
Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 55 (2022) 025401 (62pp) https://doi.org/10.1088/1751-8121/abe58b

Towards closed strings as single-valued
open strings at genus one

Jan E Gerken1,2 , Axel Kleinschmidt2,3 ,
Carlos R Mafra4 , Oliver Schlotterer5,∗ and
Bram Verbeek5

1 Department of Mathematical Sciences, Chalmers University of Technology, 41296
Gothenburg, Sweden
2 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am
Mühlenberg 1, DE-14476 Potsdam, Germany
3 International Solvay Institutes, ULB-Campus Plaine CP231, BE-1050 Brussels,
Belgium
4 STAG Research Centre and Mathematical Sciences, University of Southampton,
Highfield, Southampton SO17 1BJ, United Kingdom
5 Department of Physics and Astronomy, Uppsala University, 75108 Uppsala,
Sweden

E-mail: gerken@chalmers.se, axel.kleinschmidt@aei.mpg.de,
C.R.Mafra@soton.ac.uk, oliver.schlotterer@physics.uu.se and
bram.verbeek@physics.uu.se

Received 10 November 2020, revised 21 January 2021 
Accepted for publication 11 February 2021 
Published 21 December 2021

Abstract
We relate the low-energy expansions of world-sheet integrals in genus-one
amplitudes of open- and closed-string states. The respective expansion coef-
ficients are elliptic multiple zeta values (eMZVs) in the open-string case and
non-holomorphic modular forms dubbed ‘modular graph forms (MGFs)’ for
closed strings. By inspecting the differential equations and degeneration limits
of suitable generating series of genus-one integrals, we identify formal substi-
tution rules mapping the eMZVs of open strings to the MGFs of closed strings.
Based on the properties of these rules, we refer to them as an elliptic single-
valued map which generalizes the genus-zero notion of a single-valued map
acting on MZVs seen in tree-level relations between the open and closed string.
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1. Introduction

One-loop amplitudes in string theories are computed from integrals over moduli spaces of
punctured genus-one world-sheets. For open and closed strings, the punctures are integrated
over a cylinder boundary and the entire torus, respectively, which is often done in a low-energy
expansion, i.e. order by order in the inverse string tension α′. The coefficients of such α′-
expansions involve special numbers and functions which have triggered fruitful interactions
between number theorists, particle phenomenologists and string theorists. For instance, elliptic
polylogarithms [1, 2] and elliptic multiple zeta values (eMZVs) [3] were identified to form the
number-theoretic backbone of genus-one open-string integrals [4–6].

For the closed string, the analogous genus-one integrals involve non-holomorphic modu-
lar forms [7–9] dubbed modular graph forms (MGFs) [10, 11] which inspired mathematical
research lines [12–16]. As a unifying building block shared by open and closed strings, both
eMZVs [3, 17] and MGFs [10, 11, 18] can be reduced to iterated integrals over holomorphic
Eisenstein series, or iterated Eisenstein integrals. Similar iterated integrals over holomorphic
modular forms play a key role in recent progress on the evaluation of Feynman integrals
[19–39]. As a main result of this work, we identify infinite families of closed-string integrals,
where the appearance of iterated Eisenstein integrals is in precise correspondence with those
in open-string α′-expansions.

More specifically, we give an explicit proposal for a single-valued map at genus one, map-
ping individual eMZVs to combinations of iterated Eisenstein integrals and their complex
conjugates which should be contained in Brown’s single-valued iterated Eisenstein integrals
[13, 14]. This generalizes the genus-zero result that the sphere integrals in closed-string tree
amplitudes are single-valued versions of the disk integrals in open-string tree amplitudes
[40–45]. The notion of single-valued periods [46, 47] and single-valued integration [48, 49] is
very general, and in the case of MZVs amounts to evaluating single-valued polylogarithms [50]
at unit argument. While the single-valued map for the MZVs in tree-level α′-expansions has
been pinpointed in [46, 48], the genus-one studies of single-valued maps from mathematical
[12–14] and physical [51, 52] viewpoints6 have not yet led to a consensus for the single-valued
version of individual eMZVs.

Our proposal for single-valued eMZVs can be seen as a correspondence between integration
cycles and antimeromorphic forms that is akin to Betti–deRham duality [49, 57, 58]. In a tree-
level context, Betti–deRham duality relates the ordering of open-string punctures on a disk
boundary to Parke–Taylor factors [40–45]—cyclic products of propagators (̄zi − z̄ j)−1 on the
sphere. As a genus-one generalization, we spell out certain antielliptic (i.e. antimeromorphic
and doubly-periodic) functions on the torus which will be referred to as the Betti–deRham
duals7 of integration cycles on a cylinder boundary.

It will be important to collect the various eMZVs and MGFs in generating series sim-
ilar to those in [18, 59–61] as the genus-one single-valued map SV is most conveniently
described at the level of these generating series. The α′-expansion of genus-one closed-string
integrals—using the techniques of [18]—yields an explicit form of the proposed single-valued
map of the eMZVs in open-string integrals. The open-string punctures on a cylinder boundary

6 See [16, 18, 53–56] for recent progress in identifying single-valued MZVs in the degeneration of dihedral MGFs
from closed-string genus-one integrals at the cusp.
7 We shall use this terminology at genus one even though we are not aware of any explicitly worked out notion of
Betti–deRham duality beyond genus zero.
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are ordered according to the cycle which is Betti–deRham dual to the additional antiellip-
tic functions in the closed-string integrand. For the purpose of this work, it will be sufficient
to place all the open-string punctures on the same cylinder boundary which corresponds to
planar genus-one amplitudes: as will be discussed in future work, single-valued non-planar
open-string integrals yield the same collection of MGFs as the planar ones. Apart from a char-
acterization via iterated Eisenstein integrals, we will arrive at a closed formula for the single-
valued versions of any convergent eMZV that straightforwardly yields the familiar lattice-sum
representations of MGFs.

The main evidence for our proposal for an elliptic single-valued map stems from its con-
sistency with holomorphic derivatives in the modular parameters τ of the surfaces and the
degeneration τ → i∞ of the torus to a nodal sphere. Compatibility with the holomorphic
derivative is a simple consequence of recent results on the differential equations of genus-one
open-string integrals [59, 60] and closed-string integrals [61] in τ . Our antielliptic integrands
on the torus ensure that the closed-string differential equations match those of the open string
apart from the disappearance of ζ2 as expected from the single-valued map of MZVs. More-
over, the antielliptic integrands are engineered such as to reproduce Parke–Taylor factors in the
degeneration τ → i∞. Hence, compatibility of the single-valued maps at genus zero and one
is supported by the identification of sphere integrals as single-valued disk integrals [40–45].
The logic of our construction is illustrated in figure 1.

1.1. Summary of main results

The main result of this work is the proposal

Jτ
�η = SVBτ

�η (1.1)

for a single-valued map SV at genus one which relates generating series Bτ
�η and Jτ

�η of open-
and closed-string integrals, respectively, see (3.35). As summarized in figure 1, this induces
an SV action on the eMZVs in the α′-expansion of the cylinder integrals Bτ

�η to be defined in
(3.1). By comparing coefficients of dimensionless Mandelstam invariants α′ki · k j and formal
expansion variables η j, SV maps each eMZV generated by Bτ

�η to combinations of MGFs at the
same order in the analogous expansion of the torus integrals Jτ�η in (3.13). The integrands of
Bτ
�η and Jτ

�η are assembled from combinations of doubly-periodic Kronecker–Eisenstein series

ϕτ
�η in (2.13) known from [18, 59–61] and antielliptic functions V(. . . |τ ) that we introduce in

(3.8) as tentative Betti–deRham duals of integration cycles on a cylinder boundary.
A key motivation and evidence for this construction stems from the degeneration limit

τ → i∞ of the series Bτ
�η and Jτ

�η . Within this limit, genus-zero integrals similar to those in
open- and closed-string tree-level amplitudes are recovered, the latter being related by the
single-valued map of MZVs [40–45]. The leading terms of the eMZVs in the τ → i∞ limit of
Bτ
�η are certain Laurent polynomials in the modular parameter τ of the cylinder with MZVs in

its coefficients. As visualized in the lower part of figure 1, the known single-valued map sv of
MZVs [46, 48] is conjectured to yield the analogous Laurent polynomials in the degeneration
limit τ → i∞ of the torus integrals Jτ

�η . This is made precise in the conjecture (3.23)—a central
prerequisite for (1.1)—which generalizes earlier observations in [51, 52] and has been proven
at the leading orders in the formal expansion variable η j at two points [16].

The earlier proposal for an elliptic single-valued map ‘esv’ in [51] concerns the full
τ -dependence of certain generating series of eMZVs or the composing iterated Eisenstein
integrals. This reference associates open-string prototypes (i.e. esv preimages) to the simplest
closed-string integrals at genus one whose integrands are solely built from Green functions
involving any number of punctures. On the one hand, the proposal for the single-valued map
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Figure 1. Diagram illustrating the various pieces involved in constructing the proposal
SV for an elliptic single-valued map with open-string quantities on its left-hand side
and closed-string quantities on its right-hand side. The generating series Bτ

�η of the open
string contains eMZVs in its α′- and η j-expansion. Conversely, a given eMZV can be
isolated as a specific component of the generating series. The τ -dependent eMZVs con-
tain MZVs in their degeneration limit τ → i∞. Similarly, the closed-string generating
series Jτ�η yields MGFs upon expansion and MGFs can be isolated as specific components
in this expansion. The degeneration limit τ → i∞ of MGFs is expected to only contain
single-valued multiple zeta values that are related to the MZV by the known single-
valued map sv. Instead of attempting a direct construction of an elliptic SV-map from
eMZVs to MGFs, we exploit the differential equations of the generating series Bτ

�η and
Jτ�η together with their boundary values from τ → i∞ to describe the map SV at the level
of generating series, see (1.1). From this one can extract the map SV : eMZV → MGF
by inspecting individual orders in the α′- and η j-expansions.

in [51] is contained in (1.1) upon symmetrizing over the integration cycles on its left-hand
side and extracting the lowest order in η j. On the other hand, the implementation of the single-
valued map at the level of iterated Eisenstein integrals in the reference is very different from the
proposal in the present work. In comparison to the proposal of [51], our SV action on iterated
Eisenstein integrals in (4.30) does not necessarily generate real combinations and is therefore
applicable to imaginary cusp forms and MGFs of different holomorphic and antiholomorphic
modular weights. Moreover, in contrast to esv in [51], the SV map in (1.1) is observed to be
compatible with shuffle multiplication in all known examples. Our SV map additionally intro-
duces combinations of (conjecturally single-valued) MZVs and antiholomorphic terms, which
are absent in [51].

At the time of writing, the antiholomorphic admixtures introduced by our SV map on iter-
ated Eisenstein integrals at depth � 2 can only be fixed by indirect methods beyond the reach
of open-string data. Instead, the explicit form of the SV action on iterated Eisenstein inte-
grals has so far been extracted from the reality properties of closed-string generating series in
[18] that extend the Jτ

�η series as described below. However, this limitation does not affect the
formulation of our SV map at the level of the lattice-sum representation of MGFs: by virtue
of the antielliptic functions V(. . . |τ ) in (3.8), the SV image of an arbitrary convergent eMZV
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given in (5.39) can be straightforwardly expressed in terms of lattice sums using the integration
techniques of [8–10, 52] and, for certain weights, further simplified using the Mathematica
package [62].

1.2. Outline

This work is organized as follows. We start by reviewing open- and closed-string integrals at
genus zero and genus one as well as the basic definitions of single-valued MZVs, eMZVs and
MGFs in section 2. Then, section 3 is dedicated to the modified generating series of open-
and closed-string integrals as well as their relation through our proposed single-valued map
at genus one. In particular, the central antielliptic integrands and the resulting proposal for
an elliptic single-valued map can be found in sections 3.2 and 3.5, respectively. In section 4,
we set the stage for generating explicit examples of single-valued eMZVs by introducing a
new expansion method for open-string integrals over B-cycles and relating it to similar closed-
string α′-expansions. This leads to the identifications of MGFs as single-valued eMZVs in
section 5, where examples of the antielliptic integrands are related to earlier approaches to
an elliptic single-valued map in the literature. The resulting lattice-sum representations of all
single-valued convergent eMZVs are discussed in section 5.7. In the concluding section 6, we
comment on the relation of string amplitudes to the generating series of this work and further
directions.

2. Review of genus-zero and genus-one integrals

In this section, we collect background material on world-sheet integrals at genus zero and
one, including the genus-zero single-valued map, and review various definitions relevant to
the single-valued map at genus one.

2.1. Genus-zero integrals

We briefly review the basic disk (open-string) and sphere (closed-string) integrals for genus-
zero world-sheets and how they are related by the genus-zero single-valued map.

2.1.1. Definitions of disk and sphere integrals. Massless tree-level n-point amplitudes of the
open superstring [63] and the open bosonic string [64] can be expanded in a basis of iterated
integrals [65]

Ztree(γ|ρ) =
∫
D(γ)

(∏n
j=1dz j

)
vol SL2(R)

n∏
1�i< j

|zi j|−si jPT(ρ(1, 2, . . . , n)) (2.1)

over the boundary of a disk which we parametrize through the real line

D(γ) = {z j ∈ R,−∞ < zγ(1) < zγ(2) < · · · < zγ(n) < ∞}. (2.2)

The disk integrands involve dimensionless Mandelstam invariants

si j = −α′

2
ki · k j, k2

j = 0 (2.3)

and Parke–Taylor factors

PT(ρ(1, 2, . . . , n)) =
1

zρ(1)ρ(2)zρ(2)ρ(3) . . . zρ(n)ρ(1)
, zi j = zi − z j. (2.4)
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The inverse vol SL2(R) in (2.1) instructs us to set any triplet of punctures to 0, 1,∞, where the
SL2(R) invariance of genus-zero integrands hinges on momentum conservation

∑n
j=1k j = 0.

Both the domains and the Parke–Taylor integrands are indexed via permutations γ, ρ ∈ Sn

of the external legs 1, 2, . . . , n. One can arrive at smaller bases of (n − 3)! cycles γ and
Parke–Taylor orderings ρ via monodromy relations [66, 67] and integration by parts [63, 65],
respectively.

Closed-string tree amplitudes in turn can be reduced to sphere integrals

Jtree(γ|ρ) =
1

πn−3

∫
Cn−3

(∏n
j=1d2z j

)
vol SL2(C)

×
n∏

1�i< j

|zi j|−2si jPT(γ(1, 2, . . . , n))PT(ρ(1, 2, . . . , n)) (2.5)

involving d2z j =
i
2 dz j ∧ dz̄ j and permutationsγ, ρ ∈ Sn of meromorphic and antimeromorphic

Parke–Taylor factors subject to the same integration-by-parts relations as in the open-string
case.

2.1.2. Single-valued map between disk and sphere integrals. The disk and sphere integrals
(2.1) and (2.5) converge for a suitable range of the Re(si j) and they admit a Laurent expan-
sion in α′, i.e. around the value si j = 0 of the dimensionless Mandelstam invariants (2.3). The
coefficients in the α′-expansions of disk integrals Ztree are MZVs [68, 69],

ζn1,n2,...,nr =
∑

0<k1<k2<···<kr

k−n1
1 k−n2

2 . . . k−nr
r , nr � 2 (2.6)

whose weight n1 + n2 + · · ·+ nr matches the order in α′ beyond the low-energy limit (i.e.
beyond the leading order in α′). The polynomial structure of the Ztree in si j can for instance
be generated from the Drinfeld associator [70] or Berends–Giele recursions [71], with explicit
results available for download from [72, 73].

When applying the single-valued map [46, 48] of motivic [74] MZVs8

sv ζ2k = 0, sv ζ2k+1 = 2ζ2k+1, sv ζ3,5 = −10ζ3ζ5, etc (2.7)

order by order in α′, the disk and sphere integrals (2.1) and (2.5) are related by [40–45]

Jtree(γ|ρ) = sv Ztree(γ|ρ). (2.8)

The first permutation γ in Z tree and Jtree refers to a disk ordering (2.2) and an antimeromor-
phic Parke–Taylor factor (2.4), respectively, which are connected by a Betti–deRham duality
[49, 57, 58]. The key result of this work is to identify similar pairs of cycles and antimeromor-
phic functions at genus one.

2.2. Genus-one integrals

As a preparation for our proposal of a genus-one single-valued map, we now introduce the
basic genus-one world-sheet integrals and the objects appearing in their α′-expansion.

8 Strictly speaking, MZVs need to be replaced by their motivic versions to have a well-defined single-valued map.
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Figure 2. Parametrization of the torusT = C

Z+τZ with identifications z ∼= z + 1 ∼= z + τ
marked by ‖ along the A- and B-cycles. While the torus is drawn for non-vanishing
Re(τ ) to accommodate closed-string amplitudes, the cylinder world-sheets for open-
string amplitudes are derived from tori at τ ∈ iR+ via suitable involutions [75].

2.2.1. Genus-one open-string A-cycle integrals. In the same way as disk integrals can be cast
into a Parke–Taylor-type basis (2.1), the basis integrals for massless genus-one open-string
amplitudes are claimed to be generated by [59, 60]

Zτ
�η (γ|ρ) =

∫
A(γ)

⎛⎝ n∏
j=2

dz j

⎞⎠ϕτ
�η(1, ρ(2, . . . , n))

n∏
1�i< j

esi jGA(zi j,τ ), (2.9)

where we have set z1 = 0 by translation invariance. In this work we restrict to planar amplitudes
with all state insertions on a single cylinder boundary (as opposed to non-planar amplitudes
with punctures on both boundaries of the cylinder). We do not impose momentum conservation
in a genus-one context and treat all the si j with 1 � i < j � n as independent. The ordering of
the open-string punctures on a cylinder boundary is encoded in an integration domain on the
A-cycle of a torus (see figure 2 for the standard parametrization) with τ ∈ iR+ [75]

A(γ) = {z j ∈ R, 0 < zγ(2) < zγ(3) < · · · < zγ(n) < 1}, (2.10)

with similar integration domains [76] for the non-planar open-string integrals.
The integrand of (2.9) features the open-string Green function on an A-cycle (which is

chosen to enforce GA(z, τ ) = GA(−z, τ ) and
∫ 1

0 dzGA(z, τ ) = 0 [51, 77])

GA(z, τ ) = − log

(
θ1(|z|, τ )
η(τ )

)
+

iπτ
6

+
iπ
2

, z ∈ (−1, 1) (2.11)

and the following combination of the doubly-periodic Kronecker–Eisenstein series [78]

Ω(z, η, τ ) = exp

(
2πiη

Im z
Im τ

)
θ′1(0, τ )θ1(z + η, τ )
θ1(z, τ )θ1(η, τ )

(2.12)

ϕτ
�η(1, 2, . . . , n) = Ω(z12, η23...n, τ )Ω(z23, η3...n, τ ) · · ·Ω(zn−1,n, ηn, τ ) (2.13)

7
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with ηi j...k = ηi + η j + · · ·+ ηk.9 The permutationρ ∈ Sn−1 inϕτ
�η(1, ρ(2, . . . , n)) is taken to act

on both the z j and the formal expansion variables η j ∈ C in (2.13). The conjectural basis (2.9)
is a generating function of the world-sheet integrals over the Kronecker–Eisenstein coefficients
f (w)

Ω(z, η, τ ) =
∞∑

w=0

ηw−1 f (w)(z, τ ) (2.14)

that occur in the integrands of genus-one open- and closed-string amplitudes [4, 52, 79], e.g.

f (0)(z, τ ) = 1, f (1)(z, τ ) = ∂z log θ1(z, τ ) + 2πi
Im z
Im τ

. (2.15)

While the massless four-point genus-one amplitude of the open superstring [80] is proportional
to the most singular η−3

j -order of Zτ
�η (·|1, 2, 3, 4), the analogous amplitude of the open bosonic

string additionally involves contributions of Zτ
�η (·|1, 2, 3, 4) (and its permutations in 2, 3, 4) at the

orders of η±1
j [76].10 The short-distance behavior f (1)(z, τ ) = 1

z +O(z) introduces kinematic

poles into the α′-expansion of (2.9), and the remaining f (w 
=1)(z, τ ) are regular for any z ∈ C.

