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Abstract: General Relativity suffers for two main problems which have not yet been
overcome: it predicts spacetime singularities and cannot be formulated as a perturbative
renormalizable theory. In particular, many attempts have been made for avoiding singularities,
such as considering higher order or infinite derivative theories. The price to pay in both
cases is to give up locality and therefore they are known altogether as non-local theories of
gravity. In this paper, we investigate how to recognize the presence of non-local effects by
exploiting the power emitted by gravitational waves in a binary system in presence of non-local
corrections as R□−1R to the Hilbert-Einstein action. After solving the field equations in
terms of the source stress-energy tensor Tµν and obtaining the gravitational wave stress-energy
pseudo-tensor, τµν , we find that the General Relativity quadrupole formula is modified in
a non-trivial way, making it feasible to find a possible signature of non-locality. Our final
results on the gravitational wave stress-energy pseudo-tensor could also be applied to several
astrophysical scenarios involving energy or momentum loss, potentially providing multiple
tests for non-local deviations from General Relativity. We finally discuss the detectability of
the massless transverse scalar mode, discovering that, although this radiation is extremely
weak, in a small range around the model divergence, its amplitude could fall within the
low-frequency Einstein Telescope sensitivity.
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1 Introduction

Modern physics is based on two main pillars, i.e. General Relativity and Quantum Field
Theory. General Relativity (GR) describes the gravitating systems and non-inertial frames
on large scales, while Quantum Field Theory (QFT) holds at high energy or, equivalently,
small scale regimes where a classical description breaks down. However, QFT assumes
that space-time is flat and even its extensions, such as QFT in curved space time, consider
space-time as a classical background, never allowing a quantized version of the latter. GR, on
the other hand, does not take into account the quantum nature of matter because the source
of the gravitational field simply is the (classical) Stress-Energy tensor Tµν and hence, in its
formulation, gravity is a local interaction. Although a theory of Quantum Gravity remains
unknown, it is legitimate to ask for what happens when a strong gravitational field is present
at quantum scales. Because of its weakness compared to other interactions, the characteristic
scale under which one would expect to experience full non-classical effects, relevant to gravity,
the Planck scale is quite small, i.e. 10−33 cm, which is not accessible by any current experiment.

Furthermore, the Einstein Equivalence Principle is based on the assumption that an
accelerated observer in Minkowski spacetime, at each event along its world line, is physically
equivalent to a momentarily identical comoving inertial observer. Non-locality comes out
taking also the past history of the accelerated observer into account. Such history-dependent
theories have recently been developed with the purpose of see a quantum feature arising
from GR, while addressing, at the same time, some of the most important issues of modern
Cosmology, namely dark energy or dark matter. It is not a new fact that Quantum Mechanics
shows non-local aspects: non-locality is a manifestation of entanglement and the latter has
been repeatedly demonstrated in laboratory experiments; the Bell theorem, furthermore,
demonstrated that locality is violated in some quantum systems. After that, non-locality has
been investigated in QFT (see e.g. [1–7]), as well as in string theory [8–11], where it mainly
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emerges as a ‘side’ effect of the introduction of quantum corrections to GR the purpose of which
was to cure the singularity problem. Indeed, applications to Cosmology showed that non-local
ghost-free higher-derivative modifications of the Einstein gravity, in the ultraviolet regime,
can admit non-singular bouncing solutions for the Universe (in place of the Big Bang singular
solution) and non-singular Schwarzschild metrics for black holes [12]. Another motivation
for considering non-local gravity is the possibility of achieving renormalizability without the
appearance of ghost modes [13]. A road towards Quantum Gravity, by considering non-local
corrections to the Hilbert-Einstein action, has been drawn in [14–17]. The introduction
of non-local terms have also been considered in alternative theories of gravity, such as
teleparallel gravity [18] and revealed extremely useful in cosmology [19–21]. However, it
must be said that the non-local theories of gravity themselves can be considered as Extended
Theories of Gravity [22], meaning that when the non-local terms are cancelled out, the
GR limit is recovered.

More precisely, non-local theories of gravity are described by Lagrangians composed by a
finite sum of products between fields and their derivatives evaluated at different points x and
y of the spacetime while metric gµν and/or other fields are described by integro-differential
equations, implying that the value of the field at one point depends on its value at another
point of the spacetime, weighted by a function called nucleus or kernel. There are essentially
three different ways to implement non-locality from a mathematical point of view. The first
approach (the most studied in the literature) is by means of a convergent series expansion
with real coefficients cn of an analytic non-polynomial function F of the d’Alembert operator
□, known as Infinite Derivative Gravity (IDG) [3, 23–25]:

F (□) =
∞∑

n=1
cn

□n

M2n
,

where M is the mass scale associated to non-locality effects. Notice that, in this case, non-
locality appears only at the level of interaction, and not at the level of a free field propagation
without a source. Recently, it was shown that, in gravity theories containing such class
of non-local terms, the linearized Ricci tensor Rµν and Ricci scalar R are not vanishing
in the region of non-locality, i.e. at short distance from a source, due to the smearing of
the source induced by the presence of non-local gravitational interactions. It follows that,
unlike in the Einstein gravity, the Riemann tensor is not traceless and it does not coincide
with the Weyl tensor, which, however, vanishes at short distances, implying that the (static)
metric is conformally flat in that region [23], implying a possible deviation from 1/r potential
drop at very short distance.1

In the second way, that we shall follow here, the non-locality manifests itself in non-
analytic operators such as [28, 29]

□−nR(x) = ϕ0(x) +
∫

Ω
d4y

√
−g(y)G(x, y)R(y) , (1.1)

where G(x, y) is the retarded Green function of the operator □n, Ω ⊆ R4 and ϕ0 is the
solution of □−nϕ0(x) = 0. It was shown that the application of the non-local operator

1A decay as 1/r of the gravitational potential has only been verified up to ∼ 10−5 m, which is thirty orders
of magnitude away from the Planck length [26, 27].
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□−1 to the scalar curvature R gives rise to the late-time cosmic expansion of the Universe
without invoking any Dark Energy contribution. For an overview on non-local cosmology
see also [19, 30, 31]. Finally, non-locality can enter through a constitutive relation on the
(linearized) gravitational field involving a causal kernel determined via observational data,
in the spirit of non-local electrodynamics of media [32, 33].

