of the key findings of more complicated cosmological simulation

codes within a desktop computing environment. Hence, it may provide a valuable

cross-check on more complex implementations, as well as serve as a basis for further

development of such codes within the computational cosmology community.

PyUltraLight is based on a symmetrised-split-step (leapfrog) solver for time

evolution, and uses a pseudospectral Fourier algorithm to solve the Poisson equation

for the gravitational potential at each step.3 This algorithm has second order

accurate time integration steps and sub-percent level energy conservation, while the

wavefunction normalisation is conserved to machine precision. As a pseudospectral

code, linear differential operators are computed by direct multiplication in the

Fourier domain, while nonlinear terms are evaluated in position space. Consequently,

PyUltraLight is free from noise associated with spatial derivatives computed

via finite-differencing. There is a necessary computational cost associated with

the Fourier and inverse Fourier transforms but these transforms are optimised in

PyUltraLight through the use of the pyFFTW pythonic wrapper around the

C-based FFTW subroutine library [167, 168]. As the FFTW libraries offer full

parallelisation, PyUltraLight is currently designed to take advantage of multiple

cores on a user PC or shared-memory environment. Full MPI compatibility has

not yet been implemented as we have not found a need to run simulations in a

distributed-memory cluster environment, however future releases may address this

possibility. We note that some modifications to PyUltraLight developed by other

research groups have successfully implemented MPI compatibility [169]. This will

be discussed later in more detail.

2The initial code development for PyUltraLight was completed as part of an MSc thesis by
Faber Edwards, with contributions by Shaun Hotchkiss and Richard Easther [161]. Further code
development was then undertaken by myself, as well as the entirety of the analysis, verification
and written work presented here.

3A similar methodology was described in Ref. [162]; at the time of writing this code has
not been released. Spectral methods are often used to solve the Poisson equation in large scale
structure simulations, while the PSpectre code [163] provides a pseudospectral solver for the
evolution of the inflaton and fields coupled to it during parametric resonance and preheating after
inflation [164, 165, 166].
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In the following sections, I first describe the implementation of the Schrödinger-

Poisson system in PyUltraLight, referring the reader to Section 3.3 for a review

of the derivation of the Schrödinger-Poisson equations in this context. I then

describe testing and verification procedures applied to the code. I reproduce a

selection of results from a variety of other ULDM simulations and discuss the

energy conservation and accuracy as a function of spatial resolution.

3.2 The rescaled Schrödinger-Poisson Equations

The Schrödinger-Poisson system which describes the non-relativistic dynamics of

ULDM is as given by:

i~ψ̇ = − ~2

2m
∇2ψ +mΦψ, (3.1)

where ψ is interpreted as the macroscopic wavefunction of a Bose-Einstein conden-

sate. It follows that the particle number density of the condensate is given by |ψ|2,
so its mass density is simply m|ψ|2. The local gravitational potential thus satisfies

the Poisson equation,

∇2Φ = 4πGm|ψ|2, (3.2)

where G is Newton’s gravitational constant. The coupled equations 3.1 and 3.2

together form the nonlinear Schrödinger-Poisson system. While Equations 3.1 and

3.2 are valid for open boundary conditions, PyUltraLight is designed to solve

the Schrödinger-Poisson system under periodic boundary conditions. In this case

the correct form of equation 3.2 is

∇2Φ = 4πGm
(
|ψ|2 − 〈|ψ|2〉

)
, (3.3)

where we subtract the average density from the right hand side of the Poisson

equation. The form of Equation 3.3 is a consequence of Gauss’ law and the fact

that the surface integral of the gradient of the field around the perimeter of the

simulation grid is identically zero when periodic boundary conditions are imposed

[170].

It is helpful to recast the Schrödinger-Poisson system (equations 3.1 and 3.3)

in terms of adimensional quantities. In keeping with Refs [132, 162] we introduce
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length, time, and mass scales as follows:

L =

(
8π~2

3m2H2
0Ωm0

) 1
4

≈ 121

(
10−23 eV

m

) 1
2

kpc, (3.4)

T =

(
8π

3H2
0Ωm0

) 1
2

≈ 75.5 Gyr, (3.5)

M =
1

G

(
8π

3H2
0Ωm0

)− 1
4
(
~
m

) 3
2

≈ 7× 107

(
10−23 eV

m

) 3
2

M�, (3.6)

where m is the mass of the ultra-light scalar field, H0 is the present-day Hubble

parameter, G is Newton’s gravitational constant and Ωm0 is the present-day matter

fraction of the energy density of the universe. We recast equations 3.1 and 3.2 in

terms of the dimensionless quantities

t′ =
t

T
, ~x

′
=
~x

L
, Φ′ =

mT

~
Φ, ψ′ = T

√
mGψ. (3.7)

Dropping the primes for notational convenience, we see that the coupled differential

equations of the Schrödinger-Poisson system under periodic boundary conditions

reduce to

iψ̇(~x, t) = −1

2
∇2ψ(~x, t) + Φ(~x, t)ψ(~x, t), (3.8)

∇2Φ(~x, t) = 4π
(
|ψ(~x, t)|2 − 〈|ψ(~x, t)|2〉

)
, (3.9)

where it is understood that all quantities involved are dimensionless. We can

recover dimensionful quantities via the “dictionary” provided by equations 4.7 to

4.8. For example, the integrated mass of the system, Mtot, is given by

Mtot = M

∫
d3x|ψ|2. (3.10)

Likewise, the mass density at any point is given by

ρ = ML−3|ψ|2. (3.11)

By dimensional analysis, we can easily restore dimensionful units to any of the
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quantities calculated by the code. In particular, in the following sections it is to be

understood that

E = ML2T−2 Ecode, v = LT−1 vcode, (3.12)

where E and v represent energy and velocity, respectively. PyUltraLight works

internally with these dimensionless quantities, but can receive initial conditions

and generates output in physical units. Henceforth, we will often refer to |ψ|2 as

the density, where it is understood that this is in fact a dimensionless quantity

related to the physical mass density via the constant of proportionality given by

equation 3.11.

3.3 Dynamical Evolution in PyUltraLight

Dynamical evolution within PyUltraLight progresses via a symmetrised split-

step Fourier process on an N ×N ×N grid with periodic spatial boundary con-

ditions.4 To understand this method, first consider the exact expression for the

unitary time evolution of the wavefunction according to equation 3.8, namely

ψ(~x, t+ h) = T exp

[
−i
∫ t+h

t

dt′
{
−1

2
∇2 + Φ(~x, t′)

}]
ψ(~x, t), (3.13)

where T is the time-ordering symbol. For a sufficiently small timestep h, the

trapezoidal rule gives the approximation∫ t+h

t

dt′Φ(~x, t′) ≈ h

2

(
Φ(~x, t+h) + Φ(~x, t)

)
. (3.14)

We can therefore write the approximate form of equation 3.13 as

ψ(~x, t+ h) ≈ exp

[
i
h

2

(
∇2 − Φ(~x, t+h)− Φ(~x, t)

)]
ψ(~x, t). (3.15)

4PyUltraLight is publicly available under a BSD licence. The full repository, including
supplementary files such as the code used to generate soliton profiles, is available on GitHub
at https://github.com/auckland-cosmo/PyUltraLight. PyUltraLight makes use of the
pyFFTW pythonic wrapper around the FFTW C-based fast Fourier transform libraries. Both
pyFFTW and FFTW are freely-available and PyUltraLight has been used successfully on
both Mac OS and Linux systems, as well as a shared-memory cluster environment. We welcome
advice and feedback from users.
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Note that the exponential in equation 3.15 omits the time-ordering symbol, and is

only equivalent to its time-ordered counterpart to order h2.

The linear differential operator in equation 3.15 acts naturally in Fourier space,

while the nonlinear potential term is simplest to evaluate in position space. By

splitting the exponential we can evaluate each term in its natural domain. Such a

splitting is valid when the timestep is small, and is represented as

ψ(~x, t+h) ≈ exp

[
−ih

2
Φ(~x, t+h)

]
exp

[
ih

2
∇2

]
exp

[
−ih

2
Φ(~x, t)

]
ψ(~x, t). (3.16)

This splitting can be understood thusly: first, a half timestep is taken in which

only the nonlinear potential operator acts, followed by a full timestep in the linear

term. The potential field is then updated, and a final half timestep in the nonlinear

term is performed. Using the Baker-Campbell-Hausdorff formula to express the

product of exponentials in equation 3.16 as a single exponential and keeping only

terms to order h2 we find:

exp

[
i
h

2

(
∇2 − Φ(~x, t+h)− Φ(~x, t)

)
+
h2

8

[
∇2,Φ(~x, t)

]
− h2

8

[
∇2,Φ(~x, t+h)

]]
.

(3.17)

Making use of the fact that Φ(~x, t + h) ≈ Φ(~x, t) + hΦ̇(~x, t) we see that the

commutators in equation 3.17 cancel at O(h2) and the expression matches 3.15,

with the dominant error term appearing at O(h3).

Evaluation of equation 3.16 within PyUltraLight thus proceeds as follows:

Initially, the nonlinear term acts in position space for one half-timestep. The result

is Fourier transformed, and a full timestep is taken with the differential operator

applied in the Fourier domain. The potential field is then updated in accordance

with equation 3.9. After an inverse Fourier transform a final half timestep is

taken with the updated nonlinear term acting in position space to give the new ψ

field configuration. This procedure is known as the symmetrised split-step Fourier

method, and used widely in fields such as nonlinear fiber optics [171, 172, 173].

The algorithm can be represented schematically as

ψ(~x, t+h) = exp

[
−ih

2
Φ(~x, t+h)

]
F−1 exp

[−ih
2
k2
]
F exp

[
−ih

2
Φ(~x, t)

]
ψ(~x, t),

(3.18)
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where the order of operations runs from right to left, F and F−1 denote the discrete

Fourier transform and its inverse, and k is the wavenumber in the Fourier domain.

The potential field is updated following the inverse Fourier transform in equation

3.18, via

Φ(~x, t+h) = F−1
(
− 1

k2

)
F 4π|ψ(~x, ti)|2, (3.19)

where ψ(~x, ti) is the field configuration at this halfway point in the full timestep.

We explicitly set the k = 0 Fourier mode to zero prior to the final inverse Fourier

transform; as a consequence there is no need to subtract the global average density

from the local value in Equation 3.19, in contrast to Equation 3.3. The final

operation in equation 3.18 only changes the phase of ψ, so we could replace ψ(~x, ti)

with ψ(~x, t+h) in equation 3.19 with no change in meaning. PyUltraLight

makes an additional simplification to the symmetrised split-step Fourier method

by combining the consecutive half-steps in the nonlinear term into a single full

step. Consequently, only the first and last operations involve actual half steps.

Schematically this becomes:

ψ(t+nh) = exp

[
+
ih

2
Φ

]( n∏
exp [−ihΦ] exp

[
ih

2
∇2

])
exp

[
−ih

2
Φ

]
ψ(t), (3.20)

where Φ is updated at each step via equation 3.19. Attention is drawn to the

sign difference between the first and last operators. The positive sign in the last

operator is a consequence of the grouping of the preceding consecutive half steps.

From a computational perspective, the numerical Fourier transforms are likely

to be the rate-limiting step in any pseudospectral code. In PyUltraLight the

discrete Fourier transform (DFT) and its inverse are implemented via pyFFTW, a

pythonic wrapper for the C-based FFTW subroutine library which efficiently imple-

ments both real and complex DFTs [167, 168, 174]. This allows PyUltraLight

to combine the flexibility of a notebook based modelling tool with the efficiency of

a carefully tuned, compiled numerical library. FFTW is fully parallelised and its

support for multithreading is inherited by pyFFTW and accessed within PyUl-

traLight; the number of threads used by the pyfftw.FFTW class is determined

by the Python multiprocessing routines which are used to ascertain the number of

available CPU cores. In addition, PyUltraLight uses the NumExpr package to
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parallelise operations on array objects within the simulation [175].

3.4 Initial Conditions: Soliton Profiles

PyUltraLight specifies the initial dark matter configuration as a superposition

of an arbitrary number of solitonic halos, with arbitrary (user-defined) velocities

and phases. This is necessarily an idealisation, given that realistic dark matter

halos will not map directly to the solitonic solutions, but it provides an excellent

“playground” in which to explore ULDM dynamics, and the initialisation routines

within PyUltraLight can be easily augmented to accommodate a wider range

of scenarios. The initial field configuration is built by loading a NumPy array file

encoding a solitonic solution to the Schrödinger-Poisson system and the correspond-

ing position mass, velocity, and phase parameters each specified by the user within

the accompanying Jupyter notebook.

In practice, only a finite range of halo masses can be supported within a given

simulation – the radius of a solitonic halo is inversely proportional to its mass,

so resolving a light halo interacting with a very massive halo would require an

extremely fine spatial mesh. However, PyUltraLight also allows the user to

specify a fixed, external potential which does not take part in the dynamics. At this

point only a central 1/r potential is supported but this would be easily generalised.

It should be noted that because PyUltraLight enforces periodic boundary

conditions, care must be taken in cases where solitons approach the boundaries of

the simulation grid. If a soliton were to cross the boundary during a simulation

in which a Newtonian central potential is implemented, the forces exerted during

the crossing would be unphysical. For studies of orbital stability this is unlikely

to cause any problems, as in these circumstances material collapses toward the

centre of the simulation grid rather than crossing the boundaries. However, the

user should ensure that solitons are initialised sufficiently far from the boundary

for the purposes of each simulation on a case-by-case basis. In situations where a

significant portion of the total mass is expected to be ejected, such as the merger

of multiple solitons to form a larger halo, care should be taken to ensure that mass

ejected above the escape velocity is not recaptured as it re-enters the grid from the

other side. For studies of this kind, an absorbing sponge at the grid boundaries is
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perhaps more suitable than periodic boundary conditions, though this has not yet

been implemented in PyUltraLight.

