

Frascati Physics Series Vol. LIX (2014), pp. 00-00
4th YOUNG RESEARCHERS WORKSHOP: “*Physics Challenges in the LHC Era*”
Frascati, May 12 and 15, 2014

**A direct test of \mathcal{T} symmetry in the neutral K meson system with
 $K_S \rightarrow \pi \ell \nu$ and $K_L \rightarrow 3\pi^0$ at KLOE-2**

Aleksander Gajos

on behalf of the KLOE-2 Collaboration

Institute of Physics, Jagiellonian University, Cracow, Poland

Abstract

Quantum entanglement of K and B mesons allows for a direct experimental test of time-reversal symmetry independent of \mathcal{CP} violation. The \mathcal{T} symmetry can be probed by exchange of initial and final states in the reversible transitions between flavor and CP-definite states of the mesons which are only connected by the \mathcal{T} conjugation. While such a test was successfully performed by the BaBar experiment with neutral B mesons, the KLOE-2 detector can probe \mathcal{T} -violation in the neutral kaons system by investigating the process with $K_S \rightarrow \pi^\pm l^\mp \nu_l$ and $K_L \rightarrow 3\pi^0$ decays. Analysis of the latter is facilitated by a novel reconstruction method for the vertex of $K_L \rightarrow 3\pi^0$ decay which only involves neutral particles. Details of this new vertex reconstruction technique are presented as well as prospects for conducting the direct \mathcal{T} symmetry test at the KLOE-2 experiment.

1 Introduction

A direct test of the time-reversal symmetry in a single experiment is of great interest among possible ways to probe the \mathcal{T} symmetry violation ¹⁾. For particles with spin 0 such as pseudo-scalar mesons, a direct test may be obtained by observation of an asymmetry between a reaction from state i to state f and a reversed reaction $f \rightarrow i$. While the CPLEAR experiment measured a nonzero value of the Kabir asymmetry in neutral kaon oscillations ²⁾, a controversy was raised as to whether this result was independent of \mathcal{CP} violation as the $K^0 \rightarrow \bar{K}^0$ and $\bar{K}^0 \rightarrow K^0$ transitions are connected by both the \mathcal{T} and \mathcal{CP} symmetries. Therefore, an idea was proposed to exploit the quantum correlations of neutral B and K meson pairs to observe reversible transitions between flavour and \mathcal{CP} -definite states of the mesons ^{3, 4)}. Such a \mathcal{T} symmetry test was successfully performed by the BaBar experiment with the entangled neutral B meson system ⁵⁾. In turn, the KLOE-2 detector at the DAΦNE ϕ -factory is capable of performing a statistically significant direct observation of \mathcal{T} symmetry violation with neutral kaons independently of \mathcal{CP} violation ⁴⁾.

2 Transitions between flavour and \mathcal{CP} -definite neutral kaon states

Neutral kaon states may be described in a number of bases including flavour-definite states:

$$\mathcal{S} |K^0\rangle = +1 |K^0\rangle, \quad \mathcal{S} |\bar{K}^0\rangle = -1 |\bar{K}^0\rangle, \quad (1)$$

as well as the states with definite \mathcal{CP} parity:

$$|K_+\rangle = \frac{1}{\sqrt{2}} [|K^0\rangle + |\bar{K}^0\rangle] \quad \mathcal{CP} = +1, \quad (2)$$

$$|K_-\rangle = \frac{1}{\sqrt{2}} [|K^0\rangle - |\bar{K}^0\rangle] \quad \mathcal{CP} = -1. \quad (3)$$

State of the kaon can be identified at the moment of decay through observation of the decay final state. With the assumption of $\Delta S = \Delta Q$ rule¹, semileptonic kaon decays with positively and negatively charged leptons (later denoted as ℓ^+ , ℓ^-) unambiguously identify the decaying state as K^0 and \bar{K}^0 respectively. Similarly, the \mathcal{CP} -definite states K_+ and K_- are implied by decays to hadronic

