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1 Introduction

Let U be a potential function on RY such that
(1) U(x) >0, liminf)y o U(z) >0
(2) Z={z | U(x) =0} is a finite set and the Hessians of U at Z are non-degenerate.

Let us consider a Schrodinger operator —A + A2U on L2(RY, dz). Here, ) is a parameter
corresponding to the inverse of the Planck constant. Then for any R > 0, the spectral
subset o ()\_1 (—A + AU )) N [0, R] is discrete spectrum for large A and the eigenvalues
can be approximated by the eigenvalues of some harmonic oscillators. Moreover, If U
is a symmetric double well type potential function, the gap between first two smallest
eigenvalues are exponentially small when A — oco. Also the exponential decay rate is given
by the Agmon distance between zero points. Note that by the unitary map f = f(z) —

AN/ F(AY22), A7Y (= A + A2U) is unitarily equivalent to —A+\U (/ﬁ) on L2(RY dz).
In this sense, spatially cut-off P(¢)s-Hamiltonian is a self-adjoint operator —L + V), on

L?(S'(R),du), where the probability measure p is formally given by using the “Lebesgue
measure” dw on L?(R,dz):

 \1)2
du(w) = det (mQ—A> exp (—1 (\/ m2 — Aw, w> L2(R)> dw.

2T 2

Hence —L + V), is formally unitarily equivalent to —Apzg) + AU (w/VA) — $tr(m? — A)L/2
on L*(L*(R,dx),dw) where

Utw) = § [ (0@ + miulaP)ds + Vi)
Viw) = /R : P(w(x)) : g(z)dx

and Ap2gny is the “Laplacian” on L?(R) and P is a polynomial bounded below. Therefore
it is natural to expect that there are some relations between

(1) asymptotic behavior of low-lying spectrum of the operator —L + V) as A — oo



(2) global minimum points of U.

In this note, we discuss the asymptotic behavior of the first eigenvalue of —L + V) and
the gap of spectrum between the first and the second eigenvalue in terms of U based on
[2] and [3]. The structure of this note is as follows. In Section 2, we recall semi-classical
results for Schrédinger operators on RY. In Section 3, we give a definition of the spatially
cut-off P(¢)2-Hamiltonian. In Section 4 and 5, we state our main results. In Section 6,
we recall the proof of tunneling estimates for finite dimensional Schrédinger operators and
give a rough sketch of the proof in our case. In Section 7, we explain basic properties of
Agmon distance and the relation to instanton in our model.

2 Tunneling for Schrédinger operators on RV

Assume
(1) U e C®(RYN), U(z) >0 for all € RY and liminf ;. U(z) > 0.
(2) {z | U(z) =0} ={z1,...,zn}
(3) Qi = $D?U(x;) > 0 for all 4.

Then the first eigenvalue E1(\) of —A + AU(-/v/\) is simple and

lim Fi(\) = Zin info(—A + (Qiz, x)).

A—00
In addition to the assumptions above, we assume the symmetry of U:
(4) U(z) = U(—=),

(5) {z | U(z) =0} = {—z0, 0} (0 # 0).

Let F5()) be the second eigenvalue. By Harrell, Jona-Lasinio, Martinelli and Scoppola,
Simon, Helffer and Sjostrand ([17, 21, 32, 33, 19, 20]) and others

lim log(E2(A) — E1(N))

A
A—r00 A = —d’ (=20, 20),

where d’gg (—x0,p) is the Agmon distance between —xy and xo ([1, 25]) and
" T
dy? (=0, 20) = inf /T VU (x(t))|2(t)|dt ‘ r is a smooth curve on RY with
z(=T) = —xo,z(T) = a:o}.
Carmona and Simon[6] gave another representation dgs of dég using an action integral:

dS$S (=g, 20) = inf{/oo <i]w’(t)]2 + U(w(t))) dt ‘ tlim x(t) = —xp, tllglo x(t) = xo}.

oo ——00



Remark 1. The classical Newton’s equation corresponding to —A + U is

2"(t) = —2(VU)(z(t)).

The above action integral is euclidean action integral.
The minimizing path xp = zg(t) (—oo <t < 00) is called an instanton which satisfies

2" (t) = 2(VU)((t)).