The soliton profile used to generate the initial conditions in PyUltraLight is

found by first imposing spherical symmetry in the Schrödinger-Poisson equations

and assuming time independence in the radial density profile [162]:

ψ(~x, t)→ eiβtf(r), Φ(~x, t)→ ϕ(r), (3.21)

where r = |~x|. Introducing ϕ̃(r) := ϕ(r) + β, equations 3.8 and 3.9 reduce to

0 = −1

2
f ′′(r)− 1

r
f ′(r) + ϕ̃(r)f(r) (3.22)

0 = ϕ̃′′(r) +
2

r
ϕ̃′(r)− 4πf(r)2 (3.23)

where primes denote derivatives with respect to r. Note that this system contains

no arbitrary constants, so the underlying profile is effectively universal and is loaded

as a pre-computed array by PyUltraLight, rather than computed from scratch

with each code execution. The soliton profile numpy array file is included with

PyUltraLight, however, an auxiliary program soliton solution.py is also

supplied, from which this array can be generated; it uses a fourth-order Runge-

Kutta algorithm to solve the coupled profile equations. We set f(r)|r=0=1, while

smoothness requires that first derivatives of f(r) and ϕ̃(r) vanish at the origin. We

then use the shooting method to search for solutions of f(r) and ϕ(r) satisfying

the boundary conditions limr→∞ ϕ(r) = 0 and limr→∞ f(r) = 0, varying ϕ̃(r)|r=0

until we obtain a solution of f(r) which approaches zero at the maximal specified

radius, rm. The value of β is then calculated by assuming that ϕ(r) goes as −c/r
at large radii, where c is a constant. Under this assumption, we can write

ϕ̃(rm) = − c

rm
+ β, c = r2mϕ̃

′(rm). (3.24)

We thus obtain the full solution ψ(~x, t) = eiβtf(r). Having initially chosen

f(r)|r=0 = 1, we may then generalise to f(r)|r=0 = α, where α is an arbitrary pos-

itive real number. It is easily verified that if eiβtf(r) is a solution to the spherically
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symmetric Schrödinger-Poisson system, then g(r) is also a solution, where

g(r) = eiαβtαf(
√
α r). (3.25)

A more detailed discussion of the scaling properties of the Schrödinger-Poisson

system is given in Appendix A. We thus have a family of spherically symmetric

soliton solutions to the dimensionless Schrödinger-Poisson system; the dimension-

less soliton mass is proportional to
√
α and the full width at half maximum is

proportional to 1/
√
α. Since the size of the soliton scales inversely with the mass,

the most massive soliton in the solution puts a lower bound on the required spatial

resolution.

The Schrödinger equation is not trivially form invariant under Galilean boosts

but we can enforce Galilean covariance through the addition of a velocity-dependent

phase factor,

ψ(~x, t) = αf
(√

α|~x− ~vt|
)
ei(αβt+~v·~x−

1
2
|~v|2t). (3.26)

To construct the initial field configuration, PyUltraLight, loads the NumPy

array encoding the radial profile f(r) for the f(r)|r=0 = 1 case. Equation 3.26 is

then used to transform the this solution into soliton(s) with user-specified values

position, mass, and velocity specified, via the accompanying Jupyter notebook.

The user may also add an additional constant phase factor if desired.

3.4.1 Choosing the Timestep

The Courant-Friedrichs-Lewy (CFL) condition is an upper bound on the timestep

(as a function of grid-spacing) that must be satisfied by many partial differential

equation solvers based on finite-differencing [176] and is often cited in numerical

analyses of ULDM via the Schrödinger-Poisson system, see e.g. Ref. [146]. However,

the CFL condition expresses a causality constraint, and is generally only strictly

applicable to hyperbolic PDEs, whereas the Schrödinger-Poisson has only a first

order time derivative, even though it is effectively the nonrelativistic limit of the

Klein-Gordon equation. Moreover, because PyUltraLight computes spatial

derivatives via a pseudospectral method, technically it is unconditionally stable

[177]. Our split-step algorithm is second order in the timestep, and its value will
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always be an empirical tradeoff between computational cost and convergence to

the apparent limit in which step is arbitrarily small. Consequently, the user is

encouraged to validate their choice of timestep via case-by-case convergence testing.

The default timestep in PyUltraLight is fixed with reference to the fluid

interpretation of the Schrödinger-Poisson system [117]. The fluid interpretation is

often used to recast the Schrödinger-Poisson system in the form of the Madelung

equations [178] - a hydrodynamical representation of the system. The first step is

to define:

ψ ≡ √ρeiθ, ~v ≡∇θ. (3.27)

and to treat ~v as a fluid velocity. From this perspective, if the phase difference be-

tween two adjacent grid points exceeds π, the fluid will appear to move “backwards”

across the grid. We thus set the default timestep, ∆t, so that fluid travelling at

this maximum velocity traverses one grid space, ∆x, per timestep, or

∆t =
(∆x)2

π
. (3.28)

This is a choice, rather than a strict constraint on ∆t. However, if the “fluid”

approaches velocities where the phase appears to switch direction, the configuration

is approaching the point where the simulation grid is too coarse to fully resolve the

dynamics. Hence, a timestep much smaller than this value may offer little practical

advantage. However, in some cases the breakdown may occur in regions of the

simulation volume that are of little physical interest, and the user is free to choose

a larger timestep via the ’step factor’ parameter in the Jupyter notebook.

Alternatively, Ref. [158] fixes the timestep by ensuring that neither of the

unitary operators in Equation 3.18 lead to a phase change of more than π for a

single grid point over one timestep. However, because the pseudo-spectral algorithm

does not compare the phase of a single gridpoint at different points in time, this

choice of timestep is not a requirement for stability. This method gives the following

constraints:

∆t <

[
2π

Φmax

,
2(∆x)2

π

]
, (3.29)

where the second of these constraints is generally the stricter of the two, and is

equivalent to our default choice of timestep up to a multiplicative factor of O(1).
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Our experience is that specifying the timestep via Equation 3.28 is suitable for

the majority of simulation scenarios, and we explore convergence in more detail in

Section 3.7.

3.5 ULDM Dynamics with PyUltraLight

In this section, we validate PyUltraLight by reproducing results from previous

studies of ULDM dynamics, demonstrating interference effects and effective repulsive

forces arising from the wavelike nature of ULDM. In addition we study the evolution

of the velocity field of a solitonic core orbiting within a Newtonian central potential,

showing that the stable orbital configuration is an irrotational Riemann-S ellipsoid.

Finally, we demonstrate that PyUltraLight delivers sub-percent level energy

conservation for a selection of dynamical scenarios.

3.5.1 Interference Patterns During Soliton Collisions

The outcomes of ULDM soliton collisions depend critically on whether the total

energy of the isolated binary system is positive or negative. With a positive total

energy the solitons pass through each other, emerging largely undisturbed from their

initial configurations and the wavefunctions describing the solitons are superposed

during the collision, yielding distinctive interference patterns.

Following [146], we consider the head-on collision of two solitons with mass ratio

µ = 2 and high relative velocity. While we work in dimensionless code units, it

should be noted that a dimensionful velocity can be restored from the code velocity

by multiplying through by LT−1, the scale parameters defined in Equations 4.7 and

3.5. This simple case of a head-on soliton collision can be treated approximately.

Starting from equation 3.26 we write the total wavefunction of the binary system

in terms of dimensionless quantities along the collision axis as

ψ(x, t) = α1f
(√

α1|x− x1 − v1t|
)
ei(α1βt+v1(x−x1)− 1

2
v21t+δ)

+ α2f
(√

α2|x− x2 − v2t|
)
ei(α2βt+v2(x−x2)− 1

2
v22t), (3.30)

where x1 and x2 are the initial central positions of the solitons, v1 and v2 are the
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Figure 3.1: Comparison of theoretical and numerical density profiles at time of
maximal interference for head-on collision of two solitons with mass ratio µ = 2
and no relative phase difference. The solitons have dimensionless masses 5 and
10, with an initial separation of 4 code units and relative velocity of 20 code units.
The simulation resolution is 2563 in a box of side-length 8.

soliton velocities, δ is a constant relative phase term and α2 = 4α1, parameterising

the density profiles as discussed in Section 3.4. For convenience we set v1 = −v2
and x1 = −x2. We expect that the interference effects will be maximised when

two components of the wavefunction are centred at the same location, such that

x1 + v1t = −x2− v2t = 0. This corresponds to a time to = |x1/v1| = |x2/v2|, where

in this simplified model we do not account for distortions caused by the accelerating

or compactifying effects that the gravitational interaction has on the soliton profiles

as they approach one another. The dimensionless density is then given by

|ψ(x, to)|2 = α2
1

[
f(
√
α1x)2 + 16f(2

√
α1x)2+
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8f(
√
α1x)f(2

√
α1x) cos

(
−3α1β

∣∣∣∣x1v1
∣∣∣∣+ 2v1x+ δ

)]
. (3.31)

Figure 3.1 shows the dimensionless density profile at the time of maximal interfer-

ence for two solitons with mass ratio 2 and phase difference δ = 0. The numerical

result obtained using PyUltraLight closely matches the theoretical prediction

of equation 3.31. Small disparities between the numerical and theoretical profiles

may be attributed to the effect of gravitational contraction not included in the

theoretical prediction of equation 3.31 and to a small offset in the true time of

maximal interference due to the solitons accelerating as they fall together. We do

not expect an exact match, but we have verified that PyUltraLight qualitatively

reproduces the wave interference effects of the ULDM model. With the exception

of [146], few studies of ULDM dynamics have investigated the interference patterns

generated by colliding solitons in this way. In some cases, this is because the

algorithm employed to simulate the dynamics is not capable of reproducing such

effects. An example of this is given in [153], where it is demonstrated that the

coarse-grained nature of the particle-mesh method renders the algorithm incapable

of reproducing detailed interference patterns such as those shown here.

3.5.2 Effective Forces From Destructive Interference

As demonstrated in [162], the wavelike properties of ULDM give rise to effective

forces which can dramatically affect the dynamics of core collisions. These effective

forces arise as a result of interference phenomena, rather than because of any local

interactions the ULDM model might incorporate. Figure 3.2 shows the results of a

head-on collision between two solitons, where in one instance the solitons have no

initial phase difference, and in the other instance a phase difference of π is applied

in the initial conditions. In this simulation, solitons of mass 20 are initialised with

relative velocity 20 and initial separation 1.2 (code units). The solitons are allowed

to collide, and contours of the density profile along the plane of symmetry are

displayed. In one case (top) there is no phase offset between the initial solitons,

while in the second the phases differ by π. In the latter case, the phase shift creates

an effective repulsive force between the two solitons. It can be seen in the second

frame that as the solitons approach one another, the π phase shift results in a
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Figure 3.2: Head-on collisions between solitons of mass 20, initial relative velocity
20, and initial separation 1.2 in code units. Plots show contours of constant density;
time progresses from left to right across each row and is indicated in code units
for each frame. The upper panel shows solutons initially in phase; the effective
repulsive force generated by a π phase shift can be seen in the lower panel.

slowing of the approach accompanied by a deformation of the density profile, acting

so as to avoid contact between the solitons. Dissimilarly, in the case where there is

no phase shift, the solitons readily collide and merge to form a single contiguous

density profile prior to re-separating. Further discussion of this phenomenon and

its possible observational consequences can be found in [162].

3.5.3 Tidal Disruption of Solitons Orbiting a Central Po-

tential

PyUltraLight allows the inclusion of a static potential equivalent to a point-

mass at the centre of the simulation region. There is no backreaction on this mass

as a result of the ULDM dynamics, and its “mirror images” within the periodic

coordinate systems are not accounted for within the overall gravitational potential.

While a potential of this form does not necessarily accurately emulate that which

we might expect from a realistic galaxy or dark matter halo, it provides a starting
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point for a study of the stability of satellite dark matter halos orbiting a much

larger object. In particular, this includes the investigation of lifespans of dwarf

satellite galaxies orbiting much larger objects (including the Milky Way) which are

a key to understanding whether ULDM models can resolve the so-called missing

satellites problem [90].

An extensive study of the tidal disruption of ULDM solitonic cores orbiting a

central potential has recently been undertaken in [179] and we reproduce just one

of their results here. To do this, we again adopt Equation 3.27, namely:

ψ ≡ √ρeiθ, ~v ≡∇θ, (3.32)

where we are working in dimensionless code units. Using these definitions, the

Schrödinger-Poisson system can be recast in terms of hydrodynamical quantities

in the so-called Madelung representation. The Madelung equations resemble the

continuity and Euler equations of classical fluid dynamics, with the addition of a

‘quantum pressure’ term accounting for resistance against gravitational collapse.

The Madelung formalism is discussed in detail in [178, 180, 181, 182]. Because this

hydrodynamical formulation defines the fluid velocity as the gradient of the phase

of the field ψ, problems arise when ψ = 0, where the phase is not well defined.

Because of this issue, the Madelung and Schrödinger representations are not strictly

equivalent unless a quantisation condition is imposed, as discussed in [183]. We do

not consider the subtleties of the Madelung representation here, as it is sufficient

for our purposes to consider the fluid velocity in the region of a solitonic core,

where no field nodes are present.5 For a discussion of the possible remedies to

the ‘nodes problem’, the reader is referred to Chapter 15.3 of [184]. Where the

Madelung representation is well defined, i.e. where the phase is a smoothly varying

function, the velocity field of the Schrödinger-Poisson system is strictly irrotational,

∇× ~v = 0. If a radially symmetric soliton is initialised in a circular orbit around a

Newtonian potential, there will be initial transient behaviour as the spherical profile

becomes elongated along the radial direction of the central potential. Meanwhile,

the velocity field corresponding to the overall orbital motion of the soliton will be

5It should be noted that, restoring dimensionful units, the fluid velocity ~v is related to the
ususal quantum mechanical probability current ~j through |ψ|2~v = ~j = ~/2mi [ψ∗∇ψ − ψ∇ψ∗]
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superposed with the internal velocity field, combining so as to produce a net flow

with vanishing curl.

The family of Riemann-S ellipsoids describe non-axisymmetric uniformly ro-

tating bodies whose internal velocity fields have vanishing curl [185]. Therefore,

it is the characteristic internal velocity field of a Riemann-S ellipsoid which we

expect to arise during our simulation of a soliton orbiting a central mass. It is

found in [179] that an initially spherical solitonic core without self-rotation will

gradually spin up to form a tidally-locked ellipsoid with an irrotational internal

velocity field when orbiting a host mass. We reproduce this result using PyUl-

traLight. Figure 3.3 shows the internal velocity field of a solitonic satellite after

one complete revolution around a host mass. The soliton has become elongated

along the radial line connecting it to the host, indicating that it is tidally locked,

while the velocity field within the tidal radius is visibly irrotational and bears the

qualitative trademarks of the Riemann-S ellipsoid as presented in Figure 2 of [186].

Figure 3.3: Contours of constant density for a solitonic core after one revolution
around a central potential. Contours are superimposed upon the internal velocity
field (with the bulk motion subtracted). This velocity field is qualitatively that of
an irrotational Riemann-S ellipsoid, and the deformation of the density profile of
the soliton along the radial direction (red arrow) is visible. The host:satellite mass
ratio is approximately 55; simulation resolution is 2563.
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Figure 3.4: Left: Evolution of the density profile of a solitonic core at equally spaced
times as it undergoes tidal disruption in a potential centred at the red cross. Right:
Evolution of the components of the total energy of the system; times correspond
to the labeled density profile snapshots. All quantities are in dimensionless code
units.