In all these approaches, it is important to study the linearized versions of the theories
and to derive gravitational waves (GWs). For IDG, they have been studied in [34] and [35],
while, for higher order theories with Lagrangian L = R +

∑n
h=1 ahR□−hR, with n fixed,

they are discussed in [28]. Indeed, gravitational radiation allows to detect possible effects of
non-local gravity [36] as well as to classify the degrees of freedom of a given theory.

In this paper, we compute the gravitational wave stress-energy tensor (GW-SET) for the
non-local gravity theory L = R+ aR□−1R with a an adimensional constant and derive, from
it, the power emitted by a gravitational system in terms of quadrupole momenta, in view
of possible astrophysical applications. This gravitational action is a peculiar case of models
considered in [37], whose cosmological implications have been studied in [38]. A modified
quadrupole formula with non-local terms has been studied for binary pulsars, see [39]. A
derivation of gravitational pseudo-tensor in higher order curvature-based and torsion-based
gravity has been taken into account in [40, 41]. In particular, in section 2 we obtain the
field equations and the Noether current using a localized version of the Lagrangian, in order
to avoid integro-differential equations. Then, in section 3, we solve the non-homogeneous
system of equations in terms of the (source) stress-energy tensor Tµν , whose solutions in
the far region condition only depends on the quadrupole momenta. Finally, we close the
manuscript with a summary and an outlook in section 4. More detailed accounts of some
computations are given in the appendices.

In this work, we adopt natural units ℏ = c = 1, and we define the Planck mass as
M2

pl = 8πG. The negative metric signature (+,−,−,−) is also adopted. The Greek indices
are the coordinate ones contracted with the metric tensor gµν , while the Latin indices
(spatial coordinates) are contracted with the Kronecker delta. Finally, space vectors are
indicated in bold.

2 Non-local gravity as an extension of General Relativity

Let us derive the field equations for an extended theory of gravity given by the action

S[g] = 1
2χ

∫
d4x

√
−gR

(
1 + f(□−1R)

)
+

∫
d4x

√
−gLm[g] , (2.1)

where χ = 8πG is the gravitational coupling, Lm is the matter Lagrangian, and f(□−1) is
an analytic function of □−1 which is the inverse of d’Alembert operator □ = ∇µ∇µ, being
□−1□ = 1. A similar action has been considered in [37]. According to the form of f(□−1),
it shows Noether symmetries [42]. An interesting case presents a non-local correction like
∼ R exp{a□−1R} where a is an adimensional constant. However, we can simplify the previous
action by expanding f in terms of □−1R and considering only the first term, which, in the
quadrupole approximation we are going to discuss, is the dominant one. It is

f(□−1) ≈ a□−1R . (2.2)
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Therefore the action (2.1) becomes [43]

S[g] = 1
2χ

∫
d4x

√
−g

(
R+ aR□−1R

)
+

∫
d4x

√
−gLm[g] , (2.3)

In view to derive the field equations, we can recast action (2.1) in a localized version. It is

Sg[gµν , ϕ, λ] = 1
2χ

∫
d4x

√
−g

[
R(1 + aϕ) + λ(□ϕ−R)

]
, (2.4)

where the auxiliary field ϕ = □−1R has been introduced. Here λ is a Lagrange multiplier.
See ref. [30] and references therein for details. After integration by parts, eq. (2.4) becomes

S[gµν , ϕ, λ] = 1
2χ

∫
d4x

√
−g

[
R(1 + aϕ− λ) − ∇αλ∇αϕ

]
. (2.5)

The variation with respect to the metric gµν gives the equations of motion, i.e.

Gµν + (Gµν + gµν□ − ∇µ∇ν)(aϕ− λ) − ∇(µϕ∇ν)λ+ 1
2gµν∇σϕ∇σλ = χTµν , (2.6)

while variations with respect to both the scalar fields give the two constraints

□λ = −aR , □ϕ = R . (2.7)

The stress-energy tensor is Tµν = − 2√
−g

δ(
√

−gLm)
δgµν

, and the Einstein tensor is Gµν = Rµν −
1
2gµνR. Tracing eq. (2.6), one obtains the scalar equation

(1 + aϕ− 6a− λ)R− ∇σϕ∇σλ = −χT , (2.8)

where T = gµνTµν and we used the relation

□
(
aϕ− λ

)
= 2aR . (2.9)

An important issue is whether it is possible to eliminate or not the non-local terms from the
Lagrangian (2.3) by redefining the metric tensor as done, for example, in ref. [44]. This is not
possible for the following mathematical and physical reasons. In fact, from a mathematical
point of view, non-locality is linked to the integro-differential character of the field equations
and therefore, from eq. (1.1), the non-local operators are integral operators where the value
of a physical quantity at a point depends on its value assumed at other points modulated by
the kernel. Thus it is not possible to eliminate the integral character of physical quantities
through a redefinition of the metric which is a local tensor object. On the other hand, from a
physical point of view, non-locality is in this theory an intrinsic property of gravity related
to finite characteristic lengths and masses. Also if a “localization” process is performed
(see e.g. [17, 30] ) auxiliary scalar fields emerge pointing out that non-locality introduces
further degrees of freedom.

In order to analyze the gravitational radiation, we consider the first-order perturbations
hµν , φ and w. The metric perturbation is around the flat metric ηµν and the perturbations
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of the two scalar fields ϕ and λ are around their (constant) Minkowskian values ϕ0 and
λ0, respectively, i.e.

gµν = ηµν + hµν ,

ϕ = ϕ0 + φ ,

λ = λ0 + w .