2.2.2. Genus-one closed-string integrals. In the same way as (2.9) is claimed to be a universal
basis of genus-one open-string integrals, the integrals over the torus punctures for massless
genus-one amplitudes in type II, heterotic and bosonic string theories should be generated by
[61]

Yτ
�η (γ|ρ) = (2i)n−1

∫
Tn−1

⎛⎝ n∏
j=2

d2z j

⎞⎠ n∏
1�i< j

esi jGT(zi j,τ )ϕτ−→η (1, γ(2, . . . , n))

× ϕτ
(τ−τ̄ )�η(1, ρ(2, . . . , n)) (2.16)

with z1 = 0. The remaining z j are integrated over the torus T = C

τZ+Z
with modular parameter

τ ∈ H = {τ ∈ C, Im τ > 0}. The closed-string Green function

GT(z, τ ) = − log

∣∣∣∣θ1(z, τ )
η(τ )

∣∣∣∣2 + 2π(Im z)2

Im τ
(2.17)

is chosen to be modular invariant and to obey
∫
T

d2zGT(z, τ ) = 0, and its holomorphic
derivatives parallel those of the open-string Green function GA(z, τ ) in (2.11),

∂zGT(z, τ ) = − f (1)(z, τ ), 2πi∂τGT(uτ + v, τ ) = − f (2)(uτ + v, τ ) (fixed u, v)

∂vGA(v, τ ) = − f (1)(v, τ ), 2πi∂τGA(v, τ ) = − f (2)(v, τ ) − 2ζ2, (2.18)

9 Our conventions for the standard odd Jacobi theta function are

θ1(z, τ ) = q1/8(eiπz − e−iπz)
∞∏

n=1

(1 − qn)(1 − e2πizqn)(1 − e−2πizqn)

and η(τ ) is the Dedekind eta function. In order to avoid confusion with the expansion parameters η j, we always spell
out the argument τ of the Dedekind eta function. Representations of the open-string Green function in terms of elliptic
polylogarithms are discussed in [4, 5, 51], and we follow the conventions of [4] for regularizing endpoint divergences.
10 By using Fay identities and integration by parts, the massless four-point genus-one amplitude of open bosonic strings
in section 8.1.1 of [76] can be rewritten in terms of the coefficients in the η j-expansion of Zτ

�η (·|1, 2, 3, 4).

8
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where u, v ∈ R parametrize the covering space of the torus and the f (w)(z, τ ) with z = uτ + v
are defined by (2.15). The second arguments (τ − τ̄ )η j and η̄ j of the Kronecker–Eisenstein
series and their complex conjugates in (2.16) have been chosen such that each order in the η j-
and α′-expansion gives rise to modular forms of purely antiholomorphic modular weight11.

When assembling genus-one amplitudes of open and closed strings from the series Zτ
�η and

Yτ
�η , it remains to dress the component integrals in their η j-expansions with kinematic factors

that carry the dependence on the external polarizations. The latter are determined from the
conformal-field-theory correlators of the vertex operators, see e.g. [81, 82], and are unaffected
by our proposal for the single-valued map at genus one.

2.2.3. Differential equations in τ . Based on the differential equations (2.18) of the Green func-
tions and integration by parts in the z j, the open- and closed-string integrals (2.9) and (2.16)
were shown in [60, 61] to obey the differential equations

2πi∂τZτ
�η (γ|ρ) =

∞∑
k=0

(1 − k)Gk(τ )
∑

α∈Sn−1

r�η(εk)ρ
αZτ

�η (γ|α)

2πi∂τYτ
�η (γ|ρ) =

∞∑
k=0

(1 − k)(τ − τ̄ )k−2Gk(τ )
∑

α∈Sn−1

R�η(εk)ραYτ
�η (γ|α), (2.19)

respectively. The right-hand sides involve holomorphic Eisenstein series G0 = −1 and

Gk(τ ) =
∑
m,n∈Z

(m,n) 
=(0,0)

1
(mτ + n)k

, k � 4 (2.20)

as well as (n − 1)!× (n − 1)! matrices r�η(εk), R�η(εk) independent of τ that vanish for k = 2 and
k ∈ 2N− 1. This means in particular that G2(τ ) does not appear in (2.19).

The two-point instances are

rη2 (ε0) = s12

(
1
η2

2

+ 2ζ2 −
1
2
∂2
η2

)
rη2 (εk) = Rη2 (εk) = s12η

k−2
2 , k � 4

Rη2 (ε0) = s12

(
1
η2

2

− 1
2
∂2
η2

)
− 2πiη̄2∂η2 .

(2.21)

The notation εk reflects the expectation that the r�η(εk), R�η(εk) are matrix representations of
Tsunogai’s derivation algebra [83] and obey relations such as (see [17, 84, 85] for similar
relations at higher weight and depth)

[r�η(ε10), r�η(ε4)] − 3[r�η(ε8), r�η(ε6)] = 0. (2.22)

The all-multiplicity formulae for these (n − 1)!× (n − 1)! representations in [60, 61] manifest
that the r�η(εk) are linear in the si j, i.e. proportional to α′, and their closed-string analogues

11 Functions F(τ ) on the upper half plane with transformations F( ατ+β
γτ+δ ) = (γτ + δ)w (γτ̄ + δ)w̄F(τ ) under

(
α β
γ δ

)
∈

SL2(Z) are said to carry holomorphic and antiholomorphic modular weight w and w̄, respectively.

9
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R�η(εk) additionally involve terms ∼η̄ j∂η j independent of α′ (with s12...n =
∑n

1�i< jsi j):

R�η(εk) =

⎧⎪⎪⎨⎪⎪⎩
r�η(εk) : k � 4

r�η(ε0) − 2ζ2s12...n − 2πi
n∑

j=2

η̄ j∂η j : k = 0
. (2.23)

2.2.4. Basic definitions of eMZVs and MGFs. We shall now review the definitions of the
eMZVs and MGFs that occur as the expansion coefficients of the above genus-one integrals.
The η j- and α′-expansion of the open-string integrals Zτ

�η (γ|ρ) in (2.9) gives rise to A-cycle
eMZVs [4–6]

ω(n1, n2, . . . , nr|τ ) =
∫

0<z1<z2<···<zr<1

dz1 f (n1)(z1, τ ) dz2 f (n2)(z2, τ ) . . . dzr f (nr)(zr, τ )

(2.24)

introduced by Enriquez [3] which are said to carry weight n1 + n2 + · · ·+ nr and length r.
Endpoint divergences in case of n1 = 1 or nr = 1 are shuffle-regularized as in section 2.2.1
of [4]. The specific eMZVs at a given order of Zτ

�η (γ|ρ) in si j and η j can be obtained from the
differential equations (2.19) along with the initial values Zτ→i∞

�η (γ|ρ) in [60] or from matrix
representations of the elliptic KZB associator [86, 87].

The closed-string integrals Yτ
�η (γ|ρ) in (2.16) in turn introduce multiple sums over the

momentum lattice of a torus [52, 61]

Λ = Z+ τZ, Λ′ = Λ\{0} (2.25)

that are known as MGFs [10, 11]. With the removal of p = 0 from Λ, they can be thought
of as infrared-regulated and discretized versions of Feynman integrals on a torus. The MGFs
associated with Feynman graphs of dihedral topology are defined by12

C
[

a1 a2 . . . ar

b1 b2 . . . br

]
=

∑
p1,p2,...,pr∈Λ′

δ(p1 + p2 + · · ·+ pr)

pa1
1 p̄b1

1 pa2
2 p̄b2

2 . . . par
r p̄br

r
, (2.26)

and more general topologies are for instance discussed in [11, 62]. The simplest examples
of dihedral MGFs (2.26) have two columns and are associated with one-loop graphs on the
world-sheet

C
[

a 0
b 0

]
=

∑
p∈Λ′

1
pa p̄b

, (2.27)

whereas C
[

a1 a2 . . . ar

b1 b2 . . . br

]
are referred to as (r − 1)-loop MGFs. As long as the entries

obey a + b > 2, the lattice sums (2.27) are absolutely convergent and the one-loop MGFs are
expressible in terms of non-holomorphic Eisenstein series Ek(τ ) and their Cauchy–Riemann
derivatives

12 Note that the definition of C[. . .] in this work follows the conventions of [18, 61, 62] but differs from those in [11,
52, 54, 88] by factors of Im τ and π.

10
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Ek(τ ) =

(
Im τ

π

)k

C
[

k 0
k 0

]
, ∇mEk(τ ) =

(Im τ )k+m

πk

(k + m − 1)!
(k − 1)!

C
[

k + m 0
k − m 0

]
,

∇mEk(τ ) =
(Im τ )k+m

πk

(k + m − 1)!
(k − 1)!

C
[

k − m 0
k + m 0

]
, (2.28)

where∇ = 2i(Im τ )2∂τ and∇ = −2i(Im τ )2∂τ̄ . As will be detailed below, both eMZVs (2.24)
and MGFs such as (2.26) can be represented via iterated integrals of holomorphic Eisenstein

series Gk = C
[

k 0
0 0

]
defined by (2.20). Both eMZVs [17] and MGFs [11, 62, 88–90] exhibit

a multitude of relations over rational combinations of MZVs, all of which are automatically
exposed in their iterated-Eisenstein-integral representation13. A computer implementation for
the decomposition of a large number of eMZVs and MGFs into basis elements is available in
[62, 92], respectively.

3. New types of genus-one integrals

The goal of this paper is to relate the α′-expansions of suitable generating functions of genus-
one open- and closed-string integrals. The Zτ

�η (γ|ρ) and Yτ
�η (γ|ρ) in (2.9) and (2.16) can be

anticipated to not yet furnish the optimal building blocks for this purpose since

(a) The τ -dependence ∼Gk(τ ) and ∼(τ − τ̄ )k−2Gk(τ ) of the open- and closed-string differ-
ential equations (2.19) does not match, even in absence of τ̄ .

(b) The contributions ∼η̄ j∂η j to the closed-string derivations R�η(ε0) in (2.21) and (2.23) do
not have any open-string counterpart in r�η(ε0).

Both of these shortcomings will be fixed by the improved open- and closed-string generating
functions Bτ

�η(γ|ρ) and Jτ
�η (γ|ρ) to be introduced in this section.

3.1. Genus-one open-string B-cycle integrals

Instead of parametrizing the cylinder boundary through the A-cycle of a torus as in (2.9), one
can perform a modular S transformation

Bτ
�η(γ|ρ) = Z−1/τ

�η (γ|ρ)

=

∫
B(γ)

⎛⎝ n∏
j=2

dz j

⎞⎠ϕτ
τ�η(1, ρ(2, . . . , n))

n∏
1�i< j

esi jGB(zi j,τ ) (3.1)

to attain a parametrization through the B-cycle (recalling that z1 = 0 and τ ∈ iR+)

B(γ) =
n⊕

j=1

B j(γ)

B j(γ) =

{
zi = τui,−

1
2
< uγ( j+1) < uγ( j+2) < · · · < uγ(n) < 0 < uγ(2)

< uγ(3) < · · · < uγ( j) <
1
2

}
, (3.2)

13 This relies on the linear-independence result of [91] on holomorphic iterated Eisenstein integrals.

11
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Figure 3. The parametrization (3.2) of the B-cycle is mapped to the positive real axis in
the σ j = e2πiz j variables which exhausts all of R+ as τ → i∞ and q = e2πiτ → 0. The
line segments in the z-coordinate and the semicircles in the σ-coordinate marked by ||
are identified by the periodic direction of the cylinder, i.e. the B-cycle of the parental
torus.

where ui ∈ R, and the B-cycle Green function GB(z, τ ) is constructed in two steps: first, we
define GB(z, τ ) for z on the line (0, τ) by [77]

GB(z, τ ) = GA

(
z
τ

,− 1
τ

)
= − iπz2

τ
− log

(
θ1(z, τ )
η(τ )

)
− iπ

6τ
+ iπ, z ∈ (0, τ ). (3.3)

Then, we extend this to z ∈ (−τ , 0) by imposing GB(z, τ ) = GB(−z, τ ) for compatibility with
(2.11) under modular S transformations, leading to the combined expression

GB(uτ , τ ) = −iπu2τ − log

(
θ1(|u|τ , τ )

η(τ )

)
− iπ

6τ
+ iπ, u ∈ (−1, 1). (3.4)

Instead of integrating over zi = τui with ui ∈ (0, 1), we have chosen the representative
ui ∈ (− 1

2 , 1
2 ) of the B-cycle in order to facilitate the comparison with genus-zero integration

cycles as τ → i∞. Figure 3 illustrates the integration cycle (3.2) in both the z j and σ j = e2πiz j

variables (the latter becoming the coordinates on the sphere as τ → i∞), where z j ∈ iR and
σ j ∈ R+ for purely imaginary choices of τ . Note that non-planar versions of the B-cycle
integrals involve additional punctures at z j ∈ 1

2 + iR or negative σ j ∈ (−q−1/2,−q1/2).
The modular transformation Ω(z, η,− 1

τ
) = τΩ(τz, τη, τ ) of the doubly-periodic

Kronecker–Eisenstein series (2.12) leads to the rescaling η j → τη j in the subscript of
the ρ-dependent integrand ϕτ

τ�η of (3.1).

3.2. Dual closed-string integrals

The doubly-periodic integrandsϕτ
�η in (2.13) are non-holomorphic, so their complex conjugates

in (2.16) obey

∂z jϕ
τ−→η (1, γ(2, . . . , n)) =

2πiη̄ j

τ − τ̄
ϕτ−→η (1, γ(2, . . . , n)) (3.5)

which leads to the terms ∼η̄ j∂η j in the closed-string derivations R�η(ε0) in (2.23). This intro-
duces a tension between the open- and closed-string differential equation (2.19) such that the
ϕτ
�η do not qualify as Betti–deRham duals of open-string integration cycles. In order to general-

ize the interplay of Parke–Taylor factors (2.4) with single-valued integration [48, 49] to genus

12
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one, the factor of ϕτ−→η (. . .) in the Yτ
�η integrals (2.16) needs to be replaced by an antimeromor-

phic function that is still well-defined on the torus, i.e. the complex conjugate of an elliptic
function in all of z1, z2, . . . , zn.

Such elliptic functions of n punctures can be generated by cycles of Kronecker–Eisenstein
series [79]

Ω(z12, ξ, τ )Ω(z23, ξ, τ ) . . .Ω(zn1, ξ, τ )=: ξ−n
∞∑

w=0

ξwVw(1, 2, . . . , n|τ ), (3.6)

where Vw has holomorphic modular weight w. Even though the individual Kronecker–
Eisenstein series Ω are not meromorphic in the z j, the Vw are elliptic functions since the
non-holomorphic phase factors in (2.12) cancel from the cyclic product in (3.6). The simplest
examples are

V0

(
1, 2, . . . , n|τ

)
= 1

V1

(
1, 2, . . . , n|τ

)
=

n∑
j=1

f (1)
(
z j − z j+1, τ

)
V2

(
1, 2, . . . , n|τ

)
=

n∑
j=1

f (2)
(
z j − z j+1, τ

)
+

n∑
1� j<k

f (1)
(
z j − z j+1, τ

)
× f (1)

(
zk − zk+1, τ

)
(3.7)

with zn+1 = z1 and Kronecker–Eisenstein coefficients f (w) defined by (2.14), also see (5.2) for
the analogous expressions at general w.

As will be detailed below, these elliptic functions degenerate to suitable combinations of
Parke–Taylor factors when forming the linear combinations

V(1, 2, . . . , n|τ ) =
n−2∑
w=0

Vw(1, 2, . . . , n|τ )
(2πi)w (n − w − 1)!

(3.8)

such as (see sections 5.4 and 5.5 for detailed discussions of the three- and four-point examples)

V
(
1, 2|τ

)
= 1, V

(
1, 2, 3|τ

)
=

1
2
+

V1
(
1, 2, 3|τ

)
2πi

V
(
1, 2, 3, 4|τ

)
=

1
6
+

1
2

V1
(
1, 2, 3, 4|τ

)
2πi

+
V2

(
1, 2, 3, 4|τ

)
(2πi)2

V
(
1, 2, 3, 4, 5|τ

)
=

1
24

+
1
6

V1
(
1, 2, 3, 4, 5|τ

)
2πi

+
1
2

V2
(
1, 2, 3, 4, 5|τ

)
(2πi)2

+
V3

(
1, 2, 3, 4, 5|τ

)
(2πi)3 . (3.9)

To lend credence to this definition of the V-function, let us see how their properties parallel
those of the genus-zero case: the Betti–deRham duality at genus zero relies on the simple-pole
residues

Resz j=z j±1 PT(1, 2, . . . , j, . . . , n) = ±PT(1, 2, . . . , j − 1, j + 1, . . . , n) (3.10)

13
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of the Parke–Taylor factors (2.4). These residues correspond to the situation when two neigh-
boring points of the disk ordering (2.2) at z j = z j±1 come together, which is crucial for sphere
integrals being single-valued disk integrals [43, 45].

Similarly, at genus one, the generating function (3.6) of the elliptic Vw functions exposes
the recursive structure of their simple-pole residues

Resz j=z j±1 Vw(1, 2, . . . , j, . . . , n) = ±Vw−1(1, 2, . . . , j − 1, j + 1, . . . , n) (3.11)

and the absence of higher poles in z j − z j±1. Consequently, the pole structure of the elliptic
combinations (3.8)

Resz j=z j±1 V(1, 2, . . . , j, . . . , n) = ± 1
2πi

V(1, 2, . . . , j − 1, j + 1, . . . , n) (3.12)

mirrors the boundaries of the open-string integration cycles as z j = z j±1, i.e. one recovers
mutually consistent V-functions and cycles at multiplicity n − 1 in both cases14.

The absence of Vw with w � n − 1 in (3.8) can be understood from

• The vanishing of Vn−1(1, 2, . . . , n|τ ) since (3.6) would otherwise be an elliptic function of
ξ with a simple pole at the origin [79]

• The breakdown of uniform transcendentality when expanding Koba–Nielsen integrals
involving Vn(1, 2, . . . , n|τ ) [52] (which is in tension with the transcendentality properties
of open-string integrals [60])

• The fact that Vw�n+1(1, 2, . . . , n|τ ) is expressible in terms of Gw−kVk(1, 2, . . . , n|τ ) with
k � n − 2 [79]

Similar to the closed-string integrals Yτ
�η , we define an (n − 1)!× (n − 1)! matrix of torus

integrals

Jτ
�η (γ|ρ) = (2i)n−1

∫
Tn−1

⎛⎝ n∏
j=2

d2z j

⎞⎠ n∏
1�i< j

esi jGT(zi j,τ )V(1, γ(2, . . . , n))

× ϕτ
(τ−τ̄ )�η(1, ρ(2, . . . , n)) (3.13)

indexed by permutations γ, ρ ∈ Sn−1 of (3.8) and (2.13). Note that the cyclic symmetry

Vw(2, . . . , n, 1|τ ) = Vw(1, 2, . . . , n|τ ), V(2, . . . , n, 1|τ ) = V(1, 2, . . . , n|τ ) (3.14)

exposed by the generating function (3.6) has been used to bring the integrand of (3.13) into the
form of V(1, . . . |τ ).

3.3. Asymptotics at the cusp

The modular S transformation in (3.1) maps the A-cycle eMZVs (2.24) in the η j- and α′-
expansion of Zτ

�η to B-cycle eMZVs [3] in the analogous expansion of Bτ
�η . As detailed in

[51, 77, 93], the asymptotic expansion of B-cycle eMZVs as τ → i∞ is governed by Lau-
rent polynomials in T = πτ ∈ iR+ whose coefficients are Q-linear combinations of MZVs,

14 On the closed-string side of the ‘genus-one Betti–deRham duality’ we note that, by double-periodicity of the V-
functions, additional poles with identical residues occur as z j → z j±1 + mτ + n (m, n,∈ Z). On the open-string side
in turn, the delimiters of the integration cycles in the B-cycle parametrization of figure 3 are separated by τ .
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for instance

ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
= − T2

180
− ζ2

2
+

iζ3

T
+

3ζ4

2T2
+O

(
e2iT

)
ω

(
0, 0, 1, 0

∣∣∣∣− 1
τ

)
=

iT
120

− iζ2

4T
− 3ζ3

4T2
+

3iζ4

4T3
+O

(
e2iT

)
ω

(
0, 0, 3, 0

∣∣∣∣− 1
τ

)
=

iT3

1260
− 3iζ4

4T
− 9ζ5

2T2
+

15iζ6

2T3
+O

(
e2iT

)
.

(3.15)

The suppressed terms O(e2iT) are series in q = e2πiτ = e2iT with Laurent polynomials in T as
their coefficients.

The MGFs (2.26) in the η j- and α′-expansion of (2.16) admit similar expansions around
the cusp, where the leading term is a Laurent polynomial in y = π Im τ instead of T . The
coefficients in the Laurent polynomials of MGFs were shown to be Q-linear combinations of
MZVs15 [15] and are conjectured to be single-valued MZVs [10, 12]. Simple examples of the
asymptotics of MGFs include

E2 (τ ) =
y2

45
+

ζ3

y
+O

(
e−2y

)
π∇E2 (τ )

y2
=

2y
45

− ζ3

y2
+O

(
e−2y

)
E3 (τ ) =

2y3

945
+

3ζ5

4y2
+O

(
e−2y

)
,

(3.16)

see (2.28) for the lattice-sum representations of the non-holomorphic Eisenstein series.
In a variety of examples, the Laurent polynomials of MGFs and B-cycle eMZVs have been

related by an extension of the single-valued map (2.7) to [16, 51, 52]

sv T = 2iy ⇔ sv log(q) = log |q|2. (3.17)

By (3.15) and (3.16), for instance, the Laurent polynomials of ω(0, 0, 2| − 1
τ ) → E2(τ ) as well

as ω(0, 0, 1, 0| − 1
τ

) →− 3
8
π∇E2(τ )

y2 and ω(0, 0, 3, 0| − 1
τ
) → 3E3(τ ) are related by (3.17).

The A-cycle eMZVs in Zτ
�η , by contrast, enjoy a Fourier expansion in q = e2πiτ whose coef-

ficients are Q[(2πi)−1] combinations of MZVs [3, 17] and do not feature any analogues of the
Laurent polynomials in the expansion of Bτ

�η . This is yet another indication besides their differ-
ential equations that the B-cycle integrals (3.1) are a more suitable starting point for comparison
with closed-string integrals than their A-cycle counterparts (2.9).

