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Abstract
We relate the low-energy expansions of world-sheet integrals in genus-one
amplitudes of open- and closed-string states. The respective expansion coef-
ficients are elliptic multiple zeta values (eMZVs) in the open-string case and
non-holomorphic modular forms dubbed ‘modular graph forms (MGFs)’ for
closed strings. By inspecting the differential equations and degeneration limits
of suitable generating series of genus-one integrals, we identify formal substi-
tution rules mapping the eMZVs of open strings to the MGFs of closed strings.
Based on the properties of these rules, we refer to them as an elliptic single-
valued map which generalizes the genus-zero notion of a single-valued map
acting on MZVs seen in tree-level relations between the open and closed string.
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1. Introduction

One-loop amplitudes in string theories are computed from integrals over moduli spaces of
punctured genus-one world-sheets. For open and closed strings, the punctures are integrated
over a cylinder boundary and the entire torus, respectively, which is often done in a low-energy
expansion, i.e. order by order in the inverse string tension /. The coefficients of such «’-
expansions involve special numbers and functions which have triggered fruitful interactions
between number theorists, particle phenomenologists and string theorists. For instance, elliptic
polylogarithms [1, 2] and elliptic multiple zeta values (eMZVs) [3] were identified to form the
number-theoretic backbone of genus-one open-string integrals [4—6].

For the closed string, the analogous genus-one integrals involve non-holomorphic modu-
lar forms [7-9] dubbed modular graph forms (MGFs) [10, 11] which inspired mathematical
research lines [12—16]. As a unifying building block shared by open and closed strings, both
eMZVs [3, 17] and MGFs [10, 11, 18] can be reduced to iterated integrals over holomorphic
Eisenstein series, or iterated Eisenstein integrals. Similar iterated integrals over holomorphic
modular forms play a key role in recent progress on the evaluation of Feynman integrals
[19-39]. As a main result of this work, we identify infinite families of closed-string integrals,
where the appearance of iterated Eisenstein integrals is in precise correspondence with those
in open-string o’-expansions.

More specifically, we give an explicit proposal for a single-valued map at genus one, map-
ping individual eMZVs to combinations of iterated Eisenstein integrals and their complex
conjugates which should be contained in Brown’s single-valued iterated Eisenstein integrals
[13, 14]. This generalizes the genus-zero result that the sphere integrals in closed-string tree
amplitudes are single-valued versions of the disk integrals in open-string tree amplitudes
[40—45]. The notion of single-valued periods [46, 47] and single-valued integration [48, 49] is
very general, and in the case of MZVs amounts to evaluating single-valued polylogarithms [50]
at unit argument. While the single-valued map for the MZVs in tree-level o’-expansions has
been pinpointed in [46, 48], the genus-one studies of single-valued maps from mathematical
[12—14] and physical [51, 52] viewpoints® have not yet led to a consensus for the single-valued
version of individual eMZVs.

Our proposal for single-valued eMZVs can be seen as a correspondence between integration
cycles and antimeromorphic forms that is akin to Betti—deRham duality [49, 57, 58]. In a tree-
level context, Betti—-deRham duality relates the ordering of open-string punctures on a disk
boundary to Parke—Taylor factors [40—-45]—cyclic products of propagators (z; — z;)~' on the
sphere. As a genus-one generalization, we spell out certain antielliptic (i.e. antimeromorphic
and doubly-periodic) functions on the torus which will be referred to as the Betti—-deRham
duals’ of integration cycles on a cylinder boundary.

It will be important to collect the various eMZVs and MGFs in generating series sim-
ilar to those in [18, 59-61] as the genus-one single-valued map SV is most conveniently
described at the level of these generating series. The o’-expansion of genus-one closed-string
integrals—using the techniques of [18]—yields an explicit form of the proposed single-valued
map of the eMZVs in open-string integrals. The open-string punctures on a cylinder boundary

6See [16, 18, 53—56] for recent progress in identifying single-valued MZVs in the degeneration of dihedral MGFs
from closed-string genus-one integrals at the cusp.

7We shall use this terminology at genus one even though we are not aware of any explicitly worked out notion of
Betti—deRham duality beyond genus zero.
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are ordered according to the cycle which is Betti—-deRham dual to the additional antiellip-
tic functions in the closed-string integrand. For the purpose of this work, it will be sufficient
to place all the open-string punctures on the same cylinder boundary which corresponds to
planar genus-one amplitudes: as will be discussed in future work, single-valued non-planar
open-string integrals yield the same collection of MGFs as the planar ones. Apart from a char-
acterization via iterated Eisenstein integrals, we will arrive at a closed formula for the single-
valued versions of any convergent eMZV that straightforwardly yields the familiar lattice-sum
representations of MGFs.

The main evidence for our proposal for an elliptic single-valued map stems from its con-
sistency with holomorphic derivatives in the modular parameters 7 of the surfaces and the
degeneration 7 — ico of the torus to a nodal sphere. Compatibility with the holomorphic
derivative is a simple consequence of recent results on the differential equations of genus-one
open-string integrals [59, 60] and closed-string integrals [61] in 7. Our antielliptic integrands
on the torus ensure that the closed-string differential equations match those of the open string
apart from the disappearance of ¢, as expected from the single-valued map of MZVs. More-
over, the antielliptic integrands are engineered such as to reproduce Parke—Taylor factors in the
degeneration 7 — ico. Hence, compatibility of the single-valued maps at genus zero and one
is supported by the identification of sphere integrals as single-valued disk integrals [40—45].
The logic of our construction is illustrated in figure 1.

1.1. Summary of main results

The main result of this work is the proposal
Ji = SVBL (1.1)

for a single-valued map SV at genus one which relates generating series B and J7 of open-
and closed-string integrals, respectively, see (3.35). As summarized in figure 1, this induces
an SV action on the eMZVs in the o/-expansion of the cylinder integrals BL to be defined in
(3.1). By comparing coefficients of dimensionless Mandelstam invariants ok; - k; and formal
expansion variables 7);, SV maps each eMZV generated by B} to combinations of MGFs at the
same order in the analogous expansion of the torus integrals J£ in (3.13). The integrands of
Bl and J7 are assembled from combinations of doubly-periodic Kronecker—Eisenstein series

@% in (2.13) known from [18, 59-61] and antielliptic functions V(... |7) that we introduce in
(3.8) as tentative Betti—deRham duals of integration cycles on a cylinder boundary.

A key motivation and evidence for this construction stems from the degeneration limit
T — ico of the series BJ; and Ji. Within this limit, genus-zero integrals similar to those in
open- and closed-string tree-level amplitudes are recovered, the latter being related by the
single-valued map of MZVs [40—45]. The leading terms of the eMZVs in the 7 — ico limit of
B[ are certain Laurent polynomials in the modular parameter 7 of the cylinder with MZVs in
its coefficients. As visualized in the lower part of figure 1, the known single-valued map sv of
MZVs [46, 48] is conjectured to yield the analogous Laurent polynomials in the degeneration
limit 7 — iocc of the torus integrals J7.. This is made precise in the conjecture (3.23)—a central
prerequisite for (1.1)—which generalizes earlier observations in [51, 52] and has been proven
at the leading orders in the formal expansion variable 7); at two points [16].

The earlier proposal for an elliptic single-valued map ‘esv’ in [51] concerns the full
T-dependence of certain generating series of eMZVs or the composing iterated Eisenstein
integrals. This reference associates open-string prototypes (i.e. esv preimages) to the simplest
closed-string integrals at genus one whose integrands are solely built from Green functions
involving any number of punctures. On the one hand, the proposal for the single-valued map

3
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Figure 1. Diagram illustrating the various pieces involved in constructing the proposal
SV for an elliptic single-valued map with open-string quantities on its left-hand side
and closed-string quantities on its right-hand side. The generating series By of the open
string contains eMZVs in its /- and 7);-expansion. Conversely, a given eMZV can be
isolated as a specific component of the generating series. The 7-dependent eMZVs con-
tain MZVs in their degeneration limit 7 — ico. Similarly, the closed-string generating
series J% yields MGFs upon expansion and MGFs can be isolated as specific components
in this expansion. The degeneration limit 7 — ico of MGFs is expected to only contain
single-valued multiple zeta values that are related to the MZV by the known single-
valued map sv. Instead of attempting a direct construction of an elliptic SV-map from
eMZVs to MGFs, we exploit the differential equations of the generating series B~ and
J. together with their boundary values from 7 — ioco to describe the map SV at the level
of generating series, see (1.1). From this one can extract the map SV :eMZV — MGF
by inspecting individual orders in the /- and n ~e€xpansions.

in [51] is contained in (1.1) upon symmetrizing over the integration cycles on its left-hand
side and extracting the lowest order in 7;. On the other hand, the implementation of the single-
valued map at the level of iterated Eisenstein integrals in the reference is very different from the
proposal in the present work. In comparison to the proposal of [51], our SV action on iterated
Eisenstein integrals in (4.30) does not necessarily generate real combinations and is therefore
applicable to imaginary cusp forms and MGFs of different holomorphic and antiholomorphic
modular weights. Moreover, in contrast to esv in [51], the SV map in (1.1) is observed to be
compatible with shuffle multiplication in all known examples. Our SV map additionally intro-
duces combinations of (conjecturally single-valued) MZVs and antiholomorphic terms, which
are absent in [51].

At the time of writing, the antiholomorphic admixtures introduced by our SV map on iter-
ated Eisenstein integrals at depth > 2 can only be fixed by indirect methods beyond the reach
of open-string data. Instead, the explicit form of the SV action on iterated Eisenstein inte-
grals has so far been extracted from the reality properties of closed-string generating series in
[18] that extend the JTT7 series as described below. However, this limitation does not affect the
formulation of our SV map at the level of the lattice-sum representation of MGFs: by virtue
of the antielliptic functions V(.. .|7) in (3.8), the SV image of an arbitrary convergent eMZV

4
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givenin (5.39) can be straightforwardly expressed in terms of lattice sums using the integration
techniques of [8—10, 52] and, for certain weights, further simplified using the Mathematica
package [62].

1.2. Outline

This work is organized as follows. We start by reviewing open- and closed-string integrals at
genus zero and genus one as well as the basic definitions of single-valued MZVs, eMZVs and
MGFs in section 2. Then, section 3 is dedicated to the modified generating series of open-
and closed-string integrals as well as their relation through our proposed single-valued map
at genus one. In particular, the central antielliptic integrands and the resulting proposal for
an elliptic single-valued map can be found in sections 3.2 and 3.5, respectively. In section 4,
we set the stage for generating explicit examples of single-valued eMZVs by introducing a
new expansion method for open-string integrals over B-cycles and relating it to similar closed-
string o’-expansions. This leads to the identifications of MGFs as single-valued eMZVs in
section 5, where examples of the antielliptic integrands are related to earlier approaches to
an elliptic single-valued map in the literature. The resulting lattice-sum representations of all
single-valued convergent eMZVs are discussed in section 5.7. In the concluding section 6, we
comment on the relation of string amplitudes to the generating series of this work and further
directions.

2. Review of genus-zero and genus-one integrals

In this section, we collect background material on world-sheet integrals at genus zero and
one, including the genus-zero single-valued map, and review various definitions relevant to
the single-valued map at genus one.

2.1. Genus-zero integrals

We briefly review the basic disk (open-string) and sphere (closed-string) integrals for genus-
zero world-sheets and how they are related by the genus-zero single-valued map.

2.1.1. Definitions of disk and sphere integrals. Massless tree-level n-point amplitudes of the
open superstring [63] and the open bosonic string [64] can be expanded in a basis of iterated
integrals [65]

tree (Hj:ldzj) - —8ii
Z™(y]p) = / m H |Z,‘j| PT(p(1,2,...,n)) 2.1)
D(y) P ki<

over the boundary of a disk which we parametrize through the real line
D(y) = {Zj ER,—00 < zy1) < Zy) < -+ - <2y < oo} 2.2)

The disk integrands involve dimensionless Mandelstam invariants

O/

7k,- ki, k5 =0 (2.3)

and Parke—Taylor factors

Sij = —

1

Lp(Wp2)Z2p2)p(3) - - = Lp(m)p(l)

PT(p(1,2,...,n)) = % =2 — 2 (2.4)

5
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The inverse vol SL,(RR) in (2.1) instructs us to set any triplet of punctures to 0, 1, co, where the
SL,(R) invariance of genus-zero integrands hinges on momentum conservation Z;Zlk ;i =0.
Both the domains and the Parke—Taylor integrands are indexed via permutations v, p € S,

of the external legs 1,2,...,n. One can arrive at smaller bases of (n — 3)! cycles + and
Parke—Taylor orderings p via monodromy relations [66, 67] and integration by parts [63, 65],
respectively.

Closed-string tree amplitudes in turn can be reduced to sphere integrals

1 / (Hﬁzldzzj)

Jtree —
0P =155 | ol SL©

cn—3

< T lail PTG 2. n)PT(p(1,2. ... n) 2.5)

1<i<j

involving d’z = é dz; A dz;and permutations v, p € S, of meromorphic and antimeromorphic
Parke—Taylor factors subject to the same integration-by-parts relations as in the open-string
case.

2.1.2. Single-valued map between disk and sphere integrals. The disk and sphere integrals
(2.1) and (2.5) converge for a suitable range of the Re(s;;) and they admit a Laurent expan-
sion in ¢/, i.e. around the value s;; = 0 of the dimensionless Mandelstam invariants (2.3). The
coefficients in the o/-expansions of disk integrals Z"¢ are MZV's [68, 69],

Gy = > K™K 022 (2.6)

O<ky<ky<---<ky

whose weight n; + ny + - - - + n, matches the order in o’ beyond the low-energy limit (i.e.
beyond the leading order in o). The polynomial structure of the Z" in s;; can for instance
be generated from the Drinfeld associator [70] or Berends—Giele recursions [71], with explicit
results available for download from [72, 73].

When applying the single-valued map [46, 48] of motivic [74] MZVs®

sv Gy =0, SV Qk41 = 200415 sv(3s = —10¢3¢s,  ete 2.7

order by order in o/, the disk and sphere integrals (2.1) and (2.5) are related by [40—45]

Jtree

(v]p) = svZ"(v|p). (2.8)

The first permutation v in Z"™ and J" refers to a disk ordering (2.2) and an antimeromor-
phic Parke—Taylor factor (2.4), respectively, which are connected by a Betti—deRham duality
[49, 57, 58]. The key result of this work is to identify similar pairs of cycles and antimeromor-
phic functions at genus one.

2.2. Genus-one integrals

As a preparation for our proposal of a genus-one single-valued map, we now introduce the
basic genus-one world-sheet integrals and the objects appearing in their o/-expansion.

8 Strictly speaking, MZVs need to be replaced by their motivic versions to have a well-defined single-valued map.

6
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77 R 7
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Figure 2. Parametrization of the torus ¥ = ﬁ withidentificationsz =2 z+ 1 2 z+4+ 71

marked by || along the A- and B-cycles. While the torus is drawn for non-vanishing
Re(7) to accommodate closed-string amplitudes, the cylinder world-sheets for open-
string amplitudes are derived from tori at 7 € /R™ via suitable involutions [75].

2.2.1. Genus-one open-string A-cycle integrals. In the same way as disk integrals can be cast
into a Parke—Taylor-type basis (2.1), the basis integrals for massless genus-one open-string
amplitudes are claimed to be generated by [59, 60]

4@@:/ [Tdz | o5t o, .oy I o2, (2.9)

Sty \i=2 1<i<j

where we have set z; = 0 by translation invariance. In this work we restrict to planar amplitudes
with all state insertions on a single cylinder boundary (as opposed to non-planar amplitudes
with punctures on both boundaries of the cylinder). We do not impose momentum conservation
in a genus-one context and treat all the s;; with 1 < i < j < n as independent. The ordering of
the open-string punctures on a cylinder boundary is encoded in an integration domain on the
A-cycle of a torus (see figure 2 for the standard parametrization) with 7 € iR™ [75]

A(y) = {Zj ER, 0<z,0 <23 < - < 2y < 1}, (2.10)

with similar integration domains [76] for the non-planar open-string integrals.
The integrand of (2.9) features the open-string Green function on an A-cycle (which is

chosen to enforce Gy(z, 7) = Go(—2z, 7) and fol dz Gy (z,7) = 0[51,77])

+—+. ze(=LD 21D
n(7)

%@ﬂz—m(W¢”)i? f,

and the following combination of the doubly-periodic Kronecker—Eisenstein series [78]

2.12)

I /
Qz,m, 7) = exp (271-1'77 mz) 010,701z +n,7)

61(2, T)el(/'% T)
80%(1, 23 ey n) - Q(ZIZa 7723...}% T)Q(ZZ?)’ 773...}1’ T) te Q(anl,na nna T) (213)

ImT7

7
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withn;; =mn;+n;+---+ n;.> The permutationp € S,,_; in (1, p(2,...,n))is taken to act
on both the z; and the formal expansion variables n; € C in (2.13). The conjectural basis (2.9)
is a generating function of the world-sheet integrals over the Kronecker—Eisenstein coefficients

f(w)

Qenm) =) 1" f“cm) (2.14)

w=0
that occur in the integrands of genus-one open- and closed-string amplitudes [4, 52, 79], e.g.