(2.10)

At first order in hµν and without imposing any gauge, the Ricci tensor Rµν and Ricci
scalar R are [45]

R(1)
µν = 1

2
(
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ − ∂µ∂νh− □hµν

)
, (2.11)

R(1) = ∂µ∂νh
µν − □h . (2.12)

In GR, the gravitational pseudo-tensor can be obtained in different ways, however, the related
physical information has to be the same. This statement holds also in modified gravity
as showed in [46]. Here, we follow the Noether current method, based on the symmetries
of the action, which lead to conserved currents. The gravitational stress-energy tensor
comes out by varying, on shell, the second-order Lagrangian density L(2) with respect to
the coordinates. In our case, it is

L(2) = 1
2χ

[
(
√

−gR)(2)
(
1 + aϕ0 − λ0

)
+R(1)

(
aφ− w

)
− ∂µφ∂µw

]
. (2.13)

Defining ψ0
.= 1 + aϕ0 − λ0 ≠ 0 and ψ(1) .= aφ − w its perturbation, and introducing

the new field

θµν
.= hµν − 1

2ηµνh− ηµν

ψ0
ψ(1), (2.14)

such that, in our reference frame, it is ∂µθ
µν = 0 (the Lorenz gauge), eq. (2.13) becomes

L(2) = ψ0
32πG

[1
4∂αθ∂

αθ + ∂αθβγ∂
βθαγ − 1

2∂γθαβ∂
γθαβ + (6a− 2ψ0)

ψ2
0

∂αφ∂αw

− 3
ψ2

0

(
a2∂αφ∂

αφ+ ∂αw∂
αw

)]
.

(2.15)

See appendix A for details. From this Lagrangian, the Euler-Lagrange equations of motion,
in the Lorenz gauge and in vacuum, are

□θµν = 0 , (2.16)

K□w − 6a
ψ2

0
□φ = 0 , (2.17)

K□φ− 6a
ψ2

0
□w = 0 , (2.18)

as already found in [43]. In eqs. (2.17) and (2.18), we have defined the constant K .=
(6a− 2ψ0)

ψ2
0

. Notice that the last two are coupled differential equations for □φ and □w.

When a = 0 they implies □φ = 0 = □w and therefore φ = 0 = w, that is GR is recovered.
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The trivial solution of the system formed by the equations (2.17) and (2.18) is obtained by
imposing that the determinant is different from zero, that is

6a ̸= ψ0, (2.19)

which implies

□φ = □w = 0, (2.20)

or
□ψ(1) = 0 . (2.21)

This means that ϕ(1) is a massless scalar field added to the two tensor fields of the field
eq. (2.16). In other words, gravity linearly perturbed presents three degrees of freedom.

The Noether current for our non-local gravity model is defined as

jα
β
.= − ∂L(2)

∂(∂αθµν)∂βθµν − ∂L(2)

∂(∂αφ)∂βφ− ∂L(2)

∂(∂αw)∂βw + δα
β L(2) , (2.22)

which, after some computations (see appendix A), becomes

jα
β = ψ0

32πG

[
− 2∂νθµα∂βθµν + ∂αθµν∂βθµν −K∂αw∂βφ

+ 6
ψ2

0
a2∂αφ∂βφ−K∂αφ∂βw + 6

ψ2
0
∂αw∂βw

+ δα
β∂νθµγ∂

γθµν − 1
2δ

α
β∂γθµν∂

γθµν + δα
βK∂

γφ∂γw − δα
β

3a2

ψ2
0
∂γφ∂γφ− δα

β

3
ψ2

0
∂γw∂γw

]
,

where we have already dropped terms with θ since they would be zero because of the TT
gauge. For similar reasons, the first and the fifth-from-last terms are zero,2 while the fourth
is zero thanks to the equation of motion (2.16). Furthermore, the last three terms in the
above equation are also zero. Integrating by parts, they can be recast as

δα
β

[
K∂γφ∂γw − 3a2

ψ2
0
∂γφ∂γφ− 3

ψ2
0
∂γw∂γw

]
= δα

β

[
−Kφ□w + 3a2

ψ2
0
φ□φ+ 3

ψ2
0
w□w

]
= δα

β

[
− 1

2Kφ□w − 1
2Kw□φ+ 3a2

ψ2
0
φ□φ+ 3

ψ2
0
w□w

]
,

(2.23)

where, in the last line, we have simply written Kφ□w as the sum of two equal terms and
integrated the second one. Then, the final result in eq. (2.23) can be seen as a combination3

2For our purpose, the Noether current should be considered under average over several wavelenghts, ⟨jα
β ⟩,

in order to obtain a gauge-invariant measure of physical quantities which we are interested in (such as energy
and momentum). This imply that single derivatives are zero, ⟨∂µf⟩ = 0, and hence we are empowered to
integrate by parts under the averaging brackets.

3Multiplying eq. (2.17) by a factor −φ/2 and eq. (2.18) by a factor −w/2, the sum is equal to eq. (2.23).
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of eqs. (2.17) and (2.18) and therefore it is always zero. By deleting all the null terms,
what remains is

jα
β = ψ0

32πG

[
∂αθµν∂βθµν + 6

ψ2
0
∂αψ(1)∂βψ

(1) + 4
ψ0
∂αφ∂βw

]
, (2.24)

which holds only in the TT gauge and under averaging brackets.
The gravitational wave stress-energy tensor (GW-SET) is then defined as τα

β
.= ⟨jα

β ⟩,
therefore

τα
β = ψ0

32πG

〈
∂αθµν

(T T )∂βθ
(T T )
µν + 6

ψ2
0
∂αψ(1)∂βψ

(1) + 4
ψ0
∂αφ∂βw

〉
. (2.25)

where we have stressed the gauge condition on θµν and brackets means average over all
wavelenghts. Notice that the above expression is symmetric in the indices α, β and it is
not invariant under diffeomorphisms, but only under affine transformations. In this sense, it
is a pseudo-tensor. Therefore, to make it a real tensor, the average procedure is essential.
Furthermore, as we can see, in addition to GR term (the first) and a scalar field contribution
from ψ(1) = aφ − w, a mixed term also appears. It is not possible to recast it as a term
involving only ψ. We would expect a pseudo-tensor including only terms in θµν and ψ(1) as
in the case of scalar-tensor theories [46] or f(R) gravity [47]. The non-zero mixed term is a
peculiarity of non-local gravity which could constitute a signature for such theories.

