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ABSTRACT

Present day quantum computers suffer from a plethora of errors such as gate error, readout error,
relaxation and dephasing error, and crosstalk. Therefore, they are often known as noisy intermediate-
scale quantum (NISQ) computers. In this article, we analyzed the performance of several classes
of quantum circuits under various errors. We executed NISQ circuits on both noisy simulator and
real hardware backend publicly available from IBM Quantum. On simulation, we created noise
models with both individual errors and combination of multiple errors to quantify how each type
of error impact performance of quantum circuits. We utilized statistical distances such as total
variation distance (TVD), Jensen-Shannon divergence (JSD), and Hellinger distance, to measure
the deviation of noisy output from ideal output. Finally, we compare the noisy outputs from the
simulator and outputs from the real hardware to showcase the gap between simulation and real device
experiment. This gap points to the limitation of present noise models failure to exhibit the behavior
of real hardware.

1 Introduction

Quantum computing has become popular in recent years. Both investment and research on quantum computing have
been increased in past few years. As the interest grows, more hardwares are being developed [1]. With the increasing
number of quantum hardwares, the necessity to analyze their performance is also rising. Existing NISQ circuits are
errors prone and mainly they are noisy. Errors happening due to noise make subtle performance challenging for quantum
computing and also hindering the scalability of this technology. One of the most prominent source of error is noisy
interactions between quantum hardware and its surrounding environment. Interaction between quantum circuits and
environments are commonly known as decoherence. There are also several sources that can cause noise like controlling
pulses, heat, even impurities exists in the qubit materials. As a result, a separate domain of interest emerged to mitigate
the impact of noise.

Quantum noise exhibits a statistical distribution [2]. Hence researchers have put their efforts to understand the impact
of noise by analysing its statistical properties. Even analyzing noise effects sometimes enhance qubit information
processes due to its stochastic behavior [3]. Stochastic analysis is convenient to understand the source of Gaussian
Noise [4]. Basically Gaussian noise occurs due to a large number of random noise sources. Hence, it is quite difficult to
figure out the noise sources and to pull it out as a distinct source of noise. Separating noise from gaussian background
noise can extract the only relevant high-order noise using signal processing help to understand more specific types of
noise. This resultant noise signals are described as Non-Gaussian noise. This reconstructions can help to build more
robust noise model that mimics realistic qubit errors, cause in reality non-gaussian noise [5]. Another good approach to
mimic noise exists in a quantum system is to analyse the noise and try to find out a pattern of it [6].

Impact of quantum noise adversely affect performance. Performance of a quantum system due to noise can be analysed
by quantum benchmarking. In this study [7], the authors have provided numerical simulations regarding quantum
benchmarking and discussed several challenges. According to them, benchmarking task can sometimes be misleading. It
becomes more complicated when we try to benchmark a quantum machine or a quantum program. Quantum computers
are more diverse but yet less developed. Again, quantum noises are difficult to replicate which makes it challenging to
benchmark them. Authors in this study suggested trace distance (a generalization for total variational distance [8]) and



Hellinger distance as metrics to benchmark quantum machines. In our study, we included Jensen-Shannon Divergence
to measure the distance between actual quantum output and ideal quantum output.

Hardware-agnostic benchmarking suite also exists [9]. The authors considered different aspects of a noisy quantum
machine like parallelism, entanglement-ratio, critical-depth, adaptability based on the use-case application of quantum
program. In this study, we mimicked their hardware design features against our noise model on seven of the NISQ
circuits they used, namely GHZ state, Mermin-Bell state, Phase Code, Bit Code, QAOA (both Swap QAOA and Vanilla
QAOA) and Hamiltonian Simulation. There are several works on randomized quantum benchmarking [10, 11]. They
alleviate the problem with quantum process tomography which scales exponentially with the number of qubits. These
methods can calculate the average error rate from QPUs native gates. Among synthetic benchmarking models there are
quantum volume protocol and LINPACK benchmarking [12]. However, both of them have scalability issues [9]. Finally,
there is application level benchmarking. The Variational Quantum Eigensolver (VQE) and Quantum Approximate
Optimization Algorithm (QAOA) are considered as application level quantum benchmark.

Current quantum computing hardware widely ranged as photonics, superconducting and trapped ion architectures
[13]. On this work, we considered a set of programs (quantum circuits) for generic noise models that exist on almost
all quantum computer architectures. Later, we analyzed the noisy simulation with ideal simulation and real device
experiment in terms of statistical distances. Moreover, we have been able to calculate diamond norm till 3 qubits for
a noise model of depolarising error and reset error. For single qubit, two qubits and three qubits depolarising error
diamond norm value is respectively 0.99999638, 1.00000170, 1.000053479 (eight significant value is considered). In
case of reset error value, diamond norm value is 0.999998561 for all three qubit cases. Same initial condition for all
qubits is the reason behind of identical reset error value.

