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1 Introduction

Let U be a potential function on RN such that

(1) U(x) ≥ 0, lim inf |x|→∞ U(x) > 0

(2) Z = {x | U(x) = 0} is a finite set and the Hessians of U at Z are non-degenerate.

Let us consider a Schrödinger operator −∆+ λ2U on L2(RN , dx). Here, λ is a parameter
corresponding to the inverse of the Planck constant. Then for any R > 0, the spectral
subset σ

(
λ−1

(
−∆+ λ2U

))
∩ [0, R] is discrete spectrum for large λ and the eigenvalues

can be approximated by the eigenvalues of some harmonic oscillators. Moreover, If U
is a symmetric double well type potential function, the gap between first two smallest
eigenvalues are exponentially small when λ → ∞. Also the exponential decay rate is given
by the Agmon distance between zero points. Note that by the unitary map f = f(x) 7→
λN/4f(λ1/2x), λ−1

(
−∆+ λ2U

)
is unitarily equivalent to −∆+λU

(
·/
√
λ
)
on L2(RN , dx).

In this sense, spatially cut-off P (ϕ)2-Hamiltonian is a self-adjoint operator −L + Vλ on
L2(S ′(R), dµ), where the probability measure µ is formally given by using the “Lebesgue
measure” dw on L2(R, dx):

dµ(w) = det

(√
m2 −∆

2π

)1/2

exp

(
−1

2

(√
m2 −∆w,w

)
L2(R)

)
dw.

Hence −L+Vλ is formally unitarily equivalent to −∆L2(R)+λU(w/
√
λ)− 1

2tr(m
2−∆)1/2

on L2(L2(R, dx), dw) where

U(w) =
1

4

∫
R
(w′(x)2 +m2w(x)2)dx+ V (w),

V (w) =

∫
R
: P (w(x)) : g(x)dx

and ∆L2(Rn) is the “Laplacian” on L2(R) and P is a polynomial bounded below. Therefore
it is natural to expect that there are some relations between

(1) asymptotic behavior of low-lying spectrum of the operator −L+ Vλ as λ → ∞
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(2) global minimum points of U .

In this note, we discuss the asymptotic behavior of the first eigenvalue of −L + Vλ and
the gap of spectrum between the first and the second eigenvalue in terms of U based on
[2] and [3]. The structure of this note is as follows. In Section 2, we recall semi-classical
results for Schrödinger operators on RN . In Section 3, we give a definition of the spatially
cut-off P (ϕ)2-Hamiltonian. In Section 4 and 5, we state our main results. In Section 6,
we recall the proof of tunneling estimates for finite dimensional Schrödinger operators and
give a rough sketch of the proof in our case. In Section 7, we explain basic properties of
Agmon distance and the relation to instanton in our model.

2 Tunneling for Schrödinger operators on RN

Assume

(1) U ∈ C∞(RN ), U(x) ≥ 0 for all x ∈ RN and lim inf |x|→∞ U(x) > 0.

(2) {x | U(x) = 0} = {x1, . . . , xn}.

(3) Qi =
1
2D

2U(xi) > 0 for all i.

Then the first eigenvalue E1(λ) of −∆+ λU(·/
√
λ) is simple and

lim
λ→∞

E1(λ) = min
1≤i≤n

inf σ(−∆+ (Qix, x)).

In addition to the assumptions above, we assume the symmetry of U :

(4) U(x) = U(−x),

(5) {x | U(x) = 0} = {−x0, x0} (x0 ̸= 0).

Let E2(λ) be the second eigenvalue. By Harrell, Jona-Lasinio, Martinelli and Scoppola,
Simon, Helffer and Sjöstrand ([17, 21, 32, 33, 19, 20]) and others

lim
λ→∞

log(E2(λ)− E1(λ))

λ
= −dAg

U (−x0, x0),

where dAg
U (−x0, x0) is the Agmon distance between −x0 and x0 ([1, 25]) and

dAg
U (−x0, x0) = inf

{∫ T

−T

√
U(x(t))|ẋ(t)|dt

∣∣∣ x is a smooth curve on RN with

x(−T ) = −x0, x(T ) = x0

}
.

Carmona and Simon[6] gave another representation dCS
U of dAg

U using an action integral:

dCS
U (−x0, x0) = inf

{∫ ∞

−∞

(
1

4
|x′(t)|2 + U(x(t))

)
dt
∣∣∣ lim

t→−∞
x(t) = −x0, lim

t→∞
x(t) = x0

}
.
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Remark 1. The classical Newton’s equation corresponding to −∆+ U is

x′′(t) = −2(∇U)(x(t)).