It should be noted that the wider velocity field is not expected to be accurately

predicted in a simulation of this kind, though the field within the tidal radius is

well-modelled. This is because the initial soliton density profile is defined only

out to a given cutoff radius, beyond which the ψ field value is set identically

to zero. As mentioned previously, the Madelung hydrodynamical formulation of

the Schrödinger-Poisson system is not valid where ψ = 0. Because of this, we

focus primarily on the internal velocity field within the high density region of the

solitonic core. As we have seen, in this region PyUltraLight is able to accurately

reproduce the expected velocity field characteristics.

3.6 Energy Conservation

Physically, we require that the overall energy in the system will be conserved. This

provides a test on the numerical performance of PyUltraLight, and we find that

even at relatively low spatial resolution we see sub-percent level energy conservation

for all the dynamical scenarios considered here. In this section, we express the

energy of the Schrödinger-Poisson system in terms of the variables ψ and Φ and
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Figure 3.5: Evolution of the components of the total energy of a binary soliton
system with each soliton in an elliptical orbit around the common centre of mass.

discuss its decomposition into individual constituents calculated separately within

the code. We then present results for a variety of configurations.

We begin by defining a suitable action which yields the full Schrödinger-Poisson

system through its corresponding Euler-Lagrange equations. We find that variation

of

S =

∫
dt

∫
R3

d3x −
{

1

2
|∇Φ|2 + Φ|ψ|2 +

1

2
|∇ψ|2 +

i

2
(ψψ̇∗ − ψ̇ψ∗)

}
(3.33)

with respect to Φ, ψ∗ and ψ yields equations 3.9, 3.8, and the conjugate of equation

3.8, respectively. The integrand of equation 3.33 is the Lagrangian density, L, from

which we can derive the conserved energy in the usual way:

Etot =

∫
R3

d3x

{
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇∗

ψ̇∗ +
∂L
∂Φ̇

Φ̇− L
}
. (3.34)

Evaluating this expression, we obtain:

Etot =

∫
R3

d3x

{
1

2
|∇Φ|2 + Φ|ψ|2 +

1

2
|∇ψ|2

}
(3.35)
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Figure 3.6: Energy conservation as a function of simulation resolution for a binary
solitons orbiting their common centre of mass. ∆Etotal is the difference between
the current total energy and the initial total energy for the configuration. The
ratio of this difference to the initial integrated energy is plotted on the y axis for
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=

∫
R3

d3x

{
1

2
∇(Φ∇Φ)− 1

2
Φ∇2Φ + Φ|ψ|2 +

1

2
∇(ψ∗∇ψ)− 1

2
ψ∗∇2ψ

}
(3.36)

=

∫
R3

d3x

{
1

2
Φ|ψ|2 − 1

2
ψ∗∇2ψ

}
, (3.37)

where in the last step we have used Stokes’ Theorem as well as the Poisson equation

(3.9) to perform simplifications. Because we are working with the dimensionless

quantities defined in equation 3.7, it is easy to see that this quantity is related

to the physical energy through multiplication by a constant factor of L5T−4G−1.

It should be noted that equation 3.37 is not equivalent to the expectation value

of the Schrödinger Hamiltonian, which is itself not a conserved quantity of the

Schrödinger-Poisson system and is given by

〈Ĥ〉 =

∫
R3

d3x

{
Φ|ψ|2 − 1

2
ψ∗∇2ψ

}
. (3.38)
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Figure 3.7: Energy conservation as a function of simulation resolution for a soliton
undergoing significant tidal disruption in a Newtonian central potential. ∆Etotal is
the difference between the current total energy and the initial total energy for the
configuration. The ratio of this difference to the initial integrated energy is plotted
on the y axis for each resolution.

The two terms in the integral 3.37 are calculated separately within the code. The

first term is the gravitational potential energy of the Schrödinger-Poisson system,

EGP . As discussed in [117], the second term may be decomposed into contributions

which may be considered separately as kinetic and ‘quantum’ energies, EK and

EQ. However, for our purposes it is sufficient to consider only their combined

contribution. When PyUltraLight includes the central potential of a central

point mass we have additional energy contributions. The gravitational potential

energy from self-interactions is calculated separately from the gravitational potential

energy due to the central potential.

Figures 3.4 and 3.5 demonstrate energy conservation for two scenarios. The

first case shows the evolution of the energy of a single soliton undergoing significant

tidal disruption within a Newtonian central potential. For this simulation a soliton

of mass 12 in code units was initialised at a radial distance of 3 code units from

the centre of a Newtonian central potential generated by a central mass of 1000
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code units. As the soliton is disrupted, the kinetic energy increases, while the

gravitational energy due to the central potential decreases, as expected. Meanwhile,

the gravitational potential energy from self-interactions gradually increases toward

zero as the disruption continues. In this case the sum of the individual energy

components is conserved to 1 part in 106 at a resolution of 2563.

Figure 3.5 demonstrates the evolution of the energy of a binary system of solitons

in elliptical orbits around their common centre of mass over three orbital periods.

In dimensionless code units, the soliton masses are 22, the initial separation 2, and

the initial relative velocity was 3.6. At points of closest approach the kinetic energy

increases as the solitons speed up, while the potential energy due to self-interaction

decreases commensurately such that the total energy is conserved. In this scenario

no central potential has been included. As the solitons reach the first point of

closest approach, they become slightly deformed, exciting oscillatory modes which

are manifested in Figure 3.5 as small scale oscillations superposed on the global

behaviour. Figure 3.6 demonstrates the relationship between the total integrated

energy and the grid resolution for the same binary system of solitons used to

generate Figure 3.5. The vertical axis shows the ratio of the deviation in the total

energy to the initial value of the energy, where the deviation is measured as the

difference between the current and initial values. Energy is conserved at sub-percent

level even at low resolutions (963), and increasing grid resolution greatly improves

accuracy.

Figure 3.7 demonstrates the improvement in energy conservation with increasing

grid resolution for a single soliton tidally disrupted in a Newtonian central potential,

with the same set up as used in Figure 3.4. Namely, a single soliton of mass 12 code

units is initialised at a distance of 3 code units from a central mass, M = 1000.

The initial velocity of the soliton is
√
M/r where r is the radial distance of the

soliton from the central mass. The duration of the simulation is 0.5 code units so

that the soliton undergoes significant tidal disruption as demonstrated in Figure

3.4. While we see that energy is conserved at sub-percent level even for 643 grid

resolution, the qualitative behaviour of the mass density distribution in this case

is not correct, so we conclude that this resolution is insufficient for convergence

despite good energy conservation. This highlights the importance of a multifaceted

approach to convergence testing. At 2563, energy is conserved to parts in 10−6.
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3.7 Spatial and Temporal Resolution

We now examine the convergence of the ψ field configuration as a function of spatial

resolution and timestep in a typical simulation. We initialise PyUltraLight with

two diametrically opposed solitons orbiting a large Newtonian central potential,

running until the solitons are tidally disrupted, as shown in Figure 3.8.

Figure 3.8: The configuration used to test the sensitivity of solutions to the spatial
and temporal resolution. Two solitons of mass m = 20 are initialised at radial
distances r = 2 from a central mass with M = 1000 moving in opposite directions
with initial speeds |v| =

√
M/r, corresponding to clockwise orbits around the

central mass. The box size is 10, while the total duration is 0.25 (all quantities in
code units). Time runs from left to right.

To examine the sensitivity of the ψ field configuration to the spatial resolution,

we first run at 2563 with the default timestep. We then re-run at resolutions from

643 to 3203 with the timestep fixed to the 2563 value and downsample the final

outputs to 643. We sort the resulting values by the density at the corresponding

spatial location, and plot differences in the phase and the magnitude of ψ relative

to the values of the 3203 run as shown in Figure 3.9 (bottom). The convergence is

poor at 643, but improves with resolution, to the point that there is little difference

between the 2563 and 3203 cases.

To examine the sensitivity of the the ψ field configuration to the timestep, we

take the same default simulation at 2563, and then compare this to runs with

timesteps 0.1, 10, and 50 times the default and down-sample the final output arrays

to 643. We sort sort the array values in order of the ψ field magnitude in the run

with the smallest timestep and in Figure 3.10 we show the difference in the phase

and magnitude of ψ as a function of the timestep. The difference between the
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results with the default timestep and a value 10 times smaller are negligible; and

there is reasonable agreement between the default case and those with the timestep

boosted by a factor of 10. However, when the timestep is increased by a factor of

50 the accuracy of both the phase and magnitude data are significantly reduced.
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Figure 3.9: Top: Deviation of the phase of ψ compared to the highest resolution
result (3203). Field values are arranged in order of increasing magnitude from left
to right. A slight improvement in phase convergence can be seen for higher density
regions to the right. Bottom: Improving convergence of |ψ| with increased spatial
resolution for the simulation shown in Figure 3.8

Figure 3.11 shows profiles of the density through the simulation volume, as a

function of spatial resolution and timestep. Each plot represents the density profile

down the axis of symmetry of the initial configuration (vertical axis in Figure 3.8)
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Figure 3.10: Top: Phase deviation of ψ, relative to solution with timestep 0.1
times default, sorted by the density. There is excellent agreement with the default
timestep, and reasonable convergence at steps up to 10 times the default, with
better accuracy in high density regions. Bottom: Difference in magnitude of
ψ, relative to the solution with timestep 0.1 times default. Again we see good
convergence with the default timestep, and tolerable agreement in high density
regions when the step is a factor of 10 or less than default.

after approximately half a revolution around the central potential, or t=0.28 code

units – slightly after the final frame in Figure 3.8 - when the solitons have become

distorted due to tidal forces, but are not yet completely disrupted. We see that as

the timestep is varied from 0.1 to 50 times the default value, the results with the

default and the shorter timestep are virtually indistinguishable, and results are still
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Figure 3.11: Top: Effect of decreasing the spatial resolution on the density profile
at half a revolution. Bottom: Effect of increasing the timestep on the density
profile at half a revolution.

reasonably accurate at 10 times the default timestep, with small deviations at high

densities. We also see that as the spatial resolution is decreased from 3203 to 643,

the lowest resolution performs poorly, but there is good convergence at resolutions

of 1923 and above.
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3.8 Discussion and Outlook

PyUltraLight is an accurate, flexible and easy to use tool for studying the

dynamics of ultra-light dark matter governed by the Schrödinger-Poisson system of

equations. The code makes use of a pseudospectral symmetrised split-step Fourier

methodology, in which all spatial derivatives are treated via explicit multiplication in

the Fourier domain, thereby avoiding difficulties associated with finite-differencing

methods.

Energy conservation within PyUltraLight is excellent, at sub-percent level

for simulations run at 1283, with even better performance as resolution is increased.

The code captures complex phenomena resulting from the wave-like properties of

ultra-light dark matter, including the interference patterns arising during high-

velocity collisions of solitonic cores, and effective forces observed in cases where

the colliding cores are out of phase. These phenomena can be clearly observed at

relatively low spatial resolution, avoiding the need for high-performance computing

infrastructure to study the fundamental behaviour of ULDM systems in simple

configurations. This makes PyUltraLight a useful tool for investigating the

dynamics of ULDM systems.

PyUltraLight is Python-based, and as such is particularly simple to un-

derstand and use. The accompanying Jupyter notebook allows for the efficient

adjustment of simulation parameters, and offers a useful browser interface for quick

visualisation of simulation results. While Python-based, the code makes use of

low-level language resources, namely the FFTW libraries through the use of the

Pythonic pyFFTW wrapper and will operate at ∼ 80% efficiency on a 16 core

desktop workstation, suggesting that it is computationally efficient.

The current implementation of PyUltraLight is already a useful tool for

simulating dynamical ULDM systems and exploring their dynamics. However, there

is much scope for improvement. In particular, future releases may incorporate a

variable timestep and more sophisticated physics, including explicit self-interactions

in the axion sector or additional matter components. Augmented versions of the

code may also include higher-order generalisations of the pseudo-spectral method,

such as those used in [187].

Since its release, the utility of PyUltraLight has been confirmed as the code
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has been used and adapted by a number of research groups. Of particular interest is

a variation of PyUltraLight implemented in the Chapel programming language

[188]. Named chplUltra, development of this code is described in Ref. [169].

This implementation is easily scalable, with successful testing completed in both

simple laptop-only simulations as well as large simulations on high-performance

Chapel infrastructure utilising hundreds of processors. chplUltra is currently

being used to study mergers within binary ULDM systems [189] (in preparation).

A further interesting adaptation of PyUltralight is presented in Ref. [190].

In this case, the code is modified in order to simulate the interaction of ULDM

solitons with a black hole. This is of particular interest given that many observed

galaxies tend to possess a supermassive black hole at their centre, at which point

a ULDM halo is typically thought to be solitonic in nature. Interestingly, this

adaptation of PyUltraLight was used to demonstrate that black holes in the

centres of solitons exhibit stochastic motion driven by excitations to the ULDM field

sourced by the ULDM-black hole interactions. Evidence of novel phenomena such

as this motivate further studies of this kind, perhaps utilising more sophisticated

modifications of PyUltraLight. Indeed, interest in this topic has already begun

to build; see, for example, [191].

Recently, yet another adaptation of PyUltraLight has been developed, named

PySiUltraLight [192]. In this case a quartic self-interaction term is included in

order to explore a wider class of ULDM models.

We also note that PyUltraLight has proven useful for modeling physics

outside of ULDM. In particular, a generalisation of PyUltraLight has been

used to model the gravitational fragmentation of the inflaton condensate [193].

This study of nonlinear dynamics in the very early universe illustrates the broad

applicability of the PyUltraLight tool.

It is anticipated that additional variations of PyUltraLight will continue to

be developed, with the features of each variation tailored to a particular problem

in ULDM physics. While PyUltraLight is particularly useful for simulations of

galactic scale physics, it is not well-adapted to large scale cosmological simulations

in an expanding background. This is due to the fixed resolution of the compu-

tational grid, which corresponds to decreasing spatial resolution as the physical

size of the simulation region increases with time. In Chapter 5, I will introduce
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a recently developed ULDM simulator which employs adaptive mesh refinement

(AMR) to overcome this obstacle. Tools which make use of AMR are bulky and

necessarily more computationally expensive, so while they have the advantage of

variable resolution, there remains a demand for simple, standalone tools such as

PyUltraLight for addressing a variety of problems in ULDM physics. Indeed,

we are currently aware of a variety of ongoing projects in which PyUltrLight is

being employed.
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Chapter 4

The Core-Cusp Problem

Revisited: ULDM vs. CDM

This chapter is an adaptation of

Emily Kendall and Richard Easther
The core-cusp problem revisited: ULDM vs. CDM

Publ. Astron. Soc. Austral. 37 (2020) [10]
Copyright Astronomical Society of Australia 2020; published by Cambridge University

Press

4.1 Introduction

As discussed in Chapter 1, the CDM dark matter model successfully accounts for

the large scale structure of the universe [194] and the spectrum of anisotropies in the

microwave background [195, 196, 197, 198, 199, 18, 200]. Nevertheless, the so-called

“small-scale crisis” remains a challenge [90]. A key issue is the apparent tension

between the central density profiles of dark matter halos in simulations containing

only gravitationally interacting CDM, and those inferred from observational data.

