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Abstract We investigate the extended phase space thermo-
dynamics of nonsingular-AdS black holes minimally coupled
to clouds of strings in which we consider the cosmological
constant (�) as the pressure (P) of the black holes and its
conjugate variable thermodynamical volume (V ) of the black
holes. Owing to the background clouds of strings parameter
(a), we analyse the Hawking temperature, entropy and spe-
cific heat on horizon radius for fixed-parameter k. We find that
the strings clouds background does not alter small/large black
hole (SBH/LBH) phase transition but occurs at a larger hori-
zon radius, and two second-order phase transitions occur at a
smaller horizon radius. Indeed, the G–T plots exhibit a swal-
lowtail below the critical pressure, implying that the first-
order phase transition is analogous to the liquid–gas phase
transition at a lower temperature and lower critical pressure.
To further examine the analogy between nonsingular-AdS
black holes and a liquid–gas system, we derive the exact
critical points and probe the effects of a cloud of strings on
P − V criticality to find that the isotherms undergo liquid–
gas like phase transition for T̃ < T̃c at lower T̃c. We have
also calculated the critical exponents identical with Van der
Walls fluid, i.e., same as those obtained before for arbitrary
other AdS black holes, which implies that the background
clouds of strings do not change the critical exponents.

1 Introduction

The black hole’s thermodynamics investigation has commu-
nicated a deep and fundamental relationship among gravi-
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tation, thermodynamics, and quantum theory. Interestingly,
classical and semiclassical analysis has given rise to most of
our present physical understandings of the nature of quantum
phenomena [1,2]. An interesting phenomenon in the AdS
black hole thermodynamics is the existence of the transition
between AdS–Schwarzschild black hole and thermal AdS,
unlocked in the pioneering work of Hawking and Page [3],
which has attracted numerous astrophysicists towards study-
ing black holes thermodynamics in AdS spacetimes. Indeed,
the Hawking-Page phase transition between large black holes
(LBH) and thermal gas in the AdS space is a topic of intense
research [4–18], e.g., an analogy between phase structures
of various AdS black holes and statistical models associated
with Van der Waals like phase transitions has been suggested
[19–21]. The analysis of AdS black hole phase transition has
been generalized to the extended phase space where the cos-
mological constant has been treated as the pressure of the
black hole revealing several exciting results [22–25].

In an interesting paper, the authors [26] explicitly bring out
how the effect of a background of clouds of strings can mod-
ify black hole solutions and their properties aspects in non-
extended thermodynamics. A cascade of subsequent interest-
ing work analysed black hole solutions in clouds of strings
model [27–31] and these black holes have been shown to also
exhibit Hawking-Page type phase transitions [29]. The the-
oretical developments signal toward a scenario in which the
fundamental building blocks of the Universe are extended
objects instead of point objects can be exciting and have
been taken quite seriously [32] with the most natural candi-
date being a one-dimensional strings object. In addition, the
intense level of activity in string theory has led to the idea that
the static Schwarzschild black hole (point mass) may have
atmospheres composed of fluid or field of strings. The clouds
of strings background for the Schwarzschild black hole was
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proposed by Letelier [33] to demonstrate that event horizon
has modified radius rH = 2M/(1 − a) with 0 < a < 1
being the string cloud parameter [33], thereby enlarging the
Schwarzschild radius of the black hole by the factor (1−a)−1.
Many authors generalized the pioneering work of Letelier
[33], for instance, in GR [30], for EGB models [29,31,34]
and in Lovelock gravity [27,28]. Thus, the study of black
holes surrounded by clouds of strings, in general relativity or
modified theories, may be critical because relativistic strings
at a classical level can be used to construct applicable models
[32].

The primary purpose of this paper is to look for an
exact spherically symmetric nonsingular black hole solution
endowed with clouds of strings in AdS spacetime, and explic-
itly mention how background clouds of strings can alter black
hole solutions and their extended phase thermodynamic qual-
itative features we know from our experience in general rel-
ativity. We shall, in turn, probe the effects of background
on P − V criticality, the critical behaviour of the thermody-
namic quantities and demonstrate that there exists a phase
transition and critical phenomena similar to the ones in a
Van der Waals liquid–gas system. Thus, it is our goal to con-
nect nonsingular-AdS black holes with the concept of black
hole chemistry [35–37]. The black hole chemistry – a new
perspective on black hole thermodynamics, with the inter-
pretation of black hole mass as enthalpy, the cosmological
constant � and it’s conjugate variable, respectively, as a pres-
sure term and the thermodynamical volume of the black holes
has led to a new understanding of Van der Waals fluids phase
transitions from a gravitational viewpoint [37]. In particular,
we investigate the analogy between nonsingular-AdS black
holes endowed with clouds of strings and a liquid–gas system
and find exact solutions of the critical points.

This paper is organized as follows. In Sect. 2, we con-
sider nonsingular–AdS black holes surrounded by clouds
of strings, discuss the effect of clouds of strings parameter
a, nonlinear electrodynamics (NED) parameter k, on hori-
zon structure. The thermodynamic properties of the solution
derived and discussed in Sect. 3. In Sect. 4, the thermody-
namical stability analysis and P − V criticality of the black
holes has been discussed, and the critical exponents have
been calculated in Sect. 5. Finally, we summarize our main
findings in Sect. 6.