3.4. Single-valued correspondence of the Laurent polynomials

As a particular convenience of the elliptic combinations (3.8) in the integrands of Jτ
�η (γ|ρ),

their degeneration at the cusp gives rise to Parke–Taylor factors in n + 2 punctures (σ1 = 1 by
z1 = 0)

σ j = e2πiz j , σ+ = 0, σ− →∞. (3.18)

15 See [12] for an earlier proof of the weaker statement that the Laurent polynomials of modular graph functions are
Q-linear combinations of cyclotomic MZVs.
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Since the non-holomorphic exponentials of Ω(z, ξ, τ ) = exp(2πiξ Im z
Im τ )F(z, ξ, τ ) cancel from

the cyclic products in (3.6), one can determine the asymptotics of V(. . . |τ ) as τ → i∞ by
using the degeneration of the holomorphic Kronecker–Eisenstein series

F(zi j, ξ, τ ) = π cot(πξ) + iπ
σi + σ j

σi − σ j
+O(q). (3.19)

The relative factors of the Vw in (3.8) have been engineered to obtain the following cyclic
combinations of Parke–Taylor factors at the cusp,

lim
τ→i∞

V(1, 2, . . . , n|τ )
σ1σ2 . . . σn

= (−1)n−1 lim
σ−→∞

|σ−|2
[

PT(+, n, n − 1, . . . , 2, 1,−)

+ cyc(1, 2, . . . , n)

]
, (3.20)

which have featured in the context of one-loop gauge-theory amplitudes in ambitwistor string
theories [94]. The denominators on the left-hand side of (3.20) arise from dz j =

dσ j
2πiσ j

, and the

factor of |σ−|2 on the right-hand side identifies functions on a degenerate torus with SL2-fixed
expressions at genus zero [65]. Given that Parke–Taylor factors are Betti–deRham dual to disk
orderings D(. . .) in (2.2), the τ → i∞ asymptotics of Jτ

�η (γ|ρ) should yield the single-valued
map of suitably chosen disk integrals. In fact, upon rewriting the B-cycle ordering in terms of
the σ j variables (3.18), each of the contributions B j(γ) in (3.2) and figure 3 degenerates to a
single disk ordering

B j (γ) |τ→i∞ = (−1)n−1
D (+, γ ( j, j − 1, . . . , 3, 2) , 1, γ (n, n − 1, . . . , j + 1) ,−) , (3.21)

such that the overall B-cycle ordering B(γ) =
⊕n

j=1B j(γ) at the cusp becomes the
Betti–deRham dual to the cyclic combination of Parke–Taylor factors in (3.20),

B (2, 3, . . . , n) |τ→i∞ = (−1)n−1
n⊕

j=1

D (+, j, j − 1, . . . , 3, 2, 1, n, n− 1, . . . , j + 1,−) .

(3.22)

Hence, the tree-level result (2.8) provides evidence for our central conjecture

Jτ
�η (γ|ρ) |LP = sv Bτ

�η(γ|ρ) |LP, (3.23)

where the notation |LP instructs to only keep the Laurent polynomials in τ and Im τ while
discarding any contribution ∼q, q̄. The conjectural part of (3.23) concerns the non-constant
terms in the Laurent polynomials, i.e. corrections ∼(log q)±1 to the expansion around the cusp
q = 0, so it is not implied by the Betti–deRham duality of (3.2) and (3.20) which only holds
at the cusp. That is why we support (3.23) by extensive tests at low orders in η j,α

′ as detailed
below, and by the fact that the asymptotic expansions of the Green functions are related by the
single-valued map with sv logσi j = log|σi j|2,

GB(zi j, τ ) |LP = − iT
6

− iζ2

T
+

1
2

(log σi + log σ j) − log |σi j|

+
i(log σi − log σ j)2

4T
(3.24)
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GT(zi j, τ ) |LP =
y
3
+ log |σi|+ log |σ j| − 2 log |σi j|+

(
log |σi| − log |σ j|

)2

2y

= svGB(zi j, τ ) |LP. (3.25)

Note that the absolute value in (3.24) is due to the argument |u|τ of θ1 in (3.4). For the two-
point instances Bτ

�η and Jτ
�η of the open- and closed-string integrals (3.1) and (3.13), the Laurent

polynomials in the asymptotics at the cusp can be determined [95] by mild generalizations
of the techniques in [16, 55] (also see [56] for an alternative approach to the closed-string
case):

Bτ
η(2|2) |LP = exp

(
− is12T

6
− is12ζ2

T

){
[i cot(η2T) + 1] exp

(
is12

4T
∂2
η2

)
1

s12 + 2η2

×
[
Γ(1 + s12

2 + η2)Γ(1 − s12)
Γ(1 − s12

2 + η2)
− eiT(

s12
2 +η2)

]
+ [i cot(η2T) − 1]

× exp

(
is12

4T
∂2
η2

)
1

s12 − 2η2

[
Γ(1 + s12

2 − η2)Γ(1 − s12)
Γ(1 − s12

2 − η2)
− eiT(

s12
2 −η2)

]
+

1
s12

exp

(
is12

4T
∂2
η2

)[
Γ(1 + s12

2 − η2)Γ(1 − s12)
Γ(1 − s12

2 − η2)

− Γ(1 + s12
2 + η2)Γ(1 − s12)

Γ(1 − s12
2 + η2)

]}
(3.26)

Jτη (2|2) |LP = exp
( s12y

3

){
[i cot(2iη2y) + 1] exp

(
s12

8y
∂2
η2

)
1

s12 + 2η2

×
[
Γ(1 + s12

2 + η2)Γ(1 − s12)Γ(1 + s12
2 − η2)

Γ(1 − s12
2 + η2)Γ(1 + s12)Γ(1 − s12

2 − η2)
− e−y(s12+2η2)

]
+ [i cot(2iη2y) − 1] exp

(
s12

8y
∂2
η2

)
1

s12 − 2η2

×
[
Γ(1 + s12

2 + η2)Γ(1 − s12)Γ(1 + s12
2 − η2)

Γ(1 − s12
2 + η2)Γ(1 + s12)Γ(1 − s12

2 − η2)
− e−y(s12−2η2)

]}
(3.27)

These two-point expressions are easily seen to line up with the all-multiplicity claim (3.23)
since

sv

[
Γ(1 − a)Γ(1 − b)
Γ(1 − a − b)

]
=

Γ(1 − a)Γ(1 − b)Γ(1 + a + b)
Γ(1 + a)Γ(1 + b)Γ(1 − a − b)

, (3.28)

and the last line of (3.26) therefore vanishes under sv. Moreover, we have checked the three-
point Laurent polynomials to obey (3.23) to the orders in the si j- and η j-expansions where
MGFs such as (2.26) of total modular weight 10 occur16. Finally, we have checked (3.23) to
hold at four points to the orders where MGFs of total modular weight 8 occur, at least for

16 This amounts to performing the α′- and η-expansion to order 10 in the terminology of section 3.4.2 of [18].
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contributions from ϕτ
�η in (2.13) without any singular factors of f (1)(zi j, τ ).17 These checks

are based on Enriquez’ methods [3] (also see appendix B of [51]) to determine the Laurent
polynomials of B-cycle eMZVs. The Laurent polynomials for all B-cycle eMZVs with (length
+ weight) � 16 obtained from an FORM implementation [96] of these methods are available
for download [97].

While the two-point Laurent-polynomials generated by (3.26) and (3.27) only involve Rie-
mann zeta values, higher-point examples also introduce irreducible MZVs of depth � 2. The
appearance of ζ3,5 in B-cycle Laurent polynomials is later on exemplified in (4.27) and (5.37).
Moreover, the appearance of ζ3,5,3 in open- and closed-string calculations at three points in
agreement with (3.23) was observed in section 3.3.5 of [51], based on earlier closed-string
computations [12].

3.5. Single-valued correspondence of the differential equations

The holomorphic derivatives of the Bτ
�η and Jτ

�η -integrals (3.1) and (3.13) can be easily deduced

from (2.19): in the open-string case, the modular S transformation relating Bτ
�η = Z−1/τ

�η and the
modular weight (k, 0) of the holomorphic Eisenstein series Gk give rise to

∂

∂ log q
Bτ
�η(γ|ρ) =

1
(2πi)2

∞∑
k=0

(1 − k)τ k−2Gk(τ )
∑

α∈Sn−1

r�η(εk)ρ
αBτ

�η(γ|α), (3.29)

see [60] for the n-point derivations r�η(εk) and (2.21) for their two-point examples. Since the
single-valued map at genus zero acts on transcendental constants, we have passed to the differ-
ential operator ∂

∂ log q = (2πi)−1∂τ in comparison to (2.19) and in preparation for the extended
single-valued map to be introduced below around (3.32).

In the closed-string case, the V(. . . |τ ) in (3.13) are not affected by holomorphic derivatives,
and one can import a simplified version of the differential equations in [61] where contributions
∼η̄ j∂η j are absent,

∂

∂ log q
Jτ
�η (γ|ρ) =

1
(2πi)2

∞∑
k=0

(1 − k)(τ − τ̄ )k−2Gk(τ )

×
∑

α∈Sn−1

sv r�η(εk)ραJτ
�η (γ|α). (3.30)

By the differential equation (2.18) of the Green functions, also the term ∼ζ2 in r�η(ε0) is absent
which we have indicated through the sv notation,

sv r�η(εk) =

{
r�η(εk) : k � 4

r�η(ε0) − 2ζ2s12...n : k = 0
, (3.31)

where r�η(ε2) = 0. The building blocks of the closed-string differential operator in (3.30) are
related to those in the open-string analogue (3.29) through an extension SV of the single-valued

17 We have excluded the singular functions f (1)(zi j, τ ) = 1
zi j

+O(zi j) in the integrand from our checks to avoid the
tedious treatment of the resulting kinematic poles in the α′-expansion. For the contributions of V0 and V1 to the
integrand V(1, 2, 3, 4|τ ) in (3.9), we have checked the Laurent polynomials from up to one factor of f (1)(zi j, τ ) in the
integrand to obey (3.23), see section 3.6 for the disentanglement of different Vw entering V(1, 2, . . . , n|τ ).
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map (recall that T = πτ and y = π Im τ )

SV

[
(2πiτ )k−2 Gk(τ )

(2πi)k
r�η(εk)

]
= SV

[
(2iT)k−2

]
SV

[
Gk(τ )
(2πi)k

]
SV

[
r�η(εk)

]
= (−4y)k−2 Gk(τ )

(2πi)k
sv r�η(εk)

=
1

(2πi)2
(τ − τ̄ )k−2Gk(τ )sv r�η(εk) (3.32)

which is taken to preserve the properties of sv,

SV ζn1,n2,...,nr = sv ζn1,n2,...,nr , SV T = 2iy (3.33)

and to furthermore preserve (2πi)−kGk(τ ) (the inverse powers of π ensuring rational coef-
ficients in the q-expansion) and the η j-variables, cf (3.32). In other words, the differential
operator Oτ

�η = (2πi)−2
∑∞

k=0(1 − k)τ k−2Gk(τ )r�η(εk) appearing in (3.29) and its closed-string
analogue in (3.30) are related by

∂Bτ
�η(γ|ρ)

∂ log q
=

∑
α∈Sn−1

Oτ
�η (ρ|α)Bτ

�η(γ|α) ↔

∂Jτ�η (γ|ρ)

∂ log q
=

∑
α∈Sn−1

[
SVOτ

�η (ρ|α)
]

Jτ
�η (γ|α). (3.34)

From the above discussion, both the τ → i∞ asymptotics and the differential operators of
the open- and closed-string integrals Bτ

�η and Jτ
�η are related by the SV map (3.33). Hence, we

propose that the solutions of (3.34) yield an appropriate extension of the SV map

Jτ�η (γ|ρ) = SV Bτ
�η(γ|ρ). (3.35)

This proposal is key the result of this work, relating the open-string integrals Bτ
�η(γ|ρ) in (3.1)

with integration ordering γ to the closed-string integrals Jτ�η (γ|ρ), where the ordering γ gov-
erns the singularity structure of the antielliptic integrand V in (3.13). By construction, this SV
map commutes with the holomorphic τ -derivative and, under the assumption (3.23), it is con-
sistent at the level of the Laurent polynomials at the cusp. Compatibility of a single-valued
map at genus one with τ → i∞ generalizes the fact that the single-valued map of multiple
polylogarithms commutes with evaluation [46]. Moreover, by the evidence to be discussed in
section 4.3, the SV map is expected to be compatible with the shuffle product. As we will see
in the next section, the α′-expansion of (3.35) induces an elliptic single-valued map for the
eMZVs generated by Bτ

�η which yields the MGFs generated by Jτ�η .
Let us consider the scope of our definition (3.35). Firstly, not all the holomorphic iterated

Eisenstein integrals appear in the α′-expansion of Bτ
�η . As was discussed in [17, 18] and will

become clearer when we discuss the α′-expansion of the solution of (3.34), relations among
the r�η(εk) such as (2.22) lead to dropouts of certain iterated Eisenstein integrals from eMZVs
and Yτ

�η and thereby from Bτ
�η and Jτ

�η . Hence, (3.35) does not comprise the SV map for the
combinations of iterated Eisenstein integrals affected by these dropouts, starting with double
integrals involving G4 and G10.

By contrast, the SV map of arbitrary convergent eMZVs can be extracted from (3.35) at
sufficiently high multiplicity: as will be detailed in section 5.7, forω(n1, . . . , nr|τ ) in (2.24) with
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given entries n j (where n1, nr 
= 1), one can engineer a combination of genus-one open-string
integrals, where the desired eMZV occurs at the zeroth order in si j.18

Finally, one could wonder whether holomorphic cusp forms lead to ambiguities in the
definition of the V(1, . . . , n|τ ) in (3.8):19 Starting from n = 14 points, their defining prop-
erties including simple-pole residues, the modularity of their constituents and their behavior
(3.20) at the cusp are unchanged when adding combinations of holomorphic cusp forms and
lower-weight Vw(1, . . . , n|τ ). However, adding a cusp form without any z j-dependent coeffi-
cient to V(1, . . . , n|τ ) leads to a contradiction with the requirement that the τ -independent η1−n

order of Bτ
�η is mapped to the same term ∼η1−n in the corresponding Jτ

�η integral. Products of
Vw(1, . . . , n|τ ) with cusp forms in turn would violate the pole structure (3.12) that reflects the
boundary structure of the dual cycles. Hence, the above requirements do not leave any room
to modify V(1, . . . , n|τ ) by holomorphic cusp forms.

3.6. Dual modular weights for cycles

Given that the antielliptic Vw(. . . |τ )-functions (3.6) carry modular weight (0,w), their combi-
nations V(. . . |τ ) (3.8) mix different modular weights. Hence, the α′-expansion of the gener-
ating function (3.13) with V(. . . |τ ) in the integrand mixes modular forms of different weight,
even at fixed order in η j. One may wish to isolate the contributions at fixed modular weights
and study

Jτ
w,�η(γ|ρ) =

(2i)n−1

(−2πi)w

∫
Tn−1

⎛⎝ n∏
j=2

d2z j

⎞⎠ n∏
1�i< j

esi jGT(zi j,τ )

× Vw(1, γ(2, . . . , n)|τ )ϕτ
(τ−τ̄ )�η(1, ρ(2, . . . , n)), (3.36)

with 0 � w � n − 2, where the terms at homogeneity degree m in the η j are modular forms of
weight (0, 1 − n − m + w). One can still identify combinations of integration cycles (3.2) to
write (3.36) at fixed modular weight w and ordering γ as the single-valued version of known
open-string integrals: each Vw(1, 2, . . . , n|τ ) with w � n − 2 is expressible via permutation
sums

Vw(1, 2, . . . , n|τ ) = (2πi)w
∑

γ∈Sn−1

cw,γV(1, γ(2, . . . , n)) (3.37)

with coefficients cw,γ ∈ Q, e.g.

V0(1, . . . , n|τ ) = 1 =
∑

γ∈Sn−1

V(1, γ(2, . . . , n)) (3.38)

V1(1, 2, 3|τ ) = iπ
[
V(1, 2, 3|τ ) − V(1, 3, 2|τ )

]
(3.39)

V1(1, 2, 3, 4|τ ) = 2πi
[
V(1, 2, 3, 4|τ ) − V(1, 4, 3, 2|τ )

]
(3.40)

V2(1, 2, 3, 4|τ ) =
(2πi)2

6

[
2V(1, 2, 3, 4|τ )+ 2V(1, 4, 3, 2|τ )− V(1, 2, 4, 3|τ )

− V(1, 3, 4, 2|τ )− V(1, 3, 2, 4|τ ) − V(1, 4, 2, 3|τ )
]
. (3.41)

18 By a similar argument, each MGF can be realized in the s0
i j-order of Yτ -integrals at sufficiently high multiplicity,

see section 2.5 of [61].
19 We are grateful to Nils Matthes for valuable discussions on this point.
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Table 1. Examples of the unsigned Stirling numbers Sn−1,n−w−1 which count the number
of independent permutations γ ∈ Sn−1 of Vw(1, γ(2, . . . , n)|τ).

w

n 0 1 2 3 4 5

2 1 0 0 0 0 0
3 1 1 0 0 0 0
4 1 3 2 0 0 0
5 1 6 11 6 0 0
6 1 10 35 50 24 0
7 1 15 85 225 274 120

These relations and coefficients cw,γ can be traced back to the symmetries of the Vw-functions
including the cyclicity (3.14), the reflection property

Vw(1, 2, . . . , n|τ ) = (−1)wVw(n, . . . , 2, 1|τ ) (3.42)

and corollaries of the Fay identity [98] which have been discussed in [79, 99]. An independent
method based on the degeneration (3.20) to determine the cw,γ is described in appendix A. As
a result, there are less than (n − 1)! independent permutations Vw(1, γ(2, . . . , n)|τ ) at fixed
0 � w � n − 2 and n � 3. Their counting is governed by the unsigned Stirling number
Sn−1,n−w−1 of the first kind (where Sa,b counts the number of permutations of a elements
with b disjoint cycles) as exemplified in table 1.

In particular, permutations of Vw=n−2(1, . . . , n|τ ) are related by Kleiss–Kuijf relations
[99, 100]

(3.43)

such as

V1(1, 2, 3|τ ) = −V1(1, 3, 2|τ ), V2(1, 2, 3, 4|τ )+ cyc(2, 3, 4) = 0, (3.44)

consistent with the counting Sn−1,1 = (n − 2)! of independent permutations.
Given the decomposition (3.37) of a given Vw function with rational coefficients cw,γ , one

can by (3.35) write each Jτw,�η integral (3.36) as a combination of single-valued B-cycle integrals

Jτ
w,�η(2, . . . , n|ρ) = SV

∑
γ∈Sn−1

cw,γBτ
�η(γ|ρ). (3.45)

For instance, the equivalent

Jτ
0,η2,η3

(2, 3|ρ) = SV
[
Bτ
η2,η3

(2, 3|ρ) + Bτ
η2,η3

(3, 2|ρ)
]

Jτ
1,η2,η3

(2, 3|ρ) =
1
2

SV
[
Bτ
η2,η3

(2, 3|ρ) − Bτ
η2,η3

(3, 2|ρ)
]

(3.46)

of (3.35) together with (3.38) and (3.39) suggests to assign a formal ‘dual modular weight’ 0
and 1 to the symmetric and antisymmetric three-point cycles, respectively,

B(2, 3) +B(3, 2) ↔ dual modular weight 0

B(2, 3) −B(3, 2) ↔ dual modular weight 1. (3.47)
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Similarly, combining (3.35) with (3.38), (3.40) and (3.41) leads to the following dual modular
weights (d.m.w.) for four-point cycles

B(2, 3, 4) +B(4, 3, 2) +B(2, 4, 3) +B(3, 4, 2)+B(3, 2, 4) +B(4, 2, 3) ↔ d.m.w. 0

B(2, 3, 4) −B(4, 3, 2) ↔ d.m.w. 1

2B(2, 3, 4)+ 2B(4, 3, 2) −B(2, 4, 3) −B(3, 4, 2)−B(3, 2, 4) −B(4, 2, 3) ↔ d.m.w. 2,

(3.48)

see section 5.5 for a more detailed discussion of the weight-two case. Finally, the all-
multiplicity formula (3.37) translates into∑

γ∈Sn−1

cw,γB(γ(2, 3, . . . , n)) ↔ dual modular weight w, (3.49)

see appendix A for the rational coefficients cw,γ and table 1 for the counting of independent
n-point cycles with dual modular weight w.

4. Single-valued iterated Eisenstein integrals from α′-expansions

The goal of this section is to provide the explicit form of the single-valued map SV for the
iterated-Eisenstein-integral representation of eMZVs [17] by reading (3.35) at the level of the
α′- and η j-expansions of Bτ

�η and Jτ
�η . We will employ the formulation of iterated Eisenstein

integrals with integration kernels τ jGk, k � 4 [101],

E
[

j1 j2 . . . j�
k1k2 . . . k�

; τ

]
= (−1)�

∫
0<q1<q2<···<q�<q

dq1

q1

dq2

q2
· · · dq�

q�

�∏
r=1

(2πiτr) jr Gkr (τr)
(2πi)kr

. (4.1)

The entries are taken to obey kr � 4 and 0 � jr � kr − 2, and we use tangential-base-point
regularization for the divergences as qr → 0 [101], which implies that the iterated Eisenstein
integrals E[. . . ; τ ] vanish in the regularized limit τ → i∞.