3 Definition of spatially cut-off P(¢),-Hamiltonian

Let m > 0. Let u be the Gaussian measure on the space of tempered distributions S'(R)
such that

2 2 -1/2
ryd = - A ,
/ S(R)<907w>5 (R) p(w) ((m ) %) (p>L2
Let £ be the Dirichlet form defined by

= [ 19 dute) £ €DE).
where V f(w) is the unique element in L?(R,dx) such that
ot eg) — fw)

e—0 £

= (Vf(w)v @)L%R,dw) :

The generator —L(> 0) of £ is one of expressions of a free Hamiltonian. Let P(x) =

iMo aprk, where agy > 0. Let g € C°(R) with g(x) > 0 for all x and define for

he H' (= Hl(R))
wm—APwmmmm

U(h) = i /R (W (z)* +m*h(z)?) dz + V (h)

We want to consider an operator like
—L+ AV (w/VX) on L*S'(R),du).

The difficulty is in the definition of w(x)* because w is an element of the Schwartz distri-
bution. Instead of w(x)*, we use Wick power : w(z)* : which requires renormalizations for
which we refer the readers to [12, 31, 34, 7]. For P = P(x) = iMo apr® with agpr > 0,

define
mQW)m@mz%% :w@kgmm
Lor (5 o f (A
We write
() Lol e
- ()-



Definition 2. The spatially cut-off P(¢)2-Hamiltonian —L+V) is defined to be the unique
self-adjoint extension operator of (—L + Vy,FC°(S'(R))).

It is known that —L + V) is bounded from below and the first eigenvalue Ej()) is
simple and the corresponding positive eigenfunction € ) exists. See [12, 31, 34].

4 Semi-classical limit of the first eigenvalue

Assumption 3. (A1) U(h) >0 for all h € H' and
Z={he H |UMh)=0}={h1,...,h,}

s a finite set.
(A2) The Hessian V2U (h;) (1 <i < n) is strictly positive.

Remark 4. Since for any h € H',

V2U (hi)(h, h) = ;/Rh’(x)de—i-/

m2
i <2h(a:)2 - P'/(hi(x))g(x)h(m)2> dz,

the non-degeneracy is equivalent to
inf o(—A + m? + 2P"(hi(z))g(z)) > 0.
Theorem 5. Assume (Al) and (A2) and let E1(\) = info(—L + V). Then

lim E;(\) = min Ej,
A—00 1<i<n

where

1

E,=info(—L+Q;), Qi(w)= 2/]R cw(z)?: P (hi(z))g(x)de. (4.1)

Let H*(R) be the Sobolev space with the norm:
H@HHS(R) = H(m2 - A>S/2SOHL2(R,dx)-
Let H = H/ 2(R). Then H is the Cameron-Martin subspace of p and p exists on W C
S'(R):
W= {wes® | ful = / (Ut [ — &) () P < oo ).
R
The triple (W, H, 11) is an abstract Wiener space [15]. The proof of Theorem 5 is done by
using
(1) IMS localization argument|32]

(2) Lower bound estimate for the bottom of the spectrum of —L+ V) which follows from
logarithmic Sobolev ineqaulities [16]

(3) Large deviation and Laplace method for Wick polynomials (Wiener chaos)[5, 23, 24]
See [2, 3] for the detail of the proof.



5 Tunneling for spatially cut-off P(¢),-Hamiltonians

Let
Ey(A) = inf {o(—L+ Va) \ {E1(A)}}.

It is known that E2(\) > E1(\) (due to [34]). We prove that Eo(A)— E1()) is exponentially
small when A\ — oo in the case where the potential function is double well type.

Assumption 6. (A3) For all z, P(x) = P(—xz) and Z = {ho, —ho}, where ho # 0.
Theorem 7. Assume (Al), (A2), (A3). Then

o sup 122 (E23) = E1 ()

A
. < —dy? (ho, —ho).
A—00

It is still an open problem to obtain more precise asymptotics of the gap of the spec-
trum.
Example 8. Fiz g € C§°(R). Let n € N. For sufficiently large a > 0, the polynomial
P(z) = a(z* = 1) - C
satisfies (A1), (A2), (A3). Here C is a positive constant which depends on a,g.
We define the Agmon distance d’gg (—ho, ho)-
Assumption 9. In the definition below, we always assume U(h) > 0 for all h.

Note that hg, —ho € H'(R). Hence it suffices to define the Agmon distance on H'(R).
Let 0 < T < oo and h,k € HY(R). Let AC7,x(H*(R)) be the set of all absolutely
continuous paths ¢ : [0, T] — H(R) satisfying c¢(0) = h, c(T) = k.

