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Abstract

We calculate the string tensions, mass spectrum, and deconfining temperatures of SO(N) gauge

theories in 2 + 1 dimensions. After a review of lattice field theory, we describe how we simulate

the corresponding lattice gauge theories, construct operators to project on to specific states, and

extrapolate values to the continuum limit. We discuss how to avoid possible complications such as

finite size corrections and the bulk transition.

SO(N) gauge theories have become recently topical since they do not have a fermion sign prob-

lem, are orbifold equivalent to SU(N) gauge theories, and share a common large-N limit in their

common sector of states with SU(N) gauge theories. This motivates us to compare the physical

properties of SO(N) and SU(N) gauge theories between ‘group equivalences’, which includes Lie

algebra equivalences such as SO(6) and SU(4), and particularly a large-N equivalence. We discuss

the large-N orbifold equivalence between SO(N) and SU(N) gauge theories, which relates the

large-N gauge theories perturbatively. Using large-N extrapolations at fixed ’t Hooft coupling, we

test to see if SO(N) gauge theories and SU(N) gauge theories share non-perturbative properties at

the large-N limit. If these group equivalences lead to similar physics in the gauge theories, then we

could imagine doing finite chemical potential calculations that are currently intractable in SU(N)

gauge theories by calculating equivalent quantities in the corresponding SO(N) gauge theories.

We show that the SO(N) and SU(N) values match between group equivalences and at the

large-N limit.
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Introduction

In this thesis, we will consider the physical properties of SO(N) pure gauge theories in 2 + 1

dimensions. We will calculate the string tensions, mass spectrum, and deconfining temperatures

in the continuum limit of various SO(N) gauge theories, and then extrapolate those values to the

large-N limit. Finally, we will compare our SO(N) results to known SU(N) values between group

equivalences.

SO(N) and SU(N) gauge theories share several equivalences. Some of these equivalences are

Lie algebra equivalences between specific groups such as SO(4) and SU(2)× SU(2) or SO(6) and

SU(4). In addition, recent papers also describe a large-N equivalence between SO(N) and SU(N)

gauge theories on a perturbative level. These equivalences motivate us to ask just how similar are

SO(N) and SU(N) gauge theories. If they are similar, understanding these equivalences might help

us to understand current problems in SU(N) QCD, for example, QCD at finite chemical potential.

We then could calculate quantities in SO(N) gauge theories that are intractable in the equivalent

SU(N) gauge theories.

To understand fully the physics of SO(N) and SU(N) gauge theories, we need to consider their

non-perturbative properties. However, analytic attempts to understand their non-perturbative

physics such as confinement or the glueball spectrum have been mostly unsuccessful as they have

no perturbative explanation. Hence, we take two alternative approaches. Firstly, we use lattice field

theory to investigate non-perturbative properties. On the lattice, we use a discretised theory on a

finite spacetime volume where the finite lattice spacing introduces an ultraviolet cutoff and the finite

volume introduces an infrared cutoff. Secondly, we use an alternative expansion parameter instead

of the running coupling in QCD. ’t Hooft proposed that the natural expansion parameter for SU(N)

gauge theories should be 1/N and that the corrections from finite SU(N) to SU(N →∞) are

O(1/N2) for pure gauge theories. Adapting this argument, we will see that the natural expansion

parameter for SO(N) gauge theories is again 1/N and that the corrections from finite SO(N) to
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SO(N →∞) are O(1/N) for pure gauge theories. This allows us to extrapolate to the large-N

limit.

This motivates the large-N approach in this thesis. We can use the large-N equivalence to

connect SO(N →∞) and SU(N →∞) gauge theories, while the large-N arguments connect finite

SO(N) to SO(N →∞) and finite SU(N) to SU(N →∞). Collectively, this provides a route

between SO(N) and SU(N) gauge theories. This could allow us to discuss SU(N) QCD through

considering SO(N) physics. Hence, by calculating the physical properties of SO(N) gauge theories

and considering the values between group equivalences and at the large-N limit, we see how we

might relate SO(N) and SU(N) gauge theories.

Thesis Structure

In Chapter 1, we review the basic ideas of lattice field theory. We describe the lattice setup, the

physics in 2 + 1 dimensions, the process behind numerical simulations, and the method behind

calculating masses.

In Chapter 2, we discuss the equivalences between SO(N) and SU(N) gauge theories. We start

by considering specific Lie algebra equivalences between SO(N) and SU(N) groups such as SO(4)

and SU(2) × SU(2), and SO(6) and SU(4). We then go on to look at physics in the large-N

limit. Firstly, we discuss ’t Hooft’s 1/N argument, applying it to the familiar case of SU(N) gauge

theories and then to the case of SO(N) gauge theories. We show that the leading correction to

the SO(N →∞) limit is O(1/N) for pure gauge theories, allowing us to extrapolate to the large-

N limit. Secondly, we describe the large-Ñ orbifold equivalence between SO(2Ñ) and SU(Ñ)

gauge theories through which we can obtain large-Ñ SU(Ñ) QCD from large-Ñ SO(2Ñ) QCD-like

theories under specific conditions. Finally, we consider one possible application for SO(N) physics,

which is the fermion sign problem. This problem currently prevents us from investigating SU(N)

QCD at finite chemical potential in lattice field theory whereas the problem does not affect SO(N)

gauge theories.

In Chapter 3, we calculate SO(N) string tensions. We discuss the operators that we use and

string tension models before calculating the string tensions in the continuum limit for different

SO(N) values. We then extrapolate to the large-N limit. We will show that the string tensions

agree between group equivalences and that there is excellent agreement between the SO(N →∞)

and SU(N →∞) values.
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In Chapter 4, we calculate the SO(N) mass spectrum. We again discuss the operators we use

and how to minimise finite size corrections. We then calculate the SO(N) mass spectra in the

continuum limit before extrapolating to the large-N limit. We will show that the mass spectrum

agree well between group equivalences and between the SO(N →∞) and SU(N →∞) values.

In Chapter 5, we calculate SO(N) deconfining temperatures. We discuss the deconfinement

phase transition, the principles of finite size scaling, and the order parameter that we use. We then

explain the reweighting method we use to calculate deconfining temperatures before applying it

to calculate the continuum limits and the large-N limit. We will show that the deconfining tem-

peratures agree very well between group equivalences between the SO(N →∞) and SU(N →∞)

values.

Conventions

In this thesis, we will use the following conventions.

We use N to refer to general SO(N) and SU(N) gauge groups. When we refer to odd or even

N for SO(N) gauge groups, we use SO(2Ñ) and SO(2Ñ + 1) respectively where Ñ ∈ N.

We set the lattice spacing to be a. We relate a physical length l to a lattice length L by l = aL.

We use Up or Uµν to represent the plaquette, the ordered product of link variables about a

square with length a in directions µ and ν. We take the trace of the plaquette to form a colour

singlet operator.

We use lP to represent the Polyakov loop, the trace of a closed loop winding around the lattice

in a particular direction. The Polyakov loop is a colour singlet operator since its definition includes

the trace.
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Chapter 1

Lattice field theory

In this chapter, we introduce lattice field theory. We consider how to relate lattice field theory

and continuum field theory, the features of D = 2 + 1 gauge theories, the process of numerical

simulations, and how we calculate masses.

1.1 Setting up the lattice

1.1.1 The lattice

We start by constructing a cubic lattice in 2 + 1 dimensions. We set the lattice spacing to be a

and, in lattice units, the length of the spatial directions to be Ls and in the temporal direction to

be Lt. Hence, the lattice volume is L2
sLt in lattice units and a3L2

sLt in physical length units. We

can construct general orthonormal vectors µ̂, ν̂, . . . of length a, which point in the lattice directions

µ, ν, . . . . We set the temporal direction to be the third direction and we can explicitly order the

orthonormal vectors x̂, ŷ, and t̂, which point in the first, second, and third directions respectively.

The sites on the lattice are at physical positions x = a(x, y, t) where x, y ∈ {0, 1, . . . , Ls − 1} and

t ∈ {0, 1, . . . , Lt − 1}.

We can then construct oriented link variables that connect nearest neighbour lattice sites. A

link variable Uµ(x) connects a site x to a site x + µ̂ in the direction µ. We set periodic boundary

conditions in all lattice directions, forming tori. The link variables are elements of a gauge group

such as SO(N) or SU(N). We can define a link variable pointing in the direction −µ̂ by

U−µ(x) =

{
Uµ(x− µ̂)T SO(N)

Uµ(x− µ̂)† SU(N)
(1.1)

4



1.1.2 Gauge transformations

We now consider how products of link variables transform under gauge transformations. We define

SO(N) or SU(N) gauge transformations {Ω(x)} such that the link variables Uµ(x) transform as

Uµ(x)→ U ′µ(x) =

{
Ω(x)Uµ(x)Ω(x + µ̂)T SO(N)

Ω(x)Uµ(x)Ω(x + µ̂)† SU(N)
(1.2)

We can form curves from the link variables connecting a site x to a site y by an ordered product

of links P [U ]

P [U ] = Uµ1(x)Uµ2(x + µ̂1) · · ·Uµn(y − µ̂n) (1.3)

Then this ordered product of links P [U ] transforms as

P [U ]→ P [U ′] =

{
Ω(x)P [U ]Ω(y)T SO(N)

Ω(x)P [U ]Ω(y)† SU(N)
(1.4)

Hence, traces of link variable products on closed curves on the lattice are invariant under gauge

transformations.

1.1.3 Gauge invariant objects

We can construct gauge invariant objects on the lattice by considering traces of closed curves. A

plaquette Up is a square with unit lattice length and is the simplest, non-trivial closed curve on the

lattice. A Polyakov loop lP is the trace of a closed loop that winds around the torus in a lattice

direction.

Up(x, µ̂, ν̂) = Uµ(x)Uν(x + µ̂)U−µ(x + µ̂+ ν̂)U−ν(x + ν̂)

lP (x, µ̂) = tr (Uµ(x)Uµ(x + µ̂) · · ·Uµ(x− µ̂)) (1.5)

We display examples of these objects in Figure 1.1.

1.1.4 Relating continuum fields to lattice fields

In a continuum gauge theory with continuum gauge fields Aµ, we can define a continuum gauge

transporter G(x,y), which is the path-ordered exponential of the continuum gauge fields along a

curve Cx→y connecting points x to y.
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U−ν(x + ν̂)

µ

ν
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x

Figure 1.1: A plaquette (left) and the closed curve (right) that forms a Polyakov loop.

G(x,y) ≡ P exp

(
i

∫
Cx→y

A · dx

)
(1.6)

Under a set of SO(N) or SU(N) continuous gauge transformations {Ω(x)}, the continuum gauge

transporter then transforms as

G(x,y)→ G′(x,y) =

{
Ω(x)G(x,y)Ω(y)T SO(N)

Ω(x)G(x,y)Ω(y)† SU(N)
(1.7)

We see that continuum gauge transporters transform in the same way as link variable products

P [U ] in (1.4). Hence, we can relate gauge transporters G in the continuum to link variable products

P [U ] on the lattice by discretising the continuous path Cx→y as a lattice link variable path.

G(x,y)↔ P [U ] = Uµ1(x) · · ·Uµn(y − µ̂n) (1.8)

Finally, we can then define lattice gauge fields Aµ(x), which are the lattice analogues of continuum

gauge fields Aµ, and express link variables in terms of the lattice gauge fields.

Uµ(x) = exp (iaAµ(x)) (1.9)

1.1.5 The lattice field theory action

We can construct an SO(N) lattice gauge action βS in 2 + 1 dimensions

βS = β
∑
p

(
1− 1

N
tr(Up)

)
β =

2N

ag2
(1.10)

where β is the inverse coupling and the lattice action sums over all plaquettes on the lattice. In
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D = 2 + 1, the coupling g = g(a) has dimensions of mass so we need a factor of a in our definition

of β so that β is dimensionless. This expression for the lattice action differs slightly from the

corresponding SU(N) lattice gauge action since we do not need to take explicitly the real part of

the trace since all SO(N) traces are real. We can expand our expression for the lattice action in

terms of the lattice gauge fields using (1.9).

βS =
a3

2g2

∑
x

∑
µ<ν

tr
(
F 2
µν(x)

)
+O(a5)

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] (1.11)

where Fµν is the continuum field strength tensor. Then by taking the continuum limit a → 0, we

find that the lattice action becomes the continuum action for an SO(N) gauge theory in 2 + 1

dimensions.

βS −−−→
a→0

1

2g2

∫
d3x tr

(
F 2
µν(x)

)
(1.12)

We note that the leading order correction in (1.11) is O(a2) from the O(a5) term relative to the

O(a3) coefficient in the F 2
µν term. This implies that the leading order correction to operator

expectation values on finite lattices is also O(a2). Measurements of physical masses will also

have these O(a2) corrections. Finally, we already know that the leading order correction to a

dimensionless ratio of physical quantities such as mG/
√
σ or Tc/

√
σ is also O(a2) [1]. This will help

us to calculate the continuum values in the limit a→ 0.

1.2 D = 2 + 1 gauge theories

1.2.1 The coupling g2

As we noted above, the coupling g2 has dimensions of mass in D = 2 + 1 whereas, in contrast,

g2 is dimensionless in D = 3 + 1. However, both D = 2 + 1 and D = 3 + 1 gauge theories share

important dynamical properties [2].

Both theories are ultraviolet free. In D = 2 + 1, g2 has dimensions of mass. Hence, if we use a

power expansion in g2 to calculate a quantity whose characteristic length scale is l, then we need

to couple g2 with l to create a dimensionless quantity. Hence, we define an effective dimensionless

‘running’ coupling parameter g2
2+1(l), which vanishes linearly with l as l→ 0.
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g2
2+1(l) ≡ g2l −−→

l→0
0 (1.13)

This effective coupling runs faster than the dimensionless coupling g2
3+1(l) in D = 3+1, which runs

logarithmically with l.

g2
3+1(l) ∼ 1

ln(lΛ)
−−→
l→0

0 (1.14)

where Λ is the QCD scale. We can alternatively see that the couplings become strong at large

distances. This implies that the physics at large scales is non-perturbative.

In D = 2+1, the coupling has mass dimensions and hence it sets the scale for massive quantities

m = cg2 where m is any dynamically generated mass in the theory. This is actually the same as

D = 3+1 physics where the running coupling introduces the QCD mass scale related to the running

rate m = cΛ. Hence, the coupling sets the mass scale for both D = 2 + 1 and D = 3 + 1.

1.2.2 Confinement

We expect both D = 2+1 and D = 3+1 gauge theories to be linearly confining, which is something

we hope to show in the case of D = 2 + 1. In D = 2 + 1, the Coulomb potential VC is weakly

confining, VC(r) ∼ g2ln(r). This is distinct from the non-perturbative linear potential V (r) ∼ r,

which we see at large r.

1.2.3 Parity doubling

In D = 2 + 1, spatial rotations commute so that states of spin J do not form the spin multiplets

in D = 3 + 1 dimensions [2]. Under the parity transformation P , spatial coordinates transform as

P (x, y) = (x,−y). Hence, the angular momentum operator x∂y − y∂x changes signs under P so

that, if a state |j〉 has spin J = j, then P |j〉 has spin J = −j.

Consider a state |j〉 with spin J = j and energy Ej and the two linear combinations

|j,±〉 = |j〉 ± P |j〉 (1.15)

If they are non-null, then they form a pair of opposite parity states since P |j,±〉 = ± |j,±〉. These

states are also degenerate since P and the Hamiltonian H commute. This means that we see parity

doubling: degenerate states with the same spin but opposite parity. For j 6= 0, |j〉 and P |j〉 are

orthogonal since they have eigenvalues ±j under the spin operator J so that the states in (1.15)

are non-null. However, they are not necessarily non-null if J = 0. So we expect parity doubling for
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J 6= 0 but not necessarily for J = 0.

We note that the argument above depends on using the continuum rotation group. However, on

the square lattice, the explicit symmetries are π/2 rotations, which can affect the opposite parity

states we described above. Consider states with spin J = ±j that, under a rotation θ, transform

by a phase of e±ijθ. Then, if we rotate by θ = nπ/2, we see that these phases are the same for

J = 2. Hence, parity doubling for J = 2 can break since these are the states that constructed

the opposite parity states in (1.15). As the lattice spacing a decreases, we increasingly recover the

continuum rotational symmetry and so we expect to recover J = 2 parity doubling. Similarly, we

break the continuum rotational symmetry by having a finite spatial volume with periodic boundary

conditions. Since the spatial lengths are the same, we again have rotations by π/2, which can break

J = 2 parity doubling. As we increase the volume size past the physical length scale, we again

expect to recover J = 2 parity doubling.

1.2.4 Bulk transition

One difference between D = 2 + 1 and D = 3 + 1 gauge theories is the location of the bulk

transition. At this transition, the system moves from strong coupling to weak coupling, and the

coupling expansion changes from powers of β ∝ 1/(ag2) to 1/β ∝ ag2 respectively. We can only

extrapolate to the continuum limit a → 0 in the weak coupling region so it is important to know

where this bulk transition occurs. For D = 3 + 1 SU(2) gauge theory in the adjoint representation,

there is a bulk transition at a very small lattice spacing (see discussion in [3]). Since the SU(2)

adjoint representation is equivalent to the SO(3) fundamental representation, this indicates that

the location of the bulk transition may prevent us from investigating the D = 3 + 1 SO(N)

continuum limit. In fact, in the case of D = 3 + 1 SO(3), initial results in [3] indicate that we need

extremely large lattices to reach the confined phase. In contrast, the position of the bulk transition

in D = 2+1 SO(N) gauge theories is at a larger lattice spacing, allowing us to reach the D = 2+1

SO(N) continuum limit. We will look at this in more detail later in this thesis. It is for this reason,

and because of the similarities between D = 2 + 1 and D = 3 + 1 gauge theories explained above,

that we look at D = 2 + 1 gauge theories in this thesis.
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1.3 Numerical simulation of lattice field theory

1.3.1 Calculating observables

We define the partition function Z by

Z =

∫
D[U ]e−βS[U ]∫

D[U ] =
∏
x

∏
µ

∫
dUµ(x) (1.16)

where the Haar measure
∫
D[U ] is a product over link variables U .

For an observable O, we can define an expectation value 〈O〉 and then approximate 〈O〉 with

N different link variable configurations U1, U2, . . ., UN

〈O〉 =
1

Z

∫
D[U ]e−βS[U ]O[U ]

〈O〉 ≈ 1

N

N∑
n=1

O[Un]

∣∣∣∣∣
P[Un]∝e−βS

(1.17)

where we assign to a configuration U a probability weight P[U ] proportional to its lattice action

value. This allows us to sample statistically an estimate of 〈O〉 with finitely many configurations

U .

1.3.2 Heat bath algorithm

We need to equilibrate and update the lattice to obtain measurements at equilibrium. To do this,

we use a heat bath algorithm. Consider a link U and the sum V of its four staples, defined for a

link Uµ(x) by

V =
∑
ν 6=µ

(Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂)) + (U−ν(x+ µ̂)U−µ(x+ µ̂− ν̂)Uν(x− ν̂)) (1.18)

Using the Cabibbo-Marinari algorithm (see below), we isolate 2× 2 submatrices of the matrix UV .

Consider the case when U ∈ SO(2). Using the heat bath, we update U → U ′ by randomly selecting

U ′ from a probability distribution derived from the partition function [4, 5].

dP (U) ∼ exp
(
β 1
N tr(UV )

)
(1.19)

Each staple is an SO(2) matrix so that the sum V is proportional to an SO(2) matrix V̄ , V = kV̄

where k =
√

det(V ). We can express U as
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U =

(
a0 a1

−a1 a0

)
a2

0 + a2
1 = 1

⇒ dP (UV̄ −1) ∝ da0 da1 δ(a
2
0 + a2

1 − 1) exp

(
2βk

N
a0

)
∝ da0 (1− a2

0)−1/2 exp

(
2βk

N
a0

)
a1 = ±(1− a2

0)1/2 (1.20)

where we randomly choose the sign of a1 after sampling a0 from the probability distribution above.

Since this distribution is unbounded, we change variables to form a bounded function.

z = exp

(
−4βk

Nπ
cos−1a0

)
e−

4βk
N < z < e

4βk
N

⇒ dP (z) ∝ dz z−1 exp

(
2βk

N
cos

[
Nπ

4βk
lnz

])
(1.21)

If we further define θ = Nπ
4βk lnz, then we want to sample the distribution P (θ) ∼ exp(2βk

N cos θ)

with θ ∈ (−π, 0).

While this approach is good for SO(2) matrices, it is inefficient at large N because the factor 2βk
N

increases with N and the algorithm was designed assuming that this factor is small. We can adapt

the algorithm by sampling θ from an alternative gaussian distribution R(θ) and then accepting it

with probability P (θ)/R(θ).

R(θ) = exp

(
2βk

N

(
1− 2

π2
θ2

))
P (θ)

R(θ)
= exp

(
2βk

N

(
cos θ +

2

π2
θ2 − 1

))
(1.22)

This seems to have a much better acceptance rate than the original algorithm.

We can extend the heat bath algorithm to SO(N) matrices using the Cabibbo-Marinari algo-

rithm [6]. To do this, we construct matrices ak : k = 1, . . . , N − 1 using submatrices αk ∈ SO(2)

to update the link U → U ′.

ak =


1

. . .
1
αk

1
. . .

1


U ′ = aN−1aN−2 · · · a1U (1.23)

We update the link by constructing and applying each ak one at a time. As we update the link,

the heat bath algorithm isolates a 2× 2 submatrix rk in the matrix UV . To use the algorithm, we

construct a 2× 2 matrix r′k proportional to an SO(2) element such that
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tr(akUV ) ∼ tr(αkrk)

= tr(αkr
′
k) (1.24)

where we can define r′k from rk

rk =

(
A B
C D

)
⇒ r′k =

(
A+D

2
B−C

2
C−B

2
A+D

2

)
(1.25)

Once the lattice is in equilibrium, we want to reduce the correlation between individual mea-

surements. To do this, we update the lattice several times between measurements so that the

system can move through the configuration space. In practice, we take one measurement every ten

updates.

1.4 Calculating masses

1.4.1 Correlation functions

For an operator φ projecting on to a particular physical state, we can calculate the correlation

function C(t) of operator values φ on spatial slices at times 0 and t. We can then extract the

energies En of the state represented by φ by

C(t) =
〈φ(t)φ(0)〉
〈φ(0)φ(0)〉

=
〈Ω|φ(t)φ(0) |Ω〉
〈Ω|φ(0)φ(0) |Ω〉

=

∑
n 〈Ω|φ(0)e−Ht |n〉 〈n|φ(0) |Ω〉∑
m 〈Ω|φ(0) |m〉 〈m|φ(0) |Ω〉

=

∑
n|〈Ω|φ(0) |n〉|2e−Ent∑
m|〈Ω|φ(0) |m〉|2

(1.26)

where |Ω〉 is the vacuum state and |n〉 represents the state with energy En.

As we take t→∞, we then find that

〈φ(t)φ(0)〉 −−−→
t→∞

c0e
−E0t (1.27)

where E0 is the mass of the lightest state and c0 is some constant. Figure 1.2 shows examples

of correlation functions C(t) for SO(6) glueball operators (which we describe in a later chapter)

on a lattice with β = 46.0. In this figure, we can see that ln(C(t)) varies linearly with t as we

would expect from (1.27). For an operator φ projecting on to a physical state, we can estimate the

energy E for the state by calculating correlation functions 〈φ(t+ t′)φ(t′)〉 of operator values φ on

spatial slices at times t + t′ and t′. If the lightest state is the vacuum, we use vacuum subtracted
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Figure 1.2: Correlation functions for SO(6) glueball operators on a 36244 lattice with β = 46.0.
We apply linear fits in regions where the errors are small in order to extract the glueball masses.

operators. If the lattice is finite with periodic boundary conditions, then there is an additional

contribution from the ‘back’ of the torus. Summing this contribution leads to a hyperbolic cosine

fit in t. While we always have this term in the numerical calculations, we write in this thesis the

fit as an exponential in t for simplicity as though Lt → ∞. We note that, in principle, we could

use (1.26) to obtain the energies of excited states. However, fitting sums of exponentials is a badly

conditioned problem, especially given statistical errors, so we need an alternative approach such as

variational criteria.

1.4.2 Variational criteria

If we have multiple operators that project on to a particular state, we want to extend the above

procedure so that we can maximise the projection and project on to excited states. To do this, we

use variational criteria [2]. Suppose we have a set of n normalised operators S = {φi : i = 1, . . . , n}.