Simulations tend to produce ‘cuspy’ central density profiles [92], which grow as

1/r at small radii, but observational data appears to favour flattened central cores

[201]. The tension between the two is widely known as the “core-cusp problem”

[202, 203, 96].
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The seriousness of the core-cusp problem is the subject of ongoing debate, see,

for example, Ref. [204]. Nevertheless, the wider category of “small-scale” problems

in standard CDM, along with tighter constraints from direct-detection experiments

[205], motivate the study of alternative dark matter models such as ULDM, which

may naturally ameliorate tensions on small scales due to macroscopic quantum

phenomena.

As reviewed in Ref. [117], current constraints prefer a ULDM particle mass of

O(∼ 10−22eV), corresponding to a kiloparsec-scale de Broglie wavelength. ULDM

thus exhibits novel wave-like behaviour on astrophysically interesting scales. ULDM

simulations suggest that realistic astrophysical halos have an inner core consisting

of a kiloparsec-scale Bose-Einstein condensate, surrounded by a virialised outer

halo [146, 128]. The outer region resembles a standard CDM halo, which is

well approximated by the Navarro–Frenk–White (NFW) profile characteristic of

collisionless CDM, and most commonly associated with WIMP dark matter [92].

Because the (solitonic) profiles of the inner condensates are smooth, it has been

suggested that ULDM can resolve the core-cusp problem without the need to

invoke baryonic astrophysics. However, solitonic density profiles obey an inverse

mass-radius scaling law. Therefore, it has been suggested that the density of the

ULDM halo might, in fact, exceed that of an analogous NFW halo over a finite

range of small radii in larger galaxies. In particular, Ref [133] concludes that

CDM-only NFW profiles may outperform ULDM profiles for galaxies with halo

masses Mh & 1011M�.1

To further explore the possible worsening of the core-cusp problem in ULDM,

we examine the effect of scatter in the core-halo mass scaling relation. Starting

from the semi-analytic density profile of Ref. [133], we look at the scatter in the

parameters implied by Ref. [132]. We show that the resulting statistical variability

may ease concerns that the core-cusp problem is exacerbated for ULDM relative to

CDM for “large dwarf” galaxies.

Our analysis also highlights a number of caveats that apply to all such discussions.

First, the incoherent outer regions of ULDM halos are subject to strong fluctuations,

both temporally and spatially. These are not captured by semi-analytic halo density

1Ref [133] refers to these galaxies as “large dwarfs”, though we note that the upper limit on
this category is around 1012M�, approaching estimates of the Milky Way mass [206].
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profiles and we argue that these fluctuations may accentuate the intrinsic scatter in

halo parameters. Moreover, baryonic feedback is known to be significant for dwarf

galaxies [97, 204] and neither the NFW or ULDM profiles incorporate this effect.

Consequently, we caution against attempting to discriminate between ULDM and

CDM models based on DM-only simplified theoretical profiles.

Observationally, we find that neither semi-analytic ULDM halos (for ULDM

particle mass 0.8− 2.5× 10−22 eV) nor NFW halos provide a particularly convinc-

ing fit to rotation curves of large dwarf galaxies in the SPARC database [113].

Moreover, many rotation curves are extracted from a few data points with signifi-

cant uncertainties and which only span a small range of radial distances, further

complicating attempts to draw robust conclusions. These issues are exacerbated

by the relatively large number of free parameters in the theoretical models. For

instance, a ULDM mass parameter of 10−23 eV seemingly ameliorates the core-cusp

problem in galaxies exhibiting a steep decrease in rotation velocity at small radii,

but such a small mass is in tension with other constraints. Consequently, the

primary conclusion to be drawn from this type of parameter-fitting exercise seems

to be that analyses of the core-cusp problem (and potentially other “small scale”

anomalies) based on simplified semi-analytic DM-only models cannot meaningfully

test these scenarios, especially when observational data is limited and detailed

numerical simulations with baryonic feedback are lacking.

The structure of this chapter is as follows. In Section 4.2, we review the

construction of semi-analytic density profiles for both the ULDM and CDM models

and briefly discuss aspects of realistic ULDM halos which are not captured by the

semi-analytic model. In Section 4.3 we compare the semi-analytic density profiles

for ULDM and CDM halos in the dwarf galaxy mass range 1011 − 1012 M�, taking

into account statistical variation in both the NFW concentration parameter and the

ULDM core-halo mass relation. We then compare the radial velocity profiles inferred

from these density profiles with astrophysical data from the SPARC database [113].

We conclude in Section 4.5.

65



4.2 Semi-Analytic Halos

We begin by looking at the semi-analytic parametrisations of ULDM and CDM

halos. The well known NFW profile of CDM [92, 207] is given by

ρNFW(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 . (4.1)

At small radii the profile is proportional to 1/r, while at large radii it goes as

1/r3. The parameters ρ0 and Rs vary from halo to halo; ρ0 can be interpreted as a

characteristic density, while Rs is the scale radius and determines the distance from

the centre at which the transition between the ‘small r’ and ‘large r’ limits occurs.

The NFW halo is assumed to be radially symmetric, and requires truncation

at a finite radius in order to prevent the integrated mass diverging as r → ∞.

The truncation is typically set by the virial radius, which is itself determined

approximately via the spherical top-hat collapse model describing the evolution of

a uniform spherical overdensity in a smooth expanding background [140, 208, 209].

Gravitational collapse of the overdensity halts when virial equilibrium is reached.

In this scenario the corresponding virial radius is the radius at which the mean

internal density is ∆cρcrit(t). Here ρcrit(t) is the critical density of the universe at

time t. The factor ∆c is of order 102 and while different conventions exist, we make

the common choice ∆c = 200 [210] in what follows.

Once the virial radius is specified as the outer limit of the halo, Equation 4.1

completely determines the density profile for given ρ0 and Rs. For any given virial

mass, there is a range of corresponding NFW density profiles, with the distributions

of ρ0 and Rs emerging from the mass-concentration-redshift relation seen in N-body

simulations and observations [211, 212].

Whereas CDM halos can be described by NFW distributions, a different ap-

proach must be taken in the case of ULDM. ULDM dynamics is governed by the

Schrödinger-Poisson system of coupled differential equations. In a static background,

they take the dimensionless form

iψ̇ = −1

2
∇2ψ + Φψ, (4.2)
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∇2Φ = 4π|ψ|2, (4.3)

where ψ is the ULDM wavefunction, Φ is the Newtonian potential, and the density

ρ ∝ |ψ|2. The solitonic ground state profile cannot be written down analytically,

but given a numerically computed spherically symmetric profile ψ for ψ(0) = 1,

the full family of solutions is then given by

ψ′(x) = γψ(
√
γx), (4.4)

where γ is a scaling parameter and the dimensionless mass of the soliton is pro-

portional to
√
γ, while the dimensionless radius is proportional to 1/

√
γ. The

dimensionless density |ψ|2 and dimensionless radius x can be transformed into

dimensionful quantities by

ρ =ML−3|ψ|2, (4.5)

r = Lx, (4.6)

where

L =

(
8π~2

3m2H2
0Ωm0

) 1
4

≈ 121

(
10−23 eV

m

) 1
2

kpc, (4.7)

and

M =
1

G

(
8π

3H2
0Ωm0

)− 1
4
(
~
m

) 3
2

≈ 7× 107

(
10−23 eV

m

) 3
2

M� . (4.8)

Ref. [133] gives a piecewise parameterization of the generic ULDM profile

ρ(r) =

ρsol(r), 0 ≤ r ≤ rα

ρNFW(r), rα ≤ r ≤ rvir,
(4.9)

where ρsol(r) is the appropriately scaled density profile of the ground state soliton

solution. The contribution from the solitonic core and the overall virial mass is

predicted to obey a scaling relationship [132, 135] which sets the central density,
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ρc, of a ULDM halo with virial mass, Mvir. This yields an expression relating the

core size to the velocity dispersion, and finally to the halo virial mass.2

Figure 4.1: Illustration of the scale of the fluctuations present in the incoherent
outer halo for a merger of 8 randomly located solitons. The contour plot represents
the (log10 scaled) local density across a slice through the centre of the final halo.
In this plot, distance is not log-scaled, and we see that the spatial size of the
fluctuations is of the same order of magnitude as the solitonic core itself.

This core-halo mass relation was introduced in Chapter 2 and can be understood

simply by matching the virial velocities of the core and the wider halo (see Appendix

B for details). At z = 0, we may recast Equations 2.68 and 2.70 from Chapter 2 to

2The authors of [132] suggest the following general expression:

Mc = α (|E|/M)
1/2

, (4.10)

where the core mass Mc is determined by the total energy, E, and the total mass of the halo, M
where α is a constant of order unity. They then explain that the right hand side of the equation
represents the halo velocity dispersion, while the left hand side represents the inverse core size
due to soliton scaling laws. By invoking the virial condition of the spherical collapse model, the
authors then construct the redshift dependent relationship between the solitonic core mass and
the halo virial mass for a ULDM halo.
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obtain:

ρc = 2.9× 106 M� kpc−3
(

Mvir

109M�

)4/3

m22
2, (4.11)

and

rc = 1.6 kpc

(
Mvir

109M�

)−1/3
m22

−1, (4.12)

where rc is the radius at which the density is half of the central value, and m22 is

given by m22 ≡ m/10−22 eV where m is the ULDM particle mass.

While the piecewise semi-analytic ULDM profile is a useful tool, one should be

mindful of its limitations. For example, while a number of studies have attempted

to establish ‘universal’ properties of ULDM halos, many of these analyses generated

ULDM halos through the mergers of smaller compact objects [146, 158]. This

method of halo assembly is not representative of a realistic structure formation

process, however it has the advantage of avoiding the computational difficulty of

undertaking large-scale ULDM cosmological simulations. For this reason there is

currently limited information from which to draw robust conclusions about the

properties of astrophysical ULDM halos. In particular, universal application of

the core-halo mass relation cannot be fully justified until more work is done to

understand the characteristic timescales associated with the formation of quantum

pressure-supported cores in scenarios including condensation from a fluctuating

background, gravitational collapse in an expanding background, and mergers of

objects with and without stable central cores. Moreover, it is difficult to accurately

predict the effect that baryonic feedback will have on the formation of solitonic

cores in halos of different masses, which could be significant at small radii in the

present context.

Halo substructure is likewise missing from the semi-analytic model presented

above. In simulations of soliton mergers the resulting halos have turbulent outer

regions, with fluctuations on scales comparable to the core size, as illustrated

in Figure 4.1. In addition to the fluctuations inherent in a large ULDM halo,

smaller halos are likely to orbit or interact with larger halos. This substructure

is not captured by the semi-analytic model described above, and predictions for

tracer velocity profiles may thus not match those of realistic astrophysical objects.

Furthermore, temporal fluctuations in the core density are also missing from the
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semi-analytic model. Realistic halo cores are not exact soliton solutions of the

Schrödinger-Poisson equation, they interact non-trivially with the fluctuating NFW-

like outer halo, and their central densities can vary with time by as much as a

factor of two [128].

Taken together, these limitations suggest that the core-halo mass relation of

the semi-analytic model should not be interpreted as an inviolable rule, but as

a statement about the averaged characteristics of a statistical distribution. To

estimate the variance corresponding to this distribution, we can consider a range

of possible central densities for a given virial mass (somewhat analogous to the

scatter in NFW concentration parameters [207]). The results of Ref. [132] indicate

that a scatter in the core mass Mc of up to ±50% is possible for a given virial

mass. Unfortunately, the small sample size and limited halo mass range (Mvir ≈
108−1011 M�) found in [132] preclude a detailed analysis of the statistical properties

of realistic astrophysical halos, but future simulations (especially those including

baryonic feedback) should lead to improved predictions for this distribution.

To partially account for statistical variance in halo properties, one can allow for

variation in the radius at which the solitonic profile of the ULDM halo transitions

into an NFW profile. This is acknowledged in Ref [133] and is captured by the

parameter α: the transition radius, rα, is given by rα = αrc, with 3 ≤ α ≤ 4.

For a given theoretical halo, an adjustment to the transition radius should be

accompanied by changes in the parameters of the outer NFW halo, so as to

maintain the core-halo mass ratio.

Thus, by taking the central soliton density and transition radius as variable

parameters, we can create a range of plausible ULDM halo profiles for a given halo

by using the virial mass to predict ρc, and assuming variation of ±50% around this

central value. Given specific values for the central density and transition parameter

α, the solitonic piece of the ULDM profile is then completely specified, and its

mass can be calculated. The remainder of the virial mass must be accounted for

by the NFW tail of the profile. By matching the densities of the NFW tail to the

inner soliton at the transition radius, the values of Rs and ρ0 for the NFW tail are

obtained.
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4.3 ULDM and CDM Halos and Astrophysical

Data

We now compare the radial profiles of ULDM halos to NFW halos using the

semi-analytic profiles described above, focusing on masses in the range 1011 and

1012 M�, which may show an apparent worsening of the core-cusp problem [133].

Figure 4.2 compares such halos; the shaded blue region represents the ULDM

halos for which the core-halo mass relation has a scatter Mc = Mcp±50% range,

where Mcp is the theoretical prediction for the core mass. Note that because higher

central densities correspond to narrower soliton profiles, the shaded region possesses

‘crossover points’ near the transition from the solitonic to NFW profile, appearing

somewhat skewed from the median line. Were we to vary more parameters in the

model (such as transition radius and axion mass), we would see a broadening of the

shaded region, such that the median line would be fully encompassed by the shaded

region. Because we are here focusing primarily on the core mass (and therefore

central density), we illustrate only the changes in density profile attributable to

this, hence the restricted range of profiles shown as the shaded blue region.

The Schrödinger-Poisson soliton scaling relations show that the Mc = Mcp±50%

mass range corresponds to a range of γp/4 ≤ γ ≤ 9γp/4, where γp is the theoretical

prediction of the square root of the dimensionless central density. Consequently,

there is a large variation in the central density and thus widely varying predictions

for the ULDM profiles. We fix α = 3.5 (in the middle of the predicted range) which

does not affect the central density as the core lies well within the solitonic region.