2 Background

Typically, for studying a noise model a set of quantum circuits are chosen based on the preferences. Here, most
common few NISQ circuits are selected. Each circuit addresses particular quantum aspects e.g., entanglement, bell
inequality etc. Our main contribution in the article is to make a noise model that addresses three different errors i.e.,
Bit Flip error, Depolarising error, Thermal Error. Noisy simulations on the selected NISQ circuits provide results in a
probability distributions output. To check the perfectness of the noise model, probability distribution distance between
ideal and noisy simulated model are calculated. Measuring probability distribution distance, i.e., Quantum Distance
demonstrates the fidelity of ideal circuit and make a comparison between ideal and noisy simulators. Mostly, they are
known as Distance Metrics. For this article, three Distance Metrics are formulated for finding the disperse between
noisy simulation and ideal simulator output and comparison are made in between them. We also made an experimental
simulation on IBM Quantum real device open backends.

Output states of the circuits are created on an ideal Simulator provided by IBM Qiskit backend, AerSimulator. Bit flip,
Thermal and Depolarising error are considered for comparing the ideal and noisy simulator output states. Probability
distribution of the output states are then considered for quantum distance.

2.1 NISQ Circuits

2.1.1 GHZ

Measuring GHZ states exhibits entanglement generation of a quantum processor. GHZ circuit consists of Hadamard
gate following a sequence of CNOT gate which produce entangled state [14]:

[H]|ψ⟩ = |000⟩+ |111⟩√
2

(1)
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Figure 1: Circuit for GHZ State

2.1.2 Mermin Bell

Mermin bell circuit is a generalization of GHZ state to test Bell inequality by measuring Mermin Polynomial operator
[15]. Mermin inequality is a test of checking fidelity of a quantum processor. Mermin Polynomial operator expectation
value is measured by:

M =
1

2i
(

n∏
j=1

(σj
x + iσj

y)− (σj
x − iσj

y)) (2)

Here, σj
x and σj

y are Pauli-X and Pauli-Y operators are acting on j-th qubit. Expectation value of this operator should be
⟨ψ|M |ψ⟩ = 2n−1 For n-qubit system.
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Figure 2: Mermin Bell Circuit

2.1.3 Phase Code

Phase code is parameterized by data qubits with phase flip repetition code. In this work, a sample circuit is created with
initial state of |+⟩ = |0⟩+|1⟩√

2
and |−⟩ = |0⟩−|1⟩√

2
with r significant values of error correction and final state is measured.

In a noiseless setting the final states should be identical to the initial states [16].
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Figure 3: Circuit for Phase Code
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2.1.4 Bit Code

Bit code is as same as Phase code that is parameterized by data qubits. Instead of phase flip, Bit code flip bits with a r
round error correction.
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Figure 4: Circuit for Bit Code

2.1.5 QAOA

Quantum Approximate Optimization Algorithm (QAOA) is trained to solve combinatorial optimization problems. In
this work QAOA is designed for Max-cut problem with an edge weight {-1,+1}. This type of Max-cut is commonly
known as Sherrington-Kirkpatrick (SK) model. SK model is perfectly depicted in the Vanilla QAOA ansatz circuit.
Hence, the Vanilla QAOA circuit follows all-to-all connectivity. There is a natural choice of solving Max-cut and ansatz
of ZZ-SWAP QAOA is created by interaction between every pair of qubits, n(n− 1)/2 edges [17] [18].
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Figure 5: Vanilla QAOA Circuit Implementation
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Figure 6: Swap QAOA Circuit Implementation
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2.1.6 Hamiltonian Simulation

For Hamiltonian simulation, we considered the following Hamiltonian of 1D TFIM system consist of N spin qubits

H = −
N∑
i=1

[
Jzσ

i
zσ

i+1
z + ϵphcos(ωpht)σ

i
x

]
(3)

Here, Jz is a coupling constant signifies nearest-neighbor interaction strength and ϵphcos(ωpht)) describes time varying
magnetic field [19] [20].
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Figure 7: Hamiltonian Circuit Implementation

2.2 Noise Model

To simulate quantum circuits with noise, we utilize three noise models, namely, bit-flip error, thermal noise (T1-
relaxation and T2-dephasing), and depolarizing noise. Readout errors are also considered for thermal and depolarizing
noise simulations.