We want to construct an operator Φ1 that is a linear combination of operators from S and that

maximises C(a) = 〈φ(a)φ(0)〉. This operator is the best estimate for the ground state operator

from the set S, and C(a) provides an estimate of the ground state mass. We can construct excited

state operators iteratively. Suppose we have constructed new operators Φ1, . . . ,Φm. Now construct
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a basis of operators Sm+1 from S that spans the (n−m)-dimensional subspace that is orthogonal

to the subspace spanned by the new operators. Construct an operator Φm+1 that both is a linear

combination of operators from Sm+1 and maximises C(a) = 〈φ(a)φ(0)〉. C(a) then provides an

estimate of the energy of the m + 1 excited state. We can construct the Φi by considering the

N × N correlation matrix C(t) by Cij(t) = 〈φi(t)φj(0)〉. Let the eigenvectors of C−1(0)C(a) be

{vi : i = 1, . . . , n}. Then Φi is given by

Φi = ci

n∑
k=1

vikφk (1.28)

for a constant ci that normalises Φi.

Calculating the mass from a correlation function with a gap of one lattice spacing may not

provide an accurate value. To improve on this, we consider the correlation functions Ci(t) =

〈Φi(t)Φi(0)〉. Within ranges of values t ∈ (t1, t2), we fit a local exponential to correlation values

Ci(t) to provide primary mass estimates. We set t1 = 0 initially, and then increase t1 until we

reach the lowest t1 where χ̄2
dof is reasonable, since statistical errors grow with t1. We usually select

t2 large so that the exponential fit is over many values. Simultaneously, we obtain secondary mass

estimates for each correlation function by using the values of Ci(t)/Ci(0) and the procedure in

the previous section and looking for a plateau in these values. We obtain our final estimate by

selecting a primary estimate from an exponential fit with a low χ̄2
dof that also agrees with our

secondary estimate. We note that statistical errors dominate correlation functions at large t where

the exponential has decayed significantly as we can see in Figure 1.2. Hence, we can only obtain

mass estimates over a limited range of correlation function values at smaller t.

1.4.3 Jackknife errors

We want to calculate the errors of the mass measurements [7]. Suppose we have a data set for an

observable O with Nm measurements {O1, . . . , ONm}. Then our estimate for O from all data is

Ô =
1

Nm

Nm∑
i=1

Oi (1.29)

We can divide the data into Nb equally sized data bins, labelled B1, . . . , BNb , with Nm/Nb mea-

surements in each bin. Then we can construct Nb new jackknife bins, labelled B′1, . . . , B
′
Nb

, where

the jackknife bin B′n includes all data except those in bin Bn. Let the estimate for O from jackknife

bin B′n be Ô′n. Then define the variance to be

14



σ2
Ô

=
Nb − 1

Nb

Nb∑
n=1

(Ô′n − Ô)2 (1.30)

so that our estimate of the standard deviation of O is the square root of this variance. To use this

method, it is important that each of the original bins Bn are reasonably large so that the observable

estimates from each bin Ô′n are approximately uncorrelated.

1.4.4 Goodness of fit

We will later use data extrapolations to calculate continuum or infinite volume limits. To judge the

goodness of fit, we use the reduced chi-squared statistic χ̄2
dof, which is the chi-squared divided by

the degrees of freedom. Let {(On, σn)} be a set of N values {On} with corresponding errors {σn}.

We wish to fit the data with a model with n parameters, which predicts that En is the expected

value of On. Then the number of degrees of freedom is N − n and the χ̄2
dof is

χ̄2
dof =

1

N − n

N∑
i=1

(On − En)2

σ2
n

(1.31)

In general, a χ̄2
dof ≈ 1 indicates that the data and model values agree with the data errors so that

the model is good whereas a χ̄2
dof � 1 indicates that the data and model values disagree so that

the model is poor.
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Chapter 2

Equivalences between SO(N) and

SU(N) gauge theories

In this chapter, we consider the equivalences between SO(N) and SU(N) gauge theories. We start

by considering specific Lie algebra equivalences before going on to consider the large-N limit of

SO(N) and SU(N) gauge theories. We recall ’t Hooft’s argument relating SO(N) and SU(N)

gauge theories to their respective large-N limits and then go on to look at the large-N orbifold

equivalence that holds between SO(N → ∞) and SU(N → ∞) gauge theories. We discuss the

fermion sign problem in SU(N) gauge theories before concluding with a possible approach to this

problem using SO(N) gauge theories.

2.1 Lie algebra equivalences

2.1.1 SO(4) ∼ SU(2)× SU(2)

SO(4) and SU(2) × SU(2) share the same Lie algebra. We can see this by defining a generator

basis {tij} for SO(4), for i < j ∈ {1, . . . , 4}.

[tij ]kl = i (δikδjl − δilδjk) (2.1)

We can partition these generators into two groups {Ji,Ki} with i ∈ {1, 2, 3} and define new

generators {J̃i, K̃i}.
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Ji =
1

2
εijktjk Ki = ti4

J̃i = −1

2
(Ji +Ki) K̃i = −1

2
(Ji −Ki) (2.2)

These new generators satisfy

[J̃i, J̃j ] = iεijkJ̃k [K̃i, K̃j ] = iεijkK̃k [J̃i, K̃j ] = 0 (2.3)

Hence, the generators {J̃i, K̃i} independently satisfy the SU(2) Lie algebras and together form a

direct sum of two SU(2) Lie algebras, which verifies our initial claim. In fact, SU(2)×SU(2) forms

a double cover of SO(4). Assuming that the global properties of the two groups do not affect the

dynamics of their gauge theories, we will consider if they share similar physical properties.

2.1.2 SO(6) ∼ SU(4)

We recall that, in SU(4),

4⊗ 4 = 6⊕ 10 (2.4)

where the 6 corresponds to the k = 2 antisymmetric representation and maps to the fundamental 6

of SO(6) [8]. To convert quantities in terms of the SU(4) fundamental string tension to the SU(4)

k = 2A string tension, we use the ratio of the SU(4) k = 2A and fundamental string tensions in

D = 2 + 1 [9]

σ2A

σf

∣∣∣∣
SU(4)

= 1.355(9) (2.5)

Hence, assuming that the global properties of the two groups do not affect the dynamics of their

gauge theories, we will test if they share similar physical properties.

2.1.3 SO(3) ∼ SU(2)

We know that SU(2) forms a double cover of SO(3), where the SO(3) fundamental representation

is equivalent to the SU(2) adjoint representation, so again we might ask if they share similar

physical properties. However, there are two issues with SO(3) lattice calculations. Firstly, SO(3)

fundamental flux tubes correspond to SU(2) adjoint flux tubes. However, we know that these

SU(2) adjoint flux tubes are not well-defined as they can decay into glueballs, so we might expect

a similar problem in SO(3) gauge theories [10]. This agrees with our knowledge that SO(3) lacks

a non-trivial centre such as the Z2 centre in SO(2Ñ) gauge theories that protects flux loops from

17



mixing with glueball operators. Secondly, previous calculations in SO(3) gauge theories indicate

that the bulk transition occurs at small lattice spacing so that we would need much larger volumes

to be in the weak coupling region [3]. It is for these two reasons that we will consider SO(3) gauge

theories in future papers and not in this thesis.

2.2 ’t Hooft’s 1/N argument

QCD lacks a natural expansion parameter since the coupling is O(1) at low energies. This led ’t

Hooft to suggest another parameter, 1/N , where N is the number of colours in the gauge group of

the theory. This motivates us to ask what is the scale of the corrections from QCD to the large-N

limit: just how close is N = 3 to N →∞?

2.2.1 ’t Hooft coupling

A pure gauge theory has a Lagrangian given by

L =
1

2g2
tr(F 2

µν)

=
N

λ

(
1

2
tr(F 2

µν)

)
(2.6)

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] (2.7)

where g is the conventional coupling, Fµν is the field strength tensor, and λ = g2N . The beta

function β(g) for a pure gauge theory is [11]

β(g) ≡ µdg
dµ

= −11N

3

g3

16π2
+O(g5) (2.8)

This shows how the conventional coupling g scales with N

g2(Λ) ≈ 24π2

11N ln(Λ/ΛQCD)
∼ 1

N
(2.9)

indicating that we can remove the N -dependence in the beta function by rescaling the coupling to

the ’t Hooft coupling [12,13] defined by

λ = g2N (2.10)

This fixes the scale parameter of strong interactions ΛQCD. Since λ is dimensionful in D = 2 + 1,

fixing λ also fixes the length scale. Hence, taking the limit N →∞ while fixing λ is equivalent to
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Figure 2.1: Double line representation for an SU(N) gauge propagator
〈
[Aµ(x)]ij [Aν(y)]kl

〉
.

taking N →∞ while fixing the length (or mass) scale.

2.2.2 SU(N) gauge theories

We first review ’t Hooft’s planar diagram argument for SU(N) gauge theories [12,14] before applying

it to SO(N) gauge theories. We can express the gauge field Aµ in terms of the Lie algebra generators

ta for the gauge group SU(N).

[Aµ(x)]ij =
∑
a

Aaµ(x)[ta]ij (2.11)

where a, b label the generators and i, j, . . . label the matrix indices. The generators ta are traceless

Hermitian matrices and we can normalise them such that tr(tatb) = 1
2δ
ab.

Now consider a gauge field propagator 〈Aµ(x)Aν(y)〉 in Euclidean space and expand using

(2.11).

〈
[Aµ(x)]ij [Aν(y)]kl

〉
=
∑
a,b

〈
Aaµ(x)Abν(y)

〉
[ta]ij [t

b]kl

=
∑
a,b

δabDµν(x− y)[ta]ij [t
b]kl

=
1

2

(
δilδ

k
j −

1

N
δijδ

k
l

)
Dµν(x− y) (2.12)

where Dµν(x − y) is the propagator for a massless vector field. We can drop the 1/N term when

we take the large-N limit for reasons that we will discuss soon so that

〈
[Aµ(x)]ij [Aν(y)]kl

〉
∝ δilδkj (2.13)

We can represent this propagator diagrammatically as a double line, as we display in Figure 2.1.

Each of the two index lines forming the double line represents a Kronecker delta and has an

orientation that we indicate by an arrow pointing from a raised matrix index to a lowered matrix

index.
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=

Figure 2.2: Converting a Feynman diagram into an SU(N) double line diagram. This double line
diagram is planar and has (F,E, V ) = (4, 6, 4). Hence, χ = 2 and the diagram is proportional to
N2.

We now consider gluonic Feynman diagrams of the gauge theory. We can convert Feynman

diagrams to double line graphs where we convert all gluon propagators to double lines with arrows,

require that the arrows point in different directions on the two index lines that make a double line,

and specify that the arrow flow must agree on the two index lines that meet at a vertex. Since

there are no external lines, all index lines must close to form an index loop, and we can consider

an index loop as the perimeter of a polygon.

We can identify the edge of one polygon with the edge of another if they are both parts of the

same double line. Then the double line picture describes a polygonisation of a surface. Furthermore,

the arrows orient each polygon and, since the arrows point in different directions on the edges of

neighbouring polygons, this orients neighbouring polygons and so orients the entire surface. We

display an example of a polygonisation in Figure 2.2.

We can count the number of faces F , edges E, and vertices V in the surface. Consider the

SU(N) Lagrangian in (2.6). We can see that every face is an index loop and so carries a factor

of N , every edge corresponds to a propagator and so carries a factor of λ/N , and every vertex

corresponds to a gluonic vertex and so carries a factor of N/λ. Hence, each double line graph

corresponds to a factor

λE−VNF−E+V (2.14)

Here, we can see that this factor has a term that is a power of λ = g2N and a second term

that only depends on N . This indicates that we can compare the N -dependence of diagrams in

different SU(N) theories if we hold the ’t Hooft coupling λ = g2N constant. We can express the

N -dependent term in (2.14) in terms of the Euler characteristic χ ≡ F − E + V .

NF−E+V ≡ Nχ (2.15)

We can also compute the Euler characteristic in a different way. All two-dimensional oriented
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Figure 2.3: An example of a non-planar diagram in an SU(N) gauge theory, which has
(F,E, V ) = (2, 6, 4), or we could view it as H = 1. Hence, χ = 0 and the diagram is propor-
tional to N0.

surfaces are topologically equivalent to a sphere with a number of holes cut out of it and handles

attached to it [14]. We can count the number of holes B (for boundary) and handles H in the

surface. Then we can express the Euler characteristic as χ = 2 − 2H − B. However, since we are

only considering gauge theories and all gluonic propagators correspond to a double line, it is not

possible to construct a hole without also filling it with a new face. Hence, B = 0, and the Euler

characteristic for double line graphs for gauge theories is χ = 2− 2H.

We earlier dropped the O(1/N) term in (2.12). This term corresponds to a U(1) ghost gauge

field [13,14] that cancels out the U(1) gauge field in a U(N) gauge theory to form an SU(N) gauge

theory. The U(1) ghost gauge field completely decouples from the SU(N) gauge bosons since the

U(1) generator commutes with all the SU(N) generators. Hence, in a theory with only gauge

fields, there are no further O(1/N) corrections from the U(1) ghost gauge field. In a theory with

quark fields, the leading correction diagrams with a U(1) ghost gauge field would be O(1/N2) with

a factor of 1/N from the propagator and another from the explicit factor in (2.12). Hence, we can

ignore this term when considering the leading correction diagrams.

Hence, the leading order double line graph is proportional to N2 and we can form them from

planar diagrams without handles. The first order correction corresponds to a planar diagram

with a handle attached and is proportional to N0. Hence, first order correction graphs here are

O(1/N2) when we compare them to the leading order planar diagrams. We display an example of

a non-planar diagram in Figure 2.3.

Putting this all together, we expect that the physics of SU(N) gauge theories has a common

large-N limit with O(1/N2) corrections if we keep the ’t Hooft coupling λ = g2N constant.

2.2.3 SO(N) gauge theories

Having considered how ’t Hooft’s planar diagram argument applies to SU(N) gauge theories, we

now see how to adapt it to SO(N) gauge theories [15]. We can again express the gauge field Aµ in
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terms of the Lie algebra generators tab for the gauge group SO(N).

[Aµ(x)]ij =
∑
a<b

Aabµ (x)[tab]ij (2.16)

where a, b, . . . label the generators and i, j, . . . label the matrix indices.

The generators tab are antisymmetric matrices and we can normalise them such that tr(tabtcd) =

1
2δ
acδbd. We can construct an explicit generator basis satisfying this normalisation condition for

the 1
2N(N − 1) generators tab for a < b ∈ {1, 2, . . . , N}.

[tab]ij =
i

2

(
δaiδbj − δajδbi

)
(2.17)

Then we can write the gauge field propagator 〈Aµ(x)Aν(y)〉 in Euclidean space as

〈
[Aµ(x)]ij [Aν(y)]kl

〉
=

∑
a<b, c<d

〈
Aabµ (x)Acdν (y)

〉
[tab]ij [t

cd]kl

=
∑

a<b, c<d

δacδbdDµν(x− y)[tab]ij [t
cd]kl

= Dµν(x− y)
∑
a<b

[tab]ij [t
ab]kl

= Dµν(x− y)
∑
a<b

i

2

(
δaiδbj − δajδbi

) i
2

(
δakδbl − δalδbk

)
=

1

4

(
δilδ

k
j − δikδlj

)
Dµν(x− y) (2.18)

where Dµν(x− y) is the propagator for a massless vector field. Here, we see that

〈
[Aµ(x)]ij [Aν(y)]kl

〉
∝ δilδkj − δikδlj (2.19)

The first term of the SO(N) propagator has the same form as that of the SU(N) propagator,

which we call a straight propagator. However, there is also a new second term, which we call a

twisted propagator. This combines raised or lowered matrix indices.

We can represent this propagator as a sum of two double lines as with the SU(N) propagator.

Each of the two index lines that form a double line represents a Kronecker delta and has an

orientation that we can indicate by an arrow pointing from a raised matrix index to a lowered

matrix index. However, while the double line description of the straight propagator has the same

form as that of the SU(N) propagator, the double line description of the twisted propagator changes

the arrow flow for both index lines. We display this double line description in Figure 2.4.

As with SU(N) gauge theories, these double line graphs represent polygons on a surface and we
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Figure 2.4: Double line description for SO(N) gauge propagator. On the right hand side, the first
term is the straight propagator linking i→ l, k → j while the second term is the twisted propagator
linking i and k, j and l.

= − + · · ·

Figure 2.5: Converting a Feynman diagram into an SO(N) double line diagram. The first double
line diagram is planar and has (F,E, V ) = (3, 3, 2) so that χ = 2 and the diagram is proportional
to N2. The second double line diagram is non-planar and has (F,E, V ) = (2, 3, 2) so that χ = 1
and the diagram is proportional to N1. There are further terms involving twisted propagators.

preserve the directions of arrows along edges and vertices with the exception of edges constructed by

twisted propagators. This introduces new non-oriented surfaces. By holding the ’t Hooft coupling

constant, we can again classify the surfaces by the Euler characteristic and correspond each graph

to a power of N .

As we would expect, the leading order double line graph is a planar diagram without twisted

propagators and is proportional to N2. However, the first order correction is not O(N0). Consider

a planar diagram. Now change a straight propagator to a twisted propagator. This change does

not alter the number of vertices V or edges E. However, while the straight propagator formed

the edge between two faces, the twisted propagator now represents a twist in one face since we

could untwist the propagator to reveal the unravelled face. Hence the number of faces F for a

diagram with one twisted propagator while otherwise planar is one less than the corresponding

planar diagram. Hence, the Euler characteristic is one less and so this diagram is proportional to

N1. Hence, first order correction graphs here are O(1/N) when we compare them to the leading

order planar diagrams. We display examples of these diagrams in Figure 2.5.

Putting this all together, we expect that the physics of SO(N) gauge theories has a common

large-N limit with O(1/N) corrections if we keep the ’t Hooft coupling λ = g2N constant.
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2.3 Large-N orbifold equivalence

We know that SO(N) and SU(N) pure gauge theories have a common large-N limit in their

common sector of states [16]. The large-N orbifold equivalence [17–19] goes further to show that

we can obtain SU(Ñ) QCD from an SO(2Ñ) QCD-like theory under certain conditions.

The Lagrangian for a QCD-like theory with gauge group G and Nf flavours of Dirac fermions

in Euclidean space is

L =
1

2g2
G

tr(FGµν)2 +

Nf∑
a=1

q̄Ga (γµDG
µ +mq + µγ0)qGa (2.20)

where gG is the coupling, FGµν is the field strength, DG
µ = ∂µ + iAGµ , qGa is a Dirac fermion in the

fundamental representation, mq is the quark mass, and µ is the quark chemical potential.

We can apply an orbifold projection [20–22] on a parent SO(2Ñ) QCD-like theory to obtain a

child SU(Ñ) QCD theory. To do this, we identify a discrete subgroup of the symmetry group of

the parent theory and then set to zero all non-invariant degrees of freedom under the symmetry

subgroup, giving us a child theory.

In this case, the parent SO(2Ñ) QCD-like theory is

LSO(2Ñ) =
1

2g2
SO(2Ñ)

tr(Fµν)2 +

Nf∑
a=1

q̄a(γ
µDµ +mq + µγ0)qa (2.21)

The discrete subgroup of the symmetry group of this parent theory is Z2 ⊂ SO(2Ñ)× U(1)B. To

define the orbifold projection, consider J = iσ2 ⊗ 1Ñ ∈ SO(2Ñ), where 1Ñ is an Ñ × Ñ identity

matrix, and ω = eiπ/2 ∈ U(1)B. The action of J on Aµ and ω on qa is

Aµ → JAµJ
T

qa → −ωJqa (2.22)

and generates a Z2 subgroup of SO(2Ñ) × U(1)B. We can write the matrix field Aµ in Ñ × Ñ

blocks

Aµ = i

(
AAµ +BA

µ CAµ −DS
µ

CAµ +DS
µ AAµ −BA

µ

)
(2.23)

where the superscript A/S represents antisymmetric/symmetric matrices. Under the Z2 symmetry,

AAµ , DS
µ are even while BA

µ , CAµ are odd. Under the orbifold projection, we set to zero non-invariant

degrees of freedom so that BA
µ = CAµ = 0. Hence the projected matrix gauge field Aproj

µ is
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Aproj
µ = i

(
AAµ −DS

µ

DS
µ AAµ

)
(2.24)

Consider the following unitary matrix P and use it to diagonalise Aproj
µ

P =
1√
2

(
1Ñ i1Ñ
1Ñ −i1Ñ

)
⇒ PAproj

µ P−1 =

(
−ATµ 0

0 Aµ

)
(2.25)

where Aµ = DS
µ + iAAµ and is an U(Ñ) gauge field. The difference between U(N) and SU(N) is

O(1/N2) so that the gauge terms converge in the large-N limit. Hence, the gauge component of

the new child theory due the orbifold projection Lproj
gauge is

Lproj
gauge =

2

2g2
SO(2Ñ)

tr(Fµν)2 (2.26)

where Fµν is the SU(Ñ) field strength tensor in terms of the SU(Ñ) gauge field Aµ. We then take

LSO(2Ñ) → 2LSU(Ñ) (2.27)

This factor of two is necessary to match the ground state energies per degree of freedom between

the two theories [23,24] since there are twice as many degrees of freedom in the parent theory than

the child theory.

Consider the action of the Z2 symmetry and P on qa.

Pqa ≡
(
λ+
a

λ−a

)
→
(
−λ+

a

λ−a

)
(2.28)

Under the orbifold projection, we set to zero non-invariant degrees of freedom so that λ+
a = 0.

We then conclude that the resulting child theory from this large-N orbifold projection is

LSU(Ñ) =
1

2g2
SU(Ñ)

tr(Fµν)2 +

Nf∑
a=1

ψ̄a(γ
µDµ +mq + µγ0)ψa (2.29)

where Aµ = DS
µ + AAµ , ψa = λ−a , Dµ = ∂µ + iAµ, and we relate the couplings of the two gauge

theories by

g2
SU(Ñ)

= g2
SO(2Ñ)

(2.30)

The orbifold projection symmetries link the correlators of particular operators in the two the-

ories in the large-N limit. Define neutral operators to be operators that are invariant under the

projection symmetry. Then, colour singlet operators in an SO(2Ñ) theory are neutral and the
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projection symmetry maps them to C = + operators in an SU(Ñ) theory.

For this orbifold equivalence to hold non-perturbatively, the projection symmetry must not

spontaneously break. When µ ≥ mπ/2, baryonic pion condensation breaks down the symmetry

U(1)B → Z2, breaking the equivalence. We can add a deformation term to prevent this condensation

and protect the projection symmetry [20,21]. One such choice of deformation term is

LSO(2Ñ) → LSO(2Ñ) +
c2

Λ2

∑
a,b

S†abSab (2.31)

where Sab = qTa Cγ
5qb and C = γ0γ2 is the charge conjugation matrix.

2.4 QCD fermion sign problem

A reason to consider the physics of SO(N) gauge theories is the fermion sign problem in SU(N)

lattice QCD [7]. In a gauge theory at zero chemical potential, the Euclidean massless Dirac operator

/D has the property that it is γ5-Hermitian.

/D = γµ(∂µ + iAµ)

/D
†
γ5 = γ5 /D (2.32)

Now we consider the SU(N) Dirac operator DSU(N)(µ) for a quark of mass m at finite chemical

potential µ.

DSU(N)(µ) = /DSU(N) +m+ µγ0

⇒ γ5DSU(N)(µ) = γ5 /DSU(N) +mγ5 + µγ5γ0

= ( /D
†
SU(N) +m− µγ0)γ5

= D†SU(N)(−µ
∗)γ5 (2.33)

Hence, if we evaluate the determinant of both sides, we find that

det
(
DSU(N)(µ)

)
= det

(
DSU(N)(−µ∗)

)∗
(2.34)

This shows that the SU(N) fermion determinant det
(
DSU(N)(µ)

)
is complex for real, non-zero

µ. In lattice QCD, the fermion determinant acts as a probability weight in importance sampling.

However, if it turns complex, it is impossible to use it as a probability weight and hence lattice

calculations are impossible. This motivates us to consider equivalences with alternative gauge

theories.
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Consider now the SO(2Ñ) Dirac operator DSO(2Ñ)(µ) for a quark of mass m at finite chemical

potential µ [21, 23].

DSO(2Ñ)(µ) = /D +m+ µγ0

⇒ (Cγ5)DSO(2Ñ)(µ)(Cγ5)−1 = D∗
SO(2Ñ)

(µ) (2.35)

where we can consider an alternative conjugacy relation since the fermions are in a real represen-

tation. This means that, if ψ satisfies Dψ = λψ, then

DSO(2Ñ)(µ)(γ5C
−1ψ∗) = λ∗(γ5C

−1ψ∗) (2.36)

showing that ψ and γ5C
−1ψ∗ are orthogonal. Hence, DSO(2Ñ)(µ) has pairs of eigenvalues (λ, λ∗) so

that det(DSO(2Ñ)(µ)) is real and positive-definite, and we can use det(DSO(2Ñ)(µ)) as a probability

weight. Hence, there is no sign problem in the SO(2Ñ) gauge theory.

