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Abstract

In this thesis I discuss an alternative approach for investigating quarkonium produc-
tion in hadron colliders. I present a complete framework for developing observables
for studies of charmonium states produced within a jet. My work is based on the
use of effective field theories of quantum chromodynamics that allow for the approxi-
mate factorization of jet cross sections in perturbative calculable terms and universal
non-perturbative functions that are extracted from data. Particularly in this the-
sis I explore the factorization approach of non-relativistic quantum chromodynamics
and soft-collinear effective theory. The fragmenting jet functions play central role
in factorization theorems for cross sections for identified hadrons within jets. These
cross sections can depend on the hadron-jet energy ratio and possibly on other jet
observables. I expand this concept to jet-shape observables known as angularities
and introduce the transverse momentum dependent fragmenting jet functions. Ap-
plications of these advanced methods to J/1 production from gluon fragmentation
in electron-positron annihilation are presented and I develop the tools for expanding
this work in hadron colliders. Additionally, I compare predictions for .J/i produc-
tion in jets, based on the framework of fragmenting jet functions, against recent

experimental data from the LHCDb collaboration.
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1

Introduction

1.1 Basics of Quarkonium

Quantum Chromodynamics (QCD) is the sector of Standard Model (SM) that de-
scribes the strong nuclear interactions between quarks through the exchange of gauge
bosons known as gluons. According to QCD, the six flavors of quarks (up (u), down
(d), strange (s), charm (c¢), bottom (b), and top (¢)) come in three possible strong
charges referred to as color. Since QCD is a non-abelian theory (in contrast to
quantum electrodynamics (QED)) gluons also carry color and have self-interactions.
This property of gluons gives QCD very interesting properties. For example the
S-function of QCD, which describes the evolution of the strong coupling constant,
is negative, as a consequence the strong coupling constant decreases logarithmically
with increasing momentum scales, thus at sufficiently high momenta one may use
perturbative methods for making predictions. This phenomenon is also known as
asymptotic freedom. The scales at which QCD becomes non-perturbative are de-
scribed by a scheme dependent parameter Aqcp ~ 0.3 — 0.5 GeV. Aqcp is called the

QCD scale and is defined such that at this scale the strong coupling constant o, be-



comes non perturbative (i.e. as(Aqgep) = 1). Additionally, color confinement which
appears at lower energies and therefore cannot be studied perturbatively, requires
that colored particles cluster to form colorless combinations and only those may be
observed experimentally. Such states are called hadrons and are classified according
to their quark content. Quark-antiquark bound states are refered to as mesons and
three-quark hadrons are called baryons.

The interactions of quarks and gluons in QCD are described through the corre-
sponding Lagrangian:

1
~Ge G, (1.1)

Locp = ). &f(uﬂ_mf)l/’f_él o

Flavor(f)

where ¢ and Af, are the quark and gluon fields respectively, D= yH(id, + gSAZTa),
and G}, = 0, A}, — 0, A}, + gs f“bCAZAi. Here v, are the Dirac matrices, T* and f*
are the generators in the fundamental representation and the structure constants
of SU(3), respectively. The Lagrangian parameter m; corresponds to the mass of
the quarks and based on that parameter we classify quarks as light quarks where
mys < Aqep (f = u, d, or s) and heavy quarks where my > Aqep (f = ¢, b, or t).

Quarkonium is the bound state of a heavy quark, Q, and its antiquark, Q, due to
strong nuclear interactions. The QQ bound states can be formed either from charm
quark, ¢, or bottom quark, b, pairs and we refer to those states as charmonium (cc)
and bottomonium (bb) respectively. Charmonium was first discovered by groups at
SLAC [14] and BNL [15] in November of 1974. The first charmonium state discov-
ered has mass of 3.1 GeV and is now known as the J/i particle. At the time only
the three light quarks were experimentally observed. A fourth quark was theorized
in Ref. [16] and later in Ref. [17] a complete theoretical model (Glashow - Iliopoulos
- Maiani (GIM) mechanism) was introduced but, until 1974 no hadrons were dis-

covered containing such a quark. After the discovery of the charm quark started a
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period with series of discoveries of other hadrons with charm content, known as the
November Revolution. The discovery of the charm quark along with the GIM mech-
anism set the foundation for the construction of the Standard Model as we know it
today. Bottomonium was first observed by a group at Ferimlab [18] in 1977 with the
discovery of T.

The lighter quarkonia have an approximate lifetime of 1072° seconds which is
particularly long relative to other strongly decaying particles with typical lifetime
of 10723 seconds. This is attributed to the fact that while the decays to pions are
suppressed by the OZI rule [19,20], the open flavor decays are forbidden kinematically
since the open flavor threshold (for charmonium this is the DD threshold ~ 3.74
GeV, for bottomonium this is the BB threshold ~ 10.56 GeV) is higher than the
mass of the quarkonium states. Excited states can have masses above the open flavor
threshold and therefore shorter lifetimes. There are eight charmonium states below
the DD threshold and fourteen experimentally observe bottomonium states below
the BB threshold.

Due to their large mass, heavy quarks have non-relativistic velocities in the rest
frame of the quarkonium. If we denote with v the relative velocity of quark and
antiquark in the the rest frame of quarkonium, from lattice calculations we have that
v? ~ 0.1 for bottomonium and v? ~ 0.3 for charmonia (see for example Ref. [21]).
This implies that one could use a potential model for the quark-antiquark interactions
and solve the Shrodinger equation to find the spectrum of quarkonium. Indeed
potential models have been applied with great success in predicting the quarkonium
spectrum. Unfortunately the exact potential cannot be calculated due to the non-
perturbative aspects of QCD but reasonable approximations can be made. At short
distances (large momentum scales compared to Agep) where o « 1, the form of the

potential could be evaluated at leading order in perturbation theory with the single

L The states 1,(2S) and 1, (39) are expected to exist but not yet experimentally observed.
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gluon exchange interaction. This results in a Coulomb-like potential, Vo = —Clay/r,
where for a color singlet configuration, C' = 4/3, and for a color octet, C' = —1/8. On
the other hand, at long distances (scales similar to Agep) the qualitative features of
QCD suggest a distance independent force which translates to a linear potential of
the form V;, = Kr and the value of K is fixed from experimental data. A common
potential model that has been used in the past with great success is simply V(r) =

Vi + Ve

V) = —g% L K+ 0(ad). (12)
which correctly reproduces the behavior at the long and short distances. Additional
relativistic and spin-orbit coupling terms can be added to this potential for better
accuracy [22-24]. Such corrections are essential for explaining the splitting between
the . states. Furthermore the splitting between 35S, and 1S states can be explained
due to the hyperfine structure from spin-spin interactions. In Figs. and we

show the charmonium and bottomonium spectrum where by convention we use the

standard spectroscopic notation n>**1V L ; to describe the quarkonium states.
1.2 Quarkonium production at hadron colliders

Quarkonium production in hadron colliders is usually studied within the framework
of QCD factorization. The idea of the QCD factorization is based on the fact that the
two characteristic scales of the process, the QCD confinement scale Agcp ~ 0.3 GeV,
and the hard scale, ¢?, are widely separated, allowing us to factorize the underlying
physics. In this framework a generic cross section (or differential cross section) is
factorized into parton distribution functions (PDFs), denoted by f;/, and the partonic

cross section, 0y,

U(h1(P1), h2(P2)) = Zfdxld«r2fi/h1 <x17M2)fj/h2(I27 Mz)&ij@ = $1$28,/~b27 q2) (1-3)
ij

4
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FIGURE 1.1: Charmonium spectrum from [6].

where x; is the fraction of the hadron’s energy carried by the parton i, ¢? is the
square of the transferred momentum in the hard process, and p the factorization
scale. Intuitivelyﬂ we could interpret PDFs, fi(z, %), as the probability to find
a parton i within the region of size A ~ 3 ~ (1/p)? inside the hadron, carrying =
fraction of the hadron’s energy. In hard scattering with transferred momentum ¢* the
exchanged gluon (or photon) can travel distance r ~ 1/|q| before getting reabsorbed.
Thus a common choice of the factorization scale in Eq.(L.3) is p? = ¢

While the hard partonic cross section can be calculated systematically in per-
turbation theory, PDFs are non-perturbative objects that must be extracted from
experimental data. The predictive power of PDFs rely on their universality which

ensures that the same distributions can be used for multiple processes. Thus PDFs

2 This simplified picture of PDFs can only be used for intuitive purposes. More details regarding
the matter can be found in Ref. [25].
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FIGURE 1.2: Bottomonium spectrum from [6].

are extracted from some processes (e.g., neutrino Deep Inelastic Scattering (DIS))
and used to make predictions for others (e.g., quarkonium production). Though
the extraction of PDFs happen at a particular scale, usually calculations require
knowing these distributions at other scales. For this reason PDFs are evaluated
at different scales using renormalization group evolution via the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equations [26-28].
dz
Md fz/h(z ,U Z B fj/h(z :u) (1'4)

where P;(x) are the QCD splitting kernels and can be evaluated in perturbation
theory.

Up to this point we discussed the form of a generic cross section in QCD fac-
torization framework. To extend this discussion on quarkonium production we need

to establish a model on how the form of the partonic cross section, o;;, is modified
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in order to describe the production of quarkonium state Q. We are going to briefly
mention two partly successful models used in early studies and discuss why they

failed to give a complete description.
1.2.1 The color evaporation model

In the color evaporation model (CEM) [29-31] the quarkonium state is produced from
the evolution of a heavy quark-antiquark pair (QQ) with invariant mass below the
open flavor threshold. The evolution is assumed independent of the polarization and
the color configuration of the pair. Therefore in the CEM framework the probability
of a QQ configuration with invariant mass § to evolve in quarkonium state Q is given
by

Popm(QQ(3) — Q) = Fo ©(4mf) < 8 < 4MJ) (1.5)

where Mg is the mass of the lightest meson containing () and Fg is a parameter
unique for each state Q and is assumed to be universal, which needs to be extracted
from experimental data. Applying Eq.(|1.5]) to the QCD factorization at leading order

we have

ocem(h(Pr), ho(P2) — Q) = FQZJdmd@fg’/hl (21, 1%) fisny (22, 1°)
ij

X Oy gae (817, ¢1)B(mg < § < 4MJ) . (1.6)

S=x1T28

Despite its early success predicting various features of quarkonium, CEM failed
to give a complete description of the quarkonium production. For example, the
universality of the CEM parameters Fg suggest that the ratio F,,/F), should be
independent of the production process, in contrast to experimental results that give

different values for hadro-production compared to photo-production processes [32].



1.2.2  The color singlet model

In contrast to CEM, the color singlet model (CSM) requires that a quarkonium state
Q(n?S*V [ ;) can only be produced from the evolution of a heavy quark-antiquark
pair in a color singlet configuration and with the same quantum numbers as the
quarkonium state. The probability of the pai Q@(n(”“)Lg)) to evolve into the
corresponding quarkonium state is given by the wave function of QQ pair at the

origin,
Posu (Q@(n@SH)Lf})) o Q(n'<25’+1>L{,,)) = W(0) 26 dssOr by . (1.7)

Though the probability in equation Eq. is true only for S-wave states (L =
0) similar relations for higher angular momentum states do exist and involve the
derivatives of the wave function at the origin. Unfortunately calculations for L > 0
suffer from infrared divergences that require the inclusion of color-octet contribution
for their cancelation (see below). The value of |¢(0)| can be evaluated in the quark
potential model by solving Shrodinger equation for the wave function or can be

extracted from quarkonium di-lepton decay rates (I'(Q — ¢¢)). The cross section at

hadron colliders in CSM is given by

oesu(hi(Py), ha(Py) — Q(n*STV L)) = |‘I’(0)!22fdﬂfldiﬂ2fi/h1 (1, %)

X fz‘/h2 ($2> M2>&inQ@(n(25+1)L(Jl>) (§7 ,U27 q2) . (1'8)

S=x1228

The CSM was used extensively for various calculations such as the 7. and x.
production from gluon fusion [33-36] as well as the J/i and 7. production from B
meson decays [37,38]. The CSM approach was abandoned in 1995 after the dramatic

failure to predict the direct .J/¢ production from Tevatron in pp collisions.

3 The superscript (1) indicates that the QQ pair are in a color singlet configuration.
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FIGURE 1.3: J /1 transevse momentum spectrum from ATLAS at /s = 7 TeV from
CEM (green) and CSM (red/grey). These resutls were published in Ref. [7].

Fig from Ref. shows how predictions for J/v production from the CSM

and CEM framework compare against data from ATLAS experiment at LHC. We

note that the NLO CSM predictions have significant disagreement with the data and

NNLO CSM predictions suffer from large theoretical uncertainties.

1.3 The NRQCD framework

Inside the quarkonium, the heavy quark and antiquark have small relative velocity,

(v* ~ 0.1 for bb and v? ~ 0.3 for c€), therefore NRQCD [39]—which is an effec-

tive field theory that describes Quantum Chromodynamics in the non-relativistic

limit—provides the correct theoretical framework for studying their interactions.

There are three important scales that appear when studying the dynamics of non-



relativistic heavy quarks: mg, which is the mass of the heavy quark, mquv, is the size
of their momentum in the rest frame of quarkonium, and mgv?, which characterizes
their kinetic energy in the same reference frame. The distance r ~ 1/(mgv) gives an
estimate of the size of the quarkonium state and the separation between the heavy
quark-antiquark pair and the energy AE ~ mgv? is of order of the energy splittings
of radial excitations.

For bound states such as quarkonium we should expect that kinetic energy bal-
ance the Coulomb like potential energy, i.e., mgu* ~ a,(1/r)/r. The typical distance
r between quark and antiquark is 1/Mwv and since a,(p) decreases with the increase

of momentum scale (due to asymptotic freedom of QCD) we have
v~ as(mgu) = v 2 as(mg). (1.9)

This scaling relation has an important implication: relativistic corrections of or-
der v®" are expected to be more important than perturbative corrections of order
(as(mg))®™. Therefore when performing higher order calculation in the strong cou-
pling, relativistic corrections must properly taken into consideration. For this reason
we need a simultaneous expansion in the strong coupling and the relative velocity.
The NRQCD framework allows us to do exactly that.

In NRQCD the heavy quark and antiquark are described by two separate spin
1/2 non-relativistic Schrodinger fields. Thus the Lagrangian that describes the heavy
quark v and antiquark y is

(i D’ (i D’
Eheavy = ¢ <2Dt + W) w + X (ZDt — m) X- (110)

Light quarks are described in the NRQCD Lagrangian by the four-component Dirac
spinor and their mass is set to zero. Also the gluon propagation and interactions are

added to the Lagrangian through the standard gauge-invariant combination of the
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Table 1.1: Table from [1] showing the velocity scaling rules for elementary operators
in NRQCD.

Operators | Estimate Description

Y (Mv)3/? Quark (annihilation) field

X (Mv)3/? Antiquark (creation) field

D, Muv? Gauge covariant time derivative
D Mo Gauge covariant space derivative
qo Muv? Scalar potential (Coulomb gauge)
gA M3 Vector potential (Coulomb gauge)
gE M?v3 Chromoelectric field
9B M?p? Chromomagnetic field

gluonic field tensor G, as in Eq.(1.1). The corresponding term reads

1 )
Lign = GG + Y 3ilg (111)
nf

and the full Lagrangian is

Lxrqep = Lheavy + Liight + 0L. (1.12)
where dL includes all the relativistic corrections up to the desired accuracy. Such
terms are

&1

0L =i [@Z)T(DQ)Qw—XT(DQ)Qx]+;—;4[¢T(QB o) —x"(gB-o)’x]+... (113)

Other important contributions to £ come from the four-fermion interactions
that are associated with the quarkonium annihilation but not relevant to the work
presented here. The relative importance of the operators in £ is determined by the

NRQCD power counting. For evaluating the velocity scaling rules of the different

11



operators we start with the number operator of the quark field which equals 1, i.e.,

Jd?’xw(a:)zp(x) =1, (1.14)

and since the integral has support only over of the quarkonium size

1 1
Jd?’x ~ V3(quarkonium) ~ P Loy = o~ (Mv)*2. (1.15)

Similarly we can find the estimated size of other elementary operators. A summary
of these results is shown in Table [1].