4.1. Improving the differential equations

We shall now derive the structure of the α′-expansion of Bτ
�η and Jτ

�η by repeating the key steps
of [18] in solving the differential equation (2.19) of Yτ

�η . The first step is to introduce redefined

generating series B̂τ
�η and Ĵτ�η by

B̂τ
�η = exp

(
− r�η(ε0)

2πiτ

)
Bτ
�η , Ĵτ

�η = exp

(
− sv r�η(ε0)

2πi(τ − τ̄ )

)
Jτ
�η . (4.2)

After this redefinition, the k = 0 terms involving G0
τ2 and G0

(τ−τ̄ )2 with G0 = −1 are absent from
the analogues of the differential equations (3.29) and (3.30), see (4.4) and (4.5) below. Through-
out this section, we suppress the permutations γ, ρ labeling Bτ

�η(γ|ρ) and Jτ
�η (γ|ρ), and all matrix

representations r�η(εk) are understood to act matrix-multiplicatively on the ρ-entry.
Since the r�η(εk) are expected (as tested for a wide range of k and n) to inherit the

ad-nilpotency relations of the derivation algebra,

adk−1
r�η (ε0)r�η(εk) = 0, k � 4 (4.3)
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the combinations exp(− r�η(ε0)
2πiτ )r�η(εk�4) exp(

r�η(ε0)
2πiτ ) in the differential equations of the redefined

integrals (4.2) truncate to a finite number of terms and we obtain

2πi∂τ B̂τ
�η =

∞∑
k=4

(1 − k)
k−2∑
j=0

1
j!

(
−1
2πi

) j

τ k−2− jGk(τ )r�η
(
ad j

ε0
(εk)

)
B̂τ
�η (4.4)

2πi∂τ Ĵτ�η =
∞∑

k=4

(1 − k)
k−2∑
j=0

1
j!

(
−1
2πi

) j

(τ − τ̄ )k−2− jGk(τ )r�η
(
ad j

ε0
(εk)

)
Ĵτ
�η. (4.5)

We have used that adr�η(ε0)(·) = [r�η(ε0), ·] = adsvr�η (ε0)(·) (since the term∼ζ2 in (3.31) suppressed
by sv is commutative) and employ the shorthands

r�η
(
ad j

ε0
(εk)

)
= ad j

r�η (ε0)r�η(εk), r�η(εk1εk2 ) = r�η(εk1 )r�η(εk2 ). (4.6)

In equations (4.4), (4.5) and below, we use the derivative with respect to τ instead of log q as
compared to section 3.5 above.

4.2. The α′-expansion of Bτ
�η

By the differential equation

2πi∂τE
[

j1 j2 . . . j�
k1 k2 . . . k�

; τ

]
= −(2πi)2−k�(2πiτ ) j�Gk� (τ )E

[
j1 j2 . . . j�−1

k1 k2 . . . k�−1
; τ

]
(4.7)

of the iterated Eisenstein integrals (4.1), one can solve the differential equation (4.4) of the
generating series through the path-ordered exponential

B̂τ
�η =

∞∑
�=0

∑
k1,k2,...,k�
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k�−2∑
j�=0

(
�∏

i=1

(−1) ji(ki − 1)
(ki − ji − 2)!

)
E
[

j1 j2 . . . j�
k1 k2 . . . k�

; τ

]

× r�η
(
adk�− j�−2

ε0
(εk�) . . . adk2− j2−2

ε0
(εk2 )adk1− j1−2

ε0
(εk1 )

)
B̂i∞
�η (4.8)

for some initial value B̂i∞
�η to be discussed below. By inverting the redefinition (4.2) and moving

the exponential to act directly on the initial value, we obtain the open-string analogue

Bτ
�η =

∞∑
�=0

∑
k1,k2,...,k�
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k�−2∑
j�=0

(
�∏

i=1

(−1) ji(ki − 1)
(ki − ji − 2)!

)
β

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]

× r�η
(
adk�− j�−2

ε0
(εk�) . . . adk2− j2−2

ε0
(εk2 )adk1− j1−2

ε0
(εk1)

)
exp

(
r�η(ε0)
2πiτ

)
B̂i∞
�η (4.9)

of the key result for the α′-expansion of Yτ
�η in (3.11) of [18]. In commuting exp(

r�η(ε0)
2πiτ ) past the

εk j , the iterated Eisenstein integrals are rearranged into the combinations

β

[
j1
k1

; τ

]
=

k1− j1−2∑
p1=0

(
k1 − j1 − 2

p1

)(
i

2T

)p1

E
[

j1 + p1

k1
; τ

]
(4.10)
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and more generally

β

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]
=

k1− j1−2∑
p1=0

k2− j2−2∑
p2=0

. . .

k�− j�−2∑
p�=0

(
k1 − j1 − 2

p1

)

×
(

k2 − j2 − 2
p2

)
· · ·

(
k� − j� − 2

p�

)

×
(

i
2T

)p1+p2+···+p�

E
[

j1 + p1 j2 + p2 . . . j� + p�
k1 k2 . . . k�

; τ

]
.

(4.11)

Note that (4.9) is an alternative20 organization of open-string α′-expansions at genus one as
compared to [59, 60]. Non-planar B-cycle integrals obey the same differential equation (3.29)
as the planar ones and therefore have an α′-expansion of the same form (4.9), only their initial
values B̂i∞

�η need to be adapted to the non-planar integration cycle.
The modified iterated Eisenstein integrals β[. . .] in (4.11) satisfy the differential

equations

2πiτ 2∂τβ

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]
=

�∑
i=1

(ki − ji − 2)β

[
j1 j2 . . . ji−1 ji + 1 ji+1 . . . j�
k1 k2 . . . ki−1 ki ki+1 . . . k�

; τ

]

− δ j� ,k�−2τ
k�Gk� (τ )β

[
j1 j2 . . . j�−1

k1 k2 . . . k�−1
; τ

]
, (4.12)

which allows us to directly check that (4.9) obeys (3.29). The integrals β[. . .] inherit the
property that they vanish for τ → i∞ from the E[. . .]. Note that the definition (4.11) is
equivalent to integral representations such as

β

[
j1
k1

; τ

]
= − (2πi)1+ j1−k1

τ k1− j1−2

τ∫
i∞

dτ1 Gk1 (τ1)(τ − τ1)k1− j1−2τ j1
1

β

[
j1 j2
k1 k2

; τ

]
=

(2πi)2+ j1+ j2−k1−k2

τ k1+k2− j1− j2−4

τ∫
i∞

dτ2 Gk2 (τ2)(τ − τ2)k2− j2−2τ j2
2

×
τ2∫
i∞

dτ1 Gk1 (τ1)(τ − τ1)k1− j1−2τ j1
1 . (4.13)

The definition (4.11) of the β[. . .] preserves the shuffle relations of the iterated Eisenstein
integrals (4.1), for instance

20 On top of the modular S transformation relating Zτ
�η and Bτ

�η , the E[. . .] in (4.8) involve integration kernels τ jGk with
0 � j � k − 2 instead of the G0

0 = −1 in [59, 60]. In other words, the relations (4.3) in the derivation algebra are built
into (4.8), whereas the results in the references may require the use of shuffle relations to manifest the absence of

E
[
. . .

j � k − 1
k

. . .

]
.
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E
[

j1
k1

; τ

]
E
[

j2
k2

; τ

]
= E

[
j1 j2
k1 k2

; τ

]
+ E

[
j2 j1
k2 k1

; τ

]
⇒ β

[
j1
k1

; τ

]
β

[
j2
k2

; τ

]
= β

[
j1 j2
k1 k2

; τ

]
+ β

[
j2 j1
k2 k1

; τ

]
. (4.14)

4.3. The α′-expansion of Jτ�η

One can extend the above strategy to expand Bτ
�η via (4.4) to the Jτ

�η integrals. The idea is to
solve their differential equation (4.5) order by order in α′ via

2πi∂τE sv

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]
= −(2πi)2−k�+ j�(τ − τ̄ ) j�Gk�(τ )E sv

[
j1 j2 . . . j�−1

k1 k2 . . . k�−1
; τ

]
,

(4.15)

using the combinationsE sv of holomorphic iterated Eisenstein integrals (4.1) and their complex
conjugates introduced in [18]. Their depth � = 1 instances are completely known from the
reference

E sv

[
j1
k1

; τ

]
=

j1∑
r1=0

(−2πiτ̄ )r1

(
j1
r1

)(
E
[

j1 − r1

k1
; τ

]
+ (−1) j1−r1E

[
j1 − r1

k1
; τ

])
, (4.16)

and their generalizations to depth � � 2 involve antiholomorphic integration constants α[. . .],

E sv

[
j1 j2
k1 k2

; τ

]
=

j1∑
r1=0

j2∑
r2=0

(−2πiτ̄ )r1+r2

(
j1
r1

)(
j2
r2

)

×
{
E
[

j1 − r1 j2 − r2

k1 k2
; τ

]
+ (−1) j1−r1E

[
j1 − r1

k1
; τ

]
E
[

j2 − r2

k2
; τ

]

+ (−1) j1+ j2−r1−r2E
[

j2 − r2 j1 − r1

k2 k1
; τ

]}
+ α

[
j1 j2
k1 k2

; τ

]
. (4.17)

The integration constants α[. . .] are invariant under τ → τ + 1 since the E sv[. . .] and the con-
tributions from the E[. . .], E[. . .] to (4.17) are. They are known on a case-by-case basis, for
instance

α

[
1 0
4 4

]
= α

[
0 1
4 4

]
= 0,

α

[
2 0
4 4

]
=

2ζ3

3

(
E
[

0
4

]
+

iπτ
360

)
= −α

[
0 2
4 4

]
,

α

[
2 1
4 4

]
=

2ζ3

3

(
2πiτE

[
0
4

]
− E

[
1
4

]
− π2τ 2

360

)
= −α

[
1 2
4 4

]
,

(4.18)

and the complete list of α

[
j1 j2
k1 k2

]
at k1 + k2 � 12 can be found in an ancillary file on the

journal website of this work. The integration constants at arbitrary depth can be determined
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from the reality properties of the Yτ
�η integrals [18]. The method in the reference to fix the α[. . .]

hinges on the fact that the coefficients in the η j- and η̄ j-expansion of Yτ
�η are closed under com-

plex conjugation. For the n-point Jτ�η -series in turn the antiholomorphic modular weights w̄

of the integrands V(. . .) in (3.13) are bounded by w̄ � n − 2, so the complex conjugates of
higher orders in the η j-expansion are not part of the series. Hence, in the present formulation,
the expansion of the Yτ

�η in [18] is a necessary input to obtain well-defined E sv. This expansion
depends on the knowledge of the initial values of Yτ

�η which is currently available from sphere
integrals to arbitrary weight only for two points and is under investigation for higher multi-
plicity [95]. Still, the torus-integral- and lattice-sum representations of single-valued eMZVs
in section 5.7 do not require any knowledge of Yi∞

�η and α[. . .].
By repeating the steps toward (4.8) and (4.9), we arrive at the structure of the α′-expansion

Jτ�η =

∞∑
�=0

∑
k1,k2,...,k�
=4,6,8,...

k1−2∑
j1=0

k2−2∑
j2=0

. . .

k�−2∑
j�=0

(
�∏

i=1

(−1) ji(ki − 1)
(ki − ji − 2)!

)
βsv

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]

× r�η
(
adk�− j�−2

ε0
(εk�) . . . adk2− j2−2

ε0
(εk2 )adk1− j1−2

ε0
(εk1 )

)
exp

(
− sv r�η(ε0)

4y

)
Ĵi∞
�η

(4.19)

with an initial value Ĵi∞
�η to be discussed below and the combinations analogous to (4.11) [18]

βsv

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]
=

k1− j1−2∑
p1=0

k2− j2−2∑
p2=0

. . .

k�− j�−2∑
p�=0

(
k1 − j1 − 2

p1

)

×
(

k2 − j2 − 2
p2

)
· · ·

(
k� − j� − 2

p�

)(
1
4y

)p1+p2+···+p�

× E sv

[
j1 + p1 j2 + p2 . . . j� + p�

k1 k2 . . . k�
; τ

]
. (4.20)

The expansion (4.19) solves (3.30) since the βsv inherit their differential equation from (4.15),

2πi(τ − τ̄ )2∂τβ
sv

[
j1 j2 . . . j�
k1 k2 . . . k�

; τ

]

=
�∑

i=1

(ki − ji − 2)βsv

[
j1 j2 . . . ji−1 ji + 1 ji+1 . . . j�
k1 k2 . . . ki−1 ki ki+1 . . . k�

; τ

]

− δ j�,k�−2(τ − τ̄ )k�Gk� (τ )βsv

[
j1 j2 . . . j�−1

k1 k2 . . . k�−1
; τ

]
, (4.21)

see (4.12) for the holomorphic counterpart for ∂τβ[. . .]. Both the E sv[. . .] and the βsv[. . .]
are expected to preserve the shuffle multiplication of their holomorphic counterparts (4.1)
and (4.11): the differential equations (4.15) and (4.20) recursively imply that shuffle relations
among E sv[. . .] and the βsv[. . .] can at most be violated by antiholomorphic functions such
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as the integration constants α[. . .] in (4.17).21 All examples of α

[
j1 j2
k1 k2

]
up to including

k1 + k2 = 12 were checked to preserve the shuffle relations, and their explicit form can also
be found in an ancillary file to the arXiv submission of this work. Note that these checks cover
the more intricate cases with (k1, k2) = (4, 6) and (k1, k2) = (4, 8) where imaginary cusp forms
occur among the MGFs [18, 62].

The E sv and βsv are expected to occur in Brown’s generating series of single-valued
iterated Eisenstein integrals [13, 14, 101]. The construction of non-holomorphic modular
forms in the references—so-called equivariant iterated Eisenstein integrals—are obtained
by augmenting their single-valued counterparts by combinations of MZVs and objects of
lower depth. At depth one, the equivariant iterated Eisenstein integrals are non-holomorphic
Eisenstein series along with their Cauchy–Riemann derivatives [13, 14, 101]. From their
representation [18]

(π∇)mEk =

(
−1

4

)m (2k − 1)!
(k − 1)!(k − 1 − m)!

{
−βsv

[
k − 1 + m

2k

]
+

2ζ2k−1

(2k − 1)(4y)k−1−m

}
Ek =

(2k − 1)!
[(k − 1)!]2

{
−βsv

[
k − 1

2k

]
+

2ζ2k−1

(2k − 1)(4y)k−1

}
(π∇)mEk

y2m
=

(−4)m(2k − 1)!
(k − 1)!(k − 1 − m)!

{
−βsv

[
k − 1 − m

2k

]
+

2ζ2k−1

(2k − 1)(4y)k−1+m

}
,

(4.22)

the βsv are seen to take the role of the single-valued rather than equivariant iterated Eisenstein
integrals at depth one. At higher depth, the precise relation of the βsv to Brown’s construction
is an open question at the time of writing.

4.4. Initial values

It remains to specify the initial values B̂i∞
�η and Ĵi∞

�η in the α′-expansions (4.9) and (4.19). The
Laurent-polynomial contributions from the asymptotics (3.24) and (3.25) of the Green func-
tions are still functions of τ and need to be translated into series that solely depend on η j and
si j. Following the construction of a similar initial value for Yτ

�η in section 3.4 of [18], we import
the constant parts ∼τ 0 and ∼(Im τ )0 of the respective Laurent polynomials

B̂i∞
�η = exp

(
ir�η(ε0)

2T

)
Bτ
�η

∣∣∣∣
LP

∣∣∣∣
τ0

(4.23)

Ĵi∞
�η = exp

(
sv r�η(ε0)

4y

)
Jτ
�η |LP |(Im τ )0 . (4.24)

In both cases, the exponentials ensure that the negative powers of T in Bτ
�η |LP and y in Jτ

�η |LP

disappear order by order in α′. Hence, (4.23) and (4.24) pick up the lowest powers of T, y

present in exp
(

ir�η(ε0)
2T

)
Bτ
�η |LP and exp

(
sv r�η (ε0)

4y

)
Jτ
�η |LP. The leading α′- and η2-orders of the

21 Moreover, any such violation of shuffle relations would need to be a combination of antiholomorphic iterated
Eisenstein integrals (by the differential equation [18, (2.37)] for ∂τ̄Yτ

�η ) but at the same time line up with the mod-
ular weights in the η j-expansion of Jτ

�η , Yτ
�η and the reality properties of the latter. It would be interesting to find a

rigorous argument to rule out the existence of such antiholomorphic functions.
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two-point initial values following from the expressions in (3.26) and (3.27) are

B̂i∞
η2

=
1
η2

[
1 +

1
6

s2
12ζ2 +

1
12

s3
12ζ3 +

131
720

s4
12ζ4 + s5

12

(
17

360
ζ2ζ3 +

43ζ5

720

)
+O(s6

12)

]
+ η2

[
−2ζ2 − s12ζ3 −

29
12

s2
12ζ4 − s3

12

(
1
3
ζ2ζ3 +

5ζ5

6

)
− s4

12

(
1
12

ζ2
3 +

87ζ6

40

)
+O(s5

12)

]
+ η3

2

[
−2ζ4 + s12(2ζ2ζ3 − ζ5) + s2

12

(
ζ2

3

2
− 33ζ6

8

)
+ s3

12

(
9
4
ζ3ζ4 +

3
2
ζ2ζ5 −

7ζ7

4

)
+O(s4

12)

]
+ η5

2

[
−2ζ6 + s12(2ζ4ζ3 + 2ζ2ζ5 − ζ7) + s2

12

(
−ζ2ζ

2
3 + ζ3ζ5 −

43ζ8

6

)
+O(s3

12)

]
+ η7

2

[
−2ζ8 + s12(2ζ3ζ6 + 2ζ4ζ5 + 2ζ2ζ7 − ζ9) +O(s2

12)
]

+ η9
2 [−2ζ10 +O(s12)] +O(η11

2 ) (4.25)

as well as

Ĵi∞
η2

=
1
η2

[
1 +

1
6

s3
12ζ3 +

43
360

s5
12ζ5 +O

(
s6

12

)]
+ η2

[
−2s12ζ3 −

5
3

s3
12ζ5 −

1
3

s4
12ζ

2
3 +O

(
s5

12

)]
+ η3

2

[
−2s12ζ5 + 2s2

12ζ
2
3 − 7

2
s3

12ζ7 +O
(
s4

12

)]
+ η5

2

[
−2s12ζ7 + 4s2

12ζ3ζ5 +O
(
s3

12

)]
+ η7

2

[
−2s12ζ9 +O

(
s2

12

)]
+ η9

2O (s12) +O
(
η11

2

)
. (4.26)

Higher orders in s12 and η2 are readily available through the straightforward expansion of the
exponentials and Γ-functions in (3.26) and (3.27). In particular, these two-point expressions
imply that all the coefficients in the s12- and η2-expansions are combinations of Riemann zeta
values for B̂i∞

η2
and odd Riemann zeta values for Ĵi∞

η2
.

Starting from n = 3 points, the initial values B̂i∞
�η will also feature irreducible MZVs of

higher depth. Based on Enriquez’ method to generate the Laurent polynomial of B-cycle
eMZVs [3] (also see appendix B of [51]) we have determined the three-point initial values
to certain orders, and the results are included in an ancillary file to the arXiv submission of this
article. To the orders under consideration, we find the following coefficients of ζ3,5

B̂i∞
η2,η3

(2, 3|2, 3) |ζ3,5 =
1
10

(η23 − 2η3)(2η23 − η3)(η23 + η3)

×
[
2η2

23s13 − 2η23η3s12 − 4η23η3s13 + 2η2
3s13

− 2η23η3s23 + η23s12s13 + η3s13s23 +O(s3
i j)
]
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B̂i∞
η2,η3

(2, 3|3, 2) |ζ3,5 = − 1
10

(η2 − 2η23)(2η2 − η23)(η2 + η23)

×
[
2η2

2s12 − 4η2η23s12 + 2η2
23s12 − 2η2η23s13

− 2η2η23s23 − η23s12s13 − η2s12s23 +O(s3
i j)
]

, (4.27)

which by the single-valued maps sv ζ3,5 = −10ζ3ζ5 and sv ζ3ζ5 = 4ζ3ζ5 enter the closed-
string initial values via

Ĵi∞
η2,η3

(2, 3|ρ(2, 3)) |ζ3ζ5 = −10B̂i∞
η2,η3

(2, 3|ρ(2, 3)) |ζ3,5

+ 4B̂i∞
η2,η3

(2, 3|ρ(2, 3)) |ζ3ζ5 . (4.28)

The coefficients of ζ3,5 and ζ3ζ5 in (4.27) and (4.28) are extracted after reducing all MZVs
at weight 8 to Q-linear combinations of {ζ8, ζ2ζ

2
3 , ζ3ζ5, ζ3,5} [102]. Similarly, the MZV ζ3,5,3

seen in Laurent polynomials of both B-cycle integrals [51] and modular graph functions [12]
will occur in both B̂i∞

η2,η3
and Ĵi∞

η2,η3
. The contributions to B̂i∞

η2,η3
involving MZVs of weight up

to and including four can be found in appendix B.
Since the initial values are obtained from the Laurent polynomials and the exponents in

(4.23) and (4.24) are related by the single-valued map, the conjecture (3.23) supported by
tree-level results and extensive genus-one tests is equivalent to

Ĵi∞
�η (γ|ρ) = sv B̂i∞

�η (γ|ρ), (4.29)

in agreement with (4.25) and (4.26).
The τ → i∞ asymptotics of n-point A-cycle integrals (2.9) has been expressed in terms

of (n + 2)-point disk integrals (2.1) in suitable kinematic limits [60]. Similarly, the Laurent
polynomials of n-point genus-one integrals Bτ

�η , Jτ
�η are determined by genus-zero integrals at

multiplicity n + 2 and below, see (3.26) and (3.27) for the explicit two-point result. As will
be further investigated in [95], the main challenge is to determine the admixture of lower-
point genus-zero integrals that generalize the subtraction of eiT(

s12
2 ±η2) and e−y(s12±2η2) from the

Γ-functions in (3.26) and (3.27).