2.2.1 Bit Flip Error

For a bit flip error noise model are considered in following cases:

• For a single qubit gate, probability of flipping the state.
• For two qubit gates, applying single qubit bit-flip errors for each one.
• During resetting, probability of resetting to 1 instead of 0.
• In case of measuring, probability of flipping the state is considered.

2.2.2 Thermal Noise Model

For a thermal noise channel, each qubit is parameterized by a thermal relaxation time constant T1 and dephasing time
constant T2. For a valid parameterization, T2 ≤ 2T1 must be true. Violation of this inequality, makes the error channel
as unitary and mixed reset for T2 ≤ T1. In case of T1 < T2 ≤ 2T1 can be expressed as Kraus error channel [21].

2.2.3 Depolarizing

Depolarizing error channel can be defined as [22]

E(ρ) = (1− λ)ρ+ λTr(ρ)
I

2n
(4)

Here, λ is error parameter and n is the number of qubits [23], where value of λ ranges from 0 ≤ λ ≤ 4n

4n−1

• If λ=0, then it is an identity channel E(ρ) = ρ

• If λ = 1, it is completely depolarizing channel E(ρ) = I
/2

n

• If λ = 4n

(4n−1) , it can be defined as uniform Pauli Error Channel, E(ρ) =
∑

j(PjρPj)/(4
n−1) for all Pj ! = I

For this work, λ = 0.1 is considered.
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2.3 Distance Metrics

In this work, we use statistical distance metrics to compare two sets of output distributions. Primarily, distances
are measured by Total Variational Distance (TVD). For a n qubit output states has N = 2n states and TVD can be
calculated by the following formulation:

1

2

k=N∑
k=1

|p(k)− p′(k)| (5)

Here, p(k) is the probability of the states k with the ideal circuits and p′(k) is the probability of states k with the noisy
circuits [24].

Another distance metric considered for this work is Jensen-Shannon Divergence. which is formulated by the following
equation: √

1

2
[D(p||m) +D(p′||m)] (6)

Here, m is the point-wise mean of p and p′. D is the Kullback-Leibler divergence defined as [25]∑
k

q(k)log(
q(k)

r(k)
) (7)

where, q and r is the two probability distribution. All of the mentioned distance are ranged between 0 and 1, where 0 is
the best case meaning no difference between ideal and noisy case.

We use another metric named Hellinger Distance. Hellinger distance is the equivalence of Euclidean Distance. For two
probability distribution of P and Q. Formally, Hellinger distance is defined as:

h(P,Q) =
1√
2
∥
√
P −

√
Q∥ (8)

In our study hellinger distance modules provided by Qiskit package is formulated to compare the difference between
ideal and noisy simulations [26]. It is the performance metric to make comparison of ideal and experimentally distributed
probability distribution.

3 Results and Discussion
Main goal of the project was to check the error-prone characteristics of the NISQ circuits and demonstrate them in
a table (Table 1 and Table 2). Noise models are simulated for each errors. Parameters for the models are chosen by
following state of the art. To make a bare eye comparison, output states histograms are plotted against ideal simulator
provided by Qiskit, AerSimulator. Simulated histogram plots are available in SI.
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3.0.1 Discussion

For each kind of error, we can see that the mismatches between ideal and simulated states for GHZ state, Mermin
Bell state, Phase Code state and Bit code state can be identified with bare eyes. But Swap QAOA, Vanilla QAOA and
Hamiltonian states produces so much noises. To measure and compare the outputs, we have to relay on the distance
metrics explained earlier 2.3. The table 1 below compares the distance values for each states when introduced to
different types of errors.

State Name Error TVD JSD Hellinger
Bit Error 0.552734 0.671626 0.575589

Thermal Error 0.055664 0.826572 0.168860GHZ
Depolarizing Error 0.137695 0.768309 0.267204

Bit Error 0.745117 0.745375 0.703662
Thermal Error 0.078125 0.828298 0.199642Mermin

Depolarizing Error 0.151367 0.821676 0.280691
Bit Error 0.433594 0.718665 0.498318

Thermal Error 0.059570 0.800651 0.165148Phase
Depolarizing Error 0.094727 0.783709 0.220902

Bit Error 0.778320 0.826520 0.727442
Thermal Error 0.083008 0.781994 0.205920Bit

Depolarizing Error 0.236328 0.830225 0.355129
Bit Error 0.068359 0.048867 0.059550

Thermal Error 0.081055 0.062997 0.069029Swap QAOA
Depolarizing Error 0.048828 0.052720 0.045072

Bit Error 0.040039 0.039797 0.032238
Thermal Error 0.044922 0.074000 0.038908Vanilla QAOA

Depolarizing Error 0.058594 0.065567 0.047182
Bit Error 0.043945 0.047421 0.041027

Thermal Error 0.058594 0.076158 0.048010Hamiltonian
Depolarizing Error 0.043945 0.051197 0.043118

Table 1: States-Error vs Distances Table

Table 2 represents the distance data for states ran on real devices.