1.3.1  Quarkonium production in fixed order NRQCD calculations

In NRQCD framework the quarkonium production cross section is factorized into the
perturbatively calculable short distance coefficients (SDC) and long distance matrix

elements (LDME) that need to be extracted from data:

doyrgep(a+b— Q+ X) = do(a+b— QQ[n] + X)(O,), (1.16)
where
n =0y (ZZ 10+ XXQ + X|> Or and O = 'K,x, (1.17)
J my

where IC, is a tensor in the Dirac and color algebra. Therefore the index n runs over
all possible color and angular momentum configurations. While the short distance
coefficients do(a + b — QQ[n] + X) in Eq.(1.16) have an expansion in the strong
coupling, ay, the LDMESs scale based on the NRQCD scaling rules. Thus truncating
the sum can give us the desirable accuracy from a simultaneous expansion in the ay
and v. In this approach for calculating quarkonium production cross sections, SDCs
appearing in Eq. are calculated up to a specific order in perturbation theory.
For this reason we refer to these calculations as fixed order calculations.

12



We note that including in the sum in Eq. only the case where n matches the
quantum numbers of the quarkonium state, then the NRQCD framework recovers
the results from CSM. Though, for S-wave quarkonia the singlet LDME dominates
in the relative velocity expansion, for P-wave quarkonia the singlet LDME scales the
same as the leading color-octet LDMEs. This explains the necessity for inclusion
of octet states for complete cancelation of infrared divergences that appear in CSM
calculations for the P-wave quarkonia.

NRQCD has been the most successful model for the description of quarkonium
production in hadron colliders. The values of the singlet matrix element are extracted
either from quark potential model calculations and from quarkonium di-lepton decay
rates. The rest of the relevant values included in the expansion are fitted to results

from experimental data.
1.4 J/¢ production

Experimentally the most studied charmonium state is J/1. With quantum numbers
1351, J /1 has clean experimental signal through di-lepton decays as we will describe
later in this chapter. In the work presented here we focus on the production of
J/1v but the methodology and the framework we develop can be applied to any
quarkonium state and more generally to any hadron.

In hadron colliders the major production processes of J /1) are:

e Through b-hadron decays (i.e., hy — J/10+ X) which we refer to as non-prompt

production.
e Direct production from energetic partons.
e Feed-down decays of excited charmonium states.

The main contribution to feed-down production are radiative decays of P-wave states

13



Table 1.2: LDMEs for NRQCD production mechanisms. Central values taken from
global fits in Refs. [2,3]. The values are in units of GeV®. The v scaling is also shown.

O ¢5)

O ¢s)

O (55

(O (3 PFY)) /m?

1.32 4+ 0.2

(2.24 + 0.59) x 1073

(4.97 + 0.44) x 1072

(=7.16 +0.9) x 1073

NUS

(Xe — J /1) which approximately consists of 71% of the feed-down contribution and
hadronic decays of other excited vector states (¢(2S) — J /1 + hadrons) [40,41] with
approximately 23% contribution to the feed-down production of J/1. Additionally,
any production process that does not involve b-hadron decays is refer to as prompt
production, that includes the direct production and feed-down decays.

The NRQCD framework has been applied extensively in predicting transverse
momentum of the J /1 in excellent agreement with experimental data. These results
are demonstrated in Fig. [[.4] which shows how the predictions agree with various
experiments in hadron colliders for a large range of the transverse momentum and
rapidity. The values of the LDMEs that are used in the demonstrated calculations
are extracted in Refs. [3,42] from global fits to the world data and are summarized
in Table.[1.2] In Fig.[I.4)only two of the thirty-two data-sets used are presented. We
note that these values are in agreement with the NRQCD velocity scaling rules in
the second line of Table. .2l

Despite the great success of NRQCD in describing the transverse momentum
spectrum of J/1, NRQCD fails to correctly predict the J/i¢ polarization. Fig.
shows that measurements [11] of J/i¢ polarization disagree with NRQCD predic-
tions.In Fig. the blue band corresponds to the polarization prediction in NLO
calculations using the LDMEs from Table [8] and the red band to same order

calculations including the effect of feed-down decays [9]. The green band, which
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FIGURE 1.4: J /1 transevse momentum spectrum from experiments at LHC (ALICE,
CMS, ATLAS, LHCb) at 4/s = 7 TeV compared against predictions from NRQCD
framework where the LDMEs are extracted from global fits to the world’s data.
Figure from Ref. [2,3].

shows the best agreement with the data corresponds to LDMEs that are extracted
from simultaneous fits to the transverse momentum and polarization spectrum of
J/v |10] at high p,, at hadron colliders only. The magenta curve corresponds to
predictions from CSM calculations in k; factorization from Ref. [8]. While the ex-

perimental data find that the quarkonium is produced unpolarized (i.e. Ay ~ 0)
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green [10]). These resutls were published in Ref. [11].

various theoretical studies consistently predict some or full transverse polarization.
Measurements from other experiments (e.g. CMS [43], ALICE [44], CDF [45]) find
similar results. This discrepancy between theoretical predictions and data is also

known as the polarization puzzle of J/v.
1.4.1 NRQCD fragmentation functions

There have been recent attempts [46}/47] to resolve the polarization puzzle, by refit-
ting LDMEs from charmonium production transverse momentum spectrum at high
pr including the color-octet dominating mechanisms and resuming logarithms of
pr/m using renormalization group evolution techniques. This is achieved by us-
ing the leading power (LP) factorization approach which states that at large trans-
verse momenta fragmentation processes dominate the production cross section. For

a generic hadron A this is expressed through the following factorization formula:

do(h + X)

— ZLl %dai(Z,M)Di/h <§7M> + O(m/ph). (1.18)
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where do'(z, f1) is the partonic cross section and D;p,(z, 1) the fragmentation function
(FF). Similarly to PDFs, fragmentation functions are fundamentally non-perturbative
and describe the production of identified hadrons from energetic partons. The factor-
ization scale dependence, at leading order, is the same DGLAP evolution equation
(cf. Eq) for the FFs as for PDFs. At higher orders the form of the evolu-
tion equation remains the same but the splitting kernels, P;;(x), differ starting at
two loops (i.e., at O(ay)). The DGLAP evolution conserves the normalization of

fragmentation function which reads

ZJ dz xD;p(z, 1) = 1. (1.19)
o Jo

For a parton i fragmenting into a hadron h the operator definition of the correspond-

ing fragmentation function is given by [4§]

1 1 _

Dy = L3 i — vy i) T [ RO xmxasom) .

X ¢ Pl =—P]
(1.20)

for quark fragmentation, and
1 _ _ a va

Dg/ph(z? :u) == (d _ (Z)(NCQ _ 1)UJZ ;6(&) —Px — ph)<O’Guu(0)’Xh><Xh|Gp (O>’O>7
(1.21)

for gluon fragmentation, where z is the fraction of the energy of the original parton,
FE; = w, carried by the hadron. The energy conservation delta function is expressed

in terms of the light-cone coordinates (p~ = p° + p* ~ 2pY).

Applying Eq.(1.18) to the NRQCD factorization conjecture in Eq.(1.16) we can

extract the quarkonium fragmentation functions [49].

Dyjolz 1) = Y43 (=)0, (1.22)
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Table 1.3: Contributions to the J/¢ charm quark and gluon fragmentation function.

Mechanism | LO to d?(z) | LDME scaling | Total scaling

where now d(z) are matching coefficients that can be evaluated in perturbation
theory through a matching process from QCD onto NRQCD. Applying Eq.(1.22)) in
the QCD factorization framework (i.e. Egs.(1.18)) and (1.3))) we have

do§rocp(hi(Pal)ha(Py) — Q(z) + X) = Z (05)

n

EJ Zdo (P1(Pa1)ho(Py) —i(z) + X)d} (g) (1.23)

In the NRQCD leading power approximation we consider charm quark and gluon
fragmentation separately. In the charm quark fragmentation the dominant produc-

tion mechanism is through a c¢ bound state in 3S£1) configuration. In the strong cou-

pling and relative velocity expansion this mechanism scales as ¢ — (06[3551)]) +X ~

a? v3. In the gluon fragmentation process the situation is more complicated since

S
various production mechanisms have comparable contributions to the fragmentations
function. The most important mechanisms are 3551), 3S£8), 15((]8), and 3P§8), and their
estimated sizes are summarized in Table [L.3]

The leading power factorization approach yields good fits for the cross section

data, however the extracted values of LDMESs are inconsistent with previous fits to
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the world’s data suggesting that an independent measurement of LDMEs is needed.
1.5 Quarkonium polarization

The vector states, 135, with J7¢ = 17~ (i.e. J/v and T(1S)) have very charac-
teristic and experimentally clean di-lepton (e*e™, u*p~) decays that are used for
measuring the polarization of quarkonium, where a state is transversely polarized if
J, = £1 and longitudinally polarized if J, = 0, and the direction Z is chosen along the
direction of the motion. This choice of axis is called the helicity reference frame and
other common choices are the Gottfried-Jackson frame [50], GJ, and Collins-Soper
frame [51], CS, as shown in Fig. [L.6[left). The angular distribution of the dimuons
in the quarkonium rest frame gives a direct measurement of the polarization. An
observable used widely by all high energy experiments is the coefficient, Ay, of the

polar cosine from the dimoun angular distribution
W(0,¢) = N(1+ Ngcos® 0 + Ay sin® 0 cos 2¢ + Mg sin 26 cos ¢), (1.24)

where the angle # and ¢ are the polar and azimuthal angles of the direction of the
positive charge lepton as displayed in Fig. m (right). We can derive Eq. by
noticing that in the quarkonium rest frame the muons are approximately massless
and therefore helicity eigenstates. Also due to helicity conservation in QED the
dimuon system must have the same helicity as the decayed photon, i.e. +1, therefore
the spin of the two muons is parallel and pointing in the direction of their motion.

On the other hand the quarkonium state, in the most general case has components
351 = ai|m = 1) + aplm = 0) + a_1|m = —1), (1.25)

where J,| m ) = m| m ) (in A = 1 units) and 2 is the direction of motion of the

quarkonium. Using the three dimensional unitary representation of rotations we can
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easily evaluate

N 2
W~y ‘<u+u‘;€| BPSp|, (1.26)

{==1

where the action of the transition operator B on the quarkonium state is uniform
among the different eigenstates of J,, due to the rotational invariance of QED as

discussed in Ref. [12],
B’S,) = B[allm =1)+apm =0)+a_q1|m = —1>]. (1.27)

After evaluating the transition amplitude (u*p~;¢| B [3S;) and summing the prob-
abilities over the possible polarizations of the dimuon system (¢ = +1) we recover

Eq.(1.24)) with

1-—Zﬂa0P
AN = ——. 1.28
T 1+ aol? (1.28)

We note that the observable )y is useful for measuring the polarization of quarkonium
since it has distinct behavior for all three special cases.
Transverse polarization (Ja+1| = 1,a9 = 0) : Ao =+1, (1.29)
Longitudinal polarization (a4; = 0, |ag| = 1) : Ao =—1,

No polarization (a; = a_y = ag = +1/3/3) : Ao = 0.

As we saw earlier in this chapter theoretical predictions fail to reproduce experi-
mental results regarding the polarization of J/i). This discrepancy is the well known
polarization puzzle. This thesis is focused on developing alternative observables for
studying quarkonium production to give further insight into the fragmentation pro-
duction of J/¢ and therefore shed light on the polarization puzzle.

The work presented here focuses on approaches for extracting charmonium pro-

duction LDMEs by studying jet observables in semi-inclusive processes. The pro-
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FIGURE 1.6: Standard reference frames for measuring quarkonium pollarization.
Picture taken from Ref. [12].

cesses we will consider are quarkonium produced within a jetE| of particles. The
production mechanisms could have great impact on the jet substructure and topol-
ogy therefore, measurements of jet observables can help discriminate between various
production mechanisms. Thus, such measurements could help perform an indepen-
dent extraction of the LDMEs. We believe that the extracted LDMEs will give us
further insight into the polarization puzzle.

Measurements on .J /¢ production in jets were performed for the first time recently
by the LHCb collaboration [13]. In this measurement the transverse momentum
ratio z = pﬁ/ ” /pjiet is measured for jets with cone size R = 0.5, within the pseudo-
rapidity range 7 € (2.5,4.0) and transverse momentum pi, > 20 GeV. For J/¢
produced promptly the observed data are compared against predictions from the
simulation package PYTHIA 8 in Fig. [I.7] We discuss the LHCb measurements in
the last section of Chapter |3|and we give semi-analytic predictions for three different
extractions of LDME, a complete analyti(ﬂ calculation is in development.

Over the past few years there has been a great effort made towards the develop-

4 A jet of particles is a collimated spray of hadrons initiated by a single energetic parton. Jets
are the result of hadronization of gluons and quarks due to confinement.

> By complete analytic we refer to calculations that do not involve input from monte-carlo simu-
lations but will include non-perturbative parton distribution functions
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FIGURE 1.7: Measured normalized z(.J/v) distributions for .J/¢) mesons produced

promptly compared to predictions obtained from Pythia 8. This figure was published
in Ref. [13]

ment of theoretical tools for the study of jets. Particularly, in the framework of SCET
(Soft-Collinear Effective Theory) [52H{54] —an effective theory of QCD in the soft and
collinear limit—jet observables are factorized into pieces calculable in perturbation
theory and universal nonperturbative parts. For hadron or quarkonium production
inside jets, these pieces include newly-defined fragmenting jet functions (FJFs) [55].
These advanced methods allow us to investigate the effects of the hadron’s produc-
tion mechanism on the observed substructure and topology of the jet. More details
on the development of SCET and how FJFs are constructed and enter factorization
theorems in SCET are presented in Chapters [2] and In Chapter [] we present
the generalization of FJFs to transverse momentum dependent (TMD) observables
where the transverse momentum of the identified hadron is measured with respect to
the jet axis. In Chapter 5| we evaluate all the necessary pieces for the factorization
theorem in dijet events at hadron colliders and we develop a prescription for imple-
menting the FJF formalism in such events. The work presented in Chapters [3] [4]
and [5| was published in respectively and the manuscript closely follows the

corresponding publications.
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2

Soft Collinear Effective Theory

Beyond leading order calculations of jet cross sections in QCD, soft and collinear
divergences from the real emission diagrams cancel against infrared divergences from
the virtual emissions. The soft and collinear divergences appear from the region of
phase-space where the real particles are emitted within the jet boundary or are soft
enough such that they do not form a new jet. A characteristic example of fixed
order calculations of jet cross sections is given in Ref. [59]. In soft collinear effective
theory [52-54] collinear and soft modes are systematically extracted from the full
QCD fields. This allows us to isolate these divergences in soft and collinear functions
respectively. The infrared divergences from loop corrections to the hard process
are included in the hard functions. This way one can establish a renormalization
procedure for each function separately and using renormalization group techniques,
resum logarithms of widely separated scales that can potentially ruin the perturbative

expansion in fixed order calculations.
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2.1 Lightcone coordinates

In this section we introduce the notation that will be used in this and the following
chapters. Since in SCET we encounter collinear and soft modes of the quark and
gluon fields, is convenient to express the corresponding momenta in the lightcone
coordinates with respect to the unit vector n. In the context of jet cross sections
n is chosen to point in the direction of the corresponding jet or beam axis. In a
particular process multiple directions are relevant, e.g. for the process pp — 2 jets
four directions are of interest (the two beam and the two jet axis) and thus four unit

vectors need to employed (ng, g, N1, and ny) as shown in Fig. [2.1]

>
(ool
'y

Hard process

J€t2(Rvp2L7y257-2) TALQ

FiGURE 2.1: Example of multiple collinear directions in a single event. In this
particular case we have a di-jet event in pp or pp collision.