We use geometrized units 8πG = c = 1, unless units are
specifically defined.

2 Nonsingular black holes with clouds of strings

The AdS black holes are natural tools to investigate AdS/CFT
correspondence and black hole thermodynamics in extended
phase space. Here, we are interested in a nonsingular-AdS
black hole solution endowed with clouds of strings, and the

energy–momentum tensor of clouds of strings resembles the
global monopole [31]. The nonsingular-AdS black holes can
be derived from general relativity minimally coupled to NED
whose action reads

S = 1

16π

∫
d4x

√−g[R + 6l−2 − L(F)] + SM , (1)

where R is the scalar curvature, g is the determinant of the
metric tensor and l is positive AdS radius related to cosmo-
logical constant � through the relation � = −3/ l2. The
Lagrangian density L(F) is a function of F = 1

4FabFab

with Fab = ∂aAb − ∂bAa and the solution we are interested,
has the form

L(F) = F exp[−k/e (2e2F)
1
4 ], with F = e2

2r4 . (2)

where e is NED charge and k > 0 is constant.
To obtain our black hole solution, we assume the static

spherically symmetric metric of the form [35]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2d�, (3)

where the function f(r) is the metric function to be determined
and d� = dθ2 + sin2 θdφ2. The Nambu–Goto action of
strings evolving in spacetime is given by [31,33]

SM =
∫

�

M (γ )−
1
2 dλ0dλ1

=
∫

�

M
[
−1

2
�μν�

μν

] 1
2

dλ0dλ1, (4)

where the world sheet is parameterized by spacelike and time-
like parameters [32] represented by λ0 and λ1 and M is
a dimensionless positive constant which characterises each
string. The quantity γ is determinant of γab given by

γab = gμν

∂xμ

∂λa

∂xν

∂λb
. (5)

The movement of a string in time sweeps out area in two
dimension which is termed as it’s world sheet � [38] and has
associated with it a bivector given by [33]

�μν = εab
∂xμ

∂λa

∂xν

∂λa
, (6)

where εab is the Levi-Civita tensor in two dimensions, which
is anti-symmetric in the indices a and b given by ε01 =
− ε10 = 1. By varying the action (1) with respect to gab, we
obtain the following equations of motion

Gab − 3

l2
gab = Tab

= 2

(
∂L(F)

∂F FacFc
b − gabL(F)

)
+ T cs

ab, (7)
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Fig. 1 The parameter space (a, k̃) for the existence of black holes. The
black solid line corresponds to the extremal black holes

and


a

(
∂L(F)

∂F Fac

)
= 0, (8)

where Gab is the Einstein tensor and

T cs
ab = 2∂L/∂gab = ρ (γ )−1/2�h

a�hb, (9)

is energy–momentum tensor of clouds of strings [34]. The
associated quantity ρ is the proper density of the string cloud
[34] and ρ (γ 1/2) is the gauge invariant density. The conser-
vation of energy and momentum yields the equation

∇a Tab = 0, (10)

which leads to

∂a (
√−g ρ �ab) = 0. (11)

For a spherically symmetric solution the density ρ and
bivector �ab are functions of radial and temporal compo-
nents, hence the energy momentum tensor for a string cloud
is [33]

T t
t = T r

r = a

r2 . (12)

On using Eqs. (3), (7) and (12), the (r, r) component of Ein-
stein equations can be integrated to

f (r) = 1 − 2Me−k/r

r
+ r2

l2
− a, (13)

where M is the integration constant related to the mass of
the black hole and k is related to charge e via e2 = 2Mk.
Clearly solution (13) in the absence of clouds of strings back-
ground (a = 0), exactly goes over to solution in [35] and
encompasses the Schwarzschild black holes [34,39,40] when
(1/ l2 = k = a = 0).

We know that the metric (3) with (13), in the absence of
clouds of strings, is a regular or nonsingular black hole [35].
However, with the background strings of clouds, we find the
invariant Ricci scalar R = Rab Rab, (Rab Ricci tensor) and

the K = Rabcd Rabcd (Rabcd Reimann tensor) takes the form

R = 2a

r2 + 2 M k2 e−k/r

r5
, (14)

K = 4a2

r4 + 16e−k/r Ma

r5
+

4M2e−k/r (k4 − 8k3r + 24k2r2 − 24kr3 + 12r4)

r10 (15)

which obviously diverges, when a, M �= 0 and r → 0. Thus,
the spacetime with the background strings of clouds is no
more regular, but it becomes singular. a Energy Conditions
Next, we check the status of the various energy conditions
using the prescription of Hawking Ellis [41–43]. The Einstein
equations governing the stress energy tensor Tμν is given by
the Eq. (7), which leads to

ρ = 2 M k e−k/r

r4 + a

r2 = −Pr ,

Pθ = Pφ = −M k e−k/r (k − 2r)

r5
.

(16)

The weak energy condition (WEC) demands that Tμν tμtν

≥ 0 everywhere, for any timelike vector tμ, which is equiv-
alent to

ρ ≥ 0, ρ + Pi ≥ 0 (i = r, θ, φ), (17)

and hence

ρ + Pθ = a

r2 − Mk(k − 4r)e−k/r

r5
. (18)

Hence, the weak energy condition is satisfied when k ≤
4r . Next, the null energy condition (NEC) requires that
Tμν tμtν ≥ 0 in the entire spacetime, for any null vector
tμ. The null energy condition demands ρ + Pr ≥ 0 and
ρ+ Pθ ≥ 0. The former becomes identically zero and ρ+ Pθ

becomes positive for k ≤ 4r . Hence the null energy condition
is also satisfied for k ≤ 4r .