The above action integral is euclidean action integral.
The minimizing path xE = xE(t) (−∞ < t < ∞) is called an instanton which satisfies

x′′(t) = 2(∇U)(x(t)).

3 Definition of spatially cut-off P (ϕ)2-Hamiltonian

Let m > 0. Let µ be the Gaussian measure on the space of tempered distributions S ′(R)
such that ∫

W
S(R)⟨φ,w⟩2S′(R)dµ(w) =

(
(m2 −∆)−1/2φ,φ

)
L2

.

Let E be the Dirichlet form defined by

E(f, f) =
∫
W

∥∇f(w)∥2L2(R,dx)dµ(w) f ∈ D(E),

where ∇f(w) is the unique element in L2(R, dx) such that

lim
ε→0

f(w + εφ)− f(w)

ε
= (∇f(w), φ)L2(R,dx) .

The generator −L(≥ 0) of E is one of expressions of a free Hamiltonian. Let P (x) =∑2M
k=0 akx

k, where a2M > 0. Let g ∈ C∞
0 (R) with g(x) ≥ 0 for all x and define for

h ∈ H1(= H1(R)),

V (h) =

∫
R
P (h(x))g(x)dx

U(h) =
1

4

∫
R

(
h′(x)2 +m2h(x)2

)
dx+ V (h)

We want to consider an operator like

−L+ λV (w/
√
λ) on L2(S ′(R), dµ).

The difficulty is in the definition of w(x)k because w is an element of the Schwartz distri-
bution. Instead of w(x)k, we use Wick power : w(x)k : which requires renormalizations for
which we refer the readers to [12, 31, 34, 7]. For P = P (x) =

∑2M
k=0 akx

k with a2M > 0,
define ∫

R
: P

(
w(x)√

λ

)
: g(x)dx =

2M∑
k=0

ak

∫
R
:

(
w(x)√

λ

)k

: g(x)dx.

We write

: V

(
w√
λ

)
: =

∫
R
: P

(
w(x)√

λ

)
: g(x)dx,

Vλ(w) = λ : V

(
w√
λ

)
: .
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Definition 2. The spatially cut-off P (ϕ)2-Hamiltonian −L+Vλ is defined to be the unique
self-adjoint extension operator of (−L+ Vλ,FC

∞
b (S ′(R))).

It is known that −L + Vλ is bounded from below and the first eigenvalue E1(λ) is
simple and the corresponding positive eigenfunction Ω1,λ exists. See [12, 31, 34].

4 Semi-classical limit of the first eigenvalue

Assumption 3. (A1) U(h) ≥ 0 for all h ∈ H1 and

Z = {h ∈ H1 | U(h) = 0} = {h1, . . . , hn}

is a finite set.
(A2) The Hessian ∇2U(hi) (1 ≤ i ≤ n) is strictly positive.

Remark 4. Since for any h ∈ H1,

∇2U(hi)(h, h) =
1

2

∫
R
h′(x)2dx+

∫
R

(
m2

2
h(x)2 + P ′′(hi(x))g(x)h(x)

2

)
dx,

the non-degeneracy is equivalent to

inf σ(−∆+m2 + 2P ′′(hi(x))g(x)) > 0.

Theorem 5. Assume (A1) and (A2) and let E1(λ) = inf σ(−L+ Vλ). Then

lim
λ→∞

E1(λ) = min
1≤i≤n

Ei,

where

Ei = inf σ(−L+Qi), Qi(w) =
1

2

∫
R
: w(x)2 : P ′′(hi(x))g(x)dx. (4.1)

Let Hs(R) be the Sobolev space with the norm:

∥φ∥Hs(R) = ∥(m2 −∆)s/2φ∥L2(R,dx).

Let H = H1/2(R). Then H is the Cameron-Martin subspace of µ and µ exists on W ⊂
S ′(R):

W =
{
w ∈ S ′(R)

∣∣∣ ∥w∥2W =

∫
R
|(1 + |x|2 −∆)−1w(x)|2dx < ∞

}
.

The triple (W,H, µ) is an abstract Wiener space [15]. The proof of Theorem 5 is done by
using

(1) IMS localization argument[32]

(2) Lower bound estimate for the bottom of the spectrum of −L+Vλ which follows from
logarithmic Sobolev ineqaulities [16]

(3) Large deviation and Laplace method for Wick polynomials (Wiener chaos)[5, 23, 24]

See [2, 3] for the detail of the proof.
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5 Tunneling for spatially cut-off P (ϕ)2-Hamiltonians

Let
E2(λ) = inf {σ(−L+ Vλ) \ {E1(λ)}} .