For every direction n; we define the corresponding lightlike four-vectors, nf' =
(1,7;) and 7} = (1, —n;) such that n> = 7? = 0 and n-n = 2. Then every four-

vector, A* can be expanded in the lightcone coordinates in the following way
1 M
Al = %A‘ + %A* + A" (2.1)

where AT =n-A, A~ =n-A, and A" are the two spatial components perpendicular
to the direction of the unit vector n such that A, -n = A, -n = 0. We represent this
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decomposition in component notation as A* = (A%, A=, A”). Furthermore the vector

product in Minkowski metric A - B is writen in terms of the lightcone coordinates as

AtTB- A Bt ATB- A Bt -
- + A, -B, = + — A - B, . (2.2)

A-B
2 * 2 2 2

The momentum components p* of energetic particles emitted in an angle 6 with
respect to i are p* ~ E(1 — cosf), p~ ~ E(1 + cosf), and |p,| ~ Esinf. For
particles collinear to the 7 direction where 6 « 1 their four momenta scale as pf,,, ~
E(M*,1,)), where A = E/|p,| ~ 6. On the other hand, momenta of soft particles
satisfy the following scaling, pgoft ~ E(A*, A% %), where for o = 2 are called ultra-
soft emissions and for @ = 1 are simply referred to as soft emissions. The version
of SCET that is associated with the ultra-soft modes is known as SCET; where
the soft modes are relevant in SCETyy [52H54]. Extended versions of SCET such as
SCET, [5,60] and SCET¢ [61] involve additional soft-collinear and Glauber modes.
Some of the extended versions of SCET (SCET, and SCET,,) will be discussed
later in Chapters [d] and [f

The collinear and soft gluon fields are defined by the corresponding momenta that
are functions in momentum space, i.e., for the collinear gluon field we have A*(peou)
and for the soft gluon field A% (psos:). Using the definition of the gluon propagator

we can establish a power counting of the four-vector components of the gluon field
ik-x v i v v
| dtet L@ A 00 = ~ L #e - (1= ORR), (23)

where ¢ is the parameter that controls the choice of gauge (e.g. Feynman and 't
Hooft gauge, in which £ = 1 and Landau gauge, where ¢ = 0) and since d*z has
support in a region that scales as the inverse of the corresponding momenta we
have d*r ~ dxtdz~d*z; ~ A% and it must that A*AY ~ (k*g" — EkMEY). By
taking the perpendicular component in both four-vector indices p and v, we have
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(A, 1)* ~ (QN)? thus A, | ~ Q). The +— combination will give A A~ ~ (Q))? and
the ++ combination AT At ~ (QA)*. Therefore the collinear gluon field four-vector
components has the same scaling as the collinear four-momenta. Similar analysis

also shows that the soft gluon field scales the same as soft four-momenta:
A~ ~ QA1) and  AF, ~ pﬁfsoft ~ QA% N\, (2.4)

where here and for the rest of this chapter we work in SCET| where soft radiation
scales as ultra-soft modes (i.e. psopr ~ E(A%, A2 A?)).
For developing the SCET Lagrangian for Dirac spinors is useful to introduce the

projection operators P,_ and P_, defined as

A —at

v
P—I——: ) P—+: 4 .

(2.5)

where v are the Dirac matrices. Directly from their anti-commutation relations (i.e.

{v*, 7"} = 2n*") the projection operators satisfy
P+7 + P7+ == 1 (26)

Additionally we can show that {y*,7~} = 4 and since y"y* = v~ = 0 the

following relations are true
Py 4T =47, Py =7 ,and P, v =P 7" =0, (2.7)
thus the following projection operator relations are also true
(P,_Y=P,_, (P..)»)=P ., andP,_P_,=P_,P,_=0. (2.8)

2.2 The SCET Lagrangian

In this section we discuss the derivation of the SCET;| Lagrangian for the collinear

quark ﬁeldﬂ We start the derivation from the massless limit of QCD and expanding

L The discussion closely follows the notes from Ref. |62].
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by applying Eq.(2.6]) to the quark field 1.

Y=(Po+ P )Y =6 +¢n, (2.9)
thus
Lqacp = Y(iy - D)y = (¢pn + &) <i7+2D + ¢72D+ + iy, - DL) (bn + &), (2.10)

where &, = P, _1¢ and ¢; = P_, 1. To simplify this expression we expand and use
the fact that Y€, = &Y = Y én = ¢y~ = 0 which is directly derived from the

relations in Eq. (2.7). Applying these relations gives

Lacp =&, <272D > &n + O (ﬂ 2D) O+ Eulive - D1)dn + Gn(iv - D1)én

+ &u(ive - D1)én + Gn(ive - D) dn ,  (2.11)

The last two terms in the second line also vanish since

gn(i'YJ_ : Dl)&n = gn@'}ﬂ. : DJ_)P-i-—gn = EnP+—(i7J_ : Dl)&n = O, (212)

where in the second line we used v, v* = —y*~,. Therefore we have

Caon = & (115 ) €utin (1T ) 6u+Eulins Dion i D)6 (219

Up to this point he have only expanded the QCD Lagrangian in terms of the &, and ¢

fields. In the next step we will eliminate the component ¢; from the Lagrangian using

the equations of motion. This component will give subleading contributions in A

which will not contibute to the leading order SCET Lagrangian. We may see how the

¢rn component will give contributions of subleading orders by expanding the equation

of motion for the Dirac spinor u: 0 = pu = p(P,— + P, )u = pfg(PJr_u) + O(N).
The corresponding equation of motion satisfied by ¢y is

o

(’}(Eﬁ a
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which directly leads to

! 2D¢ﬁ+ (1 D1)& =0
D gu— (1 D)L & =0 = o-(u-D)TE . (215)

Using this expression for replacing the subleading component ¢ in the QCD La-

grangian we get

£- (D ¥ ummium) e (2.16)

where we used the shorthand notation [0, =, - D,.

We continue by separating the collinear momentum to label and residual into a
similar manner as in heavy quark effective theory (HQET) [63] where p* = p} + p/.
The residual momenta has ultra-soft scaling i.e. p* ~ Q(A?, A%, \?) and the label
moment scales as p) ~ Q(0, 1, ). Using this decomposition we may write the &,(z)
as & p, (z,) where we explicitly show the label momentum and the coordinate variable
x, which is conjugate variable of the residual momentum. Thus the coordinate
derivative d, now is separated in a derivative term with respect to x, and the label
momentum operator P = (0,P,P,): id, — P + i0,,. For simplicity of notation
we relabel z, — x and ignore the label momentum index such that &, ,, (z,) —
&a.(x). Applying these modifications and including only the leading terms after power
counting in A we have the final result for the SCET Lagrangian for the collinear quark

fields:

1D 2

n

_ 1 —
where
iD= Pl 4 gA" | D, =P+gA,, and D" =id" + g(A} + AF). (2.18)

The superscript 0 notation denotes that this is the leading contribution to the
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SCET Lagrangian in the power counting parameter A. The complete SCET La-
grangian also includes the collinear gluon sector, £,,, that describes the propagation
and the dynamics of gluon-gluon interactions, as well as the hard sector, Lj,,q4, that
describes the operator matching from QCD onto SCET,

Lscpr = Z (Loe + LD,) + Lnara + O(N). (2.19)

n

In this section we are not going to perform the derivation of the other terms since
the gluon interactions sector can be derived in a similar manner as the quark sector
by expanding and performing power counting at leading order. The hard sector is
evaluated through a matching process and for the work presented here all the relevant
parts are going to be extracted from the literature. Also note that in Eq.
we included a summation over all distinct collinear sectors. Two collinear sectors

described by the light-like vectors n} and nf are considered distinct if ny - ny » A%
2.3 Wilson lines

In this section we review some of the properties of Wilson lines that will be used
later in this chapter. We start with the definition of Wilson lines in non-Abelian

theories.
WR<xfin7$im't> = Pexp (ZQJ dIMAi(x)) , (2.20)

where the integration dz* is along the contour ¢( fin, Tinit), R is the representation of
the gluon field, and P the path ordering operator. We may parametrize the integral
with the parameter s that runs over the integration contour and each point on the

contour corresponds to unique value of s
o) = P (19 [ a5 4l (). 221)
P S
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If the integration contour is a straight line in the collinear direction n* and we

parametrize coordinates as z# = n*'s thus da*/ds = n* such that

T

W(z) = W(z, —0) — Pexp (z’gf

B dsA~ (a:(s))) : (2.22)

where we removed the representation index for simplicity. We can show that the

Wilson line satisfies the following differential equationﬂ

—idiSW(s) = A" (x(s))W(s)

<—iﬁﬁu - A_(:p(s))) Wi(s(z)) =0
D~W(s(z)) = 0. (2.23)

Replacing the generic gluon field A* with the collinear gluon field A# and expanding

in the SCET power counting parameter, the above relation becomes

iD-W,(s(z)) =0 where W(s), = Wy(s,—0) = Pexp (ig LO dsA;(x(s))) ,

(2.24)
where the Wilson line W, (x) can be also written in the following form using the label

momentum operator

Wa(z) = Y exp (—%A; (x)) , (2.25)

perm.

and the sum over all permutations is a result of path ordering operator. Using
Eq. we can show that the action of iD_ W, on an arbitrary operator O is
iD, (W,0) = (P + gA, )W, O
= (iD,; W,)O + W,,PO

= W, PO. (2.26)

2 It should be noted that this equation is analogous to the differential equation satisfied by the
time evolution operator in the Hamiltonian formalism with the transformation: P — T, s — ¢, and
H"M (t) — — A, (2(s))-
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Then, Eq.(2.26) along with the unitarity condition W, W} = 1, gives (iD;)™! =
WI(P)~'W, which allows us to rewrite the Lagrangian for the SCET quark field in

Eq.ET7)

W, 1, ) 72 £ (2.27)

Enfzg < _ZDnLWnP

2.4 Gauge Invariance and operators in SCET

Gauge transformations in SCET are defined in a similar way as in QCD and other
non-Abelian gauge theories. Since we now have two distinct gauge fields, the collinear
and ultra-soft gluons, a gauge transformation on those fields should respect their
scaling, i.e., collinear gluons remain collinear after the transformation (and the same
holds for soft gluons). We can achive that by separating collinear and soft gauge
transformation such that 0,U, /s ~ pﬁ /SUn/s where U, /s is the gauge transformation
and p!! /s the corresponding momentum scaling. Additionally, the soft gluons due to
their large wavelength are seen as a background field from the collinear radiation.
Therefore the collinear gauge transformations do not change the soft gluon fields and
the soft gauge transformation is directly analogous to the traditional QCD gauge
transformation.

In Table 2.7] the soft covariant derivative is given by

'DM:"—M@‘ 2 v ot —igAT 2.28
iD* 5 + l—i—zz( ig S(az‘)) (2.28)

For the collinear gauge transformations of the corresponding Wilson lines in the last
entry of Table [2.1] we used the fact that under gauge transformations the Wilson
line transforms as W(x,y) — U(z)W(x,y)U'(y) and since in the particular case
y — —oo, by convention U(—w) = 1, so W,, only tranforms on the left. The soft

gauge transformation is a direct result of applying the gluon field transformation to

Wilson lines in Eq.({2.25).
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Table 2.1: The collinear and soft gauge transformations of the SCET fields

SCET fields Collinear Gauge Trnas. Soft Gauge Trans.
&n() Un(2)&n() Us()8n ()
Al(x) | Un(2)(Ah(x) +i/gDY)U(2) Us(z) Al (x)Ul(2)
Al () Al () Us(z) (A% (x) +i/g")Ul ()
W (x) Un ()W (2) Us(@)Wa(2)Ul ()

We note that the combination (&, Wa, )v*(W, &,,) is gauge invariant in contrast
to &,,7*&n, which at leading order matches onto the dijet QCD current JSCD = ryHa).
Indeed higher order matching reveals that the complete set of SCET operators needed
to match onto the QCD current are given in the gauge invariant combination. Also
we note that the combination y,, = W,&, is independently gauge invariant. For
this reason we use the fields y,, as one of the fundamental building blocks for gauge
invariant operators in SCET. For the example of dijet events, the QCD current is
matched onto JE gt = Xn, 7" Xne and the operator y, is also known as the quark jet
field. Using similar gauge invariance arguments and polarization considerations we

derive the gluon jet field

B = 1Wg(m + AHW,. (2.29)
g

It should be noted that we can constrain the SCET Lagrangian using gauge in-
variance and dimensionality constraints. Although, an additional operator that is
not present in the Lagrangian derived in Eq.( [2.27) is also allowed by gauge invari-
ance, it can be shown that this term can be eliminated using an additional symmetry
of SCET, namely, reparameterization invariance (RPI) [64]. RPI is the remaining
Lorentz invariance of the full QCD and describes the freedom we have in the choice

of the collinear directions n and n such that collinear radiation has the same scaling.
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2.5 Factorization in SCET

SCET is a powerful tool for the study of jet cross sections where we usually con-
sider only collinear and ultra-soft (or soft) final state radiation. This is usually done
through factorization theorems that are proven within the framework of SCET and
hold up to O(A) corrections. A typical factorization theorem involves the hard func-
tion, that describes the hard interaction of energetic partons, the soft function, which
encapsulates all the interjet cross-talk and the soft out of jet radiation, and the jet
function which includes the collinear radiation within a jet. Usually those terms are
universal, meaning that can be used in a variety of processes.

The proof of any factorization theorem in SCET initiates with the BPS field
redefinition that allows us to decouple, at the level of the Lagrangian, collinear and
soft modes. It should be mentioned that the the BPS redefinition decouples soft
and collinear modes only at the leading order part of the Lagrangian that we are
considering here. Higher order operators in the Lagrangian involve interactions that
couple these modes but since in the work presented here we always consider A « 1,
we may ignore such contributions. Necessary for the BPS field redefinition is the

definition of the soft Wilson line in the adjoint representation which is defined as

Y, (z) = Pexp <ig J_OOO Af(z + ns)) . (2.30)

Similar to the collinear Wilson line, W, (x), the soft Wilson lines satisfy relations

analogous to those in Egs.(2.24) and (2.26)), specifically:
iDFY, =0, Y, YI=1and Y!iDI[Y,0]=i0"0, (2.31)

here D} is + component of the soft covariant derivative defined in Eq.(2.28]). Also
since the soft Wilson line involves the soft gluon field that does not have any label
momenta it commutes with the label momentum operator ([Y,,, P*#] = 0). In terms
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of Y,,(x) the BPS field definition is defined as

En(w) = Yo(2)gD (), Al(2) = Ya(2) AL (2)Y ] (@), (2.32)

Wi(z) = Yo (2) WO (2)Y] (). (2.33)

Applying this transformations in the Lagrangian ES? and using the properties of the
soft Wilson lines from Eq.(2.31)) we find

_ 1 -
Lre =& (& + 94 (@) z’wi"iWJ“)gW;”wS?l) e, (234)

where z'DSl) =P+ gAfloL)(x). We note that the only fields appearing in the resulting
Lagrangian are 57(10) (x) and AL (x), meaning the soft gluons are decoupled from the
collinear fields at the level of the Lagrangian. It should be mentioned that using the
BPS transformed fields as the fundamental fields, when performing calculations in
perturbation theory, requires the transformation of the fields in SCET currents as

well. For example in the case of the bilinear operator
JSCET = Xn17MXn2 B—PS) ngol)yrjlfyuynzxg? (235)

It is instructive to perform a schematic factorization of a generic process where
some jet observable, denoted 7 is measured. The differential cross section for this

process is

do
T~ 3 | ity KX lOaco O 87 7, (2.36)
T Xfin

We start with the matching procedure from QCD onto SCET.
Oqep = Ciy Ol (2.37)
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where summation over the set of indices {i} is implied. The Wilson matching co-
efficients C; are evaluated in perturbation theory by demanding that both sides of
the above equation give the same results for specific matrix elements. Applying this

relation to the differential cross section we have

L~ cucl, 2 [ ML, QO X)Xl O l0) 87 7). (238)
fin
Next we use the fact that soft and collinear modes are decoupled at the level of the
Lagrangian, after performing the BPS field redefinition. This allow as to factorize
the final Hilbert state to soft and collinear final states |Xyi,) — |X)|X,). Also
the contribution to the observable 7 is separated into the contribution from the soft
radiation and the collinear radiation inside the jet. Depending on the observable, the
contribution from the soft modes may be neglected. For example, if the contribution
from a jet constituent k to the observable scales as 7, ~ p; then both soft and
collinear radiation should be included since p},, ~ p,; ~ A*. On the other hand,
if 7, ~ p, then from power counting, only the collinear radiation is contributing to
the observable. The SCET operator is next separated into collinear and soft fields

such that Ogscpr = 0,0,:

do

i

Cicly 3 [, QO X06[080)
Xn
<3 f ATy (0[O X M X|OUH(0) 5(r — 7y, — 7x.). (2.39)
Xs

To continue with the factorization theorem we introduce the measurement op-
erator 7 defined such that when acting on a state in the Hilbert space, 7 returns
the value of the observable that corresponds to that state (i.e. 7|X) = 7x|X)).