As a final remark, we point out that combining relations in eqs. (2.7), it turns out that

□(λ+ aψ) = 0, (2.26)

and then the first-order perturbation gives

□(w + aψ) = 0, (2.27)

whose trivial solution is w = −aψ. This means that the two fields w and ψ can be chosen
as redefinitions of each other and that, therefore, it is necessary to add only one additional
degree of freedom to the two standard tensor degrees of freedom of linearized GR. Based
on this, the f(R)-like field ψ(1) can be written as ψ(1) = 2aφ. It is clear, from the above
considerations and in the following sections, that the three scalar fields are related each other
and non-local gravity implies only a further mode in GWs [36].

3 Gravitational waves with source

In order to get physical quantities from the pseudo-tensor (2.25), we have to link each of
the fields θµν , φ, w to the source of gravitational waves, that is to Tµν . This implies to
solve the equations of motions not in vacuum, but with Tµν ̸= 0. The field equations with
source, in the Lorentz gauge, are4

□θµν = −2χTµν , (3.1)

□φ = 1
2□θ + 3□ψ(1) , (3.2)

□w = −a
[1

2□θ + 3□ψ(1)
]
. (3.3)

4Since our background space is Minkowski, we have ϕ0 = □−1R(0) = 0 and, similarly, λ0 = 0. Furthermore,
notice that in solving non-vacuum equations, the traceless condition is not allowed.
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Here the matter energy-momentum tensor Tµν stands for the unperturbed one because the
continuity equation ∂µT

µν = 0 must be fulfilled. The proportionality between □φ and
□w is obvious and it comes directly from eq. (2.7). The trace equation □θ = −2χT can
be recast in the form

□ψ(1) = 1
3

[
ψ0R

(1) + χT
]
, (3.4)

where we have used G(1) = −R(1) with (see eq. (2.12))

R(1) = −1
2□h+ 1

ψ0
□ψ(1) . (3.5)

with ψ0 = 1. Eq. (3.4) is analogous to the trace equation of f(R) gravity where it is usually
recasted as a Klein-Gordon equation for the scalar field [22]. We will see later that this is
not the case for non-local gravity, i.e. it is not possible to obtain a Klein-Gordon equation
for the scalar field ψ(1). Notice also that eqs. (3.2) and (3.3) are not identical to eqs. (2.17)
and (2.18) since now □θ ≠ 0.

The above non-homogeneous linear system of equations has two possible solutions
according to the value of a. For a ̸= 1/6, the linearized field equation admits the standard
Einsten gravitational waves plus massless transverse scalar radiation while the non-local
□−1-theory, for the value of the coupling constant a = 1/6, shows a different behavior.
It admits massive scalar waves as solutions and reproduces the Polyakov two-dimensional
conformal effective action that occurs in string theory. See [28, 29]. If a = 1/6, it is:

a = 1/6 ⇒
{
T = 0 , □w = −1

6□φ
}
. (3.6)

The traceless condition at zero order Tµν is not suitable for our purposes: it is not physically
acceptable for a binary system where the linear approximation holds and, more importantly,
it would not allow to obtain a solution for the fields φ and w depending on the source. In
other words, a contribution from the non-local term aR□−1R to the quadrupole formula of
the gravitational radiation directly generated by the matter is not admissible if a = 1/6 for
the slowly moving compact binaries, where the background space-time curvature is negligible.
However, this fact does not exclude the presence of lower multipoles (monopole and dipole)
in gravitational radiation in addition to the quadrupole and higher multipole contributions,
in presence of strong-field sources. Hence, we will not consider this case any more.

On the other hand, when a ̸= 1/6, the solution of the system is the following:

a ̸= 1/6 ⇒
{
□φ = 1

6a− 1χT , □w = −a
6a− 1χT

}
, (3.7)

which, once solved in turn, clearly give explicit solutions for the scalar fields φ, w in terms of
the source. Differently from the case f(R), (3.7) are not standard Klein-Gordon equations,
because no mass term appears, according to the fact that, for a ̸= 1/6, the non-local
□−1-gravity shows only massless scalar modes but not massive ones. One might see the
effect of non-locality in the manifestation of an effective energy-momentum tensor, namely
T̃
.= −T/[2(6a− 1)]. Moreover, since □ψ(1) = 2a□φ, getting solutions from (3.7) is equivalent

to find a solution for ψ(1) as well. Based on these facts, in the following we will focus
only on the case (3.7).
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3.1 Explicit solutions

We want now to seek for explicit solutions for θµν , φ and w with the assumption of far
wave zone, i.e. for a source far enough from the observer, and we also assume a source in
non-relativistic motion in order to simplify the orbital description of the binary system.

In analogy with GR, eq. (3.1) immediately returns

θµν(t,x) = 4G
∫
Tµν(t− |x − y|,y)

|x − y|
d3y := Jµν , (3.8)

which, in the hypothesis of far-field, i.e. |x − y|−1 ≃ 1/r, becomes

θij(t,x) ≃ 4G
r

∫
Tij(t− r,y)d3y . (3.9)

In the above equation, we considered only spatial components since the remaining ones can
be computed exploiting the gauge condition as in GR. We call t′ .= t− r the retarded time
and, using the conservation of energy-momentum ∂νT

iν = 0 and the relation

∂µ∂ν

(
xixjTµν

)
= 2T ij , (3.10)

eq. (3.8) turns into

θij(t,x) = 2G
r

d2Qij(t′)
d2t

, (3.11)

where we have defined the quadrupole tensor

Qij(t) .=
∫
d3yT 00(t,y)yiyj , (3.12)

with integration over the entire space of the source.5 The above quantity is closely linked to
the geometry and masses involved in the astrophysical system and it is therefore a known
quantity. Solution (3.11), on the other hand, gives the gravitational tensor field as a function
of the quadrupole time-derivative, to be replaced into eq. (2.25).