It is known that E2(λ) > E1(λ) (due to [34]). We prove that E2(λ)−E1(λ) is exponentially
small when λ → ∞ in the case where the potential function is double well type.

Assumption 6. (A3) For all x, P (x) = P (−x) and Z = {h0,−h0}, where h0 ̸= 0.

Theorem 7. Assume (A1), (A2), (A3). Then

lim sup
λ→∞

log (E2(λ)− E1(λ))

λ
≤ −dAg

U (h0,−h0).

It is still an open problem to obtain more precise asymptotics of the gap of the spec-
trum.

Example 8. Fix g ∈ C∞
0 (R). Let n ∈ N. For sufficiently large a > 0, the polynomial

P (x) = a(x2 − 1)2n − C

satisfies (A1), (A2), (A3). Here C is a positive constant which depends on a, g.

We define the Agmon distance dAg
U (−h0, h0).

Assumption 9. In the definition below, we always assume U(h) ≥ 0 for all h.

Note that h0,−h0 ∈ H1(R). Hence it suffices to define the Agmon distance on H1(R).
Let 0 < T < ∞ and h, k ∈ H1(R). Let ACT,h,k(H

1(R)) be the set of all absolutely
continuous paths c : [0, T ] → H1(R) satisfying c(0) = h, c(T ) = k.

Definition 10. We define the Agmon distance between h, k by

dAg
U (h, k) = inf

{
ℓU (c) | c ∈ ACT,h,k(H

1(R))
}
,

where

ℓU (c) =

∫ T

0

√
U(c(t))∥c′(t)∥L2dt.

Agmon metric is conformal to L2-metric. However the function U is defined on H1.
So it is natural to consider on which space the Agmon distance is defined. The following
classical result gives a suggestion for this problem:
For any h, k ∈ H1/2(R), there exists u(= u(t, x)) ∈ H1((0, T )× R) such that

(1) u(0, x) = h(x) and u(T, x) = k(x),

(2)

∫ T

0

√
U(u(t))∥u′(t)∥L2dt < ∞

Thus we extend the definition of the Agmon distance to the space H1/2.
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Definition 11 ([3]).
(1) Let h, k ∈ H1/2. Let PT,h,k,U be all continuous paths c = c(t) (0 ≤ t ≤ T ) on H1/2

such that

(i) c ∈ ACT,h,k(L
2(R)), c(0) = h, c(T ) = k,

(ii) c(t) ∈ H1(R) for ∥c′(t)∥L2dt -a.e. t ∈ [0, T ] and the length of c is finite:

ℓU (c) =

∫ T

0

√
U(c(t))∥c′(t)∥L2dt < ∞.

(2) Let 0 < T < ∞. We define the Agmon distance between h, k ∈ H1/2(R) by

dAg
U (h, k) = inf {ℓU (c) | c ∈ PT,h,k,U} .

It is not difficult to see the two definitions above of dAg
U coincides with each other on

H1.
Now let us recall some idea of the proof in [33] of the tunneling estimate in finite

dimensional cases. Assume the assumptions (1), (2), (3), (4), (5) in Section 2. Then for
the ground state Ψ1,λ of −∆+ λ2U , we have

lim
λ→∞

1

λ
logΨ1,λ(x) = −min

(
dAg
U (x, x0), d

Ag
U (x,−x0)

)
.

This and estimates on the second eigenfunction implies

lim
λ→∞

log (E2(λ)− E1(λ))

λ
= −dAg

U (x0,−x0).

Now let us consider the spatially cut-off P (ϕ)2-Hamiltonian as an infinite dimensional
Schrödinger operator. Assume (A1), (A2), (A3). Let

dµλ,U = Ω2
1,λdµ, µλ

U = (Sλ)∗µλ,U , (5.1)

where Ω1,λ is the ground state of−L+Vλ and Sλw =
w√
λ
. Formally dµλ

U (w) = Ψ1,λ(w)
2dw,

where Ψ1,λ is the ground state for

−∆L2(R) + λ2U(w)− λ

2
tr(m2 −∆)1/2.

It is natural to conjecture that µλ
U satisfies the large deviation principle with good rate

function IU :

IU (h) = 2min
(
dAg
U (h0, h), d

Ag
U (−h0, h)

)
.

We prove a version of the upper bound estimate of this large deviation result which is
sufficient for the proof of Theorem 7.
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6 Proof of Theorem 7

Assume U satisfies (A1), (A2). Let FW
U be the set of non-negative bounded globally

Lipschitz continuous functions u on W such that

(i) 0 ≤ u(h) ≤ U(h) for all h ∈ H1 and

{h ∈ H1 | U(h)− u(h) = 0} = {h1, . . . , hn} = {U = 0}.