I
fOCn =1 D7) =0.log bi(z7)+ ZWth;l—Z. (2.15)
T

While the massless four-point genus-one amplitude of the open superstring [80] is proportional
to the most singular 0;3-0rder of Zz(: |1,2,3,4), the analogous amplitude of the open bosonic
string additionally involves contributions of Z%(~ [1,2,3,4)(and its permutationsin 2, 3, 4) at the
orders of njil [76].'° The short-distance behavior f(V(z, 7) = % + O(z) introduces kinematic
poles into the o/-expansion of (2.9), and the remaining f ZD(z, 1) are regular for any z € C.

2.2.2. Genus-one closed-string integrals. Inthe same way as (2.9) is claimed to be a universal
basis of genus-one open-string integrals, the integrals over the torus punctures for massless
genus-one amplitudes in type II, heterotic and bosonic string theories should be generated by
[61]

T _ “n—1 2 ) K,"g (,,",T) T
Yitylo) = @i) /T gdz, [ e oA o

1<i<j

X Oni1,p2,....n)) (2.16)
with z; = 0. The remaining z; are integrated over the torus ¥ = % with modular parameter
7€ H= {7 € C,Im7 > 0}. The closed-string Green function

2 2x(Imz)?

ImT7

01(z,7)
n(T)

Gs(z,7) = —log (2.17)

is chosen to be modular invariant and to obey f‘: d*2G<(z,7) =0, and its holomorphic
derivatives parallel those of the open-string Green function Gy (z, 7) in (2.11),

0.Gx(z,7) = —fV(z,7), 27i0-Gs(ur +v,7) = —fPur +v,7)  (fixedu, v)
G, 7) = —fV(v,7), 2710, G (v, 7) = —fP(v,7) — 26, (2.18)

9 Our conventions for the standard odd Jacobi theta function are
01z = g8 — e[ T (1= g1 = g1 — e ")
n=1

and 7)(7) is the Dedekind eta function. In order to avoid confusion with the expansion parameters 7;, we always spell
out the argument 7 of the Dedekind eta function. Representations of the open-string Green function in terms of elliptic
polylogarithms are discussed in [4, 5, 51], and we follow the conventions of [4] for regularizing endpoint divergences.
10 By using Fay identities and integration by parts, the massless four-point genus-one amplitude of open bosonic strings
in section 8.1.1 of [76] can be rewritten in terms of the coefficients in the 7);-expansion of Z§(~\1, 2,3,4).

8
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where u, v € R parametrize the covering space of the torus and the £ (z, 7) with z = ur + v
are defined by (2.15). The second arguments (7 — 7)n; and 7}; of the Kronecker—Eisenstein
series and their complex conjugates in (2.16) have been chosen such that each order in the 7 ;-
and o/-expansion gives rise to modular forms of purely antiholomorphic modular weight'!.

When assembling genus-one amplitudes of open and closed strings from the series Z~ and
Y7, it remains to dress the component integrals in their 7) -expansions with kinematic factors
that carry the dependence on the external polarizations. The latter are determined from the
conformal-field-theory correlators of the vertex operators, see e.g. [81, 82], and are unaffected
by our proposal for the single-valued map at genus one.

2.2.3. Differential equationsin . Based on the differential equations (2.18) of the Green func-

tions and integration by parts in the z;, the open- and closed-string integrals (2.9) and (2.16)
were shown in [60, 61] to obey the differential equations

2mi0- Z3(p) = Y (1 = GK(T) Y rien),"Zi(v] )
k=0

€S, 1

2mid, Yi(vlp) = > (1 =k = D 2Gu(r) Y Rie), " Y(vla),  (2.19)

k=0 a€esS, |
respectively. The right-hand sides involve holomorphic Eisenstein series Gy = —1 and
1
G = ——, k=>4 2.20
L(7) Z T (2.20)
(m,n;#(0,0)

as well as (n — 1)! x (n — 1)! matrices rj(er), Rj(¢) independent of 7 that vanish for k = 2 and
k € 2N — 1. This means in particular that G,(7) does not appear in (2.19).
The two-point instances are

1 1
i, (€0) = S12 (772 +20 — 23,32)
2
F(er) = Ry, () = sy 2, k>4 2.21)
1 1
R, = = — 202 | = 27y,
»(€0) = S12 (77% B ,,2> U200,

The notation ¢, reflects the expectation that the rj(e;), Rj(e;) are matrix representations of
Tsunogai’s derivation algebra [83] and obey relations such as (see [17, 84, 85] for similar
relations at higher weight and depth)

[ri(€10), rip(€a)] — 3[ri(es), ri(es)] = 0. (2.22)

The all-multiplicity formulae for these (n — 1)! x (n — 1)! representations in [60, 61] manifest
that the r;;(¢) are linear in the s;;, i.e. proportional to «/, and their closed-string analogues

ya
1 Functions F (7) on the upper half plane with transformations F(%) = (y7 4+ )" (y7 4+ 6P F(r) under (a g) S
Y 5

SL,(Z) are said to carry holomorphic and antiholomorphic modular weight w and w, respectively.

9
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Ri(ex) additionally involve terms ~1;0,, independent of o (with s12._, = ZTQ < Sif):
rij(€x) k>4

Rie) = (2.23)

ri(€0) — 2(s12..0 — Zﬂiz 00y k= 0

=2

2.2.4. Basic definitions of eMZVs and MGFs. We shall now review the definitions of the
eMZVs and MGFs that occur as the expansion coefficients of the above genus-one integrals.
The 7;- and o’-expansion of the open-string integrals ZZ(v|p) in (2.9) gives rise to A-cycle
eMZVs [4-6]

w(ng,na, ... nl1) = / dzy f"(zy, 7)dza [ (20, 7) .. dz, £ (20 T)

0<z1 <z < <zr<1

(2.24)

introduced by Enriquez [3] which are said to carry weight n; + ny + - - - + n, and length r.
Endpoint divergences in case of n; = 1 or n, = 1 are shuffle-regularized as in section 2.2.1
of [4]. The specific eMZVs at a given order of Zg(ﬂp) in 5;; and 7); can be obtained from the
differential equations (2.19) along with the initial values Z?"m(ﬂ p) in [60] or from matrix
representations of the elliptic KZB associator [86, 87].

The closed-string integrals Y§(7| p) in (2.16) in turn introduce multiple sums over the
momentum lattice of a torus [52, 61]

A=Z+7Z, AN =A\{0} (2.25)

that are known as MGFs [10, 11]. With the removal of p = 0 from A, they can be thought
of as infrared-regulated and discretized versions of Feynman integrals on a torus. The MGFs
associated with Feynman graphs of dihedral topology are defined by'?

a a; ... a, 5(p1+p2+...+pr)
|:b] b2 . b:| = Z a;—by _ar—by Gy —by (226)
! PLaD2 s p,eA/pl Py Py Py ---PrDr

and more general topologies are for instance discussed in [11, 62]. The simplest examples
of dihedral MGFs (2.26) have two columns and are associated with one-loop graphs on the
world-sheet

a O 1
C L} 0] = Zﬁ, (2.27)
peN
whereas C {Zl 22 o Z" are referred to as (r — 1)-loop MGFs. As long as the entries
1 by ... b

obey a + b > 2, the lattice sums (2.27) are absolutely convergent and the one-loop MGFs are
expressible in terms of non-holomorphic Eisenstein series E(7) and their Cauchy—Riemann
derivatives

12 Note that the definition of C[. . .] in this work follows the conventions of [18, 61, 62] but differs from those in [11,
52, 54, 88] by factors of Im 7 and 7.

10
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k k+m _
Ek(7)=<ImTT>c{k o]’ VB () = AT ket m 1“4’“’” 0],

k0 ™ k=Dl |k—m 0
_— Cm) " k+m— 1) [k—m 0
VIR = T T ) {k+m 0]’ (228)

where V = 2i(Im 7)29, and V = —2i(Im 7)20=. As will be detailed below, both eMZVs (2.24)
and MGFs such as (2.26) can be represented via iterated integrals of holomorphic Eisenstein
15 8] defined by (2.20). Both eMZVs [17] and MGFs [11, 62, 88—90] exhibit
a multitude of relations over rational combinations of MZVs, all of which are automatically
exposed in their iterated-Eisenstein-integral representation'>. A computer implementation for
the decomposition of a large number of eMZVs and MGFs into basis elements is available in
[62, 92], respectively.

series Gy = C

3. New types of genus-one integrals

The goal of this paper is to relate the o’-expansions of suitable generating functions of genus-
one open- and closed-string integrals. The Z§(7| p) and Yg(y\ p) in (2.9) and (2.16) can be
anticipated to not yet furnish the optimal building blocks for this purpose since

(a) The 7-dependence ~Gy(7) and ~(7 — 7)¥"2G(7) of the open- and closed-string differ-
ential equations (2.19) does not match, even in absence of 7.

(b) The contributions ~7 ja,,j to the closed-string derivations Rj(¢p) in (2.21) and (2.23) do
not have any open-string counterpart in r;(€).

Both of these shortcomings will be fixed by the improved open- and closed-string generating
functions Bg(7| p) and J%(V\ p) to be introduced in this section.

3.1. Genus-one open-string B-cycle integrals

Instead of parametrizing the cylinder boundary through the A-cycle of a torus as in (2.9), one
can perform a modular S transformation

2o =2 (1)

= / H dZJ w;ﬁ'(l3 p(23 B n)) H eSijg% (Zij,‘f') (31)

By \i=2 1<i<j
to attain a parametrization through the B-cycle (recalling that z; = 0 and 7 € iR™)

B() =P B0
j=1

1
Bj(y) = {Zi = Tli =5 <yt <l < <o <0 <
1
< Uy@y < - < Uy < E s 3.2)

13 This relies on the linear-independence result of [91] on holomorphic iterated Eisenstein integrals.

1
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Im(z) Im(o) .
T I 41 me '
\
2 L X2 ! 272
zZ3e
[ )]
Z1:0 ( )
[ X240 Re(z
e ’ X aj g2 On Oj+1 Re(a)
J+2|Z 12- OT Py -1 -0- PY "
@< 3 = — —1/2
T Jj+1 I _£_|_l q / 3 [o5] n—1 q /
2 ] 202

Figure 3. The parametrization (3.2) of the B-cycle is mapped to the positive real axis in
the o; = ¢*™/ variables which exhausts all of R* as 7 — ico and g = €*™” — 0. The
line segments in the z-coordinate and the semicircles in the o-coordinate marked by ||
are identified by the periodic direction of the cylinder, i.e. the B-cycle of the parental
torus.

where u; € R, and the B-cycle Green function Gy (z, 7) is constructed in two steps: first, we
define Gy (z, 7) for z on the line (0, 7) by [77]

. 2 .
Q%&J)ng<£rj>==—zz——bg<&gﬂﬁ>—[z+4m € (0,7). (3.3)
T T T n(T) (Y

Then, we extend this to z € (—7, 0) by imposing Gy (z, T) = Gas(—2z, T) for compatibility with
(2.11) under modular S transformations, leading to the combined expression

+im, ue(=11). (3.4

Gos (ut, 7) = —imu*T — log (791(14'7-’ T)> S

n(T) 67

Instead of integrating over z; = 7u; with u; € (0,1), we have chosen the representative
u; € (—%, %) of the B-cycle in order to facilitate the comparison with genus-zero integration
cycles as 7 — ico. Figure 3 illustrates the integration cycle (3.2) in both the z; and 0; = e*™i
variables (the latter becoming the coordinates on the sphere as 7 — ico), where z; € iR and
o; € R for purely imaginary choices of 7. Note that non-planar versions of the B-cycle
integrals involve additional punctures at z; € 4 + iR or negative o; € (—g~'/2, —¢'/?).

The modular transformation $(z,7, —}) =71Q(7z,™),7) of the doubly-periodic
Kronecker—Eisenstein series (2.12) leads to the rescaling 7; — 77, in the subscript of
the p-dependent integrand @7 of (3.1).

3.2. Dual closed-string integrals

The doubly-periodic integrands @7 in (2.13) are non-holomorphic, so their complex conjugates
in (2.16) obey

8Zj<p%(l,7(2,...,n)) = %g@%(l,v(l...,n)) 3.5)
which leads to the terms ~7) j&,j in the closed-string derivations Rj(ep) in (2.23). This intro-
duces a tension between the open- and closed-string differential equation (2.19) such that the
¢ do not qualify as Betti—deRham duals of open-string integration cycles. In order to general-
ize the interplay of Parke—Taylor factors (2.4) with single-valued integration [48, 49] to genus

12
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one, the factor of pZ.(...) in the Yg integrals (2.16) needs to be replaced by an antimeromor-
phic function that is still well-defined on the torus, i.e. the complex conjugate of an elliptic
function in all of z1, 2z, . . ., 2.

Such elliptic functions of n punctures can be generated by cycles of Kronecker—FEisenstein
series [79]

Nz212,&,7)z223,6,7) - .. Qza1, &, 7)) = 5_"2 E'Vu(1,2,...,n|7), 3.6)
w=0

where V,, has holomorphic modular weight w. Even though the individual Kronecker—
Eisenstein series () are not meromorphic in the z;, the V,, are elliptic functions since the
non-holomorphic phase factors in (2.12) cancel from the cyclic product in (3.6). The simplest
examples are

Vo (1,2,...,n\7’) =1

Vi (1,2, .. .,n‘T) = Zf(l) (Zj - Zj+1,T)
=1

n n

Vs (1,2, . ..,n\T) = Zf(z) (Zj — Zj+1,7') + Z f(l) (Zj - Zj+1,7')
j=1 1< ji<k
< [N (zk — 2k41,7) 3.7)

with z,41 = z; and Kronecker—Eisenstein coefficients f defined by (2.14), also see (5.2) for
the analogous expressions at general w.

As will be detailed below, these elliptic functions degenerate to suitable combinations of
Parke—Taylor factors when forming the linear combinations

n—2

VL2, onfm) =

w=0

Vo(1,2,...,n0|7)
Qri) (n—w — 1)

(3.8)

such as (see sections 5.4 and 5.5 for detailed discussions of the three- and four-point examples)

V(L2 =1,  V(1,2,3|r) = % + M

2mi

11V (1L,2,3,4]7) | Va(1,2,3,4]7
V(L23.4r) =g+ ( 2mi ) ((2m)2 !
11V (1L,2,3,4,507) 15 (1,2,3,4,5]7
V1234507 = 57+ 5 . 2ri ) 2 ((27ri)2 :
Vs (1,2,3,4,5/7)

3.9
@2i)’ 9
To lend credence to this definition of the V-function, let us see how their properties parallel
those of the genus-zero case: the Betti—deRham duality at genus zero relies on the simple-pole
residues

Res,

2j=2j+1

PT(1,2,...,j,...,n) = £PT(1,2,...,j— 1, j+1,...,n)  (3.10)

13
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of the Parke—Taylor factors (2.4). These residues correspond to the situation when two neigh-
boring points of the disk ordering (2.2) at z; = z;+; come together, which is crucial for sphere
integrals being single-valued disk integrals [43, 45].

Similarly, at genus one, the generating function (3.6) of the elliptic V,, functions exposes
the recursive structure of their simple-pole residues

Res V(1,2 o) =2V (1,2, j— 1 j+ 1,...,n) 3.11)

2j=Zj+1

and the absence of higher poles in z; — z;+. Consequently, the pole structure of the elliptic
combinations (3.8)

1
Res, —..,, V(1,2,...,j,....n) =£—=V(1,2,...,j—1,j+1,...,n) (3.12)
7 2mi

mirrors the boundaries of the open-string integration cycles as z; = z;+1, i.e. one recovers
mutually consistent V-functions and cycles at multiplicity n — 1 in both cases'*.

The absence of V,, with w > n — 1 in (3.8) can be understood from

e The vanishing of V,,_1(1,2, ..., n|7) since (3.6) would otherwise be an elliptic function of
& with a simple pole at the origin [79]

e The breakdown of uniform transcendentality when expanding Koba—Nielsen integrals
involving V,,(1,2, ...,n|7) [52] (which is in tension with the transcendentality properties
of open-string integrals [60])

e The fact that V>,+1(1,2, ..., n|7) is expressible in terms of G, Vi(1,2,...,n|7) with
k<n-—21[79]

Similar to the closed-string integrals Y%, we define an (n — 1)! x (n — 1)! matrix of torus
integrals

T _ ~n—1 2. $iG @i DY ~(0 )
Ji(vlp) = (2i) /{H j:sz zj H e i9T@IV A, 42, ..., n)

1<i<j
X cp(TTf;)ﬁ(l, p(2,...,n) (3.13)
indexed by permutations v, p € S,_; of (3.8) and (2.13). Note that the cyclic symmetry
V@2, ... .0, 1T) = V,(1,2,...,n|T), VQ2,...,n1|7)=V(1,2,...,n|7) (3.14)

exposed by the generating function (3.6) has been used to bring the integrand of (3.13) into the
form of V(1,...|7).