¹Although an assumption, the $\Delta S = \Delta Q$ rule is well tested in semileptonic kaon decays ⁶⁾

final states with respectively two and three pions (denoted $\pi\pi$, 3π). In order to observe a transition between the $\{K^0, \bar{K}^0\}$ and $\{K_+, K_-\}$ states, both the *in* and *out* states must be identified in the respective basis. This is uniquely possible in the entangled system of neutral K mesons produced at a ϕ -factory. Due to conservation of $\phi(1^{--})$ quantum numbers, the $\phi \rightarrow K^0 \bar{K}^0$ decay yields an anti-symmetric non-strange final state of the form:

$$|\phi\rangle \rightarrow \frac{1}{\sqrt{2}} (|K^0(+\vec{p})\rangle |\bar{K}^0(-\vec{p})\rangle - |\bar{K}^0(+\vec{p})\rangle |K^0(-\vec{p})\rangle), \quad (4)$$

which exhibits quantum entanglement between the two kaons in the EPR sense ⁷). Thus, at the moment of decay of first of the K mesons (and, consequently, identification of its state) state of the partner kaon is immediately known to be orthogonal. This property allows for identification of state of the still-living kaon only by observing the decay of its partner. Its state can be then measured at the moment of decay after time Δt , possibly leading to observation of a transition between strangeness and CP-definite states. A list of all possible transitions is presented in Table 1. It is immediately visible that time-reversal conjugates of these transitions are not identical with neither their CP- nor CPT-conjugates which is crucial for independence of the test.

	Transition	\mathcal{T} -conjugate
1	$K^0 \rightarrow K_+$ $(\ell^-, \pi\pi)$	$K_+ \rightarrow K^0$ $(3\pi^0, \ell^+)$
2	$K^0 \rightarrow K_-$ $(\ell^-, 3\pi^0)$	$K_- \rightarrow K^0$ $(\pi\pi, \ell^+)$
3	$\bar{K}^0 \rightarrow K_+$ $(\ell^+, \pi\pi)$	$K_+ \rightarrow \bar{K}^0$ $(3\pi^0, \ell^-)$
4	$\bar{K}^0 \rightarrow K_-$ $(\ell^+, 3\pi^0)$	$K_- \rightarrow \bar{K}^0$ $(\pi\pi, \ell^-)$

Table 1: Possible transitions between flavour and CP-definite states and their time-reversal conjugates. For each transition a time-ordered pair of decay products which identifies the respective states is given.

3 Observables of the test

For each of the transitions from Table 1 occurring in time Δt and its time-reversal conjugate a time-dependent ratio of probabilities can be defined as an observable of the \mathcal{T} symmetry test. In the region where high statistics is

expected at KLOE-2, however, two of them are important for the test:

$$R_2(\Delta t) = \frac{P[K^0(0) \rightarrow K_-(\Delta t)]}{P[K_-(0) \rightarrow K^0(\Delta t)]} \sim \frac{I(\ell^-, 3\pi^0; \Delta t)}{I(\pi\pi, \ell^+; \Delta t)}, \quad (5)$$

$$R_4(\Delta t) = \frac{P[\bar{K}^0(0) \rightarrow K_-(\Delta t)]}{P[K_-(0) \rightarrow \bar{K}^0(\Delta t)]} \sim \frac{I(\ell^+, 3\pi^0; \Delta t)}{I(\pi\pi, \ell^-; \Delta t)}. \quad (6)$$

These quantities can be measured experimentally through numbers of events with certain pairs of decays occurring in time difference Δt . A deviation of these ratios from 1 would be an indication of \mathcal{T} symmetry violation. Bernabeu *et al.* have simulated the behaviour of these ratios expected at KLOE-2 for 10fb^{-1} of data ⁴⁾ (Figure 1). At KLOE-2 the asymptotic region of R_2 and R_4 can be observed where their theoretical behaviour may be expressed as:

$$R_2(\Delta t) \xrightarrow{\Delta t \gg \tau_s} 1 - 4\Re\epsilon, \quad (7)$$

$$R_4(\Delta t) \xrightarrow{\Delta t \gg \tau_s} 1 + 4\Re\epsilon, \quad (8)$$

where $\epsilon = (\epsilon_S + \epsilon_L)/2$ is a T-violating parameter ⁴⁾.

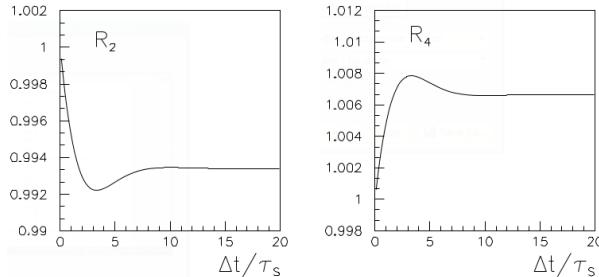


Figure 1: Simulated behavior of the probability ratios expected for 10fb^{-1} of KLOE-2 data. The figure was adapted from ⁴⁾.