4.5. The single-valued map on iterated Eisenstein integrals

The proposed single-valued map (3.35) can now also be studied at the level of the α′-
expansions. Using (4.29) and (3.31), we find that one obtains Jτ

�η as the single-valued version
of Bτ

�η if the coefficients obey

βsv

[
j1 j2 . . . j�
k1k2 . . . k�

; τ

]
= SVβ

[
j1 j2 . . . j�
k1k2 . . . k�

; τ

]
. (4.30)

This follows from the relation (4.29) among the initial values and the form of the r�η operators
in the respective α′-expansions, recalling that r�η(ad j

ε0
(εk)) = sv r�η(ad j

ε0
(εk)).

On the one hand, (4.30) fixes the single-valued map of the eMZVs in the expansion of
Bτ
�η that enter through the iterated Eisenstein integrals β[. . .]. On the other hand, (4.30) only

applies to the combinationsβ[. . .] and βsv[. . .] that occur in the path-ordered exponentials (4.9)

and (4.19). The SV map of individual β

[
j1 . . . j�
k1 . . . k�

; τ

]
remains undetermined whenever the

relations in the derivation algebra such as (2.22) lead to dropouts of certain β[. . .] and βsv[. . .]
from Bτ

�η and Jτ
�η (starting with cases at (k1, k2) = (10, 4) at depth � = 2 and any instance where

ji > ki − 2).
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Since the factors of i
2T and 1

4y in (4.11) and (4.20) are furthermore related by SV, (4.30) is
equivalent to

E sv

[
j1 j2 . . . j�
k1k2 . . . k�

; τ

]
= SV E

[
j1 j2 . . . j�
k1k2 . . . k�

; τ

]
, (4.31)

again up to cases where the relations in the derivation algebra cause dropouts. For instance,
(4.16) implies that the single-valued version of holomorphic Eisenstein integrals (4.1) at depth
one is given by

SV E
[

j
k
; τ

]
=

j∑
r=0

(−2πiτ̄ )r

(
j
r

)(
E
[

j − r
k

; τ

]
+ (−1) j−rE

[
j − r

k
; τ

])
, (4.32)

where the contributions on the right-hand side can be recognized as

j∑
r=0

(−2πiτ̄)r

(
j
r

)
E
[

j − r
k

; τ

]
= (2πi)1−k+ j

∫ i∞

τ

dτ1 (τ1 − τ̄ ) jGk(τ1),

(−1) j
j∑

r=0

(2πiτ̄ )r

(
j
r

)
E
[

j − r
k

; τ

]
= −(2πi)1−k+ j

∫ i∞

τ̄

dτ̄ 1 (τ̄ 1 − τ̄ ) jGk(τ1), (4.33)

respectively. Note that (4.30) fixes the SV map of all the E
[

j
k
; τ

]
at depth one with k � 4 and

0 � j � k − 2 since the caveats related to relations in the derivation algebra beyond (4.3) only
affect iterated Eisenstein integrals of depth � � 2.

The iterated Eisenstein integrals defined in (4.1) may be reorganized in terms of [17]

E0(k1, k2, . . . , k�; τ ) = 2πi
∫ i∞

τ

dτ�
G0

k�
(τ�)

(2πi)k�
E0(k1, k2, . . . , k�−1; τ ) (4.34)

with ki ∈ 2N0 and E0(; τ ) = 1. By subtracting the zero mode of the holomorphic Eisenstein
series

G0
k(τ ) = Gk(τ ) − 2ζk for k > 0 even,

G0
0(τ ) = G0(τ ) = −1, (4.35)

the integrals (4.34) are made to converge if k1 > 0, and all other cases are shuffle-regularized
based on E0(0; τ ) = 2πiτ .

At depth one, they are related to the holomorphic iterated Eisenstein integrals via [51]

E
[

j
k
; τ

]
= j! E0(0 j, k ; τ ) +

Bk(2πiτ ) j+1

k!( j + 1)
(4.36)

with Bernoulli numbers Bk. From this, we see that the implicit action of SV on these functions
at depth one is given by

SV E0(0 j, k ; τ ) =
1
j!
E sv

[
j
k
; τ

]
− Bk(−4y) j+1

k!( j + 1)!
. (4.37)
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By (4.32), (4.36) and the shuffle relation

E0(0 j, k; τ ) =
j∑

r=0

(−1) j−r

r!
(2πiτ )rE0(k, 0 j−r; τ ), (4.38)

two equivalent formulations of (4.37) are

SV E0(0 j, k ; τ ) = E0(0 j, k ; τ ) +
j∑

r=1

E0(0r ; τ )E0(0 j−r, k ; τ ) + E0(k, 0 j ; τ )

SV E0(k, 0 j ; τ ) = E0(k, 0 j ; τ ) +
j∑

r=1

E0(0 j−r, k ; τ )E0(0r ; τ ) + E0(0 j, k ; τ ), (4.39)

which match the expectation from [103].

5. Examples

We shall now spell out a variety of examples that illustrate both the pairing of cycles with
dual antielliptic integrands V(. . . |τ ) and the action of the single-valued map on eMZVs. Both
eMZVs and MGFs occur in the simultaneous expansion of the generating series Bτ

�η , Jτ
�η in si j

and η j which results in a lattice-sum representation of all convergent SVω(n1, . . . , nr| − 1
τ
) in

section 5.7. The coefficients in the η j-expansions will be referred to as component integrals,
and we will use the shorthand

f (a)
i j = f (a)(zi − z j, τ ), f (b)

i j = f (b)(zi − z j, τ ) (5.1)

for the Kronecker–Eisenstein coefficients defined by (2.14) that occur in the integrands. More
precisely, the building blocks (2.13) and (3.6) of the integrands of Bτ

�η , Jτ
�η involve the following

combinations of (5.1) with η j, j+1...n = η j + η j+1 + · · ·+ ηn,

ϕτ
�η(1, 2, . . . , n) =

∑
a2,...,an�0

ηa2−1
23...nη

a3−1
3...n . . . ηan−1

n f (a2)
12 f (a3)

23 . . . f (an)
n−1,n

Vw(1, 2, . . . , n|τ ) =
∑

a1,a2,...,an�0
a1+a2+···+an=w

f (a1)
12 f (a2)

23 . . . f (an−1)
n−1,n f (an)

n,1 . (5.2)

5.1. Two-point α′-expansions

At two points, the general definitions (3.1) and (3.13) only admit a single permutation of the
integrands and cycle in Bτ

η2
= Bτ

η2
(2|2) and Jτ

η2
= Jτ

η2
(2|2),

Bτ
η2
=

∫ τ/2

−τ/2

dz2

τη2

∞∑
a=0

τ aηa
2 f (a)

12 es12GB(z12,τ )

Jτ
η2
=

∫
T

d2z2

Im τ

1
η2

∞∑
a=0

(τ − τ̄ )aηa
2 f (a)

12 es12GT(z12,τ ), (5.3)
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and we introduce the following notation for component integrals

Bτ
(a) = Bτ

η2

∣∣∣∣
ηa−1

2

= τ a

∫ τ/2

−τ/2

dz2

τ
f (a)
12 es12GB(z12,τ )

Jτ
(a) = Jτ

η2

∣∣∣∣
ηa−1

2

= (τ − τ̄ )a

∫
T

d2z2

Im τ
f (a)
12 es12GT(z12,τ ). (5.4)

Then, combining the initial values (4.25) and (4.26) with the α′-expansions (4.9) and (4.19)
yields expressions like

Bτ
(0) = 1 + s2

12

(
−3β

[
1
4

; τ

]
+

ζ2

6
+

iζ3

2T
+

3ζ4

4T2

)
+ s3

12

(
−5β

[
2
6
; τ

]
+ 12ζ2β

[
0
4

; τ

]
+

ζ3

12
+

19iζ4

24T
− ζ5

4T2
+

ζ2ζ3

T2
− 4iζ6

3T3

)
+O(s4

12)

Bτ
(2) = −2ζ2 + s12

(
3β

[
2
4

; τ

]
− ζ3 +

3iζ4

T

)
+ s2

12

(
10β

[
3
6
; τ

]
− 18ζ2β

[
1
4

; τ

]
− 29ζ4

12
− iζ5

T
+

3iζ2ζ3

T
+

43ζ6

8T2

)
+O(s3

12)

Bτ
(4) = −2ζ4 + s12

(
5β

[
4
6

; τ

]
− 6ζ2β

[
2
4

; τ

]
+ 2ζ2ζ3 − ζ5 −

11iζ6

2T

)
+O(s2

12) (5.5)

as well as

Jτ(0) = 1 + s2
12

(
−3βsv

[
1
4

; τ

]
+

ζ3

2y

)
+ s3

12

(
−5βsv

[
2
6

; τ

]
+

ζ3

6
+

ζ5

8y2

)
+O(s4

12)

Jτ(2) = s12(3βsv

[
2
4

; τ

]
− 2ζ3) + s2

12

(
10βsv

[
3
6

; τ

]
− ζ5

y

)
+O(s3

12)

Jτ(4) = s12(5βsv

[
4
6

; τ

]
− 2ζ5) +O(s2

12)

(5.6)

upon extracting suitable powers of η2. The action of SV on the ζn, T, β[. . .] as in (3.33) and
(4.30) relates Jτ(a) = SV Bτ

(a) as expected from (3.35). Examples of β[. . .] beyond depth one
occur at the next orders in si j, e.g.

Bτ
(0)

∣∣∣∣
s4
12

= −21β

[
3
8

; τ

]
+ 9β

[
1 1
4 4

; τ

]
− 18β

[
2 0
4 4

; τ

]
− ζ2

2
β

[
1
4
; τ

]
+ 40ζ2β

[
1
6
; τ

]

+ 6ζ3β

[
0
4
; τ

]
− 3iζ3

2T
β

[
1
4

; τ

]
− 18iζ4

T
β

[
0
4
; τ

]
− 9ζ4

4T2
β

[
1
4
; τ

]
+

131ζ4

720
+

5iζ5

12T
+

iζ2ζ3

12T
+

23ζ6

32T2
+

ζ2
3

8T2
− 9iζ3ζ4

8T3
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+
iζ2ζ5

T3
− 3iζ7

8T3
+

85ζ8

192T4
(5.7)

as well as

Jτ(0)

∣∣∣∣
s4
12

= −21βsv

[
3
8

; τ

]
+ 9βsv

[
1 1
4 4

; τ

]
− 18βsv

[
2 0
4 4

; τ

]
+ 12ζ3β

sv

[
0
4
; τ

]

− 3ζ3

2y
βsv

[
1
4

; τ

]
+

5ζ5

12y
− ζ2

3

8y2
+

3ζ7

32y3

Jτ
(0)

∣∣∣∣
s5
12

= −135βsv

[
4

10
; τ

]
− 60βsv

[
3 0
6 4

; τ

]
+ 15βsv

[
1 2
4 6

; τ

]
+ 15βsv

[
2 1
6 4

; τ

]

− 60βsv

[
2 1
4 6

; τ

]
− 1

2
ζ3β

sv

[
1
4

; τ

]
+

6ζ5

y
βsv

[
0
4

; τ

]
− 3ζ5

8y2
βsv

[
1
4
; τ

]
+ 40ζ3β

sv

[
1
6
; τ

]
− 5ζ3

2y
βsv

[
2
6
; τ

]
+

43ζ5

360
+

ζ2
3

12y

+
7ζ7

32y2
− 3ζ3ζ5

16y3
+

15ζ9

128y4
. (5.8)

5.2. Extracting single-valued eMZVs

The above α′-expansions at two points have been generated in earlier work in terms of eMZVs
[51, 59] and MGFs [10, 11, 61], respectively. The results in the references include

Bτ
(0) = 1 + s2

12

(
1
2
ω

(
0, 0, 2| − 1

τ

)
+

5ζ2

12

)
+ s3

12

(
1
18

ω

(
0, 0, 3, 0| − 1

τ

)
− 4

3
ζ2ω

(
0, 0, 1, 0| − 1

τ

)
+

ζ3

12

)
+ s4

12

(
−ω

(
0, 0, 0, 2, 2| − 1

τ

)
− 5

4
ω

(
0, 0, 0, 0, 4| − 1

τ

)
+

1
8
ω

(
0, 0, 4| − 1

τ

)

+
5
8
ω

(
0, 0, 2| − 1

τ

)2

+
13
24

ζ2ω

(
0, 0, 2| − 1

τ

)
− 2ζ2ω

(
0, 0, 0, 0, 2| − 1

τ

)
+

343ζ4

576

)
+O(s5

12)

Jτ
(0) = 1 +

1
2

s2
12E2(τ ) +

1
6

s3
12 (E3(τ ) + ζ3) + s4

12

(
E2,2(τ ) +

3
20

E4(τ ) +
1
8

E2
2(τ )

)
+O(s5

12), (5.9)

where for instance (by comparison with (5.5) and (5.6))

ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
= −6β

[
1
4

; τ

]
− ζ2

2
+

iζ3

T
+

3ζ4

2T2
, E2(τ ) = −6βsv

[
1
4

; τ

]
+

ζ3

y
,

(5.10)
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and the modular transformation may be evaluated to yield [51, 93]

ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
= − T2

180
− ζ2

6
+

3ζ4

2T2
+ ω(0, 0, 2|τ ) +

8i
T
ζ2ω(0, 1, 0, 0|τ ). (5.11)

For the s2
12-order in (5.9), the component version Jτ

(a) = SV Bτ
(a) of Jτ

η2
= SV Bτ

η2
implies that

SVω

(
0, 0, 2

∣∣∣∣− 1
τ

)
= E2(τ ) (5.12)

and a similar analysis for higher orders in s12 and at a 
= 0 yields for instance

SVω

(
0, 3

∣∣∣∣− 1
τ

)
= 2π∇E2 (τ ) , SVω

(
0, 0, 4

∣∣∣∣− 1
τ

)
= −4

3
π∇E3 (τ )

SVω

(
0, 0, 3, 0

∣∣∣∣− 1
τ

)
= 3E3 (τ ) , SVω

(
0, 5

∣∣∣∣− 1
τ

)
= −4

3
(π∇)2E3 (τ ) .

(5.13)

At depth two, relating Bτ
(0)|s4

12
↔ Jτ

(0)|s4
12

(see (5.7) and (5.8)) or Bτ
(2)|s3

12
↔ Jτ

(2)|s3
12

yields

E2,2(τ ) = SV

(
−7

5
ω

(
0, 0, 0, 0, 4

∣∣∣∣− 1
τ

)
− ω

(
0, 0, 0, 2, 2

∣∣∣∣− 1
τ

)

+
1
2
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)2

+
3
20

ω

(
0, 0, 4

∣∣∣∣− 1
τ

))

π∇E2,2(τ ) = SV

(
− 1

60
ω

(
0, 5

∣∣∣∣− 1
τ

)
+

3
5
ω

(
0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 1

2
ω

(
0, 0, 2, 3

∣∣∣∣− 1
τ

))
, (5.14)

where the combinations

E2,2 =

(
Im τ

π

)4 (
C
[

2 1 1
2 1 1

]
− 9

10
C
[

4 0
4 0

])
= −18βsv

[
2 0
4 4

]
+ 12ζ3β

sv

[
0
4

]
+

5ζ5

12y
− ζ2

3

4y2

π∇E2,2 =
(Im τ )5

π3

(
C
[

3 1 1
1 1 1

]
− 8

5
C
[

5 0
3 0

])
= 9βsv

[
2 1
4 4

]
− 6ζ3β

sv

[
1
4

]
− 5ζ5

12
+

ζ2
3

2y
(5.15)

of MGFs (2.26) are engineered to avoid G8 in the differential equations [51]. The systematics of
depth-one relations between eMZVs and non-holomorphic Eisenstein series including higher-
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weight generalizations of (5.13) is detailed in appendix C.1 and leads to the closed-form results

SV
�−1∑
j=0

B j

j!
ω

(
0�− j, 2k + �

∣∣∣∣− 1
τ

)

= (−1)�
(k + �− 1)!
(2k + � − 1)!

(−4π∇)kEk+�, k � 0, � � 1, k + � � 2

SV
�−1∑
j=0

B j

j!
ω

(
0�− j, �− 2k

∣∣∣∣− 1
τ

)

= (−1)�+k (�− k − 1)!
(�− 1)!

(π∇)kE�−k

(2y)2k
, k � 0, �− 2k � 1, �− k � 2 (5.16)

for combinations of eMZVs of different length that are weighted by Bernoulli numbers Bj

[104]. Similarly, the analogue of (5.14) for the MGF E2,3 = ( Im τ
π

)5(
C
[

3 1 1
3 1 1

]
− 43

35C
[

5 0
5 0

])
and its holomorphic derivatives is spelled out in appendix C.2.

Note that the single-valued map of A-cycle eMZVs at argument τ rather than − 1
τ generi-

cally leads to combinations of MGFs of different modular weights. For instance, changing the
argument − 1

τ
to τ in (5.12) gives rise to

SVω(0, 0, 2|τ ) = − y2

15
+ E2(τ ) +

π∇E2(τ )
y

(5.17)

instead of a single modular invariant E2(τ ). This can be seen by expressing all of ω(0, 0, 2|τ),
E2(τ ) and ∇E2(τ ) in terms of convergent iterated Eisenstein integrals (4.34) and applying their
single-valued map (4.39).22 Alternatively, (5.17) can be deduced by setting τ →− 1

τ in (5.11)

and exploiting the result SVω(0, 1, 0, 0| − 1
τ
) = 3π∇E2(τ )

8y2 that will be extracted from a four-

point example in section 5.5. The much cleaner result (5.12) for SVω(0, 0, 2| − 1
τ

) as compared
to SVω(0, 0, 2|τ) is another manifestation of the fact that the differential equation (3.29) of B-
cycle integrals are more closely related to the closed-string counterparts (3.30) than the A-cycle
differential equations in (2.19).