2.5 Moving between SU(N) and SO(N) gauge theories

We can combine the ideas from ’t Hooft’s large-N argument and the large-N orbifold equivalence

to suggest a route between SU(N) and SO(N) gauge theories. We know that finite SU(N) gauge

theory has O(1/N2) corrections to its large-N limit SU(N →∞) and similarly that finite SO(N)

gauge theory has O(1/N) corrections to its large-N limit SO(N → ∞), if we hold the ’t Hooft

coupling g2N constant in both cases. Meanwhile, we suspect that the large-N orbifold equivalence

leads to equivalent non-perturbative physics between SU(Ñ → ∞) and SO(2Ñ → ∞) if we hold

g2
SO(2Ñ)

= g2
SU(Ñ)

. We summarise this process of moving between SU(Ñ) and SO(2Ñ) gauge

theories in Figure 2.6.

SU(Ñ →∞) SO(2Ñ →∞)

SU(Ñ) SO(2Ñ)

Orbifold equivalence

O(1/Ñ2) corrections O(1/Ñ) corrections

Figure 2.6: Moving between SU(Ñ) and SO(2Ñ) gauge theories

So if SU(3) is close to SU(N → ∞) and, for example, SO(6) turns out to be close to

SO(Ñ →∞), we can imagine doing calculations in the SO(6) theory in order to obtain a good

approximation to the physics of SU(3) QCD.
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Chapter 3

String tension

In this chapter, we calculate the string tensions of SO(N) gauge theories in 2 + 1 dimensions. We

start by constructing string tension operators that project well on to the states we are investigating

before looking at string tension models. We move on to calculating SO(N) continuum limits for

string tensions, which we extrapolate to the large-N limit. We finally compare SO(N) and SU(N)

string tensions between group equivalences.

3.1 String tension operators

3.1.1 Polyakov loops

We can calculate the string tension for a gauge theory by considering static charges q and q̄ at

a distance R apart and the flux tube that joins them together. A gauge invariant operator that

projects on to this qq̄ state is

φ(t) = q̄(0)
(∏

Uµ

)
q(R) (3.1)

where we orient the two charges so that they are separated in the spatial µ direction and the

product of lattice links
∏
Uµ is the shortest linear path between them.

We can adapt this operator by imagining that we pull the charges apart until they travel around

the spatial torus, meet, and annihilate. This leaves behind a non-contractible pure gauge flux loop

that winds around the torus. The operator that describes this flux loop is the Polyakov loop. We

can construct the Polyakov loop out of link variables
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φy(x, t) = tr

Ls∏
m=1

Uy(x, y +mŷ, t) (3.2)

where, in this case, the Polyakov loop winds around the spatial torus in the y-direction.

We can set all the Polyakov loop operators to have zero momentum p = 0 by requiring the

operators to be translationally invariant. We do this by summing all Polyakov loops starting from

points in the orthogonal spatial direction to the direction in which the Polyakov loop winds around.

Hence, on a spatial lattice, we choose the normalised Polyakov loop operator to be

φy(t) =
1

L2
s

Ls∑
x=1

Ls∑
y=1

tr

Ls∏
m=1

Uy(x, y +mŷ, t) (3.3)

where, in this case, the operator φy(t) projects on to the Polyakov loop winding in the y-direction.

We can similarly define an operator φx(t) winding in the x-direction. We note that we sum over

both x and y, so that we can generalise this expression to operators defined on blocking levels, as

we go on to explain.

3.1.2 Blocking

We want the operators that we use to project on to the lightest states. However, all the operators

we have defined are loops of transverse size O(a), so they are ultraviolet and they will have an

almost equal projection on to all states with any particular quantum numbers. Furthermore, the

number of excited states increases as a → 0. Hence, the normalised projection of these operators

on to the lightest states decreases as a→ 0. This is a problem since we want to calculate the energy

of lightest states at lattice spacings close to the continuum limit. We might attempt to solve this

problem by considering values at larger t where the lightest states dominate. However, statistical

noise also increases at larger t making it significantly more difficult to extract accurate masses.

We can solve this problem by constructing operators that are larger over physical length scales

while also being smooth. To do this, we apply an iterative blocking procedure [25,26] that generates

larger blocked links that we can use to construct larger operators. At blocking level 0, we define

the links U0(x) to be the standard lattice links U0
µ(x) = Uµ(x). At blocking level N + 1, we define

the links UN+1(x) from the blocked links UN (x) at blocking level N through the following method.

Consider a blocked lattice at level N with sites are 2Na apart and a blocked link UNµ (x) in spatial

direction µ and another link UNν (x) in orthogonal spatial direction ν. Then consider the sum of

spatial paths UNµ U
N
µ , UNν U

N
µ U

N
µ (UNν )T , and (UNν )TUNµ U

N
µ U

N
ν before projecting this sum back to
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the ‘nearest’ SO(N) matrix. We have then constructed a blocked link UN+1
µ of length 2N+1a that

is larger and fatter in both spatial directions. This defines the blocking procedure. We can then

construct operators from these blocked links at each blocking level. We note that the spatial lattice

size Ls need not necessarily be a multiple of the length of a blocked link. We can use links from

lower blocking levels along with staples to span the length that we require.

Blocking also increases the number of operators that we can use. The spatial length size Ls

sets the number of blocking levels Nblocking = [log2(Ls)] + 1 where [· · · ] is the floor function. Then

we can define Polyakov loop operators at each blocking level so that we use Nblocking operators in

total.

3.1.3 Z2 symmetry

In an SO(2Ñ) gauge theory, there is a Z2 symmetry under which the action and measure are

invariant. Consider two neighbouring lattice slices in the x− t plane. Then we can transform the

lattice links that join these two slices in the y-direction by a non-trivial element of the centre z of

the symmetry, which is z = −I for a Z2 symmetry, so that for y0 some value of y

Uy(x, y0, t)→ zUy(x, y0, t) ∀x, t (3.4)

Under this Z2 symmetry, a contractible loop such as the plaquette is invariant since it transforms

with a factor z2 = 1. However, a Polyakov loop that winds around the spatial torus in the y-

direction is not invariant since it transforms with a factor z. Hence, a Polyakov loop operator has

no overlap on contractible loops and hence glueball states. Furthermore, the vacuum expectation

value for the Polyakov loop operator φ must be zero since

〈φ〉 = z 〈φ〉 ⇒ 〈φ〉 = 0 (3.5)

For the same reason, Polyakov loop operators cannot mix with contractible loop operators since

the expectation value of the combination of these two operator types is also zero. These results

break down if this symmetry spontaneously breaks such as in the high temperature deconfining

phase. These properties may not hold for SO(2Ñ+1) gauge theories since there is no Z2 symmetry.

Hence, we cannot expect that the expectation value 〈φ〉 = 0 in these cases.
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3.2 String tension models

3.2.1 Linear potential

As we will discuss later, we can measure the potential of the flux tube between two static charges

by considering how the Polyakov loop mass mP (l) varies with its length l. Given that the Polyakov

loop represents the potential between two static charges, we would expect the lowest energy Emin

varies linearly with the flux loop length l at large l.

lim
l→∞

Emin(l) = σl (3.6)

Here, the proportionality constant σ is the string tension and is the coefficient for linear confinement

that we will explore later. We also know the first order correction term is the Lüscher term

proportional to 1/l [27, 28].

lim
l→∞

Emin(l) = σl − π

6l
(3.7)

3.2.2 Nambu-Goto model

We expect a flux loop to have a width of O(1/
√
σ). For a long flux loop of length l where l� 1/

√
σ,

the flux loop is string-like and the lowest lying excitations are massless modes along the string

described by transverse fluctuations. The simplest bosonic string theory is the Nambu-Goto free

string theory in flat spacetime. The ground state energy in this theory is given by

E(l) = σl
(

1− π

3σl2

) 1
2

(3.8)

This expression expands to give (3.7) to O(1/l). Previous papers on SU(N) gauge theories [29–31]

showed that the predictions of this Nambu-Goto model agree well with the calculated energy

spectrum, even below the critical length for excited string states at which the expansion of the

Nambu-Goto energy in powers of 1/l2 diverges and we need to resum the series.

To test whether this is a suitable model for SO(N) string tensions, we consider SO(8) Polyakov

loops at fixed β = 84.0 for volumes L2
s36 where 12 ≤ Ls ≤ 36. We calculate the string tension a2σ,

which should be independent from Ls, from the Polyakov loop masses using the three expressions

above: the Nambu-Goto model (3.8), a linear fit (3.6), and with a Lüscher (3.7) correction. We

list the Polyakov loop masses and calculated string tensions in Table 3.1 and we plot the string
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tensions a2σ against Ls in Figure 3.1. We see that the string tensions converge to a similar value as

Ls increases. However, there are corrections at low Ls. Out of the three models, the string tension

from the Nambu-Goto model converges fastest and the corrections at small Ls to the asymptotic

value are least.

We therefore use the Nambu-Goto model to extract the string tension from the Polyakov loop

masses. We can rearrange (3.8) to give us the string tension a2σ in physical units

a2σ =

π
3 +

√
π2

9 + 4a2L2
sE

2

2L2
s

(3.9)

where l = aLs.

We note that Figure 3.1 also shows us the appropriate scale above which we can obtain accurate

string tensions from the Nambu-Goto model. In the case of Table 3.1, we see that the Ls = 20

string tension is within errors of the asymptotic value. This scale is equivalent to l
√
σ ∼ 2.7. Hence,

we need l
√
σ ≥ 2.7 for the Nambu-Goto model to give the correct string tension. For SO(8), we

use l
√
σ = 3.7. In practice, we use higher l

√
σ values than required to obtain the correct string

tension from the Nambu-Goto model because we simultaneously calculate the mass spectrum at

the same values. This requires a higher l
√
σ value to avoid torelon mixing with glueball states, as

we explain later.

3.3 Continuum limits

3.3.1 Methodology

We are now ready to calculate string tensions. We use the normalised Polyakov loop operators

that we defined in (3.3). We then use blocking levels to create a basis of operators. We use the

variational method to calculate correlation functions before applying exponential fits to obtain

energy estimates. We then use the Nambu-Goto model to obtain the string tensions from the

energies.

Having obtained string tensions at different lattice spacings, we then want to obtain the con-

tinuum limit. Since g2 is the only mass scale in the theory, we express the string tension in terms

of coupling units
√
σ/g2. In the continuum limit, we expect that

lim
β→∞

βa
√
σ

2N2
=

√
σ

g2N
(3.10)
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where we have taken the limit using dimensionless quantities and we express the string tension in

’t Hooft coupling units
√
σ/(g2N).

We can obtain this continuum limit by extrapolating values of a2σ at different lattice spacing

values a and adding a correction term.

βa
√
σ

2N2
= c0 +

c1

β
(3.11)

Previous papers [32] indicate that the bare lattice coupling does not provide a very good definition

of the running coupling since there are large higher order corrections compared to some more

physical couplings. An example of one such physical coupling is the mean field improved coupling

βI = β

〈
1

N
tr(Up)

〉
(3.12)

which previous papers for SU(N) gauge theories have used successfully [2]. Hence, we choose this

coupling to obtain the continuum limits so that

βIa
√
σ

2N2
= c0 +

c1

βI
(3.13)

We can then consider applying fits to obtain the constants c0 and c1, and c0 is the estimate for

√
σ/(g2N). There may also be higher order corrections for low β values, or equivalently for large

lattice spacings a, so we would need to remove the lowest β values systematically until we obtained

an acceptable χ̄2
dof fit.

3.3.2 SO(4), SO(6), SO(7), SO(8), SO(12), and SO(16)

We list the average plaquette values, Polyakov loop masses, and string tensions at different lattice

spacings for SO(4), SO(6), SO(7), SO(8), SO(12), and SO(16) in Tables 3.2, 3.3, 3.4, 3.5, 3.6, and

3.7. We display the continuum extrapolation plots in Figures 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7. We list

the continuum string tension values in ’t Hooft coupling units of
√
σ/(g2N) in Table 3.8. We see

that the string tensions are very accurate with very low errors. We will see that string tensions are

some of the most precise calculations we can do on the lattice and we will use them to set a mass

scale for other quantities. The continuum extrapolations are all very good with low χ̄2
dof values,

indicating that (3.13) is the correct model and there are negligible further corrections.

Returning to our earlier statement about the expectation value 〈φ〉 in SO(2Ñ + 1) theories, the

SO(7) calculations indicate that 〈φ〉 ≈ 0 within very small fluctuations.
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3.4 Large-N limits

Given ’t Hooft’s argument that we explained previously, we expect the physics of an SO(N) gauge

theory to approach a large-N limit if we hold the ’t Hooft coupling g2N constant. Hence, we expect

√
σ/(g2N) to converge to a large-N limit.

lim
N→∞

√
σ

g2N
=

√
σ

g2N

∣∣∣∣
SO(N→∞)

(3.14)

Furthermore, if we apply ’t Hooft’s 1/N argument that we explained previously, we expect the

leading correction to this limit at finite SO(N) to be proportional to 1/N

√
σ

g2N

∣∣∣∣
SO(N→∞)

=

√
σ

g2N
+
c1

N
(3.15)

for a constant c1.

To verify this correction, we fit the string tension data with

√
σ

g2N

∣∣∣∣
SO(N→∞)

= c0 +
c1

Nα
(3.16)

for constants c0, c1, and exponent α. In Figure 3.8, we show how the goodness of fit χ̄2
dof varies

with the power α. Along with free fits for α in (3.16), this indicates that α = 1.07(5) in agreement

with a leading O(1/N) correction. We now assume a leading O(1/N) correction.

We apply a large-Ñ extrapolation to the SO(2Ñ) values since these are the relevant values to

compare to the SU(Ñ) large-Ñ limit. We also rescale the SO(2Ñ) string tension values in terms

of g2Ñ = g2N/2, which is the relevant ’t Hooft coupling when comparing to SU(Ñ) values as we

will see later. We list these rescaled values in Table 3.9. Fitting to the SO(2Ñ) values linearly and

quadratically, we obtain

√
σ

g2Ñ
= 0.1985(5)− 0.1563(14)

Ñ
χ̄2

dof = 0.79 Ñ ≥ 2

√
σ

g2Ñ
= 0.1977(8)− 0.1527(8)

Ñ
χ̄2

dof = 0.29 Ñ ≥ 3 (3.17)

√
σ

g2Ñ
= 0.1968(13)− 0.1440(87)

Ñ
− 0.0185(129)

Ñ2
χ̄2

dof = 0.16 Ñ ≥ 2

We see that the fits have low χ̄2
dof values and that these values agree well with each other. The

slightly larger difference between the quadratic fit and the Ñ ≥ 2 linear fit when compared to the

Ñ ≥ 3 linear fit indicates that there may be O(1/Ñ2) corrections from the SO(4) value. Hence,
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we choose the Ñ ≥ 3 linear fit (3.17) as the SO(N →∞) value. We display this plot in Figure 3.9.

We also note that the SO(7) string tension value agrees well with the extrapolation.

3.5 Equivalences between SO(N) and SU(N) gauge theories

3.5.1 Lie algebra equivalences

We know that SO(4) and SU(2) × SU(2) share a Lie algebra so we could ask how the string

tensions and couplings
√
σ/g2 compare between SO(4) and SU(2). For the cross product group

SU(2)× SU(2), we expect a contribution from each SU(2) group to the string tension so that

σ|SO(4) = σ|SU(2)×SU(2) = 2 σ|SU(2) (3.18)

As we will see later, the SO(4) and SU(2) mass spectrum mG/
√
σ indicates that these string

tensions are related in this way. We know the SO(4) and SU(2) string tensions [33].

√
σ

g2
= 0.2404(7) SO(4)

√
σ

g2
= 0.3351(8) SU(2) (3.19)

Hence, we can use these results to relate the SO(4) and SU(2) couplings.

g2
∣∣
SO(4)

g2|SU(2)

=
g2

√
σ

∣∣∣∣
SO(4)

√
σ|SO(4)√
σ|SU(2)

√
σ

g2

∣∣∣∣
SU(2)

=
√

2

√
σ/g2

∣∣
SU(2)√

σ/g2|SO(4)

= 1.97(1) (3.20)

This indicates that g2
∣∣
SO(4)

= 2 g2
∣∣
SU(2)

.

As we discussed previously, we know that SO(6) and SU(4) share a common Lie algebra so

we might ask how the string tensions
√
σ/g2 compare between SO(6) and SU(4). We recall that

in SU(4), 4 ⊗ 4 = 6 ⊗ 10 where the 6 corresponds to the k = 2 antisymmetric representation and

maps to the fundamental 6 of SO(6). Hence, we expect that the SO(6) fundamental string tension

σf |SO(6) is equal to the SU(4) k = 2A value σ2A|SU(4).

σf |SO(6) = σ2A|SU(4) (3.21)

We also need to relate the couplings between the two theories. To do this, consider a mixed SU(4)
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plaquette action with fundamental and k = 2A terms [10]

βmixedSmixed = βf
∑
p

(
1− 1

Nf
trf (Up)

)
+ β2A

∑
p

(
1− 1

N2A
tr2A(Up)

)
(3.22)

where f represents the fundamental representation, 2A represents the k = 2A representation, and

βf = 2Nf/g
2
f and β2A = 2N2A/g

2
2A. We use that tr2A(Up) = 1

2

[
(trf (Up))

2 − trf (Up)
2
]

and that

Nf = 4 and N2A = 6 for SU(4) to carry out a weak coupling expansion. By requiring that the

coefficients to the F 2
µν terms from the fundamental and k = 2A parts are equal, we expect that

g2
f

∣∣
SO(6)

= g2
2A

∣∣
SU(4)

= 2 g2
f

∣∣
SU(4)

(3.23)

We know the SO(6) and SU(4) string tensions [2, 33].

√
σ

g2
f

= 0.4402(12) SO(6)

√
σ2A

g2
f

= 0.8832(41) SU(4) (3.24)

Hence, we can use these results to relate the SO(6) and SU(4) couplings.

g2
f

∣∣∣
SO(6)

g2
f

∣∣∣
SU(4)

=
g2
f√
σf

∣∣∣∣∣
SO(6)

√
σf |SO(6)√
σ2A|SU(4)

√
σ2A

g2
f

∣∣∣∣∣
SU(4)

=

√
σ2A/g

2
f

∣∣∣
SU(4)

√
σf/g

2
f

∣∣∣
SO(6)

= 2.006(15) (3.25)

This agrees very well with our expectation (3.23).

3.5.2 Large-N orbifold equivalence

We showed previously that the large-N orbifold equivalence indicates that the physics of SO(2Ñ)

and SU(Ñ) gauge theories may match at the large-Ñ limit if we set g2
SO(2Ñ)

= g2
SU(Ñ)

. We want

to see if the continuum string tensions match in the large-N limit.

We also showed that we can obtain a large-N extrapolation from values at finite N if we hold

the ’t Hooft coupling λ = g2N constant. Hence, we can compare the continuum string tensions

between SO(2Ñ) and SU(Ñ) gauge theories if we hold constant
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g2
SU(Ñ)

Ñ = g2
SO(2Ñ)

Ñ = g2
SO(2Ñ)

N/2 (3.26)

for N = 2Ñ , so that we expect

lim
N→∞

√
σ

g2
SU(Ñ)

Ñ
= lim

Ñ→∞

√
σ

g2
SO(2Ñ)

Ñ
= lim

N→∞
2

√
σ

g2
SO(2Ñ)

N
(3.27)

This is why we doubled the SO(2Ñ) continuum string tensions in Table 3.8, converting
√
σ/(g2N)

to
√
σ/(g2Ñ) = 2

√
σ/(g2N). It was because we wanted to compare the SO(2Ñ) large-N limit to

the SU(Ñ) large-Ñ limit.

We list the continuum string tensions for SO(2Ñ) and SU(Ñ) [34] gauge theories in Table 3.9.

We obtain the SU(Ñ) large-Ñ string tension by a quadratic fit using a leading O(1/Ñ2) correction

to the SU(Ñ) data and we compare this fit to the Ñ ≥ 3 linear fit to the SO(2Ñ) data in (3.17).

We display a plot of the SO(2Ñ) and SU(Ñ) continuum string tensions against 1/Ñ and their

large-Ñ extrapolations in Figure 3.9.

The large-Ñ values are

lim
Ñ→∞

√
σ

g2Ñ
= 0.1977(8) SO(2Ñ)

lim
Ñ→∞

√
σ

g2Ñ
= 0.1974(2) SU(Ñ) (3.28)

This shows that the rescaled SO(2Ñ →∞) and SU(Ñ →∞) values agree within errors, validating

our expectation from the large-N orbifold equivalence (3.27).
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3.6 Data

String tensions a2σ
Ls amP Nambu-Goto Linear Lüscher

12 0.1349(15) 0.01545(12) 0.01124(13) 0.01488(13)
16 0.2366(19) 0.01697(12) 0.01479(12) 0.01683(12)
20 0.3306(19) 0.01789(9) 0.01653(10) 0.01784(10)
24 0.4078(41) 0.01792(17) 0.01699(17) 0.01790(17)
28 0.4834(22) 0.01795(8) 0.01726(8) 0.01793(8)
32 0.5606(19) 0.01804(6) 0.01752(6) 0.01803(6)
36 0.6354(22) 0.01806(6) 0.01765(6) 0.01805(6)

Table 3.1: SO(8) Polyakov loop masses, and string tensions with errors from three different models.

L2
sLt β 1

N tr(Up) amP a
√
σ

20228 11.0 0.80135 0.8337(22) 0.2074(3)
24232 12.2 0.82295 0.7810(46) 0.1829(5)
28236 13.7 0.84402 0.6996(20) 0.1602(2)
32240 15.1 0.85955 0.6336(51) 0.1425(6)
36244 16.5 0.87223 0.5881(25) 0.1294(3)
40248 18.7 0.88808 0.4959(15) 0.1128(2)

Table 3.2: SO(4) average plaquette values, Polyakov loop masses, and string tensions.

L2
sLt β 1

N tr(Up) amP a
√
σ

16224 23.0 0.75878 1.2721(140) 0.2856(15)
20228 28.0 0.80677 0.9798(18) 0.2243(2)
24232 33.0 0.83851 0.7938(27) 0.1844(3)
28236 37.0 0.85718 0.7145(21) 0.1618(2)
32240 41.0 0.87194 0.6452(25) 0.1438(3)
36248 46.0 0.88656 0.5620(19) 0.1266(2)

Table 3.3: SO(6) average plaquette values, Polyakov loop masses, and string tensions.

L2
sLt β 1

N tr(Up) amP a
√
σ

16224 35.0 0.78116 1.0714(51) 0.2628(6)
20228 42.0 0.82117 0.8572(18) 0.2102(2)
24232 49.0 0.84862 0.7144(21) 0.1752(2)
28236 57.0 0.87112 0.5921(16) 0.1477(2)
32240 64.0 0.88592 0.5249(8) 0.1301(1)
36244 70.0 0.89613 0.4832(17) 0.1176(2)

Table 3.4: SO(7) average plaquette values, Polyakov loop masses, and string tensions.
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L2
sLt β 1

N tr(Up) amP a
√
σ

16224 51.0 0.80206 0.8721(24) 0.2379(3)
20228 62.0 0.84000 0.6888(11) 0.1891(1)
24232 73.0 0.86561 0.5669(15) 0.1567(2)
28236 84.0 0.88409 0.4834(22) 0.1340(3)
32240 94.0 0.89696 0.4307(16) 0.1182(2)
36244 105.0 0.90815 0.3827(13) 0.1051(2)

Table 3.5: SO(8) average plaquette values, Polyakov loop masses, and string tensions.

L2
sLt β 1

N tr(Up) amP a
√
σ

16224 132.0 0.82178 0.7240(29) 0.2176(4)
20228 155.0 0.85007 0.6256(23) 0.1806(3)
24232 175.0 0.86820 0.5760(14) 0.1579(2)
28236 200.0 0.88546 0.4967(28) 0.1357(4)
32240 225.0 0.89871 0.4397(26) 0.1194(3)
36248 250.0 0.90920 0.3952(16) 0.1067(2)

Table 3.6: SO(12) average plaquette values, Polyakov loop masses, and string tensions.