Finally, the strong energy condition (SEC) states that
Tμν tμtν ≥ 1/2Tμ

μ tν tν globally, for any timelike vector tμ,
which requires

ρ + Pr + 2 Pθ ≥ 0. (19)

We find that

ρ + Pr + 2 Pθ = a

r2 − 3Mke−k/r
(
k − 8r

3

)
r5

. (20)

Thus, the strong energy condition is satisfied for k ≤ 3/8 r .
We find that the energy conditions are satisfied when r > k/4
and hence they are violated in the deep core.
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b. Extremal black holes In order to discuss the properties
of the solution (13) we rewrite it as

f (r) = 1 − 2me−k̃/x

x
+ x2 − a, (21)

such that x = r/ l, m = M/ l and k̃ = k/ l. Thus the black
hole (13) is characterised by three parameters M , k and a.
The metric (3) is singular at the points where f (x) = 0
and it corresponds to coordinate singularity, signifying the
presence of event horizon. The numerical solution of f (x) =
0 reveals existence of maximum two roots as shown in Fig. 2.
It is possible to find critical value m0, for a given a and k̃,
such that form > m0 there exists two roots of f (x) = 0 viz.
± x corresponding to Cauchy horizon (x−) and event horizon
(x+) (cf. Fig. 2). When m = mo the two horizon degenerate
on (x+ = x− = x0) and we have extremal black holes.
Similarly, for given k̃ and m, we have found critical value of
a such that a = a0 corresponds to extremal black hole (cf.
Fig. 3) and a > a0 corresponds to regular black holes with
two horizons (x±). In Fig. 1, we have depicted the parametric
space (a, k̃) for m = 0.3, in which the solid black curve is
corresponding to the extremal black holes. The grey region
is showing black holes with two horizons whereas the white
region corresponds to no black hole solutions. In absence of
clouds of strings parameter (a = 0), we only obtain critical
values m0 and k̃0 which correspond to extremal black hole at
m = m0 (k̃ = k̃0) and regular black hole with two horizons
for m > m0 (k̃ < k̃0) [35]. Interestingly the radius of an
extremal black hole is slightly smaller when we introduce
the clouds of strings parameter.

The existence of extremal black hole confirms that the
black hole undergoing evaporation will result in stable black
hole remnant characterised by mass (m0) and radius size (x0),
can be determined by solving systems [35,36]

f (x) = 0 = ∂ f (x)

∂x
|x=xo . (22)

Solving Eq. (22), we obtain

xo = 1

9υ

[
υ2 + k̃υ + k̃2 − 9(1 − a)

]
, (23)

and

mo = e9k̃υ/μ

⎡
⎣81(1 − a)υ +

(
υ3 + k̃υ + k̃2 − 9(1 − a)

)
μ

81υ

⎤
⎦ ,

(24)

where υ =
[
k̃3 − 108(1 − a)k̃ + 9

√
3
√

(1 − a) β
] 1

3
,

μ = υ2 + k̃υ + k̃2 − 9(1 − a) and β = k̃4 − 3 (1 − a)2 +
47 (1 − a) k̃2. The above results, in the limit a → 0 reduce
to those obtained in Ref. [35].

3 Black hole thermodynamics

Black hole thermodynamics conceived as a discipline, was
formulated with the advent of quantum field theory in curved
spacetime which suggested analogies of thermodynamic
quantities like internal energy, temperature and entropy with
black hole mass, surface gravity and event horizon area,
respectively [40,44–46]. The nomenclature in black hole
chemistry, has been given in a new scientific era and is
simply regarded as the thermodynamics of black holes in
extended AdS spacetime, [37,47] by demonstrating cosmo-
logical constant � as dynamical thermodynamical pressure
[48,49] via P = 3/8πl2. This inclusion of � as thermody-
namical pressure (P) leads to interpretation of black mass as
enthalpy (H = m) instead of internal energy [20,50]. Then
the generalised first law of black hole thermodynamics reads
as [21,37,47,51,52]

dm = TdS + VdP + φdk, (25)

where m (S, k, P) is black hole mass function with dynam-
ical variables namely the entropy S, the pressure P and the
magnetic charge parameter k. While the temperature T , the
thermodynamical volume V and the chemical potential φ are
the conjugate variables of S, P and k, respectively, which can
be defined as [21,37,47,51,52]

T =
(

∂m

∂S

)
k,P

, φ =
(

∂m

∂k

)
S,P

, V =
(

∂m

∂P

)
k,S

. (26)

The cosmological term leads the Smarr relation [53] to the
following generalized form [37,54]

m = 2T S − 2PV + φk. (27)

The analysis of all thermodynamic quantities of the black
hole is associated with the horizon x+. We want to mention
that k and e are not two independent parameters as in the
case of Born-Infeld black holes [55]. Indeed, our solution
is characterized by only one parameter k apart from mass
M , and in principle, we can work with only parameter k.
The parameter e is introduced if one wishes to compare our
solution with the Reissner-Nordstrom metric via e2 = 2Mk
for r � k. Hence, there should only be the thermodynamic
conjugate φ of parameter k in the first law of black hole
thermodynamics. The mass of the black hole is obtained by
solving f (x+) = 0 as

m = H = x+
2

[e k/x+(1 − a + x2+)]. (28)

The Hawking temperature of the black hole can be derived
from the definition of surface gravity (κ) [47] as follows

T̃ = κ

2π
= 1

4πx+
[ 3x+2 − k̃

x+
(1 − a + x+2) + (1 − a)].