5.3. Symmetrized cycles and graph functions

At n � 3 points, most of the antielliptic functions in (3.9) introduce non-constant f (a)
i j into

the closed-string integrands, except for the simplest case V0(1, 2, . . . , n|τ ) = 1 dual to a

22 The representations in terms of convergent iterated Eisenstein integrals needed to verify (5.17) are

ω(0, 0, 2|τ ) = −6E0(4, 0; τ ) − 1
3
ζ2

E2(τ ) =
y2

45
+

ζ3

y
− 12Re[E0(4, 0; τ )] − 6

y
Re[E0(4, 0, 0; τ )]

π∇E2(τ ) =
2y3

45
− ζ3 + 24y2E0(4; τ ) + 12yE0(4, 0; τ ) + 6Re[E0(4, 0, 0; τ )]
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permutation sum over B-cycles, see (3.38),

Jτ
0,�η(∗|ρ) =

∫
Tn−1

⎛⎝ n∏
j=2

d2z j

Im τ

⎞⎠ n∏
1�i< j

esi jGT(zi j,τ )

× ρ

⎧⎨⎩
n∏

k=2

∞∑
ak=0

(τ − τ̄ )ak (ηk,k+1...n)ak−1 f (ak)
k−1,k

⎫⎬⎭
= SV

∑
γ∈Sn−1

Bτ
�η(γ|ρ). (5.18)

As indicated by the ∗-notation, the Jτ0,�η(∗|ρ) integral (3.36) on the left-hand side is independent
of the ordering ∗ since its integrand V0 is. The symmetrized open-string integrals on the right-
hand side were studied in [16, 51, 77] as the generating series of holomorphic graph functions,

∑
γ∈Sn−1

Bτ
�η(γ|ρ) =

⎛⎜⎝ τ/2∫
−τ/2

n∏
j=2

dz j

τ

⎞⎟⎠ n∏
1�i< j

esi jGB(zi j,τ )

× ρ

⎧⎨⎩
n∏

k=2

∞∑
ak=0

τ ak (ηk,k+1...n)ak−1 f (ak)
k−1,k

⎫⎬⎭ , (5.19)

where each puncture is integrated independently over the entire B-cycle. More specifically, the
references considered the components f (ak)

k−1,k → f (0)
k−1,k = 1 at the most singular order in the η j,

(5.20)

where the dependence on the permutation ρ drops out, and the integrands at fixed order in si j

are polynomials in B-cycle Green functions. In passing to the second line, each monomial in
GB(zi j, τ ) is mapped to a graph Γ that labels the B-cycle graph functions B[Γ], where a factor
of GB(zi j, τ ) is represented by an edge connecting vertices zi and z j. One-particle reducible

graphs Γ1PR lead to vanishing B[Γ1PR] since
∫ τ/2
−τ/2dzGB(z, τ ) = 0, i.e. higher orders of (5.20)

stem from all combinations of one-particle irreducible graphs with four and more edges in
total. Any B[Γ] is expressible in terms of B-cycle eMZVs [51] since the α′-expansion of each
component integral of the series Bτ

�η(γ|ρ) is.
Similarly, modular graph functions D[Γ] (as opposed to MGFs) were defined [10, 11] by

n-point torus integrals over monomials in GT(zi j, τ ), where each torus Green function is again
visualized through an edge between vertices zi and z j. The D[Γ] associated with dihedral graphs
Γ are proportional to the lattice sums (2.26) with a j = b j, and also more complicated graph
topologies can be straightforwardly translated into lattice sums.
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The generating series of n-point modular graph functions resides at the most singular order
of (5.18) w.r.t. η j where the insertions of f (a)

i j are absent,

(5.21)

and we have D[Γ1PR] = 0 by
∫
T

d2zGT(z, τ ) = 0. As a consequence of (5.18) at the most
singular order in the η j, modular graph functions are single-valued B-cycle graph functions,

Mclosed
n = SV Mopen

n ⇔ D[Γ] = SV B[Γ], (5.22)

which ultimately follows from the ‘Betti–deRham duality’ between V0 = 1 and the sym-
metrized cycles

∑
γ∈Sn−1

B(γ(2, . . . , n)).
The relations in (5.22) have firstly appeared in [51] with a proposal ‘esv’ for an elliptic

single-valued map in the place of SV. The esv map of [51] has the same action (3.33) on MZVs
and Laurent polynomials in τ as the SV map in this work. In particular, all pairs of B-cycle
eMZVs and modular graph functions related via esvω(. . . | − 1

τ
) ∼ D[. . .] in the reference are

also related via SVω(. . . | − 1
τ

) ∼ D[. . .] as a consequence of (5.22). For suitable representa-
tions of the q-series of eMZVs via E0 defined by (4.34), the Fourier expansions of all modular
graph functions up to weight six could be reproduced from the replacement E0 → 2 Re(E0) pre-
scribed by esv [51]. However, it was an open problem in the reference to reconcile esv with
the shuffle property of iterated Eisenstein integrals. The SV action (4.30) in turn is expected
to be compatible with the shuffle multiplication of the β[. . .] and βsv[. . .] by the discussion in
section 4.3 as detailed below (4.21).

Note that subleading orders in the η j-expansion of (5.18) generate infinite families of addi-
tional relation between MGFs and single-valued eMZVs beyond (5.22). The comparison of
open- and closed-string integrals with additional insertions of f (a2)

12 f (a3)
23 . . . f (an)

n−1,n identifies
MGFs of various modular weights as single-valued B-cycle eMZVs.

5.4. Three-point cycles and V1(1, 2, 3|τ )

The simplest instance of Jτ�η (γ|ρ) = SV Bτ
�η(γ|ρ) with non-constant antielliptic integrands

V(. . . |τ ) occurs at three points. The single-valued map relates an antisymmetric integration
cycle on the open-string side in (3.46) to the closed-string integral

Jτ
1,η2,η3

(
2, 3|2, 3

)
= − 1

2πi

∫
T2

d2z2 d2z3

(Im τ )2

3∏
1�i< j

esi jGT(zi j,τ)

×
∞∑

a,b=0

(τ − τ̄ )a+bηa−1
23 ηb−1

3 f (a)
12 f (b)

23

(
f (1)
12 + f (1)

23 + f (1)
31

)
. (5.23)
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Since contributions with even a + b integrate to zero, the simplest component integrals involve

permutations of f (1)
12 f (1)

12 or f (1)
23 f (1)

12 at the orders of η−1
3 or η−1

23 ,

Jτ1,η2,η3

(
2, 3|2, 3

)
|η0

23η
−1
3

= − Im τ

π

∫
T2

d2z2 d2z3

(Im τ )2

3∏
1�i< j

esi jGT(zi j,τ)

× f (1)
12

(
f (1)
12 + f (1)

23 + f (1)
31

)
=

1
s12

+
s2

123

2s12
E2 +

s3
123

6s12
(E3 + ζ3) +

s13s23

2
(3E3 + ζ3)

+
s4

123

s12

(
E2,2 +

3
20

E4 +
1
8

E2
2

)
+ s13s23s123

(
9
2

E2,2 +
21
20

E4

)
+O

(
s4

i j

)
, (5.24)

which furnish the simplest examples of kinematic poles∼s−1
i j in a Jτ

�η -series. The corresponding
antisymmetrized B-cycle integral features the same types of kinematic poles in component
integrals involving f (1)

i j , e.g.23

1
2

[
Bτ
η2,η3

(2, 3|2, 3) − Bτ
η2,η3

(3, 2|2, 3)
]
|η0

23η
−1
3

=
1
τ

∫
− τ

2 <z2<z3<
τ
2

dz2 dz3 f (1)
12

3∏
1�i< j

esi jGB(zi j,τ )

=
1

s12
+

s2
123

s12

(
1
2
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
+

5ζ2

12

)

+
s3

123

s12

(
1
18

ω

(
0, 0, 3, 0

∣∣∣∣− 1
τ

)
− 4

3
ζ2ω

(
0, 0, 1, 0

∣∣∣∣− 1
τ

)
+

ζ3

12

)

+ s13s23

(
1
2
ω

(
0, 0, 3, 0

∣∣∣∣− 1
τ

)
+

ζ3

4

)

+
s4

123

s12

(
−ω

(
0, 0, 0, 2, 2

∣∣∣∣− 1
τ

)
− 5

4
ω

(
0, 0, 0, 0, 4

∣∣∣∣− 1
τ

)
+

1
8
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)

+
5
8
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)2

+
13
24

ζ2ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
− 2ζ2ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)
+

343ζ4

576

)

− s13s23s123

(
9
2
ω

(
0, 0, 0, 2, 2

∣∣∣∣− 1
τ

)
+

21
4
ω

(
0, 0, 0, 0, 4

∣∣∣∣− 1
τ

)
− 1

2
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)

− 9
4
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)2

+
1
2
ζ2ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
− 3ζ2ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)
+

11ζ4

40

)

+O(s4
i j). (5.25)

23 By slight abuse of notation, we denote the ordering of punctures zi, z j on the imaginary axis by − τ
2 < zi < z j <

τ
2 .
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We have used that, by the antisymmetry f (1)
12 = − f (1)

21 of the integrand, the contribution from
the ordering − τ

2 < z3 < z2 < τ
2 is minus that of the ordering − τ

2 < z2 < z3 < τ
2 . Comparison

of (5.25) with (5.24) confirms the relation (3.46) under the SV map at the respective orders in
si j and η j. Up to the restriction of the Koba–Nielsen factor to three instead of five punctures,

(5.24) and (5.25) are the type of integrals over f (1)
i j f (1)

pq seen in genus-one five-point amplitudes
of type II superstrings [105, 106].

5.5. Four-point cycles and V2(1, 2, 3, 4|τ )

The esv map [51] has also been applied to the four-gluon amplitude of the heterotic string [52],
where the torus integral24

Jτ
het =

1
(2πi)2

∫
T3

⎛⎝ 4∏
j=2

d2z j

Im τ

⎞⎠V2(1, 2, 3, 4|τ )
4∏

1�i< j

esi jGT(zi j,τ )

= Jτ
2,η2,η3,η4

(2, 3, 4|2, 3, 4) |η−1
234η

−1
34 η−1

4
(5.26)

was related to the open-string integration cycle dual to (3.39). More specifically, the MGFs in
[52]

Jτ
het |k2

j=0 = −3s13π∇E2

4y2
− (s2

13 + 2s12s23)
π∇E3

6y2
+ s13(s12s23 − s2

13)

×
(
π∇E4

5y2
+

3E2∇E2

2y2
+

3∇E2,2

y2

)
+O(s4

i j) (5.27)

were proposed to be the single-valued versions of the eMZVs in the α′-expansion of

Bτ
het =

1
6

[
2Bτ

234 + 2Bτ
432 − Bτ

243 − Bτ
342 − Bτ

324 − Bτ
423

]
Bτ

i jk = Bτ
η2,η3,η4

(i, j, k|2, 3, 4) |η−1
234η

−1
34 η−1

4
, (5.28)

namely [4]

Bτ
het |k2

j=0 = −2s13ω

(
0, 1, 0, 0

∣∣∣∣− 1
τ

)
− 2

3

(
s2

13 + 2s12s23

)
×

[
ω

(
0, 1, 0, 1, 0

∣∣∣∣− 1
τ

)
+ ω

(
0, 1, 1, 0, 0

∣∣∣∣− 1
τ

)]
+

4
3

s13
(
s2

13 − s12s23
)

×
[
ω

(
0, 0, 1, 0, 0, 2

∣∣∣∣− 1
τ

)
+ ω

(
0, 0, 0, 1, 0, 2

∣∣∣∣− 1
τ

)
− ω

(
0, 1, 0, 1, 1, 0

∣∣∣∣− 1
τ

)
− ζ2ω

(
0, 1, 0, 0

∣∣∣∣− 1
τ

)]
+O

(
s4

i j

)
. (5.29)

As indicated by |k2
j=0, the α′-expansions (5.27) and (5.29) have been obtained in the limit

of four-point on-shell kinematics with two independent Mandelstam invariants instead of six.

24 The quantity Jτ
het in (5.26) is defined to be (2πi)−2 times the complex conjugate of the integral I (2,0)

1234 in (2.44) and
(4.35) of [52]. Similarly, Bτ

het in (5.28) is obtained from the integral Z(2)
1234 in section 5.2 of [52] through modular S

transformation.
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However, the relation (3.35) between n-point closed-string and single-valued open-string inte-
grals is conjectured to be valid for the 1

2 n(n − 1) independent Mandelstam variables {si j, 1 �
i < j � n} with si j = s ji. At four points, the corollary

Jτ
2,η2,η3,η4

(2, 3, 4|ρ) =
1
6

SV
[
2Bτ

η2,η3,η4
(2, 3, 4|ρ) + 2Bτ

η2,η3,η4
(4, 3, 2|ρ)

− Bτ
η2,η3,η4

(2, 4, 3|ρ) − Bτ
η2,η3,η4

(3, 4, 2|ρ)

− Bτ
η2,η3,η4

(3, 2, 4|ρ) − Bτ
η2,η3,η4

(4, 2, 3|ρ)
]

(5.30)

of the relation (3.41) between V2(1, 2, 3, 4|τ) and permutations of the V(1, 2, 3, 4|τ) functions is
claimed to hold for all of {s12, s13, s23, s14, s24, s34} independent. The coefficient of η−1

234η
−1
34 η

−1
4

in (5.30) with ρ = 2, 3, 4 then implies

Jτ
het = SV Bτ

het (5.31)

and explains the relations between the α′-expansions (5.27) and (5.29) observed in [52] in the
on-shell limit k2

j = 0. In particular, the prescription (4.30) for the single-valued map of the
iterated-Eisenstein-integral representation of Bτ

het produces the complete q, q̄-expansion of the
MGFs in (5.27), whereas certain antiholomorphic contributions could not be reproduced by
esv in [52].

By applying (5.31) at the level of the α′-expansions (5.27) and (5.29), one can infer

π∇E2

y2
=

8
3

SVω

(
0, 1, 0, 0

∣∣∣∣− 1
τ

)
π∇E3

y2
= 4 SV

[
ω

(
0, 1, 0, 1, 0

∣∣∣∣− 1
τ

)
+ ω

(
0, 1, 1, 0, 0

∣∣∣∣− 1
τ

)]
π∇E2,2

y2
= SV

[
8
5
ω

(
0, 0, 0, 0, 0, 3

∣∣∣∣− 1
τ

)
+

2
5
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)
− 11

75
ω

(
0, 3

∣∣∣∣− 1
τ

)
− 8ω

(
0, 0, 0, 0, 1, 2

∣∣∣∣− 1
τ

)
+

ζ3

3

]
. (5.32)

Moreover, higher orders in the η j-expansion of (5.30) yield infinite families of relations
between the α′-expansions of open- and closed-string integrals over additional factors
f(a)
1i f (b)

i j f (c)
jk .

5.6. Imaginary cusp forms and double zetas

We shall finally exemplify the appearance of cuspidal MGFs from single-valued open-
string integrals whose Laurent polynomial at the order of q0q̄0 vanishes. A systematic
study of imaginary cusp forms among the two-loop MGFs can be found in [54], also
see [62] for examples of real cusp forms. The simplest imaginary cusp forms occur
among the lattice sums (2.26) at modular weights (5, 5) whose basis can be chosen25 to

25 The choice of basis in [18] is tailored to delay the appearance of holomorphic Eisenstein to higher Cauchy–Riemann
derivatives as far as possible. That is why the real MGFs − 21

4 E2,3 − 1
2 ζ3E2 have been added to the imaginary cusp

forms B2,3 +
1
2

(
Im τ
π

)5
(C

[
0 2 3
3 0 2

]
− C

[
0 2 3
3 0 2

]
) in (5.33).
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include [18]

B2,3 =

(
Im τ

π

)5
(
C

[
0 1 2 2
1 1 0 3

]
− C

[
0 1 2 2
1 1 0 3

] )
+

(∇E2)∇E3 −
(
∇E2

)
∇E3

6(Im τ )2

B′
2,3 = B2,3 +

1
2

(
Im τ

π

)5
(
C

[
0 2 3
3 0 2

]
− C

[
0 2 3
3 0 2

] )
− 21

4
E2,3 −

1
2
ζ3E2 (5.33)

The βsv-representations involve double-integrals over G4G6 [18],

B2,3 = 450βsv

[
2 1
4 6

]
− 450βsv

[
3 0
6 4

]
+ 270βsv

[
2 1
6 4

]
− 270βsv

[
1 2
4 6

]

− 3ζ3β
sv

[
1
4

]
− 300ζ3β

sv

[
1
6

]
+

45ζ3β
sv

[
2
6

]
y

+

45ζ5β
sv

[
0
4

]
y

−
27ζ5β

sv

[
1
4

]
4y2

− 13ζ5

120
,

B′
2,3 = 1260βsv

[
2 1
4 6

]
− 840ζ3β

sv

[
1
6

]
+

7ζ5

240
− ζ2

3

2y
− 147ζ7

64y2
+

21ζ3ζ5

8y3
, (5.34)

and the associated integration constants α[. . .] can be found in the reference and in an ancil-
lary file within the arXiv submission of this article. Both B2,3, B′

2,3 and their Cauchy–Riemann
derivatives drop out from Jτη2

and Yτ
η2

at two points. At three points, one can identify their
derivatives as single-valued eMZVs,

π∇B2,3 = SV

[
− 1

2
ω

(
0, 0, 2, 2, 2

∣∣∣∣− 1
τ

)
− 2ω

(
0, 0, 0, 1, 5

∣∣∣∣− 1
τ

)
− 3

8
ω

(
0, 0, 0, 2, 4

∣∣∣∣− 1
τ

)

+
ζ3

8
ω

(
0, 3

∣∣∣∣− 1
τ

)
+

17
48

ω

(
0, 3

∣∣∣∣− 1
τ

)2

+
7
8
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)

− 7
2
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 3

∣∣∣∣− 1
τ

)
+

137
16

ω

(
0, 0, 0, 0, 6

∣∣∣∣− 1
τ

)

− 15
32

ω

(
0, 0, 6

∣∣∣∣− 1
τ

)]

π∇B′
2,3 = SV

[
− 1

2
ω

(
0, 0, 2, 2, 2

∣∣∣∣− 1
τ

)
− 11ω

(
0, 0, 0, 1, 5

∣∣∣∣− 1
τ

)

+
295
8

ω

(
0, 0, 0, 0, 6

∣∣∣∣− 1
τ

)
− 25

16
ω

(
0, 0, 6

∣∣∣∣− 1
τ

)
− 11ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)

× ω

(
0, 3

∣∣∣∣− 1
τ

)
+

11
12

ω

(
0, 3

∣∣∣∣− 1
τ

)2

− 1
4
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)]

(π∇)2B′
2,3 = SV

[
− 189

80
ω

(
0, 0, 2, 5

∣∣∣∣− 1
τ

)
+

63
160

ω

(
0, 0, 4, 3

∣∣∣∣− 1
τ

)

+
603
40

ω

(
0, 0, 0, 7

∣∣∣∣− 1
τ

)
− 699

320
ω

(
0, 7

∣∣∣∣− 1
τ

)

− 1323
160

ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)]
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(π∇)3B′
2,3 = SV

[
− 63

40
ω

(
0, 3, 5

∣∣∣∣− 1
τ

)
+

567
64

ω

(
0, 0, 8

∣∣∣∣− 1
τ

)

− 63
8
ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 5

∣∣∣∣− 1
τ

)]
(5.35)

by inspecting the contributions of f (3)
12 f (3)

23 or f (4)
12 to Jτ

0,η2,η3
and f (3)

12 to Jτ
1,η2,η3

. The appearance
of the undifferentiated B2,3 and B′

2,3 is relegated to the Jτ
�η -series at four points (or the Yτ

�η -series
at three points [18]), and comparison with the B-cycle integrals yields

B2,3 = SV

[
143
20

ω

(
0, 0, 0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 11

2
ω

(
0, 0, 0, 0, 1, 4

∣∣∣∣− 1
τ

)
+ 2ω

(
0, 0, 0, 0, 2, 3

∣∣∣∣− 1
τ

)

− 2ω

(
0, 0, 0, 1, 2, 2

∣∣∣∣− 1
τ

)
− 91

40
ω

(
0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 449

7200
ω

(
0, 5

∣∣∣∣− 1
τ

)

− 5
12

ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
+

5
2
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)

+
23
12

ω

(
0, 0, 2, 3

∣∣∣∣− 1
τ

)
− 15

2
ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)

+
ζ3

4
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
− 43ζ5

480

]

B′
2,3 = SV

[
463
10

ω

(
0, 0, 0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 22ω

(
0, 0, 0, 0, 1, 4

∣∣∣∣− 1
τ

)
+ 5ω

(
0, 0, 0, 0, 2, 3

∣∣∣∣− 1
τ

)

− 2ω

(
0, 0, 0, 1, 2, 2

∣∣∣∣− 1
τ

)
− 121

20
ω

(
0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 1069

3600
ω

(
0, 5

∣∣∣∣− 1
τ

)

− 1
6
ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
+ ω

(
0, 0, 2

∣∣∣∣− 1
τ

)
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)

+
25
6
ω

(
0, 0, 2, 3

∣∣∣∣− 1
τ

)
− 24ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)
− 11ζ5

96

]
. (5.36)

The open-string counterparts of B2,3, B′
2,3 and their Cauchy–Riemann derivatives involve the

simplest combinations of B-cycle eMZVs with an irreducible ζ3,5 in their Laurent polynomials:
the methods of [3] (also see appendix B of [51]) yield the following examples of τ → i∞
degenerations in (5.35) and (5.36),

B2,3 |LP = SV

[
iT3ζ2

5040
+

29iTζ4

630
+

ζ3ζ2

8
− 8153iζ6

2880T
− 9ζ5ζ2

8T2
− 73ζ3ζ4

16T2
+

1837iζ8

240T3

+
3i

10T3
(2ζ3,5 + 5ζ3ζ5) − 39ζ5ζ4

8T4
+

45ζ3ζ6

8T4
+

33iζ10

20T5

]
= 0

(π∇)3B′
2,3 |LP = SV

[
T8

17 280
+

iT5ζ3

120
+

T4ζ4

40
− 7T2ζ6

80
− 8211ζ8

640

+
63ζ3,5

40
+

189iζ5ζ4

8T
+

63iζ3ζ6

4T
+

14 553ζ10

160T2

]
=

2y8

135
− 8y5ζ3

15
− 63ζ3ζ5

4
. (5.37)
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One can see from the order of T−3 or y−3 that the cuspidal nature of B2,3 hinges on the depth-
two result svζ3,5 = −10ζ3ζ5. The non-vanishing Laurent polynomial of (π∇)3B′

2,3 is due to
the real MGFs − 21

4 E2,3 − 1
2ζ3E2 in (5.33).

Note that the simplest instances of ζ3,7 and ζ3,5,3 arise in the Laurent polynomials of B-
cycle eMZVs with MGFs (2.26) of weights

∑r
j=1(a j + b j) = 12 and 14 in their SV mage. The

appearance of ζ3,5,3 in modular graph functions and eMZVs can be found in [12, 51], respec-
tively. While ζ3,7 drops out from MGFs under the single-valued map, it enters for instance
the T0-order of the Laurent polynomial of ω(0, 3, 7| − 1

τ
) whose SV image contributes to the

quantity (π∇)4B′
2,4 in section 9.2 of [62]

ω

(
0, 3, 7

∣∣∣∣− 1
τ

) ∣∣∣∣
LP

= − T10

1261 260
+

2iT5ζ5

315
+

2T4ζ6

63
+

7iT3ζ7

45
+

7T2ζ8

6

− ζ3,7 − 14ζ3ζ7 − 6ζ2
5 +

27ζ10

2
+

84iζ11

T
+

30iζ5ζ6

T

+
84iζ3ζ8

T
+

1353ζ12

2T2
. (5.38)

One can eventually find all Q-independent MZVs26 in the Laurent polynomials of B-cycle
eMZVs. This follows from both the degeneration limits of the elliptic KZB associator [3] and
from the fact that any MZV is expressible via Q[2πi]-linear combinations of multiple modular
values [107].