Definition 10. We define the Agmon distance between h, k by
di? (h, k) = inf {€y(c) | ¢ € ACrx(HY(R))},
where

T
ty(e) = /0 D) (1) et

Agmon metric is conformal to L?-metric. However the function U is defined on H'.
So it is natural to consider on which space the Agmon distance is defined. The following
classical result gives a suggestion for this problem:
For any h,k € HY/?(R), there exists u(= u(t,z)) € H'((0,T) x R) such that

(1) w(0,z) = h(z) and u(T,x) = k(z),

T
@) [ VOGOl et <

Thus we extend the definition of the Agmon distance to the space H/2.



Definition 11 ([3]).
(1) Let hyk € HY2. Let Pryxu be all continuous paths ¢ = c(t) (0 <t < T) on H/?
such that

(i) ¢ € ACThi(L2(R)), ¢(0) = h,o(T) = k,

(ii) c(t) € HY(R) for || (t)||p2dt -a.e. t € [0,T) and the length of c is finite:
T
() = [ VIOt < .

(2) Let 0 < T < co. We define the Agmon distance between h,k € H'/2(R) by
A9 (h,k) = inf {£y(c) | ¢ € Proppu}-
X It is not difficult to see the two definitions above of dég coincides with each other on
B .Now let us recall some idea of the proof in [33] of the tunneling estimate in finite

dimensional cases. Assume the assumptions (1), (2), (3), (4), (5) in Section 2. Then for
the ground state ¥y of —A + A2U, we have

.1 .
)\ILIEO 3 log ¥y x(z) = — min (dég(ac, o), d’ég(x, —x0)> )

This and estimates on the second eigenfunction implies

log (£2(A) — E1(})) A
)\lggo \ = —dUg(iL'o, —1‘0).

Now let us consider the spatially cut-off P(¢)s-Hamiltonian as an infinite dimensional
Schrodinger operator. Assume (A1), (A2), (A3). Let

dpyu = Q%,,\dﬂa 13y = (S))stiru (5.1)
where Q; ) is the ground state of —L+V) and Shyw = \% Formally dug) (w) = ¥y x(w)?dw,

where Wy y is the ground state for
2 A 2 1/2

It is natural to conjecture that Mé satisfies the large deviation principle with good rate
function Iy;:

Iir(h) = 2min (d{}g(ho, h), di (—ho, h)) .

We prove a version of the upper bound estimate of this large deviation result which is
sufficient for the proof of Theorem 7.



6 Proof of Theorem 7

Assume U satisfies (A1), (A2). Let 7}V be the set of non-negative bounded globally
Lipschitz continuous functions v on W such that

(i) 0 <wu(h) <U(h) for all h € H' and
{he H' | U(h) —u(h) =0} = {h1,...,h,} = {U = 0}.
(ii) wis C? in U™, Bs, (h;) for some dy > 0, where Bs(h) = {w € W | |lw — h|jw < J}.
(iii) The Hessians V2 (U — u) (h;) (1 <1i < n) are strictly positive.
Let u € FY. For wy,wy € W, we define p) (wy, w2) by

(i) if wy —we € L3(R),

T
oWV (wy, we) = inf{/ Vu(wy + ()| ()| 2dt ) ¢ is an absolutely continuous path
0

on L?(R) with ¢(0) =0, ¢(T) = wy — wl}.

(ii) if wy — wy ¢ L*(R), pZV(wl,wg) = 00.

Further define
W T W
p, (wi,wz) = lim mf{pu (w,n) ‘ w € Be(w1),m € Be(w2)}'

In the case where W = H = RY, for any wy, ws, clearly,

A
sup Bzv(wl,wg) = dy¥ (w1, wa).
uE]—'gV

Lemma 12. Assume (Al), (A2) and Z consists two points {h,k}. Then

d?(h, k) = sup p" (b k).

uG]—'EV o

We proved the above in the case of h = hg, k = —hg, where +hg are the zero points of
U in [3]. But I think the equality holds for all points in H'/? under the assumptions (A1)
and (A2).

Lemma 13. Let u € .7:(‘}[/.

(1) Let O be a non-empty open subset of W and set pl¥ (O, w) = inf{p!V (¢, w) | ¢ € O}.
Then

pZV(Ov ) €D (5) 3
‘VPZV(O:w)’L?(R,dz) < \/m -G.S.W.