The measurement operator can be defined through the use of the energy-momentum
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tensor but the exact definition depends on the observable.

d } ) '
% ~ C{i}C{Tj} deSdTn Z f dllx, 0|08 6(r, — 7)| X, (X, |05 |0)
Xn

X ZJdHXS 0|08 (1, — )| X HX|OUT0Y 6(7 — 7 — 7). (2.40)
Xs

We complete the factorization with the definition of the jet, soft and hard functions

J(T) Ty = ) f dllx, 0|O6(r, — 7)| X, )}{(X,|OFM|0) | (2.41)
Xn

Sy () =) f dllx, 0|0 6(r, — 7)| X XX, 09 0) | (2.42)
Xs

Hiijy = CiiClyZiigy » (2.43)

where Zj; ;) contains all the spinor and color structure of the collinear sector that
usually factorizes from the observable dependent term. Finally the result for the

factorized cross section is

do
2~ Higy JdT/S{i,j}(T')J(T —7') = HujSuj®J . (2.44)

Eq. is the major result of this chapter. It demonstrates how for processes
described by SCET one may perform a factorization of the cross section into collinear,
soft and hard sector. The advantage of this approach is that allows us to evaluate
each term separately and establish renormalization group equations for each term
that we can use in order to resum large logarithmic enhancements to all orders in
perturbation theory.

In multijet events the collinear part from Eq. is further factorized in mul-
tiple jet functions since the various collinear sectors in the SCET Lagrangian are

decoupled. Ref. [65] establishes an elegant formalism for developing factorization
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theorems for n—jet cross sections in e*e™ annihilation with multiple collinear sectors
when those sectors are widely separated. Examples and applications for cases with

up to four collinear functions will be discussed in the following chapters.
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3

Analytic and Monte Carlo Studies of Jets with
Heavy Mesons and Quarkonia

3.1 Outline

In this chapter we calculate cross sections for ete™ to jets, where one of the jets con-
tains a hadron with either open or hidden heavy flavor. In particular, we will derive
factorization theorems and perform analytical Next-to-Leading-Log prime (NLL’)
resummationE] for these cross sections using renormalization group (RG) techniques.
We will also compare our results with monte carlo simulations of the same cross
sections.

Recently, there has been considerable interest in cross sections of this type [55,67-
75]. Ref. [55] demonstrated that the cross section for producing a jet with an identi-
fied hadron can be determined using a distribution function called the fragmenting
jet function (FJF). FJFs are in turn related to the more commonly studied fragmen-
tation functions (FFs) by a matching calculation at the jet energy scale. This implies

that cross sections for jets with an identified hadron provide a new arena to mea-

I NLL’ includes NLL resummation for each function in the factorization theorem, where all func-
tions are computed to NLO [66].
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sure FFs, which are more commonly extracted from the semi-inclusive cross section

et

e~ — H+ X. Especially important is that this provides an opportunity to extract
gluon FFs [74}75], since quark FFs are more readily studied in ete™ - H + X. In
addition, it was recently shown in Ref. [73| that since the FFs for quarkonia produc-
tion can be calculated in the Non-Relativistic Quantum Chromodynamics (NRQCD)
factorization formalism [49], FJFs can be used to make novel tests of quarkonium
production theory.

Part of section 3.2 and sections 3.3-3.5 of this chapter appeared first in Ref. [56]

and section 3.6 is taken from Ref. |76].
3.2 Definition of fragmenting jet functions

The FJF was first introduced in Ref. [55] however here we give an alternative deriva-
tion constructed from measured jet functions for generic jet observable 7. It is shown
in Ref. [65] that the cross-section for the production of two jets in electron-positron
annihilation can be written as,

do

dr = dU(O)HQ(IM) X SA(:“) X Jg(“‘)nu) X SmeaS(Tv :u) ® Jg(vavu)’ (31)

where do® is the Born cross section, Hy(p) is the hard function resulting from
matching a 2-jet operator in full QCD onto the corresponding SCET operators,
Sa(p) is the soft function describes the cross-talk between the jets and the soft out-
of-jet radiation is constrained via F,,; < A. The measured soft and jet functions
Smeas(T, ) and J,, (7, w, p) respectively describe the contribution from the soft and
collinear radiation to the jet observable 7, and J,,(w, 1) is an unmeasured jet function

that describes collinear radiation within a jet in the n direction that has energy
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E; = w/2 (here w = Ey). The measured jet function is defined in SCET as

1) = [ [t explinta 2T | 50005 6umxa()or = 10,010

(3.2)
where we omitted the jet energy w and the renormalization scale dependence from the
argument of the jet function for simplicity of notation. To study jets with identified

hadrons, we insert the following expression for the identity

L=SR0I =Y Y [ Ea a6

X X heH;

Ji(r) = f dzd’p J dk” f diz exp(ikta /2)

C

> Tr[§<0|6w,p B0, X (2)3(7 = ) X2, D)Xz 0 [Xn ()]0 | (3.4)

X

where h is an identified hadron within the jet. We may rewrite the above equation

in the following form
2 dz
= Z fmgi/h(ﬂ Z)a (3-5)
heH,; ﬂ—

where
Gin(T, 2) sz Lfdk Jd"‘x exp(ik* ™ /2)NC
ST B0 G )5~ XX O] 30

is the operator definition of the fragmenting jet function (FJF). Inserting this back
to Eq.(C.1) we have

do
dr

gq/h(Ta Z, :u)

Z fzdz do® Hy (1) x Sx(p) x JE(w, 1) X Seas (T, 1) ® 2(2m)3

heH,;

. (3.7)
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which directly implies

do.i/h

_ gq/h (7-7 Z, ,LL)
drdz '

(0) 7
do HZ(,M) X SA(N) X Jn(w,u) X Smeas(T7 H) ® 2<2ﬂ->3

(3.8)

This suggests a rather powerful rule: a factorization theorem for a jet with an iden-
tified hadron, H, is obtained from the factorization theorem for a jet cross section

by the replacement

1
2(27)3

Ji(7—7 M) - giH(T,Z“U/)dZ, (39)

where J;(7, 1) is the measured jet function initiated by parton i, and the renormal-
ization scale is . The FJF, denoted G (7, z, 1), additionally depends on the fraction
z of the jet energy that is carried by the identified hadron. These functions implicitly
depend on the jet clustering algorithm and cone size R used to define the jets. It is
also possible to define jet functions and FJFs that depend on the total energy of the
jet rather than the invariant mass [70].

For 7 = s, with s the jet invariant mass, FJFs are related to the well-known FF's,

DH(z, 1), through operator product expansion by the formulae
H td H 2
G, (8,2, 1) = ZJ 7~7z‘j(572/,/~0>Dj (/2 p) + O (AQCD/S) ’ (3.10)
j z

where the coefficients J;;(s, z, ;1) are perturbatively calculable matching coefficients
whose large logs are minimized at the jet scale, s, and are calculated to NLO in
Ref. [68]. For heavy quarks the J;;(s, z, i) have been calculated to O(a?) in Ref. [72].

From properties of FF's these matching coefficients obey the sum rule
1 1
Ji(s, 1) = W;L dzzJi(s, 2, 1) - (3.11)

The properties of FJFs were further studied in Refs. [67-71]. These papers fo-
cused on the FJFs for light hadrons such as pions. FJFs for particles with a single
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heavy quark were studied in Ref. [72] and FJFs for quarkonia were calculated in
Ref. |73].
One important goal of this work is to generalize FJF's to jets in which the angu-

larity is measured. The angularity, denoted 7,, is defined as [77]
1 —a —\a
o= = 20T, (3.12)

where the sum is over all the particles in the jet, and w = ). p; is the large light-
like momentum of the jet. The angularity should be viewed as a generalization of
the invariant mass squared of the jet since s = w?r. We calculate the matching
coefficients appropriate for jets in which the angularity has been measured, denoted

Jij(Ta, 2, 1), and verify the s — 7, generalization of the sum rules in Eq. (3.11)) in
Appendix

3.3 Fragmenting Jet Functions with Angularities

In this section we extend the calculation of Ref. [68] to FJFs with measured angu-
larities. We will follow the terminology of Ref. [65], in which a jet whose angularity
is measured is referred to as a “measured” jet, while a jet for whom only the total
energy is measured but the angularity is not is called an “unmeasured” jet. Here we
consider the case of two particles as this is the most that will appear in a one-loop
calculation. In Ref. [68] the measurement operator in the definition of FJFs forces

the mass squared of the jet to be s. The measurement operator takes the form
S(wk® =17 —p*)) =d(s —w(l™ +p")), (3.13)

where k* is the parent parton’s momentum and [* and p* are the momenta of the
partons carrying large lightcone components [~ = (1 — 2)k~ and p~ = zk~ of the

parent’s momentum, respectively. The operator definition of the FJF with measured
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angularities is given by Eq.(3.6) where at O(ay) the operator 7, takes the form (cf.
Eq. (3.12))

O(ra — (IH)22)2 = ()2 (7)) Jw) (3.14)
Other than replacing Eq. with Eq. , the integrals of all diagrams are the
same as in Ref. [68]. However, rather than using the d-regulator and a gluon mass,
we will use pure dimensional regularization to regulate all divergences. In this limit,

it is possible to show that the one-loop evaluation of the FF yields

Disj(2) = 05;0(1 — 2) + Ti;‘—;ﬂ-(z) (i - i) , (3.15)

€vv €IR

where T;; are the color structures, T,y = Cp, Ty, = Ca, Ty = Cp, Tyq = Tr.
Additionally, we have verified that the same 1/e;z poles appear in the calculation
of FJFs and appropriately cancel in the matching between the FJFs and FFs for all

) ay 9 1] as Y j Y ) °

which is the analog of Eq. for FJFs that depend on the angularities.

Since the matching coefficients J;;(7,, 2, ) are free of IR divergences, we can
simplify the matching calculation by using pure dimensional regularization, setting
all scaleless integrals to zero and interpreting all 1/e poles as UV. A detailed calcu-
lation of the renormalized finite terms of J;;(7,, 2, 1) can be found in Appendix ,
the results of which are shown below. We parametrize the matching coefficients

*Z'j (Ta> Z, ,U) as

k%j(T(uZ?M) _ s _
—2(27r)3 = 0;;0(1 — 2)0(74)
QT g 1 InT,
+ T == (2, 1)0(1a) + ¢ (2, 1) <_) + 2050(1 = 2) ( a> ’
J o [ 0 1 a) 4 27 Ta + ]

(3.17)
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y 1—a/2 weooom
iJ _ o 27 7 1]
g (z, 1) — 9;;0(1 )[l 2 6}+C (2)

2 1-a

N w 1 1—=2 oy Ll—a _
Pﬂ[lnwz—i-l_a/zln<1+< . ) ) (0; 1)1_a/2ln(1 2) 1,
. 2 2 l—a -
v — . =
€1 (Z7H’) 51 5(1 Z) In w2 + 1 a/2 1]
2
CT a1 -a2) (3.18)
with
l1—a In(1 — 2)
aq =1— 1 AN ek S
(z) z+1_a/2(+z)( T >+,
— — 2)2 —
99(2) — l—a 2(1 -2+ 2°)° (In(1—=2) ,
1—a/2 2 l—z /.
c(z) ==z,
A z) =22(1 - 2), (3.19)

and where the P;; are the splitting functions of Ref. [68] except for the case i = j = g,

_ 3 1+ 22
qu:qu_ié(l_Z) = (1—Z)+ 9
. 212
P, — P, — -z +a)”
z(l—x)s (3.20)

Notice that our results for the matching coefficients J;;(7,, 2, i) are independent of
the jet algorithm and the jet size parameter R. To include modifications of the
Jij(Ta, 2, 1) that come from these effects, one would have to multiply the measure-
ment operator in Eq. by an additional ©-function that imposes the phase
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space constraints required by the jet algorithm. However, for jets with measured
angularities, it was shown in Ref. [65] that jet-algorithm dependent terms for cone
and kp-type algorithms are suppressed by powers of 7,/R?. Inuitively, this is because
as 7, — 0 all the particles in the jet lie along the jet axis so the result must be insen-
sitive to which algorithm is used and to the value of R in this limit. For the values
of 7, and R considered here, 7,/R? is negligible and we will drop these corrections.
As a non-trivial check of our results we show in Appendix [B|that our J;;(7,, 2, 1t)

satisfy the following identities and sum rules,
hr%‘ji]'(Taazmu) = szij(&zju)» (321)

and

1 1
Ji(ﬂu“) = WZJO dz z k7ij(7-a7 Znu’) ) (322>
J

where J;;(s, z, i) are the matching coefficients for measured jet invariant mass found
in Ref. [68] and J;(7,, 1) are the jet functions for measured jets that can be found in

Ref. [65].
3.4 ete” — 2 Jets with a B Meson

In this section we present an analytic calculation of the cross section for ete™ to two
b jets in which the B meson is identified in a measured jet. Following the analysis of
Ref. [65], the factorization theorem for the cross section for one measured b jet and

one unmeasured b jet is

1 do 5
= Hyp) > 8" () x TP () x |87 i) © TP ()|, (3:23)

oo dr,
where Hy () is the hard function, S"™™™(1) and S™%(7,, u) are the unmeasured and
(b)

measured soft functions, J; (i) is the unmeasured jet function containing the b quark
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and J” (Ta, i) is the measured jet function containing the b quark. These describe
the short-distance process, surrounding soft radiation, and radiation collinear to
unmeasured and measured jets, respectively. At NLO the 7,-independent functions

are given by

as(pn)Cr T2 u? 2
HQ(M):1——<273 [8——6 +1n2ﬁ+31nﬁ ,
as(WCr [, 5 1 s
unmeas — 1 l _ 1 _ 324
S (1) * 27 {n a2 A 3 (3:24)
b O‘S(:u CF
J?% )(:u) =1 + 27?_ ‘]glg<:u)7

where A is a veto on out-of-jet energy, r = tan (/2/2) and J|, (1) is a function that
depends on the algorithm used (and we will use the cone algorithm below) and
is given in Eq. (A.18) of Ref. [65]. We note that unlike measured jets, algorithm
dependent contributions to the unmeasured jet are not power suppressed. We also
note that, beginning at O(a?), non-global logarithms of the ratio Q7,/(2Ar?) begin
to appear in the cross-section [5]. For the values of the parameters we consider, these
ratios are such that we can treat these logarithms as O(1) and thus these would enter
as fixed order corrections needed at NNLL’ accuracy, which is beyond the scope of
this work.