From eq. (3.7), it turns out that the relation w = −aφ holds, and therefore it is sufficient
to obtain a solution for only one scalar field. More precisely they are

φ(t) ≃ 2G
(1 − 6a)r

∫
T (t− r,y)d3y = ηµν

2(1 − 6a)Jµν , (3.13)

w(t) ≃ − 2aG
(1 − 6a)r

∫
T (t− r,y)d3y = − aηµν

2(1 − 6a)Jµν . (3.14)

In obtaining the above solutions, we assumed the solution of the homogeneous equations
to be zero, as in GR. In other words, we are assuming that when the source is off, all the
fields are zero, just as for hµν , and this is legitimate if we want such fields to be generated by
matter. Apart from this, when a ̸= 1/6, the GW-SET (2.25) reduces to

τα
β = ψ0

32πG
〈
∂αθµν

(T T )∂βθ
(T T )
µν + 4a(6a− 1)∂αφ∂βφ

〉
, (3.15)

5In linearized gravity, Tµν is a zero-order quantity. This implies that the contribution to the energy-
momentum tensor comes only from ordinary matter and not from gravitational waves. It turns out that Tµν

is zero outside and on the boundary of the source.
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where only one scalar field appears. Notice that the above expression is always symmetric
and gauge-invariant.6 The trace J in eq. (3.13) can be developed as

J(t) = 4G
r

[
M + niḊi(t′) + 1

2ninjQ̈
ij(t′)

]
+ 2G

r
Q̈(t′) , (3.16)

with Q
.= δijQ

ij , overdot means derivative with respect to time t′, and ni
.= x̂i = xi/r. See

also [48]. Therefore, using conservation laws Ṁ and D̈i = 0, we arrive at (see appendix B)

∂0φ∂rφ = −1
4(1 − 6a)2

[2G
r

(
ninj

...
Q

ij(t′) +
...
Q

)]2
. (3.17)

3.2 The emitted power

The quadrupole radiation is the emitted power (or luminosity) in the far region condition,
and it is given by [49]

Ptot = −r2
∫
dΩ⟨τ0i⟩ni := P

(GR)
tot + P

(NL)
tot , (3.18)

with integration on a spatial surface at spatial infinity. The subscript ‘NL’ labels the non-local
contribution in addition to the GR result, which corresponds to the first term of eq. (3.15).
It is well-known that the latter is given by [45, 49]

P
(GR)
tot = G

5c5

〈 ...
Q ij

...
Q

ij − 1
3

...
Q

2
〉
, (3.19)

where we have restored the factor c5 at the denominator. Using eq. (3.17), after long but
straightforward calculations, the non-local contribution to the energy rate reads as

P
(NL)
tot = aG

15(6a− 1)⟨
...
Q

jk ...
Q jk + 13

...
Q

2⟩ , (3.20)

which clearly cancels out when a = 0. Substituting eqs. (3.19) and (3.20) into eq. (3.18), the
following formula for quadrupole radiation in non-local gravity is found:

Ptot = G

5c5

[(
1 + a

3(6a− 1)

)
⟨
...
Q

ij ...
Q ij⟩ + 1 + 7a

3(6a− 1)⟨
...
Q

2⟩
]
. (3.21)

Just to give a preliminary example, we can consider a Keplerian binary system consisting
in two stars of mass M in a circular orbit at distance R from their common center of mass,
then eq. (3.21) predicts an emitted power of

Ptot = 128GM2R4w6

5c5

[
1 − a

3(1 − 6a)

]
, (3.22)

6The first term, corresponding to the tensor contribution, is invariant under gauge transformation only
considering the average procedure, as in GR. The second term, i.e. the non-local correction, is manifestly
covariant. Explicitly, under a transformation x′µ = xµ + ϵµ(x), it turns out that ∂µφ → ∂µφ + ∂σφ∂µϵσ, and
therefore ∂αφ∂βφ → ∂αφ∂βφ + ∂αφ∂ρφ∂βϵρ + ∂βφ∂ρφ∂αϵρ, i.e. ∂αφ∂βφ transforms like a 2-rank tensor.
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where w =
√

GM
4R3 is the keplerian angular frequency of the binary system. In general, for

binary systems with different masses m1 and m2, on elliptic orbits of semi-major axis R and
eccentricity e, from the Peters-Mathews formula [49], it turns out that

Ptot = 32G4m2µ2

5c5R5 f(e, a) , (3.23)

where m = m1 +m2 is the total mass and µ = m1m2/(m1 +m2) is the reduced mass, and
we have defined the function

f(e, a) .= e4(241a− 37) + 4e2(469a− 73) + 608a− 96
96(6a− 1)(1 − e2)7/2 . (3.24)

From eq. (3.22) it is evident that non-local gravity induces a modification in quadrupole
approximation of emitted power from binary systems, therefore resulting eventually observable.
Since we expect a small value for a (any correction to GR in any extended theory of gravity
should be rather slight), the above result shows that non-local corrections are, at least in
principle, compatible with orbit decays by quadrupole radiation in binary systems, paving
the way for new observational constraints on non-local corrections compared to those already
present in the literature [31, 38, 42]. Of course, to find constraints on the non-local parameter
a we need to apply eq. (3.21) to realistic astrophysical systems. This way to proceed, i.e.
constraining parameters after the selection of the functional form for the correction, is an
alternative to a more general approach, where the functional form itself can be selected
by fitting the observations.