3.3. Asymptotics at the cusp

The modular § transformation in (3.1) maps the A-cycle eMZVs (2.24) in the 7;- and o'
expansion of Z% to B-cycle eMZVs [3] in the analogous expansion of Bj. As detailed in
[51, 77, 93], the asymptotic expansion of B-cycle eMZVs as 7 — ico is governed by Lau-
rent polynomials in T = 77 € iRT whose coefficients are Q-linear combinations of MZVs,

140n the closed-string side of the ‘genus-one Betti—deRham duality’ we note that, by double-periodicity of the V-
functions, additional poles with identical residues occur as z; — zj+| + m7 -+ n (m,n, € Z). On the open-string side
in turn, the delimiters of the integration cycles in the B-cycle parametrization of figure 3 are separated by 7.

14
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for instance

1 > (o iG 3G Q20T
2- )= 2, i
w(0,0, ) @ 32T T+2T2+O( )

ir i 3G 3144 Q20T
0,0,1,0[— ~ ) = = 52 _ 2% ' 3.15
“ ( ) 10 ar a2 T ap O (3.15)

1 T3 31 9 15: .
" (0’ 0.3.0|— ) i iy Gs iCe Y

1260 4T 2717 273

The suppressed terms O(e*7) are series in ¢ = e*™™ = ¢ with Laurent polynomials in 7 as
their coefficients.

The MGFs (2.26) in the 7;- and o’-expansion of (2.16) admit similar expansions around
the cusp, where the leading term is a Laurent polynomial in y = mIm 7 instead of 7. The
coefficients in the Laurent polynomials of MGFs were shown to be Q-linear combinations of
MZVs! [15] and are conjectured to be single-valued MZVs [10, 12]. Simple examples of the

asymptotics of MGFs include

S

Ey (1) = 5+3+(9(*2>')

aVEy (1) 2y ¢ sy

TEO R groe)
3

Ea(r)—%+&+0(*2"),

see (2.28) for the lattice-sum representations of the non-holomorphic Eisenstein series.
In a variety of examples, the Laurent polynomials of MGFs and B-cycle eMZVs have been
related by an extension of the single-valued map (2.7) to [16, 51, 52]

svT = 2iy < sv log(q) = log|q|*. (3.17)

By (3.15) and (3.16), for instance, the Laurent polynomials of w(0, 0, 2| — %) — E>(7) as well
as w(0,0,1,0/ — 1) —» -3 "VEW) and w(0,0,3,0| — 1) — 3E5(7) are related by (3.17).

The A-cycle eMZVs in Z; , by contrast, enjoy a Fourier expansion in g = e*™” whose coef-

ficients are Q[(27i)~ '] combinations of MZVs [3, 17] and do not feature any analogues of the
Laurent polynomials in the expansion of BF. This is yet another indication besides their differ-
ential equations that the B-cycle integrals (3.1) are a more suitable starting point for comparison
with closed-string integrals than their A-cycle counterparts (2.9).

3.4. Single-valued correspondence of the Laurent polynomials

As a particular convenience of the elliptic combinations (3.8) in the integrands of J©. (7| 0),
their degeneration at the cusp gives rise to Parke—Taylor factors in n + 2 punctures (o; = 1 by
721 =0)

oj=e"%, o, =0, 0. —00. (3.18)
15 See [12] for an earlier proof of the weaker statement that the Laurent polynomials of modular graph functions are

(QQ-linear combinations of cyclotomic MZVs.

15
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Since the non-holomorphic exponentials of €2(z, &, 7) = exp(2mwi& %)F (z,&,7) cancel from

the cyclic products in (3.6), one can determine the asymptotics of V(...|r) as 7 — ico by
using the degeneration of the holomorphic Kronecker—Eisenstein series

L Ot o;
F(zi;, &, 1) = m co(m§) + 177.—01 + O(q). (3.19)
i Y
The relative factors of the V,, in (3.8) have been engineered to obtain the following cyclic
combinations of Parke—Taylor factors at the cusp,

_V(L,2,.. a7
lim —— =

: = (=" lim |o_|? {PT(+,n,n— 1,...,2,1,-)
T—100 0'10'2_,_O'n 0 _—00

+cyc(1,2,...,n)} , (3.20)

which have featured in the context of one-loop gauge-theory amplitudes in ambitwistor string
theories [94]. The denominators on the left-hand side of (3.20) arise from dz; = ﬂ, and the

factor of |o_|? on the right-hand side identifies functions on a degenerate torus with SL;-fixed
expressions at genus zero [65]. Given that Parke—Taylor factors are Betti—deRham dual to disk
orderings (. ..) in (2.2), the 7 — ico asymptotics of Jg(7| p) should yield the single-valued
map of suitably chosen disk integrals. In fact, upon rewriting the B-cycle ordering in terms of
the o variables (3.18), each of the contributions 5 ;(y) in (3.2) and figure 3 degenerates to a
single disk ordering

2mio

%1(’7) |T—>iOO - (_1)n71®(+,’}/(],J— 15"',352),157(11,"_ 15"'5j+ 1)’_)’ (3'21)

such that the overall B-cycle ordering B(y) = @?:1‘3 j(7) at the cusp becomes the
Betti-deRham dual to the cyclic combination of Parke—Taylor factors in (3.20),

B(2,3,n) e = P D= L3 2 =1+ 1, o).

=1

(3.22)
Hence, the tree-level result (2.8) provides evidence for our central conjecture

Ji(v]p) [Lp = sv BI(7|p) [Le, (3.23)

where the notation | p instructs to only keep the Laurent polynomials in 7 and Im 7 while
discarding any contribution ~¢, g. The conjectural part of (3.23) concerns the non-constant
terms in the Laurent polynomials, i.e. corrections ~ (log ¢)*! to the expansion around the cusp
g = 0, so it is not implied by the Betti—-deRham duality of (3.2) and (3.20) which only holds
at the cusp. That is why we support (3.23) by extensive tests at low orders in 7);, o as detailed
below, and by the fact that the asymptotic expansions of the Green functions are related by the
single-valued map with svlog o;; = log|o;|?,

iT 1 1
o) lr = — & — 2 1 V1o 6y 4 1og 0) — log o]
6 T 2
i(log o; — log o)
3.24
+ . (3.24)

16
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2
(log|oi| —log|aj|)
2y
= sv®x(zj,7) |Lp- (3.25)

Gz (zijyT) |Lp = % + log |oi| + log |o | — 2 log |o;| +

Note that the absolute value in (3.24) is due to the argument |u|7 of 6, in (3.4). For the two-
point instances B% and J; of the open- and closed-string integrals (3.1) and (3.13), the Laurent
polynomials in the asymptotics at the cusp can be determined [95] by mild generalizations
of the techniques in [16, 55] (also see [56] for an alternative approach to the closed-string
case):

. isinT  isnG . 2 1
Bn(z‘z) lLp = exp <_T -7 ) {[z cot(nT) + 1] exp ( Ta’”) st 2m

Fﬂ+%+mﬁﬂ—m)
I )

X exp (lslzaz ) 1 [F(l + 2 -l - 512) ol TR~ '12):|

TR +7]2):| + [i cot(mT) — 1]

AT ) sy — 2 1“(1 L)
1 is12 0\ [T+ 2 —m)I(1 — s12)
+—exp( 2 i
312 4T 2 1’*(1 12 _ 772)
A+ 2 +mplid - S12)} } (3.26)
I — =2 +mn) '
12y . . S12 4o 1
Jy22) |[p = exp ( 3 ) {[1 cot(2inpy) + 1]exp <8y 6n2> i

Fn+y+mnhwmm+m—ﬁ emw@
D(1— 2 + ) + s12)0(1 — 22 — 1)

1
+[i cot(2irpy) — ”eXP( 12352> S — 21
P

[F(l + 2 +mPA —sp)I'Ad + 2 —m) ey(mzm)} } (3.27)
ra - S” +m)I'( +s12)(1 - m — 1) '

These two-point expressions are easily seen to line up with the all-multiplicity claim (3.23)
since

{F(l — ol —b)} _ T -l -HIU +a+b) (3.28)

I'(1 —a—>b) T+ ol +b)I1 —a—b)
and the last line of (3.26) therefore vanishes under sv. Moreover, we have checked the three-
point Laurent polynomials to obey (3.23) to the orders in the s;;- and 7 -expansions where

MGFs such as (2.26) of total modular weight 10 occur'®. Finally, we have checked (3.23) to
hold at four points to the orders where MGFs of total modular weight 8 occur, at least for

16 This amounts to performing the o/- and 77-expansion to order 10 in the terminology of section 3.4.2 of [18].
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contributions from ¢ in (2.13) without any singular factors of f M(z;;,7).17 These checks
are based on Enriquez’ methods [3] (also see appendix B of [51]) to determine the Laurent
polynomials of B-cycle eMZVs. The Laurent polynomials for all B-cycle eMZVs with (length
-+ weight) < 16 obtained from an FORM implementation [96] of these methods are available
for download [97].

While the two-point Laurent-polynomials generated by (3.26) and (3.27) only involve Rie-
mann zeta values, higher-point examples also introduce irreducible MZVs of depth > 2. The
appearance of (; 5 in B-cycle Laurent polynomials is later on exemplified in (4.27) and (5.37).
Moreover, the appearance of (355 in open- and closed-string calculations at three points in
agreement with (3.23) was observed in section 3.3.5 of [51], based on earlier closed-string
computations [12].

3.5. Single-valued correspondence of the differential equations

The holomorphic derivatives of the B;IL and Jg-integrals (3.1) and (3.13) can be easily deduced

from (2.19): in the open-string case, the modular § transformation relating B, = Zﬁ_ Y7 and the
modular weight (k, 0) of the holomorphic Eisenstein series Gy give rise to

Byl = &, )ZZa—k)rk Gu(r) > rilen),"By(vle),  (3.29)

€S, 1

9 log ¢

see [60] for the n-point derivations r;(ex) and (2.21) for their two-point examples. Since the
single-valued map at genus zero acts on transcendental constants, we have passed to the differ-
ential operator 3 13 i = (27i)~'0, in comparison to (2.19) and in preparation for the extended
single-valued map to be introduced below around (3.32).

In the closed-string case, the V(. .. |7) in (3.13) are not affected by holomorphic derivatives,
and one can import a simplified version of the differential equations in [61] where contributions

~1];0,,; are absent,

d
Flog 4719 = G )220 k) — 1) 2 Gu()
XY svre, 5y ]a). (3.30)
aES,_|

By the differential equation (2.18) of the Green functions, also the term ~ ¢, in r;3(€p) is absent
which we have indicated through the sv notation,

riy(€r) k>4
sv rer) = , (3.31)
rii(€0) — 2(a812. 1 k=0

where r;(e2) = 0. The building blocks of the closed-string differential operator in (3.30) are
related to those in the open-string analogue (3.29) through an extension SV of the single-valued

7We have excluded the singular functions fV(z; i T) = L 410G ;) in the integrand from our checks to avoid the
%j

tedious treatment of the resulting kinematic poles in the o/-expansion. For the contributions of V, and V; to the
integrand V(1,2,3,4|7) in (3.9), we have checked the Laurent polynomials from up to one factor of O j»T) in the
integrand to obey (3.23), see section 3.6 for the disentanglement of different V,, entering V(1,2,...,n|7).
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map (recall that T = 7 and y = 7 Im 1)

e Gi(T) ke Gi(7)
k=2 k-2
SV | 2mir) anif ri{er)| =SV [2i1)?] SV {(m)k} SV [rien)]
_ Gi(7)
= (—4y) 2(2];1')" sv ry(er)
1 —\k—2

= W(T — T)" "Gi(T)sv riz(ex) (3.32)

which is taken to preserve the properties of sv,
SV CI‘[]JIQ ..... n, — SV Cﬂ],}’lQ ..... nys SVT = 2iy (3.33)

and to furthermore preserve (27i) “G,(7) (the inverse powers of 7 ensuring rational coef-
ficients in the g-expansion) and the 7);-variables, cf (3.32). In other words, the differential
operator O = Qmi) 2> 2 o(1 — k)T 2 G (T)rii(er) appearing in (3.29) and its closed-string
analogue in (3.30) are related by

OBL(7|p)

it/ AL § T T

3 log q (yesn7107](p|a)Bn(’y‘a) -

aJ7(v|p)

v Z T

7 log ¢ agsm [SV OF(pla)] JE(v| ). (3.34)

From the above discussion, both the 7 — ico asymptotics and the differential operators of
the open- and closed-string integrals B and J7 are related by the SV map (3.33). Hence, we
propose that the solutions of (3.34) yield an appropriate extension of the SV map

Ji(y1p) = SV B3 (4| p). (3.35)

This proposal is key the result of this work, relating the open-string integrals Bg(v\p) in (3.1)
with integration ordering v to the closed-string integrals J:T(y\p), where the ordering v gov-
erns the singularity structure of the antielliptic integrand V in (3.13). By construction, this SV
map commutes with the holomorphic 7-derivative and, under the assumption (3.23), it is con-
sistent at the level of the Laurent polynomials at the cusp. Compatibility of a single-valued
map at genus one with 7 — ico generalizes the fact that the single-valued map of multiple
polylogarithms commutes with evaluation [46]. Moreover, by the evidence to be discussed in
section 4.3, the SV map is expected to be compatible with the shuffle product. As we will see
in the next section, the o’-expansion of (3.35) induces an elliptic single-valued map for the
eMZVs generated by B which yields the MGFs generated by J7..

Let us consider the scope of our definition (3.35). Firstly, not all the holomorphic iterated
Eisenstein integrals appear in the o/-expansion of Bl As was discussed in [17, 18] and will
become clearer when we discuss the o/-expansion of the solution of (3.34), relations among
the rj(e;) such as (2.22) lead to dropouts of certain iterated Eisenstein integrals from eMZVs
and Y7 and thereby from By and J7. Hence, (3.35) does not comprise the SV map for the
combinations of iterated Eisenstein integrals affected by these dropouts, starting with double
integrals involving G4 and Gy.

By contrast, the SV map of arbitrary convergent eMZVs can be extracted from (3.35) at
sufficiently high multiplicity: as will be detailed in section 5.7, for w(ny, . . ., n,|7) in (2.24) with
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given entries n; (Where ny, n, # 1), one can engineer a combination of genus-one open-string
integrals, where the desired eMZV occurs at the zeroth order in s;;.'8

Finally, one could wonder whether holomorphic cusp forms lead to ambiguities in the
definition of the V(1,...,n|r) in (3.8):! Starting from n = 14 points, their defining prop-
erties including simple-pole residues, the modularity of their constituents and their behavior
(3.20) at the cusp are unchanged when adding combinations of holomorphic cusp forms and
lower-weight V,,(1, ..., n|7). However, adding a cusp form without any z;-dependent coeffi-
cientto V(1,...,n|7)leads to a contradiction with the requirement that the 7-independent '~
order of Bj; is mapped to the same term ~n'~" in the corresponding J7 integral. Products of
Vu(1,...,n|7) with cusp forms in turn would violate the pole structure (3.12) that reflects the
boundary structure of the dual cycles. Hence, the above requirements do not leave any room
to modify V(1,...,n|T) by holomorphic cusp forms.

3.6. Dual modular weights for cycles

Given that the antielliptic V,,(. . . |7)-functions (3.6) carry modular weight (0, w), their combi-
nations V(... |7) (3.8) mix different modular weights. Hence, the o/-expansion of the gener-
ating function (3.13) with V(... |7) in the integrand mixes modular forms of different weight,
even at fixed order in 7);. One may wish to isolate the contributions at fixed modular weights

and study

Qiy! / Tate | TT enoxto
J = dz; e3ij9% @ij.T)
u,r,r](,ﬂp) (—271'1.)“’ gn—1 j:l_[Z K H

1<i<j

X V(LA om0l mi(L p2, o)), (3.36)

with 0 < w < n — 2, where the terms at homogeneity degree m in the 7); are modular forms of
weight (0,1 — n — m + w). One can still identify combinations of integration cycles (3.2) to
write (3.36) at fixed modular weight w and ordering - as the single-valued version of known

open-string integrals: each V,,(1,2,...,n|7) with w < n — 2 is expressible via permutation
sums
Vi(1,2,..onfr) = @ri)" > cun VAL Y2, m)) (3.37)
VESn-1

with coefficients ¢, , € Q, e.g.

Vo(l,...,nJ7)=1= Z V(1,72,...,n) (3.38)
VESu-1
Vi(1,2,3|7) = im [V(1,2,3|7) — V(1,3,2|7)] (3.39)
Vi(1,2,3,4|7) = 27i [V(1,2,3,4|7) — V(1,4,3,2|7)] (3.40)
Qi)
Va(1,2,3,4|7) = [2V(1,2,3,4|7) 4+ 2V(1,4,3,2|7) — V(1,2,4,3|7)

—V(1,3,4,2]7) — V(1,3,2,4|7) — V(1,4,2,3|1)] . (3.41)

18 By a similar argument, each MGF can be realized in the s?j—order of Y"-integrals at sufficiently high multiplicity,
see section 2.5 of [61].
19'We are grateful to Nils Matthes for valuable discussions on this point.
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Table 1. Examples of the unsigned Stirling numbers S,,_ ,—,,—1 Which count the number
of independent permutations 7y € S, of V,,(1,7(2,...,n)|7).

w
n 0 1 2 3 4 5
2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 3 2 0 0 0
5 1 6 11 6 0 0
6 1 10 35 50 24 0
7 1 15 85 225 274 120

These relations and coefficients ¢, can be traced back to the symmetries of the V,,-functions
including the cyclicity (3.14), the reflection property

Vo(1,2,...,n|7) = (=1)“Vy(n, ..., 2,1|7) (3.42)

and corollaries of the Fay identity [98] which have been discussed in [79, 99]. An independent
method based on the degeneration (3.20) to determine the ¢, , is described in appendix A. As
a result, there are less than (n — 1)! independent permutations V,,(1,~v(2,...,n)|7) at fixed
0<w<n—2 and n > 3. Their counting is governed by the unsigned Stirling number
Sn—1n—w—1 of the first kind (where S,, counts the number of permutations of a elements
with b disjoint cycles) as exemplified in table 1.