(29)
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Fig. 2 The metric function f (x) vs x . When m = m0 = 0.5039 (left) and m = m0 = 0.16139 (right) corresponding to extremal black hole with
degenerate horizon. The black hole with Cauchy and event horizons exist when m > m0

Fig. 3 The metric function f (x) vs x showing extremal black hole with degenerate horizon for a = a0 = 0.5602 (left) and k̃ = k̃0 = 0.42206
(right) and the black hole with Cauchy and event horizons exist for a > a0 and k̃ < k̃0

T = 1/4πx+ is the temperature of the Schwarzschild black
holes. Obviously, the Hawking temperature of nonsingular-
AdS black holes surrounded by clouds of strings is modified
and it evident that the temperature is sensitive to the clouds
of strings (cf. Fig. 4). It is evident from the Fig. 4, for a
given k̃ (a), there is a phase transition with 0 < a < ac
((0 < k̃ < k̃c)). Figure 4 shows that the Hawking temperature
has local maxima and minima, respectively, at critical radii
xc1 = 0.25578 and xc2 = 0.31547 whena < ac = 0.189999
(for k̃ = 0.1) (cf. Fig. 4). The critical value ac (k̃c) for
some given value of k̃ (a), can be obtained by solving
∂ T̃ /∂x |x=xc = 0. The Hawking temperature plot is showing
positive slope for small black hole (SBH) and LBH whereas
for the intermediate black hole (IBH) it has negative slope,
mimicking the Van der Walls-like first-order phase transi-
tion between SBH–LBH [21,56]. When a = ac (k̃ = k̃c),
the Hawking temperature’s local maxima and minima merge
and they increases monotonically when a > ac (k̃ > k̃c) (cf.

Fig. 4). Also, due to background clouds of string, the T̃max

increases.
The Bekenstein–Hawking entropy of the black hole is

obtained from the first law of black hole thermodynamics
(25), which comes out to be

S̃ = A

4

[
e k̃/x+

x+

(
k̃ + x+

)
− k̃

x+2 Ei

[
k̃

x+

]]
, (30)

where A = 4πx2+ and Ei is the exponential integral function.
Equation (30) reduces to the usual area law (S = A/4) up to
Ei corrections in the classical limit. It is interesting to note
that the entropy (30) does not explicitly depend on the clouds
of strings parameter a, but is endowed in the horizon x+.
The cosmological term permits the definition of the system’s
pressure and its conjugate quantity, the black hole volume,
and we obtain pressure, volume and φ associated with the

123



  227 Page 6 of 11 Eur. Phys. J. C           (2022) 82:227 

Fig. 4 The Hawking temperature T̃ vs horizon x+ for a = 0.6 vary-
ing k̃ with T̃max = 0.215369 , T̃min = 0.160236 for k̃ = 0.04 (left),
and for k̃ = 0.1 varying a with T̃max = 0.223639, T̃min = 0.221622

for a = 0.1 (right). For a = 0.6, T̃max = T̃min at x = 0.210 for
k̃ = 0.0702728 whereas for k̃ = 0.1, T̃max = T̃min at x = 0.3 for
ac = 0.1899999

black holes as

P= 3

8πl2
, Ṽ = 4

3
e k̃/x+πx3+, φ̄ = e k̃/x+

2

[
1−a+x2+

]
.

(31)

In the classical limit (a, k → 0), all above variables coincide
with the conventional variables of a Schwarzschild AdS black
hole [21], and in the case when only a → 0, they go over to
that of the nonsingular-AdS black holes [35].

4 Stability and P − V critically

Here, we investigate the thermal properties and the phase
structure of black holes in canonical ensemble (fixed NED
charge). Hawking and Page [3] investigated the thermo-
dynamic properties of black holes in asymptotically AdS
spacetimes. The thermodynamic stability of the black holes
requires investigation of the Gibbs free energy behaviour
[35,36]. We are interested in the regions where the free
energy is negative, and identify where black holes are ther-
mally favoured over the reference background. The free
energy of the black hole is calculated from [35,36],

G = m − T̃ S̃

which comes out to be complicated to present and hence
depicted in Fig. 5.

Since the global stability of the system is measured
by the Gibbs free energy, its global minimum is esti-
mated to be the preferred state of the black hole [47].
Gibbs free energy plays a crucial role by identifying the
first-order phase transition via the swallowtail behaviour
in the G̃–T̃ plots (Fig. 6), and G-X+ plots (cf. Fig. 5)
throw light on the SBH/LBH transition. However, at min-

imal horizon radii, the Hawking temperature is negative
and hence not physical for global stability. The mini-
mum value of the G̃ decreases (increases), occur at the
lower (higher) radius with increasing a (k̃), and there
will be no black hole for radii smaller than this. (cf.
Fig. 5).