3.3 Amplitude of the scalar mode

Finally, let us evaluate the amplitude of the gravitational wave. As mentioned before, the
tensor mode of the gravitational wave is given by the field θij defined in eq. (2.14). From an
observational point of view, it would be desirable to separate the purely metric contribution
hij from the field contribution given by ψ(1) = aφ− w, since we just have eq. (3.11) which
holds for the full field θij . For this purpose, one could assume φ and w as distinct propagating
(scalar) modes, according to eqs. (3.13) and (3.14), where we have

ηµνJµν ≡ J ≃ 4G
r

[
M + 1

2Q̈
]
, (3.25)

approximating eq. (3.16) considering only (1/r)-terms. Therefore, φ and w could be seen as
breathing modes in this theory of gravity. In order to estimate the amplitude of such modes,
we first notice that the trace of the quadrupole tensor for a binary system is given by Q = L2µ,
where we called L = 2R the separation between the two bodies. Here µ is the reduced mass.
Based on this assumption, a scalar contribution will be present only if L is a function of time, as
assumed in [47]. In particular, considering a trend like L = L0

(
1 − t

tcoal

)1/4
, it turns out that

Q̈(t) = −1
4
µL2

0
t2coal

(
1 − t′

tcoal

)−3/2
, (3.26)
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where tcoal is the coalescence time and we have evaluated the quantity at the retarded
time t′ = t − r/c. Halfway through the life of the binary system, i.e. at t′ = tcoal/2, the
modulus will be7

|φ| ∼ GµL2
0

r(1 − 6a)c4t2coal
, (3.27)

which clearly depends on the non-local parameter a. For estimating the strain, we first
need an estimate of the coalescence time in non-local gravity. Assuming a circular orbit8

for simplicity, the period is T = 2π
√

R3

GMtot
then

Ṫ

T
= 3

2
Ṙ

R
→ Ṙ(t) = −k̃R−3(t) , (3.28)

where we define

k̃
.= 192

15
G3µM2

tot
c5 f(e, a) . (3.29)

In obtaining the above equation for R(t), we used the relation between the variation of the
period and the variation of the gravitational energy, i.e. Ṫ

T = −3
2

Ė
E , where E = −(GMµ)/(2R)

and Ė = −Ptot given in the previous section. For circular orbits, f(e, a) ≈ 1 in analogy with
the GR case, hence the solution of the above differential relation is

R(t) =
√

2(c1 − k̃t)1/4 , (3.30)

where c1 is found by implying that R(0) = Rnow, with Rnow the current value for R. It
turns out that c1 = R4

now/4. With this value, the coalescence time, tcoal, is the time at
which a(tcoal) = 0, giving

tcoal = 5
256

c5R4
now

G3µM2
tot

. (3.31)

which is the well-known result in GR. This is enough to obtain an order-of-magnitude
estimate for tcoal valid also for the present non-local theory. In particular, for two black
holes with masses of the order 10M⊙, at a semi-distance Rnow = L0/2 = 5 AU, the time for
merging will be tcoal ∼ 109 yr. This implies a (dimensionless) strain9 of the order 10−50 for a
source at a distance r = 100 Mpc. A more promising scenario is offered by the merging of
supermassive black holes, as is the case of SDSS J153636.22 + 044127.0 at a redshift z ≃ 0.4
(i.e. ≃ 1700 Mpc) [51]. With masses of 109M⊙ and 107M⊙ and a semi-distance of 0.05 pc,
the frequency10 and coalescence time would be ∼ 10−9 Hz and ∼ 4 × 108 yr respectively, thus
implying an amplitude of 10−34, which is higher than the stellar-mass black-hole binaries,

7The monopole term, proportional to the (total) mass M , in eq. (3.25) is static and therefore it is negligible
w.r.t. the quadrupole radiation.

8The following argument could easily be generalized to elliptical orbits. We also denote with Mtot the total
mass of the binary system in order to generalize to the case of different masses.

9See [50] for details on different quantities for expressing the sensitivity curve of GWs detectors.
10The frequency f can be estimated remembering that the velocity is v ≃

√
GMtot/L and f ≃ v/(πL).

More precisely, the frequency of the gravitational radiation would be twice that value.
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Figure 1. Dimensionless strain of the scalar mode for a black-hole binary system with masses 100M⊙
and orbital distance of 0.01 AU as a function of the dimensionless non-local parameter a. In this
range of values, the non-local massless transverse scalar mode could fall within the low frequency
sensitivity of the Einstein Telescope.

but still very faint for all current and future gravitational wave observatories, including
advanced LIGO, SKA, LISA and the Einstein Telescope, regardless of the value of the
non-local parameter. The most prosperous case would be that of two black holes of 100
M⊙ at an initial distance of L0 = 0.01 AU.11 The frequency, in this case, would be ∼ 2 Hz.
From figure 1, it is clear that the dimensionless strain explodes as soon as a → 1/6, where
the theory presents a divergence.

In a very narrow range, for the non-local coupling constant, it could fall within the low
frequency sensitivity of the Einstein Telescope, thus representing a case of scientific interest
for the detection of a massless transverse scalar mode in the very near future. See figure 1.

4 Discussion and conclusions

Although a theory of quantum gravity remains unknown, it is legitimate to ask what
happens when a strong gravitational field is present at quantum scales. Because of its
weakness compared to other interactions, the characteristic scale under which one would
expect to experience non-classical effects relevant to gravity, the Planck scale, is quite

11The ratio between the Schwarzschild radius Rs, corresponding to the total mass of the system, and
the orbital separation L0 is an indicator of the gravitational strength. With our assumptions, it gives
Rs/L0 ≃ 0.04. For a self-gravitating system, the virial theorem implies v/c ∼

√
Rs/d ≃ 0.2, meaning that

relativistic corrections to the Newtonian motion of the binary system, although not negligible, do not affect
very much our estimates. At closer distances, i.e. very near to the merging, significant corrections or numerical
relativity techniques should be adopted.
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small, i.e. 10−33 cm, which is not accessible by any current experiment. It is not a new
fact that Quantum Mechanics shows non-local aspects: non-locality is a manifestation of
entanglement and the latter has been repeatedly demonstrated in laboratory experiments;
Bell’s theorem, furthermore, demonstrated that locality is violated in quantum systems. In
gravitational physics, non-locality mainly emerges as a ‘side’ effect of the introduction of
quantum corrections to GR in view to cure the singularity problem. Indeed, applications to
Cosmology showed that non-local ghost-free higher-derivative modifications of the Einstein
gravity in the ultraviolet regime can admit non-singular bouncing solutions for the Universe
(in place of the Big Bang singular solution) and non-singular Schwarzschild metrics for black
holes [12]. Another motivation for considering non-local gravity is the possibility to achieve
renormalizability without the appearance of ghost modes [13]. More precisely, non-local
theories of gravity can be considered as Extended Theories of Gravity [22], meaning that
when the non-local terms are canceled out, GR is restored.