We suppress the dependence of all these functions on scales other than the renor-

malization scale . Measured functions are convolved according to

F(r) ®g(r) = j dr' f(r —7')g(r"). (3.25)

To calculate the differential cross section for a measured jet with an identified B

hadron, we apply the analogous replacement rule in Eq. (3.9) to Eq. (3.23) and use
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the expression for the FJF in Eq. (3.16]) to obtain

#(®) ;
A = ) xS ) < I
e Ty (70, 2, 1)
@[(S <Ta,u>®w)-DjﬁB<z>], (3.26)
where
G(z) e F(2) = F(2) ¢ G(2) = f dfp(x)e(é). (3.27)

To obtain an NLL’ resummed formula for the cross section, we evaluate each function
in the factorization theorem in Eq. at its “characteristic” scale (where poten-
tially large logarithms are minimized) and, using renormalization group techniques,
evolve each function to a common scale, u, which we will choose to be equal to the
hard scale. The details of this evolution are discussed in Appendix [A]

The convolutions in Eq. (3.26) must be performed over angularity over S™*, 7;;,
and factors arising from RG equations. Since such RG factors are distributions (6 or
plus-distributions) in the angularity our final answer is written in terms of distribu-

tions that can be computed analytically using Eqs. (A.21HA.22)). Upon performing

convolutions and resummation to NLL’ accuracy we find for the cross section

1 do®

do(1,,2) = = Ho(pm)

_ — X Sunmeas
oo dr,dz

(1) X & () (3.28)

X ; { (%(I‘é)) [51;]'5(1 —2) (1 + fs(7a, prgmeas)) + f\l}j(TmZ,/ﬁJn)] . %ﬁ;;gm

X TL(pt, forrs ns Hgs s Hg,, 5 fgmens) } :

+

where the ‘+’ distribution is defined in Eq. (A.18) (and acts on all 7,-dependent

quantities, including any implicit dependencies arising from the choice of scales )
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and Q(pey,, frgmeas) = wy, (11, f1,) + Wemeas (11 fgmeas ), the functions wy, and wgmess are

given in Appendix [A] the function fs is given by [65]

2

+H(-1 - Q)] + % W) b

as(u)Cp 1 tan'—e &
fS('ﬂ N) _ (:u) F lln 2 2

wT

(3.29)

and f}] are written in terms of the coefficients cf)j , cij and ¢y presented in Eq. 1}

as

3 (7, 2,m) = Ti-a‘;(:) (Céj(»z, )+ (2, (nr = H(=1- )

(3.30)

nr— H(—1— 2 4 22/6 — (=
ot - oy BT HCL= O+ o - <Q>>>.

The evolution kernel 1T is given in terms of Kr(p, po) and we(p, po) (cf. Appendix|A)),

I wr (i)
LCht, ferrs fons Bor s [ s Hgmens) = H eltrimr) <_> (3.31)
F:HyJ,F“Sunmeas mF
1 Jrwr (i)
X X H e EF(mpr)+ypwr (pspr)) ('M_F> ’
F(_Q(/’LJTH /JSmeaS)) F:J"’Smeas mF

where pup, mp and jp are given in Table . Because they involve FFs (cf. Ap-
pendix , the z convolutions must be evaluated numerically. For the fragmentation
of the b quark we use a two-parameter power model FF introduced in Ref. [7§], in
which Dy_ (2, p = my = 4.5 GeV) is proportional to z%(1 — z)?. Values for the
parameters v = 16.87 and 3 = 2.628 with x7,; = 1.495 were determined using a
fit to LEP data in Ref. [79] for the inclusive process e*e™ — B + X. Errors in these
parameters were not quoted in Ref. [79], so we cannot quantify errors associated
with the extracted FF in our calculation. Additionally, we neglect the contribution

from the fragmentation of other partons for our e*e™ collider studies as in Ref. |79].
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do(70=0.0015, z) do(19=0.0020, 2)
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FIGURE 3.1: The z distributions for do(r,2) at 7o = (1.5, 2.0, 2.5) x 1073 for
analytic calculations with theoretical uncertainty are shown in green. Monte carlo
simulations using Madgraph + PYTHIA and Madgraph + Herwig are shown in black
and red, respectively.

In proton-proton collisions at the LHC, gluon FJFs must also be included since the
dijet channel gg — gg gives a significant contribution to the production of jets with
heavy flavor [75]. For the evolution of the FF up to the jet scale we solve the DGLAP
equation using an inverse Mellin transformation as done in Ref. |73].

Fig. [3.1| shows the z distributions from do (79, 2) for 7o = (1.5, 2.0, 2.5) x 1073 of
our analytic NLL’ calculation (green) and monte-carlo simulations using Madgraph
+ PYTHIA (black) and Madgraph + HERWIG (red). For each monte carlo and for
each NLL’ calculation, the graphs are independently normalized to unit area. For
plots with fixed 7, we use a z-bin of + 0.1 and for plots with fixed z we use a 7, bin
of size +2 x 107*. Jets are reconstructed in PYTHIA using the Seedless-Infared-Safe

Cone (SISCONE) algorithm in the FastJets package [80] with R = 0.6, which will be
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do(19=0.0015, z) do(1,=0.0020, z)
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FIGURE 3.2: Analytic results for the z distributions of do(r,z) at 79 =
(1.5, 2.0, 2.5) x 107®. The orange curve is calculated with a measured jet scale
that does not depend on z whereas the green curve uses a scale that does depend on
z (as in Fig. [3.1)).

used throughout this work. We produced simulated dijet events at E.,, = 250 GeV
in which each jet has an energy of at least (E, — A)/2 where A = 30 GeV | The
central green line corresponds to the NLL’ calculation with the various functions in
the factorization theorem evaluated at their characteristic values shown in Table 4.1,
and the green band corresponds to the estimate of theoretical uncertainty obtained by
varying the scales of the unmeasured functions by +50%, and using profile functions
, to estimate the uncertainty of the measured functions. Profile functions
allow us to introduce an angularity dependent scale variation that freezes at the

characteristic scale for high values of 7, where the factorization theorem breaks down

2 This is different than simply placing a cut A on energy outside the jets (which is what is assumed
in our analytical results), but this difference only appears at O(a?) in the soft function, which is
higher order than we work here.
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and at a fixed scale for small values of 7, where we reach the non-perturbative regime.
This method for estimating theoretical uncertainties is used throughout this work.
Additional details on the profile functions we use can be found in Appendix [A]

Table 3.1: Characteristic scales of the different functions in the factorization theorem

of Eq. (3.23).

Function (F) H, Jb | gunmeas ‘7(7_7 Z) Gmeas (7_)

Scale (pup) Een | war | 2A7Y2 | 0, 7VC70)(1 — 2)(=0)/C=a) | () 7 /pl=a

mpg w | wer | 2ArY2 W, Wy /T170

JF 1 1 1 2—a 1

The orange curves in Fig. show the differential cross section as a function of
z for fixed 7o where py(7) = py(7,2 = 0) = wr/=9 is chosen as the characteristic
scale of the measured jet function, and the error band is obtained the same way as
for Fig.[3.1] As in Fig.[3.1] the green curves show the cross section for a measured jet
scale pu7 (7, 2) = wr/ (=9 (1 — z)(1=9)/2=a) " The reorganization of logarithms of (1— z)
shown in Eq. suggests that we can improve the accuracy of our calculations
for z — 1 by choosing the characteristic value of the measured jet scale to be pu (7, 2).
This improvement is clearly seen in Fig. which shows the scale variation for the
choices p;(7) and py(7,z), the latter choice gives smaller scale variation near the
peak in the z distribution.

In Fig. [3.3] we present the results for the 7 distributions of the differential cross
section do(7,, z) for z = 0.4, 0.6, and 0.8. The color and normalization schemes
match those in Fig. We see that for higher values of z the distributions of 7y are
shifted towards smaller values. This is expected since the majority of the energy of
the jet is carried by the B meson which results in narrower jets. Figs.[3.1]and [3.3|show

that our results are consistent within the monte carlo uncertainty that is suggested by
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FIGURE 3.3: Angularity distributions of do(7,,z) for a = 0 at z = 0.4, 0.6, 0.8.
Analytic results are shown as green bands. Monte carlo results are shown as black
lines for Madgraph + PYTHIA and red lines for Madgraph + HERWIG.

the difference between PYTHIA and HERWIG predictions. This gives us confidence
that the FJF formalism combined with NLL’ resummation can be used to correctly
calculate both the substructure and the identified hadron’s energy fraction within a

jet.
3.5 efe” — 3 Jets with the Gluon Jet Fragmenting to J /v

We can also use the FJF formalism to calculate the cross section for etfe™ — 3
jets with a J/1. As we expect gluon fragmentation to be the dominant production
channel at the LHC, we focus on the case where J/1 is found within a gluon jet.
In addition, we assume that the angularity of this jet is also measured. To obtain
a physical observable, one must also include contributions from all jets fragmenting

to J/1, however, we expect the contribution from quark jets to be smaller. It is
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theoretically possible to isolate the J/¢ coming from gluon jets in experiments by
b-tagging the other two jets in the event, so we will focus on the process ete™ — bbg
followed by gluon fragmentation to J /1.

The analytic expression for this cross section is

1 dO'(g) unmeas b b
T Hilgun) % 5™ ua) x T us,) % I )
O() i Di gy (2, p1a,,)
X Zl]{ < 7_(}4,-(2 ) [5915(1 - Z)(l + fS(Taa Msmeas)) + f:% (Taa 2, :anB):l * 2(27_[_)3 >
x I(p, pom, pa,s MJnlaMJn27UJn37HSmeaS)} ; (3.32)
+

where Q = Q(p,, , prgmess) = w, ({1, 1, ) +Wemeas (1 frgmeas ), the b-quark initiated jets

Jr(fi) and Jr(f_;) are unmeasured, the expression for fg is the same as Eq. 1} with Cr
replaced by C4, and our expressions for ff,; are given in terms of the coefficients céj ,
cij and ¢y given in Eq. . Here 0y is the LO cross section for e*e™ — bbg. We will
focus on the Mercedes Benz configuration in which all three jets have (approximately)
the same energy, and consider jets with energies large enough that the mass of b-quark
can be neglected. Here, H3(u) is 1 + O(ay) where the O(ay) comes from the NLO
virtual corrections to ee~™ — bbg. We do not include this correction. The primary
effect of its omission will be on the normalization of the cross section, which is not
important for our discussion of the distributions we show below, and to increase the
scale uncertainty associated with varying pg; however this is not a very important
source of uncertainty in our calculations.

While the calculation for B mesons requires a phenomenological FF, the FF's for
J /1 production can be calculated in NRQCD [49]. Refs. [83-86] showed that a J /i
FF can be calculated in terms of analytically calculable functions of a4(2m.) and z

multiplied by nonperturbative NRQCD long-distance matrix-elements (LDMEs). As
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discussed in Chapter [1|for J /¢ production, the most important gluon fragmentation
mechanisms are the color-singlet mechanism, in which the c¢ is produced perturba-
tively in a 3551) state, and the color-octet mechanisms, in which the c¢ is produced

QS“LL(,I’S) refers to the angular

perturbatively in a 1558), 388 or 3P§8) state. Here
momentum and color quantum numbers of the c¢. The numerical values for the cor-
responding LDMESs are taken to be the central values from the global fits performed
in Refs. [2,3], and are shown in Table [L.2]

The color-singlet LDME scales as v®, where v is the typical relative velocity of
the ¢¢ in the J/1, while the color-octet LDMEs scale as v” [49]. This v* suppression
is clearly seen in the numerical values of the LDMEs in Table[1.2] In the calculation

of the gluon FF, this v suppression is compensated by powers of o, since the leading

color-octet contributions are O(a2) in the 15 and 3P channels and O(a,) in
the *S® channel, while the color-singlet contribution is O(a?). In this work we
focus on the gluon FJF, Q;,] / w7 and separately compute each of the four NRQCD
contributions to Q;T ¥ To calculate Q; / ¥ we evolve each FF from the scale = 2m,

to the characteristic scale of the measured jet p, (7,) = wr/ @) using the DGLAP
evolution equations. For most values of z considered in this section, we do not
expect that using a z dependent scale will result in significant improvement in the
scale variation. In addition, using a z dependent scale in the 3P§8) channel yields
unphysical results, such as negative values for the FF. After evolution, we perform
the convolution [D e f7] (z) in z with the matching coefficients derived in Section [3.4]

Before discussing the comparison of our results with monte carlo, we briefly re-
view how the Madgraph + PYTHIA monte carlo handles color-singlet and color-octet
quarkonium production. We produce quarkonia states in Madgraph from the follow-
ing processes: ete™ — bbggee[2S\V], ete — bbgee[' S, and ete~ — bbee[35Y)].

25+1 LL(]LS)

The quantum numbers are for the c¢ produced in the event. We only in-

54



clude diagrams in which the virtual photon couples to the bb so in all cases the c¢ plus
any additional gluons come from the decay of a virtual gluon. We did not simulate
production in the 3P§8) channel in efe™ — bbg — bbcég because IR divergences in
the matrix elements require much longer running times to get the same number of
events. We then perform showering and hadronization on these hard processes using
PYTHIA. Analysis is done using RIVET [87|. During PYTHIA’s showering phase,
color-singlet .J /1 do not radiate gluons. Thus if these J/1) are produced within a jet,
all surrounding radiation is due to the other colored particles in the event [88,89].
We require that after showering there are only three jets in the event, two from the
b-quarks and one from a gluon that contains the J/¢. We simulate three-jet events
at B, = 250 GeV in the Mercedes-Benz configuration by requiring the jets each
have energies Eje; > (Eem — A)/3 with A = 30 GeV, analagous to what was done in
Sec. [3.4]

For c¢ produced in a color-octet state PYTHIA allows the color-octet c¢ to emit
gluons with a splitting function 2P,,(z). Since P,(z) is peaked at z = 1, the color-
octet cc¢ pair typically retains most of its energy after these emissions. This model
of the production mechanism is very different than the physical process implied by
the NLL’ calculation. In the NLL’ calculation, the FF is calculated at the scale 2m,.,
then evolved up to the jet energy scale using Altarelli-Parisi evolution equations.
Since this is a gluon FF, the most important splitting kernel in this evolution is
P,,(2). We find that the FFs obtained at the jet energy scale are not significantly
changed if we use only this evolution kernel and ignore mixing with quarks. Thus
the production process implied by the NLL’ calculation is that of a highly energetic
gluon produced in the hard process with virtuallity of order the jet energy scale,
which then showers by emitting gluons until one of the gluons with virtuality of
order 2m, hadronizes into the J/1. Because P,,(2) is peaked at z = 0 and z = 1 the
resulting J /v distribution in z is much softer than the model employed by PYTHIA.
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PYTHIA does not allow one to change the actual splitting function, only to modify
the color-factor. Therefore, in order to get a softer z distribution we changed the
coefficient of PYTHIA’s splitting kernel for a gluon radiating off a color-octet cé
pair from 2P, to C4 P,y = 3F,,. This results in a slighter softer z distribution than
default PYTHIA, but is still inconsistent with the NLL’ calculation. This change
does not have significant impact on the 7, distributions. The 7, distributions are
generally in better agreement. The variable 7, depends on all of the hadrons in the
jet and is therefore less sensitive to the behavior of the J/v, especially when the J /1
carries a small fraction of the jet energy. In that case, 7, distributions in the NLL’
calculation look similar for all color-octet mechanisms.