Figure 6 shows the plot of the Gibbs free energy vs tem-
perature. For the values of pressure below the critical pres-
sure P̃c, the G̃ − T̃ diagram exhibits a swallowtail structure
[57] where the Gibbs free energy of the black hole inter-
sects with itself which is indicative of first-order phase tran-
sition between SBH and LBH (cf. Fig. 6). By analyzing
the Gibbs free energy, one can observe that at a pressure
lower than the critical value (P̃ < P̃c), the Gibbs free energy
exhibits a characteristic swallowtail behaviour which implies
that SBH/LBH first-order phase transition occurs. Indeed, for
P̃ < P̃c, theG–T graph exhibit three black holes states: SBH
stable, intermediate BH (IBH) unstable and LBH stable (cf.
Fig. 8). Further, the SBH/IBH black hole transition occurs at
the inflection point T2 , the IBH/LBH meet at T1. Thus, LBH
is the preferred state when T̃ ∈ [T̃0, T̃2], and for T̃ < T̃0,
the preferred state is stable SBH. Thus, the SBH undergoes
first-order phase transition to LBH at T̃ = T̃0 (cf. Fig. 8).
The second order phase transition is shown through the dis-
continuity of specific heat (c.f. Fig. 8) and through the cusp
in G − T plot when we take P = PC .

After discussing the global thermodynamical stability of
nonsingular-AdS black holes endowed with clouds of string,
we next turn to the local stability or thermal stability. The
reason to consider local stability is that even when a black
hole configuration is globally stable, it can be locally unsta-
ble [26]. One can investigate the thermodynamic stability
from the specific heats CV and CP of the system [21], where
CV = T (∂S/∂T )V .k is the specific heat at constant vol-
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Fig. 5 The plot of Gibbs free energy G̃ vs horizon x+ for nonsingular-Ads black hole surrounded by clouds of strings for different values of clouds
of strings parameter a

Fig. 6 The plot of Gibbs free energy G̃ vs temperature T̃ exhibiting a
liquid–gas phase transition for P̃ < P̃c and no transition for P̃ > P̃c
obtained for a particular value of a (k̃) and corresponding critical pres-

sure P̃c. The swallowtail occurs at lower temperature for higher values
of a. P̃c = 0.00368414, 0.00184207, respectively, for a = 0.6, 0.8

ume and CP = T (∂S/∂T )P,k is the specific heat at constant
pressure [47]. The black hole with positive specific heat is at
least locally thermodynamical stable, whereas the negativity
of specific heat signifies the thermodynamical instability of
the black hole to the thermal fluctuations [58,59]. A phase
transition is known to exist in the case when the specific heat
diverges [36]. The specific heat at constant volume, CV , is
zero for our case. The specific heat at constant pressure, ˜CP
is calculated to be

˜CP = 2πek̃/x+x2+

⎡
⎣

(
1 − a + 3x2+

) − k̃
x+

(
1 − a + x2+

)
(1 − a) 2k̃

x+ − (
1 − a − 3x2+

)
⎤
⎦ .

(32)

The specific heat of the Schwarzchild AdS black holes
can be obtained in the classical limits a = k̃ = 0 [21]

whereas when only a = 0 it resembles the specific heat of
nonsingular-AdS black holes [35]

˜CP = −2πx2+

[
1 + 3x2+
1 − 3x2+

]
(33)

To analyse the behaviour, we depict the heat capacity C̃P

against x+ in Fig. 7 for different values of k̃ and a. It turns
out that there exists ac(k̃c), for given k̃(a), such that the heat
capacity is discontinuous at the critical radii xc1 and xc2,
corresponding to the local maxima and minima of Hawking
temperature, with xc1 < xc2, when a < ac (k̃ < k̃c) . This
signals a second-order phase transition [3,35]. As can be seen
from the Fig. 7, we have three different cases:
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Fig. 7 The plot of specific heat ˜CP vs horizon x+ for different values of parameter a and NED parameter k̃

Fig. 8 The generic plot of Gibbs free energy G̃ vs horizon T̃ for P̃ <

P̃c

• When a < ac (k̃ < k̃c), we have the second-order phase
transition between SBH – IBH and IBH–LBH such that
the black holes with x < xc1 (SBH) and x > xc2 (LBH)
are locally stable with positive specific heat whereas the
black holes with xc1 < x < xc2 having negative specific
heat are locally unstable .

• For a > ac (k̃ > k̃c), no phase transition occurs and
the specific heat is always positive signifying the local
stability of the black holes.

• The a = ac case for k̃ = 0.1 corresponds to existence
of two stable black holes (SBH and LBH) that coexist at
the inflection point x ≈ 0.2988.