L2
sLt β 1

N tr(Up) amP a
√
σ

16224 247.0 0.82758 0.6971(44) 0.2137(6)
20228 302.0 0.86092 0.5428(23) 0.1688(3)
24232 353.0 0.88192 0.4627(20) 0.1422(3)
28236 408.0 0.89848 0.3940(18) 0.1215(3)
32240 456.0 0.90954 0.3524(13) 0.1074(3)
36248 512.0 0.91974 0.3113(14) 0.0952(2)

Table 3.7: SO(16) average plaquette values, Polyakov loop masses, and string tensions.

SO(N)
√
σ/(g2N) χ̄2

dof

4 0.0601(2) 0.68
6 0.0734(2) 0.34
7 0.0771(1) 1.51
8 0.0798(2) 0.80
12 0.0863(3) 0.56
16 0.0892(3) 1.17

Table 3.8: SO(N) continuum string tensions in g2N units
√
σ/(g2N) and extrapolation χ̄2

dof.

Ñ SO(2Ñ) SU(Ñ)

2 0.1202(4) 0.1675(3)
3 0.1467(4) 0.1839(2)
4 0.1596(3) 0.1902(3)
5 0.1924(3)
6 0.1726(6) 0.1944(3)
8 0.1783(6) 0.1955(3)

Table 3.9: SO(2Ñ) and SU(Ñ) [34] continuum string tensions in g2Ñ units
√
σ/(g2Ñ).
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3.7 Figures
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Figure 3.1: SO(8) string tensions calculated from three different string tension models.
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Figure 3.2: Continuum extrapolation of SO(4) string tensions in g2N units.
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Figure 3.3: Continuum extrapolation of SO(6) string tensions in g2N units.
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Figure 3.4: Continuum extrapolation of SO(7) string tensions in g2N units.
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Figure 3.5: Continuum extrapolation of SO(8) string tensions in g2N units.
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Figure 3.6: Continuum extrapolation of SO(12) string tensions in g2N units.
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Figure 3.7: Continuum extrapolation of SO(16) string tensions in g2N units.
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Figure 3.8: χ̄2
dof against the power α of the leading large-N correction when fitting

√
σ/(g2N) =

c0 + c1
Nα . The minimum χ̄2

dof of this plot is at α = 1.07(5).
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Figure 3.9: Large-Ñ extrapolation of SO(2Ñ → ∞) and SU(Ñ → ∞) continuum string tensions
in g2Ñ units. We use only the thick style points in the extrapolation.
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Chapter 4

Mass spectrum

In this chapter, we calculate the mass spectrum of SO(N) gauge theories in 2 + 1 dimensions. We

first consider the operators that project on to glueball states and the finite size corrections that we

need to control. We then present our continuum values before extrapolating to the large-N limit.

We finally compare SO(N) and SU(N) mass spectra between group equivalences.

4.1 Glueball operators

4.1.1 Quantum numbers

We want to construct colour singlet operators since we assume that the theory is confining. Since

traces of closed loops on the lattice are colour singlets, we will construct glueball operators from

closed loops. By making our operators translationally invariant, we can set all operators to have

zero momentum p = 0. We do this by summing configurations of closed loops over all points

on a spatial lattice. We want the operators to project on to JP glueball states with spin J and

parity P . We can do this by constructing glueball operators φ that use link variable products

of rotations and translations of a closed curve C. In particular, if UC is the ordered link variable

product on an arbitrary closed curve C, then we can construct an operator φ from the following

linear combination [2].

φ(t) =
∑
x

∑
n

eijθntr
{
UR(θn)C ± UPR(θn)C

}
(4.1)

Here, θn = nπ
2 where n ∈ Z, R(θn) is a rotation by angle θn, P is the parity transformation, and

the sum
∑

x is over points on the spatial slice at time t. This operator then projects on to a state

with spin J = j and parity P = ±. We note that since all SO(N) traces are real, these glueball
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operators will necessarily project on to states with charge conjugation C = +. For J = 1 states,

we take the real part of the correlation function 〈φ(t)φ†(0)〉 to ensure that the operators are real.

Re
(〈
φiφ
†
j

〉)
= 〈Re (φi) Re (φj)〉+ 〈Im (φi) Im (φj)〉 (4.2)

There is some uncertainty over the value of J from our expression in (4.1). This occurs because

we construct operators on a cubic lattice, breaking the continuum symmetry by discrete rotations

of π/2. Hence, the state we label with spin J = 0 actually contains projections on to states with

spin J = 0, 4, 8, . . ., and similarly for states with spin J = 1, 5, 9, . . . and 2, 6, 10, . . .. We also note

that parity doubling implies that we construct a state |j,±〉 = |j〉 ± P |j〉 with spin J = j and

parity P = ± from two states |j〉 and P |j〉 with spins J = j and J = −j respectively. Hence,

the state we label with spin J = 1 includes states with spin J = −1 and hence states with spins

J = 3, 7, 11, . . .. So the state J = 1 includes all states with odd spins.

For most states, we assume that the state with lowest positive spin has lowest mass and we use

this assumption to label the lightest states for each respective spin. We will see that there is some

evidence to show that this may not be true for some states.

4.1.2 Curves

We use a range of closed curves C to construct operators to project on to glueball states. The

simplest such curves are the 1 × 1 plaquette, and the 1 × 2, 1 × 3, . . . rectangles. The square

plaquette is invariant under π/2 rotations and so will only project on to J = 0 states while the

rectangles are invariant under π rotations and so will only project on to J = 0 and J = 2 states.

These curves are also invariant under parity and so will only project on to P = + states. Hence,

we need to consider more complicated curves to project on to J = 1 and P = − states. To do this,

we consider curves constructed from squares and rectangles that have no rotational or reflectional

symmetry. We show four such curves in Figure 4.1.

We use twelve such curves to build, by rotations and reflections, a basis for each JP state of

twelve operators using (4.1). We also use two rectangle-based operators for 0+ and 2+ states and

the plaquette for the 0+ state. This means that we have a basis of fifteen operators for the 0+ state

and a basis of fourteen operators for the 2+ state.
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(a) Curve 1 (b) Curve 2

(c) Curve 3 (d) Curve 4

Figure 4.1: We can construct asymmetric curves for glueball operators from rectangles. We can
extend each rectangle arbitrarily, providing the curve has no overall rotational or reflectional sym-
metry.

4.1.3 Blocking

We use the same blocking procedure as for string tension operators to increase the basis of operators

that we can use. As with the string tension operators, the spatial length size Ls sets the number of

blocking levels Nblocking = [ln2(Ls)] + 1 where [· · · ] is the floor function. Then we can use the basis

operators at each blocking level so that we multiply the number of basic operators in the operator

basis by Nblocking.

4.2 Finite volume effects

We need to control finite volume corrections to ensure that they do not affect the calculations. The

two main sources of these corrections are from torelon mixing and glueball emission. We need the

volumes to be sufficiently large that these finite volume corrections do not affect our results. To

test how large the volumes need to be, we calculate values at different volumes until the differences

are so small that the values are within errors of the infinite volume limit.
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4.2.1 Finite volume study

To test these finite size corrections, we calculate SO(8) glueball masses at fixed β = 84.0 for several

different volumes, ranging from 12236 to 36236. We list the mass spectrum for each volume in

Table 4.1 and plot the values in Figure 4.2. Here, an effective scale for the volume size is l
√
σ,

which ranges from 1.5 to 4.8 in our results.

We make several observations from our data. Firstly, as we decrease Ls, there are indeed finite

size corrections. These particularly affect the excited 0+ states and all 2± states. As we increase Ls,

these mass values stabilise, indicating that finite size corrections are no longer significant beyond

Ls ≥ 28. Secondly, we can see that parity doubling breaks down at smaller Ls, and there are

finite size corrections to the 2± states. As we stated previously, we expect this since the periodic

boundary conditions break the continuous rotational symmetry down to π/2 rotations. This breaks

the argument for the 2± degeneracy but not for the 1± case as we see in our results. Again, as we

increase Ls, parity doubling restores until there are no noticeable corrections at the volume 28236.

Thirdly, we see that that the 0+ and 2+ states show significant finite size corrections when the

asymptotic glueball mass is roughly equal to twice the Polyakov loop mass 2amP (Ls) ≈ amG|Ls→∞.

These corrections affect the 2+ state more than the 0+ state. This is because the 0+ state is lighter

than the 2+ state and mP increases as Ls increases so that the 0+ state is volume independent at

smaller Ls than the 2+ state. These specific corrections are due to torelon mixing as we go on to

describe.

4.2.2 Torelon mixing

Consider an operator made from two Polyakov loops lP l
T
P . As with string tension operators, we

can sum this operator over lattice sites x to create a zero momentum operator known as the

torelon [2, 35]. This torelon state is a colour singlet and is made from contractible loops so that it

can mix with glueball states. For very large Ls, this torelon state would couple to a state of two

flux loops and so it would have a mass of 2amP (Ls). Just as with glueball states, we can form

torelon states with specific quantum numbers such as a 0+ torelon state lxl
T
x + lyl

T
y and a 2+ torelon

state lxl
T
x − lylTy , which again have mass 2amP (Ls) at large volumes. However, these torelon states

can mix with glueball states at smaller volumes, contributing states with anomalously low ‘masses’

to appear in the spectrum. This is what we see at small volumes in Figure 4.2 when the lightest

0+ and 2+ states involve torelon states. Hence, we need
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2amP (Ls) > am2+ |Ls→∞ (4.3)

to ensure that we isolate the correct states in the mass calculations.

We can show that the mixing between glueball and torelon states decreases with N , following

the argument in [14]. Consider gauge invariant local operators made from gauge fields O1, . . . , Om

and the correlation function 〈O1 . . . Om〉. Then we can construct a generating functional W in

the usual way by adding source terms to the action S → S + N
∑

i ciOi for some numbers ci

and N corresponding to SO(N). Then we can evaluate the correlation function in terms of the

generating functional 〈O1 . . . Om〉 ∼ N−m ∂mW
∂c1...∂cm

∣∣∣
ci=0

. Given that the leading graphs are planar

graphs and proportional to N2, this implies that 〈O1 . . . Om〉 ∼ N2−m. Let OP represent a single

trace Polyakov loop operator. Since torelon operators OT are double trace OT ∼ OPOP and

glueball operators OG are single trace then a correlation function mixing glueball and torelon

operators 〈OTOG〉 ∼ 〈OPOPOG〉 would be O(1/N) compared to a correlation function with only

glueball operators. Hence, we expect that mixing between glueball and torelon states decreases as

N increases. Previous studies on the SU(N) mass spectrum [35] have validated this expectation.

4.2.3 Glueball emission on a finite volume

Finite size corrections to the mass spectrum can arise from a glueball emitting another glueball

that winds around the volume that is then reabsorbed [36]. On a finite spatial volume l2 in an

effective theory with mass gap m, the leading finite size corrections of this sort are O(e−cml) for

some constant c ∼ O(1). Hence, if the change in mass between two volumes is small, we can

conclude that these values have small finite size corrections to the limit l → ∞. Hence, we can

effectively eliminate finite size corrections by measuring masses on sufficiently large lattices. In our

case, we find in our calculations that m/
√
σ > 3.6 so that, if we set l

√
σ > 3.5, then cml > 12.5

and these corrections will be negligible.

4.2.4 Multi-glueball states

There are further corrections from multi-glueball states [37]. The glueball operators we use project

on to all states with the corresponding quantum numbers. It is then possible for these operators

to project on to multi-glueball states. For example, two 0+ states with opposite momenta could

appear in our calculations from the 0+ operator. At small N , multitrace operators can appear

corresponding to these multi-glueball states. At large-N , single trace operators dominate for the
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same reasons as we described for torelon states above so that we only detect single particle states.

Hence, this scattering is suppressed by at least 1/N .

It is also possible that heavy glueball states are unstable at small N , and decay into multi-

glueball states. This occurs when the mass of the heavy glueball exceeds twice the mass of the

lightest glueballs. For example, an excited 2+ glueball could decay into a lighter 2+ and 0+ glueballs

or two 0+ glueball with relative angular momentum J = 2. We could detect this through missing

heavy states or new lighter states in the glueball spectrum. This decay is suppressed by 1/N so we

do not expect to see it at large N .

In practice, we do not seem to detect these multi-glueball states in our results so it appears

that both of these corrections do not appear even at small N .

4.2.5 Setting the scale

We hence want to set the scale to eliminate finite size corrections from our results. We showed

above that the Polyakov loop mass mP (l) ≈ lσ is the relevant value to consider torelon corrections.

Since we will consider dimensionless mass ratios in string tension units mG/
√
σ, we can set the

correct scale for our calculations by ensuring that mP /
√
σ ≈ lσ/

√
σ = l

√
σ is sufficiently large. To

do this, we choose a specific β value on a given lattice volume corresponding to the desired value

for l
√
σ so that we should extract the correct SO(N) mass spectrum without finite size corrections.

Given the equivalence between SO(N) and SU(N) gauge theories, we use similar values for l
√
σ

that the SU(N) papers used [2, 33]. As an example, consider the case of SO(8). We will show

later that, for SO(8), m2+/
√
σ|Ls→∞ ∼ 6.5 so that we need l

√
σ > 3.25, which corresponds to

Ls > 24. In this case, we choose l
√
σ = 3.7. We list these l

√
σ values for SO(N ≥ 6) in

Table 4.2. These values also ensure that the corrections from glueball emission are negligible.

For SO(4), its Lie algebra equivalences suggest that we need to adapt our approach. We know

that SU(2) × SU(2) and SO(4) share a common Lie algebra. Hence, for the cross product group

SU(2) × SU(2), we expect a contribution from each SU(2) group to the string tension so that

σ|SO(4) = σ|SU(2)×SU(2) = 2 σ|SU(2). Hence, we expect that

mP√
σ

∣∣∣∣
SO(4)

= l
√
σ|SO(4) = l

√
2σ
∣∣∣
SU(2)

=

√
2mP√
σ

∣∣∣∣∣
SU(2)

(4.4)

Hence, to avoid finite size corrections from torelon mixing, (4.3) implies that we need
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l
√
σ|SO(4) >

1√
2

m2++√
σ

∣∣∣∣
SU(2)

(4.5)

Since the SU(2) 2++ mass is m2++/
√
σ = 7.81(6) [33], this indicates that glueball-torelon mixing

occurs at l
√
σ ∼ 5.5 in SO(4). Since we are less protected from this mixing at lower N , we choose

l
√
σ = 7.0 in SO(4). Finally, we note that torelon mixing could affect excited states such as 2+∗.

It is possible that there are P = − torelon states in the mass spectrum, and we would need to

extend the operator basis to include P = ± torelon operators to exclude this case explicitly [37].

However, we note that torelon operators made from straight flux loops are intrinsically P = +, as

they are parity invariant. Hence, negative parity flux loops are much heavier since we need to add

additional excitations to create operators that project on to P = − states.

4.3 Continuum limits

4.3.1 Methodology

We can now calculate the continuum limits. For a glueball state with quantum numbers JP , we use

the appropriate operator and evaluate this on the lattice. We then use the variational method to

calculate correlation functions before applying exponential fits to obtain mass estimates (in lattice

units). We also calculate the Polyakov loop mass for the same coupling to obtain the string tension

and then express the glueball mass in string tension units mG/
√
σ since the string tension is the

most accurate quantity we calculate. We could instead use the coupling g2 or another mass m′G.

After calculating masses on different volumes, we can obtain the continuum limit by taking the

limit a → 0. Since we consider the ratio between two masses, we expect the leading correction to

be O(a2) [1]. Hence, for some constant c,

mG√
σ

(a) =
mG√
σ

(a = 0) + ca2σ + · · · (4.6)

4.3.2 SO(4)

For the SO(4) theory, we calculate masses for β values from 11.0 to 18.7. Here, we set l
√
σ ∼ 7.0.

We list the glueball masses amG and Polyakov loop masses amP in Table 4.3.

We find that the errors for the 0+∗∗∗ and 0+∗∗∗∗ masses for β = 11.0 are large compared to

other values so we choose to discard this data for the 0+∗∗∗ and 0+∗∗∗∗ continuum extrapolations.

We apply the linear extrapolation (4.6) to the data to obtain the continuum limits. We display the

51



continuum extrapolations in Figure 4.3. We list the continuum values, extrapolation range, and

extrapolation χ̄2
dof in Table 4.4. We see that the fits are good with low χ̄2

dof.

There is a clear mass hierarchy of 0+ states up to the fourth excited state. The third and fourth

excited 0+ states appear to be degenerate. The 1±, 2±, and 2±∗ states also seem to be degenerate

as we would expect by parity doubling.

4.3.3 SO(6)

For the SO(6) theory, we calculate masses for β values from 23.0 to 46.0, setting l
√
σ ∼ 4.5. We

list the glueball masses amG and Polyakov loop masses amP in Table 4.5.

We find that the errors for β = 23.0 are large compared to other volumes, especially for heavier

masses, so we choose to discard this data for the continuum extrapolations. We apply the linear

extrapolation (4.6) to the remaining data to obtain the continuum limits. We display the continuum

extrapolations in Figure 4.4. We list the continuum values and extrapolation χ̄2
dof in Table 4.6. We

see that the fits are good with low χ̄2
dof. Despite the large errors for β = 23.0, we see that the data

agrees with the extrapolations.

There is a clear mass hierarchy of 0+ states up to the fourth excited state. Here, the 0+∗∗∗∗

and 0− states appear to be degenerate. This may imply that the states are actually 4± states and

that we see parity doubling. Previous papers on the SU(N) mass spectrum [38] showed that the

lightest 0− state was actually the 4− state, so our results seem to agree with the SU(N) case. The

1±, 2±, and 2±∗ states also seem to be degenerate as we would expect by parity doubling.

4.3.4 SO(7)

For the SO(7) theory, we calculate masses for β values from 35.0 to 70.0, setting l
√
σ ∼ 4.2. We

list the glueball masses amG and Polyakov loop masses amP in Table 4.7. For SO(7), there is no

Z2 symmetry to prevent a flux loop interacting with the vacuum so that this may allow a non-zero

Polyakov loop vacuum expectation value 〈lP 〉. However, our calculations indicate that 〈lP 〉 = 0 so

there are no correction terms arising from mixing with Polyakov loops.

We find that the errors for the 1± masses for β = 35.0 are large compared to other values

so we choose to discard this data for the 1± continuum extrapolations. We apply the linear

extrapolation (4.6) to the remaining data to obtain the continuum limits. We display the continuum

extrapolations in Figure 4.5. We list the continuum values, extrapolation range, and extrapolation

χ̄2
dof in Table 4.8. We see that the fits are good with low χ̄2

dof.
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There is a clear mass hierarchy of 0+ states up to the fourth excited state. We note that the

second and third excited 0+ states have very similar masses, which indicates a possible degeneracy.

Again, the 0+∗∗∗∗ and 0− states appear to be degenerate implying they may be the degenerate

4± states. The 1±, 2±, and 2±∗ states also seem to be degenerate as we would expect by parity

doubling.

4.3.5 SO(8), SO(12), and SO(16)

For the SO(8) theory, we calculate masses for β values from 51.0 to 105.0, setting l
√
σ ∼ 3.7. For

the SO(12) theory, we calculate masses for β values from 132.0 to 250.0, setting l
√
σ ∼ 3.5. For

the SO(16) theory, we calculate masses for β values from 302.0 to 512.0, setting l
√
σ ∼ 3.5. We

list the glueball masses amG and Polyakov loop masses amP for SO(8) in Table 4.9, SO(12) in

Table 4.11, and SO(16) in Table 4.13.

Again, we find that the errors for some masses are large compared to other values so we choose

to discard this data for the continuum extrapolations. For SO(8) this applies to all data for

β = 51.0, for SO(12) this applies to all data for β = 132.0 except for the 0+, 0+∗,and 2± states,

and for SO(16) this applies to all data for β = 302.0. We apply the linear extrapolation (4.6) to the

remaining data to obtain the continuum limits. We display the continuum extrapolations for SO(8)

in Figure 4.6, for SO(12) in Figure 4.7, and for SO(16) in Figure 4.8. We list the continuum values,

extrapolation range, and extrapolation χ̄2
dof for SO(8) in Table 4.10, for SO(12) in Table 4.12, and

for SO(16) in Table 4.14. We see that the fits are good with low χ̄2
dof.

In these three cases, there is a clear mass hierarchy for 0+ states up to the fourth excited

state although we again see that occasionally the second and third excited 0+ states have very

similar masses, which indicates a possible degeneracy. Again, the 0+∗∗∗∗ and 0− states appear to

be degenerate implying they may be the degenerate 4± states. The 1±, 2±, and 2±∗ states also

seem to be degenerate as we would expect by parity doubling.

4.4 Large-N limits

We can now calculate the mass spectra in the SO(N) large-N limit. Given ’t Hooft’s argument

that we explained previously, we expect the physics of SO(N) gauge theories to approach a large-N

limit if we hold the ’t Hooft coupling g2N , or equivalently the string tension
√
σ constant. Hence,

we expect mG/
√
σ to converge to a large-N limit.
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lim
N→∞

mG√
σ

=
mG√
σ

∣∣∣∣
SO(N→∞)

(4.7)

Furthermore, if we apply ’t Hooft’s 1/N argument that we explained previously, we expect the

leading correction to this limit at finite N to be O(1/N).

mG√
σ

∣∣∣∣
SO(N→∞)

=
mG√
σ

+
c1

N
(4.8)

for a constant c1.

We list the SO(N) mass spectra in Table 4.15. We extrapolate the SO(2Ñ) values to obtain the

large-Ñ limits because we will later compare this to the large-Ñ limits of SU(Ñ) gauge theories.

We next decide how to apply extrapolation fits to the data. We know that the next correction term

in (4.8) is a quadratic term in 1/N2 so we need to decide how far the linear fit is suitable. To do

this, we consider linear fits to selected SO(N) data for Ñ ≥ 2 and Ñ ≥ 3 and a quadratic fit for

Ñ ≥ 2. We consider the lowest masses since they are the most accurate and we list the large-Ñ

extrapolations in Table 4.16. We see that the fits all have low χ̄2
dof. Most large-Ñ values from the

Ñ ≥ 3 linear fit are closer to those of the quadratic fit than the Ñ ≥ 2 linear fit. The 2+ mass

from the quadratic fit is about one standard deviation from the Ñ ≥ 3 linear fit value whereas it is

1.5σ is from the Ñ ≥ 2 linear fit value. The Ñ ≥ 3 linear fit errors are larger than the Ñ ≥ 2 linear

fit but reflect the O(1/N2) correction. Finally, we note that some of the heavier SO(4) masses

such as the 1± and 0+∗∗∗∗ states are inconsistent with the Ñ ≥ 3 linear fit, which may indicate

significant O(1/Ñ2) corrections for the SO(4) data. We therefore choose to use the Ñ ≥ 3 linear

fit for the large-Ñ extrapolation. We also note that the good agreement between the Ñ ≥ 3 linear

extrapolation and quadratic extrapolation shows that we can choose the O(1/N) linear correction

in (4.8) to minimise the fit errors. We display the plot of these large-Ñ extrapolations in Figure 4.9,

and list the resulting SO(2Ñ →∞) values in Table 4.17. We see that these fits are good with low

χ̄2
dof.

We see that the apparent degeneracies of the mass spectra at finite SO(N) carry through to the

large-N limit. We see that the 0+∗∗∗∗ and 0− states are degenerate, which we suspect are actually

4± states, consistent with the D = 2 + 1 SU(N) mass spectrum [38]. The 1±, 2±, and 2±∗ states

are degenerate as we expect due to parity doubling. We also see that the 0+∗∗ and 0+∗∗∗ seem

to be degenerate. Finally, we see in Figure 4.9 that the SO(7) values agree well with the large-N

extrapolations.
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4.5 Equivalences between SO(N) and SU(N) gauge theories

4.5.1 Lie algebra equivalences

We know that SO(4) and SU(2)×SU(2) so we could ask how the mass spectrum compares between

SO(4) and SU(2). As we have seen previously, for the cross product group SU(2) × SU(2), we

expect a contribution from each SU(2) group to the string tension so that σ|SO(4) = 2 σ|SU(2).

Hence, we expect that the SO(4) and SU(2) mass spectra are related by

mG√
σ

∣∣∣∣
SO(4)

=
1√
2

mG√
σ

∣∣∣∣
SU(2)

(4.9)

We can compare the SO(4) and SU(2) mass spectra in the appropriate string tension units [2,33].

We list these values in Table 4.18. We see that the lighter masses such as the 0± and 2± states

agree within errors consistent with (4.9) although there are greater differences for heavier masses.

This may indicate that we should reexamine these values in the future. However, the agreement

between the lighter masses is consistent with our expectation (4.9).