Changing the value of α will, however, affect the predicted velocity profiles for

each halo. We do not attempt to fit this parameter to data in this Section; the

previously discussed limitations of the semi-analytic models employed here suggest

that this would be unlikely to be a meaningful exercise. The blue ULDM profiles

are compared to the red shaded regions of Figure 4.2, showing the 2σ variation

about the theoretical prediction for the concentration parameter of the NFW halo

with the same virial mass [207].

Following Ref [133], we plot to a minimum radius of r/rvir = 10−4 and for the

same choices of m22. For any Mvir, the NFW halo density will inevitably exceed

that of the ULDM halo at very small radii, though the threshold for this transition

71



Figure 4.2: Density profiles as a function of radius (normalised to the virial radius)
for ULDM and NFW halos of masses 1011 M� (top) and 1012 M� (bottom). The
left panel represents the results for m22 = 0.8, while the right panel corresponds to
m22 = 2.5. The transition radius is fixed at rα = 3.5 ∗ rc. The blue shaded region
represents the ULDM profile with Mc = Mcp±50% Mcp, while the solid blue line
represents the ULDM profile when the theoretical core-halo mass relation is taken
to be exact. The red shaded region represents the range of NFW profiles for a halo
of the same virial mass with a 2σ variation around the median (solid red line).

may be arbitrarily small, and not observationally relevant. However, we note that

the apparent worsening of the core-cusp discrepancy does depend on the choice of

inner radial cutoff.

From Figure 4.2 we see that for halo masses of 1011 M� there is a wide range of

Mc for which the ULDM profile is ‘less cuspy’ than its NFW counterpart. For a halo

mass of 1012 M� and a ULDM particle mass m22 = 0.8 the range of plausible ULDM

profiles likewise includes those which are ‘less cuspy’ than the corresponding NFW

profile. At higher particle mass (m22 = 2.5) for 1012 M� halos, the NFW profiles
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tend to be less peaked than corresponding ULDM profiles at radial distances in

the range 10−4 ≤ r/rvir ≤ 1.

To assess the suitability of these semi-analytic profiles, we compare to obser-

vations drawn from the SPARC database. Because observations yield the (line of

sight) velocity distributions of tracer stars as a function of galactocentric radius

rather than the halo density itself, we must first transform our theoretical density

profiles into velocity profiles. In so doing, we acknowledge that the effects of

non-circular motion and kinematic irregularities constitute a non-trivial source of

random error in observed velocities, which should be kept in mind especially when

working with limited data sets.

Figure 4.3: Velocity distributions for galaxies with maximum velocities in the range
125 ≤ v < 175 kms−1 in the SPARC database. Data at innermost radii is limited
for these galaxies, making it difficult to determine the overall characteristics of
the profiles. The SPARC data is plotted alongside theoretical NFW (shaded blue)
and ULDM (shaded red) profiles, assuming a virial mass of 1012M�, m22 = 2.5,
and ±50% scatter in the ULDM core-halo mass relation and ±2σ scatter in NFW
concentration. Galaxies in the legend are ordered from highest maximum velocity
(top) to lowest (bottom).

73



We convert density profiles to velocity distributions [213] via

V (r)2 =
4πG

r

∫ r

0

ρ(r′)r′2dr′, (4.13)

where

V 2 = V 2
disk + V 2

bulge + V 2
gas + V 2

halo. (4.14)

The SPARC database contains photometric data for 175 galaxies and rotation

curves from HI/Hα studies. The disk and bulge velocities in the SPARC database

are given for Υ = 1 M� /L� at 3.6µm. However, the greatest source of uncertainty

in mass modelling is the assumed stellar mass-to-light ratio, Υ? [113]. As in [133],

we assume a constant value of Υ? = 0.2 M� /L� at 3.6µm, likewise noting that

this constitutes a non-trivial source of uncertainty. Moreover, there is significant

uncertainty in the SPARC data itself. Error bars are omitted in the following

graphs for ease of viewing, however, they are discussed in Section 4.6.

The characteristics of the velocity profiles in the SPARC database vary widely

from galaxy to galaxy; however we qualitatively identify two subsets of galaxies;

those with maximum tracer velocities 75 ≤ v < 125 kms−1, and those for which

125 ≤ v < 175 kms−1. The former group tends to exhibit a strong steepening in the

radial velocity profile toward the inner halo, while the profiles for the latter group

are comparatively flat3. We assume that higher asymptotic velocities correspond to

a larger halo mass, and consider halo masses in the range 1011− 1012 M�, expecting

that masses at the top end of the range will give a better match to galaxies with

higher asymptotic velocities.

In Figure 4.3, we see that galaxies with asymptotic velocities at the higher end

of the range do not always exhibit a pronounced steepening of the velocity profile

at small radii. Indeed in some cases there is simply no data at small radii. From

this figure we see that while a halo mass of 1012M� with m22 = 2.5 provides a

reasonable fit to the data at radii > 10kpc, it is difficult to judge the fit at small

radii, where the ULDM and NFW profiles differ most strongly, due to a lack of data.

Furthermore, while the data at higher radii seems to be relatively clustered, there

are significant deviations within the limited data that exists at small radii. For

3We exclude data for which the velocities calculated according to Equation 4.14 are inconsistent
- this can occur due to the uncertainty in the assumption for Υ?.
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example, the curves for NGC1090 and NGC6946 are widely disparate at small radii,

but seem to converge at larger radii. Attempting to fit such data to a single set of

model parameters would be of limited utility without a much more comprehensive

data set from which statistical outliers could be properly identified. Furthermore,

we note that there are substantial changes in theoretical ULDM velocity profiles

under variation in the ULDM particle mass. The scale of these changes is exhibited

in 4.4. As such, we remark that analyses of the sort presented here would benefit

greatly from tighter constraints on the ULDM particle mass.

By contrast, for galaxies with smaller maximum velocities (75 ≤ v < 125 kms−1),

there is more data at smaller radii. For such galaxies we see the steepening rotation

curves characteristic of cored density profiles, as shown in Figure 4.4. In this case,

choosing parameters such that the theoretical profiles overlap with the data at

small radii is easy (in this case m22 = 0.1, Mvir5× 1011M�), however it is not clear

whether the behaviour of this profile would fit data at larger radii were it available.

Furthermore, while the choice m22 = 0.1 provides a reasonable fit to the data in

this case, a ULDM particle mass m22 = 0.1 is in tension with constraints from

the Lyman-α forest, as well as high-redshift UV luminosity function comparisons4

[214, 215, 216, 217, 218]. It must be acknowledged, however, that baryonic feedback

is expected to have the greatest impact in the innermost regions of realistic halos.

As such, agreement between our semi-analytic DM-only model and observational

data at small radii should be interpreted cautiously, especially since this is also the

region where assumptions regarding the stellar mass to light ratio have the greatest

significance.

4.4 Impact of ULDM Particle Mass on Halo Ve-

locity Profiles

Figure 4.5 demonstrates the scale of the changes to the velocity profiles of theoretical

ULDM halos under changes in the ULDM particle mass. In order to perform a

meaningful parameter fitting exercise, observational data would be required to span

the wide range of radii illustrated here. In this way, the regions of the rotation

40.8 < m22 < 2.5 is preferred by current constraints, as mentioned in [133]
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Figure 4.4: Velocity distributions for galaxies with maximum velocities in the range
75 ≤ v < 125 kms−1 in the SPARC database. Data at outer radii is limited for
these galaxies, making it difficult to determine the overall characteristics of the
profiles. The SPARC data is plotted along with theoretical NFW (shaded blue)
and ULDM (shaded red) profiles, assuming a virial mass of 5× 1011M�, m22 = 0.1,
and ±50% scatter in the ULDM core-halo mass relation and ±2σ scatter in NFW
concentration. Galaxies in the legend are ordered from highest maximum velocity
(top left) to lowest (bottom right).

curves most sensitive to the assumption for the ULDM particle mass could be

tested simultaneously. Presently available data, when binned according to e.g.

maximum velocity, is likely to yield disparate preferences for the ULDM particle

mass, as illustrated in Figures 4.3 and 4.4. Further work to constrain the plausible

range of the particle mass will make comparisons of the ULDM and CDM models

with astrophysical data more effective.

4.5 Conclusions

The ULDM model has gained attention in part because it may offer a solution to

the CDM core-cusp problem. However, in some cases ULDM profiles can actually

have higher densities than their NFW counterparts at observationally relevant
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Figure 4.5: Plot demonstrating the effect of changing the ULDM particle mass
assumption on the velocity profiles for halos of mass 1012M�.

radii in the interior of halos with mass M & 1012M�, where the central density is

determined by the theoretical core-halo mass relation. However, apparent statistical

spread in the ULDM core-halo mass relation [132] leads to a sizeable range of

plausible central densities for a halo of any given mass. Furthermore, analyses

of oscillations of the cores of ULDM halos on timescales much smaller than the

relaxation time have demonstrated significant fluctuations in central density [128].

This suggests that theoretical core-halo mass relations should not be interpreted

too literally for any individual ULDM halo, and this should be taken into account

when performing model-selection analyses. The limited available simulation data

means that the exact features of the distribution of halo properties in ULDM are

poorly characterised. Nevertheless, it remains apparent that core masses at the

lower end of the plausible range could mitigate the apparent worsening of the

core-cusp discrepancy for ULDM halos.

When the spread in the theoretical core-halo relation is accounted for, com-

parisons of theoretical ULDM and NFW profiles to the SPARC database yield

inconclusive results as far as interior regions of the halos are concerned. Parameters
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can be easily chosen to provide a superficial fit to given subsets of data. However,

the available data often do not span a large enough range of radial values to assess

the relative merits of the UDLM and NFW profiles over the whole profile. In

particular, rotation curves in the SPARC database that exhibit a strong steepening

at small radii often lack data at large radii. Conversely, rotation curves that include

data at large radii often lack measurements at small radii. However, from our

restricted analysis, it appears that neither the theoretical ULDM nor CDM model

can reliably reproduce the data across a broad range. Wide deviations at small

galactocentric radii cannot be accounted for by random measurement errors, and

suggest that sophisticated modelling of baryonic physics will be necessary before

any conclusions can be reasonably drawn. The lack of baryonic physics in both the

semi-analytic CDM and ULDM models is significant, as are other limitations due

to poorly characterised statistics and simplistic assumptions about halo modelling.

In principle, one could perform a Bayesian Information Criterion (BIC) analysis

to determine which of the ULDM or NFW models is more strongly favoured by

the data [219]. The model with the lowest BIC, defined as

BIC = k ln N− 2 lnL, (4.15)

is preferred. Here L, N, and k are the maximised likelihood function, the sample

size, and the number of model parameters, respectively. The utility of BIC or other

model selection tools, however, is hampered by the lack of comprehensive data,

the high number of free parameters (the stellar mass to light ratio in the SPARC

data, virial mass assumptions of the galactic halos, ULDM particle mass, NFW

concentration parameter, UDLM soliton to NFW transition radius and variation

in the ULDM core-halo mass relation), and the omission of baryonic feedback in

ULDM simulations. Indeed, BIC analyses are known to be compromised when the

sample size of the data is not sufficiently large in comparison to the number of free

parameters in the model. Because of this limitation, and large and unquantified

systematic biases in both the observational data and theoretical predictions, such

analyses are premature at this point. Previous studies such as Ref. [220] of the

core-halo mass relation and the fitting of semi-analytical profiles to galaxy data

also emphasise the necessarily preliminary and tentative nature of all analyses of
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ULDM-derived rotation curves.

To summarise, the parameter space describing “typical” ULDM halos is larger

than simple semi-analytical models suggest. It is necessary to constrain this

parameter space in order to make robust model selection possible. Tightening the

constraints on the plausible ULDM particle mass [221, 222, 223] and obtaining

additional spectroscopic data with improved uncertainties covering a greater halo

mass range and radius would be of tremendous benefit in this regard. Such

improved data can be expected from future surveys [224]. In addition, better

ULDM cosmological structure formation simulations are needed to improve the

understanding of ULDM halo evolution [225, 226, 152] and these should also

incorporate baryonic feedback. Thus, the key conclusion to be drawn from this work

is that more information from simulations and astrophysical observations is needed,

as is more sophisticated incorporation of baryonic effects within semi-analytic

models of both ULDM and CDM, before the relative successes of each model can be

fairly compared. Indeed, recent work identifies a sizeable dispersion in the core-halo

mass relation for simulated ULDM halos, and finds that this dispersion increases

with halo mass [227]. The authors emphasise that observational constraints on the

ULDM particle mass must take into account an additional uncertainty of the order

of 50% on the core-halo mass relation for halos exceeding 109M�. Furthermore,

recent observational studies again conclude that ‘cored’ central density profiles

are preferred, but emphasise the need to further study dissipative processes in the

gas-rich, early phases of galaxy evolution in order to fully understand the inner

density profiles of galactic halos [228].

4.6 Errors in SPARC Data

As discussed in Section 4.3, the uncertainties associated with the SPARC rotation

curves for the galaxies studied here make it difficult to draw robust conclusions as

to the suitability of one or the other dark matter model. Indeed, sources of error

quoted in the SPARC database relate not only to the random error in measured line-

of-site velocities, but also to errors on the galaxy distance measurement, inclination,

and total luminosity. Furthermore, inaccuracy in the assumed stellar mass-to-light

ratio may lead to skewed velocity decompositions, a systematic effect that could
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exceed the stochastic measurement errors.

Figures 4.6 and 4.7 show the error bars associated with the low asymptotic

velocity (75 ≤ v < 125 kms−1) and high asymptotic velocity (125 ≤ v < 175 kms−1)

measurements, respectively.

Figure 4.6: Radial distributions for galaxies with maximum velocities in the range
75 ≤ v < 125 kms−1 in the SPARC database. The average velocity curve is shown
by the bold black line. Large uncertainties coupled with a wide spread of data at
small radii limit the utility of this data set for determining the precise details of
small scale structure in dark matter halos.

In Figure 4.6, we see large error bars at small radii. It is precisely this regime in

which accurate velocity profiles are needed to assess the significance of the core-cusp

discrepancy - a key differentiating factor between ULDM and CDM models as

illustrated in Figure 4.4. Hence, more comprehensive, accurate data in this regime

would be of tremendous benefit. Furthermore, in Figure 4.4 we also observe that

at higher radii, the ULDM model exhibits a characteristic dip in the radial velocity

profile. The observational data does not extend far enough into the high radius

regime to reveal whether such features exist in astrophysical structures. Indeed,

the data in this case tapers off at galactocentric radii exceeding around 10kpc.