Real Device State Name TVD JSD Hellinger
bit_circ 0.317195 0.798787 0.336362
ghz_circ 0.093773 0.751159 0.154430

hamilton_circ 0.091883 0.073828 0.074095
mermin_circ 0.791398 0.493197 0.659724
phase_circ 0.184922 0.500122 0.218252

swap_qaoa_circ 0.088781 0.095780 0.084936

ibmq_belem

vanilla_qaoa_circ 0.131883 0.121733 0.104710
bit_circ 0.115797 0.792652 0.209068
ghz_circ 0.044758 0.772231 0.101447

hamilton_circ 0.102664 0.086657 0.076724
mermin_circ 0.139664 0.704546 0.160856
phase_circ 0.110734 0.673815 0.155431

swap_qaoa_circ 0.071945 0.085265 0.064208

ibmq_lima

vanilla_qaoa_circ 0.096383 0.073539 0.077338
bit_circ 0.077742 0.804447 0.157350
ghz_circ 0.073094 0.773956 0.137056

hamilton_circ 0.028898 0.043327 0.030037
mermin_circ 0.156469 0.741374 0.189601
phase_circ 0.067961 0.523871 0.125884

swap_qaoa_circ 0.068727 0.088215 0.058530

ibmq_manila

vanilla_qaoa_circ 0.088219 0.073094 0.071136
bit_circ 0.129219 0.807277 0.205142
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Table 2 continued from previous page
Real Device State Name TVD JSD Hellinger

ghz_circ 0.081984 0.749682 0.126361
hamilton_circ 0.105219 0.083323 0.086210
mermin_circ 0.254172 0.720565 0.234390
phase_circ 0.082781 0.477326 0.141343

swap_qaoa_circ 0.097039 0.087765 0.080030

ibmq_nairobi

vanilla_qaoa_circ 0.121594 0.096839 0.097454
bit_circ 0.158500 0.785755 0.223138
ghz_circ 0.072742 0.742672 0.185708

hamilton_circ 0.086461 0.047587 0.077877
mermin_circ 0.216305 0.749358 0.269299
phase_circ 0.091758 0.723172 0.142515

swap_qaoa_circ 0.127008 0.086468 0.109444

ibmq_oslo

vanilla_qaoa_circ 0.082047 0.054443 0.068577
bit_circ 0.142758 0.793755 0.228152
ghz_circ 0.156867 0.696616 0.220118

hamilton_circ 0.096469 0.075148 0.072665
mermin_circ 0.316469 0.659058 0.304724
phase_circ 0.179688 0.622409 0.218213

swap_qaoa_circ 0.074375 0.108501 0.066640

ibmq_quito

vanilla_qaoa_circ 0.127969 0.117088 0.125604

Table 2: Device Name-State vs Distance Table

4 Conclusion
By comparing Table 1 and Table 2, we can make say that current noise models cant mimic a real quantum processor.
Main challenges for current state of the art is to consider all noise dynamics for a hardware quantum processor.

Codes are available on this repository: Github Repository
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5 Supplementary Information

Histogram plots are shown in here. Error bar plot is demonstrated for IBM devices. Quartile deviation is considered
for error bar plot. Diamondd norm calculation is available in github repo. To calculate diamond norm a semi-definite
process mentioned in the Qiskit SDK is used.

5.1 Bit Error

Bit errors are modelled for each qubit of the NISQ circuits. Gate error is also considered. In the histograms of this
sections two legends are mentioned: Ideal Probability- simulation on Qiskit provided AerSimulator and Calculated
probability- Output for bit error noise model simulation.
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Figure 8: Impact of bit error on GHZ state
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Figure 9: Impact of bit error on Mermin state
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Figure 10: Impact of bit error on Phase Code state
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Figure 11: Impact of bit error on Bit Code state
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Figure 12: Impact of bit error on Swap QAOA state
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Figure 13: Impact of bit error on Vanilla QAOA state
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Figure 14: Impact of bit error on Hamiltonian state
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5.2 Depolarizing Error