The equation of state to investigate the P − V criticality
of the black hole, by using the equations of pressure, volume
and temperature [37], is found to be

P̃ = 3T̃

2
[
3x+ − k̃

] +
3 (1 − a)

[
x+ − k̃

]

8πx+2
[
3x+ − k̃

] , (34)

where P̃ = Pl2. The P̃ − Ṽ diagram depicted in Fig. 9 plots
the various isotherms of the equation of state Eq. (34). For
values of temperature T̃ higher than the critical temperature
T̃c, the plot shows the isotherms follow ideal gas behaviour.
The isotherms undergo liquid–gas like phase transition [37]
for T̃ < T̃c governed by the Maxwell’s equal area law [60]
and have a point of inflection at T̃c, which can be obtained
from the equation

∂ P̃

∂x+

∣∣∣∣∣
T̃

= 0 = ∂2 P̃

∂x2+

∣∣∣∣∣
T̃

. (35)

The LBH are depicted by the branch with low pressure and
SBH are shown by the branch with high pressure. The oscil-
lating branch between SBH and LBH show the black hole
is going through Van der Walls-like first order phase transi-
tion [60]. The Eq. (35) yields the expression for the critical
temperature T̃c

T̃c = (1 − a)(3x2
c − 5k̃xc + k̃2)

6πx3
c

, (36)

and further we can get the equation for critical pressure P̃c
in terms of critical radius xc as

P̃c = (1 − a)(81k̃xc − 81k̃2 − 26x2
c )

216k̃π(k̃ − 3xc)x2
c

. (37)

Inserting the value of critical radius xc = 3k̃ in the above
expressions for critical temperature, critical pressure and crit-
ical volume we obtain the following expressions

P̃c = 1 − a

216π k̃2
, Ṽc = 36 e1/3π k̃3, T̃c = 13(1 − a)

162π k̃
.

(38)
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Fig. 9 The isotherms of black holes in P̃ - Ṽ plane for two different values of parameter a = 0.6 where T̃c = 0.0340578 (left) and a = 0.8 where
T̃c = 0.0170289 (right) with fixed k̃ = 0.3. The temperature of isotherms decreases from top to bottom

The universal constant ε for the nonsingular AdS black hole
endowed with clouds of string calculated as

ε = P̃c Ṽ
1/3
c

T̃c
= 0.311, (39)

which is slightly less than 3/8 – the value for Van der Walls
fluid [35]. It turns out that the temperature of isotherms
decreases from top to bottom (cf. Fig. 9), and T̃c decreases
with increasing a. Clearly, the quantities P̃c Ṽc T̃c are cor-
rected because background clouds of strings.

5 Critical exponents

We analyse the thermodynamic quantities near the critical
point with the help of critical exponents α, β, γ , and δ

[55]. These exponents do not depend on the physical sys-
tem instead can depend on the dimension of the system or
the range of the interaction. The exponents α and β deter-
mine the behaviour of specific heat at constant volume [21]
and behaviour of the order parameter η which is the differ-
ence between the volume of the gas phase and the volume
of the liquid phase respectively. γ explains the behaviour of
isothermal compressibility κT̃ and δ governs the behaviour
of the critical isotherm P̃ − P̃c [57]. The critical exponents
can be calculated by using following relations [35,36]

C̃Ṽ = T̃
∂ S̃

∂ T̃

∣∣∣
Ṽ

∝ |t |−α , η = Ṽl − Ṽs ∝ |t |β , (40)

κT̃ = − 1

Ṽ

∂ Ṽ

∂ P̃

∣∣∣
T̃

∝ |t |−γ , |P̃ − P̃c|T̃=T̃c
∝ |Ṽ − Ṽc|δ,

(41)

where C̃Ṽ is the specific heat at constant volume,η is the order
parameter, κT̃ is the isothermal compressibility. Ṽl and Ṽs are

the volumes of LBH and SBH. The specific heat at constant
volume is independent of t hence the critical exponent α = 0
[60]. In order to study the critical exponents δ, β and γ we
define the following set of dimensionless quantities [35,57,
60]

p = P̃

P̃C
, 1 + ε = x+

xc
, 1 + ω = Ṽ

Ṽc
, 1 + t = T̃

T̃c
,

(42)

where | ε |, | ω |, | t | � 1. Our analysis requires a relation
between ε and ω which is obtained by using Eqs. (31) and
(42) as

ω = 4

(
1 − k̃

2xc

)
ε. (43)

The equation of state given by Eq. (34) in terms of dimen-
sionless quantities defined by Eq. (42) becomes

p = 1 + U t − Vtε − Wε3 + O(tε2, ε4), (44)

where U = 3

2
(

3xc − k̃
) T̃c

P̃c
, V = 9xc

2
(

3 xc − k̃
)2

T̃c
P̃c

, and

W = 162πx5
c T̃c P̃c

4πx2
c

(
3xc − k̃

)4

×
[
3(−1 + a)

[
2k̃4 + xc

(
−23k̃3 + 6xc(16k̃2 − 27xck̃ + 9xc)

)]]
.