From the limited number of galaxies for which data approaches this regime (in
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particular UGC03580, UGC01230, NGC3769, NGC1003), there does not seem to

be a tendency toward a dip. The error bars are relatively constrained in this high

radius region, as shown in Figure 4.6, so the absence of a dip arguably weakens

support for the ULDM model. More data at higher radii is required to make a

strong determination on this point.

Meanwhile, in Figure 4.7, the spread of data at high radius is within the scale

of the error bars, but at smaller radii the data is not encompassed by random

measurement error alone. This spread of data may suggest that grouping galaxies

based on asymptotic velocities alone is an insufficient method of characterisation.

However, there is very limited data in this sample at small radii, so both larger

data sets and comprehensive modelling of baryonic effects in high density inner

regions are required to resolve this issue.

Figure 4.7: Radial distributions for galaxies with maximum velocities in the range
125 ≤ v < 175 kms−1 in the SPARC database. The average profile is shown
in the bold black line. The limited number of galaxies with high asymptotic
velocities makes it difficult to judge typical galaxy characteristics in this regime.
Furthermore, we see that data at small radii is lacking, and for that which is
available, the variation in velocity profiles cannot be accounted for by random error
in the measured velocities alone.
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Chapter 5

Collapse of Aspherical

Overdensities in the ULDM

Model: Evidence for Variability

in the Core-Halo Mass Relation

This chapter is an adaptation of

Emily Kendall, Richard Easther
Collapse of Aspherical Overdensities in the ULDM Model: Evidence

for Variability in the Core-Halo Mass Relation
(Manuscript in preparation)

5.1 Introduction

In this chapter I investigate the collapse of aspherical ULDM overdensities in an

expanding background. I study the properties of the ULDM halos formed by this

collapse process, investigating whether traces of asphericity present in the initial

overdensity are imprinted in the collapsed objects. I also investigate the process

of ‘soliton oscillation’, which has been previously observed in Refs. [229, 230, 231]

and shown to persist well after collapse has taken place.
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Of particular interest is the effect these phenomena may have on variability

in the core-halo mass relation [232, 233, 132]. Indeed, should asphericity be

present within the central region of collapsed ULDM objects, this region cannot

accurately be modelled by the soliton solution to the Schrödinger-Poisson equations.

Accordingly, variability around the theoretical core-halo mass relation (in which

the core is modelled as a soliton) is expected. Moreover, given the oscillations of

this (approximately) solitonic core, the core-halo mass relation must indeed vary

over time. It is the purpose of this work to estimate the extent of this variability.

In order to perform this analysis, I first initialise a spherically-symmetric,

isolated Gaussian overdensity within the AxioNyx AMR simulation tool [114].

This overdensity is allowed to collapse from redshift z = 99 to z < 1, assuming

a matter-dominated universe in which the evolution of the scale factor, a, obeys

a ∝ t2/3. I then gradually augment the initial conditions in order to ‘flatten’ the

initial overdensity along one axis, and gauge the effect this flattening has on the

collapse process and final ULDM halo parameters.

The remainder of this chapter is organised as follows. I first give a brief

introduction to the AxioNyx simulation suite in Section 5.2, and discuss simulation

setup parameters in Section 5.3. I then present the results in 5.4 and analyse

the effect of asphericity and soliton oscillations on the core-halo mass relation. I

conclude in 5.5.

5.2 AxioNyx: AMR Solver for ULDM Dynamics

While fixed-grid pseudospectral solvers such as PyUltraLight are useful for

simulating ULDM physics on a static background, they suffer from decreasing spatial

resolution in an expanding background. In the context of ULDM, it is important

that resolution is maintained at the scale of the de Broglie wavelength in order

to properly model macroscopic quantum phenomena. This becomes increasingly

difficult with a fixed-grid solver when processes such as overdensity collapse over a

large range of redshifts are simulated, and is generally computationally prohibitive.

To overcome this, Adaptive Mesh Refinement (AMR) may be used. This

technique allows for selected regions of the simulation grid to be computed at

higher resolution than others. For example, regions of high density or velocity
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may trigger refinement, while regions of low density are computed on a base-level

coarse grid. This ensures computational efficiency while maintaining the necessary

resolution in regions in which important physics is modelled. AxioNyx is an AMR

solver designed for ULDM simulations. It is built on top of the Nyx cosmology

AMR simulator [154], which is itself built upon the AMReX framework [234].

While AxioNyx inherits support for simulating CDM and baryonic matter from

Nyx, it is the only the new ULDM functionality which I employ here. Specifically,

AxioNyx utilises both pseudospectral and finite-differencing methods to solve the

Schrödinger-Poisson system on the root grid, while using finite-differencing alone

to solve the Schrödinger-Poisson system in refined regions where periodic boundary

conditions no longer apply.

AxioNyx provides a simple C++ header file for specifying the spatial parame-

ters of an initial a ULDM overdensity field. The comoving cosmological critical

density and Hubble constant are also specified here, and by default the critical

density sets the uniform background density field. In this work I also make use of

a separately computed Gaussian random field, which is then called by the header

file to initialise a background with random small perturbations around the critical

density. A separate input file is used to specify parameters such as root grid

resolution, comoving grid size, initial and final redshifts, FDM to CDM ratios, and

refinement criteria. In this work I begin all simulations at z = 99 (a = 0.01) on a

5123 base grid. The critical density is ρcrit(a) = a−3 × 1.36× 1011 M�Mpc−3 with

H0 = 70kms−1Mpc−1 and m22 = 1.

5.3 Flattened Ellipsoidal Overdensities

To begin, we take a spherical Gaussian overdensity, and gradually augment this

through flattening along one axis. For a grid of coordinates (x, y, z), we define:

r =
√
x2 + y2 + z2, and rell =

√(x
a

)2
+
(y
b

)2
+
(z
c

)2
. (5.1)

In this work, we take a = b and define the flattening parameter f as:

f =
a− c
a

. (5.2)
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We explore different flattening scenarios by setting 0.0 ≤ f ≤ 0.5, while keeping

the product abc constant such that:

a = b =

(
1

1− f

)1/3

, and c = a(1− f). (5.3)

Finally, we introduce a characteristic radius rch to control the width of the flattened

Gaussian. This is kept constant throughout the simulations at

rch =
ainit × 0.165L√

2
, (5.4)

where L is the comoving side length of the simulation box and the value of rch

is chosen such that the overdensity is large enough to collapse but does not take

up enough of the root simulation grid to be disrupted by the periodic boundary

conditions. All simulations are initialised at z = 99, corresponding to ainit = 0.01.

The initial density field is then defined as:

ρ(x, y, z) = ρcrit

(
1 + δ1 exp

(
−r

2
ell

r2ch

))
, (5.5)

where (1 + δ1)ρcrit is the initial maximum overdensity at the centre of the Gaussian.

While this field initialisation is used for the first round of simulations, we also

perform another series of simulations using an alternative initial field, namely

ρalt(x, y, z) = ρcrit

(
1 + δ1 exp

(
−r

2
ell

r2ch

)
+ δ2G(x, y, z)

)
, (5.6)

where the final term in the sum, δ2G(x, y, z), represents a Gaussian random field

which is introduced in order to break the symmetry in the simulation to a low degree.

We choose δ2 < δ1, ensuring that the principal overdensity remains dominant. The

same Gaussian random field is used for each simulation, and is read in at runtime

from a separately generated array. The Gaussian random field used here is not

intended to replicate the density field of the early universe, but to provide an

explicit symmetry-breaking mechanism without the need to introduce particles.

We will refer to the simulations which utilise Equations 5.5 and 5.6 as the

‘unperturbed case’ and ‘perturbed case’, respectively. We will consider their results
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separately in the next section.

5.4 Results

5.4.1 Unperturbed Case

We first consider the case where the background field is constant, as in Equation

5.5. We find that AxioNyx preserves symmetry to a high degree, such that

the collapsed halos do not produce the typical incoherent outer regions seen in

other simulations (see, for example, Figure 4.1). Indeed, the random fluctuations,

which are characteristic of the incoherent outer regions of ULDM halos must

be seeded by some explicit symmetry-breaking mechanism. This may be the

introduction of CDM or baryonic matter particles, or, as we shall explore in the

next section, the introduction of additional small random perturbations to the

background. Notwithstanding the unphysically high preservation of symmetry of

these simulations, they provide a useful test regime in which to explore the role

that the initial overdensity shape plays in halo formation.

We simulate collapse for initial overdensities characterised by flattening param-

eters f = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. We choose δ1 = 0.1 and L = 1.0Mpc.

Density plots of the initial configurations are shown in Figure 5.1. Running these

simulations from a = 0.01 to a = 0.6 (99 ≤ z ≤ 0.67), we first find that increasing

the flattening parameter leads to a delayed collapse. This phenomenon is illustrated

in Figure 5.2. We consider ‘collapse’ to have occured at the first peak in the

overdensity curve. After this point, the central soliton-like core has formed, and

begins to oscillate.

Figure 5.2 clearly illustrates that as flattening increases, the first peak in

overdensity shifts to a higher scale factor (lower redshift). Figure 5.3 is also

presented to more clearly illustrate the late-time oscillation phase for the two

extreme cases, f = 0.0 and f = 0.5. Indeed, it is known that in triaxial collapse

scenarios, collapse occurs most slowly along the longest axis, leading to phenomena

such as the colloquial ‘Zel’dovich pancake’ [235, 236]. As we increase the flattening

parameter in these simulations, the length of the longest axis increases, and it is

therefore expected that the collapse process takes longer to complete.
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Figure 5.1: Illustrations of the initial field configurations in the unperturbed case.
The x− z plane is chosen such that the effect of increasing the flattening parameter
is visible.
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Figure 5.2: Plot of maximum overdensity as a function of the scale factor for
initial overdensities with varying flattening parameter. Increasing the flattening
parameter leads to a delayed collapse.

Figure 5.3: Plot of maximum overdensity as a function of the scale factor for initial
overdensities with f = 0.0 and f = 0.5 only. The oscillation phase is clearly visible
here.

It can also be observed in Figure 5.2 that the height of the overdensity peaks

decrease with increasing flattening parameter. Given that the mass of each initial
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overdensity is the same, this implies that the core regions of the collapsed halos

have differing characteristics, and thus lends support to the idea of variation around

the theoretical core-halo mass relation. We illustrate the systematic decrease in

peak height as f increases in Figure 5.4, where we use the third peak as a typical

example. Caution should be taken when analysing this figure, as each peak occurs

at a different redshift. However, this figure serves as a helpful illustration of the

overall phenomenon. The precise mechanism which leads to decreased peak height

with increased flattening is unclear at this stage. However, it is anticipated that

this may be elucidated through an eigenstate decomposition, such as that outlined

in Ref. [237].

Figure 5.4: Comparison of density profiles at the third overdensity peak for
increasing flattening parameter in the unperturbed case. For higher flattening
values, a lower central density is achieved. Similar plots are obtained for other
peaks.

Returning to Figure 5.2, we consider now the oscillation phase which begins

after the first peak in the overdensity curve. This occurs due to the excess kinetic

energy of infalling matter exciting ULDM field modes above the ground state. As a

consequence, the inner region of the halo is not described by the time-independent

soliton solution, as is often assumed in constructing theoretical piece-wise ULDM

halo profiles [133].
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Instead, the inner halo oscillates between a soliton-like profile and a more

distorted superposition of excited states. To see how the morphology of the inner

density profile changes, we consider the time interval between the first two peaks in

the f = 0.0 overdensity curve. We illustrate the spherically-averaged density profile

at the first and second peaks as red dotted curves in Figure 5.6. Meanwhile, density

profiles from the inter-peak interval are shown in black. Though the inner halo

appears roughly solitonic at overdensity peaks, the morphology varies markedly

during the inter-peak interval.

Note that the profile at a = 0.468 in Figure 5.6 has a dramatic dip in density

outside of the solitonic core. This is a consequence of the highly symmetric

configuration, which results in a profile with concentric overdensity rings after

collapse occurs. This is a manifestation of the gravitational cooling mechanism

through which the collapsed object gradually emits excess energy. This configuration

is illustrated in Figure 5.5. In Section 5.4.2, we will consider how explicit symmetry

breaking affects this phenomenon.

Figure 5.5: Illustration of concentric overdensity rings propagating outward after
collapse occurs for the f = 0 unperturbed case. Refinement grids are also shown.
Shortly after collapse (left) the rings have yet to spread through the whole simulation
region. At late times (right) we see that the spread has increased. Through this
gravitational cooling mechanism the collapsed halo is able to radiate excess energy.

The dramatic variability in the morphology of the inner halo during the extended
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post-collapse oscillation phase is of great significance here. This variability suggests

that the piece-wise ‘solitonic core + NFW outer halo’ construction for ULDM halos

[133] is not universally valid. Moreover, this diminishes the applicability of the

theoretical core-halo mass relation [132, 238], which implicitly assumes a piece-wise

‘solitonic core + NFW outer halo’ profile.

These results are supported by a number of other recent studies. In Ref. [239],

it is found that the perturbation of a ULDM halo core by excited field modes

can lead to a significant variability in the mass contained within the inner halo.

Oscillating solitonic cores are also found in Ref. [240]. Our results suggest that

further study of the variable morphology of the radial density profile during the

oscillation phase is required, as this is likely to have direct observable consequences.

Ultimately, this oscillatory behaviour suggests that the ULDM model may be

compatible with a wide diversity of observed dark matter halos, which CDM may

struggle to accommodate [241].

Figure 5.6: Variation in the spherically-averaged halo density profile between the
first two peaks of the overdensity curve for the f = 0.0 collapse scenario.

While Figure 5.6 illustrates that even for a spherically symmetric case there

exists significant deviation from a solitonic inner profile, we expect even greater

discrepancy when the initial overdensity is not spherically symmetric. This is
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because we anticipate that remnants of ellipticity (or in this case, flattening) will

be present in the collapsed object, at least at early stages post-collapse. To see

this, we consider the profile at successive peaks in the overdensity curve for one of

the f 6= 0 cases. We choose the overdensity peaks because, as illustrated in Figure

5.6, it is here that inner profile most closely resembles that of a soliton.

In Figure 5.7, we illustrate the density profiles in the x and z directions for the

first three overdensity peaks in the f = 0.2 case. We have chosen f = 0.2 for the

sake of example, but note that similar results are obtained for other values of the

flattening parameter. Importantly, though f = 0.2 is not a particularly extreme

flattening parameter, we are still able to observe remnants of this flattening in

Figure 5.7. In particular, we see that the profiles in the z direction are consistently

narrower than those in the x direction, corresponding to the flattening direction

in the initial overdensity. Moreover, there is no indication that this asphericity

decreases quickly with time as it is still clearly observable at the third peak.