Note that the Laurent polynomials of all B-cycle eMZVs with length + weight � 16
obtained from an FORM implementation [96] of the methods of [3, 51] are available for
download from [97].

5.7. Single-valued map of individual eMZVs

While the above combinations of single-valued eMZVs were tailored to obtaining a single
MGF in the bases of [18, 51], we shall now give a closed formula for the single-valued map
of individual eMZVs. The integrands of convergent A-cycle eMZVs (2.24) with length r and
n1, nr 
= 1 arise at the s0

i j-order of the series Zτ
�η at r + 1 points. After modular S transformation,

one can obtain any convergentω(n1, . . . , nr| − 1
τ

) by isolating suitable η j-orders in the si j → 0
limit of

∑
ρ∈Sr

Bτ
�η(1, 2, . . . , r + 1|1, ρ(2, 3, . . . , r + 1)), where the permutation sum over the

orderings of the integrands (2.13) yields the integrands f (n1)
21 f (n2)

31 . . . f (nr)
r+1,1 in the definition

(2.24) of eMZVs. Hence, our proposal (3.35) implies that SVω(n1, . . . , nr| − 1
τ

) occurs at the
corresponding orders of si j and η j in the series Jτ

�η , so their definition (3.13) leads to (n1, nr 
= 1
and z1 = 0)

SVω

(
n1, n2, . . . , nr

∣∣∣∣− 1
τ

)
= (τ − τ̄ )n1+···+nr

∫
Tr

⎛⎝r+1∏
j=2

d2z j

Im τ

⎞⎠
× V(1, 2, . . . , r + 1|τ ) f (n1)

21 f (n2)
31 . . . f (nr)

r+1,1.

(5.39)

By the techniques in [52], the integral on the right-hand side can be straightforwardly
performed in terms of lattice sums over p = mτ + n ∈ Λ′ in (2.25): after expressing the

26 See [102] for a computer implementation of Q-relations among MZVs.
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Figure 4. Graphical representation of the integrand of single-valued eMZVs
(5.39): solid lines represent factors of f (w)

jk while dashed lines stand for the

f (w)
12 , f (w)

23 , . . . , f (w)
r,r+1, f (w)

r+1,1 that are compatible with the cyclic arrangement of the
arguments of V(1, 2, . . . , r + 1|τ ).

Vw-functions in terms of f (w)
jk via (5.2) and inserting the double Fourier expansions

f (w)
jk = (−1)w−1

∑
p∈Λ′

e2πi〈p,z jk〉

pw
, z jk = u jkτ + v jk, 〈p, z jk〉 = mv jk − nu jk (5.40)

the integrals
∫
T

d2z j
Im τ

=
∫ 1

0 du j

∫ 1
0 dv j lead to momentum-conservingdelta functions as seen in the

dihedral MGFs (2.26). When visualizing each factor of f (w)
jk and f (w)

jk in the integrand of (5.39)
through an edge between vertices j and k, contributions from one-particle reducible graphs

integrate to zero. There are at most r − 1 factors of f (w)
jk from the Vw�r−1(1, 2, . . . , r + 1) in

(5.39), and the admissible pairs ( j, k) are visualized via dashed lines in figure 4.
One can anticipate from the example (reproducing (5.12))

SVω

(
0, 0, 2

∣∣∣∣− 1
τ

)
= (τ − τ̄ )2

∫
T3

⎛
⎝ 4∏

j=2

d2z j

Im τ

⎞
⎠

{
1
6
− V1(1, 2, 3, 4|τ )

4πi
+

V2(1, 2, 3, 4|τ )
(2πi)2

}
f (2)

41

=

(
Im τ

π

)2∫
T3

⎛
⎝ 4∏

j=2

d2z j

Im τ

⎞
⎠ f (2)

41 f (2)
41 =

(
Im τ

π

)2∑
p∈Λ′

1
|p|4 = E2(τ ) (5.41)

that only small subset of the terms in V(1, 2, . . . , r + 1|τ ) contribute to generic single-valued

eMZVs—the right-hand side of (5.41) entirely stems from V2(1, 2, 3, 4|τ ) → f (2)
41 . Apart from

the restriction to one-particle irreducible graphs, only those Vw(1, 2, . . . , r + 1|τ ) with par-
ity (−1)w = (−1)n1+n2+···+nr contribute since lattice sums with odd overall modular weight
vanish.

Note that the torus integrals in the expression (5.39) for single-valued eMZVs converge
whenever the eMZVs themselves do: the convergence criterion n1, nr 
= 1 rules out any double
pole |z jk|−2 in the integrand (and kinematic poles s−1

jk in the Koba–Nielsen integral) since the

only overlap between the solid and dashed lines in figure 4 occurs via f (n1)
12 f (w)

12 and f(nr)
1,r+1 f(w)

1,r+1.
Based on the conjectural relation (3.23) between the Laurent polynomials, one can use

(5.39) to infer the asymptotics of the MGFs on the right-hand side by importing the Laurent
polynomials of the B-cycle eMZVs from [97] and applying the single-valued map. Moreover,
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any relation among eMZVs induces a relation among the MGFs through the lattice-sum rep-
resentation of their single-valued images. Hence, the database of MGF relations [62] can be
complemented by applying (5.39) to the eMZV relations on the website [92]. The lattice sums
contributing to SVω(n1, . . . , nr| − 1

τ ) have (anti-)holomorphic modular weights (w, w̄) sub-
ject to w = n1 + · · ·+ nr and w̄ � r − 1. Accordingly, the Laurent polynomials of B-cycle
eMZVs of length + weight � 16 [97] give access to those of various combinations of MGFs
with w + w̄ � 15.

In the remainder of this section, we will study the single-valued eMZVs in (5.39) at fixed
length r and comment on consistency checks with the properties of their SV preimages [17].
The condition n1, nr 
= 1 for convergence is taken to hold throughout. At length r = 1, for
instance, ω(2k| − 1

τ ) = −2ζ2k and ω(2k − 1| − 1
τ ) = 0 with k � 1 are annihilated by SV, in

lines with the vanishing of the torus integral over a single f (w)
12 at w 
= 0.

5.7.1. Length-two examples ω(n1, n2). Single-valued eMZVs of length r = 2 take the form
(5.39)

SVω

(
n1, n2

∣∣∣∣− 1
τ

)
= (τ − τ̄ )n1+n2

∫
T2

d2z2

Im τ

d2z3

Im τ
f (n1)

21 f (n2)
31

×

⎧⎪⎪⎨⎪⎪⎩
1
2

: n1 + n2 even

−V1(1, 2, 3|τ )
2πi

: n1 + n2 odd

, (5.42)

where the distinction between even and odd weight n1 + n2 stems from the vanishing of lattice
sums with odd modular weight. At even n1 + n2 > 0, the integrand of (5.42) is proportional to
f (n1)

21 f (n2)
31 which corresponds to a one-particle reducible graph with

SVω

(
n1, n2

∣∣∣∣− 1
τ

) ∣∣∣∣
n1+n2>0 even

= 0, (5.43)

in agreement with ω(2k1, 2k2| − 1
τ

) = 2ζ2k1ζ2k2 and ω(2k1 − 1, 2k2 − 1| − 1
τ

) = 0 [17]. For
odd weight n1 + n2, we keep n2 
= 0 and distinguish the two cases n1 = 0 and n1 
= 0, where the

only contributions of V1(1, 2, 3|τ ) to the integral (5.42) stem from f (1)
31 and f (1)

23 , respectively:

SVω

(
0, n2

∣∣∣∣− 1
τ

) ∣∣∣∣
n2 odd

= − (τ − τ̄ )n2

2πi

∫
T

d2z3

Im τ
f (n2)

31 f (1)
31 =

i
2π

(τ − τ̄ )n2C
[

n2 0
1 0

]

SVω

(
n1, n2

∣∣∣∣− 1
τ

) ∣∣∣∣n1,n2 
= 0

n1+n2 odd

= − (τ − τ̄ )n1+n2

2πi

∫
T

d2z2

Im τ

d2z3

Im τ
f (n1)

21 f (n2)
31 f (1)

23

= (−1)n1
i

2π
(τ − τ̄ )n1+n2C

[
n1 + n2 0

1 0

]
(5.44)

The resulting relation SVω(n1, n2| − 1
τ ) = (−1)n1SVω(0, n1 + n2| − 1

τ ) is consistent with
(2.33) of [17] after discarding any SVζ2k with k � 1 from the equation of the reference. In
combination with the vanishing of SVω(n1, n2) |n1+n2 even, we conclude that all single-valued
eMZVs of length two do not exceed one-loop MGFs, in lines with ω(0, 2k + 1) being iterated
Eisenstein integrals of depth one.
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5.7.2. Length-three examples ω(n1, n2, n3). Single-valued eMZVs of length three can be
written as

SVω

(
n1, n2, n3

∣∣∣∣− 1
τ

)
= (τ − τ̄ )n1+n2+n3

∫
T3

⎛⎝ 4∏
j=2

d2z j

Im τ

⎞⎠ f (n1)
21 f (n2)

31 f (n3)
41

×

⎧⎪⎪⎨⎪⎪⎩
1
6
+

V2(1, 2, 3, 4|τ )
(2πi)2

: n1 + n2 + n3 even

−V1(1, 2, 3, 4|τ )
4πi

: n1 + n2 + n3 odd

(5.45)

after discarding lattice sums of odd modular weight. For SVω(0, 0, 2k + 2| − 1
τ ), this results in

the one-loop MGFs in the second line of (C.2). Starting from weight 8, the bases ofω(n1, n2, n3)
require representatives with two non-zero entries such as ω(0, 3, 5),ω(0, 3, 7) [17], and their
single-valued versions correspond to MGFs of depth two as exemplified in section 5.6. For
any combination of three non-vanishing entries, the torus integral in (5.45) can be expressed

in terms of two-loop MGFs

[
a1 a2 a3

b1 b2 b3

]
in (2.26) and products of one-loop MGFs,

SVω

(
n1, n2, n3

∣∣∣∣− 1
τ

) ∣∣∣∣n1,n2,n3 
=0
n1+n2+n3 odd = 0

SVω

(
n1, n2, n3

∣∣∣∣− 1
τ

) ∣∣∣∣n1,n2,n3 
=0
n1+n2+n3 even

=
(τ − τ̄ )n1+n2+n3

(2πi)2

{
(−1)n3 C

[
n1 0
1 0

]
C
[

n2 + n3 0
1 0

]
+ (−1)n1 C

[
n3 0
1 0

]
C
[

n1 + n2 0
1 0

]
+ C

[
n1 n2 n3

1 0 1

]}
, (5.46)

leading to iterated Eisenstein integrals of depth two.

5.7.3. Length four and beyond. Starting from single-valued eMZVs of length four

SVω

(
n1, n2, n3, n4

∣∣∣∣− 1
τ

)

= (τ − τ̄ )n1+n2+n3+n4

∫
T4

⎛⎝ 5∏
j=2

d2z j

Im τ

⎞⎠ f (n1)
21 f (n2)

31 f (n3)
41 f (n4)

51

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

24
+

V2(1, 2, 3, 4, 5|τ )
2(2πi)2

: n1 + n2 + n3 + n4 even

−V1(1, 2, 3, 4, 5|τ )
12πi

− V3(1, 2, 3, 4, 5|τ )
(2πi)3

: n1 + n2 + n3 + n4 odd

, (5.47)

MGFs of different modular weights may mix through the contributions of V1 and V3 to

SVω

(
0, 0, 0, n4

∣∣∣∣− 1
τ

) ∣∣∣∣
n4 odd

= − (τ − τ̄ )n

12πi
C
[

n4 0
1 0

]
− (τ − τ̄ )n

(2πi)3
C
[

n4 0
3 0

]
(5.48)
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The first term drops out when adding − 1
6 SVω(0, n4| − 1

τ ) |n4 odd in (5.44) and explains the
combinations of eMZVs of different length in the third line of (C.2). Similarly, the more general
combinations (5.16) of single-valued eMZVs of different length that isolate one-loop MGFs
can be understood from the combinations of Vw that contribute to higher-point V-functions
(3.8).

With multiple non-zero entries in SVω(n1, n2, n3, n4| − 1
τ
) of odd weight, the lattice sums

from integrating V3 correspond to MGFs of trihedral topology. Similarly, single-valued eMZVs
at length five introduce four-point MGFs of kite topology introduced in section 4.3 of [62].
We hope that their identification with single-valued eMZVs will facilitate the study of MGFs
beyond the dihedral topology and result in efficient methods to determine their Laurent
polynomials and relations at arbitrary weight.

6. Conclusions and outlook

In this work, we have studied generating series of configuration-space integrals that arise in
open- and closed-string amplitudes at genus one. The differential equations and τ → i∞
degenerations of these generating series served as a framework to propose the explicit form
of an elliptic single-valued map. Our construction is based on a tentative genus-one uplift of
the Betti–deRham duality between integration cycles on a disk boundary and antiholomorphic
Parke–Taylor integrands which drives the relation between closed-string and single-valued
open-string tree amplitudes [40–45]. These considerations lead us to construct closed-string
genus-one integrals over specific antielliptic functions which are thought of as Betti–deRham
dual to open-string integration cycles in view of their singularities at zi → z j and their
degeneration at τ → i∞.

Most importantly, the differential equations of the open- and closed-string integrals under
investigation only differ by τ jGk(τ ) vs (τ − τ̄ ) jGk(τ ) in the respective differential operators
with holomorphic Eisenstein series Gk. Accordingly, we generate the eMZVs and MGFs in
their α′-expansions via path ordered exponentials with the same polynomial structures in kine-
matic invariants and formal expansion variables. The τ -dependent building blocks are iterated
Eisenstein integrals in both cases—holomorphic ones with kernels τ jGk(τ ) for the open-string
integrals and their single-valued versions involving kernels (τ − τ̄ ) jGk(τ ) for closed strings.

Our proposal for an elliptic single-valued map is defined through the relation between the
generating series of open- and closed-string integrals. By their respective α′-expansion, we
obtain the single-valued map for all iterated Eisenstein integrals occurring in the open-string
series. This in turn determines the single-valued map of any convergent eMZV in terms of
MGFs.

This construction hinges on the compatibility of the initial values at τ → i∞ under the
single-valued map of MZVs [46, 48]. We have given evidence for their compatibility by iden-
tifying the key building blocks of genus-zero integrals at the cusp—appropriate pairs of disk
orderings and Parke–Taylor integrands. However, the detailed expressions for the asymptotic
expansions beyond two points in terms of genus-zero integrals is left for future work. At
present, the procedure also relies on the reality properties of a generating series Yτ

�η of a more
general class of closed-string integrals. Our method does not yet provide a direct construction
of single-valued iterated Eisenstein integrals solely from open-string data.

6.1. Genus-one integrals versus string amplitudes

The results of this work concern infinite families of configuration-space integrals at genus one,
and their application to genus-one string amplitudes requires the following leftover steps:
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For both open and closed strings, it remains to integrate over the modular parameter τ
of the respective surface. In the closed-string case, τ -integrals over MGFs are typically per-
formed on the basis of their Laplace equations [9, 108–112] and Poincaré-series representa-
tions [54, 113–118]. The τ -integration of open-string integrals has for instance been discussed
in [119–122], and a general method applicable to arbitrary depth may be based on the repre-
sentation of eMZVs in terms of iterated Eisenstein integrals (including their ‘over-integrated’
instances with kernels τ jGk at j > k − 2 [118]) and properties of multiple modular values
[101]. It would be particularly interesting to relate closed-string and single-valued open-string
integrals at genus one after integration over τ .

For open strings, the Zτ
�η - or Bτ

�η-series are claimed to exhaust all the configuration-space inte-

grands built from f (k)(zi − z j, τ ) that are inequivalent under Fay identities and integration by
parts. Similarly, the Yτ

�η -series built from double copies of the open-string integrands is expected
to contain all torus integrals of this type. Hence, by the arguments of [4, 52, 79], Bτ

�η and Yτ
�η

should27 capture the conformal-field-theory correlators in the integrands of n-point genus-one
amplitudes of massless states (and possibly also of massive states) in bosonic, heterotic and
type-II string theories. In all cases, the component integrals in the η j-expansions of the Zτ

�η -, Bτ
�η

or Yτ
�η series need to be dressed with kinematic factors that are determined by the correlators

and carry the polarization dependence of the respective string amplitude.
The integrands of Jτ

�η only involve antielliptic combinations of f (k)(zi − z j, τ ) and omit infi-
nite classes of component integrals of Yτ

�η . For a given genus-one closed-string amplitude, it is
therefore not a priori clear if its correlator is generated by the integrand of Jτ�η . Still, the corre-
lators for the four- and five-point type-II amplitudes can be recovered from the subsectors Jτw,�η

of the Jτ
�η -series at fixed modular weights: the four-point correlator of [80] resides at the η−3

order of Jτ
0,η2,η3,η4

, and the five-point correlators of [105, 106] can be assembled from the most
singular η-orders of Jτ

w,η2,η3,η4,η5
at w = 0, 1. Similarly, the four- and five-point amplitudes of

gluons and gravitons in heterotic string theories can in principle be extracted from the same
Jτ
w,�η which also appear in type II, where higher orders in η j are needed to capture the bosonic

sectors. It would be interesting to see if this pattern persists at higher points in supersymmet-
ric amplitudes, and whether the Jτ�η are sufficient to generate bosonic-string amplitudes at low
multiplicity.

6.2. Further directions

This work spawns a variety of further directions and open questions of relevance to both
physicists and mathematicians:

The single-valued image of eMZVs is proposed to contain combinations of holomorphic
iterated Eisenstein integrals and their complex conjugates denoted by βsv and constructed from
the α′-expansion of closed-string integrals in [18]. It would be important to work out their
detailed relation to Brown’s earlier construction of single-valued iterated Eisenstein integrals
[13, 14]. In particular, it remains to relate the MZVs in the antiholomorphic contributions to
βsv (fixed from reality properties of Koba–Nielsen integrals in [18]) to the combinations of
multiple modular values entering Brown’s construction. This will hopefully bypass the need
to use these reality properties as independent input for the construction of βsv as done so far.

27 It has been shown in [52] that the integrands of massless genus-one amplitudes in bosonic, heterotic and type-II
theories are expressible in terms of products of f (k)(zi − z j, τ ) and their zi-derivatives. The conjectural part is that
arbitrary products of f (k)(zi − z j, τ ) (possibly including derivatives) are expressible in terms of the ϕτ

�η in (2.13) with
their specific chain structure via repeated use of Fay identities and integration by parts [59, 60].
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Several aspects of our construction are based on conjectures with strong support
from a variety of non-trivial examples. As pointed out in the relevant passages in ear-
lier parts of this work, it would be desirable to find mathematically rigorous proofs
that

• Any Koba–Nielsen integral at genus one involving products and derivatives of
Kronecker–Eisenstein coefficients f (k)(z, τ ) can be expanded in the coefficients of the
series Zτ

�η and Yτ
�η

• The matrices r�η(εk) and R�η(εk) in open- and closed-string differential equation (2.19)
preserve the commutation relations of Tsunogai’s derivations εk

• The single-valued images βsv of iterated Eisenstein integrals satisfy shuffle relations, i.e.
that the antiholomorphic integration constants α do not introduce any obstructions

• The coefficients of the si j- and η j-expansion of the initial values Ĵi∞
�η and Ŷi∞

�η are single-
valued multiple zeta values

The proposal of the present work concerns single-valued integration [48, 49] in the mod-
ular parameter τ . An alternative approach is to recover MGFs from single-valued func-
tions of torus punctures [10, 15]. In this context, it would be rewarding to find an explicit
realization of single-valued integration in z for elliptic polylogarithms and their complex
conjugates, for instance by building upon the ideas of [15] and the depth-one results in
[123].

At genus zero, the identification of sphere integrals as single-valued disk integrals is equiv-
alent to the Kawai–Lewellen–Tye (KLT) relations between closed-string and squares of open-
string tree-level amplitudes [124]. Accordingly, one could wonder if the combinations of
holomorphic and antiholomorphic iterated Eisenstein integrals in the βsv or MGFs can arise
from products of open-string type generating functions and their complex conjugates. If such
a genus-one echo of KLT relations exists, then one can expect a close connection to the mon-
odromy relations among open-string integrals [122, 125–127] and in particular their study in
the light of twisted deRham theory [128]. And it could open up a new perspective on the quest
for loop-level KLT relations to revisit the generating functions of closed-string integrals in the
framework of chiral splitting [129, 130], by performing the α′-expansion at the level of the
loop integrand.