In particular, permutations of V,—,_»(1,...,n|7) are related by Kleiss—Kuijf relations
[99, 100]

Vn,g(l,(az,...,aj)LL(ajH,...,an)h') =0, j:2,3,...,n—1 (3.43)
such as

Vi(1,2,3|1) = =Vi(1,3,2|7), Va(1,2,3,4|7) 4+ cyc(2,3,4) =0, (3.44)

consistent with the counting S, _;; = (n — 2)! of independent permutations.
Given the decomposition (3.37) of a given V, function with rational coefficients ¢,,, one
can by (3.35) write each J7 _integral (3.36) as a combination of single-valued B-cycle integrals

w, 1]

J5#2.....nlp) = SV Z CcunBHY|p). (3.45)

YES,—1
For instance, the equivalent

G 2310) = SV [B],,,.2,310) + B}, ,,(3.2|p)]

213

1
J o (2,3]p) = 5SV [B]

Limp.n3 M3

(2,3|p) — By, ,.(3.2|p)] (3.46)

2,13

of (3.35) together with (3.38) and (3.39) suggests to assign a formal ‘dual modular weight’ 0
and 1 to the symmetric and antisymmetric three-point cycles, respectively,

B(2,3) + B(3,2) <> dual modular weight 0
B(2,3) — B(3,2) <> dual modular weight 1. (3.47)
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Similarly, combining (3.35) with (3.38), (3.40) and (3.41) leads to the following dual modular
weights (d.m.w.) for four-point cycles
$B(2,3,4)+*8(4,3,2) +B(2,4,3) +*8(3,4,2) +*B(3,2,4) + B(4,2,3) <> dm.w. 0
5(2,3,4) —B(4,3,2) <> dm.w. 1
28(2,3,4)+ 28(4,3,2) —*B(2,4,3) —5(3,4,2) —B(3,2,4) —B(4,2,3) <> dm.w. 2,
(3.48)

see section 5.5 for a more detailed discussion of the weight-two case. Finally, the all-
multiplicity formula (3.37) translates into

Z CurB(Y(2,3,...,n) < dual modular weight w, (3.49)

VESu-1

see appendix A for the rational coefficients c,,, and table 1 for the counting of independent
n-point cycles with dual modular weight w.

4. Single-valued iterated Eisenstein integrals from o’-expansions

The goal of this section is to provide the explicit form of the single-valued map SV for the
iterated-Eisenstein-integral representation of eMZVs [17] by reading (3.35) at the level of the
- and 7 -expansions of Bl and J%. We will employ the formulation of iterated Eisenstein

integrals with integration kernels 7/Gy, k > 4 [101],
¢ L
Jij- e / dgi1dq>  dgiy7 QrmiT) Gy (1)
£ ;7| = (-1 SLCdr ST AT Sk 4.1
|:k1k2...kz T} =D a1 ¢ qe r[[l (2mi)kr @D

0<q1<q2<-<qi<q

The entries are taken to obey k. > 4 and 0 < j,. < k, — 2, and we use tangential-base-point
regularization for the divergences as g, — 0 [101], which implies that the iterated Eisenstein
integrals &£[. . . ; 7] vanish in the regularized limit 7 — ico.

4.1. Improving the differential equations

We shall now derive the structure of the o’-expansion of Bl and J7 by repeating the key steps
of [18] in solving the differential equation (2.19) of Y7. The first step is to introduce redefined

generating series E% and j% by

~ ri(€o) ~ sv rj(€o)
Bl = — BL, JL= - )T 4.2
7= P ( drir ) g 7= CXP ( 2mi(r — 7)) 77 (4.2)
After this redefinition, the kK = 0 terms involving % and %7 with Gy = —1 are absent from

the analogues of the differential equations (3.29) and (3.30), see (4.4) and (4.5) below. Through-
out this section, we suppress the permutations v, p labeling BZ(y |p) and iy |p), and all matrix
representations r;;(€) are understood to act matrix-multiplicatively on the p-entry.

Since the r;(ex) are expected (as tested for a wide range of k and n) to inherit the
ad-nilpotency relations of the derivation algebra,

ady ¢ riler) = 0, k>4 (4.3)
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the combinations exp(— rg;i))r,y(ek%) exp( "2'77(:;)) in the differential equations of the redefined

integrals (4.2) truncate to a finite number of terms and we obtain

2i0, B} = 2(1 —k)z ( ) Gy (ad] (1) By (4.4)

o) k—2 i
~ 1/-=1\’/ ) ) ~
2mi0-JE = E (I =k E F (27”) (T — f)kfzijk(T)rﬁ (ad{o(ék)) Ji. (4.5)
k=4 j=0

‘We have used that adrﬁ(eo)() = [ri(e0), -1 = adsvrﬁ(eo)() (since the term ~(, in (3.31) suppressed
by sv is commutative) and employ the shorthands

(ad () = ,(Eo)rn(ék) ri(€x, €ky) = Fij(€x, ITi(€ky)- (4.6)

In equations (4.4), (4.5) and below, we use the derivative with respect to 7 instead of log ¢ as
compared to section 3.5 above.

4.2. The o/-expansion of B,
By the differential equation
N U I ) _ N2k, e g2 ... ][1
270 E[kl o k[,T:l = —Q2mi)"MQ2miT) Gk[(T)E[k1 oo ket ]
4.7

of the iterated Eisenstein integrals (4.1), one can solve the differential equation (4.4) of the
generating series through the path-ordered exponential

S (= 1Yk, — 1) i i,
Z Z ZZ Z H(kl_]l_z)‘ ki ko ... k[,T

40L1k2 ..... L/Jl =0 j,=0 Jje=0 i=1
x r (ad 2 (ey,) . ad2 T2 (e, )adl T P (e, )) B (4.8)
for some initial value IAS’%DO to be discussed below. By inverting the redefinition (4.2) and moving
the exponential to act directly on the initial value, we obtain the open-string analogue
k-2 k-

SY S ES LS (M) el o g

(=0 kpkp.ky j1=0 jo=0 Jo=
=468....

ko—j—2 ko—jr—2 ki —j1—2 rii(€0) \ Hico
X i (adgé A (9 ad? 2 (€x,)ad;) 7 (ekl)) exp ( 2"m.7_ > BZ®  (4.9)
of the key result for the o/-expansion of Y T in (3.11) of [18]. In commuting exp( é’:”(;)) past the

€k, the iterated Eisenstein integrals are rearranged into the combinations

ky—ji1—2 . N .
Ji. ky —j1—2 1 J1+pr,
B [kl } E ( M ) <ﬁ> 5{ ki ,r} (4.10)

p1=0
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and more generally

i p ky—j1=2ky—jp—2 kg—ji—2 ]1_2
sk ol-2 s o ()

P1= =0 pe=0
X(kz—j2_2>...<kz_ﬂ_2>
J23 P
. i p1+P2+"'+Pég ji+p htp ... jH—P/%.T
2T ki ko ke 7]

“.11)

Note that (4.9) is an alternative?® organization of open-string o/-expansions at genus one as
compared to [59, 60]. Non-planar B-cycle integrals obey the same differential equation (3.29)
as the planar ones and therefore have an o’-expansion of the same form (4.9), only their initial
values E?O need to be adapted to the non-planar integration cycle.

The modified iterated Eisenstein integrals ([...] in (4.11) satisfy the differential
equations

. j j e Jio ,+1 j[]...jg
2rir?0. Ji 2 ki— ji—2 o2 Ji-1 ] + T
g |:k1 ky ... Z( B ki ky ... ki ki kiv1 ... ke
JioJa e et
— 8}k, 2T G (T)B [ b k. k£177:| , (4.12)

which allows us to directly check that (4.9) obeys (3.29). The integrals J[...] inherit the
property that they vanish for 7 — ico from the £[...]. Note that the definition (4.11) is
equivalent to integral representations such as

j 27yl Ak y ) .
7 LJ;T} - Tkl)—fl—z /dT' G, (r)(7 — )72

ico

Jih. | Qmiyptatathich k—jp—2._j
’ [kl k' } = e | 47 Ge(m)r - m)t

ico
2

x / dr Gy, (m)(1 — 7M1 —h=2 7)1, (4.13)

ioo

The definition (4.11) of the fS[...] preserves the shuffle relations of the iterated Eisenstein
integrals (4.1), for instance

200n top of the modular S transformation relating ZT and B;, the £[. ..] in (4.8) involve integration kernels 7/G; with
0 < j < k— 2instead of the Gg = —1in[59, 60]. In other words, the relations (4.3) in the derivation algebra are built
into (4.8), whereas the results in the references may require the use of shuffle relations to manifest the absence of

jzk-1
R

24



J. Phys. A: Math. Theor. 55 (2022) 025401 J E Gerken et al

Ji. J2. JiJ2. 22 i, Ji. .
el elitr| = el dor] el dor] = o ] o [l

-8 {]1 )2, } +8 [” i, ] (4.14)

4.3. The o’-expansion of J7

One can extend the above strategy to expand B[ via (4.4) to the J7 integrals. The idea is to
solve their differential equation (4.5) order by order in o/ via

. sV jl j2 o .][ - — N2kt _ FYie sV jl j2 o jz*l'
27i0,E [ kZ,T:| (27i) (1 = TGy, (T)E |:kl o k[_l,T],

(4.15)
using the combinations £ of holomorphiciterated Eisenstein integrals (4.1) and their complex

conjugates introduced in [18]. Their depth ¢ = 1 instances are completely known from the
reference

5“[ } Zo( 2miT)" (")( { " ”;r] +(—1)f1’15{j1]:1”;r]>, (4.16)

and their generalizations to depth ¢ > 2 involve antiholomorphic integration constants af. . .],

J1 h
sv |J1 )2 r+r ]1
el ] - e () ()

=0rn=0
Ji—r jp—n, Niere| i Jo— 12,
X {5{ ks I ,T:| + (-1 5[ ks ,7]5{ ko ,T:|
+ (=1t 125{12](2 roJi— k1 }}4—& [ljci ]J;;T:|. (4.17)

The integration constants /. . .] are invariant under 7 — 7 + 1 since the £%[. . .] and the con-
tributions from the £J[...], £[...] to (4.17) are. They are known on a case-by-case basis, for

instance
(1 o]  [o 1 _o
“la 4] T4 4T
2 0] 26 inT 0 2
ols 4 -5 (5H+360) QL 4], “.18)
2 1] 2G [0 17 22\ 12
Ck_4 4_ —3(27Tl7'g[4:| —g|:4:| —% = — 4 4|

and the complete list of « L]cl ]Jj] at k; + k, < 12 can be found in an ancillary file on the
1 k2
journal website of this work. The integration constants at arbitrary depth can be determined
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from the reality properties of the Y7 integrals [18]. The method in the reference to fix the af. . .]
hinges on the fact that the coefficients in the 7;- and 7 -expansion of Y7 are closed under com-
plex conjugation. For the n-point JZ-series in turn the antiholomorphic modular weights w
of the integrands V(.. .) in (3.13) are bounded by w < n — 2, so the complex conjugates of
higher orders in the 7 -expansion are not part of the series. Hence, in the present formulation,
the expansion of the Y% in [18] is a necessary input to obtain well-defined &Y. This expansion
depends on the knowledge of the initial values of Y7 which is currently available from sphere
integrals to arbitrary weight only for two points and is under investigation for higher multi-
plicity [95]. Still, the torus-integral- and lattice-sum representations of single-valued eMZVs
in section 5.7 do not require any knowledge of Y,"TOO and of. . .].

By repeating the steps toward (4.8) and (4.9), we arrive at the structure of the o/-expansion

2 Gt ) LI (T DD W A S
[Z > ZZ Z || eyl LA S
0B R =04=0 ;=0 \i=l

X 1y (adléé—j[—Z(ek ).. adkz - 2(6 2)adkl —J1— 2(€k )) (_szif}fe())> /J\lﬁoc

(4.19)

with an initial value 7;7” to be discussed below and the combinations analogous to (4.11) [18]

W ki—j1=2ky—jp—2 ko—Jjo— ki — i —2
sV 1 2 - -
T B YD SIS S (e

pP1= =0 Ppe=0
% <k2 - j2 — 2) (k/ _ jf _ 2) ( 1 )I’1+P2+~~+p[
P2 )24 4y
sw|Jitp 2tp o Jiotpe
e { ky kh ...k ’T} : (4.20)

The expansion (4.19) solves (3.30) since the 5*" inherit their differential equation from (4.15),

2miCr — 729, B U e
mi(r —7)°0,8 {kl koo kT
_ s | oo Jiv Jitl i e
Z(" —2F [ [ S A k[’T}
N7 SV jl j2 ]4 I,
— 8js—2(T = PG (1)B |:k1 AR S } 4.21)

see (4.12) for the holomorphic counterpart for d,3[...]. Both the £%[...] and the 5*[...]
are expected to preserve the shuffle multiplication of their holomorphic counterparts (4.1)
and (4.11): the differential equations (4.15) and (4.20) recursively imply that shuffle relations
among &%[...] and the $*'[...] can at most be violated by antiholomorphic functions such
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VIR
ki ks
ki + k, = 12 were checked to preserve the shuffle relations, and their explicit form can also
be found in an ancillary file to the arXiv submission of this work. Note that these checks cover
the more intricate cases with (ky, k2) = (4, 6) and (k, kp) = (4, 8) where imaginary cusp forms
occur among the MGFs [18, 62].

The &% and (° are expected to occur in Brown’s generating series of single-valued
iterated Eisenstein integrals [13, 14, 101]. The construction of non-holomorphic modular
forms in the references—so-called equivariant iterated Eisenstein integrals—are obtained
by augmenting their single-valued counterparts by combinations of MZVs and objects of
lower depth. At depth one, the equivariant iterated Eisenstein integrals are non-holomorphic
Eisenstein series along with their Cauchy—Riemann derivatives [13, 14, 101]. From their
representation [18]

m _ _1 " (2k—1)' sy k—1+m 2(2/(,1
™) Ek_( 4) (k—l)!(k—l—m)!{ P { 2k ]+(2k—1)(4y)"—1—m}

Q-1 w [k—1 2Cok—1
= nr {_B [ 2k ] - 1)(4y)k‘}

@V)"E,  (=4"ek-1)! B k=1=m] 201
y (k= DItk —1—m)! 2k 2k — 1)(dy)kT+m

as the integration constants af...] in (4.17).2! All examples of o [ ] up to including

(4.22)

the 3*' are seen to take the role of the single-valued rather than equivariant iterated Eisenstein
integrals at depth one. At higher depth, the precise relation of the 3* to Brown’s construction
is an open question at the time of writing.