(ii) u is C2 in ∪n
i=1Bδ0(hi) for some δ0 > 0, where Bδ(h) = {w ∈ W | ∥w − h∥W < δ}.

(iii) The Hessians ∇2 (U − u) (hi) (1 ≤ i ≤ n) are strictly positive.

Let u ∈ FW
U . For w1, w2 ∈ W , we define ρWu (w1, w2) by

(i) if w1 − w2 ∈ L2(R),

ρWu (w1, w2) = inf
{∫ T

0

√
u(w1 + c(t))∥c′(t)∥L2dt

∣∣∣ c is an absolutely continuous path

on L2(R) with c(0) = 0, c(T ) = w2 − w1

}
.

(ii) if w1 − w2 /∈ L2(R), ρWu (w1, w2) = ∞.

Further define

ρW
u
(w1, w2) = lim

ε→0
inf

{
ρWu (w, η)

∣∣∣ w ∈ Bε(w1), η ∈ Bε(w2)

}
.

In the case where W = H = RN , for any w1, w2, clearly,

sup
u∈FW

U

ρW
u
(w1, w2) = dAg

U (w1, w2).

Lemma 12. Assume (A1), (A2) and Z consists two points {h, k}. Then

dAg
U (h, k) = sup

u∈FW
U

ρW
u
(h, k).

We proved the above in the case of h = h0, k = −h0, where ±h0 are the zero points of
U in [3]. But I think the equality holds for all points in H1/2 under the assumptions (A1)
and (A2).

Lemma 13. Let u ∈ FW
U .

(1) Let O be a non-empty open subset of W and set ρWu (O,w) = inf{ρWu (ϕ,w) | ϕ ∈ O}.
Then

ρWu (O, ·) ∈ D(E) ,

|∇ρWu (O,w)|L2(R,dx) ≤
√

u(w) µ-a.s.w.

(2) Assume (A1) and (A2). Set uλ(w) = λu(w/
√
λ), E1(λ, u) = inf σ(−L + Vλ − uλ).

Then limλ→∞E1(λ, u) converges.
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Lemma 14. Assume (A1), (A2). Let dµλ,U (w) = Ω2
1,λ(w)dµ, where Ω1,λ is the ground

state of −L+ Vλ. Let r > κ and 0 < q < 1. Let Bε(Z) = ∪n
i=1Bε(hi). For large λ,

µλ,U

({
w ∈ W

∣∣∣∣∣ ρWu
(

w√
λ
,Bε(Z)

)
≥ r

})
≤ C1e

−2qλ(r−κ)∥u∥∞
κ2(λ(1− q2)ε2 − C2)

, (6.1)

where Ci are positive constants independent of λ, r, κ.

Proof of Theorem 7. Note that

E2(λ)− E1(λ) = inf

{∫
W |∇f(w)|2L2dµλ,U (w)∫

W f(w)2dµλ,U (w)

∣∣∣∣∣
f ∈ D(E) ∩ L∞(W,µ), f ̸≡ 0, f ⊥ 1 in L2(µλ,U )

}
,

where dµλ,U = Ω2
1,λdµ Note that the ground state measure µλ,U concentrate on {±

√
λh0}

by Lemma 14. So we introduce a function f such that f = ±1 in a neighborhood of
±
√
λh0. Then f ⊥ 1 approximately in L2(µλ,U ). This f can be constructed by using

ρWu

(
w/

√
λ,Bε(h0)

)
, ρWu

(
w/

√
λ,Bε(−h0)

)
. Using the property

∥∇f∥∞ < ∞, supp|∇f | ⊂

{
w

∣∣∣∣∣ ρWu
(

w√
λ
,Bε(Z)

)
≈

ρW
u
(h0,−h0)

2

}

and calculating the the ratio of the integrals of |∇f | and f and applying Lemma 14, the
proof is completed.

7 Properties of Agmon distance and instanton

We already defined the Agmon distance dAg
U onH1/2. Actually this is a continuous distance

function on H1/2 and the topology is the same as the one defined by the Sobolev norm.
Also we can prove the existence of the geodesics between two zero points and the existence
of instanton. The readers find these results in [3]. I do not prove the uniqueness of them
yet.

Theorem 15 (Existence of geodesic). Assume (A1), (A2) and Z consists of two points
{h, k}. There exists a continuous curve c⋆ on H1/2(R) such that c⋆ ∈ ACT,h,k(L

2(R)) and
dAg
U (h, k) = ℓU (c⋆). Moreover c⋆ satisfies the following.