In an attempt to see if PYTHIA can be modified to reproduce the z distributions
obtained in our NLL’ calculations, and confirm the physical picture of the NLL’
calculation described above, we generate ete™ — bbg events in Madgraph and allow
PYTHIA to shower but not hadronize the events. If we allow the shower to evolve
to a scale where the typical invariant mass of a gluon is 2m,. and then convolve the
gluon distribution with the NRQCD FFs at this scale, we expect that the resulting z
distributions should mimic our NLL’ calculation. The lower cutoff scale in PYTHIA’s
parton shower is set by the parameter TimeShower:pTmin, which is related to the
minimal virtuality of the particles in the shower, and whose default value is 0.4 GeV.
We change this parameter to 1.6 GeV, which corresponds to a virtuality of ~ 2m,.,
then obtain a z distribution for the gluons by randomly choosing a gluon from the
gluon initiated jet. We then numerically convolve this z distribution with the analytic
expression for the NRQCD FF. This procedure, which we will refer to as Gluon
Fragmentation Improved PYTHIA (GFIP), yields z distributions that are consistent
with our NLL’ result, as we will see below. We tested an analogous procedure for two-
jet events with B mesons by showering e*e~ — bb with PYTHIA with hadronization

turned off. We then convolved the resulting b quark distribution with the b-quark FF
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FIGURE 3.4: Angularity distributions of do(7,, z) fora = 0at z = 0,1, 0.3, 0.5, 0.7.

Analytic calculations are shown as red (green) bands for the 3S§8) (15’88)) production

mechanisms. Results from Madgraph + PYTHIA are shown as red (green) dashed
lines for the same mechanisms.

at the scale 2my, and found results for B mesons that are consistent with our NLL’
calculations. Note that PYTHIA treats the radiation coming from the octet c¢ pair
the same regardless of the angular momentum quantum numbers. In contrast, GFIP
like the NLL’ calculation gives different results for all three channels by applying
different FFs at the end of the parton shower phase. Also GFIP can be applied to all
four NRQCD production mechanisms, since convergence issues for the 3P§8) channels
are absent.

Fig. [3.4] shows our NLL’ calculation and Madgraph + PYTHIA results for the
distribution of 7y for various fixed values of z for the 35'{8) (red) and 1558) (green)
channels. We see fairly good agreement between analytic and Monte Carlo results

in the peak regions for smaller values of z and notice some qualitative differences
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FIGURE 3.5: Angularity distributions of do(7,,z) for a = +1/2,0, —1/2, —1 at

z = 0.5. Analytic calculations are shown as red (green) solid lines for the 3S£8)

(15’68)) production mechanisms. Results from Madgraph + PYTHIA are shown as
red (green) dashed lines for the same mechanisms.

in the tail regions, especially for the 1558) channel. At higher values of z where the
number of final state particles is small, differences in the 7y distributions could be
attributed to the increasing influence of Pythia’s unrealistic model of quarkonium
production. As z — 0, we also see similar 7y dependence for the two color-octet
channels in our analytic results. This suggests that in the small z region, the jet
substructure is independent of the production mechanism. Thus, attempts to use
angularity distributions to extract the various LDMEs should focus on the range
0.3 <2<0.7.

In Fig. [3.5] we show the angularity distributions (without uncertainties) for the
15’58) and 3S§8) mechanisms for ¢ = +1/2, 0, —1/2, —1. These are computed an-

alytically and using monte carlo and we again see reasonable agreement. As a is
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FIGURE 3.6: z distributions of do(7,,z) for NLL’ analytic calculations (bands),
PYTHIA (dashed lines), and GFIP (solid lines) for fixed values of 75 = (4, 5, 6) x

1073,

decreased, we see less discrimination between the two production mechanisms. Thus

extraction of LDMEs should ideally be done with larger values of a, for a < 1 where

factorization in SCET; holds, with the caveat that there is a trade-off since the

predictability of the analytical results is limited for a too close to 1 since power

corrections grow as 1/(1 — a) [90].

In contrast to the angularity distributions, Fig. [3.6)shows that analytic and monte

carlo calculations of the z distributions using Madgraph + PYTHIA yield strikingly

different results, with Madgraph+PYTHIA yielding a much harder z-distribution.
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Fig. [3.6] also shows the z distributions using GFIP. The GFIP modification yields
significantly different results for the z distributions that align more closely with NLL’
calculation. While this is far from a proper modification of PYTHIA, it shows us that
implementing the missing g — J/1 fragmentation yields encouraging similarities to
our analytical calculations using the FJF formalism with NRQCD FFs. This also
suggests that if monte carlo is modified to properly include NRQCD FF's at the scale
2m.. it will yield results that are consistent with FJFs combined with NLL’ resumma-
tion. Correct monte carlo implementation of the NRQCD FFs is important because
the GFIP modification can only be used to calculate the z distribution. There are
many other jet shape observables, such as N-subjettiness or AR (where AR is the
angle between the .J/1 and the jet axis), that should be able to discriminate between
NRQCD production mechanisms, and many of these are most easily predicted using

monte carlo.
3.6 Semi-analytic calculations for pp — jet(J/¢) + X

In this section we perform the corresponding calculation for the LHCb experiment
already discussed in Chapter [ We do not use a factorization theorem analogous to
Eq. for pp collisions, which would have the added complication that it would
need to include convolution over incoming parton densities and beam functions. We
instead perform the calculation in two different ways. Our first method is analogous
to the GFIP calculation discussed in the previous section. We start by generating
events corresponding to hard production of ¢ quarks and gluons in pp collisions at
v/$ = 13 GeV using MadGraph [91]E| In the LHCD data, all jets have pseudorapidity
2.5 <y < 4.0, R = 0.5, and the jets are required to have py > 20 GeV. The hard

partons generated by MadGraph satisfy the jet constraints of LHCb. PYTHIA is

3 Note that the contribution from quarks from the hard collision other than ¢ give contributions
to J /¢ production that are suppressed, either due to the soft gluon emission or by «ay evaluated at
a large energy scale, and are therefore we neglect their contribution.
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FIGURE 3.7: PYTHIA predictions for ¢ and g z distributions (where z is the fraction
of the energy of the parton initiating the jet) after showering to the scale 2m..

then used to shower the event down to a scale of ~ 2m,. Jet algorithms are applied
to the output of the PYTHIA shower and the ¢ quarks and gluons must be within
jets of radius R = 0.5 satisfying the criteria of the LHCb data described above. The
resulting ¢ and gluon distributions are shown in Fig. Note that the ¢ quark
distribution is peaked near z = 1 while the gluon z distribution is much softer and
peaked near z = 0. The pr and y distributions for the ¢ quarks and gluons are
then convolved manually with the NRQCD fragmentation functions evaluated at
leading order (LO) in perturbation theory to obtain pr and y distributions for .J/1.
We consider contributions only from the five production mechanisms included in
Table L3

At the LHCb the J/1) is identified through the di-muon decay where is required
that both muons have 2.0 < y < 4.5, energy > 5 GeV, and pr > 0.5 GeV. The energy
cut clearly suppresses contributions from partons with low 2 and hence enhances the
contribution from ¢ quark initiated jets. We implement the muon cuts by assuming
the J /1 are unpolarized and therefore decays to pu* ™ isotropically in its rest frame,
and the LHCb cuts on the muons are applied to the muons after they are boosted
back to the lab frame. From this a normalized distribution in z(J /%) is constructed

for each production mechanism. Each mechanism is characterized by an initial parton
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Ficure 3.8: Predicted z(J/v) distribution using GFIP (gray) and FJF (red) for
the three choices of LDME in Table 1 and the LHCb measurements of z(.J/1).
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1 and quantum numbers n, and is multiplied by a weight

o dolpp— i+ X)§ydz=Dr (%)
r(i,n) =

o (3.33)

do(pp — ¢+ X) Sé dzD."};,,(2)

The weight in Eq. ensures that the total number of J/i) coming from each
mechanism are in the proper ratio. This is where the fitted LDMEs enter the cal-
culation as D} w(z)oc(@‘]/ ¥(n)). Because of possible large corrections near z — 0
and z — 1, we only compare with LHCb data in the range 0.1 < z < 0.9. Finally,
the overall normalization is adjusted to agree with the normalization of the LHCb
data in this range.

Our second method, which we will refer to as the FJF method, employs FJFs eval-
uated at the jet energy scale, E/;, combined with hard events generated by Madgraph.
While this calculation does not include soft and other jet functions in Eq. , these
functions are independent of z(.J /1), so the z(J /1) dependence of the cross section
is controlled by the FJF. The energy distribution of hard partons is combined with
the FJFs for anti-k7 jets with R = 0.5 to produce a z(J/1) distribution for each of
the five mechanisms. To account for the muon cuts we apply a correction that is
obtained from the GFIP calculations of z(J/1). The z(.J/v) distributions from each
mechanism are weighted by the factors in Eq. as before.

Fig.|3.8/shows the predicted z(J /1) distributions for the three choices of LDME’s
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Table 3.2: NRQCD LDMEs for J/¢ production mechanisms used in this paper in
units of GeV?.

©OEsMy | oEsEhy | sty | 0B m?
x GeV3 | x1072 GeV? | x102GeV? x1072GeV3

B & K 23] 1.32£0.20 | 02244£059 | 497+044 | —-0.72£0.88
Chao, et al. [92] 1.16 £ 0.20 8.9+0.98 | 0.30+0.12 0.56 = 0.21
Bodwin et al. [46] | 1.32 +0.20 1.1+£1.0 9.9+ 22 0.49 +£0.44

in Table 3.2/ using the GFIP (gray) and FJF (red) methods, which are in good agree-
ment. Uncertainties are due to LDMEs only. In the case of Ref. [46], the errors in
Table are supplemented with an error correlation matrix provided by the authors
through private communication. In Ref. [92] a fixed relationship between the SSESJ
and 3P}8] LDMEs is required to obtain unpolarized J/v. This constraint is taken
into account when computing the uncertainty due to the LDMEs. These constraints
significantly reduce the uncertainty in the predictions relative to naively adding un-
certainties in Table in quadrature. Other sources of uncertainty such as scale
variation have not been included. Estimating theory uncertainties reliably in the
absence of a complete factorization theorem is difficult. For example, using the FJF
method, the p dependence of the FJF should be cancelled by p dependence in hard
and soft functions that have not been computed. Note that since the normalization
of theoretical curves is fixed to the LHCb data, any scale variation that affects nor-
malization but not the shapes of the z(J /1) distribution will not contribute to the
uncertainty.

All three choices of LDMEs give better agreement to the LHCb data than de-
fault PYTHIA shown in Ref. [13]|. This gives support to the picture of quarkonium

production in the previous and this section. The LDMEs from global fits [2,3] give

63



worse agreement than the fits from Refs. [46,92]. The LHCDb data is a decreasing
function of z(J/1) as z(J/1) — 1. This is a property of the 35 and 1SI* FJFs,
but not the BSP] and 3P}8] FJFs, which actually diverge as z — 1. In order to obtain
negligible polarization at high pr, the 35’{8] and 3P}8] LDMEs of Refs. [46,(92] have
relative signs such that they roughly cancel, so the 15([)8] dominates production and
J /1 are unpolarized. The same cancellation here allows the z(.J/¢) distribution go
to zero as z(J /1) — 1. Such a cancellation does not occur for the LDMEs from the

global fits so the z(.J/¢) distribution starts to turn up at large z(J/¢).
3.7 Conclusion

The study of hadrons within jets provides new tests of perturbative QCD dynamics.
The distribution in z (the fraction of jet energy carried by the identified hadron)
can be calculated as a convolution of the well-known fragmentation functions (FFs)
for that hadron with perturbative matching coefficients that are calculable at the jet
energy scale, which is typically well above Aqcp. At hadron colliders this provides
a new way to extract FFs and will be especially important for pinning down gluon
FFs, which are of subleading importance in e*e™ colliders where FFs are usually
measured. The production of heavy quarkonia within high energy jets in collider
experiments also provides new tests of NRQCD.

In this chapter, we studied cross sections for jets with heavy mesons as a function
of z and the substructure variable angularity, 7,. We provided for the first time the
NLO matching coefficients for jets with measured 7,, and used these along with the
known RGE for the hard, jet, and soft functions to obtain NLL’ accuracy calcula-
tions of cross sections for jets with heavy mesons. We considered the production
of B mesons in two-jet events in e*e™ collisions at E., = 250 GeV as well as J/v

production in three-jet events at the same energies. Though not relevant to any ex-
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periment, this is useful for comparing NLL’ calculations with monte carlo simulations
of fragmenting jets whose energy is comparable to those measured at the LHC. In
the simulations of quarkonia production, the underlying hard process was generated
using Madgraph and then PYTHIA was used to shower and hadronize the events.
In the simulations involving B meson production we also used HERWIG.

For B mesons, we find that the z and 7, distributions computed using monte carlo
and NLL’ are in excellent agreement, giving us confidence in our analytic approach.
In the case of J/1, we considered three-jet events in which the jets all had the same
energy and the J/1¢ in both simulation and NLL’ calculations was required to come
from the gluon jet. This allowed us to study J/v production via the fragmentation
of high energy gluon initiated jets, which we expect to be an important mechanism
at the LHC. Earlier studies of gluon FJFs in Ref. |[73] indicated that the z and E
dependence of these jets could discriminate between various NRQCD production
mechanisms. The analytic NLL’ studies of this chapter are consistent with Ref. |73];
we also find that the 7, and z distributions can discriminate between different various
NRQCD production mechanisms.

For monte carlo simulations, we used Madgraph to calculate ete~ — bbg followed
by the gluon fragmenting into a a c¢ pair in either a 35 1% or 350 state. As
explained earlier we do not simulate events in the 3P§8) channel. The events were
then showered and hadronized using PYTHIA. While the 7, distributions are similar
to analytical calculations, the z distributions are much harder and their shape looks
nothing like the NLL’ calculation. We attribute this to a naive model that PYTHIA
uses for simulating the radiation of gluons from color-octet cc pairs.

We then considered an alternative simulation approach where ete™ — bbg events
are generated using Madgraph, then PYTHIA is used to shower the event to a

low scale near 2m, without hadronization. The resulting gluon distribution is then
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convolved with the analytically calculated NRQCD FF's calculated at the scale 2m,.
This procedure yields z distributions that are in much better agreement with our
NLL’ calculations.

We have analyzed the recent LHCb data on J/v production within jets. We used
a combination of Madgraph, PYTHIA, and LO NRQCD fragmentation functions
first introduced in Ref. [56] as well as an approach based on monte carlo evaluation
of the hard process combined with J/1 FJFs evolved to the jet energy scale. Both
methods yield z(.J/v) distributions that agree much better with data than default
PYTHIA simulations. The z(J /1) distributions are very well described by LDMEs
from fits to large pr data, and less well described by LDMEs from global fits. It would
be interesting to perform a combined fit to the LHCb data and the large py data
used in Refs. [46,92] to see if consistent LDMEs with smaller errors can be obtained.
Experimental measurement of jets at central rapidity and the polarization of J /i as
a function of z(J/1) [93] would also be of interest. Finally it would be especially
interesting to find ways of discriminating charm and gluon initiated jets [94], as a
sample containing only gluon initiated jets will have greater sensitivity to color-octet
LDMEs.