4.4. Initial values

It remains to specify the initial values T?’T?O and j’;“ in the o’-expansions (4.9) and (4.19). The
Laurent-polynomial contributions from the asymptotics (3.24) and (3.25) of the Green func-
tions are still functions of 7 and need to be translated into series that solely depend on 7; and
5. Following the construction of a similar initial value for Y% in section 3.4 of [18], we import

the constant parts ~7° and ~(Im 7)° of the respective Laurent polynomials

Dic irf(GO)

BZ° =exp ( ! ) Bl (4.23)
] 2T ] Lpl70

i = svrileo) ) r 424
7 — €Xp 4y 17|LP |tm 70 (4.24)

In both cases, the exponentials ensure that the negative powers of 7' in B}, |Lp and y in JE Lp
disappear order by order in . Hence, (4.23) and (4.24) pick up the lowest powers of T,y

present in exp (5;(;’—0)) B |Lp and exp (%@) J7 |Lp. The leading o'~ and 7,-orders of the

2 Moreover, any such violation of shuffle relations would need to be a combination of antiholomorphic iterated
Eisenstein integrals (by the differential equation [18, (2.37)] for 0- Y7) but at the same time line up with the mod-
ular weights in the 7;-expansion of J7, Y7 and the reality properties of the latter. It would be interesting to find a
rigorous argument to rule out the existence of such antiholomorphic functions.
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two-point initial values following from the expressions in (3.26) and (3.27) are

131,

43
7a0% 126 512 (360<2C3 G) o6 12)}

l 1
B = |1
™ [ + 31242 + 312C3 + 70

n

i [—2<2—s12<3 2 Sl - s12< @CH&)

6
8
— st ( G+ 746) +OC(s 12)]
GG 33

+ 773 {—ZQ + SIZ(ZCZC3 - CS) + S%z (2 - 8)
+ 51, ( GG + Cz(s — 76) + O(S?z):|

+m |:_2<6 + 5122GG + 266 — G) + 8o ( GG+ GG — 3C8> + O(Sn)]

+ 15 [—2Gs + 51226366 + 26uGs + 2667 — Go) + OGsiy)]
+ 15 [=2C10 4+ O(s12)] + O(my) (4.25)

as well as

1 1
J;ZO = m [ 3?243 + Slzci +0 (512)]

360

+m | —2512G — S12C5 5?2432 +0 (5?2)]

+

2512(7 + 451,G3Gs + O (s1) ]

7 [ 2510(s + 251,85 — S?2C7 +0 (5?2)]
(-
[ 2s12C0 + O (312)] + 130 (s12) + O ( ) . (4.26)

5
T
7
h

Higher orders in 51, and 7, are readily available through the straightforward expansion of the
exponentials and I'-functions in (3.26) and (3.27). In particular, these two-point expressions
imply that all the coefficients in the s1,- and 7,-expansions are combinations of Riemann zeta

values for B’°o and odd Riemann zeta values for J ;]°2°

Starting from n = 3 points, the initial values B’nOO will also feature irreducible MZVs of
higher depth. Based on Enriquez’ method to generate the Laurent polynomial of B-cycle
eMZVs [3] (also see appendix B of [51]) we have determined the three-point initial values
to certain orders, and the results are included in an ancillary file to the arXiv submission of this
article. To the orders under consideration, we find the following coefficients of (5 s

1
3520713 (2,3]12,3)|¢,5 = E(Vm = 21m3)(2na3 — m3) (123 + 1M3)

X [2m33813 — 2m23m3s12 — 4m3masis + 215813
— 212313523 + 12385128513 + 13813523 + O(S?j)]
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1
3520713 (2,3]3,2) |5 = —To(ﬂz = 21m23)(21m2 — 123)(12 + M23)

X [2m3512 — 4mpmasia + 2153812 — 21703813
— 21M3sas — Mssiasis — Msiasas + O(s;)] . (4.27)

which by the single-valued maps sv (35 = —10(3(s and sv (3¢5 = 4(3(5 enter the closed-
string initial values via

T @.319(2.3) eis = —10B7,,(2.31p(2.3)) |,

.73 2513

+ 4Blflzom (2,3[p(2,3)) |ez¢s- (4.28)

The coefficients of (35 and (3(5 in (4.27) and (4.28) are extracted after reducing all MZVs
at weight 8 to Q-linear combinations of {(s, ({3, (3(s, (35} [102]. Similarly, the MZV (35 5
seen in Laurent polynomials of both B-cycle integrals [51] and modular graph functions [12]
will occur in both B;;;O,B and J' ’°°,B The contributions to B’°° , involving MZVs of weight up
to and including four can be found in appendix B.

Since the initial values are obtained from the Laurent polynomials and the exponents in
(4.23) and (4.24) are related by the single-valued map, the conjecture (3.23) supported by
tree-level results and extensive genus-one tests is equivalent to

T70p) = svBE(yp), (4.29)

in agreement with (4.25) and (4.26).

The 7 — ico asymptotics of n-point A-cycle integrals (2.9) has been expressed in terms
of (n + 2)-point disk integrals (2.1) in suitable kinematic limits [60]. Similarly, the Laurent
polynomials of n-point genus-one integrals B7, J7 are determined by genus-zero integrals at
multiplicity n + 2 and below, see (3.26) and (3.27) for the explicit two-point result. As will
be further investigated in [95], the main challenge is to determine the admixture of lower-
point genus-zero integrals that generalize the subtraction of e %) and e 61242 from the
I'-functions in (3.26) and (3.27).

4.5. The single-valued map on iterated Eisenstein integrals

The proposed single-valued map (3.35) can now also be studied at the level of the «'-
expansions. Using (4.29) and (3.31), we find that one obtains J% as the single-valued version
of B, if the coefficients obey

sv [Jij2- e, | Jija- - Je,
p {klkz...kf} =SV5 {klkz...kg’T] ' (4.30)

This follows from the relation (4.29) among the initial values and the form of the r; operators
in the respective o/-expansions, recalling that r;(ad/ (&) = sv r;(ad! (x)).

On the one hand, (4.30) fixes the single-valued map of the eMZVs in the expansion of
B that enter through the iterated Eisenstein integrals J[...]. On the other hand, (4.30) only
apphes to the combinations 3[. . .] and 5°'[. . .] that occur in the path-ordered exponentials (4.9)

k 9
relations in the derivation algebra such as (2.22) lead to dropouts of certain 3[...] and 5°[. .
from B; and J; (starting with cases at (ky, kp) = (10, 4) at depth £ = 2 and any 1nstance where
Ji > ki —2).

and (4.19). The SV map of individual 3 {J Lo e ;7| remains undetermined whenever the
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Since the factors of 5 and 4Ly in (4.11) and (4.20) are furthermore related by SV, (4.30) is

equivalent to
% JIJZJ/ o ]1]2]/
¢ {klkz...k/g”} —Svg{klkz._,kﬂ}’ 4.31)

again up to cases where the relations in the derivation algebra cause dropouts. For instance,
(4.16) implies that the single-valued version of holomorphic Eisenstein integrals (4.1) at depth
one is given by

. J . . T, .7
svg[}(; T} = ;(—Zm'?)’ (i ) (5{1 ;’;T} +(—1)f’5[f PRt TD (4.32)

where the contributions on the right-hand side can be recognized as

J . . ico
> (~2miry (j ) S[J Pt T] = @mi) / dry (11 = DIGu(m),
r=0 T
J N . 7 ico
(—1Y> " @miry (i ) 5{] Pt T] = — (i) / 47y (71 — 7YGi(m),  (4.33)
r=0 T

respectively. Note that (4.30) fixes the SV map of all the £ Lﬁ, 7| at depth one with k > 4 and

0 < j < k — 2 since the caveats related to relations in the derivation algebra beyond (4.3) only
affect iterated Eisenstein integrals of depth ¢ > 2.
The iterated Eisenstein integrals defined in (4.1) may be reorganized in terms of [17]

G, (70)
Qmi)k

50(k1,k2,...,kz;7):27Ti/ de go(kl,kz,...,kg_l;T) (434)

with k; € 2Ny and &(; 7) = 1. By subtracting the zero mode of the holomorphic Eisenstein
series

GU7) = Gi(1) —2¢ for k > 0 even,
GS(T) = Go(T) = —1, (4.35)

the integrals (4.34) are made to converge if k; > 0, and all other cases are shuffle-regularized
based on &(0; 7) = 27iT.
At depth one, they are related to the holomorphic iterated Eisenstein integrals via [51]

BiQ2mir)/T!

K+ 1) (4.36)

5{,{; T] = J1E0T k5 7) +

with Bernoulli numbers By. From this, we see that the implicit action of SV on these functions
at depth one is given by

B4yt

KG+ 1 (4.37)

SV &(0,k:7) = 1,5 {j; T}
J! k
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By (4.32), (4.36) and the shuffle relation

J ‘_

Eo(07, k; 7) :Z

=0

QriT) Eyk, 077": ), (4.38)

two equivalent formulations of (4.37) are

j
SV &0, k3 7) = E(0, k3 7) + Y E(0751E(D " k3 7) + Eo(k, 073 7)

r=1

J
SV Enk, 075 7) = Eo(k, 0757) + > Eo(07 7, k; 1)ENO" 5 7) + Eo(07, k5 7), (4.39)

r=1

which match the expectation from [103].

5. Examples

We shall now spell out a variety of examples that illustrate both the pairing of cycles with
dual antielliptic integrands V(. .. |7) and the action of the single-valued map on eMZVs. Both
eMZVs and MGFs occur in the simultaneous expansion of the generating series Bf, J7 in s;;
and 7; which results in a lattice-sum representation of all convergent SV w(ny, ..., n,| — %) in
section 5.7. The coefficients in the 7 -expansions will be referred to as component integrals,
and we will use the shorthand

FO=fO% —zm, [P =F0G—z,1) (5.1)

for the Kronecker—Eisenstein coefficients defined by (2.14) that occur in the integrands. More
precisely, the building blocks (2.13) and (3.6) of the integrands of By, Ji. involve the following
combinations of (5.1) withn; ;v , =n;+ 041+ + Ny

1 1 ,,_1 (a2) p(az) (an)
or(1,2,...,n E 773% /SRR T el B R
(an—1) p(an
Vo(1,2,...,n|7) = § FEVRE D e, (5.2)
ay,ag,....an =0
a1+(12+---+un:u;

5.1. Two-point o/-expansions

At two points, the general definitions (3.1) and (3.13) only admit a single permutation of the
integrands and cycle in B] = B} (2[2) and J; = J (2]2),

T/2 d
22 @ (@) 512G (212,7)
5= | z W

T/2 7—772
JT _ / d 22 l Z(T_T)a af(a) Slggg(qz T) (53)
”? Im7
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and we introduce the following notation for component integrals

B(T) =B’ = T“/ d22 f(“) 512093 (212.7)
a
m ! n T
d’z
Joy=Jy,| =@ —7) / 2 f emds e, (54)
71571 TIm

Then, combining the initial values (4.25) and (4.26) with the o/-expansions (4.9) and (4.19)
yields expressions like

B(O):1+s%2<—35[4, }+%+@+3—<“>

2 G, 19 G QG 4iG
+ 53, (—55 {6,7}“2@5[ ]“LE“L At A T o 3T3)

+ O(st,)

Bl = —2G + 512 (35 2. ] G+ 31C4>

2 3, ] 1 29C iG5| 3iaG | 43Gs
+ 87, (10ﬁ [6’7-_ — 18¢:08 {4,7} “ T T 7T + T + o 372

+ O(s3,)

| 668 3] + 266 - 6 - 8

Bly = =20+ 512 (55 ) +0G3,) (5.5

as well as

J(TO) =1 +s%2 ( 33 {4; ] g > +S12 (_SBSV [6; } + 463 + %) + O(s?z)
Ty = 51238 [Z;r} ~26) + 5%, (10&“ [2 ] C;) +OGshy)

Jipy = 51258 [g, T} —2¢s) + O(s1y)
(5.6)

upon extracting suitable powers of 7,. The action of SV on the (,, T, S[. . .] as in (3.33) and
(4.30) relates J = SVB () @S expected from (3.35). Examples of 3[...] beyond depth one
occur at the next orders in s;;, e.g.

1 2 0 G 1
:-zm{g, ]+9ﬁ[4 4,] 186{4 e ]—22 {4,7}+40¢2ﬁ{6,7]

o] -] oo

131G | 5G| GG | 236 | G 9iGG

720 12T 12T  327* 877 873

32
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o1,

s
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QG 3iG | 85Cs

5 87% ' 192T* (5.7)
as well as
T _ SV . SV l SV 2 O SV O
“12
3 5 2 3
C3 /BW 7|+ ﬁ _ C73 + 2T C7
4 12y  8y? 323

T _ sV 4. _ sV 3 0 N4 2 sV 2 1.
Jo) X = —13583 |:10,T:| 6043 [6 4 }4—155 [4 6 ]+155 [6 4,7}

12

_ 60ﬂw |:4 é’ :| _ %C?»ﬁsv |:41‘-’ :| 6<i ﬁw |:4’ :| _ &ﬂsv |:4’ :|

s | L. 5G3 oo |2, 43¢ | ¢
+40G3 |:6’T:| - 5 |:6’ :|+%+1—23y

TG 3GGs 15(9
32y2 16y 128y*°

(5.8)

5.2. Extracting single-valued eMZVs

The above «-expansions at two points have been generated in earlier work in terms of eMZVs
[51,59] and MGFs [10, 11, 61], respectively. The results in the references include

1 1\ 56
T 2
By =1+, <2w (0,0,2 - T) + 12)
! ! G
3
B R 1

—|—s12<18W<0,0,3,0| T) C2w<0 0,1,0] — ) 12>
1 5 1 1 1

+5t [ —w (0,0,0,2,2| — — ) = ~w (0,0,0,0,4| — — ) + ~w (0,0,4] — —
T 4 T 8 T

5 1\* 13 1 1 343,
— 2 _ 2 b B 2 2 1
+8w<0,0, | T) +ogov (0,0, | T) Quw (0,0,0,0, | T>+ 576>

+O(s3,)

Jo=1+3

1 1 3 1
SE2(T) + 251 (Bs(1) + G) + 51 (Ez,z(T) + 2gFam) + 8E§<r>)
+ O(s,), (5.9)
where for instance (by comparison with (5.5) and (5.6))

1 - 1 G i3 3¢ _ sv [ 1. C3

(5.10)
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and the modular transformation may be evaluated to yield [51, 93]

1 G 3G 8i
0,0,2]— =) = = =24 24 00,0,2/1) 4+ 2 Gw(©,1,0,0[). (5.1
? ( ‘ r) 180 6 "ape TWO02ADF 76wl m- G

For the s?,-order in (5.9), the component version Jisy = SV B, of J7, = SV B} implies that

SVw (O, 0,2 ‘— %) = Ex(7) (5.12)

and a similar analysis for higher orders in s, and at a # 0 yields for instance

SVw <0,3 ’— l) = 27VE, (1), SVw (0,0,4 ’— 1) = —ng& (1)
T T
1 1 4
SVw (0,0,3,0|— =) =3E;5(n), SVw (0.5|= — ) = —2(@VVEs (7).
T T

(5.13)

At depth two, relating B(To)|j,4112 < J “?z (see (5.7) and (5.8)) or Bf, ‘5‘?2 < Jh ‘5‘?2 yields

7 1 1
Eyo(1) =SV (—Sw (0,0,0,0,4 ‘— ) —w (0,0,0,2,2 ‘— )

T T

1 N> 3 1
- 20— = = 4|— =
+2w<0,0, ’ T) +2Ow (0,0, ’ T))

1 1 1
TVE (1) =SV | ——w (0,5|— — ) + éw 0,0,0,5|— —
60 T 5 T

1 1
— —w (0,0,2,3‘— )) (5.14)
2 T
where the combinations

Im7\* 21 11 9.4 0
E“:(T) (C [2 1 1}_56 {4 OD

B wl]2 0 w[0] 56 &
=—185 [4 4]“2(35 M+@_4_y2
(Im 7)° 31 1] 8,[5 0
TVE = —— (C {1 1 1} —3¢ {3 OD
2 1 11 5 3
= 9B {4 4] —6GAY M - I—C; + j (5.15)

of MGFs (2.26) are engineered to avoid Gg in the differential equations [51]. The systematics of
depth-one relations between eMZVs and non-holomorphic Eisenstein series including higher-
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weight generalizations of (5.13) is detailed in appendix C.1 and leads to the closed-form results

- B 1
2 : J (—j
Jj=0

e

k
iV B k20021 k022

1

/-1 B
J (—j
svzﬁw (0 J,E—Zk‘— T)
=0

Yk (0 —k— D! (xVIE;
-1 2y 7

= (-1 k>0, 0-2k>1, 0—k>2 (5.16)

for combinations of eMZVs of different length that are weighted by Bernoulli numbers B;
[104].  Similarly, the analogue of (5.14) for the MGF E;;3= (1“177)5
(C B i i] — %C E 8}) and its holomorphic derivatives is spelled out in appendix C.2.

Note that the single-valued map of A-cycle eMZVs at argument 7 rather than —% generi-
cally leads to combinations of MGFs of different modular weights. For instance, changing the
argument — 1 to 7 in (5.12) gives rise to

y 7V E>(T)

2
SV w(0,0,2|T) = 15 + Ex(1) +

(5.17)
instead of a single modular invariant E»(7). This can be seen by expressing all of w(0, 0, 2|7),
E>(7) and VE,(7) in terms of convergent iterated Eisenstein integrals (4.34) and applying their
single-valued map (4.39).?* Alternatively, (5.17) can be deduced by setting 7 — —1 in (5.11)

and exploiting the result SV w(0,1,0,0| — 1) = %

pointexample in section 5.5. The much cleaner result (5.12) for SV w(0, 0, 2| — %) as compared
to SV w(0, 0,2|7) is another manifestation of the fact that the differential equation (3.29) of B-
cycle integrals are more closely related to the closed-string counterparts (3.30) than the A-cycle
differential equations in (2.19).

that will be extracted from a four-

5.3. Symmetrized cycles and graph functions

At n > 3 points, most of the antielliptic functions in (3.9) introduce non-constant ,-(j“) into

the closed-string integrands, except for the simplest case Vo(1,2,...,n|7) =1 dual to a

22 The representations in terms of convergent iterated Eisenstein integrals needed to verify (5.17) are

1
w(0,0,2|7) = —6&(4,0,7) — g(z

2
Er) = Z—S + % — 12Re[&)(4,0;7)] — SR6[50(4, 0,0;7)]

3
TVENT) = % — G+ 24604 1) + 1296(4,057) + 6Re[E9(4,0,0;7)]
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permutation sum over B-cycles, see (3.38),

n dZZ‘ n
T’H % — J es,-_,-gg(zij,r)
sl = [ (Tt | 11

Jj=2 1<i<j

n

.