The fact that asphericity in the initial overdensity profile may be imprinted

within collapsed objects is of great significance. Indeed, it is known that over-

densities in Gaussian random field initial conditions (as in the early universe) are

inherently triaxial [242]. Hence, our results suggest that asphericicity may be found

in the central regions of ULDM halos, even in the late universe. Our simulations

here act as proof of principle for this phenomenon, but we leave further investigation

to more comprehensive simulations with cosmological initial conditions.

The simulations in the unperturbed case illustrate that variations in the shape

of the initial overdensities can lead to dramatic changes in their evolution and

collapse processes. Of particular importance is the fact that remnants of initial

ellipticity remain after collapse has occured, and may therefore lead to variation

around the theoretical core-halo relation. Moreover, irrespective of the precise

shape of the initial overdensity, we have seen that the post-collapse oscillation

phase causes variation in the morphology of the inner halos. This leads to further

deviation from the theoretical core-halo relation, which assumes a solitonic inner

density profile.

In order to assess the degree to which the core-halo relationship may vary, we

will now perform simulations in the perturbed case. Because the symmetry is

explicitly broken in this case, we anticipate that the results will be closer to realistic
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Figure 5.7: Density profiles in the x and z directions at the first three overdensity
peaks for f = 0.2. In each case, we see that the inner profile in the z direction is
systematically narrower than in the x direction.

astrophysical halos, which possess incoherent granular structure in the outer halo.

5.4.2 Perturbed Case

In this section, we perform simulations of overdensity collapse in the presence of a

small-amplitude Gaussian random field, in accordance with Equation 5.6. We note

that a Gaussian random background is more physically realistic than the perfectly

smooth background of the previous section, though our overall setup still involves

an artificially large central overdensity to ensure collapse. The perturbation of the

background also serves to break the symmetry to a small degree, enabling more

complex interference effects to give rise to incoherent substructure in the outer

regions of collapsed halos. For these simulations, we choose comoving box side

length L = 2.0 Mpc and δ1 = 0.15. These parameters result in halos with virial

mass of order 109M�. Meanwhile, δ2 is chosen such that the maximum amplitude

of fluctuations in the Gaussian random field is approximately 10% of that of the

primary overdensity.

The initial configuration for the f = 0 case is shown in the left of Figure 5.8. We
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see that the introduction of the Gaussian random background does not significantly

impact the shape of the primary overdensity. However, it does serve to break the

symmetry to a small degree. On the right of Figure 5.8 we see a typical density

field at late times. In this case, we see that the concentric rings around the central

overdensity have been slightly perturbed, but overall remain quite stable under this

small perturbation. Moreover, we see that the solitonic peak is off-centre. This is

indeed to be expected, as stochastic motion of the core has been observed in other

ULDM simulations, and is a consequence of the interference of excited field modes

[243].

Figure 5.8: Left: initial field configuration for the perturbed case with f = 0. Right:
late time density distribution, showing off-centre core and asphericity in the outer
profile.

While we do not observe the typical granular outer halo structure in Figure 5.8,

it is important to note that in a full cosmological structure formation simulation,

the propagating rings around neighbouring collapsing overdensities would interfere.

This would lead to the formation of the granular outer halos typical of ULDM.

This phenomenon is not captured in these simulations of isolated collapse, yet our

small perturbation does yield a small degree of asphericity.

As discussed in the previous section, the core region is not expected to remain

solitonic throughout the oscillatory phase, and indeed we have shown that significant
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changes in the morphology of the inner halo may occur. Nevertheless, the density

profiles at the overdensity peaks provide a useful test case, as these profiles here

appear to be roughly solitonic.

We identify our choices of three clear overdensity peaks for each value of f in

Figure 5.9. In these plots, it can be observed that when f is large, there is clear

evidence of triaxial collapse in the changes in slope of the overdensity curve.1

For each chosen output, we calculate the virial mass and radius of each collapsed

halo according to the average internal density criterion ρ̄ = 200ρcrit. From this

virial mass, we compute the predicted core radius using Equation 2.70. We then

compare this to the observed value of the core radius, and compute the deviation

as:

δrc =
rc (true) − rc (predicted)

rc (true)

× 100%. (5.7)

We also use Equation 2.67 to construct a solitonic fit to the observed inner profile.

We illustrate a representative example of this process for the first peak in the

f = 0 case in Figure 5.10, while similar plots for the remaining peaks are given

in Appendix C. In all cases, we see that while the halo profile appears to possess

the characteristic solitonic core surrounded by an NFW type halo, the core region

is actually slightly narrower than the theoretical soliton, indicating a slightly

‘compressed’ configuration. We also observe varying degrees of granularity in the

outer halo. We note that because these simulations involve the collapse of isolated

halos, the granularity in the outer region is not fully captured. This is due to

the lack of interference effects of matter propagating outward from neighbouring

collapsing overdensities. In each figure we also observe a density plateau at large

radial distances. This plateau occurs when the density approaches the critical

density, confirming that the simulation box is sufficiently large to encompass the

whole halo.

We summarise our results in Table 5.1. While this small sample is insufficient

for a full statistical analysis of variability in the core-halo mass relation, it serves as

a useful illustration of the relevant phenomena at play. We find that the theoretical

core-halo relation systematically predicts a larger value of rc than is observed.

1Note that the circles identifying the choice of density profiles may in some cases be shifted
slightly from the maxima of the curve, as full field outputs are not saved at every individual
timestep.
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Figure 5.9: Curves of maximum overdensity at late times in the perturbed case.
Choices of peaks are illustrated as circles on each curve. For f = 0.4 and f = 0.5,
evidence of triaxial collapse is observed as changes to the slope of the overdensity
curve.

Indeed, δrc often exceeds 100%. This means that the solitonic cores predicted by

the theoretical relation are systematically wider, with lower central densities than

our simulated results. This is unsurprising, as we have selected outputs at the

peaks of the overdensity oscillation phase. As previously discussed, the morphology
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Figure 5.10: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).

of the central halo varies widely during this phase, and it is natural to expect a

narrower profile than that of the soliton at the maxima, transitioning to a wider

profile as the overdensity curve begins to decrease.

Peak 1 Peak 2 Peak 3
f = 0.0 -133% -87% -68%
f = 0.1 -136% -131% -140%
f = 0.2 -121% -79% -90%
f = 0.3 -63% -62% -76%
f = 0.4 -87% -56% -53%
f = 0.5 -89% -90% -63%

Table 5.1: Percentage deviation between predicted and actual core radii (δrc) at the
first three peaks in overdensity for each value of f . Negative values indicate cores
which are narrower, with higher central densities than the theoretical prediction.
Corresponding Figures are presented in Appendix C.

While we have analysed the core-halo variability only at peaks in the overdensity
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curve, we expect further variation throughout the oscillation phase. In particular,

we expect that at the minima of the oscillation phase, the predicted core radius

would be smaller than the actual value. However, it is difficult to properly quantify

this effect when the morphology of the core does not closely resemble a soliton.

One additional observation from Table 5.1 is that the theoretical core-halo

relation appears to perform worst for the most spherical halos (f = 0.1 and

f = 0.1). We note that these are also the instances in which the maximum halo

overdensity is the highest. Further analysis is required to determine whether this

is an indication that the core-halo relation varies as a function of halo mass.

5.5 Discussion

We have investigated the origins of deviation in the theoretical ULDM core-halo

mass relation in isolated collapse scenarios. We make use of the AxioNyx code

to perform these collapse simulations, enabling grid refinement around small core

structures.

We have shown that even in the case of a spherically symmetric initial overden-

sity, the post-collapse oscillation phase naturally leads to deviations between the

predicted and actual core profiles. This is because the oscillation phase involves

complicated interference of excited eigenstates of the Schrödinger-Poisson system.

The morphology of the core varies widely during this phase, and cannot reliably

be modelled with a solitonic profile. We note that these results are supported by

other studies, which have found similar core-halo variation, such as Ref. [227]. Our

results motivate further investigation of post-collapse cores using an eigenstate

decomposition method.

We have also shown that asphericity in the initial overdensity may be imprinted

in the collapsed halo, further increasing tension between the theoretical ULDM

halo piece-wise construction, which assumes a spherically symmetric solitonic core.

Though we have not performed a full statistical analysis of variation in the

core-halo relation, which would require cosmological initial conditions, we have

shown that the collapse of isolated overdensities can easily result in halos wherein

the actual core radius differs from the predicted value by over 100%. Given this

variability, we conclude that the dynamics of collapsed ULDM halos are such that a
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wide variety of halo characteristics are naturally accommodated. This may be useful

in reconciling theoretical models with the large variability found in astrophysical

observations. By contrast, this is difficult to achieve in CDM models, which do not

involve macroscopic quantum interference.
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Chapter 6

Ongoing Investigations

6.1 Statistical Signatures of Anisotropies in the

ULDM Density Distribution

One unique characteristic of the ULDM model is the presence of extended wavefronts,

which arise during events such as overdensity collapse or halo collisions. Such

wavefronts are a manifestation of the macroscopic quantum behaviour of ULDM, and

do not have an analogue within CDM. Indeed, recent high-resolution cosmological

simulations suggest the presence of additional structure in the filaments of the

cosmic web in the ULDM model as compared to CDM. This is again due to quantum

interference effects [244].

Such extended anisotropies cannot be completely characterised using the 2-point

correlator, which is typically employed to analyse the statistics of the distribution

of matter in the universe [245, 246, 247]. Instead, in order to comprehensively

characterise these unique structures, we require a statistical tool which preserves

information about anisotropy [248]. A natural candidate here is the traceless tidal

tensor (TTT).

The traceless tidal tensor at each point in a density field gives the deformation of

the corresponding volume element relative to purely spherical expansion or collapse.

It is therefore an ideal tool to characterise fields in which structures possessing

directional dependence arise. Following [249], to see how this is calculated for a

density field ρ(x), we first construct the dimensionless overdensity field δ(x):
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δ(x) =
ρ(x)− ρ̄

ρ̄
, (6.1)

We then take the Fourier transform to obtain the dimensionless density contrast

in Fourier space, δ(k). From here we can calculate the peculiar gravitational field

from the Poisson equation, and finally compute the tidal tensor as the Hessian of

the peculiar gravitational potential. In Fourier space we have:

φ(k) = k−2δ(k), Tij(k) = kikjφ(k). (6.2)

At each point, the dimensionless density contrast is given by the trace of the tidal

tensor. Therefore, in order to isolate tidal effects, we compute the Fourier space

TTT:

T̃ij(k) = Tij(k)− δ(k)

3
Iij. (6.3)

Finally, we perform an inverse Fourier transform to obtain the TTT in real space.

In order to make use of the TTT for statistical analysis of simulation output

data, we randomly select a sample of several thousand grid points at which we

compute the TTT and diagonalise it to find the eigenvalues, λ1, λ2, λ3, and unit

eigenvectors e1, e2, e3. We label the eigenvalues such that λ1 > λ2 > λ3. Because

these are the eigenvalues of the traceless tensor, we also have λ1 > 0 and λ3 < 0,

while λ2 may be either positive or negative.

Having obtained the eigenvalues of the TTT at each of our sample grid points,

we may examine their probability distributions, and use this to differentiate between

fields with differing anisotropic features.

In general, we expect the presence of repeated anisotropic structures such as

wavefronts to induce peaks in the probability distributions of the eigenvalues, as

in such cases there will be a number of volume elements exhibiting the same

characteristic anisotropic deformation. To illustrate this, we consider two artificial

distributions. The first distribution is simply a Gaussian random field, while the

second is a 2-dimensional plane wavefront, generated by ρ(x, y, z) = sin2 (x). Figure

6.1 shows the eigenvalue distributions for the two cases. For the Gaussian random

field, in which the statistical fluctuations are isotropic, the eigenvalues themselves
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are characterised by Gaussian distributions. Meanwhile, the 2-dimensional plane

wavefront yields eigenvalue distributions with distinct, prominent peaks. The exact

position and height of the peaks will, in general, depend on the precise parameters

of the waveform.

Figure 6.1: Probability distributions of the eigenvalues of the traceless tidal tensor
for sample density distributions. Left: Gaussian random field, Right: ρ(x, y, z) =
sin2 (x).

As a preliminary study, we examine the distribution of eigenvalues of the

TTT for density distributions arising from collapsing ellipsoidal overdensities in

PyUltraLight. We run the same simulation twice, changing only the value of

the ULDM particle mass by one order of magnitude between the two simulations.

As this is simply a proof-of-principle demonstration, we work in dimensionless code

units and do not ascribe physical parameters to these simulations.

Near the onset of collapse, we obtain density distributions with differing proper-

ties depending on the ULDM particle mass. We illustrate a characteristic example

of the (log) density fields obtained near the onset of collapse in the two cases in

Figure 6.2. In the left of this figure, we see that broad wavefronts are present in

the small ULDM mass case. This is to be expected as this case corresponds to the

larger de Broglie wavelength. By contrast, the wavefronts illustrated on the right

of the figure have a smaller wavelength, corresponding to the larger ULDM mass

case.

From each of the density distributions illustrated in Figure 6.2, we draw a
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Figure 6.2: Snapshots of the log-scaled density field near the onset of collapse for
the small ULDM mass case (left), and the case where this mass is increased by an
order of magnitude (right).

sample of 15,000 randomly chosen grid points at which to compute the TTT of

the (log-scaled) density field. We then compute the eigenvalues at each point. We

divide the obtained eigenvalue range {−0.5, 0.5} into 1500 bins, tallying the number

of points which fall into each bin. We represent the outcome of this procedure using

the scattered points in Figure 6.3. Because of the finite number of samples, we

then apply a smoothing method to obtain a continuous distribution. In this case,

we overlay the binned points with a best-fit cubic spline interpolation. The degree

of smoothing will of course affect the visible level of substructure, however we

note that the smoothing procedure applied here is sufficient to identify qualitative

differences in the probability distributions of the two cases, which is sufficient for

this proof-of-principle analysis.

Our results are presented in Figure 6.3, where the differences in the distributions

for the smaller (left) and larger (right) ULDM mass cases are clearly visible. In

particular, we see that the distribution of λ2 has a higher peak around zero in

the larger mass case, while the distributions of λ1 and λ3 possess small peaks at

values away from zero which are not present in the smaller mass case. Instead, the

distributions in the smaller mass case are indicative of a density field where the
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anisotropies are smoothed on a larger scale, as expected.

Figure 6.3: Probability distributions of the eigenvalues of the TTT for the smaller
ULDM mass (left) and larger ULDM mass (right).