Future work will focus on extending the NLL’ calculations to hadron colliders,
where the unmeasured jet and soft function calculated in 5| (also cf. Ref. [58]) must
be combined with the FJF's calculated in this chapter. It would be of great interest to
compare the results of these calculations with data from the LHC on high energy jets
with heavy mesons and quarkonia. Finally, there needs to be more work on improving
the understanding of the differences between NLL’ and monte carlo simulations.
Monte carlo simulations that can properly simulate the production of quarkonia
within jets will be essential for calculating other jet observables for which NLL’

calculations are either unavailable or impractical.
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4

Transverse Momentum Dependent Fragmenting Jet
Functions with Applications to Quarkonium
Production

4.1 Outline

In this chapter we extend FJFs to transverse momentum dependent distributions
(TMDs). Recently, TMDs have been studied extensively within and outside the
framework of SCET [95-103]. TMDs offer a new technology for the study of hadron
substructure in hadron colliders (TMD parton distribution functions (TMDPDFs))
and hadron production (TMD fragmentation functions (TMDFFs)). TMDPDFs
have been used in SCET for studies of Higgs production in the small transverse mo-
mentum limit at the LHC [103-108]. TMD fragmenting jet functions (TMDFJF)
depend on three kinematic variables: the jet energy, w/2, the fraction of this en-
ergy carried by the identified hadron, z, and the hadron transverse momentum with

respect to the axis of direction of the original parton, p?. The modes that give
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important contributions to the transverse momentum are
collinear-soft: pt. ~ w(Ar,A\/r,A), A =pi/w

collinear: p¥ ~ w(\?, 1, \), (4.1)

where collinear-soft modes are soft modes collinear to the direction of the jet axis
first introduced in Ref. [60] and r = tan (R/2) for jet cone size R. Similar modes are
also studied in [5]. To incorporate contributions from soft-collinear modes, we make
use of the SCET, formalism. SCET, and other similar extensions of SCET have
been used to study processes with multiple well-separated scales and distinct phase
space regions (e.g. [5,/604/101},/109]).

In Section [4.2] we give a definition of the TMDFJF and show how it emerges
from definitions of TMDFFs in the literature. We then perform a matching cal-
culation at next-to-leading order (NLO) onto SCET, and derive a result that is
completely factorized into hard, collinear, collinear-soft, and ultra-soft modes. We
present a calculation of the matching coefficients J;; between the TMDFJF and the
more traditionally studied FFs. Additionally, we present a perturbative calculation
of the corresponding collinear-soft function at NLO. In Section [4.3], we use renormal-
ization group (RG) and rapidity renormalization group (RRG) techniques to resum
logarithms to next-to-leading-log-prime (NLL’) accuracy. The TMDFJF formalism
is applied to the production of J/¢ in gluon jets where the FFs are calculated to
LO in NRQCD. We find that distributions in p; and z as well as the average angle
of J/1 relative to the axis of the jet can discriminate between the various NRQCD

production mechanisms. The material of this chapter was published in Ref. [57].
4.2 'Transverse momentum dependent fragmenting jet function

In this section we will present the definition of the TMDFJF, connecting it with

definitions of TMDFF's from the literature. We first show the matching calculation of
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the TMDFJF onto SCET, and its factorization into pure collinear, soft-collinear, and
hard pieces. We then present perturbative calculations of the matching coefficients,
Ji/j, from matching the pure collinear function onto the FI' as well as the one-loop

expression for the soft-collinear function.
4.2.1 Definition and factorization

The operator definition of the quark FF is given by [4§]:

i

2

1w 1 o
Dyjn(z, p) = ;Z S(w—px—py) Tr[

LION, OR(O)|XRYXhl3:(0)[0)

, (4.2
pY=-ph (42)

where () is the quark field in QCD. The TMDFF is given by a similar expression
but is unintegrated in the transverse components of the hadron momentum. It is

defined by [110]

h 1 dQIEJ_ 1 _ —
Dq/h(pj_vzmu) = ; (271')2 Z IN 5((") —Px _ph)
X c

« Tr [g@W(O,O,:z:L)]Xh><Xh|w(O)\O>}, (4.3)
such that,
| @0t Dyl 2200 = D). (4.4)

Here, p” is the transverse momentum of the hadron h with respect to the direction of
the original fragmenting quark. In order to identify the experimentally measured jet
axis with the direction of the parton initiating the jet, there needs to be a constraint
that only ultrasoft radiation is outside the jet. Alternative definitions of the TMDFF
often involve the transverse momentum measured with respect to different axes (e.g.,
the beam axis). In order to extend this concept to identified hadrons within jets we

consider the collinear limit of Eq.(4.3) by matching onto SCET where now z =
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E,/E;. This yields the operator definition of the TMDFJF
1 1 - 52 X
g‘I/h(prznu) = _Z_é(th;r)é (pl +pJ_)
z % 2N,

fi

x T | 54008, mx” )X XXV (0)]0)], - (4.5)

where in the equation above the states |Xh) corresponds to the a final state of
collinear particles within a jet, in contrast with the the state | Xh) in Egs. (4.2) and
(4.3) which correspond to the inclusive case. The index (0) indicates that the field

has been decoupled from the ultra-soft gluons via BPS field redefinitions

n

Xob(@) = Y] (@)xa(e) and AP () = Y(2) A, (2)Ya(2), (4.6)

and y, = W/, is defined in terms of the collinear quark fields of SCET and the

ultrasoft and collinear Wilson lines are

m J—
Yi(z) = Pexp (zgf dsn - Ayus(z + sn)) and W, (z) = Z exp (7—gﬁ : Anx>.
0 perms n:
(4.7)
As we show in Appendix , the expression for the TMDFJF given in Eq.(4.5)) is
closely related to the FJF introduced in Ref. [55].

As discussed in the introduction, the TMDFJF receives contributions from two
different modes, collinear and colllinear-soft or csoft . In order to make the contri-
bution of the csoft modes explicit, we now match our expression onto SCET, |

Gom(P1, 21) = CL(WC4 () Y, 53 0P, )0 (p1 + PT)

X

< e [B018, V] OO O XD OV 0)0)]. (49
where
V@) = Y exp (=5 AL (@) (4.9)



are Wilson lines of csoft fields (the csoft analogue of W,,) and C(u) are SCET .

matching coefficients. In order to decouple the collinear fields AP and X%O) from

the csoft gluons, we now perform field redefintions similar to those of the BPS proc-

dure [60]
Gon(PL, 2 1) = %; 2]1\[6 (D)0 (0L +PT)
T [§<oréw,pvi OOV O ()| Xh)
x (XBRSO O] O VO 0)]0y ], (4.10)
where
Ul O (z) = Pexp <z’g JOOO dsn- A, (ns+ x)) : (4.11)

and the superscript (0,0) denotes that the corresponding fields are decoupled from
both ultra-soft and collinear-soft modes. Having factorized our operators, we now

factorize the phase-space into collinear and collinear-soft Hilbert states.

X1y — [ Xuh)[Xes), (4.12)
Z > (4.13)
Xn Xes
5@, +py) — P (p+pT" +pr). (4.14)

This allows us to factorize the TMDFJF into three pieces

Gun(Pys 1) = He () x | Dyn @1 Sc| (P12 m). (4.15)

where H , is proportional to the square of the matching coefficient from G,/ in SCET;
to SCET,, and D,/ and Sc are the contributions collinear and the collinear-soft

modes of SCET, to the TMDFJF, respectively. These are defined by

H () = (2m)*N, CL(n)C(p) | (4.16)
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5 )0 () T [ F018, 0 (005 (P + D)X,
X (Kbl (0)[0)], (417)

Se(pf) = 1 T [ QI OUL0)5® (P + b9 XX X UL OV(0)10)], (418)

¢ XCS

where the Tr is over Dirac and color indices in D, and color indices in S¢. From now
on, we drop the (0) and (0, 0) superscripts since the different collinear, soft-collinear,
and ultra-soft modes are now factorized. We also employ the following shorthand for

the convolution in the I components

d*p’ ) ,
Dyn ®1 Sc(py) = fﬁ Dyn(p. — P )Sc(p))- (4.19)

Analogously for gluon fragmentation we have

w

(d—2)(NZ2 -1

1
Dg/h(pi7 2, /J“) = g#’/; Z

) 5(p;(h,7">6(2) (pi + pf)
X

x (016, 5B, (0)0® (P + pT)| X h)(Xh|B; 1 (0)[0),  (4.20)

where the collinear gluon field is
1 :

and iD,,; = P! + gAY is the standard L-collinear covariant derivative in SCET.
At this point, only the purely collinear term D;;, contains information about
the hadron h. The collinear-soft function (S¢) and the hard function (H.) are
universal functions dependent on the fragmenting parton ¢ but not on the hadron
h. Additionally, in the limit that |p,| » Aqcp, we may use the operator product

expansion to factorize D;/, into short distance coefficients and the more commonly
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studied FF's, Dj, via,

Vdx z Adbep
Din(py, 2,1, v) = - Jisi(PL> T, s v) Djn (;,/ﬁ) + 0 A (4.22)
z 1

where J;/; are the short distance coefficients that do not depend on the final hadron

and can be calculated order by order in perturbation theory.

=

e ol

(c) (d)

FIGURE 4.1: Feynman diagrams that give non-scaleless contributions to the gluon
TMDFJF at NLO in «,. Diagram (b) also has a mirror image that is not explicitly
shown.

4.2.2  Perturbative results

The O(a;) diagrams contributing to the gluon and quark TMDFJFs are shown in
Figs. and [£.2] respectively. At NLO, the matching coefficients J;/; are directly

related to the matching coefficients Z;/; between TMDPDF's and the more commonly
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(a) (b)
FIGURE 4.2: Associated non-scaleless diagrams that contribute to the quark TMD-
FJF at NLO. Again, Diagram (b) has a mirror image that is not explicitely drawn
above.

studied PDFs calculated in Refs. [101,/103] by the substitution Z;/; — J;/;. See Ap-
pendix for additional details of the matching calculation. Following Ref. [103], a
rapidity regulator is used to regulate rapidity divergences in the perturbative calcu-
lation. This is implemented by first modifying the form of the collinear and collinear-

soft Wilson lines

2 |5 . -n
Wn: Z CeXp (_gw ‘n Pg’ nAn)

n-P v

(4.23)

_ —n/2
gw |f-Py|™"" _
PR <_ﬁ.7> oz Anes |

with similar modifications to U,. This introduces a regulator 7, a bookkeeping
parameter w, and a new dimensionful parameter v. The dependence of our results
on v should of course cancel amongst the terms in our factorization theorem. The

renormalized results for the J;/; in the MS scheme can be written,

\Z/](pi7 Zy [y V) = 5@]5(1 - 2)6(2) (pi)

2

#2500 - ) () + P ) Lalblon) + cy(0%p0). ). (420

™ 14
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with
Pyg(2) = Pyg(2) = 70(1 = 2) = (1 + 2%) Lo(1 — 2),

1+ (1—2)>

qu(z) = Py(z) = - 5

qu(z) = qu(z) =22+ (1- 2)27

(1—z+ 22)?

Pyy(2) = Pyy(2) —9,0(1 — 2) =2 . Lo(1 — 2), (4.25)

and

l2) = 50 e = (2 =0, e(2) =2(1-2),  (426)

where Tyy = Ty = Cp, Ty = Ca, Tyg = Tp, 7, = 3/2 and 7, = (y/(2C4). For

convenience we use the following shorthand notation for the vector plus-distributions,

1 p? 1 p?
L, (p?, 112 :—£n<—L)= ( In" (142 2) . 4.27
(pi K ) 2’/T,U2 ,u2 2’/T,U2 pJ_ ( /pi) . ( )

Performing the convolutions in the energy ratio parameter z we get,

a, w?(1 — 2)?
Dz-/h(pi, z, 11, v) = Dyp(z, 1)o@ (p,) + ?{[T‘iiDi/h(Zyﬂ) In (¥>

+ fron(z u)]ﬁo(pi, 12) + fL (2, 1)6@ (pl)}, (4.28)

where

f]ZD/(gD( ) 2{521T fl 16? [ 2( )Di/h <§,,u> - 2Di/h <Z7M)]

J

+ (1= 05)T5; Jl Ci,—x Pji(x) Dy <§ M) } (4.29)

z

with p,(z) = (1 + 2?)/z, py(z) = 2(1 — z + 2?)?/2* and

) zZ
c(/>§hD (2, 1) ZEJJ ¢ij () Djn <E’M) ) (4.30)
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(a) (b)

F1GURE 4.3: Real gloun emission diagrams that contribute to the collinear-soft func-
tion S&(p ., 2, 1, ) at O(as). The gluons passing through the shaded oval indicate
they are contained within the phase-space of the jet.

At NLO, the collinear-soft function, defined by Eq. , receives contributions
from the two diagrams shown in Fig. [£.3] The real gluon is contained within a jet
defined by a cone or kp-type jet algorithm with cone size parameter R. A global
soft funciton of similar form has been calculated at NLO in Ref. |[103] and at NNLO
in Ref. [105] in studies of Higgs pr spectrum. The two diagrams in Fig. yield

identical contributions and thier sum is given by,

i eVE 12 dkTdk=d* %k, 2 6(k?)
S B(l)(pi) = g*w? < ) v G J 2(2m)d-1 k:+(k—)1+775(2)(kL +P1) Oug

asw?C;  eEe vr\71 1 2\ et
_ s v ) = = 4.31
T T(l—e) <u> 7 272 (pi) ’ (431)
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where O,), defines the jet algorithm, r = tan(R/2), and C, = Cp, C, = C4. After

an expansion in 7 followed by an expansion in € and summing both diagrams we get,

S6" (P p,v) = 6P (pL) + aslj:@{% (—2%5(2)(1%) + ﬁo(Pi>M2))

+ 69 (p )(i+lln(ﬂ—2>)—£(p2 2)1ﬂ(u—2>+£( 1w
D5z 5 a3 o(PL,H 7212 1PLs #
) o

24

The renormalized result (where we have now set w — 1)in the MS scheme is thus

o, C; 2 2

% m
oty () ~ i) + 30% 00}

SgR(pJJﬂ? l/) = 6(2)(131_) o r2y2

(4.33)
While in general this expression receives contributions from virtual gluon emission
diagrams at NLO, these diagrams yield scaleless integrals when using this particular
set of regulators. Thus virtual diagrams are neglected and all singularities from these
real emission diagrams are interpreted as UV divergences. We also verified, using
a set of regulators where such virtual gluons give non-zero contributions, that the
result is identicalll] Note if pure dimensional regularization is used for ultraviolet

and infrared divergences then H, = (27)2N, as discussed in Ref. [101].