A particularly burning question concerns a higher-genus realization of single-valued inte-
gration and the associated relations between open- and closed-string amplitudes. A promis-
ing first step could be to identify suitable holomorphic open-string analogues of the MGFs
[131, 132] and modular graph tensors [133] at higher genus. More generally, the simpli-
fied correlators of maximally supersymmetric genus-two amplitudes at four points [134, 135]
and five points [136, 137] provide valuable showcases of Koba–Nielsen integrals relevant to
open- and closed-string scattering. Furthermore, the construction of the generating series in
this work was inspired by extended families of genus-one Koba–Nielsen integrals that arise
from heterotic or bosonic strings [52]. Hence, the genus-two correlators of the heterotic string
and the combinations of theta functions studied in [138, 139] could give important clues on
higher-genus versions of the elliptic functions and generating series in this work.
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Appendix A. Relations among the elliptic V and Vw functions

In this appendix, we spell out a method to determine the rational coefficients cw,γ in the expan-
sion (3.37) of elliptic functions Vw(. . .) of fixed modular weights in terms of the V(. . .) func-
tions in (3.8). This will be done by exploiting the τ → i∞ degeneration (3.20) of the V(. . .)
which fixes the cw,γ in the ansatz (3.37) via

lim
τ→i∞

Vw(1, 2, . . . , n|τ )
(2πi)wσ1σ2 . . . σn

=
∑

γ∈Sn−1

cw,γ PT(1)(1, γ(2, 3, . . . , n)) (A.1)

PT(1)(1, 2, . . . , n) = (−1)n−1 lim
σ−→∞

|σ−|2 (PT(+, n, n − 1, . . . , 2, 1,−)

+ cyc(1, 2, . . . , n))

=
1

σ12σ23 . . . σn−1,nσn
+ cyc(1, 2, . . . , n). (A.2)

The combinations PT(1) are known as one-loop Parke–Taylor factors from an ambitwistor-
string context [94], and we have used σ+ = 0 in passing to the last line. In order to determine
the degeneration of the left-hand side of (A.1), we expand the elliptic functions

Vw(1, 2, . . . , n|τ ) =
∑

a1,a2,...,an�0
a1+a2+···+an=w

g(a1)
12 g(a2)

23 . . . g(an−1)
n−1,n g(an)

n,1

θ′1(0, τ )θ1(zi j + η, τ )
θ1(zi j, τ )θ1(η, τ )

=

∞∑
a=0

ηa−1g(a)
i j (A.3)
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in terms of the meromorphic Kronecker–Eisenstein coefficients g(a)
i j instead of the f (a)

i j in (5.2),

starting with g(0)
i j = 1 and g(1)

i j = ∂zi log θ1(zi j, τ ). Their τ → i∞ limits [3, 4]

lim
τ→i∞

g(a)
jk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 : a = 0

iπ
σ j + σk

σ j − σk
: a = 1

−2ζa : a ∈ 2N

0 : a ∈ 2N+ 1

(A.4)

generated by (3.19) ensure that the combination (2πi)−wVw(1, 2, . . . , n|τ ) in (A.1) degenerates
to a rational function of the σ j, where all factors of iπ cancel. Hence, the only σ j dependence
of Vw(. . . |τ → i∞) occurs via limτ→i∞ g(1)

jk = iπ σ j+σk
σ j−σk

.
By applying the degeneration (A.4) to the elliptic function Vw in (A.3), the left-

over challenge in determining the cw,γ in (A.1) is to expand the terms of the form

(σ1σ2 . . . σn)−1
∏r

i=1
σ ji+σki
σ ji−σki

on the left-hand side in terms of Parke–Taylor factors. For the

choices of σ ji , σki that arise from the degeneration of Vw�n−2, these Parke–Taylor decomposi-
tions can be performed by the methods of [140]: as explained in section 3 of the reference, the
net effect of the rational factor

σ ji+σki
σ ji−σki

is to modify the signs of the Parke–Taylor factors on the

right-hand side of

1
σ1σ2 . . . σn

= (−1)n−1 lim
σ−→∞

|σ−|2
∑
ρ∈Sn

PT(+, ρ(1, 2, . . . , n),−) (A.5)

More specifically, with the notation

sgnρ
jk =

{
+1 : j is on the right of k in ρ(1, 2, . . . , n)

−1 : j is on the left of k in ρ(1, 2, . . . , n)
(A.6)

the modification of (A.5) by degenerations of g(1)
jiki

can be written as [140]

lim
τ→i∞

g(1)
j1k1

g(1)
j2k2

. . . g(1)
jrkr

(2πi)rσ1σ2 . . . σn
=

(−1)n−1

2r
lim

σ−→∞
|σ−|2

×
∑
ρ∈Sn

sgnρ
j1k1

sgnρ
j2k2

. . . sgnρ
jrkr

PT(+, ρ(1, 2, . . . , n),−).

(A.7)

The contributions of (2πi)−2kg(2k)
jk in turn degenerate to rational constants by (A.4) which mul-

tiply the overall sum over permutations ρ. Hence, (A.7) allows to straightforwardly expand the
left-hand side of (A.1) in terms of Parke–Taylor factors in an n!-element basis of PT(+, . . . ,−).
Matching the Parke–Taylor coefficients with those on the right-hand side determines the cw,γ

in (3.37). It is a special property of the elliptic functions Vw that their degeneration conspires
to the cyclic combinations PT(1) in (A.2), i.e. that the (n − 1)! independent cw,γ are sufficient
to accommodate the n! permutations of PT(+, 1, 2, . . . , n,−) in 1, 2, . . . , n.
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For instance, the decompositions in (3.39) to (3.41) follow from the special cases of (A.7)

lim
τ→i∞

V1
(
1, 2, 3|τ

)
(2πi)σ1σ2σ3

=
1
2

lim
σ−→∞

|σ−|2
∑
ρ∈S3

PT (+, ρ (1, 2, 3) ,−)

×
(
sgnρ

12 + sgnρ
23 + sgnρ

31

)
lim
τ→i∞

V1
(
1, 2, 3, 4|τ

)
(2πi)σ1σ2σ3σ4

= −1
2

lim
σ−→∞

|σ−|2
∑
ρ∈S4

PT (+, ρ (1, 2, 3, 4) ,−)

×
(
sgnρ

12 + sgnρ
23 + sgnρ

34 + sgnρ
41

)
lim
τ→i∞

V2
(
1, 2, 3, 4|τ

)
(2πi)2σ1σ2σ3σ4

= − lim
σ−→∞

|σ−|2
∑
ρ∈S4

PT (+, ρ (1, 2, 3, 4) ,−)

×
{

1
3
+

1
4

(
sgnρ

12sgnρ
34 + sgnρ

23sgnρ
41

)
+

1
4

(
sgnρ

12sgnρ
23 + sgnρ

23sgnρ
34 + sgnρ

34sgnρ
41

+ sgnρ
41sgnρ

12

)}
(A.8)

once the right-hand sides are matched with the combinations of one-loop Parke–Taylor factors
PT(1) in (A.1) and (A.2).

Appendix B. The initial value B̂i∞
η2,η3

at three points

This appendix gathers the three-point initial values B̂i∞
η2,η3

(2, 3|ρ(2, 3)) for the α′-expansion
(4.9) of B-cycle integrals up to and including weight four. The corresponding orders of
Ĵi∞
η2,η3

(2, 3|ρ(2, 3)) relevant to the α′-expansion (4.19) of J-integrals are obtained from the
single-valued map (ζ2, ζ3, ζ4) → (0, 2ζ3, 0). Since even (odd) orders in the η j-expansion inte-
grate to zero on the odd (even) integration cycles B(2, 3) ±B(3, 2), we will separate the two
types of contributions in order to infer B̂i∞

η2,η3
(2, 3|3, 2) from a relabeling of B̂i∞

η2,η3
(2, 3|2, 3).

The expressions in this appendix along with various higher-order terms in the si j- and
η j-expansions can be found in the supplementary file at https://stacks.iop.org/A/55/025401/
mmedia, also see (4.27) for the appearance of ζ3,5.

B.1. Even orders in ηj

The terms of even orders in η j in the three-point initial values are given by

B̂i∞
η2,η3

(2, 3|2, 3) |even =
1

η23η3

(
1
2
+

ζ2

12
(s2

12 + s2
13 + s2

23) +
ζ3

24
(s3

12 + s3
13 + s3

23)

+ ζ4

[
131

1440
(s4

12 + s4
13 + s4

23) +
5

144
(s2

12s2
13 + s2

12s2
23 + s2

23s2
13)

+
1

18
s12s13s23s123

]
+ . . .

)
52

https://stacks.iop.org/A/55/025401/mmedia
https://stacks.iop.org/A/55/025401/mmedia
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+
η23

η3

(
−ζ2 −

ζ3

2
s12 − ζ4

[
29s2

12

24
+

5s2
13

12
+

s13s23

3
+

5s2
23

12

]
+ . . .

)
+

η3

η23

(
−ζ2 −

ζ3

2
s23 − ζ4

[
29s2

23

24
+

5s2
12

12
+

s12s13

3
+

5s2
13

12

]
+ . . .

)
+

(
3ζ2s13

s123
+

ζ3

2
s13 +

15ζ4s13

4s123
(s2

12 + s12s23 + s2
23)

− 41
24

ζ4(s12 + s23)s13 +
49ζ4s2

13

24
+ . . .

)
+ η23η3(5ζ4) − η3

23

η3
ζ4 −

η3
3

η23
ζ4 + · · · (B.1)

and

B̂i∞
η2,η3

(2, 3|3, 2) |even = B̂i∞
η2,η3

(2, 3|2, 3) |even |η2↔η3
s12↔s13

(B.2)

with MZVs of weight � 5 in the ellipsis.

B.2. Odd orders in ηj

The terms of odd orders in η j in the three-point initial values are given by

B̂i∞
η2,η3

(2, 3|2, 3) |odd =
1
η3

(
1

s12
+

ζ2s2
123

6s12
+ ζ3

[
s13s23

4
+

s3
123

12s12

]
+ ζ4

[
131s4

123

720s12
− s23s123s13

20

]
+ . . .

)
+

1
η23

(
1

s23
+

ζ2s2
123

6s23
+ ζ3

[
s12s13

4
+

s3
123

12s23

]
+ ζ4

[
131s4

123

720s23
− s12s123s13

20

]
+ . . .

)
+ η3

(
−2ζ2

s12
− ζ3s123

s12
+ ζ4

[
−29s2

123

12s12
+

s13

4

]
+ . . .

)
+ η23

(
−2ζ2

s23
− ζ3s123

s23
+ ζ4

[
−29s2

123

12s23
+

s13

4

]
+ . . .

)
+

η2
23

η3

(
−ζ3 + ζ4

[
2
3

s123 +
s12

4

]
+ . . .

)
+

η2
3

η23

(
−ζ3 + ζ4

[
2
3

s123 +
s23

4

]
+ . . .

)
+ η3

23

(
−2ζ4

s23
+ . . .

)
+ η3

3

(
−2ζ4

s12
+ . . .

)
+ . . . (B.3)

and

B̂i∞
η2,η3

(2, 3|3, 2) |odd = −B̂i∞
η2,η3

(2, 3|2, 3) |odd |η2↔η3
s12↔s13

, (B.4)
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again with MZVs of weight � 5 in the ellipsis.

Appendix C. Examples of single-valued eMZVs

C.1. Systematics at depth one

The simplest examples (5.12) and (5.13) of single-valued eMZVs extracted from the two-
point integrals (5.4) are special cases of the SV map (4.30) on holomorphic iterated Eisen-

stein integrals. For their depth-one combinations β

[
j
k

]
in (4.10), the SV image βsv

[
j
k

]
yields

the following Cauchy–Riemann derivatives ∇ = 2i(Im τ )2∂τ of non-holomorphic Eisenstein
series [18]

βsv

[
k − 1

2k

]
= − [(k − 1)!]2

(2k − 1)!
Ek +

2ζ2k−1

(2k − 1)(4y)k−1

βsv

[
k − 1 + m

2k

]
= − (−4)m(k − 1)! (k − 1 − m)! (π∇)mEk

(2k − 1)!
+

2ζ2k−1

(2k − 1)(4y)k−1−m

βsv

[
k − 1 − m

2k

]
= − (k − 1)! (k − 1 − m)! (π∇)mEk

(−4)m(2k − 1)!y2m
+

2ζ2k−1

(2k − 1)(4y)k−1+m
, (C.1)

also see (4.22). While the objects on the right-hand side are expressible in terms of the lat-

tice sums

[
a 0
b 0

]
in (2.27) via (2.28), the β

[
j
k

]
are simple combinations of B-cycle eMZVs

ω(0p, k| − 1
τ

), where 0p stands for a sequence 0, 0, . . . , 0 of p successive zeros. On these

grounds, βsv

[
j
k

]
= SVβ

[
j
k

]
translates into simple relations such as

SVω

(
0, 2k + 1

∣∣∣∣− 1
τ

)
= − (τ − τ̄ )2k+1

2πi
C

[
2k + 1 0

1 0

]
, k � 1

SVω

(
0, 0, 2k + 2

∣∣∣∣− 1
τ

)
=

(τ − τ̄ )2k+2

(2πi)2
C

[
2k + 2 0

2 0

]
, k � 0

SV

(
ω

(
0, 0, 0, 2k + 3

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 2k + 3

∣∣∣∣− 1
τ

))
= − (τ − τ̄ )2k+3

(2πi)3
C

[
2k + 3 0

3 0

]
,

k � −1

SV

(
ω

(
0, 0, 0, 0, 2k + 4

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 0, 2k + 4

∣∣∣∣− 1
τ

))
=

(τ − τ̄ )2k+4

(2πi)4
C

[
2k + 4 0

4 0

]
,

k � −1

(C.2)

as well as

SV

(
ω

(
0, 0, 0, 0, 0, 2k + 5

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 0, 0, 2k + 5

∣∣∣∣− 1
τ

)
+

7
360

ω

(
0, 2k + 5

∣∣∣∣− 1
τ

))

= − (τ − τ̄ )2k+5

(2πi)5
C

[
2k + 5 0

5 0

]
, k � −2. (C.3)
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The relative factors of − 1
6 and 7

360 among the eMZVs of different lengths are engineered to
streamline the iterated-Eisenstein-integral representation [17] and generalize as follows [104]

SV
�−1∑
j=0

Bj

j!
ω

(
0�− j, 2k + �

∣∣∣∣− 1
τ

)
= (−1)�

(τ − τ̄ )2k+�

(2πi)�
C
[

2k + � 0
� 0

]
, k � 1 −

⌈
�

2

⌉
, � � 1.

(C.4)

In obtaining (C.2) and (C.3) from (C.4), we have used SVω(m) = 0 ∀m � 1 and the following
simplifications of the only eMZV ω(0�−1, 2k + �|τ�) whose length and weight adds up to an
even number [17],

ω(0, 0, 2k + 1|τ ) =
1
2
ω(0, 2k + 1)

ω(0, 0, 0, 2k|τ ) =
1
2
ω(0, 0, 2k)− 1

24
ω(2k)

ω(0, 0, 0, 0, 2k+ 1|τ ) =
1
2
ω(0, 0, 0, 2k + 1) − 1

24
ω(0, 2k + 1). (C.5)

Based on the dictionary (2.28) between lattice sums

[
a 0
b 0

]
and non-holomorphic Eisenstein

series, one can reformulate (C.4) as

SV
�−1∑
j=0

B j

j!
ω

(
0�− j, 2k + �

∣∣∣∣− 1
τ

)
= (−1)�

(k + �− 1)!
(2k + �− 1)!

(−4π∇)kEk+�, k � 0, � � 1,

(C.6)

where k = 0 needs to be excluded if � = 1, for instance

SVω

(
0, 2k + 1

∣∣∣∣− 1
τ

)
= − k!

(2k)!
(−4π∇)kEk+1, k � 1

SVω

(
0, 0, 2k + 2

∣∣∣∣− 1
τ

)
=

(k + 1)!
(2k + 1)!

(−4π∇)kEk+2, k � 0. (C.7)

Moreover, by extending (C.4) to k →−k and applying the complex conjugate of (2.28), we
also obtain antiholomorphic Cauchy–Riemann derivatives as single-valued eMZVs (with
�− 2k > 0),

SV
�−1∑
j=0

B j

j!
ω

(
0�− j, �− 2k

∣∣∣∣− 1
τ

)
= (−1)�

(τ − τ̄ )�−2k

(2πi)�
C
[
�− 2k 0

� 0

]

= (−1)�+k (�− k − 1)!
(�− 1)!

(π∇)kE�−k

(2y)2k
. (C.8)
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The simplest examples include

SV

(
ω

(
0, 0, 0, 1

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 1

∣∣∣∣− 1
τ

))
=

π∇E2

8y2

SV

(
ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 0, 2

∣∣∣∣− 1
τ

))
= −π∇E3

12y2

SV

(
ω

(
0, 0, 0, 0, 0, 1

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 0, 0, 1

∣∣∣∣− 1
τ

)
+

7
360

ω

(
0, 1

∣∣∣∣− 1
τ

))
= − (π∇)2E3

192y4

SV

(
ω

(
0, 0, 0, 0, 0, 3

∣∣∣∣− 1
τ

)
− 1

6
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)
+

7
360

ω

(
0, 3

∣∣∣∣− 1
τ

))
=

π∇E4

16y2
,

(C.9)

and the first two lines are equivalent to those in (5.32).

C.2. Examples with real MGFs at depth two

By inspecting the s4
i j order of the two-point integrals Bτ

(0), Jτ
(0) and the s3

i j order of Bτ
(2), Jτ

(2), we
have obtained the representations (5.14) of E2,2 and π∇E2,2 as single-valued eMZVs. One can
extract similar representations for E2,3, π∇E2,3 and (π∇)2E2,3 from the s5

i j order of Bτ
(0), Jτ

(0),
the s4

i j order of Bτ
(2), Jτ

(2) and the s3
i j order of Bτ

(4), Jτ
(4), respectively:

E2,3 = SV

(
−167

35
ω

(
0, 0, 0, 0, 0, 5

∣∣∣∣− 1
τ

)
+ 2ω

(
0, 0, 0, 0, 1, 4

∣∣∣∣− 1
τ

)

+
97
210

ω

(
0, 0, 0, 5

∣∣∣∣− 1
τ

)
− 1

3
ω

(
0, 0, 2, 3

∣∣∣∣− 1
τ

)

+ 2ω

(
0, 0, 0, 0, 2

∣∣∣∣− 1
τ

)
ω

(
0, 3

∣∣∣∣− 1
τ

)
+

7
200

ω

(
0, 5

∣∣∣∣− 1
τ

))

π∇E2,3 = SV

(
− 1

12
ω

(
0, 3

∣∣∣∣− 1
τ

)2

+
13

168
ω

(
0, 0, 6

∣∣∣∣− 1
τ

)
+ ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 0, 3

∣∣∣∣− 1
τ

)

− 41
28

ω

(
0, 0, 0, 0, 6

∣∣∣∣− 1
τ

)
+

1
2
ω

(
0, 0, 0, 2, 4

∣∣∣∣− 1
τ

))

(π∇)2E2,3 = SV

(
25

336
ω

(
0, 7

∣∣∣∣− 1
τ

)
+

5
8
ω

(
0, 3

∣∣∣∣− 1
τ

)
ω

(
0, 0, 4

∣∣∣∣− 1
τ

)
− 23

28
ω

(
0, 0, 0, 7

∣∣∣∣− 1
τ

)

+
1
4
ω

(
0, 0, 2, 5

∣∣∣∣− 1
τ

)
+

1
8
ω

(
0, 0, 4, 3

∣∣∣∣− 1
τ

))
(C.10)

The corresponding lattice-sum representations [51, 62] and βsv representations [18] are given
by

E2,3 =

(
Im τ

π

)5 (
C
[

3 1 1
3 1 1

]
− 43

35
C
[

5 0
5 0

])
= −120βsv

[
2 1
4 6

]
− 120βsv

[
3 0
6 4

]
+

12ζ5

y
βsv

[
0
4

]
+ 80ζ3β

sv

[
1
6

]
− ζ5

36
+

7ζ7

16y2
− ζ3ζ5

2y3
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π∇E2,3 =
(Im τ )6

π4

(
3C

[
1 1 4
1 1 2

]
+ 2C

[
1 2 3
1 0 3

]
− 43

7
C
[

6 0
4 0

])
= 90βsv

[
2 2
4 6

]
+ 60βsv

[
3 1
6 4

]
+ 30βsv

[
4 0
6 4

]
− 60ζ3β

sv

[
2
6

]
− 12ζ5β

sv

[
0
4

]
− 6ζ5

y
βsv

[
1
4

]
− 7ζ7

8y
+

3ζ3ζ5

2y2

(π∇)2E2,3 =
(Im τ )7

π3

(
4C

[
0 2 5
1 0 2

]
− 4C

[
3 0
1 0

]
C
[

4 0
2 0

]
− 62

7
C
[

7 0
3 0

])
= −45βsv

[
2 3
4 6

]
− 15βsv

[
3 2
6 4

]
− 30βsv

[
4 1
6 4

]
+ 30ζ3β

sv

[
3
6

]
+ 12ζ5β

sv

[
1
4

]
+

3ζ5

2y
βsv

[
2
4

]
+

7ζ7

8
− 3ζ3ζ5

y
. (C.11)
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