We know that SO(6) and SU(4) share a common Lie algebra so we could ask how the mass

spectrum compares between SO(6) and SU(4). As we have seen previously, the SO(6) fundamental

string tension is equivalent to the SU(4) k = 2A string tension. To compare between the SO(6) and

SU(4) mass spectra, which are both given in terms of their fundamental string tensions, we use the

ratio of the SU(4) k = 2A and fundamental string tensions in D = 2+1 σ2A/σf |SU(4) = 1.355(9) [9].

Hence, we expect to relate the SO(6) and SU(4) mass spectra by

mG√
σf

∣∣∣∣
SO(6)

=
mG√
σ2A

∣∣∣∣
SU(4)

=
√

1.355
mG√
σf

∣∣∣∣
SU(4)

(4.10)

We can compare the SO(6) and SU(4) mass spectra in the appropriate string tension units [2,33].

We list these values in Table 4.19. We see that most of these values agree within errors. However,

there are some values that do not agree within errors such as the 0+∗∗ and 1+ states. This may

indicate that we should reexamine these values in the future. In particular, we note that the SU(4)

values do not show J = 1 parity doubling whereas the SO(6) values do. Nonetheless, the agreement

over many values is consistent with our expectation (4.10).
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4.5.2 Large-N orbifold equivalence

We now compare the large-N limits of the SO(2Ñ) and SU(Ñ) mass spectra. From the large-N

equivalence, we expect that

mG√
σ

∣∣∣∣
SO(2Ñ→∞)

=
mG√
σ

∣∣∣∣
SU(Ñ→∞)

(4.11)

for all mass spectrum values mG/
√
σ.

Since the orbifold equivalence only holds in a common sector of states that are charge con-

jugation C = +, we only compare C = + states between the two gauge theories. We list the

large-N mass spectrum in Table 4.20 [2, 33]. We see that many values agree within one standard

deviation. We note that the 0+∗ values do not agree within errors so this may indicate that we

should reexamine this value in the future. Nonetheless, the agreement over many values verifies

our expectation from the large-N orbifold equivalence (4.11).
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4.6 Data

L2
sLt 12236 16236 20236 24236 28236 32236 36236

amP 0.135(2) 0.237(2) 0.331(2) 0.408(4) 0.483(2) 0.561(2) 0.635(2)
l
√
σ 1.492(6) 2.085(7) 2.675(7) 3.213(15) 3.751(8) 4.298(7) 4.838(8)

0+ 0.247(10) 0.447(5) 0.494(9) 0.492(9) 0.506(2) 0.514(4) 0.511(3)
0+∗ 0.252(11) 0.508(26) 0.675(17) 0.737(16) 0.769(4) 0.789(8) 0.773(7)
0+∗∗ 0.489(29) 0.558(23) 0.836(38) 0.935(21) 0.968(30) 1.021(14) 0.994(11)
0+∗∗∗ 0.482(29) 0.854(29) 0.883(19) 0.996(33) 0.992(10) 1.021(6) 1.028(12)
0+∗∗∗∗ 0.523(25) 0.947(7) 1.005(20) 1.091(35) 1.098(11) 1.124(18) 1.088(17)
2+ 0.228(6) 0.385(31) 0.874(11) 0.875(8) 0.859(7) 0.857(8) 0.850(8)
2+∗ 0.668(34) 0.681(46) 0.899(18) 1.031(26) 1.058(10) 1.040(15) 1.054(13)
2− 0.471(10) 0.769(11) 0.854(12) 0.892(21) 0.852(5) 0.837(17) 0.869(4)
2−∗ 0.783(19) 0.824(11) 1.035(24) 1.001(25) 1.052(8) 1.073(15) 1.071(15)
0− 1.124(7) 1.126(24) 1.117(22) 1.134(38) 1.095(11) 1.110(7) 1.118(19)
1+ 1.308(33) 1.322(36) 1.277(36) 1.260(43) 1.252(14) 1.280(20) 1.265(23)
1− 1.286(26) 1.225(24) 1.274(33) 1.295(48) 1.270(12) 1.237(25) 1.246(20)

Table 4.1: SO(8) glueball amG and Polyakov loop masses amP at fixed β = 84.

N l
√
σ

4 7.0
6 4.5
7 4.2
8 3.7
12 3.5
16 3.5

Table 4.2: Approximate values of l
√
σ for SO(N) mass spectrum calculations.
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L2
sLt 34242 38246 44252 48256 54262 62270

β 11.0 12.2 13.7 15.1 16.5 18.7

amP 1.513(8) 1.290(7) 1.144(4) 0.993(4) 0.895(8) 0.791(5)
l
√
σ 7.209(19) 7.039(18) 7.131(13) 6.941(13) 6.990(31) 7.039(23)

0+ 0.690(5) 0.618(1) 0.540(2) 0.480(4) 0.433(2) 0.379(2)
0+∗ 1.045(10) 0.914(9) 0.801(3) 0.712(6) 0.640(5) 0.578(4)
0+∗∗ 1.278(25) 1.151(6) 1.030(5) 0.925(11) 0.803(20) 0.736(5)
0+∗∗∗ 1.464(46) 1.260(39) 1.099(26) 1.020(19) 0.947(7) 0.826(4)
0+∗∗∗∗ 1.646(72) 1.297(42) 1.143(23) 1.028(19) 0.955(14) 0.841(12)
2+ 1.189(4) 1.018(13) 0.908(9) 0.820(6) 0.734(13) 0.645(5)
2+∗ 1.455(11) 1.290(10) 1.091(19) 1.029(42) 0.914(13) 0.804(8)
2− 1.186(4) 1.039(15) 0.900(9) 0.816(4) 0.738(7) 0.643(5)
2−∗ 1.421(9) 1.244(9) 1.090(22) 0.992(19) 0.923(14) 0.804(10)
0− 1.528(14) 1.344(11) 1.195(9) 1.043(8) 0.908(15) 0.837(10)
1+ 1.729(24) 1.409(71) 1.404(15) 1.180(26) 1.067(19) 0.968(11)
1− 1.722(23) 1.426(68) 1.371(14) 1.176(27) 1.106(20) 0.941(11)

Table 4.3: SO(4) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ Extrapolation range χ̄2

dof

0+ 3.36(2) β ≥ 11.0 1.72
0+∗ 5.04(4) β ≥ 11.0 2.14
0+∗∗ 6.66(7) β ≥ 11.0 0.84
0+∗∗∗ 7.65(12) β ≥ 12.2 1.69
0+∗∗∗∗ 7.71(19) β ≥ 12.2 0.39
2+ 5.70(5) β ≥ 11.0 0.95
2+∗ 7.14(9) β ≥ 11.0 1.23
2− 5.69(4) β ≥ 11.0 0.67
2−∗ 7.18(10) β ≥ 11.0 1.51
0− 7.31(8) β ≥ 11.0 2.88
1+ 8.64(12) β ≥ 11.0 4.39
1− 8.48(12) β ≥ 11.0 2.32

Table 4.4: SO(4) continuum glueball masses in string tension units mG/
√
σ, extrapolation range,

and extrapolation χ̄2
dof.
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L2
sLt 16224 20228 24232 28236 32240 36244

β 23.0 28.0 33.0 37.0 41.0 46.0

amP 1.272(14) 0.980(2) 0.794(3) 0.715(2) 0.645(3) 0.562(2)
l
√
σ 4.570(25) 4.486(4) 4.425(7) 4.532(6) 4.602(9) 4.557(8)

0+ 1.050(3) 0.818(2) 0.671(3) 0.589(2) 0.530(4) 0.457(3)
0+∗ 1.586(3) 1.243(5) 1.023(8) 0.890(9) 0.795(13) 0.695(7)
0+∗∗ 2.003(7) 1.553(15) 1.283(12) 1.139(8) 1.009(10) 0.891(19)
0+∗∗∗ 2.042(59) 1.625(22) 1.375(20) 1.183(10) 1.062(10) 0.920(19)
0+∗∗∗∗ 2.248(12) 1.733(32) 1.490(23) 1.227(43) 1.134(12) 1.014(7)
2+ 1.716(19) 1.373(9) 1.136(10) 1.008(6) 0.892(6) 0.788(6)
2+∗ 2.040(60) 1.651(23) 1.381(16) 1.225(11) 1.099(12) 0.966(7)
2− 1.758(19) 1.372(11) 1.132(9) 1.000(5) 0.875(6) 0.777(4)
2−∗ 2.118(62) 1.665(25) 1.393(16) 1.207(11) 1.094(11) 0.970(22)
0− 2.258(10) 1.781(31) 1.491(24) 1.238(50) 1.148(15) 1.003(9)
1+ 2.718(231) 1.916(52) 1.689(41) 1.488(18) 1.327(17) 1.167(8)
1− 2.354(163) 2.009(54) 1.652(35) 1.474(20) 1.328(16) 1.158(10)

Table 4.5: SO(6) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ χ̄2

dof

0+ 3.63(2) 1.69
0+∗ 5.49(6) 0.16
0+∗∗ 7.12(9) 0.14
0+∗∗∗ 7.41(11) 0.85
0+∗∗∗∗ 8.08(10) 1.76
2+ 6.29(5) 0.25
2+∗ 7.78(9) 0.09
2− 6.14(5) 1.13
2−∗ 7.67(13) 0.77
0− 7.91(11) 0.72
1+ 9.48(13) 0.83
1− 9.30(15) 0.34

Table 4.6: SO(6) continuum glueball masses in string tension units mG/
√
σ, and extrapolation χ̄2

dof

for β ≥ 28.0.
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L2
sLt 16224 20228 24232 28236 32240 36244
β 35.0 42.0 49.0 57.0 64.0 70.0

amP 1.071(5) 0.857(2) 0.714(2) 0.592(2) 0.525(1) 0.483(2)
l
√
σ 4.204(10) 4.204(4) 4.204(6) 4.137(5) 4.163(3) 4.234(7)

0+ 0.980(3) 0.786(2) 0.658(2) 0.552(2) 0.484(2) 0.440(1)
0+∗ 1.478(15) 1.198(8) 1.002(9) 0.833(6) 0.733(2) 0.677(2)
0+∗∗ 1.930(44) 1.512(27) 1.262(14) 1.073(8) 0.953(6) 0.873(6)
0+∗∗∗ 1.961(66) 1.546(23) 1.301(15) 1.123(8) 0.978(5) 0.888(5)
0+∗∗∗∗ 2.039(80) 1.667(30) 1.381(24) 1.187(9) 1.052(7) 0.956(9)

2+ 1.623(19) 1.310(13) 1.096(9) 0.933(5) 0.823(3) 0.750(4)
2+∗ 1.977(70) 1.594(24) 1.356(15) 1.154(11) 1.000(4) 0.912(6)
2− 1.628(29) 1.293(10) 1.103(8) 0.927(4) 0.824(4) 0.743(4)
2−∗ 2.040(70) 1.573(24) 1.330(16) 1.125(12) 1.011(4) 0.924(6)
0− 1.986(96) 1.655(27) 1.389(14) 1.202(13) 1.044(5) 0.950(8)
1+ 2.313(186) 1.969(58) 1.649(31) 1.375(9) 1.184(23) 1.101(9)
1− 2.158(146) 1.904(60) 1.604(32) 1.383(12) 1.195(8) 1.089(10)

Table 4.7: SO(7) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ Extrapolation range χ̄2

dof

0+ 3.74(1) β ≥ 35.0 1.21
0+∗ 5.70(2) β ≥ 35.0 5.77
0+∗∗ 7.40(6) β ≥ 35.0 1.46
0+∗∗∗ 7.61(6) β ≥ 35.0 1.02
0+∗∗∗∗ 8.20(8) β ≥ 35.0 0.20
2+ 6.40(3) β ≥ 35.0 0.39
2+∗ 7.76(6) β ≥ 35.0 1.02
2− 6.38(4) β ≥ 35.0 0.83
2−∗ 7.91(6) β ≥ 35.0 1.63
0− 8.17(8) β ≥ 35.0 0.63
1+ 9.30(15) β ≥ 42.0 0.74
1− 9.26(14) β ≥ 42.0 1.22

Table 4.8: SO(7) continuum glueball masses in string tension units mG/
√
σ, extrapolation range,

and extrapolation χ̄2
dof.
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L2
sLt 16224 20228 24232 28236 32240 36244
β 51.0 62.0 73.0 84.0 94.0 105.0

amP 0.872(2) 0.689(1) 0.567(2) 0.483(2) 0.431(2) 0.383(1)
l
√
σ 3.806(5) 3.783(3) 3.760(5) 3.751(8) 3.784(7) 3.783(6)

0+ 0.901(4) 0.716(2) 0.595(3) 0.506(2) 0.449(2) 0.397(2)
0+∗ 1.370(3) 1.084(8) 0.914(3) 0.769(4) 0.690(4) 0.605(5)
0+∗∗ 1.681(39) 1.387(17) 1.132(10) 0.968(30) 0.870(6) 0.767(4)
0+∗∗∗ 1.819(51) 1.433(22) 1.175(12) 0.992(10) 0.898(8) 0.801(5)
0+∗∗∗∗ 1.861(69) 1.562(29) 1.281(16) 1.098(11) 0.946(19) 0.856(14)

2+ 1.502(20) 1.209(11) 1.007(9) 0.859(7) 0.756(5) 0.683(3)
2+∗ 1.748(58) 1.434(27) 1.197(12) 1.058(10) 0.931(7) 0.823(12)
2− 1.491(20) 1.202(12) 0.994(7) 0.852(5) 0.746(7) 0.665(6)
2−∗ 1.861(55) 1.433(27) 1.206(16) 1.052(8) 0.931(15) 0.836(14)
0− 1.760(69) 1.537(36) 1.249(14) 1.095(11) 0.946(23) 0.862(11)
1+ 2.171(130) 1.790(49) 1.456(23) 1.252(14) 1.113(8) 0.984(7)
1− 2.293(162) 1.760(61) 1.469(20) 1.270(12) 1.114(10) 0.993(8)

Table 4.9: SO(8) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ χ̄2

dof

0+ 3.79(2) 0.47
0+∗ 5.83(5) 3.87
0+∗∗ 7.34(7) 0.91
0+∗∗∗ 7.64(8) 1.87
0+∗∗∗∗ 8.07(16) 0.32
2+ 6.50(5) 1.42
2+∗ 8.08(11) 1.08
2− 6.32(7) 0.13
2−∗ 8.12(14) 0.09
0− 8.27(15) 0.95
1+ 9.39(13) 0.24
1− 9.50(14) 0.14

Table 4.10: SO(8) continuum glueball masses in string tension units mG/
√
σ, and extrapolation

χ̄2
dof for β ≥ 62.0.
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L2
sLt 16224 20228 24232 28236 32240 36244
β 132.0 155.0 175.0 200.0 225.0 250.0

amP 0.724(3) 0.626(2) 0.576(1) 0.497(3) 0.440(3) 0.395(2)
l
√
σ 3.481(7) 3.612(6) 3.789(4) 3.800(10) 3.821(11) 3.842(7)

0+ 0.849(6) 0.704(4) 0.619(2) 0.529(4) 0.470(7) 0.413(3)
0+∗ 1.269(18) 1.081(12) 0.944(7) 0.813(8) 0.721(3) 0.646(3)
0+∗∗ 1.712(77) 1.362(10) 1.207(5) 1.050(13) 0.920(9) 0.813(6)
0+∗∗∗ 1.678(64) 1.407(27) 1.228(19) 1.053(14) 0.925(4) 0.829(6)
0+∗∗∗∗ 1.674(95) 1.493(53) 1.317(31) 1.171(21) 0.997(14) 0.916(10)

2+ 1.412(29) 1.187(17) 1.036(11) 0.871(10) 0.783(6) 0.708(5)
2+∗ 1.785(71) 1.461(7) 1.284(20) 1.103(16) 0.965(12) 0.866(8)
2− 1.460(35) 1.112(47) 1.045(4) 0.886(9) 0.787(8) 0.707(7)
2−∗ 1.820(99) 1.456(8) 1.277(20) 1.115(6) 0.974(11) 0.873(8)
0− 1.728(101) 1.486(44) 1.363(30) 1.158(21) 0.987(10) 0.909(7)
1+ 2.310(229) 1.672(100) 1.481(37) 1.299(26) 1.143(13) 1.021(9)
1− 2.058(182) 1.693(82) 1.475(37) 1.295(23) 1.139(17) 1.028(10)

Table 4.11: SO(12) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ Extrapolation range χ̄2

dof

0+ 3.90(3) β ≥ 132.0 0.73
0+∗ 6.11(4) β ≥ 132.0 0.20
0+∗∗ 7.72(8) β ≥ 155.0 1.20
0+∗∗∗ 7.73(10) β ≥ 155.0 0.07
0+∗∗∗∗ 8.67(19) β ≥ 155.0 1.04
2+ 6.61(6) β ≥ 132.0 1.45
2+∗ 8.12(10) β ≥ 132.0 0.06
2− 6.57(8) β ≥ 155.0 1.25
2−∗ 8.29(8) β ≥ 155.0 0.41
0− 8.48(15) β ≥ 155.0 2.30
1+ 9.72(21) β ≥ 155.0 0.08
1− 9.81(22) β ≥ 155.0 0.08

Table 4.12: SO(12) continuum glueball masses in string tension units mG/
√
σ, extrapolation range,

and extrapolation χ̄2
dof.
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L2
sLt 20228 24232 28236 32240 36244
β 302.0 353.0 408.0 456.0 512.0

amP 0.543(2) 0.463(2) 0.394(2) 0.352(1) 0.311(1)
l
√
σ 3.375(7) 3.412(7) 3.401(7) 3.437(6) 3.427(7)

0+ 0.654(9) 0.567(3) 0.483(2) 0.427(2) 0.378(2)
0+∗ 0.961(34) 0.852(11) 0.740(3) 0.657(2) 0.579(4)
0+∗∗ 1.079(69) 1.068(19) 0.959(11) 0.813(6) 0.725(5)
0+∗∗∗ 1.233(26) 1.111(62) 0.960(5) 0.858(4) 0.757(5)
0+∗∗∗∗ 1.390(37) 1.230(27) 1.073(17) 0.932(9) 0.830(7)

2+ 1.124(17) 0.935(14) 0.804(6) 0.718(6) 0.640(4)
2+∗ 1.353(31) 1.151(26) 0.987(12) 0.869(9) 0.783(6)
2− 1.120(17) 0.953(5) 0.806(6) 0.710(6) 0.641(5)
2−∗ 1.387(9) 1.149(20) 1.003(12) 0.872(8) 0.795(7)
0− 1.480(34) 1.227(26) 1.025(12) 0.924(13) 0.819(6)
1+ 1.594(60) 1.356(32) 1.169(17) 1.026(10) 0.911(21)
1− 1.693(74) 1.360(30) 1.173(17) 1.044(13) 0.905(21)

Table 4.13: SO(16) glueball amG and Polyakov loop masses amP .

JP mG/
√
σ χ̄2

dof

0+ 3.95(4) 0.03
0+∗ 6.17(8) 0.71
0+∗∗ 7.53(14) 5.00
0+∗∗∗ 8.09(15) 0.57
0+∗∗∗∗ 8.70(19) 0.55
2+ 6.86(11) 0.06
2+∗ 8.34(17) 0.55
2− 6.65(8) 2.00
2−∗ 8.43(17) 2.02
0− 8.68(18) 0.86
1+ 9.55(32) 0.09
1− 9.70(33) 0.43

Table 4.14: SO(16) continuum glueball masses in string tension units mG/
√
σ, extrapolation range,

and extrapolation χ̄2
dof for β ≥ 353.0.
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JP SO(4) SO(6) SO(7) SO(8) SO(12) SO(16)

0+ 3.36(2) 3.63(2) 3.74(1) 3.79(2) 3.90(3) 3.95(4)
0+∗ 5.04(4) 5.49(6) 5.70(2) 5.83(5) 6.11(4) 6.17(8)
0+∗∗ 6.66(7) 7.12(9) 7.40(6) 7.34(7) 7.72(8) 7.53(14)
0+∗∗∗ 7.65(12) 7.41(11) 7.61(6) 7.64(8) 7.73(10) 8.09(15)
0+∗∗∗∗ 7.71(19) 8.08(10) 8.20(8) 8.07(16) 8.67(19) 8.70(19)

2+ 5.70(5) 6.29(5) 6.40(3) 6.50(5) 6.61(6) 6.86(11)
2+∗ 7.14(9) 7.78(9) 7.76(6) 8.08(11) 8.12(10) 8.34(17)
2− 5.69(4) 6.14(5) 6.38(4) 6.32(7) 6.57(8) 6.65(8)
2−∗ 7.18(10) 7.67(13) 7.91(6) 8.12(14) 8.29(8) 8.43(17)
0− 7.31(8) 7.91(11) 8.17(8) 8.27(15) 8.48(15) 8.68(18)
1+ 8.64(12) 9.48(13) 9.30(15) 9.39(13) 9.72(21) 9.55(32)
1− 8.48(12) 9.30(15) 9.26(14) 9.50(14) 9.81(22) 9.70(33)

Table 4.15: Continuum SO(N) glueball masses in string tension units mG/
√
σ.

Ñ ≥ 2 linear Ñ ≥ 3 linear Ñ ≥ 2 quadratic
JP mG/

√
σ χ̄2

dof mG/
√
σ χ̄2

dof mG/
√
σ χ̄2

dof

0+ 4.18(3) 0.40 4.16(4) 0.49 4.13(7) 0.34
0+∗ 6.62(5) 0.65 6.67(8) 0.61 6.70(16) 0.82
2+ 7.21(7) 1.68 7.06(11) 0.87 6.89(19) 0.99
2− 6.99(7) 0.10 6.96(11) 0.11 6.95(18) 0.13

Table 4.16: Large-Ñ extrapolation fits to selected continuum SO(2Ñ) masses in string tension
units mG/

√
σ with extrapolation χ̄2

dof.

JP mG/
√
σ χ̄2

dof

0+ 4.16(4) 0.49
0+∗ 6.67(8) 0.61
0+∗∗ 8.12(15) 2.17
0+∗∗∗ 8.26(18) 1.08
0+∗∗∗∗ 9.06(25) 1.36
2+ 7.06(11) 0.87
2+∗ 8.56(17) 0.68
2− 6.96(11) 0.11
2−∗ 8.90(18) 0.41
0− 9.11(22) 0.09
1+ 9.68(33) 0.69
1− 10.15(35) 0.15

Table 4.17: Large-Ñ extrapolation of continuum SO(2Ñ) mass spectrum in string tension units
mG/

√
σ for Ñ ≥ 3, and extrapolation χ̄2

dof.
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JP SO(4) SU(2)

0+ 3.36(2) 3.33(1)
0+∗ 5.04(4) 4.79(5)
0+∗∗ 6.66(7) 5.71(7)
2+ 5.70(8) 5.53(10)
2− 5.69(4) 5.56(10)
0− 7.31(8) 7.04(23)
1+ 8.64(12) 7.37(24)
1− 8.48(12) 7.87(30)

Table 4.18: Continuum mass spectrum of SO(4) and SU(2) [2,33] gauge theories in the appropriate
string tension units mG/

√
σ̃ where we use the SO(4) string tension and

√
σ̃ = 1/

√
2σ where σ is

the SU(2) string tension.

JP SO(6) SU(4)

0+ 3.63(2) 3.64(1)
0+∗ 5.49(6) 5.48(2)
0+∗∗ 7.12(9) 6.81(8)
2+ 6.29(5) 6.16(9)
2− 6.14(5) 5.89(17)
0− 7.91(11) 8.00(27)
1+ 9.48(13) 8.51(34)
1− 9.30(15) 9.32(51)

Table 4.19: Continuum mass spectrum of SO(6) and SU(4) [2,33] gauge theories in the appropriate
string tension units mG/

√
σ̃ where we use the fundamental SO(6) string tension and the k = 2A

SU(4) string tension.

JP SO(2Ñ →∞) SU(Ñ →∞)

0+ 4.16(4) 4.11(2)
0+∗ 6.67(8) 6.21(5)
0+∗∗ 8.12(15) 8.35(20)
2+ 7.06(11) 6.88(6)
2+∗ 8.56(17) 9.22(32)
2− 6.96(11) 6.89(21)
0− 9.11(22) 9.02(30)
1+ 9.68(33) 9.98(25)
1− 10.15(35) 10.06(40)

Table 4.20: Large-Ñ extrapolation of continuum SO(2Ñ) and SU(Ñ) [2, 33] mass spectrum in
string tension units mG/

√
σ.
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Figure 4.2: SO(8) mass spectrum at different volumes L2
s36 for fixed β = 84.
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Figure 4.3: Continuum extrapolation of SO(4) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.
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Figure 4.4: Continuum extrapolation of SO(6) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.
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Figure 4.5: Continuum extrapolation of SO(7) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.
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Figure 4.6: Continuum extrapolation of SO(8) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.
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Figure 4.7: Continuum extrapolation of SO(12) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.