(2) Assume (A1) and (A2). Set uy(w) = Mu(w/VN), Ex(\,u) = info(—L + Vi — uy).
Then limy_,o, F1 (A, u) converges.



Lemma 14. Assume (A1), (A2). Let duyy(w) = Q2 (w)du, where Q \ is the ground
state of —L + V. Letr >k and 0 < ¢ < 1. Let B:(Z) = U B:(h;i). For large A,

w 672(1)\(1”7/{) u|oo
KA U ({w cew | pV (ﬁ,BE(Z)> > r}) < Hil)\(l — q2)52”_H02)’ (6.1)

where C; are positive constants independent of A, 1, k.

Proof of Theorem 7. Note that

fW ‘Vf(w”%zdﬂ)\,U(w)
Jw F(w)2dpy v (w)

EQ(A) - E1 ()\) = mf{

f € D(8> mLoo(VVa M)?f 7_é va L 1in LQ(MA,U)}:

where duy ;= Qi)\du Note that the ground state measure py y concentrate on {£VXho}
by Lemma 14. So we introduce a function f such that f = £1 in a neighborhood of
+v/Ahg. Then f L 1 approximately in LQ(u,\,U). This f can be constructed by using

P (w/\f/\, Ba(h0)>7 e (w/ VA, Be(_h0)>' Using the property

o (2 5.2y » 000 }

and calculating the the ratio of the integrals of |V f| and f and applying Lemma 14, the
proof is completed. ]

[V flloo < 00, supp|Vf|C {w

7 Properties of Agmon distance and instanton

We already defined the Agmon distance dég on H'/2. Actually this is a continuous distance
function on H/2 and the topology is the same as the one defined by the Sobolev norm.
Also we can prove the existence of the geodesics between two zero points and the existence
of instanton. The readers find these results in [3]. I do not prove the uniqueness of them
yet.

Theorem 15 (Existence of geodesic). Assume (Al), (A2) and Z consists of two points
{h,k}. There exists a continuous curve c, on H'/?(R) such that c, € ACT ), 1(L*(R)) and
dgg(h, k) = Ly (ck). Moreover ¢, satisfies the following.

(1) ex(0) = h, (1) =k and ci(t) # h,k for 0 <t < 1.

(2) e = cu(t,z) is a C™ function of (t,x) € (0,1) xR and c, € H*((e,1—¢) x R) for all
0<e<l.

(3) For almost every t in the Lebesgue measure, we have

VU012 = di? (h, k).

(4) fos ||c’*(t)||%2dt = fll—a Hc’*(t)H%gdt = +oo for all € > 0.

8



2
The instanton equation a—(t x) = 2(VU)(u(t,z)) reads

o012
0%u 0%u 9 p
w(t,x) + @(t,x) =m-u(t,z) + 2P (u(t,x))g(x). (7.1)

Let T > 0 and define the action integral

It p(u) = i / /( s ( 2) dtdx

’ //(—T,T)X]R (nfu(t’x)2 * P(“(ta%'))g(l')> dtdx

Fer() = 5 [ 100t + [ Uttt

—00

ou 2

T —(t,x)

ou
+ o)
and

Theorem 16 (Existence of instanton). There exists a solution u, = u.(t,x) ((t,z) € R?)
to the instanton equation which satisﬁes the following.
(1) For any T > 0, u|(—r,7)xr € HY((-=T,T) x R)nC>®((~T,T) x R) and

t_lir_noo [ux(t) = Al g1/2 =0, tlggo [ux(t) = Kl 172 = 0.

(2) Loo.p(uy) = di (h, k).

(3) The function u. is a minimizer of the functional I p in the set of functions u
satisfying the following conditions:

(i) ul—rr)xr € HY((~T,T),R) for all T >0,

(i) lim_[fut) ~ gz = 0. Jim [lu(t) — kll 72 = 0.

Now we explain the relation between c, and u,. Let
0= sz | €@l o<t <
p(t) = c(s s ,
2429 (h, k) J1/2 Lz

(
_71 t ’LL/S 2 S
0= | IW@lads ter.

Then p~1(t) = o(t) (t € R) and

ug(t,x) = ci(o(t),x) teR,
ue(p(t),x) = ci(t,z) 0<t <1
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