—\ay —1 plag)

< p [1D. = D% Oacsrd™ " f1594
k=2 a;=0

=SV > Bi(4]p). (5.18)

VESu-1

As indicated by the *-notation, the J&ﬁ(* |p) integral (3.36) on the left-hand side is independent
of the ordering * since its integrand V is. The symmetrized open-string integrals on the right-
hand side were studied in [16, 51, 77] as the generating series of holomorphic graph functions,

T/2 . : .
. Zj 5i:Gom (25
> s = | [ T2 IT e
YESh-1 77./2j:2 I<i<j
n (o]
WX I DRI L i (5.19)
k=2 ;=0

where each puncture is integrated independently over the entire B-cycle. More specifically, the
references considered the components f ,((a_"i,k — [ 1« = 1 atthe most singular order in the 7,

E T2 4z L
LI | N R

HESm il T g
1 n 1 n n
=145 > B[] +5 2 syBles| + D suswsin B[ A+ 0(sh).
1<i<y 1<i<y 1<i<j<k

(5.20)

where the dependence on the permutation p drops out, and the integrands at fixed order in s;;
are polynomials in B-cycle Green functions. In passing to the second line, each monomial in
G (zij, 7) is mapped to a graph I that labels the B-cycle graph functions B[1'], where a factor
of G (2, 7) is represented by an edge connecting vertices z; and z;. One-particle reducible

graphs I'pr lead to vanishing B[I'jpr] since fjﬁzdz G (z,7) = 0, i.e. higher orders of (5.20)
stem from all combinations of one-particle irreducible graphs with four and more edges in
total. Any B[I'] is expressible in terms of B-cycle eMZVs [51] since the o/-expansion of each
component integral of the series B%(y\ p) is.

Similarly, modular graph functions D[I'] (as opposed to MGFs) were defined [10, 11] by
n-point torus integrals over monomials in Gz(z;;, 7), where each torus Green function is again
visualized through an edge between vertices z; and z;. The D[I'] associated with dihedral graphs
I' are proportional to the lattice sums (2.26) with a; = b;, and also more complicated graph
topologies can be straightforwardly translated into lattice sums.
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The generating series of n-point modular graph functions resides at the most singular order
of (5.18) w.r.t. n; where the insertions of f fj“) are absent,

A2z
gclosed _ g7, o . i’} H e5i19(2i5,7)
n 0777( |,0) ‘71231...n,773..1.n“‘77” ! gn—1 j=2 Im~

1<i<y

n

3 apor] 5 anler] + 5 | Aot

1<i<j 1<i<j<k

I\DM—*

(5.21)

and we have D[I'jpr] = 0 by fgdzz Gz(z,7) = 0. As a consequence of (5.18) at the most
singular order in the 7);, modular graph functions are single-valued B-cycle graph functions,

MEosd = SV MO o DIT] = SV BT, (5.22)

which ultimately follows from the ‘Betti—-deRham duality’ between Vy = 1 and the sym-
metrized cycles Zwes,,,l B(y(2,...,n)).

The relations in (5.22) have firstly appeared in [51] with a proposal ‘esv’ for an elliptic
single-valued map in the place of SV. The esv map of [51] has the same action (3.33) on MZVs
and Laurent polynomials in 7 as the SV map in this work. In particular, all pairs of B-cycle
eMZVs and modular graph functions related viaesvw(. .. | — %) ~ DI...] in the reference are
also related via SVw(...| — %) ~ DI...] as a consequence of (5.22). For suitable representa-
tions of the g-series of eMZVs via & defined by (4.34), the Fourier expansions of all modular
graph functions up to weight six could be reproduced from the replacement &, — 2 Re(&)) pre-
scribed by esv [51]. However, it was an open problem in the reference to reconcile esv with
the shuffle property of iterated Eisenstein integrals. The SV action (4.30) in turn is expected
to be compatible with the shuffle multiplication of the /[...] and 8*'[. ..] by the discussion in
section 4.3 as detailed below (4.21).

Note that subleading orders in the 7 -expansion of (5.18) generate infinite families of addi-
tional relation between MGFs and single-valued eMZVs beyond (5.22). The comparison of
open- and closed-string integrals with additional insertions of f, 2) a3 @ . f;ﬁ"ﬂn identifies
MGFs of various modular weights as single-valued B-cycle eMZVs.

5.4. Three-point cycles and V+(1,2,3|7)

The simplest instance of J. (7| p) =SV Bi(7| p) with non-constant antielliptic integrands

..|7) occurs at three points. The single-valued map relates an antisymmetric integration
cycle on the open-string side in (3.46) to the closed-string integral

1 d’*z, d’z;
T (2,323 e ()
Lip.m (2.32,3) = C2mi Jo (Im7)? lg,

% Z (r — Py b=t 9 ) ( 0 f<1> f<1)) (5.23)

a,b=0
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Since contributions with even a + b integrate to zero, the simplest component integrals involve
permutations of f(l)f(l) or f(l)f(l) at the orders of 7); " or 7,5,

. _ Imr d?z, &%z 511G (ziir
Toopa (232.3) |1 = = A e e [ o=

1<i<j
(7 + 78+ 1)
S
123E + 123 (E3+C3)+ §138523
S12 2512

4
S123 3 [
= | E —F. —E
L ( 22F 5p TR 2)

9 21 ,
+ 5135235123 <2E22 + 20E4> +0 (Sij) )

which furnish the simplest examples of kinematic poles ~ s

BEs + @)

(5.24)

ina Jz-series. The corresponding
antisymmetrized B-cycle 1ntegra1 features the same types of kinematic poles in component
integrals involving f 511), e.g.?

2 [ s (2:312,3) = B}, (3,212, 3)] | 9113 !

3
1 )
_1 / dos ey 0 T eomn
T —5<0<u<j3 1<i<j
1 52 1
= — 412 (— (0 0,2
s s \2

3

1 5¢
__>+12>
(g Ly _4 G
+f<18 (0030’ ;>—§C2w(0010’__> _)
+S13S23<1 <OO30‘_,) 9)

2 T

12
4
54 1 5 1 1
i P} <—w <o,o,o,2,2‘— 7> - w <o,o,o,o,4‘— 7> + -—w (0,0,4'— 7>
S12 T 4 T T
5 1\* 13 1 1 3434
+§UJ(0,0,2’;> +g§2w (0,0,2’;)242(&] (0,0,0,0,2’ ;)-f— 576
1 21 1 1 1
— 5135235123 (gw (0,0,0, 2,2‘* *) + —w (0,0,0,0,4‘ ) — —Ww (0,0,4‘* *)
2 T 4 2 T
1\> 1 1 1 11
_ 2w<o,o,2‘— _) + —Gw (0,0,2’— —> — 36w (0,0,0,0,2’ ) + —C“>
4 T 2 T

T

T 40
+ O(s}).

(5.25)

23 By slight abuse of notation, we denote the ordering of punctures z;, z ; on the imaginary axisby —7 < z; <z; < 3
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We have used that, by the antisymmetry f)) = — £} of the integrand, the contribution from
the ordering —3 < z3 < zo < 5 is minus that of the ordering —3 < zp < z3 < 5. Comparison
of (5.25) with (5.24) confirms the relation (3.46) under the SV map at the respective orders in
sij and 7);. Up to the restriction of the Koba—Nielsen factor to three instead of five punctures,

(5.24) and (5.25) are the type of integrals over f f})ﬁ seen in genus-one five-point amplitudes
of type II superstrings [105, 106].

5.5. Four-point cycles and V»(1,2, 3, 4|1)

The esv map [51] has also been applied to the four-gluon amplitude of the heterotic string [52],
where the torus integral®*

4 2 4
1 &z \ 55— Gz
J.o=— I | — 1 vy(1,2,3.4 | I sij9 @ijiT)
het (27‘_1)2 /"33 o= ImT 2( ‘7_) €

1<i<j

(2,3,42,3,4)| (5.26)

_ T
=J 2,134 3 77 34 774

was related to the open-string integration cycle dual to (3.39). More specifically, the MGFs in
[52]

. 351371'sz _E
Jhet ‘k?:o = TTaE (513 + 2512523) ——— 62 + 513(512823 — 573)

+ O(s? ) (5.27)

©VEs 3E,VE 3VE

4, dBaVEr 2.
5y2 2y2

were proposed to be the single-valued versions of the eMZVs in the o/-expansion of

1

Bi = 5 [2B33, + 2Bjs, — Blyy — Biyy — By — Blys)
B =B, . .0 k2,3, 4)| Lty (5.28)

namely [4]

1 2
) — g (S%3 + 2S12S23)

T

1 1 4
X [w (o, 1,0,1,0 ‘— —) +w (0, 1,1,0,0 ’— —)} + <513 (513 — s12823)
T T 3
1 1
X [w <0,0,1,0,0,2 ’— —) +w (0,0,0,1,0,2‘— —>
T T

1 1
—w (o, 1,0,1,1,0 ‘— ) — Gw (o, 1,0,0 ‘— )] +O(sh). (529
T T

As indicated by |,2_,, the o/-expansions (5.27) and (5.29) have been obtained in the limit
J

B;C[ ‘kf:() - _2s13w (Oa 1, 050 ‘_

of four-point on-shell kinematics with two independent Mandelstam invariants instead of six.

24 The quantity J7,, in (5.26) is defined to be (27i)~2 times the complex conjugate of the integral If:?j in (2.44) and
(4.35) of [52]. Similarly, Bf in (5.28) is obtained from the integral Zm4 in section 5.2 of [52] through modular §
transformation.
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However, the relation (3.35) between n-point closed-string and single-valued open-string inte-
grals is conjectured to be valid for the %n(n — 1) independent Mandelstam variables {s;;, | <
i < j < n} with s;; = sj;. At four points, the corollary

2U2 135 774(2 3.4|p) = 7SV [ZBZZ 73 774(2 3, 4|p)+23n2 N3 774(4,3,2‘0)
Bl s (2:4.31p) = By, ., 3.4, 2p)
772 3, 774(3 2 4|p) ‘r]2 3, n4(4a 2’ 3|P)] (530)

of the relation (3.41) between V;(1, 2, 3, 4|7) and permutations of the V(1, 2, 3, 4|7) functions is
claimed to hold for all of {s12, $13, 523, S14, S24, 534 } independent. The coefficient of 772’314773’41 n !
in (5.30) with p = 2, 3, 4 then implies

T =SVBT, (5.31)

and explains the relations between the o’-expansions (5.27) and (5.29) observed in [52] in the
on-shell limit k? = 0. In particular, the prescription (4.30) for the single-valued map of the
iterated-Eisenstein-integral representation of B], produces the complete g, g-expansion of the
MGFs in (5.27), whereas certain antiholomorphic contributions could not be reproduced by
esv in [52].

By applying (5.31) at the level of the o’-expansions (5.27) and (5.29), one can infer

VE 8 1
VE _ 8¢y (o,l,o,ol— —)
3 T

y2

VE 1 1
”Vz 348V {w (O,I,O,I,O‘— ) + w (0,1,1,0,0‘— )}
y T T
VE 1 2 1
mVEa _ gy |3, 0,0,0,0,0,3|— — ) + =w ( 0,0,0,3 |— —
y? 5 T 5 T

—Ew <0,3‘— 1) — 8w (OO 0,0,1, 2‘— ) 43] (5.32)
75 T T

Moreover, higher orders in the 7;-expansion of (5.30) yield infinite families of relations
between the «o'-expansions of open- and closed-string integrals over additional factors

b
f( )f(C)

5.6. Imaginary cusp forms and double zetas

We shall finally exemplify the appearance of cuspidal MGFs from single-valued open-
string integrals whose Laurent polynomial at the order of ¢°g° vanishes. A systematic
study of imaginary cusp forms among the two-loop MGFs can be found in [54], also
see [62] for examples of real cusp forms. The simplest imaginary cusp forms occur
among the lattice sums (2.26) at modular weights (5,5) whose basis can be chosen? to

25 The choice of basis in [18] is tailored to delay the appearance of holomorphic Eisenstein to higher Cauchy—Riemann
derivatives as far as possible. That is why the real MGFs — %Ezg - %C;EQ have been added to the imaginary cusp
0 2 3} c {0 2 3

forms By 3 + 1 ('"”) «© {3 o 2 €5 o 2})in(5.33).
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include [18]
C(Imt\° (o 1 2 2 01 22 (VEy) VE; — (VE;) VE;
Bz,z—<7> (CL 10 3}_6{1 10 3D+ 6(Im7)?
. L/Im7\> ([0 2 3 02 3 21 1
B“_BZ’”E(T) (C [3 0 2}_6[3 0 2})_4&*3_243152 (3.33)

The 3% -representations involve double-integrals over G4G [18],

w2 1 +[3 0 W21 W12
Bys = 4508 [4 6}—4506 [6 4}+2706 [6 4}—2706 [4 6}

SV 2 sV 0
-3G8 M — 300633 M + +

y
2766 ||
T4 3¢
4y? 120°
2 1 W1, 76 G 147G 216G
B3 = 12603 — 840G 8 =38 : 5.34
23 p [4 6] P M 20 T2y 6y sy 639

and the associated integration constants «f. . .] can be found in the reference and in an ancil-
lary file within the arXiv submission of this article. Both B, 3, B) 3 and their Cauchy—Riemann

derivatives drop out from J and Y} at two points. At three points, one can identify their

derivatives as single-valued eMZVs,

—lw (0,0,Z,Z,Z'—l> — 2w (0,0,0,I,S'—l> —iw (0,0,0,2,4'—l>
2 T T 8 T
G 1 17 1\* 7 1 1
+ i 0,3 p +48w 0,3 - +8w 0,0,4 ) 0,0,2 -
7 1 1 137 1
- -w(0,0,0,3|— - )w|0,3|—= )+ —w(0,0,0,0,6|— —
2 T T 16 T
15 1
~5¢(00e-)]
1 1 1
wVB, 3 =SV { —w (0,0,2,2,2‘7 7> — llw (0,0,0,1,5‘7 7>
” 2 T T
+%w 0,0,0,0,6 2! féw 0,0,6 2! —1lw ( 0,0,0,3 2!
8 T 16 T T
1 11 1\* 1 1 1
xwl(0,3|—-=- ]+ —=w(0,3|—--] —-w(0,0,4|— = )w(0,0,2]|— —
T 12 T 4 T T
189 1 63 1
2p! _ Y%7 _ - e -
(7V)°By3 = SV [ %0 (0,0,2,5' T) + 60" (0,0,4,3' T)
603 1 699 1
+Ew (0,0,0,7'7;> 7%0.1 (0,7'7;>

1323 1 1
“tae (02]-7)«(004]-7)]
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63 1 567 1
3p/ _ - 0 -
(nV)’Byy = SV { 20% (0,3,5‘ T>+ 64VJ(0,0,8‘ T)

8o (o] 2)]

by inspecting the contributions of £5' £33 or £ to JG ., and 90 J{ .- The appearance

of the undifferentiated B, 3 and B, ; is relegated to the J7-series at four points (or the Y7-series
at three points [18]), and comparison with the B-cycle integrals yields

14 1 11 1 1
By; =SV —3w 0,0,0,0,0,5|— - ) — —w(0,0,0,0,1,4|— + 2w (0,0,0,0,2,3|— —
’ 20 T 2 T T

1 91 1 449 1
-2 1,2,2|——) — — —— ) - = - —
w(0,0,0, ,2, ' 7_) 4Ow (0,0,0,5‘ 7_) 7200w (0,5‘ 7—)
—iw 0,3 —l w{0,0,2 —l +§w 0,0,2 —l w{0,0,0,3 —1
12 T T 2 T T
+§w 0,0,2,3 ,l wa 0,3 ,l w (0,0,0,0,2 ,l
12 T 2 T T

(3 1 43(s
20021 -2 )~ 150

4 1 1 1
B,y =SV {li(f“} (0,0,0,0,0,S ‘— —) — 22w <0,0,0,0,1,4‘— —) + 5w <0,0,0,0,2,3‘— —)
) T T

.
1 121 1 1069 1
-2 1,2,2|— — ) — — e - —
w(0,0,0, ,2, ' 7_) 20w<0,0,0,5' T) 36000.) (O,S‘ 7_)

— lw (0,3‘7 l)w (0,0,2'7 1) +w (0,0,2'7 1>w (0,0,0,3‘7 1)
6 T T T T

+ L (0,0,2,3‘7 1) — 24w (0,3‘7 1) w (0,0,0,0,2'7 1) - %] . (5.36)
6 T T T 96

The open-string counterparts of B;3, B) ; and their Cauchy—Riemann derivatives involve the
simplest combinations of B-cycle eMZVs with an irreducible (5 5 in their Laurent polynomials:
the methods of [3] (also see appendix B of [51]) yield the following examples of 7 — ico
degenerations in (5.35) and (5.36),

Byl = SV iT3G COITG GG 8153 966 T3GG | 1837iG
23 ILp 5040 ' 630 8 28807  8T2 1672 ' 24073
3i 39CsCa . 45G3¢ - 33iCio
2 2 5 -
+ 10T3( G5+ 5GG) T4 + T4 2075
—0
T8 T3¢ T TT*Ge 8211
3B/ — V 3 _ —
(V) Bys e =S 17280 T 120 T 40 80 640
63¢3s  189iCsCs  63iC3¢s ~ 14553(io
T T sr Toar 16072
2 8y 63G(s
1155 4 (5:37)
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One can see from the order of 7~ or y~ that the cuspidal nature of B, 3 hinges on the depth-
two result sv(3 5 = —10¢3(s. The non-vanishing Laurent polynomial of (7rV)3B’273 is due to
the real MGFs —2'E; 3 — 1GE; in (5.33).