(1) c⋆(0) = h, c⋆(1) = k and c⋆(t) ̸= h, k for 0 < t < 1.
(2) c⋆ = c⋆(t, x) is a C∞ function of (t, x) ∈ (0, 1)×R and c⋆ ∈ H1((ε, 1− ε)×R) for all
0 < ε < 1.
(3) For almost every t in the Lebesgue measure, we have√

U(c⋆(t))∥c′⋆(t)∥L2 = dAg
U (h, k).

(4)
∫ ε
0 ∥c′⋆(t)∥2L2dt =

∫ 1
1−ε ∥c

′
⋆(t)∥2L2dt = +∞ for all ε > 0.
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The instanton equation
∂2u

∂t2
(t, x) = 2(∇U)(u(t, x)) reads

∂2u

∂t2
(t, x) +

∂2u

∂x2
(t, x) = m2u(t, x) + 2P ′(u(t, x))g(x). (7.1)

Let T > 0 and define the action integral

IT,P (u) =
1

4

∫∫
(−T,T )×R

(∣∣∣∣∂u∂t (t, x)
∣∣∣∣2 + ∣∣∣∣∂u∂x(t, x)

∣∣∣∣2
)
dtdx

+

∫∫
(−T,T )×R

(
m2

4
u(t, x)2 + P (u(t, x))g(x)

)
dtdx

and

I∞,P (u) =
1

4

∫ ∞

−∞
∥∂tu(t)∥2L2(R)dt+

∫ ∞

−∞
U(u(t))dt.

Theorem 16 (Existence of instanton). There exists a solution u⋆ = u⋆(t, x) ((t, x) ∈ R2)
to the instanton equation which satisfies the following.
(1) For any T > 0, u⋆|(−T,T )×R ∈ H1 ((−T, T )× R) ∩ C∞((−T, T )× R) and

lim
t→−∞

∥u⋆(t)− h∥H1/2 = 0, lim
t→∞

∥u⋆(t)− k∥H1/2 = 0.

(2) I∞,P (u⋆) = dAg
U (h, k).

(3) The function u⋆ is a minimizer of the functional I∞,P in the set of functions u
satisfying the following conditions:

(i) u|(−T,T )×R ∈ H1((−T, T ),R) for all T > 0,

(ii) lim
t→−∞

∥u(t)− h∥H1/2 = 0, lim
t→∞

∥u(t)− k∥H1/2 = 0.

Now we explain the relation between c⋆ and u⋆. Let

ρ(t) =
1

2dAg
U (h, k)

∫ t

1/2
∥c′(s)∥2L2ds 0 < t < 1,

σ(t) =
1

2dAg
U (h, k)

∫ t

−∞
∥u′(s)∥2L2ds t ∈ R.

Then ρ−1(t) = σ(t) (t ∈ R) and

u⋆(t, x) = c⋆(σ(t), x) t ∈ R,
u⋆(ρ(t), x) = c⋆(t, x) 0 < t < 1.
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[8] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London
Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999.

[9] S. Y. Dobrokhotov and V. N. Kolokol’tsov, The double-well splitting of low energy
levels for the Schrödinger operator of discrete ϕ4-models on tori, J. Math. Phys. 36 (3),
1038–1053, (1995).

[10] W.J. Eachus and L. Streit, Exact solution of the quadratic interaction Hamiltonian,
Reports on Mathematical Physics 4, No. 3, 161–182, 1973.

[11] J. P.Eckmann, Remarks on the classical limit of quantum field theories,
Lett. Math. Phys. 1 (1975/1977), no. 5, 387–394.

[12] 江沢洋・新井朝雄, 場の量子論と統計力学, 日本評論社 (1988).

[13] P. Federbush, Partially Alternate Derivation of a Result of Nelson,
J. Math. Phys.Vol. 10, No. 1 January, 1969

[14] J. Glimm, Boson fields with non-linear self-interaction in two dimensions,
Comm. Math. Phys. 8 (1968), 12–25.

[15] L. Gross, Abstract Wiener spaces. 1967 Proc. Fifth Berkeley Sympos. Math. Statist.
and Probability(Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability The-
ory, Part 1 pp. 31–42 Univ. California Press, Berkeley, Calif.

10



[16] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.

[17] E. Harrell, Double wells. Comm. Math. Phys. 75 (1980), no. 3, 239―261.

[18] B. Helffer and F. Nier, Hypoelliptic estimates and spectral theory for Fokker-Planck
operators and Witten Laplacians, Lecture Notes in Mathematics, 1862, Springer,
2005.
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