71



æ

æ

ææ
æ

æ

ææ

æ
æ

ææ

æ

æ

ææ

æ
æææ

ææææ

0.000 0.005 0.010 0.015 0.020 0.025 0.030
2

4

6

8

10

a
2
Σ

mG

Σ

0-

0+****

0+***

0+**

0+*

0+

æ
æ

æ

æ æ
æ

ææ

æ

æ

æ

æ

æææ

æ

æ
ææ

æ

æ
æ

æ
æ

0.000 0.005 0.010 0.015 0.020 0.025 0.030
5

6

7

8

9

10

11

12

a
2
Σ

mG

Σ

1-

1+

2-*

2+*

2-

2+

Figure 4.8: Continuum extrapolation of SO(16) glueball mass spectrum in string tension units. We
use only the thick style points in the extrapolations.
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Figure 4.9: Large-N extrapolation of continuum SO(N = 2Ñ) glueball mass spectrum in string
tension units. We use only the thick style points in the extrapolations. We include the SO(7)
continuum values for comparison.
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Chapter 5

Deconfining temperature

In this chapter, we calculate the deconfining temperatures of SO(N) gauge theories in 2+1 dimen-

sions. We start by considering the theory behind the deconfining phase transition. We then go on

to describe reweighting, which is the primary method we use to calculate the location of the phase

transition. We then calculate the infinite volume limits, continuum limits, and large-N limits. We

finally compare SO(N) and SU(N) deconfining temperatures between group equivalences.

5.1 Deconfinement

5.1.1 Finite temperature on the lattice

We can construct a finite temperature theory on the lattice by taking the infinite spatial volume

limit Ls →∞ while fixing the ‘temporal’ length Lt and the inverse coupling β. A lattice field theory

with lattice spacing a then has temperature T (a) = 1/ (a(β)Lt). If we assume that deconfinement

occurs at β = βc, then the deconfining temperature is

Tc(a) =
1

a(βc)Lt
(5.1)

5.1.2 Confinement in QCD

Quark confinement is a major feature of strong interactions, although there are competing defi-

nitions over what confinement actually is [39]. Experimentally, we observe that there are no free

quarks in nature or, more generally, there are no particles of fractional electric charge. Hence,

quarks must combine to form colour singlet hadronic states. In addition, we do not observe free

gluons or other colour non-singlet states.
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If we plot mesons of spin J against their mass squared m2, we find that we can sort the data

into groups that lie on straight lines known as Regge trajectories. We can recreate this result by a

flux tube model linking a quark on one end to an antiquark on another [40]. The model predicts

that the spins satisfy J = m2/(2πσ) where σ is the string tension, defined as the energy density per

unit length of the flux tube, and the energy of the system scales like m ∼ σl where l is the length

of the flux tube. This model therefore indicates that the potential between a quark-antiquark pair

is linear in its length and has been previously used to calculate the heavy quark spectrum.

The problem with confinement [39] is understanding why the gluonic flux is localised in a flux

tube of fixed cross-sectional area, instead of spreading out like an electric field in QED or otherwise

dissipating over space. As we pull apart sources in the fundamental representation such as very

heavy quarks, the energy of the flux tube increases. If the energy of the flux tube exceeds the

effective mass of light quark-antiquark pairs, then the flux tube decays to form heavy-light quark-

antiquark pairs in a process we know as string breaking.

We can then express confinement in terms of a potential between a heavy quark-antiquark pair

where mq →∞ that approaches a linear dependence in its length l as l→∞.

5.1.3 The ‘temporal’ Polyakov loop

Consider a ‘temporal’ Polyakov loop lP on a lattice with ‘temporal’ length Lt in direction of t̂,

representing a flux loop winding around the ‘temporal’ direction.

lP (x) = tr
(
Ut(x)Ut(x + t̂) · · ·Ut(x− t̂)

)
(5.2)

This operator represents the world line of a static quark at spatial site x [41]. This suggests that

we can represent the free energy Fqq̄ of a quark-antiquark pair at x and y respectively through the

correlation function of two Polyakov loops at x and y with opposite orientations.

e−
1
T Fqq̄(x,y) = 〈lP (x)lTP (y)〉 (5.3)

Assuming that the correlation function satisfies clustering, the correlation function decorrelates at

large spatial distances.

〈lP (x)lTP (y)〉 −−−−−−→
|x−y|→∞

|〈lP 〉|2 (5.4)

Hence, if 〈lP 〉 = 0, then the free energy increases for large spatial separation of the quark-antiquark
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pair. This is consistent with confinement. Similarly, if 〈lP 〉 6= 0, then the free energy approaches a

constant value at large spatial separation. This is consistent with deconfinement.

We noted previously that SO(2Ñ) gauge theories have a centre symmetry under which the action

and measure are invariant. We can generate this centre symmetry by considering an element of

the centre symmetry z and multiplying all ‘temporal’ links between two neighbouring spatial slices.

However, the ‘temporal’ Polyakov loop is not invariant under this symmetry,

lP → zlP (5.5)

so that the expectation value of the Polyakov loop 〈lP 〉 must be zero for non-trivial z. However,

this represents confinement. So we expect that the deconfinement phase transition represents a

spontaneous breakdown of the centre symmetry. We note that SO(2Ñ + 1) gauge theories have no

such non-trivial centre symmetry so we cannot expect that these arguments hold in these cases.

5.2 Phase transitions and finite size scaling

5.2.1 Phase transitions

At infinite spatial volumes, phase transitions occur when the free energy becomes a non-analytic

function in one of its parameters. We will see that we can classify the SO(N) deconfining phase

transitions into two different types. First order phase transitions occur when there is a discontinuity

in the first derivative of the free energy such that the second derivative is typically a delta function

singularity. Second order phase transitions occur when there is a divergence in the second derivative

in the free energy although the first derivative is continuous. This results in a divergent correlation

length.

On finite volumes, the partition function is finite so all derivatives are well-defined and analytic,

so that there are no apparent non-analyticities. However, finite size scaling tells us that the results

at finite volumes should converge towards the non-analyticity as we increase the spatial volume

size, allowing us to classify the transition. We will use general arguments to explore these phase

transitions.

5.2.2 First order transitions

Let us first consider first order transitions. Let O be an order parameter (such as the Polyakov

loop) that takes a value Oc in the confined phase and Od in the deconfined phase. We can define
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a susceptibility χO(V, T ) at a volume V and temperature T by

χO(V, T ) = NV
(
〈O(T )2〉 − 〈O(T )〉2

)
(5.6)

for some scaling constant N . The system is in phase coexistence at the phase transition such that

the order parameter takes values Oc and Od with equal probability. Hence,

χO(V, Tc) = NV
(

(O2
c +O2

d)

2
− (Oc +Od)

2

4

)
= NV

(
(Oc −Od)2

4

)
(5.7)

Hence, the susceptibility height ∆χ = O(V ). Similarly, consider the free energies Fc/d(T ) =

fc/d(T )V for the confined and deconfined phases respectively where f is the free energy per unit

volume. The free energies are the same at the phase transition.

fc(Tc) = fd(Tc) (5.8)

Consider the free energy ratio from these two phases at a temperature T = Tc + ∆T for small ∆T

e−Fc(T )/T

e−Fd(T )/T
≈ e−[fc(Tc)+∆Tf ′c(Tc)]V/Tc

e−[fd(Tc)+∆Tf ′d(Tc)]V/Tc
= e−[f ′c(Tc)−f ′d(Tc)]V∆T/Tc (5.9)

where we ignore higher order corrections in ∆T . This ratio compares the probabilities of being in

either phase. If |∆F | /T � 1, then one phase dominates and the transition will go in only one

direction [42]. This ratio also shows how the phase transition rate depends on V and T .

We now characterise this transition rate in terms of a characteristic susceptibility width in β.

Define ∆β ≡ (β − βc)/βc = (T − Tc)/Tc = ∆T/Tc if we use that T = 1/(aLt) = βg2/(2NLt). Con-

sider the transition region around βc in which the system tunnels between confined and deconfined

phases, as we describe later. For there to be a susceptibility peak, tunnelling must occur between

the confined and deconfined phases, so that the probability of being in either phase is comparable.

Hence, we can see from (5.9), that this requires V∆β = O(1). This width ∆β of the transi-

tion region measures the characteristic width in the susceptibility χO. Hence, the characteristic

susceptibility width decreases with V , ∆β = O(1/V ).

We can obtain more information about a temperature-driven first order transition by considering

a thermodynamic system of spatial volume V , temperature T , and internal energy per site E. We

follow the arguments in [43], and more generally [44–49]. We can describe the energy values E by a

probability distribution PV (E), which we model as a Gaussian distribution centred at the infinite

volume energy E0 with a width proportional to the infinite volume specific heat C.
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PV (E) =
N√
C

exp

(
−(E − E0)2V

2kBT 2C

)
(5.10)

Here, N is a normalisation constant. At a first order transition, there is phase coexistence so

that we expect PV (E) to be the superposition of two Gaussians centred at E+ and E−, where the

subscripts +/− correspond to the high temperature, ordered, deconfining phase and low tempera-

ture, disordered, confining phase respectively. At ∆T = T − Tc, the two Gaussians are centred at

E− + C−∆T and E+ + C+∆T where we assume that the specific heats in the two phases do not

vary with temperature near Tc. If we express the free energy difference between the two phases as

∆F = F+ − F−, then

PV (E) =

√
V

2πkBT 2

1

a+ + a−

(
a+√
C+

e
− (E−(E++C+∆T ))2V

2kBT
2C+ +

a−√
C−

e
− (E−(E−+C−∆T ))2V

2kBT
2C−

)
(5.11)

where, if there is only one deconfining and confining phase, a+ = ex
√
C+, a− = e−x

√
C− and

x =
−∆FV

2kBT
(5.12)

We can then calculate the expectation value of the energy and specific heat at a finite volume V .

〈E〉V =

∫
dE EPV (E)

=
a+E+ + a−E−

a+ + a−
+

(a+C+ + a−C−)∆T

a+ + a−

CV =
V

kBT 2

(
〈E2〉V − 〈E〉

2
V

)
=
a+C+ + a−C−

a+ + a−
+
a+a−V [(E+ − E−) + (C+ − C−)∆T ]2

kBT 2(a+ + a−)2
(5.13)

By expanding F± about Tc and using that F+(Tc) = F−(Tc), we find that

∆F =
−(E+ − E−)∆T

Tc
(5.14)

so that we can approximate x in (5.12)

x =
(E+ − E−)∆TV

2kBTTc
≈ (E+ − E−)∆TV

2kBT 2
c

(5.15)

We see that in the infinite volume limit V → ∞, if ∆T > 0, then a+ → ∞ and a− → 0 so

that the system is in the high temperature, deconfining phase and, if ∆T < 0, then a+ → 0 and

a− →∞ so that the system is in the low temperature, confining phase, as we expect.
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At finite volume, the two states contribute equally at the phase transition so that a+ = a−.

Hence, we can see that e2x =
√
C−/C+ so that

Tc(V )− Tc
Tc

=
kBTc ln

√
C−/C+

(E+ − E−)V
(5.16)

where Tc(V ) is the deconfining temperature at spatial volume V . Hence, Tc(V ) differs from its

infinite volume limit by O(1/V ).

If x ∼ 1, then we can estimate the scale of the transition region ∆Ttrans.

∆Ttrans

Tc
≈ 2kBTc

(E+ − E−)V
(5.17)

Hence, the transition occurs over a scale ∆Ttrans = O(1/V ).

Finally, let us the consider the scaling form of the specific heat in (5.13). We expect that

E+ −E− and C+ −C− are O(1) and since ∆T = O(1/V ) the term (C+ −C−)∆T is small relative

to E+ − E− in the numerator of the second term in (5.13). Hence,

CV = c1 +
V (E+ − E−)2

√
C−/C+

kBT 2
c

[
ex + e−x

√
C−/C+

]2

≈ c1 +
4V (E+ − E−)2

kBT 2
c cosh2(x)

(5.18)

where we take C+ ≈ C− and c1 is a constant. This provides the scaling form for the specific heat.

Since ∆β ∼ ∆T , these results together show that for a spatial volume V the transition occurs

over a scale ∆β = O(1/V ) while the susceptibility forms a peak in the region of the bulk transition

with height ∆χ = O(V ) over a width ∆β = O(1/V ). This is consistent with a convergence towards

a delta function singularity as V →∞.

5.2.3 Second order transitions

For a second order transition, finite size scaling tells us that the correlation length ξ approaches the

spatial lattice length Ls close to Tc [45]. In this scaling region, dimensionless physical quantities

depend on the dimensionless ratio L/ξ such that, for some scaling function f ,

χ(T, Ls)

χ(T, Ls →∞)
= f(Ls/ξ) (5.19)

Let the reduced temperature
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t = (T − Tc)/Tc = (β − βc)/βc ≡ ∆β (5.20)

if we use that T = 1/(aLt) = βg2/(2NLt). We define the critical exponents ν and γ by

ξ ∼ |t|−ν ∼ |∆β|−ν

χ(T, Ls →∞) ∼ |t|−γ ∼ |∆β|−γ (5.21)

so that

χ(T, Ls) ∼ |∆β|−γf(Ls|∆β|ν)

= Lγ/νs (L1/ν
s |∆β|)−γf(Ls|∆β|ν)

= Lγ/νs g(L1/ν
s |∆β|) (5.22)

for g a scaling function. For a spatial volume V = Lds , this shows that at the transition the

susceptibility has height ∆χ = O(V
γ
dν ) over a width ∆β = O(1/V

1
dν ). Hence if γ > ν, we expect

that the susceptibility peak height increases non-linearly as V →∞ and that this increase is greater

than the decrease in the characteristic peak width so that it generates a set of overlapping peaks.

5.2.4 Scaling laws

Hence, we can distinguish between the first and second order transitions by examining the structure

of susceptibility peaks over a range of different spatial volumes. We summarise the scaling laws by

the following relations. In D = 2 + 1, the phase transition occurs at

Tc(∞)− Tc(V )

Tc(∞)
∼ 1

V
⇒ βc(V ) = βc(∞)

[
1− h

(
Lt
Ls

)2
]

1st order

Tc(∞)− Tc(V )

Tc(∞)
∼ 1

V
1
2ν

⇒ βc(V ) = βc(∞)

[
1− k

(
Lt
Ls

) 1
ν

]
2nd order (5.23)

where h, k are constants and we used that T = 1/(aLt) = βg2/(2NLt). In D = 2+1, the maximum

of the susceptibility peak χmax(V ) depends on the spatial volume V as

χmax(V ) = c0V + c1 1st order

χmax(V ) = c0V
γ
2ν + c1 2nd order (5.24)

for constants c0 and c1. Hence, finite size scaling shows us how βc(V ) and χmax(V ) varies with the

spatial volume V , and how to extrapolate βc(V ) to the infinite spatial volume limit.
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5.2.5 Order parameters

An order parameter is a thermodynamic quantity that distinguishes between different phases and

exhibits a non-analyticity at the phase transition. We need an order parameter to determine if and

where the deconfinement phase transition occurs. We know that phase transitions correspond to

non-analyticities in the derivatives of the free energy F with respect to β so consider the first two

derivatives

(
1

Np

∂

∂β

)
F ∼

(
1

Np

∂

∂β

)
lnZ ∼ 〈Up〉(

1

Np

∂

∂β

)2

F ∼
(

1

Np

∂

∂β

)
〈Up〉 = 〈U2

p〉 − 〈Up〉
2 ≡ χUp (5.25)

where Np is the number of plaquettes, Z is the partition function, Up = 1
Np

∑
p

(
1
N tr(Up)

)
, and

χO = 〈O2〉− 〈O〉2 is the susceptibility of the operator O. This indicates that the plaquette Up may

be a suitable order parameter. If so, the peak in its susceptibility corresponds to the position of

the phase transition.

However, our results indicate that the plaquette susceptibility has a weakly varying signal

over the phase transition. Suppose that we partition plaquettes into those that are only spatial

U s and those that have links in a temporal direction U t. Figure 5.1 shows the spatial plaquette

susceptibility χUs and the temporal plaquette susceptibility χUt in the region of the phase transition

for an SO(4) 3223 volume, normalised for comparison. We want a clear peak in the susceptibility

to identify the phase transition location. We can see that χUs has no peak structure and that

χUt has a weak peak structure. At volumes for other SO(N), χUt has no peak structure. So the

plaquette susceptibility is not a suitable order parameter.

As previous arguments suggest, we use an alternative operator related to the ‘temporal’ Polyakov

loop lP . We consider the absolute value of the Polyakov loop (5.2) after we have averaged it over

the spatial volume [50]

∣∣lP ∣∣ =

∣∣∣∣∣ 1

L2
s

∑
x

lP (x)

∣∣∣∣∣ (5.26)

We use
∣∣lP ∣∣ to be the order parameter and then construct an associated ‘susceptibility’.

χ|lP |
L2
sLt

=
〈∣∣lP ∣∣2〉− 〈∣∣lP ∣∣〉2

(5.27)

We use this order parameter and susceptibility for several reasons. Firstly, we note that it has
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the same form as the susceptibility term in (5.25). We choose the normalisation L2
sLt but, since

we will compare results by varying the spatial volume V for fixed Lt, we could similarly choose V

or Np without changing the results within rescaling. Secondly, the Polyakov loop operator lP has

a much clearer signal in the region of the phase transition, compared to the plaquette operators.

It tunnels between confined and deconfined phases around the transition so that lP takes discrete

values within very small fluctuations, as we will see later. Thirdly, we use the absolute value of

the Polyakov loop operator
∣∣lP ∣∣ instead of lP because, as we will see later, lP tunnels between

two deconfined phases with opposite parities in an SO(2Ñ) system, which would average to zero,

incorrectly indicating that the system is still in a confined phase where
〈
lP
〉
≈ 0. Finally, it has a

very good signal in the region of the phase transition. We again calculate χ|lP | for an SO(4) 3223

volume and display its plot in Figure 5.1. We can see that χ|lP | has a much clearer peak structure

than the plaquette susceptibilities.

In summary, in a plot of
〈∣∣lP ∣∣〉 against β in the neighbourhood of βc, we would expect to see

the value of
〈∣∣lP ∣∣〉 increase from zero to a fixed non-zero value. We expect to see a corresponding

peak in χ|lP | at βc. For a first order transition, we expect that the order parameter
〈∣∣lP ∣∣〉 has a

discontinuity at βc and the susceptibility χ|lP | to resemble a delta function singularity. Meanwhile,

for a second order phase transition, we expect that the susceptibility χ|lP | has a divergence at βc

while
〈∣∣lP ∣∣〉 remains continuous there.

5.2.6 Tunnelling

We can represent lP values over a configuration run for a given β as either a histogram over the

entire run, or as a history plot along the run. For β < βc, we expect the theory to be confining so

that
〈
lP
〉
≈ 0. On the histogram, we would expect that the values form a narrow peak around zero

while, on the history plot, we would expect the values to fluctuate around zero. This represents a

confined phase at zero. For β > βc, the system would be in a deconfined phase so that
〈
lP
〉
6= 0, and

we would expect to see deconfined peaks at non-zero values on the histogram. For SO(2Ñ) gauge

theories, we would expect to see two deconfined peaks at non-zero values while, for SO(2Ñ + 1)

gauge theories, we would only expect one deconfined peak at a non-zero value.

For β ≈ βc, the system jumps between different phases, which we can see on a history plot. We

call these jumps tunnelling. The transition between different phases depends on its order. For a

first order transition, as we increase β towards βc, we would expect to see deconfined peaks appear

at non-zero values while the confined peak at zero decreases. On the history plot, we would see the
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lP values start to jump between zero and non-zero values. This shows that the system is tunnelling

between the confined and deconfined phases. At β = βc, we would expect the probability of

being in confined or deconfined phases to be equal, representing coexisting phases. The histogram

would show approximately equal peaks at zero and non-zero values while the history plot would

show considerable tunnelling between the phases. For a second order transition, there is no phase

coexistence. As we increase β, we would expect the confined peak at zero to spread out and, once

it disappears, the deconfined peaks emerge at β = βc. On the history plot, we would expect to see

significant fluctuations around zero for β < βc before suddenly tunnelling between non-zero values

for β > βc.

Hence, we can use both the histograms and history plots of lP values to distinguish between

the first and second order transitions.

5.3 Reweighting

We want to calculate the value of an observable (in our case, the susceptibility) for an arbitrary β

value so that we can identify βc corresponding to a maximum in the observable. We first collect

data from separate runs at different β values and calculate the observable at each β. We could then

estimate the location of the maximum over the dataset, for example by bisecting intervals of β to

approach the maximum, and then calculating the observable at new β values to refine the estimate.

However, we would prefer to use the original data to calculate the observable directly at arbitrary

β. To do this, we note that we could view the process of generating lattice configurations as

sampling an underlying density of states, which is independent of β. If we could reconstruct

the density of states, we could then use it to calculate observables at arbitrary values of β. We

can do this by reweighting [51, 52], which uses the data from multiple runs to reconstruct this

density of states. This was the approach taken by previous studies of the SU(N) deconfining phase

transition [42,50,53–56].

5.3.1 Single run reweighting

We can calculate the probability density of field configurations P (Si|β) with an action Si at a value

β using the partition function Z(β) with a density of states D(Si).
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P (Si|β) = 1
Z(β)D(Si)e

−βSi

Z(β) =
∑
i

D(Si)e
−βSi (5.28)

Consider the data from a single configuration run at β = βk. Let the unnormalised histogram

estimate of P (Si|βk) be Nk(Si) with nk total measured configurations.

⇒ Nk(Si)n
−1
k ≈

1
Z(βk)D(Si)e

−βkSi

= P (Si|β) Z(β)
Z(βk)e

(β−βk)Si

⇒ P (Si|β) ≈ Z(βk)
Z(β) Nk(Si)n

−1
k e(βk−β)Si

⇒ P (Si|β) ≈
Nk(Si)n

−1
k e(βk−β)Si∑

j Nk(Sj)n
−1
k e(βk−β)Sj

(5.29)

where we used that
∑

j P (Sj |β) = 1 in the last step. In this expression for P (Si|β), we know

everything on the right-hand side, so we can estimate the probability from the histogram data at

a nearby value of β = βk. Then, with data on how the observable values depend on action values

O(Si), we can estimate an observable 〈O(β)〉.

〈O(β)〉 =
∑
i

O(Si)P (Si|β) (5.30)

5.3.2 The free energy

We can relate the free energy Fk to the partition function Z(βk) at β = βk by

Z(βk) = e−βkFk (5.31)

We know from (5.28) that the density of states is given by

D(Si) = P (Si|β)Z(β)eβSi (5.32)

Hence, define a density of states estimate D̃
(k)
i using the histogram data at β = βk by

D̃
(k)
i = Nk(Si)n

−1
k eβk(Si−Fk)

≈ D(Si) (5.33)

We will use this expression to carry out a multiple run reweighting.
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5.3.3 Multiple run reweighting

Consider the data from multiple runs at different values of β = βk. We can use this data to generate

density of states estimates D̃
(k)
i . We want to combine these estimates to form an overall density of

states estimate D̃i ≈ D(Si). To do this, we need to weight the contribution of each estimate D̃
(k)
i

by a weight w
(k)
i , normalised such that

∑
k w

(k)
i = 1, so that

D̃i =
∑
k

w
(k)
i D̃

(k)
i

=
∑
k

w
(k)
i Nk(Si)n

−1
k eβk(Si−Fk) (5.34)

To minimise errors σ2
D in D̃i, we pick specific weights [52].

w
(k)
i =

nke
βk(Fk−Si)∑

m nme
βm(Fm−Si)

(5.35)

Hence, we generate estimates for the unnormalised probability density

P̃ (Si|β) ≡ D̃ie
−βSi ≈ P (Si|β)Z(β) (5.36)

and the free energy F̃ .

D̃i =

∑
kNk(Si)∑

m nme
βm(Fm−Si)

⇒ P̃ (Si|β) =

∑
kNk(Si)e

−βSi∑
m nme

βm(F̃m−Si)
(5.37)

Z(βk) = e−βkFk ≈
∑
i

D̃ie
−βkSi ⇒ F̃k = −β−1

k ln
∑
i

P̃ (Si|βk) (5.38)

We can then iterate (5.37) and (5.38) to generate successive values for P̃ and F̃ to refine our

estimate for the probability density P (Si|β). We then use these values to calculate an observable

〈O(β)〉 using (5.30) and that

P (Si|β) ≈ P̃ (Si|β)

Z(β)
=

P̃ (Si|β)∑
j P̃ (Sj |β)

(5.39)

5.3.4 Reweighting in practice

We note that the expression for the probability P̃ in (5.37) has a factor of e−βSi . For β ∼ O(10)

and a lattice with O(1000) sites, e−βSi ∼ O(e−10000), which may exceed the machine precision.