Qiskit provided module is used for depolarising error. Uniform Pauli Error Channel is chosen for the noise simulation.
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Figure 15: Impact of depolarizing error on GHZ state
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Figure 16: Impact of depolarizing error on Mermin state
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Figure 17: Impact of depolarizing error on Phase Code state
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Figure 18: Impact of depolarizing error on Bit Code state
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Figure 19: Impact of depolarizing error on Swap QAOA state
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Figure 20: Impact of depolarizing error on Vanilla QAOA state
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Figure 21: Impact of depolarizing error on Hamiltonian state

5.3 Thermal Noise Error

Both thermal relaxation time constant T1 and dephasing time constant T2 is sampled for 50µs
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Figure 22: Impact of thermal error on GHZ state
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Figure 23: Impact of thermal error on Mermin state

00
00

1

00
01

0

00
01

1

00
10

0

00
10

1

00
11

0

00
11

1

01
00

0

01
00

1

01
01

0

01
01

1

01
10

0

01
10

1

01
11

0

01
11

1

States

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Calculated Probability
Ideal Probability

Figure 24: Impact of thermal error on Phase Code state
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Figure 25: Impact of thermal error on Bit Code state
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Figure 26: Impact of thermal error on Swap QAOA state
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Figure 27: Impact of thermal error on Vanilla QAOA state
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Figure 28: Impact of thermal error on Hamiltonian state
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5.3.1 Results on Real Devices

We also made a comparison of our noise model against all open access quantum processors available by IBM Quantum.
Processor specified coupling map is also considered so that full distance matrix of the graphs can be utilised. There are
three legends in this section histogram plots: Experimental Probability: Output for IBM Quantum Processor, Simulated
Probability: In this case, we modeled all three errors in a whole and Ideal Probability: Simulation on AerSimulator.
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Figure 29: GHZ circuit on Nairobi backend
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Figure 30: Mermin Bell circuit on Nairobi backend
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Figure 31: Phase circuit on Nairobi backend
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Figure 32: Bit circuit on Nairobi backend
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Figure 33: Swap QAOA circuit on Nairobi backend
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Figure 34: Vanilla QAOA circuit on Nairobi backend
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Figure 35: Hamiltonian circuit on Nairobi backend
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Figure 36: GHZ circuit on Belem backend
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Figure 37: Mermin Bell circuit on Belem backend
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Figure 38: Phase circuit on Belem backend
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Figure 39: Bit circuit on Belem backend
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Figure 40: Swap QAOA circuit on Belem backend
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Figure 41: Vanilla QAOA circuit on Belem backend
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Figure 42: Hamiltonian circuit on Belem backend
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Figure 43: GHZ circuit on Lima backend
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Figure 44: Mermin Bell circuit on Lima backend
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Figure 45: Phase circuit on Lima backend

26



00
00

0

00
00

1

00
01

0

00
01

1

00
10

0

00
10

1

00
11

0

00
11

1

01
00

0

01
00

1

01
01

0

01
01

1

01
10

0

01
10

1

01
11

0

01
11

1

10
00

0

10
00

1

10
01

0

10
01

1

10
10

0

10
10

1

10
11

0

10
11

1

11
00

0

11
00

1

11
01

0

11
01

1

11
10

0

11
10

1

11
11

0

11
11

1

States

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Experimental Probability
Simulated Probability
Ideal Probability

Figure 46: Bit circuit on Lima backend
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Figure 47: Swap QAOA circuit on Lima backend
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Figure 48: Vanilla QAOA circuit on Lima backend
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Figure 49: Hamiltonian circuit on Lima backend
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Figure 50: GHZ circuit on Manila backend
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Figure 51: Mermin Bell circuit on Manila backend
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Figure 52: Phase circuit on Manila backend
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Figure 53: Bit circuit on Manila backend
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Figure 54: Swap QAOA circuit on Manila backend
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Figure 55: Vanilla QAOA circuit on Manila backend
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Figure 56: Hamiltonian circuit on Manila backend
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Figure 57: GHZ circuit on Oslo backend
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Figure 58: Mermin Bell circuit on Oslo backend
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Figure 59: Phase circuit on Oslo backend
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Figure 60: Bit circuit on Oslo backend
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Figure 61: Swap QAOA circuit on Oslo backend
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Figure 62: Vanilla QAOA circuit on Oslo backend
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Figure 63: Hamiltonian circuit on Oslo backend
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Figure 64: GHZ circuit on Quito backend
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Figure 65: Mermin Bell circuit on Quito backend
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Figure 66: Phase circuit on Quito backend
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Figure 67: Bit circuit on Quito backend
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Figure 68: Swap QAOA circuit on Quito backend
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Figure 69: Vanilla QAOA circuit on Quito backend
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Figure 70: Hamiltonian circuit on Quito backend
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