Note that the simplest instances of (37 and (55 arise in the Laurent polynomials of B-
cycle eMZVs with MGFs (2.26) of weights Z;:l (aj+ b;) = 12 and 14 in their SV mage. The
appearance of (5 53 in modular graph functions and eMZVs can be found in [12, 51], respec-
tively. While (5, drops out from MGFs under the single-valued map, it enters for instance
the T°-order of the Laurent polynomial of w(0, 3,7 — 1) whose SV image contributes to the
quantity (7V)*B} 4 in section 9.2 of [62]

1
w (0,3,7‘— —)
-

710 2iT° 27 7iT3 7T?
iT° (s C6+ i C7+ (8

e 1261260 © 315 63 45 6
27Cio  84iC1  30i¢s5¢e
— G — 14GG — 662
Ga GG7 — 65 + > T T
84i 1353
n iC3(8 Ci2 (5.38)

T 277

One can eventually find all Q-independent MZVs?® in the Laurent polynomials of B-cycle
eMZVs. This follows from both the degeneration limits of the elliptic KZB associator [3] and
from the fact that any MZV is expressible via Q[27i]-linear combinations of multiple modular
values [107].

Note that the Laurent polynomials of all B-cycle eMZVs with length 4+ weight < 16
obtained from an FORM implementation [96] of the methods of [3, 51] are available for
download from [97].

5.7 Single-valued map of individual eMZVs

While the above combinations of single-valued eMZVs were tailored to obtaining a single
MGEF in the bases of [18, 51], we shall now give a closed formula for the single-valued map
of individual eMZVs. The integrands of convergent A-cycle eMZVs (2.24) with length r and
ny,n, # 1 arise at the s?j-order of the series Zg atr + 1 points. After modular S transformation,
one can obtain any convergent w(ni, . . ., n,| — %) by isolating suitable 7 ;-orders in the s;; — 0

limit of ) BI(1,2,...,r+ 111,p(2,3,...,r+ 1)), where the permutation sum over the

pES,
orderings of the integrands (2.13) yields the integrands f5," /47 ... f) | in the definition

(2.24) of eMZVs. Hence, our proposal (3.35) implies that SV w(ny, . .., n,| — %) occurs at the
corresponding orders of 5;; and 1); in the series J7, so their definition (3.13) leads to (n;, n, #1
and z; = 0)

1 r+1 dZZ‘
[ _ =yt J
T) (r=7) /r H ImT

SVw (nl,nz,...,n,.
Jj=2

x VL2, ..r+ 1D fS0 2 f
(5.39)
By the techniques in [52], the integral on the right-hand side can be straightforwardly

performed in terms of lattice sums over p=m7 +n € A’ in (2.25): after expressing the

26 See [102] for a computer implementation of Q-relations among MZVs.
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Figure 4. Graphical representation of the integrand of single-valued eMZVs
(5.39): solid lines represent factors of f(.,f) while dashed lines stand for the

1(5“) , (“),. fr(’r’il, 14 (“) 1.1 that are compatible with the cyclic arrangement of the

arguments of V(1,2,...,r + 1|7).

V.-functions in terms of L 19 via (5.2) and inserting the double Fourier expansions

W) _ I TP

w

f =(=D"" E ——, Zp=uxT+ v, (pzw) =mug —nuy  (5.40)
peN

the integrals f‘z 4% — | du; [, dv; lead to momentum-conserving delta functions as seen in the

dihedral MGFs (2.26). When visualizing each factor of f 3,( and f ](,:” ) in the integrand of (5.39)
through an edge between vertices j and k, contributions from one-particle reducible graphs

integrate to zero. There are at most r — 1 factors of f ](,:b ) from the Ve<r—1(1,2,...,r+ 1) in

(5.39), and the admissible pairs (j, k) are visualized via dashed lines in figure 4.
One can anticipate from the example (reproducing (5.12))

4 0
1 N &z \ [1 VL2340 H1L2340 | e
SVw (0,0,2|— = ) =(r—7)? ||—' - —
w( ‘ T> =, (,-:z lmr){6 P Yo Ta

- (ImTTY/z (ﬁ f:ﬁ)f fii = (Im) Z‘ 7 = B (5.41)

peA!

that only small subset of the terms in V(1,2,...,r + 1|7) contribute to generic single-valued
eMZVs—the right-hand side of (5.41) entlrely stems from V»(1,2,3,4|7) — f(z) Apart from
the restriction to one-particle irreducible graphs, only those V,,(1,2,...,r + 1|7) with par-
ity (—1)* = (—1)yn+m++m contribute since lattice sums with odd overall modular weight
vanish.

Note that the torus integrals in the expression (5.39) for single-valued eMZVs converge
whenever the eMZVs themselves do: the convergence criterion ny, n, # 1 rules out any double
pole |z;| 7% in the integrand (and kinematic poles sjfkl in the Koba—Nielsen integral) since the

only overlap between the solid and dashed lines in figure 4 occurs via ff;‘ v 5 and fl";irl Lr +1
Based on the conjectural relation (3.23) between the Laurent polynomials, one can use

(5.39) to infer the asymptotics of the MGFs on the right-hand side by importing the Laurent

polynomials of the B-cycle eMZVs from [97] and applying the single-valued map. Moreover,
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any relation among eMZVs induces a relation among the MGFs through the lattice-sum rep-
resentation of their single-valued images. Hence, the database of MGF relations [62] can be
complemented by applying (5.39) to the eMZV relations on the website [92]. The lattice sums
contributing to SV w(ny,...,n,| — %) have (anti-)holomorphic modular weights (w, w) sub-
jectto w =n; +---+n, and w < r — 1. Accordingly, the Laurent polynomials of B-cycle
eMZVs of length 4 weight < 16 [97] give access to those of various combinations of MGFs
with w +w < 15.

In the remainder of this section, we will study the single-valued eMZVs in (5.39) at fixed
length » and comment on consistency checks with the properties of their SV preimages [17].
The condition ny,n, # 1 for convergence is taken to hold throughout. At length r = 1, for
instance, w(2k| — l) = —2(y and w2k — 1| — l) = 0 with k > 1 are annihilated by SV, in
lines with the vanishing of the torus integral over a single f atw # 0.

5.71. Length-two examples w(ni,nz). Single-valued eMZVs of length r = 2 take the form
(5.39)

1 —\ni4n d222d223 ny) [ny)
SVw <n1,n2 - T) =(r -7t Z/Izilmrilmrf(ﬂl 30
1
E . ny + ny even
, (5.42)
Vi(1,2,3]7)

: : ny + ny odd
27

where the distinction between even and odd weight n; + n, stems from the vanishing of lattice
sums with odd modular weight. At even n; 4+ n, > 0, the integrand of (5.42) is proportional to

2"11) ") which corresponds to a one-particle reducible graph with

1

o
in agreement with w(2ki, 2ka| — 1) = 2(o, (o, and w(2ky — 1,2k; — 1| — 1) = 0 [17]. For
odd weightn; + ny, we keep ny # 0 and distinguish the two cases ng = 0andn; # 0, where the

only contributions of Vi(1,2, 3|7) to the integral (5.42) stem from f (311) and f %), respectively:

=0, (5.43)

ny+ny>0 even

SVw (nl,nz

1 — 72 [ d?
SVw (0,13 |— — - u/ Z3f<,,2) (1)_ i (r — 7)y2C n, 0
T/ lny odd 2mi 7r 1 0
1\ "7 gt [ dy &
SV | — — S 2 4723 ) )7
w (m ny T) S i /IImTImTf(Zl f(3 f
—(_ "li _ =mtmp |11 +n 0
T L ] L (5.44)

The resulting relation SV w(ny,no| — 1) = (=1)""SVw(0,n; 4+ no| — 1) is consistent with
(2.33) of [17] after discarding any SV(,, with k > 1 from the equation of the reference. In
combination with the vanishing of SV w(r,12) |4, 1, even, We conclude that all single-valued
eMZVs of length two do not exceed one-loop MGFs, in lines with w(0, 2k 4 1) being iterated
Eisenstein integrals of depth one.
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5.72. Length-three examples w(ni,nz,nz). Single-valued eMZVs of length three can be
written as

1 h dzZ‘ ) ) )

— —\n1+ny+n J ny) fny) (fn3z

_T>—(T_T)l : 3/;; HImT 21 f<31 41
P\

SVw (nl,nz,n3

1 V»(1,2,3,4|7)
6+W . np +ny + n3 even
X (5.45)

Vi(1,2.3,47)

1 ny + ny + n3 odd
4i

after discarding lattice sums of odd modular weight. For SV w(0, 0, 2k + 2| — %), this results in
the one-loop MGFs in the second line of (C.2). Starting from weight 8, the bases of w(ny, ny, n3)
require representatives with two non-zero entries such as w(0, 3,5), w(0, 3,7) [17], and their
single-valued versions correspond to MGFs of depth two as exemplified in section 5.6. For
any combination of three non-vanishing entries, the torus integral in (5.45) can be expressed

@@ 340 (2.26) and products of one-loop MGFs,
b1 b2 b3

b

in terms of two-loop MGFs [

ny,ny,n3#0 0

SVw (nl’nz’ n3 ny+ny+n3 odd =

1 np,na.n
va (nlanz,n?) - ;) nilkizifg even
(r— Ryt v [ 0] L2ty 0
= amr OO o o
cermelyoglelm i oleelt B ) s

leading to iterated Eisenstein integrals of depth two.

5.73. Length four and beyond. Starting from single-valued eMZVs of length four

b

5 0
d°z;
_ =\ tnptnztng J ny) fn) (n3) [ng)
=(r—7) /4 H BV AT
T\

Imr
=2

SVw (711,”2,”3,”4

1 n V»(1,2,3,4, 5|T) + + +
SISk it i K4 i ny 4 no + n3 + ng even
24 2(2mi)?
" (2mi) g . (5.47)
Vi(1,2,3,4,5 Vi(1,2,3,4,
M m) _ VAl I :ny + ny 4+ n3 + ng odd

127i (2mi)’

MGFs of different modular weights may mix through the contributions of V; and V3 to

_1> :_<T—T)"C{n4 o} (T‘T)"c{”‘* o]
T

xSl ool T @ Cl3 o (5:48)

SVw <0, 0,0, n4

ng odd
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The first term drops out when adding —£SV w(0, 14| — 1), oaa in (5.44) and explains the
combinations of eMZVs of different length in the third line of (C.2). Similarly, the more general
combinations (5.16) of single-valued eMZVs of different length that isolate one-loop MGFs
can be understood from the combinations of V,, that contribute to higher-point V-functions
(3.8).

With multiple non-zero entries in SV w(ny, ny, n3, na| — }) of odd weight, the lattice sums
from integrating V3 correspond to MGFs of trihedral topology. Similarly, single-valued eMZV's
at length five introduce four-point MGFs of kite topology introduced in section 4.3 of [62].
We hope that their identification with single-valued eMZVs will facilitate the study of MGFs
beyond the dihedral topology and result in efficient methods to determine their Laurent
polynomials and relations at arbitrary weight.

6. Conclusions and outlook

In this work, we have studied generating series of configuration-space integrals that arise in
open- and closed-string amplitudes at genus one. The differential equations and 7 — ico
degenerations of these generating series served as a framework to propose the explicit form
of an elliptic single-valued map. Our construction is based on a tentative genus-one uplift of
the Betti—deRham duality between integration cycles on a disk boundary and antiholomorphic
Parke—Taylor integrands which drives the relation between closed-string and single-valued
open-string tree amplitudes [40—45]. These considerations lead us to construct closed-string
genus-one integrals over specific antielliptic functions which are thought of as Betti—-deRham
dual to open-string integration cycles in view of their singularities at z; — z; and their
degeneration at 7 — ioQ.

Most importantly, the differential equations of the open- and closed-string integrals under
investigation only differ by 7/Gi(7) vs (7 — 7)/Gy(7) in the respective differential operators
with holomorphic Eisenstein series G;. Accordingly, we generate the eMZVs and MGFs in
their o/-expansions via path ordered exponentials with the same polynomial structures in Kine-
matic invariants and formal expansion variables. The 7-dependent building blocks are iterated
Eisenstein integrals in both cases—holomorphic ones with kernels 7/Gy(7) for the open-string
integrals and their single-valued versions involving kernels (7 — 7)/Gy(7) for closed strings.

Our proposal for an elliptic single-valued map is defined through the relation between the
generating series of open- and closed-string integrals. By their respective o/-expansion, we
obtain the single-valued map for all iterated Eisenstein integrals occurring in the open-string
series. This in turn determines the single-valued map of any convergent eMZV in terms of
MGFs.

This construction hinges on the compatibility of the initial values at 7 — ioo under the
single-valued map of MZVs [46, 48]. We have given evidence for their compatibility by iden-
tifying the key building blocks of genus-zero integrals at the cusp—appropriate pairs of disk
orderings and Parke—Taylor integrands. However, the detailed expressions for the asymptotic
expansions beyond two points in terms of genus-zero integrals is left for future work. At
present, the procedure also relies on the reality properties of a generating series Y7 of a more
general class of closed-string integrals. Our method does not yet provide a direct construction
of single-valued iterated Eisenstein integrals solely from open-string data.

6.1. Genus-one integrals versus string amplitudes

The results of this work concern infinite families of configuration-space integrals at genus one,
and their application to genus-one string amplitudes requires the following leftover steps:
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For both open and closed strings, it remains to integrate over the modular parameter 7
of the respective surface. In the closed-string case, T-integrals over MGFs are typically per-
formed on the basis of their Laplace equations [9, 108—112] and Poincaré-series representa-
tions [54, 113-118]. The 7T-integration of open-string integrals has for instance been discussed
in [119-122], and a general method applicable to arbitrary depth may be based on the repre-
sentation of eMZVs in terms of iterated Eisenstein integrals (including their ‘over-integrated’
instances with kernels 7/Gy at j > k — 2 [118]) and properties of multiple modular values
[101]. It would be particularly interesting to relate closed-string and single-valued open-string
integrals at genus one after integration over 7.

For open strings, the Z- or Bi-series are claimed to exhaust all the configuration-space inte-
grands built from f®(z; — z; s 7') that are inequivalent under Fay identities and integration by
parts. Similarly, the YZ-series built from double copies of the open-string integrands is expected
to contain all torus integrals of this type. Hence, by the arguments of [4, 52, 79], B} and Y7
should?” capture the conformal-field-theory correlators in the integrands of n-point genus-one
amplitudes of massless states (and possibly also of massive states) in bosonic, heterotic and
type-Il string theories. In all cases, the component integrals in the 7) -expansions of the Z%-, B
or Y7 series need to be dressed with kinematic factors that are determined by the correlators
and carry the polarization dependence of the respective string amplitude.

The integrands of J7 only involve antielliptic combinations of f®)(z; — z;, 7) and omit infi-
nite classes of component integrals of Y7 For a given genus-one closed-string amplitude, it is
therefore not a priori clear if its correlator is generated by the integrand of J7. Still, the corre-
lators for the four- and five-point type-II amplitudes can be recovered from the subsectors J;, -
of the J%-series at fixed modular weights: the four-point correlator of [80] resides at the n3
order of Jg, N and the five-point correlators of [105, 106] can be assembled from the most
singular n-orders of J,, . . . atw =0, 1. Similarly, the four- and five-point amplitudes of
gluons and gravitons in heterotic string theories can in principle be extracted from the same
J,7 Which also appear in type II, where higher orders in 7); are needed to capture the bosonic
sectors. It would be interesting to see if this pattern persists at higher points in supersymmet-
ric amplitudes, and whether the J7 are sufficient to generate bosonic-string amplitudes at low
multiplicity.

6.2. Further directions

This work spawns a variety of further directions and open questions of relevance to both
physicists and mathematicians:

The single-valued image of eMZVs is proposed to contain combinations of holomorphic
iterated Eisenstein integrals and their complex conjugates denoted by 3% and constructed from
the o’-expansion of closed-string integrals in [18]. It would be important to work out their
detailed relation to Brown’s earlier construction of single-valued iterated Eisenstein integrals
[13, 14]. In particular, it remains to relate the MZVs in the antiholomorphic contributions to
B* (fixed from reality properties of Koba—Nielsen integrals in [18]) to the combinations of
multiple modular values entering Brown’s construction. This will hopefully bypass the need
to use these reality properties as independent input for the construction of 5*" as done so far.

271t has been shown in [52] that the integrands of massless genus-one amplitudes in bosonic, heterotic and type-II
theories are expressible in terms of products of f®(z; — z ;»7) and their z;-derivatives. The conjectural part is that
arbitrary products of f®(z; — z j»7) (possibly including derivatives) are expressible in terms of the ¢ in (2.13) with
their specific chain structure via repeated use of Fay identities and integration by parts [59, 60].
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Several aspects of our construction are based on conjectures with strong support
from a variety of non-trivial examples. As pointed out in the relevant passages in ear-
lier parts of this work, it would be desirable to find mathematically rigorous proofs
that

e Any Koba—Nielsen integral at genus one involving products and derivatives of
Kronecker—Eisenstein coefficients f*(z, 7) can be expanded in the coefficients of the
series Z; and Y7

e The matrices r;(ex) and Rj;(e;) in open- and closed-string differential equation (2.19)
preserve the commutation relations of Tsunogai’s derivations €

e The single-valued images 5*' of iterated Eisenstein integrals satisfy shuffle relations, i.e.
that the antiholomorphic integration constants «v do not introduce any obstructions

e The coefficients of the s;;- and 7);-expansion of the initial values j’,;” and IA/;;O are single-
valued multiple zeta values

The proposal of the present work concerns single-valued integration [48, 49] in the mod-
ular parameter 7. An alternative approach is to recover MGFs from single-valued func-
tions of torus punctures [10, 15]. In this context, it would be rewarding to find an explicit
realization of single-valued integration in z for elliptic polylogarithms and their complex
conjugates, for instance by building upon the ideas of [15] and the depth-one results in
[123].