The pressure of the system remains constant during transition
of phase from SBH to LBH when t < 0. Hence, from Eq.
(34), we can write

1 + U t + Vεs − Wε3
s = 1 + U t + Vεl − Wε3

l , (45)

where εs and εl , respectively, are related to the radii of
SBH and LBH. To calculate the exponent β, the well known
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Maxwell’s area law is used [57,60].∫ ωl

ωs

ωd P̃ = 0. (46)

By using Eq. (44) and Eq. (43) in Eq. (46), we get

1

2
Vε2

l + 3

4
Wε4

l = 1

2
Vtε2

s + 3

4
Wε4

s . (47)

By solving Eqs. (45) and (34), one gets

− εs = εl =
√−Vt

W . (48)

Hence, the order parameter η can be calculated as

η = Ṽl − Ṽs = Ṽc(ωl − ωs) ∝ √−t, (49)

which means β = 1/2. To calculate γ we use the equation

κT̃ = − 1

Ṽ

∂ Ṽ

∂ P̃
| T̃

= 4

P̃ (1 + ω)

(
1 − k̃

2 x2
c

) (
∂ε

∂p
| t

)
∝ 1

V t
, (50)

which leads to γ = 1. To compute δ we find the value of
| P̃ − P̃c| at T̃ = T̃c or t = 0, with the help of the equation

|P̃ − P̃c|T̃c ∝ ε3 ∝ |Ṽ − Ṽc|3, (51)

which implies δ = 3. The values of the critical exponents
of the nonsingular-AdS black holes with clouds of strings
background are similar to the Van der Walls fluid.

6 Conclusion

The idea that the Schwarzschild black hole (point mass) may
have atmospheres composed of clouds of strings because of
the intense level of activity in string theory. The clouds of
strings are the one-dimensional analogue of a dust cloud,
have the same energy–momentum tensor as that of the global
monopole, which could be effective on gravitational fields
such as black holes. Further, it could describe a globular
cluster with components of dark matter. Further, it is firmly
believed that the one-dimensional objects known as strings
can describe the Universe; hence the study of black hole
solution in clouds of strings background has a tremendous
physical significance. Motivated by this and AdS/CFT corre-
spondence, we have derived an exact nonsingular-AdS black
hole solution endowed with clouds of strings background.
In turn, we have investigated the extended phase space of
thermodynamics and studied the critical phenomena of the
nonsingular-AdS black holes surrounded by clouds of strings
background by treating the cosmological constant as a ther-
modynamical pressure.

Interestingly, the thermodynamical quantities viz. temper-
ature, pressure, specific heat and the Gibbs free energy are

corrected except the entropy, which is not directly affected
by the background clouds of strings, and then we probe the
thermodynamic stability of the black hole. We find an anal-
ogy between the nonsingular-AdS black holes endowed with
clouds of strings and Van der Waals fluid. Investigation of
the Hawking temperature revealed critical values of NED
parameter k̃ and clouds of strings parameter (a) and the crit-
ical value of horizon radius xc where the temperature has
local extrema and also divergence of specific heat thereby
confirming the existing of two second order phase transition.
Interestingly, the heat capacity diverges at two critical radii
xc1 and xc2, for a < ac, respectively, at which the tempera-
ture has the local maximum and the local minimum values
indicate that two second-order phase transitions exist in the
canonical ensemble. The black hole unstable due to thermal
fluctuation when xc1 < x < xc2 with negative specific heat
and stable otherwise. The behaviour of Gibbs free energy
revealed that the LBH with less Gibbs free energy are more
stable than the SBH. We also analysed isobars on G̃ − T̃
plane and found that when pressure P̃ is less than critical
pressure P̃c, the SBH underwent first-order phase transition
(exhibiting swallow tail) to LBH at temperature T̃0, and it was
also found that an unstable IBH possible. Thus, our model
still exhibits SBH/LBH phase transition but at a larger hori-
zon radius, and also two second-order phase transitions occur
at a smaller horizon radius. We found that the background
clouds of strings impact the P–V critically and calculated the
values of critical exponents to see that these values match that
of Van der Walls fluid.

Thus, we demonstrated that background clouds of strings
profoundly influence the P–V criticality and thermodynamic
properties of black holes, which may have several astrophys-
ical consequences, for example, on wormholes and accretion
onto black holes. Some of the results presented here gener-
alise previous discussions on nonsingular AdS black holes
[35] and Schwarzschild AdS black holes [20] to a more gen-
eral setting. The possibility of further extensions of these
results to higher curvature gravity is an interesting problem
for the future.

Acknowledgements S.G.G. would like to thank SERB-DST for the
ASEAN project IMRC/AISTDF/CRD/2018/000042.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: We have presented
a purely theoretical work, no data is used or created, and hence there is
no data to deposit.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not

123



Eur. Phys. J. C           (2022) 82:227 Page 11 of 11   227 

included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. R.M. Wald, Living Rev. Rel. 4, 6 (2001)
2. W. Israel, Phys. Rev. 164, 1776 (1967)
3. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)
4. S. Dutta, A. Jain, R. Soni, JHEP 12, 060 (2013)
5. G.Q. Li, Phys. Lett. B 735, 256 (2014)
6. R.G. Cai, L.M. Cao, L. Li, R.Q. Yang, JHEP 09, 005 (2013)
7. R.G. Cai, Y.P. Hu, Q.Y. Pan, Y.L. Zhang, Phys. Rev. D 91, 024032

(2015)
8. R. Zhao, H.H. Zhao, M.S. Ma, L.C. Zhang, Eur. Phys. J. C 73, 2645

(2013)
9. J.X. Mo, G.Q. Li, X.B. Xu, Eur. Phys. J. C 76, 545 (2016)