4 Reconstruction of events for the test

The \mathcal{T} symmetry test requires reconstruction of the processes with $K_S \rightarrow \pi\pi$, $K_L \rightarrow \pi^\pm \ell^\mp \nu$ and $K_S \rightarrow \pi^\pm \ell^\mp \nu$, $K_L \rightarrow 3\pi^0$ pairs of decays. While for $K_S \rightarrow \pi\pi$ the $\pi^+\pi^-$ final state can be chosen to take advantage of good vertex and momentum reconstruction from charged pion tracks in the KLOE drift chamber, the $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay reconstruction is a challenging task.

This process only involves neutral particles resulting in the calorimeter clusters from six γ hits being the only recorded information. Moreover, this decay has to be reconstructed in cases where the partner K_S decays semileptonically and the missing neutrino prevents the use of kinematic constraints to aid $K_L \rightarrow 3\pi^0$ reconstruction. Therefore, this process requires independent reconstruction.

5 The $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay vertex reconstruction

The aim of the new reconstruction method is to obtain the spatial coordinates and time of the K_L decay point by only using information on electromagnetic calorimeter clusters created by γ hits from $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$. Information available for i -th cluster includes its spatial location and recording time (X_i, Y_i, Z_i, T_i) . The problem of localizing the vertex is then in its principle similar to GPS positioning and can be solved in a similar manner.

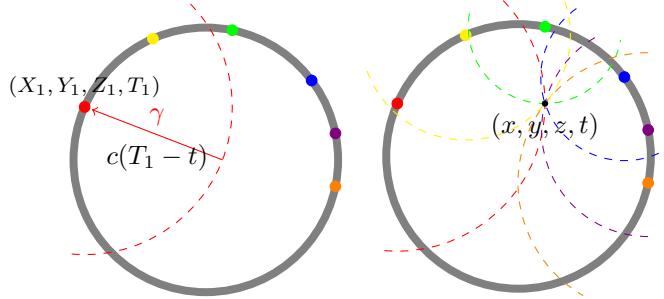


Figure 2: A scheme of $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ vertex reconstruction in the section view of KLOE-2 calorimeter barrel (grey circle). Colored dots denote clusters from γ hits. Left: a set of possible origin points of a γ which created a cluster is a sphere centered at the cluster (red dashed line) with radius parametrized by kaon flight time t . Right: intersection point of such spheres for all γ hits is the $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay point.

For each cluster a set of possible origin points of the incident γ is a sphere centered at the cluster with radius parametrized by an unknown γ origin time t (Figure 2, left). Then, definition of such sets for all available clusters yields a system of up to six equations:

$$(T_i - t)^2 c^2 = (X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2 \quad i = 1, \dots, 6, \quad (9)$$

with the unknowns x, y, z and t . It is then easily noticed that the $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ vertex is a common origin point of all photons which lies on an intersection of the spheres found as a solution of the above system (Figure 2, right). At least 4 clusters are required to obtain an analytic solution although additional two may be exploited to obtain a more accurate vertex numerically.

It is worth noting that this vertex reconstruction method directly yields kaon decay time in addition to spatial location which is useful for time-dependent interferometric studies such as the \mathcal{T} symmetry test.

Acknowledgments

This work was supported in part by the Foundation for Polish Science through the MPD programme and the project HOMING PLUS BIS/2011-4/3; by the Polish National Science Centre through the Grants No. 0469/B/H03/2009/37, 0309/B/H03/2011/40, 2011/03/N/ST2/02641, 2011/01/D/ST2/00748, 2011/03/N/ST2/02652, 2013/08/M/ST2/00323 and by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT- 2004-506078; by the European Commission under the 7th Framework Programme through the *Research Infrastructures* action of the *Capacities* Programme, Call: FP7-INFRASTRUCTURES-2008-1, Grant Agreement No. 227431.

References

1. L. Wolfenstein, Int. J. Mod. Phys. E **8** (1999) 501.
2. A. Angelopoulos *et al.* [CPLEAR Collab.], Phys. Lett. B **444** (1998) 43.
3. J. Bernabeu, F. Martinez-Vidal and P. Villanueva-Perez, JHEP **1208** (2012) 064 [arXiv:1203.0171 [hep-ph]].
4. J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, Nucl. Phys. B **868** (2013) 102 [arXiv:1208.0773 [hep-ph]].
5. J. P. Lees *et al.* [BaBar Collab.], Phys. Rev. Lett. **109** (2012) 211801
6. J. Beringer *et al.* [Particle Data Group Collab.], Phys. Rev. D **86**, 010001 (2012).
7. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. **47** (1935) 777.