At genus zero, the identification of sphere integrals as single-valued disk integrals is equiv-
alent to the Kawai—Lewellen—Tye (KLT) relations between closed-string and squares of open-
string tree-level amplitudes [124]. Accordingly, one could wonder if the combinations of
holomorphic and antiholomorphic iterated Eisenstein integrals in the 5% or MGFs can arise
from products of open-string type generating functions and their complex conjugates. If such
a genus-one echo of KLT relations exists, then one can expect a close connection to the mon-
odromy relations among open-string integrals [122, 125—127] and in particular their study in
the light of twisted deRham theory [128]. And it could open up a new perspective on the quest
for loop-level KLT relations to revisit the generating functions of closed-string integrals in the
framework of chiral splitting [129, 130], by performing the o/-expansion at the level of the
loop integrand.

A particularly burning question concerns a higher-genus realization of single-valued inte-
gration and the associated relations between open- and closed-string amplitudes. A promis-
ing first step could be to identify suitable holomorphic open-string analogues of the MGFs
[131, 132] and modular graph tensors [133] at higher genus. More generally, the simpli-
fied correlators of maximally supersymmetric genus-two amplitudes at four points [134, 135]
and five points [136, 137] provide valuable showcases of Koba—Nielsen integrals relevant to
open- and closed-string scattering. Furthermore, the construction of the generating series in
this work was inspired by extended families of genus-one Koba—Nielsen integrals that arise
from heterotic or bosonic strings [52]. Hence, the genus-two correlators of the heterotic string
and the combinations of theta functions studied in [138, 139] could give important clues on
higher-genus versions of the elliptic functions and generating series in this work.
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Appendix A. Relations among the elliptic V and V,, functions

In this appendix, we spell out a method to determine the rational coefficients ¢, , in the expan-
sion (3.37) of elliptic functions V(. ..) of fixed modular weights in terms of the V(. ..) func-
tions in (3.8). This will be done by exploiting the 7 — ico degeneration (3.20) of the V(.. .)
which fixes the ¢, in the ansatz (3.37) via

Vo(1,2,...,0|7)

r—ico 2w)Y0107 ... 0y

= Y cun PTOL (23,00 (A1)

VESn-1

PTV(1,2,...,n) = (=" lim |o_* PT(+,n,n—1,...,2,1,-)
T_—00

+cyce(1,2,...,n))

1
= +cye(l,2,...,n). (A.2)

012023 «« . Op—1,n0n

The combinations PT) are known as one-loop Parke—Taylor factors from an ambitwistor-
string context [94], and we have used o = 0 in passing to the last line. In order to determine
the degeneration of the left-hand side of (A.1), we expand the elliptic functions

— § : (ap) ,(az) (an—1) (an)
V1,,(1,2,...,n|7') - g121 g232 "'gn—nl,ngn,l
ay,ay,....an =0
ajtay+--+ap=w

0,00, D01 + 1.7 = a1 (@
pu— a .. A.3
01 (zij» T)01(n, T) ;77 8 (A9
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in terms of the meromorphrc Kronecker Eisenstein coefficients g(”) instead of the f; “ in(5.2),
starting with g,j =1 and g,j = 0, log 0i(zij, 7). Their 7 — ioco limits [3, 4]

1 ra=0
@ _ iﬁm ta=1
-rl_l}l?c 8 = 0j— Ok (A4)
-2, ca€?2N
0 ca€2N+1

generated by (3.19) ensure that the combination (27i) ="'V ,,(1,2, ..., n|7) in (A.1) degenerates

to a rational function of the o ;, where all factors of im cancel. Hence, the only o; dependence
gjtok
Oj—0

By applying the degeneration (A.4) to thejelliptic function V,, in (A.3), the left-
over challenge in determining the c,, in (A.l1) is to expand the terms of the form

of V(... |T — ico) occurs via lim,;x g]k =i

(o107 ... U,,)"Hley%:;k" on the left-hand side in terms of Parke—Taylor factors. For the
Ji i

choices of 0, oy, that arise from the degeneration of V<, >, these Parke—Taylor decomposi-
tions can be performed by the methods of [140]: as explained in section 3 of the reference, the

net effect of the rational factor = e %t % s to modify the signs of the Parke—Taylor factors on the
right-hand side of

1

—————— = (=" lim |o_[*) PT(+.p(1,2,....n).-) (A.5)
0102 ...0y, 0——00

PESn

More specifically, with the notation

+1 : jisontherightofkin p(1,2,...,n)
sgn'y = ) _ (A.6)
—1 : jisontheleftofkin p(1,2,...,n)
the modification of (A.5) by degenerations of g(jll,z’ can be written as [140]
1 (M )] n—
lim Sak8i St _ CDTL
—ico 2WI) 0107 .. .0y 2" o =00
p p _
X ngnjlk1 s’y - - sgnjrk PT(+, p(1,2,...,n),—).
PESn
(A7)

The contributions of (27i)~ 2"g(zk) in turn degenerate to rational constants by (A.4) which mul-
tiply the overall sum over permutations p- Hence, (A.7) allows to straightforwardly expand the
left-hand side of (A.1) in terms of Parke—Taylor factors in an n!-element basis of PT(+, .. ., —).
Matching the Parke—Taylor coefficients with those on the right-hand side determines the ¢, ,
in (3.37). It is a special property of the elliptic functions V, that their degeneration conspires
to the cyclic combinations PT!" in (A.2), i.e. that the (n — 1)! independent ¢, , are sufficient
to accommodate the n! permutations of PT(+,1,2,...,n,—)in 1,2,...,n
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For instance, the decompositions in (3.39) to (3.41) follow from the special cases of (A.7)

Vi (1,2,3)7) 1 )

—_— 2 = — ] _ PT(+,p(1,2,3), —

R Py nggr‘;olo\; (+,p(1,2,3),-)
3

x (sgnf, + sgnf; 4 sgnf))

Vi(1,2,3,4 1 .
limuz_, lim ‘0_|2 PT (4, p(1,2,3,4), )
r—ico (270) 01020304 2 o 00 /ZGS
VES,

x (sgn{, + sgnb; + sgnf, + sgnj))

V 1, 2; 3’4 1
tim 2023400 0 oSS e 02,3,
Tico (2T0) 01020304 7o PESy

1 1 , ,
X {3 + 4 (sgnf,sgnf, + sgniysgny))

P conl P con? P conl
(SgnlzsgnB + SgN53SgN3, + SgN3,SgNy,

B

+
+ sgnf sgn’,) } (A.8)

once the right-hand sides are matched with the combinations of one-loop Parke—Taylor factors
PT® in (A.1) and (A.2).

Appendix B. The initial value Ef;;fns at three points

This appendix gathers the three-point initial values IAB;";‘”,B (2,3|p(2,3)) for the o/-expansion

(4.9) of B-cycle integrals up to and including weight four. The corresponding orders of
7;"7;?,73 (2,3|p(2,3)) relevant to the o'-expansion (4.19) of J-integrals are obtained from the
single-valued map ((5, (3, C4) — (0,2¢3, 0). Since even (odd) orders in the 77;-expansion inte-
grate to zero on the odd (even) integration cycles 2B(2, 3) + 8B(3, 2), we will separate the two
types of contributions in order to infer Eﬁ;ﬁ,,n (2,3]3,2) from a relabeling of §§gf,]3 (2,3]2,3).
The expressions in this appendix along with various higher-order terms in the s;;- and
7,~expansions can be found in the supplementary file at https:/stacks.iop.org/A/55/025401/

mmedia, also see (4.27) for the appearance of (5 5.

B.1. Even orders in n;

The terms of even orders in 7); in the three-point initial values are given by

1 G

~ 1 G
B 2, 3 2, 3 even — | A TA
IR om = (S

ﬁ(siz + 513+ 533)

(S%z + 5%3 + 5%3) +

131 5
+ G {1440(54112 + 513+ 533) + m(sfzs% + 512533 + 533513

1
+ Esnsnszssm] +.. >
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2952 552 553
7723( Cz—éslz—g[ Slz+ﬂ+S13S23+ﬂ]+”.)

n 24 12 3 12
G 2953, 551, snsiz o Ssh
7723( & S23 G 24 + 12+ 3 + 12 T
3(Gs 15(s
+ ( 5122313 + 9 S13 + 44?2 13 (Slz + §12823 + S23)
41 49¢4s%,
24C4(S12 + 523)813 + a + ...
7 m
+mama(5¢) — Bl — G+ (B.1)
3 3
and
B;,ZO,B (2,313,2) [even = BI,ZO,B (2,3]2,3) |even \;’122%"313 (B.2)

with MZVs of weight > 5 in the ellipsis.

B.2. Odd orders in n;

The terms of odd orders in 7; in the three-point initial values are given by

1 1 sz S$138 S3
B§720n3(2,3\2, 3) |oad = — ( T G513 + G { 13523 | Si3 }
m

S12 6S12 12S12
C 131S123 _ S23S123S13
720S12
+ L (1 2Sm {312313 S123 }
m3 \ 523 6323 12503
v 131s%), _ S123123S13
720S23
2 K 2952 K
PR (< I B I O]
512 512 12515 4

523 523 12S23 4

(-
j;( <3+<4[ 3123+T] +>
= (-

2 K
G+ G {33123 + %] +>

2
+ 133 (—Sf:+-..>+n§ (—C“+ >+ (B.3)

26 Gsios 46, [_% + sﬁ] +>

and

B (2.3[3.2) |osa = —B1X, (2,3]2,3) [oaa |25 (B.4)

25113 25113 S1247513°
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again with MZVs of weight > 5 in the ellipsis.

Appendix C. Examples of single-valued eMZVs

C.1. Systematics at depth one

The simplest examples (5.12) and (5.13) of single-valued eMZVs extracted from the two-
point integrals (5.4) are special cases of the SV map (4.30) on holomorphic iterated Eisen-

stein integrals. For their depth-one combinations 3 []JJ in (4.10), the SV image 3% []JJ yields

the following Cauchy—Riemann derivatives V = 2i(Im 7)29, of non-holomorphic Eisenstein
series [18]

w k=11  [k=D!? 20041
b { 2k | T @k—1)! Bt i - 1)(4yy<!
g k—14+m| _  (=4"k=Dltk—1—m) (xV)"E 2Cu-1
2k | 2k — 1) (2k — 1)(4y)k=1-m
wlk=1=m| _ (k=Dltk—=1-—m!(xV)"E 2001
T - e @k~ nup D

also see (4.22). While the objects on the right-hand side are expressible in terms of the lat-
tice sums [Z 8} in (2.27) via (2.28), the 3 [ﬂ are simple combinations of B-cycle eMZVs
w(0P, k| — %), where 07 stands for a sequence 0,0,...,0 of p successive zeros. On these

grounds, 3% [IJJ =SVg [IJJ translates into simple relations such as

o =\2k+1
-7 > 1
27

1
SVw<O,2k+1‘—;):— | 0

2k +1 O}’ r

1 (r—7)*t2 2k+2 0
\Y k42—~ ) =" >
S w(0,0, k + ‘ T) Gy 5 ol k=0
1 1 1 (r—7)*t3 [2k+3 0
SV 0,0,0,2k+3|— - ) —-w(0,2k+3|—--) )= ————"T—
<” ”’+’r> 6”<’+‘T)> i Sl s o)
k> —1
1\ 1 1 (= [2k+4 0
SV 0,0,0,0,2k+4|— - ) — —w [ 0,0,2k+4|— =) )= —2— ,
<“ * ‘ T) 6“( + ‘ r>) iyt 4 0
k>—1
(C.2)
as well as

SV (w(0,0,0,0,0,2k+5 ,l flw 0,0,0,2k+5 ,l —|—Lw 0,2k +5 ,l
T 6 T 360 T

=) [2k+5 0
(Q2miy’ 5 0

} . k=2 (C.3)
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The relative factors of —} and 55; among the eMZVs of different lengths are engineered to
streamline the iterated-Eisenstein-integral representation [17] and generalize as follows [104]

-1 _ )
B ([ 1 ST =T 2k+0 0 1
; ) =(=1)f >1—|= >
SV;:O j!w<0 ,2k+€‘ - (=1 G |, ol k=1 L 0> 1.

(C4)

In obtaining (C.2) and (C.3) from (C.4), we have used SVw(m) = 0V m > 1 and the following
simplifications of the only eMZV w(0‘~!, 2k + ¢|7¢) whose length and weight adds up to an
even number [17],

1
w(0,0,2k + 1]7) = Sw(0,2k + 1)
(0,0,0, 2k| )—1 (0,0, 2k) ! (2k)
w s Vs Vs T —2(JJ Vs 24UJ

1 1
w(0,0,0,0,2k+ 1]7) = 26(0,0,0, 2k + 1) — 52w(0. 2k + 1). (C.5)

Based on the dictionary (2.28) between lattice sums [Z 8] and non-holomorphic Eisenstein

series, one can reformulate (C.4) as

/-1 ) A o |
SVZ@UJ 07,2k + ¢ |- LA (—1)ZM(—4W)’<E,CH, k>0, 0>1,
= J! T

Qk+£¢—-1)!
(C.6)
where k = 0 needs to be excluded if ¢ = 1, for instance
SVw (0, 2k + 1 ‘— 1) = —k—!(—47rV)kEk+1, k>1
T (2k)!
SVw (O, 0,2k +2 ’— %) = %(—4wV)kEk+2, k> 0. (C.7)

Moreover, by extending (C.4) to k — —k and applying the complex conjugate of (2.28), we
also obtain antiholomorphic Cauchy—Riemann derivatives as single-valued eMZVs (with
¢ —2k > 0),

(-1

Bi (i, | 1Y _, G =DF [e—2k 0
svzﬂw<0 N 2k’ e R

=0

_ (_pyereE= k=D (V) Ei

(=Dt Qy* €9
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The simplest examples include

1 1 1 7VE,
=)= w(o1|--))=
v (o (0:001[- ) - Lo (0] 1)) =
1 1 1 7VE;
SV Oa030a072 - - - - O 0 2 —_— = = —
(4 (00002]-2) ~go 002 1)) = -5
1 1 1 1 (mV)*E;3
SV 0,0,0,0,0,1|— =) —~w (0,0,0,1|— ~ o)) =R
(=( 1) g (000] T>+36o( 1) =
sV (w(0.0.0003-1) -1 00031 + 365 31 1)) = TVE
T 6 T T 16y?
(C.9)

and the first two lines are equivalent to those in (5.32).

C.2. Examples with real MGFs at depth two

By inspecting the s order of the two-point integrals B(,), J, and the s?j order of Bf,), J(;), we
have obtained the representatlons (5.14) of E,» and mVE,; as single-valued eMZVs. One can
extract similar representations for E 3, 7VE, 3 and (1V)*Ey 3 from the s7; order of B, /.,

the s order of Bf,), J{,, and the s order of Bfy), J{y), respectively:

Ey3 =SV (—Ew (0,0,0,0,0,S — l) + 2w (0,0,0,0,1,4‘— l)
35 T T
97 1 1 1
+mw (0,0,0,5’-;)-5&) <0,0,2,3’—;>
+2 00002—l 0,3 |- 1 +— 05—l
w|0,0,0,0, — w0 200 \ 0 -
1 1\ 13 1 1 1
mVEy3 =SV (_12w<0’3’_7> —|—@ (0,0,6‘—;)+w(0,3’—;>w(0,0,0,3’—;>
41 1 !
— ¥ (00006’ ) (00024‘—;))
: 25 N3 0] ! AN 1
(V) Ey3 =SV (336 0,7— 8 0,3 w|0,0,4 - 28w 0,0,0,7 -
L (o,o,z,s‘—l)Jrlw (0,0,4,3‘—5)) (C.10)
T 8 T
The corresponding lattice-sum representations [51, 62] and 3% representations [18] are given
by
_ (7N (31 1] 43,5 0
"\ r 31 1) 35750
sV 1 sV 3 1245 3% sV 1
= —1205° {4 6} — 1208 {6 4} —=f { ] + 80¢318 {6}
G n G GG

E,,

%)

36 16y 2y3
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6
7TVE”:(In;r) (30[} 1 4}+zc B 2 3} 430[6 OD

! 12 03" 7%]4 0
w2 2 w3 1 W[40
— 908 [4 6}4—606 [6 4}+305 {6 4]
‘ 6
] ][]

3 1 0 2 1 0o/ (2 0 7713 0

s [2 s L 2o !

3Gs v |2] , 7¢ 3G3Gs
o M+8_ . (C.11)

7
(W)ZEM:(II?TT) (4(: {o 2 5}—4(1 {3 0]6{4 o] 62, {7 OD

+ 30438 [2} + 12¢5 8% [ﬂ +
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