Clearly, much more work is required in order to apply these methods to physically

realistic scenarios. However, the preliminary study presented here illustrates that

the statistics of the TTT may serve as a useful quantitative tool for characterising the

substructure of density distributions arising in ULDM models. Indeed, developing

analysis techniques based on statistics beyond the two-point correlation function

is anticipated to be of great utility in the context of current and upcoming weak

lensing surveys [250]. Further investigation, including a detailed analysis of the

anisotropic 2-point correlation functions of the eigenvalues of the TTT are planned

for future work, using outputs generated using AxioNyx.

6.2 Effects of Angular Momentum on ULDM Halo

Core Formation

As discussed in detail in Chapter 5, there is reason to believe that the ‘typical’

ULDM halo core may not be well-described by the ground-state soliton solution

to the Schrödinger-Poisson equations. One factor which may have important
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implications for halo core properties is angular momentum, which we have yet to

explore in detail.

In Chapter 3, we briefly studied the internal velocity field of a soliton orbiting

a central potential, and showed that it possessed the characteristics of the non-

axisymmetric Riemann-S ellipsoid. However, this scenario only involved a tidally-

locked soliton. More complex behaviours are expected when angular momentum

is imparted to a halo through, for example, merger dynamics. It is necessary to

understand the velocity distribution in the cores of such ULDM halos in order to

characterise them as truly ‘solitonic’, rather than simply possessing profiles similar

to that of the soliton under spherical averaging. In this section, we briefly outline

a method for imparting angular momentum to collapsing ULDM overdensities. We

intend to employ this method in future research using AxioNyx.

In order to initialise an ellipsoidal overdensity with zero net angular momentum,

as was done in Chapter 5, we may simply set the phase of the ULDM field to

zero throughout the simulation region. By contrast, in order to impart angular

momentum to the ellipsoid, we also construct a second ellipsoid to control the

phase of the ULDM field. This phase ellipsoid is concentric with the overdensity

ellipsoid, and has a magnitude following an ellipsoidal Gaussian distribution with

the same three axis parameters as the overdensity itself. Critically, however, we

offset the orientations of the two ellipsoids by a non-zero angle.

We then assign a phase θ to each field point, with the magnitude of the phase

determined by the amplitude θ, of the phase ellipsoid at that grid position. That

is, ψ → ψ × exp(iθ). Because the velocity of the ULDM field is given by v = ∇θ,
this process imparts rotational velocity to the original ellipsoidal overdensity. By

varying the amplitude of the phase ellipsoid, we can change the magnitude of the

angular momentum imparted to the overdensity.

We illustrate the outcome of this setup applied to PyUltraLight ellipsoidal

overdensities at the onset of collapse in Figure 6.4 (again in dimensionless code

units). From left to right we increase the angular momentum from zero, observing

a corresponding distortion of the wavefronts in the density field (top), and an

increasingly complicated internal velocity field (bottom).

In the zero angular momentum case, we see that at early times there is a

competition between matter infalling under gravitational collapse and outgoing
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Figure 6.4: Top: density contours corresponding to an ellipsoidal overdensity
initialised with increasing angular momentum (from zero on the left), on a 1283

grid. Bottom: corresponding internal velocity fields of internal 503 grid region.

wavefronts due to quantum interference. This initial velocity distribution is clearly

distorted due to rotation as angular momentum increases to the right. This, in

turn, results in a proportion of the matter which would otherwise be propagating

outward attaining a rotational velocity component, which is likely to affect core

formation. Indeed, we expect that the late-time non-trivial velocity distributions in

the core of the collapsed object. This ongoing activity is likely to have implications

for the core-halo mass relation, particularly in regards to the criteria under which

a halo may be considered to be ‘relaxed’. Indeed, above a certain initial angular

momentum threshold, we expect collapse to be prevented entirely.

A detailed study of the internal velocity fields of halo cores will be undertaken

in future work using the AxioNyx simulation tool. Focus will be directed to the

implications of angular momentum on the core-halo structure of ULDM, as well as
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the identification of potentially observable astrophysical signatures.
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Chapter 7

Conclusions and Discussion

In this thesis I have investigated the theory and computational modelling of ultra-

light dark matter (ULDM). Macroscopic quantum effects in this model seem to

present a natural solution to many aspects of the ‘small-scale crisis’ in the competing

CDM model. In order to verify whether the ULDM model does indeed provide a

more suitable dark matter candidate than CDM, I have highlighted the need for

detailed numerical analysis of ULDM dynamics.

In Chapter 3, I introduced the simulation tool PyUltraLight, which has

proved useful in investigating ULDM dynamics on galactic scales. Using PyUl-

traLight, we have been able to generate ULDM halos with the characteristic

solitonic core + incoherent outer halo configuration. We have also been able to

investigate merger scenarios in the ULDM model, and verify the outputs of the

code by comparison to analytic models in simple test cases. PyUltraLight is

available for public download, and has since been modified to treat a number of

specific problems within ULDM phenomenology. I anticipate further adaptations

of this code to be developed, with modifications tailored to specific problems in

ULDM physics.

In Chapter 4, I investigated the implications of the theoretical core-halo mass

relation of ULDM halos in the context of the core-cusp problem. I showed that

whether the ULDM model is able to outperform CDM in reproducing observations

of galaxies from the SPARC database is largely dependent on the degree of scatter

around the theoretical core-halo relation. I concluded that further investigation
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of typical ULDM halo characteristics and more extensive observational data are

needed in order to settle this debate.

In Chapter 5, I studied the applicability of the theoretical core-halo mass

relation to halos formed by collapse of ellipsoidal overdensities in AxioNyx. I found

multiple lines of evidence for significant scatter about the theoretical prediction.

In particular, I found that oscillations within the cores of collapsed ULDM objects

can lead to dramatic variations in the morphology of the inner halo profile, which

has direct implications for the applicability of the core-halo mass relation. I also

found that asphericity in the initial overdensity may be imprinted in the halo cores

post-collapse, further increasing tension with the traditional solitonic core + NFW

outer halo assumption used to derive the theoretical core-halo mass relation.

Finally, in Chapter 6, I introduced a number of avenues for ongoing research.

One such avenue involves the development of statistical tools beyond the two-point

correlation function, which take into account the presence of anisotropies. It is

anticipated that the statistics of the eigenvalue distributions of the traceless tidal

tensor may prove useful in characterising wavelike anisotropies in the ULDM model.

I also briefly introduced angular momentum in ULDM halos, which I anticipate will

further affect the applicability of the theoretical core-halo mass relation. Detailed

studies of angular momentum within ULDM halos are planned for future work.

There remains a broad range of phenomenology within the ULDM model

which has yet to be investigated in detail. Scope for further research includes

the introduction of baryonic physics such as stellar formation and feedback into

ULDM-only models, as well as an exploration of mixtures of different dark matter

components. As more advanced simulation tools continue to be developed, I

anticipate a wide range of important investigations to be undertaken in the near

future.
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Appendix A

Scaling Properties of the

Shrödinger-Poisson System

The coupled differential equations of the Schrödinger-Poisson system obey a partic-

ularly simple scale invariance [251, 129]. To see this, let us suppress factors of m,

~ and G for notational convenience (these factors can be restored later), and write

the Schrödinger-Poisson system as:

iψ̇ = −1

2
∇2ψ + Φψ, (A.1)

∇2Φ = 4π|ψ|2, (A.2)

where ψ = ψ(x, t) and Φ = Φ(x, t). If we consider only spherically symmetric

solutions, the Schrödinger-Poisson system becomes:

iψ̇ = −1

2

d2ψ

dr2
+ Φψ, (A.3)

d2Φ

dr2
= 4π|ψ|2, (A.4)

where ψ = ψ(r, t) and Φ = Φ(r, t). Let us now suppose we have a spherically

symmetric solution of the form ψ(r, t) = eiβtf(r). Substituting this solution into

the Poisson equation (A.4) we obtain:

d2Φ(r)

dr2
= 4π|f(r)|2, (A.5)
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which automatically gives

d2Φ(
√
αr)

d(
√
αr)2

= 4π|f(
√
αr)|2, (A.6)

where α is some positive constant. Using the chain rule, this may also be expressed

as
d2Φ(
√
αr)

dr2
= 4πα|f(

√
αr)|2. (A.7)

Now imagine that we have another function of the form g(r, t) = eiαβtαf(
√
αr).

For this function to also satisfy the Poisson equation (A.4), we require:

d2Φ(r)

dr2
= 4π|g(r)|2 = 4πα2|f(

√
ar)|2. (A.8)

Comparing Equations A.7 and A.8, this condition translates to

α
d2Φ(
√
αr)

dr2
=
d2Φ(r)

dr2
. (A.9)

Integrating twice with respect to r gives us a scaling condition on Φ for g(r, t) to

satisfy the Poisson equation:

αΦ(
√
αr) = Φ(r). (A.10)

Let us now consider the Schrödinger equation. Substituting the known solution,

ψ(r, t) = eiβtf(r) into the Schrödinger equation A.3, we obtain:

− βf(r) = −1

2

d2f(r)

dr2
+ Φ(r)f(r), (A.11)

which automatically gives us

− βf(
√
αr) = −1

2

d2f(
√
αr)

d(
√
αr)2

+ Φ(
√
αr)f(

√
αr). (A.12)

In order that g(r, t) = eiαβtαf(
√
αr) also satisfy Equation A.3 we require:

− α2βf(
√
αr) = −α

2

d2f(
√
αr)

dr2
+ αΦ(r)f(

√
αr). (A.13)
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Dividing through by α2 this gives:

− βf(
√
αr) = −α

−1

2

d2f(
√
αr)

dr2
+ α−1Φ(r)f(

√
αr). (A.14)

Comparing Equation A.14 with Equation A.12, we see that this is true if

d2f(
√
αr)

dr2
= α

d2f(
√
αr)

d((
√
αr))2

, (A.15)

and

Φ(r) = αΦ(
√
αr). (A.16)

Equation A.15 is true by the chain rule, while Equation A.16 is the same requirement

given in Equation A.10 for g(r, t) to satisfy the Poisson equation.

Hence, a single spherically symmetric solution to the Schrödinger-Poisson system

of the form ψ(r, t) = eiβtf(r) admits an entire family of solutions, characterised by

the single scaling parameter α. The ground-state solutions are referred to as solitons.

The α scaling of the solitons has important consequences for calculating mass,

radius and density parameters for ULDM halos. One quantity of particular interest

is the ‘core radius’, rc, defined as the radius at which the density drops to one half

its central value. Let us compare how this radius compares for Schrödinger-Poisson

solutions parametrised by α.

The central density for a soliton with α = 1 is given by ρc,1 = |f(0)|2, while for

arbitrary α we have ρc,α = α2|f(0)|2. The densities at rc are therefore

ρ(rc)1 =
|f(0)|2

2
= |f(rc,1)|2, (A.17)

and

ρ(rc)α =
α2|f(0)|2

2
= α2|f(

√
αrc,α)|2. (A.18)

Combining these expressions, we find:

ρ(rc)α =
α2|f(0)|2

2
= α2|f(rc,1)|2 = α2|f(

√
αrc,α)|2 (A.19)
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which therefore implies a scaling relationship for the core radius:

rc,α =
1√
α
rc,1. (A.20)

Note that this means that solitons with larger central densities have a smaller

core radius. In other words, their density distributions are more ‘peaked’. Having

obtained the scaling relationship for the core radius, we can calculate the scaling

also for the core mass, Mc, defined as the mass within rc. We have:

Mc,1 = 4π

∫ rc,1

0

r2|f(r)|2dr (A.21)

and

Mc,α = 4π

∫ rc,α

0

r2α2|f(
√
αr)|2dr. (A.22)

Letting x =
√
αr this integral becomes

Mc,α = 4π
√
α

∫ rc,1

0

x2|f(x)|2dx =
√
αMc,1. (A.23)

Overall, therefore, there exists a class of spherically symmetric ground state

solutions paramaterised by α for which the central density, core mass, and core

radius scale as ρc ∝ α2, Mc ∝
√
α and rc ∝ 1/

√
α, respectively [252]. Often, we

will find it a convenient alternative to parametrise by Mc, in which case rc ∝ 1/Mc

and ρc ∝M4
c .
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Appendix B

Core-halo Mass Relation

The core-halo mass relation can be simply interpreted as the statement that the

average internal velocity of a tracer mass in the core must be equal to the virial

velocity of a tracer mass in the wider halo. If this were not the case, and instead

the average velocity were higher within the core, these higher velocity particles

would move outward, resulting in dynamical mass redistribution within the halo.

During this process, the halo would not be in equilibrium and would thus not be

virialised.

From the virial theorem we have that EK = −1/2 EP , where EK and EP

represent kinetic and potential energies, respectively. Alternatively we can write:

1

2
Mtotv

2 =
1

4

GM2
tot

Rtot

, (B.1)

where G is the gravitational constant, Mtot and Rtot are the total mass and radius,

and v2 is the mean of the squares of individual tracer velocities. Demanding that

v2 is the same for the core as for the total virialised halo allows us to then write:

v2 =
GMvir

2Rvir

=
GMcore

2Rcore

→ Rcore =
McoreRvir

Mvir

. (B.2)

We know from the soliton scaling properties that Rcore ∝M−1
core, and since Mvir =
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4/3 πR3
virρ̄, we also have Rvir ∝ Mvir

1/3. Hence, Equation B.2 becomes

R2
core ∝

Rvir

Mvir

→ R2
core ∝

Mvir
1/3

Mvir

→ Rcore ∝
(

Mvir
−2/3

)1/2
→ Rcore ∝ Mvir

−1/3. (B.3)

With this scaling relation in mind, the constant of proportionality may be deter-

mined through analysis of simulated halos.
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Appendix C

Supplementary Figures

Figure C.1: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).
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Figure C.2: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0 case. A soliton fit to the central profile is provided (blue), as
is a soliton profile corresponding to the predicted core radius (red).

Figure C.3: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).
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Figure C.4: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.5: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.1 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

119



Figure C.6: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).

Figure C.7: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

120



Figure C.8: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.2 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.9: Spherically averaged density profile at the first overdensity peak in the
perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue), as is
a soliton profile corresponding to the predicted core radius (red).
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Figure C.10: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.11: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.3 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.12: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.13: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.14: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.4 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.15: Spherically averaged density profile at the first overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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Figure C.16: Spherically averaged density profile at the second overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).

Figure C.17: Spherically averaged density profile at the third overdensity peak in
the perturbed f = 0.5 case. A soliton fit to the central profile is provided (blue),
as is a soliton profile corresponding to the predicted core radius (red).
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