In this paper, we studied a possible implementation of non-local gravity consisting in
the addition of a non-local term of the form R□−1R to the Hilbert-Einstein Lagrangian. We
derived, from it, the power emitted by a gravitational system in terms of the quadrupole
radiation, in view of possible future astrophysical detections. In particular, we obtained the
field equations (using a localized version of the Lagrangian) of the theory and solved them
in terms of the (source) stress-energy tensor Tµν , which, in the far region condition, only
depends on the quadrupole momenta. Finally, from the expression of the Noether current,
we computed the gravitational wave stress-energy pseudo-tensor, (GW-SET), τµν , finding
that the GR quadrupole formula is modified in a non-trivial way. This fact make it feasible
to find possible signatures of non-locality. Incidentally, we have found no mass connected to
non-local terms and this implies no length scale associated to non-locality, at least in the
class of theories considered here. This is different from the other class of non-local gravity
theories, namely the so called Infinite Derivative Gravity theories, where it results a lower
bound on the non-local energy scale of M ∼ 1014 GeV [52]. Even if we expect a very small
value for the non-local parameter a (any correction to GR in any extended theory of gravity
should be rather slight), a preliminary application to a simple astrophysical scenario (a
Keplerian binary system in circular orbit) showed that non-local corrections are compatible
with GR predictions, but the deviation cloud be, at least in principle, appreciable, paving
the way for new observational constraints on non-local corrections compared with those
already present in the literature [31, 38, 42, 53].

In a forthcoming paper, we will apply our final result (3.21) to realistic astrophysical
scenarios (such as the Hulse-Taylor binary system) in order to find constraints on the non-
local parameter a. Another point to focus on will be considering the power emitted by
a binary system in an elliptical orbit, with the aim of computing how the emitted power
depends on the eccentricity of the orbit in presence of non-local corrections. We expect a
strong dependence on eccentricity, as in GR, but a different enhancement factor. Other
possible continuations of this work could concern the extension to higher order corrections
like R□−nR with n > 1 [28]. In particular, models with R□−2R-corrections seems to be
very promising as discussed in [54, 55].
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A The Noether current for non-local gravity

The Lagrangian density for our model of non-local gravity in eq. (2.4) is similar to a non-
minimally coupled scalar-tensor theory. The presence of scalar fields allows us to avoid
integro-differential equations, relatively simplifying the calculations. However, the latter
are very involved and long; so in this appendix, we report only the main steps that led
first to eq. (2.15) and then to eq. (2.24).

The starting point is to write the second-order Lagrangian density, as given in eq. (2.13).
It is

L(2) = 1
2χ

[
(
√

−gR)(2)
(
1 + aϕ0 − λ0

)
+R(1)

(
aφ− w

)
− ∂µφ∂µw

]
, (A.1)

where ψ0 = 1 + aφ − λ0 and ψ(1) = aφ − w. The first term in (A.1) is the second-order
correction of the Ricci scalar. We have

(
√

−gR)(2)

2χ = 1
64πG

[
∂αh∂

αh+ 2∂αhβγ∂
βhαγ − 2∂αh∂βh

β
α − ∂γhαβ∂

γhαβ
]
. (A.2)

It has to be rewritten in terms of the gauge field θαβ given in eq. (2.14). The second term
of eq. (A.1), written in θαβ, is

R(1)ψ(1)

2χ = −∂νh
µν∂µψ

(1) + ∂αh∂
αψ(1)

= − 1
32πG

[
2∂αψ

(1)∂βθ
αβ + ∂µψ

(1)∂µθ + 6
ψ0
∂µψ

(1)∂µψ(1)
]
,

where in the first line we integrated by parts, while, in the second line, we used the definition
of θµν . Putting all together in eq. (A.1), we have

32πG
ψ0

L(2) = 1
4∂αθ∂

αθ+∂αθβγ∂
βθαγ − 3

ψ2
0
∂αψ

(1)∂αψ(1) − 1
2∂γθαβ∂

γθαβ − 2
ψ0
∂βφ∂

βw . (A.3)

From the definition of ψ(1), it is

∂αψ
(1)∂αψ(1) = a2∂αφ∂

αφ+ ∂αw∂
αw − 2a∂αw∂

αφ , (A.4)

and hence the final expression for the second order Lagrangian L(2) = L(2)(θαβ, φ, w) is
given by

32πG
ψ0

L(2) = 1
4∂αθ∂

αθ + ∂αθβγ∂
βθαγ − 1

2∂γθαβ∂
γθαβ

+ (6a− 2ψ0)
ψ2

0
∂αw∂

αw − 3
ψ2

0

(
a2∂αφ∂

αφ+ ∂αw∂
αw

)
,

which is equal to eq. (2.15). Now, we notice that ∂L(2)

∂θαβ
= 0, while

∂L(2)

∂(∂γθαβ) = 2∂(βθα)γ − ∂γθαβ + 1
2η

αβ∂γθ , (A.5)
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and hence the Euler-Lagrange equation for the field θαβ is

∂L(2)

∂θαβ
− ∂γ

∂L(2)

∂(∂γθαβ) = 0 ,

−□θαβ + 1
2η

αβ□θ = 0 ⇒ □θαβ = 0 .

where in the second line we took advantage of the Lorentz gauge and exploited the trace
equation. In a similar way, we arrive at the other two equations of motion (2.17) and (2.18)
for the remaining fields φ and w. In particular, for this purpose, we needed the following
partial derivatives:

∂L(2)

∂(∂γφ) = ∂

∂(∂γφ)

[(6a− 2ψ0)
ψ2

0
∂αφ∂

αw − 3
ψ2

0
a2∂αφ∂

αφ

]
= (6a− 2ψ0)

ψ2
0

δγ
α∂

αw − 6
ψ2

0
a2∂γφ ,

and

∂L(2)

∂(∂γw) = ∂

∂(∂γw)

[(6a− 2ψ0)
ψ2

0
∂αφ∂

αw − 3
ψ2

0
a2∂αw∂

αw

]
= (6a− 2ψ0)

ψ2
0

δγ
α∂

αφ− 6
ψ2

0
∂γw .