Hence, we need to reduce the exponent range in the expression for P̃ . Let β̄ be a typical β value

and S̄ be a typical action value during a configuration run. Then a rescaled expression for (5.37) is
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P̃ (Si|β) =
e−(β−β̄)(Si−S̄)

∑
kNk(Si)

eβ̄(Si−S)+βS̄
∑

m nme
βm(F̃m−Si)

(5.40)

and this rescaling reduces the range of values of both the numerator and denominator. We also

note that the free energy F in (5.38) is invariant under Fm → Fm + F ′/βm for some constant F ′.

The iterative process described by (5.37) and (5.38) does not necessarily lead the βkF̃k values to

converge but the differences between them do.

5.3.5 Curve fitting

For some very large spatial volumes, the range of P̃ values exceeds the machine precision even when

we rescale them by (5.40). In these cases, we cannot use reweighting, and we instead propose a

curve fit to the susceptibility plot to extract βc. For first order phase transitions, (5.18) indicates

that the susceptibility may take the form

χV ∼ χV→∞ + aV sech2 (bV (β − µ)) (5.41)

for constants a, b, and µ. However, our results show that the cases when we cannot use reweighting

correspond to second order transitions. Here, we only have scaling arguments for the susceptibility

form for finite volumes (5.22) and there is no obvious curve fit candidate.

To consider curve fit candidates, we apply a candidate to a range of values (β, χ(β)) calculated

by separate runs with β close to βc, and remove points symmetrically about the peak until the fit

has a χ̄2
dof ≈ 1. To test this procedure, we apply two such candidates, the Gaussian distribution

fG and logistic distribution fL, to a data set where we can use reweighting

fG(x|µ, σ) =
A√
2πσ

e−
(x−µ)2

2σ2

fL(x|µ, s) =
B

4s
sech2

(
x− µ

2s

)
(5.42)

for A, B scaling constants. We apply both reweighting and curve fitting to data for an SO(4) 4024

volume. We display the fits in Figure 5.2 and list the resulting βc and χ(βc) in Table 5.1. We see

that the two curve fits agree well with the data and reweighted values around the peak, and that

the estimates for βc and χ(βc) from the curve fits are within errors of the reweighting estimates.

Although the curve fitting becomes increasingly unreliable further away from the peak, we only

need it to be reliable close to the peak.

We conclude that curve fitting provides a useful alternative to reweighting for large volumes
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where we cannot reweight. Since the results from both candidate fitting function give very similar

results, we choose to use the logistic distribution because it is the fitting function for finite volumes

with first order phase transitions in (5.18).

5.4 Infinite volume limits

5.4.1 Methodology

Summarising the theory above, for given SO(N) and Lt values, we want to calculate βc(V →∞) at

the infinite volume limit Ls →∞. To do this, we use
∣∣lP ∣∣ as the order parameter. For a given finite

spatial volume V , we can calculate βc(V ) by calculating the susceptibility χ|lP | for a range of β

values around βc, reweighting data from those β values where there is tunnelling between different

phases. If the lattice volume is too large for reweighting, we follow the curve fitting procedure that

we detailed previously. Then βc(V ) is the β value that corresponds to a maximum in χ|lP |.

As an example, consider the case of an SO(6) 2023 volume using a run of a million configurations.

In Figure 5.3, we display a plot of the Polyakov loop values
〈∣∣lP ∣∣〉 for a range of β values. It shows

a jump from a confined phase where
〈∣∣lP ∣∣〉 ≈ 0 to a deconfined phase where

〈∣∣lP ∣∣〉 6= 0. We

draw three vertical lines at characteristic values β = β− < β0 < β+. We display the history

plots of the Polyakov loop values for these three β values in Figure 5.4. At β = β−, we see that

the system remains in a confined phase around zero with small statistical fluctuations and very

limited tunnelling to non-zero values. At β = β0, there is much more tunnelling and the system

spends equal time in both the confined and deconfined phases. At β = β+, the system settles

into a deconfined phase, where
〈∣∣lP ∣∣〉 takes a non-zero value, tunnelling occasionally between the

deconfined phases. Similarly, we can look at the histograms of the Polyakov loop values for these

three β values in Figure 5.5, where the histogram peaks strongly at zero for the confined phase

at β = β−, shows coexistent phases at β = β0, and shows two peaks for the deconfined phase at

β = β+. Both the history plot and histogram show phase coexistence around βc, indicating that

this is a first order transition. We use both the history plots and histograms to find which β values

correspond to tunnelling. We would then use these β values for reweighting. We now consider the

Polyakov loop susceptibility χ|lP | in Figure 5.6. The data from calculations at specific β values

indicates a peak around β = β0 so we may suspect that β0 ≈ βc. To show this, we reweight using

data from β values where there is tunnelling between confined and deconfined phases. We display

the resulting reweighting data in Figure 5.6. We see that the reweighted data agrees well with our
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original data and that the estimates for βc and χ|lP |(βc) have very small errors.

For spatial volumes at different Lt, we note that Ls/Lt is dimensionless so we should compare

lattice volumes at different Lt by keeping this ratio constant. Then we can extrapolate these values

of βc(V ) to V →∞ depending on the order of the transition using the equations

βc(V ) = βc(V →∞)
[
1− h (Lt/Ls)

2
]

1st order

βc(V ) = βc(V →∞)
[
1− k (Lt/Ls)

1
ν

]
2nd order (5.43)

Finally, we consider how tunnelling varies with the volume V and N . Tunnelling occurs between

phases that have similar free energies. Close to the transition, the lattice volume splits into two

approximately equal domains for the confined or deconfined phases. Two domain walls separate

these domains and each have surface tension per unit length σW . The most probable configuration

of a domain wall is one that minimises the surface length. The energy of a domain wall with spatial

length ls is E = σW ls. Hence, the probability PW of a bubble with two spatial walls of length

ls = aLs is

PW (T ) = exp

(
−2σW ls

T

)
= exp

(
−2a2σWLsLt

)
(5.44)

Papers on SU(N) deconfining temperatures [53] indicate that the surface tension grows with N2,

σW ∝ N2. Hence, the probability of the domain walls and the probability of tunnelling exponen-

tially decreases as either the volume V increases or as N increases. So transitions between the two

states are increasingly rare at large V , especially at large N , and this provides upper bounds on

the volumes we can consider for a given N . In particular, this means that, while keeping Ls/Lt

constant for a given N , there are upper bounds on Lt before it exponentially suppresses tunnelling.

5.4.2 SO(4) and SO(5)

The SO(4) and SO(5) deconfining phase transitions are second order. We can see this from the〈
lP
〉

histograms, such as Figure 5.7, which show a continuous transition from confined to deconfined

phases as we increase β. We can also see this in susceptibility plots for different spatial volumes

at fixed Lt, such as Figure 5.8, which show that, as the spatial volume increases, the susceptibility

peak height increases faster than the characteristic peak width decreases.

For SO(4), we can use reweighting for 2 ≤ Lt ≤ 4 to calculate βc. For Lt = 5, the susceptibility

peak is at β ∈ [9.0, 10.0]. This is in the bulk transition region, as we will discuss later, which affects
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the data so greatly that reweighting does not work. For Lt ≥ 6, the spatial volumes become so

large that we cannot reweight the data and so we need to curve fit instead. For smaller Lt, the

values lie on a smooth curve with small errors and the reweighted values fit well with the original

data. At larger Lt, the data is more scattered than at smaller Lt, although we can still estimate

βc with low errors. We present the values of βc(V ) for volumes V for Lt = 2, 3, 4, 6, 7, 8, 10, 12 in

Tables 5.2 and 5.3.

To extrapolate βc(V → ∞) to the infinite volume limit using (5.43), we need a value for the

critical exponent ν. To obtain an estimate for ν, we simultaneously fit the data for each Lt with

βc(V,Lt) = c0(Lt) + c1(Lt)

(
Lt
Ls

) 1
ν

(5.45)

where c0(Lt) and c1(Lt) are coefficients that depend on Lt and we require ν to be the same value

across all data. We present these fitting results in Figure 5.9 and we find that ν = 0.65(7). There

is a high χ̄2
dof for two reasons. Firstly, it is difficult to obtain an accurate value for ν since it

is difficult to constrain the fit (5.45) near Lt/Ls ≈ 0 without many data values at large spatial

volumes. Secondly, there is scattering in some data sets with very low data errors so it is difficult

to apply fits without a large χ̄2
dof. Removing these data sets reduces the χ̄2

dof while ν remains at

similar values. We also fit ν to the data with Lt ≤ 4 and Lt ≥ 6 separately in Figure 5.9, which we

show later correspond to the strong and weak coupling values respectively. We see that the values

of ν are 1.10(22) in strong coupling and 0.39(4) in weak coupling. We see that the χ̄2
dof from Lt ≥ 6

values varies considerably for different ν values while there is little variance for the Lt ≤ 4 values.

Given the variance of these results and because we will extrapolate the weak coupling values for

the large-N extrapolation, we choose ν = 1
2 , the same scaling as for first order transitions. We note

that, since SO(2Ñ) gauge groups have a Z2 centre symmetry, the Svetitsky-Yaffe conjecture [57]

puts the SO(2Ñ) deconfining phase transition in the same universality class as a spin system

invariant under a Z2 symmetry with the same spatial dimensions. Hence, we might naively expect

it to share the same critical exponents as the D = 2 Ising model, such as ν = 1. This was the

critical exponent used for the second order SU(2) deconfining transition [50]. However, this value is

unsuitable for the weak coupling Lt ≥ 6 data. The universality classes for SO(4) ∼ SU(2)×SU(2),

a cross product group, and SO(5) are also uncertain so this requires future investigation.

We list these infinite volume limits in Table 5.11. We see that the extrapolation values are good

with very small errors and most of the χ̄2
dof values are reasonable. One χ̄2

dof value is large, which is
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due to scattering among values with very small errors.

For SO(5), we can use reweighting for 2 ≤ Lt ≤ 6 and curve fitting for Lt = 7 to calculate

βc. Due to the lack of a Z2 centre symmetry, there is only one deconfined vacua but this does not

affect our approach. As we stated earlier, the lack of the Z2 centre symmetry also means that we

cannot expect
〈∣∣lP ∣∣〉 ≈ 0 in the confined phase. However, our calculations of

〈∣∣lP ∣∣〉 show that this

is the case. As with SO(4), we take the critical exponent ν = 1
2 in extrapolating βc(V →∞). We

list the βc values for finite volumes in Table 5.4 and for the infinite volume limits in Table 5.12.

We see that the extrapolation values are good with very small errors and that the χ̄2
dof values are

reasonable.

5.4.3 SO(6)

The SO(6) deconfining phase transition is weakly first order. The coexisting phases are occasionally

apparent, but are less defined than for SO(N ≥ 7). Susceptibility plots (such as Figure 5.10)

indicate that the transition has features from both first and second order transitions while the
〈
lP
〉

histograms (such as Figure 5.5) show first order phase coexistence. We extrapolate to the infinite

volume limit using (5.43). We list the βc values for finite volumes in Table 5.5 and for the infinite

volume limits in Table 5.13. We see that the extrapolation values are good with very small errors

and that the χ̄2
dof values are reasonable.

5.4.4 SO(7), SO(8), SO(9), SO(12), and SO(16)

The SO(N ≥ 7) deconfining phase transition is first order. There is clear phase coexistence in

the
〈
lP
〉

histograms and the susceptibility peaks (such as Figure 5.11) show the characteristic

susceptibility peak width decreasing at the same rate as the peak height increases. As we stated

earlier, the lack of the Z2 centre symmetry for SO(7) and SO(9) gauge theories means that we

cannot expect
〈∣∣lP ∣∣〉 ≈ 0 in the confined phase. However, as with SO(5), our calculations confirm

that
〈∣∣lP ∣∣〉 ≈ 0. We extrapolate to the infinite volume limit using (5.43). For SO(N) with

N = 7, 8, 9, 12, 16, we list the βc values for finite volumes in Tables 5.6, 5.7, 5.8, 5.9, and 5.10 and

the infinite volume limits in Tables 5.14, 5.15, 5.16, 5.17, and 5.18. We see that the extrapolation

values are good with very small errors and that the χ̄2
dof values are reasonable.

90



5.5 Continuum limits

5.5.1 Methodology

We can express the critical temperature in string tension units Tc/
√
σ, evaluated at the critical

coupling βc. The string tension sets a scale for the critical temperature.

Tc√
σ

=
1

a
√
σLt

(5.46)

Since this is the ratio of two quantities with mass dimensions, we expect the leading correction to

be O(a2) [1]. Hence, for some constant c,

Tc√
σ

(a) =
Tc√
σ

(a = 0) + ca2σ + · · · (5.47)

Once we have calculated βc for a value of Lt, we calculate the continuum string tension at βc on

a large volume using Polyakov loop operators, following the same methods we used to obtain the

SO(N) string tensions.

5.5.2 Bulk transition

Lattice gauge theories generally have a bulk transition between regions of strong and weak coupling

where the coupling expansions changes from powers of β ∝ 1/(ag2) to 1/β ∝ ag2 respectively. We

can only extrapolate to the continuum limit a→ 0 in the weak coupling region so it is important to

know where this bulk transition occurs. On the lattice, we find that the location of the SO(N) bulk

transition seems to correspond to a region where the scalar glueball mass m0+ becomes unusually

light [58]. This is an interesting but not well-understood phenomenon, which we may explore in

the future but not in this thesis. Nonetheless, it proves to be a useful way to identify the bulk

transition location. Hence, through evaluating the m0+ mass across a region of β, we can identify

the location of the transition.

We display one such scan for the m0+ mass in Figure 5.12 for three SO(4) volumes. For β < 8.0,

we can see that the m0+ mass remains approximately constant. It then decreases to zero in the

region β ∈ [8.0, 10.5] before jumping to its original value for β > 10.5. This drop in the m0+ mass

indicates that the bulk transition is in the region β ∈ [8.0, 10.5]. As Ls increases, we can see that

the lower bound of the bulk transition region increases while the upper bound stays constant. So

we can find approximate bounds for this region for each SO(N) by calculating the region using
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volumes with smaller Ls than we use for the deconfining temperature calculations.

We show the βc values corresponding to the bulk transition in Table 5.19. As N increases, we

find that we need volumes with smaller Ls to identify the bulk transition. At volumes with larger

Ls, there is no signal of the bulk transition.

To calculate the continuum limit of the deconfinement temperature, we should use data cor-

responding to values in the weak coupling region. This means that we may have to discard data

from Lt values that have βc values in the strong coupling region. We show these lower bounds of

Lt in Table 5.19. Unless we otherwise state, we only extrapolate to the continuum limit using Lt

values in the weak coupling region.

5.5.3 SO(4)

For SO(4), βc values for Lt < 5 are in the strong coupling region whereas βc values for Lt > 5 are in

the weak coupling region. We treat these two regions separately since we only expect a continuum

extrapolation in the weak coupling region. We give the values for the critical temperatures Tc/
√
σ

in Table 5.20. We can obtain very accurate string tension values since we can complete high statistic

runs due to the small dimension of the gauge group. We can then plot Tc/
√
σ against a2σ and

extrapolate to the continuum limit using (5.47). We display this plot in Figure 5.13. In this plot,

firstly we can see that we can fit the strong coupling values (Lt < 5) with a linear extrapolation

in a2σ with a very small χ̄2
dof. This is surprising since there is no natural continuum limit for the

strong coupling expansion. Secondly, we see that the weak coupling values Lt > 5 fit naturally on

a continuum extrapolation and agree with each other within errors so that the first order term in

a2σ is small. The continuum limits are

Tc√
σ

(a = 0) = 0.7844(51) χ̄2
dof = 0.36 SO(4) (weak coupling)

Tc√
σ

(a = 0) = 0.8579(2) χ̄2
dof = 0.00005 SO(4) (strong coupling) (5.48)

Thirdly, we see that the weak and strong coupling continuum values do not agree with each other,

indicating that the physics in these two coupling regions are different. This shows that we must

distinguish between these regions and identify the location of the bulk transition.
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5.5.4 SO(5) and SO(6)

For both SO(5) and SO(6), βc values for Lt ≥ 5 are in the weak coupling region. As before,

we obtain the continuum string tensions at each βc. There were complications in doing this for

both gauge groups. At volumes with smaller Ls, similar to those that we used for SO(4) and

SO(N ≥ 7), there were no obvious plateaus in the Polyakov loop masses. Instead, the mass values

steadily decreased over large ranges, making it difficult to extract the string tensions. We found

that this improved if we used volumes with larger Ls, although this also increased the Polyakov

loop masses and hence increased their errors. For a temporal length Lt = 1/(aTc), we use volumes

L2
s(Ls + 8) where Ls/Lt ≈ 3.2. We list the critical temperature values for SO(5) in Table 5.21

and SO(6) in Table 5.22 and display the continuum extrapolation for SO(5) in Figure 5.14 and

for SO(6) in Figure 5.15. In the case of SO(5), unlike SO(4), we did not find a good linear

extrapolation in the strong coupling. For SO(6), there is a good linear extrapolation at strong

coupling and its continuum limit is within errors of the weak coupling value, unlike SO(4). The

continuum limits are

Tc√
σ

(a = 0) = 0.7595(81) χ̄2
dof = 0.94 SO(5)

Tc√
σ

(a = 0) = 0.8105(42) χ̄2
dof = 0.16 SO(6) (weak coupling)

Tc√
σ

(a = 0) = 0.8144(20) χ̄2
dof = 0.59 SO(6) (strong coupling) (5.49)

We note that these fits are very good with low χ̄2
dof.

5.5.5 SO(7), SO(8), SO(9), SO(12), and SO(16)

For these gauge groups, βc values are in the weak coupling region for Lt ≥ 4 for SO(7) and SO(8)

and for Lt ≥ 3 for SO(9), SO(12), and SO(16). We list the critical temperature values for these

groups in Tables 5.23, 5.24, 5.25, 5.26, and 5.27 and display the continuum extrapolations of the

weak coupling values in Figures 5.16, 5.17, 5.18, 5.19 and 5.20. The continuum limits are
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Tc√
σ

(a = 0) = 0.8351(38) χ̄2
dof = 0.98 SO(7)

Tc√
σ

(a = 0) = 0.8418(39) χ̄2
dof = 0.05 SO(8)

Tc√
σ

(a = 0) = 0.8515(14) χ̄2
dof = 0.30 SO(9)

Tc√
σ

(a = 0) = 0.8642(38) χ̄2
dof = 0.02 SO(12)

Tc√
σ

(a = 0) = 0.8780(38) χ̄2
dof = 0.15 SO(16) (5.50)

We note that these fits are very good with low χ̄2
dof.

5.6 Large-N limits

We calculate the large-N limit of the SO(N) deconfining temperatures. Given ’t Hooft’s argument

that we explained previously, we expect the physics of an SO(N) gauge theory to approach a

large-N limit if we hold the ’t Hooft coupling g2N , or equivalently
√
σ, constant. Hence, we expect

Tc/
√
σ to converge to a large-N limit.

lim
N→∞

Tc√
σ

=
Tc√
σ

∣∣∣∣
SO(N→∞)

(5.51)

Furthermore, if we apply ’t Hooft’s 1/N argument, we expect the leading correction to this limit

at finite N to be O(1/N).

Tc√
σ

∣∣∣∣
SO(N→∞)

=
Tc√
σ

+
c1

N
(5.52)

for a constant c1.

We list the SO(N) deconfining temperatures in Table 5.28. We initially apply a linear fit in

1/Ñ to SO(2Ñ) values specifically to obtain the large-Ñ limit for two reasons. Firstly, we intend

to compare this limit to the SU(Ñ) large-Ñ limit because of the large-N orbifold equivalence.

Secondly, SO(2Ñ + 1) has a different centre to SO(2Ñ), so the deconfinement properties might

differ between the two sets of gauge theories. We display the large-Ñ extrapolation in Figure 5.21.

The fit gives us a deconfining temperature at the large-N limit of

Tc√
σ

∣∣∣∣
SO(2Ñ→∞)

= 0.9076(41) χ̄2
dof = 2.82 (5.53)

We see that the linear fit is reasonable and we get an accurate deconfining temperature at large-N .
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We also note that if we used the deconfining temperature from SO(4) strong coupling value then

this would significantly disagree with the linear fit. This validates our decision to consider only the

SO(4) weak coupling value.

We now consider the SO(2Ñ+1) values in relation to the SO(2Ñ) values. We see that the linear

fit in Figure 5.21 agrees well with the SO(7) and SO(9) values but the SO(5) deconfining tempera-

ture is significantly below the value what we would expect. This raises three possible explanations.

Firstly, as we stated above SO(5) does not have the Z2 centre symmetry of SO(2Ñ) groups, so

deconfinement might be different. However, the SO(7) and SO(9) deconfining temperatures also

have trivial centres but do agree with the extrapolation through SO(2Ñ) values. Secondly, we

know that the SO(5) deconfining phase transition is second order compared to the first order phase

transitions for SO(N ≥ 6). However, the SO(4) deconfining temperature also has a second order

phase transition and seems to agree with the extrapolation through SO(N ≥ 6) values. Thirdly,

there may be O(1/N2) corrections to the large-N limit applying to the SO(5) value although the

SO(4) deconfining temperature again agrees with the linear fit. It may be that a combination of

these factors leads to this anomalous SO(5) result. A linear fit through all SO(N) values including

the SO(5) value would give us a large-N value of 0.9113(40) with a χ̄2
dof = 5.85, more than double

that of the SO(2Ñ) value, despite the agreement among the SO(2Ñ), SO(7), and SO(9) values.

This demonstrates that the SO(5) value greatly affects a linear fit.

5.7 Equivalences between SO(N) and SU(N) gauge theories

5.7.1 Lie algebra equivalences

We now compare the deconfining temperatures between specific SO(N) and SU(N) gauge theories

whose gauge groups share Lie algebras.

We know that SU(2) × SU(2) and SO(4) share a common Lie algebra so we could ask how

the deconfining temperatures compare between SO(4) and SU(2). For the cross product group

SU(2) × SU(2), we expect a contribution from each SU(2) group to the string tension so that

σ|SU(2)×SU(2) = 2 σ|SU(2) Hence, we expect that

Tc√
σ

∣∣∣∣
SO(4)

=
Tc√
σ

∣∣∣∣
SU(2)×SU(2)

=
1√
2

Tc√
σ

∣∣∣∣
SU(2)

(5.54)

We know that the SU(2) deconfining temperature is Tc/
√
σ = 1.1238(88) [50] so that we can

95



compare this to the value for the SO(4) deconfining temperature.

Tc√
σ

= 0.7844(31) SO(4)

1√
2

Tc√
σ

= 0.7946(62) SU(2) (5.55)

We see that these values are within 1.5σ of each other, which is consistent with the expectation

(5.54). We also note that the SO(4) and SU(2) deconfining phase transitions are both second

order.

We know that SO(6) and SU(4) share a common Lie algebra so we could ask how the decon-

fining temperatures compare between SO(6) and SU(4). As we discussed previously, the SO(6)

fundamental string tension is equivalent to the SU(4) k = 2A string tension so that we expect

Tc√
σf

∣∣∣∣
SO(6)

=
Tc√
σ2A

∣∣∣∣
SU(4)

(5.56)

Hence, to compare between the SO(6) and SU(4) deconfining temperatures measured in funda-

mental string tension units, we use the ratio of the SU(4) k = 2A and fundamental string tensions

in D = 2 + 1, σ2A/σf |SU(4) = 1.355(9) [9]. We know that the SU(4) deconfining temperature is

Tc/
√
σf = 0.9572(39) [50]. Hence, we can compare between the SO(6) and SU(4) mass spectra in

the appropriate string tension units.

Tc√
σf

= 0.8105(42) SO(6)

Tc√
σ2A

= 0.8223(61) SU(4) (5.57)

We see that these values are within 1.5σ of each other, which is consistent with the expectation

(5.56). We also note that the SO(6) and SU(4) deconfining phase transitions are both weakly first

order.

5.7.2 Large-N orbifold equivalence

We now compare the large-N limit of the SO(2Ñ) and SU(Ñ) deconfining temperatures. From

the large-N equivalence, we expect that

Tc√
σ

∣∣∣∣
SO(2Ñ→∞)

=
Tc√
σ

∣∣∣∣
SU(Ñ→∞)

(5.58)

As stated in previous chapters, SU(N) values have a O(1/N2) correction to its large-N limit. We
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use previous results for the SU(Ñ) deconfining temperatures [50], choosing to apply a quadratic fit

in 1/Ñ to the data for Ñ ≥ 3. We list these SO(2Ñ) and SU(Ñ) continuum values in Table 5.29.