10. J.X. Mo, X.X. Zeng, G.Q. Li, X. Jiang, W.B. Liu, JHEP 10, 056
(2013)

11. N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Class.
Quantum Gravity 31, 042001 (2014)

12. J.X. Mo, W.B. Liu, Phys. Lett. B 727, 336 (2013)
13. N. Altamirano, D. Kubiznak, R.B. Mann, Phys. Rev. D 88, 101502

(2013)
14. D.C. Zou, S.J. Zhang, B. Wang, Phys. Rev. D 89, 044002 (2014)
15. H. Ghaffarnejad, E. Yaraie, M. Farsam, Int. J. Theor. Phys. 57, 1671

(2018)
16. H. Liu, X.H. Meng, Mod. Phys. Lett. A 31, 1650199 (2016)
17. D. Hansen, D. Kubiznak, R.B. Mann, JHEP 01, 047 (2017)
18. S.G. Ghosh, D.V. Singh, R. Kumar, S.D. Maharaj, Ann. Phys. 424,

168347 (2021)
19. Y. Liu, D.C. Zou, B. Wang, J. High Energy Phys. 2014, 179 (2014)
20. B.P. Dolan, Class. Quantum Gravity 28, 125020 (2011)
21. D. Kubiznak, R.B. Mann, JHEP 07, 033 (2012)
22. A. Belhaj, M. Chabab, H.E. Moumni, L. Medari, M.B. Sedra, Chin.

Phys. Lett. 30, 090402 (2013)
23. S. He, L.F. Li, X.X. Zeng, Nucl. Phys. B 915, 243 (2017)
24. D. Kastor, S. Ray, J. Traschen, Class. Quantum Gravity 26, 195001

(2009)
25. M. Cvetic, S. Nojiri, S.D. Odintsov, Nucl. Phys. B 628, 295 (2002)
26. E. Herscovich, M.G. Richarte, Phys. Lett. B 689, 192 (2010)

27. T.H. Lee, S.G. Ghosh, S.D. Maharaj, D. Baboolal 1511, 03976
(2015)

28. T.H. Lee, D. Baboolal, S.G. Ghosh, Eur. Phys. J. C 75, 297 (2015)
29. S.G. Ghosh, U. Papnoi, S.D. Maharaj, Phys. Rev. D 90, 044068

(2014)
30. J.P. Morais Graça, I.P. Lobo, V.B. Bezerra, H. Moradpour, Eur.

Phys. J. C 78, no.10, 823 (2018)
31. D.V. Singh, S.G. Ghosh, S.D. Maharaj, Phys. Dark Univ. 30,

100730 (2020)
32. J.L. Synge, Relativity: The General Theory (North Holland, Ams-

terdam, 1966), p. 175
33. P.S. Letelier, Phys. Rev. D 20, 1294 (1979)
34. S.G. Ghosh, S.D. Maharaj, Phys. Rev. D 89, 084027 (2014)
35. A. Kumar, S.G. Ghosh, S.D. Maharaj, Phys. Dark Univ. 30, 100634

(2020)
36. A.G. Tzikas, Phys. Lett. B 788, 219 (2019)
37. D. Kubiznak, R.B. Mann, Can. J. Phys. 93, 999 (2015)
38. N. Mansour, E. Diaf, M. Sedra, J. Phys. Stud. 23, 1103 (2019)
39. K. Schwarzschild, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.

Phys.) 1916, 189 (1916)
40. J.D. Bekenstein, Phys. Rev. D 7, 949 (1973)
41. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-

Time (Cambridge University Press, Cambridge, 1973)
42. S.G. Ghosh, D. Kothawala, Gen. Relativ. Gravit. 40, 9 (2008)
43. D. Kothawala, S.G. Ghosh, Phys. Rev. D 104070, 104010 (2004)
44. J.D. Bekenstein, Lett. Nuovo Cim. 4, 737 (1972)
45. J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974)
46. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31,

161 (1973)
47. D. Kubiznak, R.B. Mann, M. Teo, Class. Quantum Gravity 34,

063001 (2017)
48. C. Teitelboim, Phys. Lett. B 158, 293 (1985)
49. J.D. Brown, C. Teitelboim, Phys. Lett. B 195, 177 (1987)
50. B.P. Dolan, Class. Quantum Gravity 28, 235017 (2011)
51. D. Kastor, S. Ray, J. Traschen, Class. Quantum Gravity 28, 195022

(2011)
52. R.B. Mann, Springer Proc. Phys. 170, 197 (2016)
53. L. Smarr, Phys. Rev. Lett. 30, 71 (1973)
54. J. Zhang, Y. Li, H. Yu, JHEP 02, 144 (2019)
55. S. Gunasekaran, R.B. Mann, D. Kubiznak, JHEP 11, 110 (2012)
56. S.W. Wei, Y.X. Liu, Phys. Rev. D 90, 044057 (2014)
57. C.H. Nam, Gen. Relativ. Gravit. 51, 100 (2019)
58. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Phys. Rev.

D 73, 044009 (2006)
59. R.G. Cai, Phys. Lett. B 582, 237–242 (2004)
60. S. Hyun, C.H. Nam, Eur. Phys. J. C 79, 737 (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Thermodynamic stability and P–V criticality of nonsingular-AdS black holes endowed with clouds of strings
	Abstract 
	1 Introduction
	2 Nonsingular black holes with clouds of strings
	3 Black hole thermodynamics
	4 Stability and P-V critically 
	5 Critical exponents
	6 Conclusion
	Acknowledgements
	References