The above expressions have also been used in eq. (2.22), which becomes

jα
β = ψ0

32πφ
(

− 2∂νθµα + ∂αθµν
)
∂βθµv − ψ0

32πG

[(6a1 − 2ψ0)
ψ2

0
∂αw − 6

ψ2
0
a2∂αφ

]
∂βφ

− ψ0
32πG

[(6a− 2ψ0)
ψ2

0
∂αφ− 6

ψ2
0
∂αw

]
∂βw +

ψ0δ
α
β

32πG

[1
4∂αθ∂

αθ + ∂νθµγ∂
γθµν

− 1
2∂γθµν∂

γθµν + (6a− 2ψ0)
ψ2

0
∂γφ∂γw − 3

ψ2
0

(
a2∂µφ∂

µφ+ ∂µw∂
µw

)]
.

Using the Lorenz gauge condition, the field equations and integrating by parts when necessary,
the above equations simplify to

jα
β = ψ0

32πG

[
∂αθµν∂βθµν −K∂αw∂βφ+ 6

ψ2
0
a2∂αφ∂βφ−K∂αφ∂βw + 6

ψ2
0
∂αw∂βw

+ δα
βK∂

γφ∂γw − δα
β

3a2

ψ2
0
∂γφ∂γφ− δα

β

3
ψ2

0
∂γw∂γw

]
,

where we defined K = (6a− 2ψ0)/ψ2
0. After noticing that the last three terms are zero as

well (see section 2), we easily obtain eq. (2.24).

B The non-local energy rate

In this appendix, we briefly report the calculations leading to eq. (3.20). We need to write
eq. (3.15), i.e.

τα
β = ψ0

32πG
〈
∂αθµν

(T T )∂βθ
(T T )
µν + 4a(6a− 1)∂αφ∂βφ

〉
, (B.1)
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in terms of Jµν , defined in eq. (3.8), and then Jµν in terms of the quadrupole momentum
Qij , defined in eq. (3.12). First, we expand Jµν in Taylor series around t′ = t− r, i.e. [48]

Jµν(x, t) = 4
r

[ ∫
d3x′Tµν (

x′, t′
)

+ x̂

∫
d3xx′∂T

µν(x, t)
∂t′

+ 1
2

∫
d3x′(x̂ · x′)2∂

2Tµν(x, t)2

∂t′

]
, (B.2)

where we assumed that, in the far region, it is |x − x′|−1 ≃ 1
r and |x − x′| ≃ r − x̂ · x′, with

r = |x|. Using eq. (3.11) rewritten in the TT gauge, one finds that the GR contribution
to the GW-SET is

τ
(GR)
0r = 1

32πG
〈
∂0θ

ij
(T T )∂rθ

(T T )
ij

〉
= − G

8πr2

〈 ...
Q

(T T )
ij

...
Q

ij
(T T )

〉
. (B.3)

Following the standard computations in GR [45, 49], one immediately12 obtains eq. (3.19).
For the second term of eq. (B.1), we use eq. (3.13) and notice that, in our metric signature,

it is J = Jµ
µ = J00 − J11 − J22 − J33. Using eq. (B.2), after long but straightforward

computations, we get eq. (3.16), whose time derivative reads as

J̇(t′) = 2G
r

[
ninj

...
Q

ij +
...
Q

]
, (B.4)

where we used mass and angular momentum conservation. It must be emphasized that
although usually the component J00 is approximated as J00 ≃ 4GM

r + O
( 1

r3
)
, here it is

necessary to retain higher order terms as well in order not to lose its quadrupole contribution,

J00 ≃ 4G
r

[
M + niḊ

i + 1
2ninjQ̈

ij
]
. (B.5)

Since for the computation of the gravitational power Ptot only the component τ0r is involved,
we just need to compute the term ∂0φ∂rφ, with φ given by eq. (3.13). In particular, it will be

∂0J = 4G
r

[1
2ninj

...
Q

ij
]

+ 2G
r

...
Q , (B.6)

and
∂rJ ≃ −2G

r
ninj

...
Q

ij − 2G
r

...
Q , (B.7)

where in ∂rJ we neglected 1/r2-terms. Putting all together we obtain eq. (3.17). Therefore,
to arrive at eq. (3.20), we need to perform the integral

P
(NL)
tot = aG

8π(6a− 1)

∫
dΩ

[
ninj

...
Q ij +

...
Q

]2
, (B.8)

which explicitly reads as

P
(NL)
tot = aG

8π(6a− 1)

[4π
15

(
δijδkl + δikδjl + δilδjk

) ...
Q

ij ...
Q

kl + 4π
...
Q

2 + 8π
3 δij

...
Q

ij ...
Q

2
]
, (B.9)

and simplifying

P
(NL)
tot = aG

8(6a− 1)

〈 8
15

...
Q

jk ...
Q jk + 104

15
...
Q

2
〉
. (B.10)

It is evident that, this equation, after a trivial simplification, reduces to eq. (3.20).
12One needs to write Q

(T T )
ij as Q

(T T )
ij = Q̄

(T T )
ij where Q̄ij = Qij − 1

3 δijδklQkl and then use the projector
tensors (see Chapter 7 in [45]) to expand the TT gauge components.
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