We display the two large-Ñ extrapolations in Figure 5.22. The two large-Ñ limits are

Tc√
σ

= 0.9076(41) SO(2Ñ →∞)

Tc√
σ

= 0.9030(29) SU(Ñ →∞) (5.59)

We see that these two values agree within errors, validating the expectation from the large-N

orbifold equivalence (5.58).
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5.8 Data

Data Fit βc χ(βc) χ̄2
dof

Reweighting 8.493(10) 25.40(30) n/a
Gaussian 8.500(11) 25.66(40) 0.62
Logistic 8.500(6) 25.71(41) 0.64

Table 5.1: Comparisons between reweighting, Gaussian fits, and logistic fits to obtain βc and χ(βc)
on an SO(4) 4024 volume.

L2
sLt βc χ|lP |

2022 6.4748(4) 10.77(4)
2422 6.4771(4) 13.64(5)
2822 6.4788(3) 16.80(9)
3222 6.4797(3) 20.16(8)
3622 6.4813(4) 23.65(12)
4022 6.4819(3) 27.58(14)
4822 6.4822(4) 35.15(43)
5622 6.4840(4) 44.42(63)
6022 6.4850(4) 49.92(89)
8022 6.4853(4) 78.57(132)

L2
sLt βc χ|lP |

3223 7.534(3) 19.60(14)
3623 7.538(3) 23.22(16)
4023 7.539(1) 26.37(25)
4423 7.545(2) 31.09(38)
4823 7.546(3) 35.56(38)
5223 7.552(2) 40.58(53)
6623 7.552(2) 58.75(131)
8023 7.555(3) 81.02(193)
9023 7.557(3) 95.80(171)

4024 8.493(10) 25.40(30)
4824 8.501(6) 33.88(56)
5624 8.509(8) 42.02(93)
6424 8.526(7) 51.67(120)
7224 8.520(3) 59.46(140)
8024 8.535(6) 66.44(173)
8824 8.545(8) 75.23(296)

Table 5.2: βc and χ|lP | for SO(4) Lt ≤ 4 volumes.
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L2
sLt βc χ|lP |

3626 11.110(31) 20.68(18)
4826 10.924(17) 28.87(36)
6026 10.861(9) 38.76(53)
7226 10.837(14) 47.33(83)
8426 10.809(21) 57.82(125)
9626 10.824(14) 70.28(199)
12026 10.835(8) 95.57(321)

4227 12.685(45) 29.41(38)
5627 12.494(22) 41.46(64)
7027 12.397(12) 54.24(94)
8427 12.303(12) 68.11(111)
9827 12.224(12) 81.74(172)
11227 12.261(19) 100.03(247)
12627 12.274(19) 117.10(302)

L2
sLt βc χ|lP |

6428 14.005(37) 55.93(88)
8028 13.836(24) 71.23(136)
9628 13.901(16) 93.98(248)
11228 13.712(16) 106.33(214)
12828 13.736(14) 131.84(390)
14428 13.767(20) 158.18(629)

80210 17.096(31) 95.93(174)
90210 16.919(35) 107.06(234)
100210 16.870(24) 127.64(305)
110210 16.790(53) 137.15(367)
120210 16.731(24) 154.83(462)
140210 16.725(23) 184.45(659)

72212 20.648(62) 107.12(158)
84212 20.202(66) 122.92(199)
96212 20.098(52) 144.13(252)
120212 19.797(29) 190.28(414)
144212 19.757(27) 236.11(603)

Table 5.3: βc and χ|lP | for SO(4) Lt ≥ 6 volumes.

L2
sLt βc χ|lP |

1622 10.380(1) 10.75(3)
1822 10.378(1) 12.82(4)
2022 10.378(1) 14.74(7)
2222 10.376(1) 16.83(9)
2422 10.377(2) 18.53(12)

2623 12.058(3) 13.41(14)
2823 12.054(3) 14.07(15)
3023 12.049(3) 14.76(12)
3223 12.053(4) 15.28(15)
3423 12.049(4) 16.02(25)

3224 13.964(10) 16.42(12)
3624 13.964(9) 18.90(13)
4024 13.955(7) 21.27(18)
4824 13.962(12) 24.13(27)

L2
sLt βc χ|lP |

4025 16.316(14) 20.75(14)
4425 16.342(8) 24.15(23)
5025 16.300(13) 26.37(20)
5425 16.295(26) 27.87(18)
6025 16.265(8) 30.58(29)
7025 16.290(6) 35.40(40)

4226 19.017(34) 28.35(49)
4826 18.939(61) 31.74(41)
5426 18.965(19) 36.39(49)
6026 18.930(18) 40.39(76)

5627 21.715(17) 46.57(67)
6027 21.663(16) 48.70(77)
6427 21.592(15) 53.02(81)
6827 21.595(15) 55.50(90)
7227 21.554(11) 58.01(99)

Table 5.4: βc and χ|lP | for SO(5) volumes.
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L2
sLt βc χ|lP |

822 15.175(2) 3.191(8)
1022 15.185(1) 4.972(8)
1222 15.192(1) 7.151(12)

1223 17.810(9) 3.94(1)
1623 17.793(4) 6.22(2)
2023 17.821(4) 9.18(3)
2423 17.831(4) 12.34(5)
2823 17.833(3) 15.79(8)
3223 17.839(3) 19.53(13)

2824 21.295(6) 12.07(5)
3224 21.358(8) 15.56(12)
3624 21.356(8) 18.58(9)
4024 21.352(4) 22.23(13)
4424 21.370(6) 25.85(15)

L2
sLt βc χ|lP |

2825 25.479(24) 14.25(8)
3225 25.496(16) 17.77(12)
4025 25.501(14) 25.25(18)
4825 25.549(14) 33.99(38)
5625 25.577(11) 44.40(41)
6025 25.589(10) 48.77(68)

4226 29.781(26) 31.45(18)
4826 29.727(18) 38.65(30)
5426 29.791(33) 47.09(75)
6026 29.796(31) 55.66(75)
6626 29.819(9) 65.52(89)

4427 34.031(37) 38.73(30)
5027 33.907(25) 46.75(48)
5627 34.078(49) 57.24(96)
6027 34.042(36) 62.06(65)
6427 34.021(19) 69.71(85)
6827 34.009(25) 75.83(107)
7227 34.092(23) 83.87(143)

Table 5.5: βc and χ|lP | for SO(6) volumes.

L2
sLt βc χ|lP |

822 20.963(3) 3.347(3)
1022 20.960(3) 5.381(10)
1222 20.953(3) 7.916(14)

1223 25.148(29) 4.00(3)
1623 25.022(14) 6.60(4)
2023 24.982(13) 9.96(8)
2423 24.988(5) 14.27(7)
2823 25.011(7) 19.40(14)

2424 30.721(24) 12.65(12)
3224 30.714(21) 21.04(30)
4024 30.721(7) 31.62(27)
4824 30.727(6) 44.05(43)
5624 30.726(8) 58.67(67)

L2
sLt βc χ|lP |

3225 36.909(20) 23.75(21)
4025 36.885(19) 35.40(43)
4825 36.895(24) 50.05(80)
5625 36.930(22) 66.59(110)
6425 36.909(19) 83.37(151)

5226 43.088(25) 62.57(104)
5626 43.089(10) 72.92(93)
6026 43.164(14) 83.65(127)
6426 43.129(17) 94.02(115)

Table 5.6: βc and χ|lP | for SO(7) volumes.
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L2
sLt βc χ|lP |

822 27.583(4) 3.241(4)
1022 27.594(3) 5.279(6)
1222 27.605(3) 7.851(7)

1623 33.488(22) 6.29(6)
1823 33.503(17) 8.05(7)
2023 33.468(13) 9.68(5)
2423 33.521(8) 14.54(7)

2424 41.573(14) 13.20(6)
2824 41.600(18) 17.88(16)
3224 41.631(14) 23.71(17)
4024 41.686(14) 37.98(28)

L2
sLt βc χ|lP |

3225 50.073(23) 25.70(27)
4025 50.163(21) 40.21(40)
4825 50.178(37) 58.72(72)
5625 50.247(22) 81.93(90)

4226 58.560(18) 46.27(34)
4826 58.742(24) 63.38(78)
5426 58.703(19) 79.59(60)
6026 58.758(12) 101.15(99)

Table 5.7: βc and χ|lP | for SO(8) volumes.

L2
sLt βc χ|lP |

1623 43.443(9) 6.79(2)
1823 43.425(6) 8.64(2)
2023 43.427(7) 10.80(4)
2223 43.431(7) 13.26(5)
2423 43.460(7) 16.16(5)
2623 43.457(6) 19.17(6)
3023 43.424(7) 25.59(9)
3623 43.433(12) 37.59(26)
4223 43.399(8) 51.23(30)

L2
sLt βc χ|lP |

2024 54.449(28) 10.96(10)
2424 54.375(28) 15.93(14)
2824 54.393(19) 22.01(16)
3224 54.505(17) 30.22(18)
4024 54.464(14) 48.16(26)
4824 54.434(12) 70.28(55)

2425 65.634(38) 16.87(9)
2825 65.654(46) 23.34(16)
3225 65.661(38) 31.17(22)
3625 65.674(15) 40.16(22)
4025 65.648(20) 50.10(36)
4825 65.760(17) 75.33(53)

Table 5.8: βc and χ|lP | for SO(9) volumes.

L2
sLt βc χ|lP |

622 63.57(1) 1.593(1)
722 63.59(1) 2.248(1)
822 63.58(1) 3.014(3)

823 80.72(1) 1.620(3)
1023 80.83(1) 2.640(8)
1223 80.96(1) 4.043(8)
1423 81.05(1) 5.800(16)
1623 81.12(1) 7.929(17)

L2
sLt βc χ|lP |

1224 101.81(5) 3.995(25)
1624 102.11(8) 7.619(84)
2024 102.19(4) 12.739(71)
2424 102.28(4) 19.393(88)

1625 123.03(10) 7.709(60)
2025 123.26(8) 12.988(104)
2425 123.52(4) 19.769(137)
2825 123.62(6) 27.835(284)

Table 5.9: βc and χ|lP | for SO(12) volumes.
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L2
sLt βc χ|lP |

422 114.85(2) 0.595(1)
522 114.82(2) 0.998(2)
622 114.84(2) 1.512(3)

623 149.17(2) 0.940(2)
823 149.32(2) 1.832(3)
1023 149.58(3) 3.141(4)
1223 149.76(2) 4.839(10)
1423 149.89(3) 6.897(20)

L2
sLt βc χ|lP |

624 192.07(26) 1.016(7)
824 189.04(32) 1.804(25)
1024 188.91(17) 3.011(42)
1224 189.13(11) 4.617(47)
1424 189.33(11) 6.725(74)
1624 189.55(6) 9.221(40)

825 230.62(44) 1.972(18)
1025 229.42(56) 3.013(44)
1225 228.60(5) 4.591(14)
1425 228.77(6) 6.572(18)
1625 229.01(7) 9.036(31)
2025 229.51(12) 15.429(88)

Table 5.10: βc and χ|lP | for SO(16) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 6.4863(3) Ls ≥ 32 1.98
3 7.560(2) Ls ≥ 32 2.78
4 8.547(6) Ls ≥ 48 1.67
6 10.819(10) Ls ≥ 60 1.23
7 12.163(12) Ls ≥ 42 5.37
8 13.660(17) Ls ≥ 64 13.22
10 16.554(42) Ls ≥ 90 0.95
12 19.432(37) Ls ≥ 72 2.43

Table 5.11: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(4) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 10.373(2) Ls ≥ 16 0.71
3 12.036(8) Ls ≥ 26 0.46
4 13.951(19) Ls ≥ 32 0.32
5 16.251(10) Ls ≥ 40 4.82
6 18.857(46) Ls ≥ 42 0.44
7 21.312(36) Ls ≥ 56 1.24

Table 5.12: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(5) volumes.
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Lt βc(V →∞) Ls range χ̄2
dof

2 15.205(3) Ls ≥ 8 0.62
3 17.854(3) Ls ≥ 12 0.83
4 21.399(6) Ls ≥ 28 6.42
5 25.613(11) Ls ≥ 28 2.25
6 29.872(21) Ls ≥ 42 2.79
7 34.113(32) Ls ≥ 44 4.44

Table 5.13: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(6) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 20.947(6) Ls ≥ 8 0.82
3 24.992(11) Ls ≥ 12 5.46
4 30.729(9) Ls ≥ 24 0.14
5 36.913(20) Ls ≥ 32 0.81
6 43.311(62) Ls ≥ 52 5.00

Table 5.14: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(7) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 27.622(5) Ls ≥ 8 0.66
3 33.547(21) Ls ≥ 16 4.06
4 41.769(32) Ls ≥ 24 0.22
5 50.319(32) Ls ≥ 32 0.46
6 58.935(29) Ls ≥ 42 6.65

Table 5.15: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(8) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

3 43.450(7) Ls ≥ 16 6.10
4 54.457(13) Ls ≥ 20 6.78
5 65.678(32) Ls ≥ 24 0.47

Table 5.16: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(9) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 63.610(14) Ls ≥ 6 3.35
3 81.299(17) Ls ≥ 8 0.70
4 102.424(45) Ls ≥ 12 0.16
5 124.011(15) Ls ≥ 16 0.34

Table 5.17: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(12) volumes.

Lt βc(V →∞) Ls range χ̄2
dof

2 114.824(35) Ls ≥ 4 0.66
3 150.128(33) Ls ≥ 8 0.83
4 189.975(14) Ls ≥ 12 0.19
5 230.096(212) Ls ≥ 14 1.06

Table 5.18: Infinite volume limits βc(V →∞), extrapolation range, and χ̄2
dof for SO(16) volumes.
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SO(N) L2
sLt Bulk transition Weak coupling region

4 20224 β ∈ [9.1, 10.2] Lt ≥ 6
5 12224 β ∈ [13.5, 15.4] Lt ≥ 5
6 12224 β ∈ [18.0, 21.3] Lt ≥ 5
7 8224 β ∈ [23.5, 28.0] Lt ≥ 4
8 8224 β ∈ [31, 35] Lt ≥ 4
9 4224 β ∈ [37, 42] Lt ≥ 3
12 4224 β ∈ [65, 73] Lt ≥ 3
16 2224 β ∈ [111, 124] Lt ≥ 3

Table 5.19: Bounds for the D = 2 + 1 bulk transition calculated on volumes L2
sLt.

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 6.4863(3) 0.6216(2) 0.8044(3)
Strong3 7.560(2) 0.3988(5) 0.8358(11)

4 8.547(6) 0.2956(7) 0.8458(21)

6 10.819(10) 0.2134(14) 0.7810(51)

Weak
7 12.163(12) 0.1818(7) 0.7858(30)
8 13.660(17) 0.1591(6) 0.7856(28)
10 16.554(42) 0.1278(9) 0.7825(55)
12 19.432(37) 0.1065(7) 0.7828(48)

Table 5.20: SO(4) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 10.373(2) 0.6437(11) 0.7767(13)
Strong3 12.036(8) 0.4236(12) 0.7870(23)

4 13.951(19) 0.3212(8) 0.7784(20)

5 16.251(10) 0.2579(13) 0.7756(39)
Weak6 18.857(46) 0.2153(10) 0.7743(35)

7 21.312(36) 0.1863(8) 0.7668(35)

Table 5.21: SO(5) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 15.205(3) 0.6535(13) 0.7651(15)
Strong3 17.854(3) 0.4201(7) 0.7935(13)

4 21.399(6) 0.3106(10) 0.8050(27)

5 25.613(11) 0.2501(7) 0.7996(22)
Weak6 29.872(21) 0.2077(3) 0.8024(14)

7 34.113(32) 0.1774(4) 0.8053(19)

Table 5.22: SO(6) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).
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Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 20.947(6) 0.6571(8) 0.7610(10)
Strong

3 24.992(11) 0.4181(7) 0.7972(13)

4 30.729(9) 0.3104(5) 0.8053(12)
Weak5 36.913(20) 0.2455(7) 0.8147(22)

6 43.311(62) 0.2023(6) 0.8239(26)

Table 5.23: SO(7) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 27.622(5) 0.6586(8) 0.7591(9)
Strong

3 33.547(21) 0.4179(7) 0.7977(14)

4 41.769(32) 0.3051(11) 0.8193(28)
Weak5 50.319(32) 0.2415(4) 0.8281(15)

6 58.935(29) 0.2003(5) 0.8320(20)

Table 5.24: SO(8) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

3 43.450(7) 0.4150(2) 0.8032(4)
Weak4 54.457(13) 0.3025(4) 0.8263(11)

5 65.678(32) 0.2395(3) 0.8351(12)

Table 5.25: SO(9) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 63.610(14) 0.6600(24) 0.7576(27) Strong

3 81.299(17) 0.4070(6) 0.8191(12)
Weak4 102.424(45) 0.2977(6) 0.8399(18)

5 124.011(15) 0.2354(12) 0.8497(43)

Table 5.26: SO(12) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).

Lt βc(V →∞) a
√
σ Tc/

√
σ Coupling

2 63.610(14) 0.6438(25) 0.7766(31) Strong

3 81.299(17) 0.4003(12) 0.8328(24)
Weak4 102.424(45) 0.2925(9) 0.8547(26)

5 124.011(15) 0.2320(7) 0.8622(28)

Table 5.27: SO(16) critical temperatures in string tension units Tc/
√
σ and string tension a

√
σ,

evaluated at the infinite volume limit βc(V →∞).
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SO(N) Tc/
√
σ χ̄2

dof

4 0.7844(51) 0.36
5 0.7595(81) 0.94
6 0.8105(42) 0.16
7 0.8351(38) 0.98
8 0.8418(39) 0.05
9 0.8515(15) 0.30
12 0.8642(38) 0.02
16 0.8780(38) 0.15

Table 5.28: SO(N) continuum limits of the deconfining temperatures in string tension units Tc/
√
σ

and extrapolation χ̄2
dof.

Ñ SO(2Ñ) SU(Ñ)

2 0.7844(51) 1.1238(88)
3 0.8105(42) 0.9994(40)
4 0.8418(39) 0.9572(39)
5 0.9380(19)
6 0.8642(38) 0.9300(48)
8 0.8780(38) 0.9144(41)

Table 5.29: SO(2Ñ) and SU(Ñ) [50] continuum limits of the deconfining temperatures in string
tension units Tc/

√
σ.
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5.9 Figures
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Figure 5.1: Normalised susceptibility plots for the spatial plaquette U s, the temporal plaquette U t,
and the Polyakov loop

∣∣lP ∣∣ for an SO(4) 3223 volume.
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Figure 5.2: Curve fitting to susceptibility data for a SO(4) 4024 volume. The points represent
calculations of the susceptibility at specific β values while the black line represents reweighted
values. For the curve fitting, we used the data from the blue points rather than the red points to
reduce the χ̄2

dof of the fits.
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Figure 5.3: The Polyakov loop
〈∣∣lP ∣∣〉 for an SO(6) 2023 volume. The vertical lines correspond to

the three characteristic values β = β− < β0 < β+.
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Figure 5.4: The Polyakov loop lP history plots at three characteristic β values for an SO(6) 2023
volume over a run of a million configurations.

108



-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0.

0.01

0.02

0.03

Β=17.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0.

0.01

0.02

Β=17.8

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0.

0.01

0.02

Β=18.1

Figure 5.5: The Polyakov loop lP histograms at three characteristic β values for an SO(6) 2023
volume.
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Figure 5.6: The reweighted susceptibility χ|lP | (along with original susceptibility data) for an SO(6)

2023 volume. The points represent the calculated susceptibility at specific β values whereas the
line represents the reweighted values. The vertical and horizontal lines correspond to the maximum
susceptibility values along with its error. We find that βc = 17.821(4) and χ|lP |(βc) = 9.18(3)
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Figure 5.8: The Polyakov loop susceptibility for SO(4) Lt = 2 volumes.
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Figure 5.10: The Polyakov loop susceptibility for SO(6) Lt = 3 volumes.
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Figure 5.11: The Polyakov loop susceptibility for SO(8) Lt = 5 volumes.
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Figure 5.13: Continuum extrapolation of SO(4) deconfining temperatures in string tension units.
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Figure 5.14: Continuum extrapolation of SO(5) deconfining temperatures in string tension units.
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Figure 5.15: Continuum extrapolation of SO(6) deconfining temperatures in string tension units.
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Figure 5.16: Continuum extrapolation of SO(7) deconfining temperatures in string tension units.
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Figure 5.17: Continuum extrapolation of SO(8) deconfining temperatures in string tension units.
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Figure 5.18: Continuum extrapolation of SO(9) deconfining temperatures in string tension units.
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Figure 5.19: Continuum extrapolation of SO(12) deconfining temperatures in string tension units.
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Figure 5.20: Continuum extrapolation of SO(16) deconfining temperatures in string tension units.

116



SOH2N
�

L

SOH2N
�

+1L

0.0 0.1 0.2 0.3 0.4 0.5
0.70

0.75

0.80

0.85

0.90

0.95

1

N
�

T c

Σ

Figure 5.21: Large-Ñ extrapolation of SO(2Ñ) deconfining temperatures in string tension units.
We plot the SO(2Ñ + 1) values in red.
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Figure 5.22: Large-Ñ extrapolation of SO(2Ñ) and SU(Ñ) deconfining temperatures in string
tension units.
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Conclusions

In this thesis, we presented the string tensions, mass spectrum, and deconfining temperatures

of SO(N) gauge theories in 2 + 1 dimensions. We calculated the continuum values for various

SO(N) theories before extrapolating to the large-N limit. Finally, we compared our SO(N) results

to known SU(N) values and showed that they have matching physical quantities between group

equivalences.

We showed that lattice techniques, previously used to study SU(N) pure gauge theories, also

apply to SO(N) pure gauge theories with only a few adjustments such as a different heat bath

algorithm. We found that the same properties of D = 2 + 1 SU(N) theories appear in D = 2 + 1

SO(N) theories such as the order of the deconfining phase transition as well as more general features

such as parity doubling. We obtained accurate continuum values through considering a large range

of lattice spacing a and a large basis of operators for the string tensions and glueball spectrum,

and by looking at a large range of volumes and Lt values for the deconfining temperatures.

We showed that our values match those of known SU(N) values across specific Lie algebra

equivalences SO(4) and SU(2)×SU(2), and SO(6) and SU(4) and that the differing global group

properties do not affect the equivalence in the physical properties we investigated.

We discussed the theory behind large-N physics. We firstly extended ’t Hooft’s 1/N argument to

SO(N) gauge theories so that we could obtain a large-N limit with O(1/N) corrections. Secondly,

we outlined the perturbative justification behind the large-Ñ orbifold equivalence between SO(2Ñ)

and SU(Ñ) gauge theories. This provided a route linking finite SO(N) and SU(N) results. We

showed that our results confirm these expectations in D = 2 + 1 pure gauge theories, despite

differing global properties such as centre symmetries. Furthermore, we showed that SO(2Ñ + 1)

values mostly agree with our large-N extrapolations despite not having the Z2 symmetry in SO(2Ñ)

theories.

As we described in this thesis, a potential application of these equivalences is studying problems
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in SU(N) QCD theories at finite chemical potential, which the fermion sign problem currently

affects. Our results motivate future research in SO(N) gauge theories. Firstly, we might consider

the SO(N) hadronic spectrum, which we have not considered in this thesis. Following on from 2+1

dimensions, we could also consider 3+1 dimensions. These calculations are more complicated than

those in D = 2 + 1 since, as well as the added complexity of calculating at lattice volumes in higher

dimensions, there is a bulk transition in SO(N) gauge theories at much smaller lattice spacings

than in D = 2 + 1 [3]. We have seen that this bulk transition largely does not affect D = 2 + 1

calculations except for low Lt in the deconfining temperature results. It is clearly important that

the bulk transition occurs at a coupling value where the lattice spacing is not too small, so that

the lattice size in lattice units does not need to be very large. Hence, in D = 3 + 1 dimensions,

the location of the bulk transition makes the task of obtaining a continuum extrapolation at weak

coupling much more challenging than in D = 2 + 1. Potential solutions to this bulk transition

problem include considering much larger lattices or designing a lattice action improvement that

shifts the bulk transition to stronger coupling. If successful, these approaches should allow us to

test if the large-N equivalence also applies in D = 3 + 1, and if SO(N) gauge theories at small N

are similar to an SU(3) gauge theory, which would be directly relevant to addressing the QCD sign

problem.
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