4.3 Numerical Results

4.3.1 Renormalization Group (RG) and Rapidity Renormalization Group (RRG)

Individual diagrams for the collinear-soft function S¢ and the matching coefficients
Jiy; suffer from infra-red (IR), ultra-violet (UV) and rapidity divergences (RD). We
use dimensional regularization and a rapidity regulator (as introduced and developed

in Ref. [103,|111]) to regulate these divergences. IR divergences in the collinear-soft

! In order to verify that all IR divergences do indeed cancel, we used a gluon mass, rapidity regula-
tor, and dimensional regulator where diagrams with virtual gluons give non-scaleless contributions.
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function cancel when summing over all diagrams. In the matching coefficients J;;,
IR divergences cancel in the matching of the collinear functions D;;, onto traditional
FFs, Dj/,. The remaining poles (UV and rapidity), are removed by renormalization.
In addition to the scale p introduced by dimensional regularization our use of a
rapidity regulator requires the introduction of an additional scale, v. With this scale
are associated rapidity renormalization group (RRG) equations which can be used
to resum large logarithms by evolving each function from its canonical scale to a
common scale. Bare and renormalized quantities are related through the following

convolution with the renormalization factor Z,

FB(pJ_) = ZF(pJ_7ﬂ7 V) ®l FR(pL7 Ly V)u (434)

where I can be either D; ), or S¢, and satisfies the following RG and RRG equations,

d p . .
dlnuF (pla,uay):”}/u(,u,V)XF (pl,,ujy)

d

) = 3 (P ) ©L PPy ). (4.35)

Here 75 and 7" are the anomalous dimensions associated to RG and RRG respec-

tively and are defined by,

[(%)25(2) (pl)] X yp (1, v) = =Zg' (P, i, v) @1 Zp(py, 1, v)

d
dlnp

VDL ) =—Zg (P ) QL Zp(py, i, v). (4.36)

dlnv

For the renormalization factors we find,

22 (b o) =(20 0% 1) + (1) Cr{ = 2 (<500 + Lol )
26
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2 1
2y n) =205 ) + (ma?Co{ + 2 (=360 (6) + Lofo 7))

1 (m (L) + 1) 5 (p.), } (4.38)

The p anomalous dimensions are found using Eq. (4.36)),
D QSC% V2 _
Y, (V) = - In ) (4.39)

5o () = aCip <“—2) , (4.40)

r2p2

For the v anomalous dimensions, our bookkeeping parameter w plays an analogous
role to the coupling ¢ for the case of the p anomalous dimension, although w itself

is not a coupling, such that,

Va—é;w = —gw, (4.41)
thus yielding
Y (P, 1) = —(8m)asCi Lo(py, 1) (4.42)
% Py 1) = +(8m)asCi Lo(py, 7). (4.43)
The anomalous dimensions satisfy
D)0 = = 2 (1w (L) ), (1.44)

where v is the anomalous dimension of the unmeasured quark jet function [65] and

Y2 (P p) + ) (py, ) = 0. (4.45)

In order to resum our results to NLL’ accuracy we evolve the purely collinear function
and the collinear-soft function from their characteristic scales where logarithms are
minimized to common scales in g and v using the RG and RRG respectively. To
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perform the evolution, we first solve the Fourier transforms of both the RRG and
RG equations. We then perform the evolution using the RG and RRG before finally
performing the inverse Fourier transform. The simplest resummation procedure is,
in this case, to first evolve our collinear-soft function in RRG space and choose
the common scale to be v = vp. We then evolve both functions in RG space to
the common scale © = wr. Notice that S¢ and D have the same characteristic
renormalization scale pg., = pp = pe. The equivalence of the virtualities of the soft
and collinear modes is a defining feature of SCETY;.

To make the interpretation of our plots easier, we study the quantity G (p., 2, it)
which is related to the TMDFJF by the change of variables from vector transverse
momenta (p,) to the amplitude (p; = |p,|). Performing the evolutions described

above we find,

0

Gin(py, 2, 1) = (2m)? mf db bJo(bp L )Use (14 pse Mise Up (j, pip, 1)
0

X VSC <b7 Hsq, Vp, VSc)fT[IDi/h(pLa Z, UD, VD) ®J_ SZC(pLJ HSes VSc):l7 (446>

where b is the Fourier conjugate variable of p,, Jy is a Bessel function of the first

kind,

1o wr (f1,410)
Up (1, o) = exp (K (1, o) <m—F) , (4.47)

nF (1,v,10)
and Vp(b, u,v,v9) = (%(b)) where puc(b) = 2exp(—vyg)/b, (4.48)
c

are the evolution kernels resulting from solving the RG and RRG equations respec-
tively. The pure collinear term D;, in Eq. involves the convolution of the
perturbatively calculated short distance coefficients and the standard fragmentation
functions evolved from their canonical scale to the canonical scale of the collinear
term in momentum space, 4 = p,. The form of the fragmentation functions is fixed
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during the Fourier transforms in Eq.(4.46]). The scales pp, vp and mp for each of
the functions are given in Table [4.1] and more details of the RG and RRG evolution
are provided in Appendix [A]l

Table 4.1: Characteristic scales of the different functions in the factorization theorem.

Function (F) | RG scale (ur) | RRG scale (vp) | mp

Dy, pe(b) w n.a.

St pic () pic(b)/r vr

4.8.2  Applications to quarkonium production

In this section we apply our TMDFJF formalism to the production of quarkonium
in jets. We will focus on J/1¢ production within jets initiated by gluons, though our
results can be easily generalized to T or other quarkonia and jets initiated by quarks.
Our goal is to see if the z and p, dependence of the TMDFJF can discriminate
between these competing mechanisms.

The TMDFJF as a function of p, for fixed z, for z = 0.3,0.5,0.7, and 0.9, are
shown Figs. and [4.5] for jet energies of 100 GeV and 500 GeV, respectively. In
order to make it easier to view all distributions simultaneously, we have rescaled
the 351, 1558], 3P}8],and 8sH distributions, by factors of 106, 105, 3.010° and
4.0 105, respectively. The same rescaling factor is used in all eight plots in Figs. [4.4
and [4.5] and theoretical uncertainties are calculated by varying the RRG and RG
scales vg,, vp, and p by a factor of 2 and 1/2. The central dashed lines in the
figures correspond to the scale choices v = vp = w and u = wr. Though we plot our
distributions in the range 0 < p; < 20 GeV, it is important that to keep in mind
that our calculations are only reliable for p, > 2m, = 3 GeV.

These plots show that the TMDFJF does in fact provide discriminating power
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E; =100 GeV, z = 0.3 E; =100 GeV, z=0.5
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FIGURE 4.4: The TMDFJF as a function of the p; of the J/¢ for the
3S£1],3S{8],1S([)8],3P}8] production mechanisms where the for jet energies E; =
100 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1/2 and 2.

amongst the four mechanisms. For z = 0.3, all four distributions look similar for both
E; =100 GeV and 500 GeV. The distributions peak at roughly the same location

and they have same slope for large p,. For z > 0.5, the color-singlet SSP] mechanism
and the color-octet 15’([)8] mechanism peak at lower values of p; and fall more steeply

with p, than the 351 and 3P color-octet mechanisms. The 3PI®) mechanism has
the peculiar feature that in order to obtain a positive FF we need to have a negative

LDME, as is found in the fits of Refs. [2,3]. The peaks in the p, distribution for
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E; =500 GeV, z =0.3 E; =500 GeV, z=0.5
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FIGURE 4.5: The TMDFJF as a function of the p, of the J/¢ for the
3S£1],3S{8],1S([)8],3 P}S] production mechanisms where the for jet energies E; =
500 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1/2 and 2.

the 35'{1] and 15([)8] mechanisms are at very low p; where perturbation theory is not
reliable. On the other hand, the peaks of the 3S£8] and 3P}8] distributions are at
larger values of p; ~ 6 — 8 GeV where perturbation theory can be trusted. The
3P}8] gives a slightly harder p, distribution than 35I* mechanism, and both are
significantly harder than the other mechanisms.

It is interesting to study the dependence of the TMDFJF as a function of z with

p. fixed to be a perturbative scale. In Fig. we plot the TMDFJF as a function
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E; =100 GeV, p, =10 GeV Ej; =500 GeV, p, =10 GeV
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FIGURE 4.6: The TMDFJF as a function of the z of the J/i¢ for the
3SF], 35{8], 18([)8],3 P}S] production mechanisms, with p; = 10 GeV for E; = 100 and
500 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1/2 and 2.

of z for p; = 10 GeV for jets with energy E; = 100 and 500 GeV. Large logarithms
and shape function effects will affect these distributions in both the z — 0 and z — 1
limits, but our calculations should be reliable for intermediate values of z. While for
z < 0.5 the distributions have similar shapes, in the range 0.5 < z < 0.9, the shapes
of all four mechanisms are different. The z dependence of the TMDFJF for fixed p;
can be used to differentiate between the NRQCD production mechanisms.

The TMDFJF formalism also allows us to calculate the angle at which J/v are
produced relative to the jet axis. The average production angle for the J/1 is given
by

_ §6d6(do/dbdz)

Oz) = {db(do/dodz)

(4.49)

Using the small angle approximation the differential cross section can be written as

do 2p1 do
Sl _ . 4.
dodz Jd}u g < 2w ) dp,dz (4.50)
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Substituting this into Eq. yields

2 $dpipi(do/dp,dz)
O = s s

(4.51)

As discussed in Appendix , the cross section do/dfdz can be factorized into hard,
soft and collinear terms in SCET. In general the hard and soft contributions will
not cancel because there is a sum over partonic channels in both the numerator
and denominator of Eq. However, they will if gluon fragmentation dominates

production, then the expression above can be written as

O(2) ~ 2§dp. p1Gym(pL, 2, 1)

_ ¢th
o T Gy tt) o (), (4.52)

where Gy/n(p1, 2, i) is the gluon TMDFJF. Fig. the function fJ/¥(2) is plotted
at points z = 0.3,0.5,0.7, and 0.9 for w = 2F; = 200GeV and 1TeV for J/¢ with
p1 € [5,20] GeV and p; € [5,60] GeV, respectively. As was done earlier we have
fixed the scale y = wr. Note the typical angles are small enough that the small
angle approximation is justified. The dashed lines in figure show the results of a fit
to the functional form, Cyexp(—z C}), the values of Cy and C for each mechanism
at each energy are shown in Table [f.2] Again we see that differences between the
various NRQCD mechanisms become more pronounced as z increases. This shows
that the average angle does in fact yield some discriminating power between the octet
mechanisms. In particular the slope on the semilog plot, which is determined by the
parameter C; in Table [£.2] differs by as much as 20% between the various NRQCD
mechansims for E; = 100 GeV and and as much as 40% for E; = 500 GeV. Note

however that 15([)8] and 3S£1] give very similar predictions for this observable.
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FIGURE 4.7: The function fJ/¥(z) (as defined in the text) as a function of z relative
to the jet axis for each NRQCD production mechanism where the jet has F; = w/2 =
100 GeV(left) and 500 GeV (right). The J/1 is restricted to have p; € [5, 20] GeV
in the 100 GeV jet and p,; € [5, 60] GeV in the 500 GeV jet.

Table 4.2: Results of fits of In ( f,,(z)) shown in Fig. 4.7 to the function Cy exp(—=z C}).

E; = 100 GeV E; = 500 GeV
2s+1L978] Co Cy 2s+1Lg,8] Cy Cy
sgil 13,92 0.92 selh 1375 | 1.68
sgl¥l 13,86 | 0.84 solfl 1348 | 1.39
L5l 1388 ] 0.90 1581366 | 1.64
spifl 1375 | 0.74 spl¥l 1328 [ 1.20

4.4 Conclusions

In this chapter we introduce the transverse momentum dependent fragmenting jet
function (TMDFJF) in the framework of SCET and show how it is related to the
previously introduced TMDFFs and fragmenting jet functions (FJFs). TMDFJFs
describe the transverse as well as longitudinal momentum distribution of an identified
hadron within a jet. TMDFJF's evolve with the renormalization group (RG) scale u
and obey RG equations similar to jet functions. Using SCET, we show that this new

distribution can be further factorized into soft and purely collinear terms. The purely
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collinear factor can be written as a convolution of perturbatively calculable short
distance coefficients and the standard FF's, where the soft factor is given by a vacuum
matrix element of product of Wilson lines. This factorization introduces rapidity
divergences that are regulated with the rapidity regulator. We check that at NLO
the regulator dependence vanishes in the final product. Associated with rapidity
divergences are rapidity renormalization group (RRG) equations. By evolving the
collinear and soft terms separately using the RG and RRG equations all orders
resummation of large logarithms in the TMDFJF can be performed.

As an example we implement this formalism for the case of quarkonium pro-
duction. In the case of quarkonia the TMDFJF can be calculated in terms of the
NRQCD FFs which are perturbatively calculable at the scale 2mq. For the gluon
TMDEFJF for J/v, we study the p; and z dependence predicted by the four pro-
duction mechanisms: 35{1], 351[8], 1558], and 3PJ[8]. We use the leading order (in «ag)
NRQCD FF for each of these mechanisms, and the RG and RRG equations are used
to calculate the TMDFJFs to next-to-leading-logarithmic-prime (NLL’) accuracy.
We find that the z dependence (for fixed p, ) is different for all four mechanisms. We
also find that the dependence on p; and the average angle of the J /1) relative to the

jet axis can discriminate between the various NRQCD production mechanisms.
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5

Jet Shapes in Dijet Events at the LHC in SCET

5.1 Outline

Jet measurements at hadron colliders typically involve identifying jets of size R with
the use of a jet algorithm, imposing a veto on the out-of-jet transverse momentum
Pt for all radiationE] with (pseudo-)rapidity y in the range |y| < Y measured with
respect to the beam axis. Such measurements are sensitive to hard scales (such as
the Mandelstam variables s, t, u in the case of dijet production) in addition to scales
induced by the parameters R, yeut, and p5**. When the substructure of jets is probed
in the context of a jet measurement, additional scales such as Qe and Qe® for jet
shapes are induced. Thus, there are not only scales associated with the substructure
itself but also those associated with the more global context with which the probed
jet was produced, and the large set of scales involved can span a wide range of
energies.

Many of the ratios of these scales can be resummed using well known techniques

such as SCET in similar ways to those described above for ete™. In addition to

1 As discussed below, to the order we work this is the same as putting a veto on the third hardest
jet.
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the ingredients used in ete™ collisions, factorization formulae for hadronic collisions
involve beam functions B which account for initial-state radiation [112,113], and we

schematically have

do”? ~ H x BB® Jn, @ ® Juy @ Ssining... - (5.1)

While RGE of the functions appearing in Eq. resums a large set of logarithms,
others, such as logarithms of R [114-116] and non-global logarithms (NGLs) [117-
120], can present more of a challenge. Importantly, resummation of the jet size R has
recently been explored in the context of subjets in [121] and in jet rates in the context
of ete™ collisions in [5[122], and in addition there has been progress in understanding
NGLs both at fixed-order [123-126] and more recently a few novel approaches to
understanding their all-orders resummation have been proposed [122,/127,|128].

In this chapter we consider the case where the kinematics are such that NGLs
are not enhanced and instead focus on resummation of logarithms of ratios of the
dynamical scales associated with substructure (such as Qe/Q and Qe®/Q) with fixed

P Your, R, and jet p7. To this end, we restrict ourselves to the kinematic region

e_ycut <1
Pl ~VE~ Vi~
PR ~e <« RP« 1. (5.2)

Our approximations are valid to the order we work within about a decade of the
value(s) of these parameters for which the NGLs are minimized. In the example
we present, we have e ~ O(1073) in the peak region of the distribution and R? ~
O(1071), which means the leading NGLs, which are of the form o In"(p$* R?/ps. €)
(and first appear for n > 2), are not enhanced for pS*t/ps. ~ O(1072).

One class of event shapes that has been studied extensively in the literature and is

the focus of the present work is that of angularities 7,, parameterized by a continuous

89



variable a (with a < 2 for IR safety). The choice a = 0 corresponds to the classic
event shape thrust and ¢ = 1 corresponds to jet broadening. Angularities were
originally defined in [77,[129] and studied in the context of SCET in [130-132]. In
Ref. [65], “jet shapes”ﬂ were defined by restricting the angularities to the constituents
of a jet as defined by a jet algorithm (as opposed to all particles in the event) and were
resummed to next-to-leading logarithmic (NLL) accuracy. In this work we consider
a modified definition of angularities that is designed to be boost invariant about the
colliding hadrons’ axis, i.e., the beam axis.

We also note that the definition of the angularities we consider (which differs
from that defined for e*e™ colliders by a rescaling in the small 7, limit) is such that

the choice a = 0 is closely related to the jet mass,

70 =m3/(pr)* + O(73) . (5:3)

Jet mass resummation has been studied indirectly by looking at the 1-jettiness global
event shape [137] for single jet events in Ref. [13§], by using pQCD methods that
neglect color interference effects in Ref. |139], and in the threshold limit in Refs. [140,
141], but to our knowledge has not been studied with the cuts described above,
with full NLL’ color interference effectsﬂ, and in a manner that is valid away from
the threshold limit. In addition, our results for a = 0 can be straightforwardly
extended to NNLL using the known anomalous dimensions together with the recently
deduced two-loop unmeasured jet function anomalous dimension [5], which controls
the evolution of both unmeasured jet and beam functions. In addition, we apply
the refactorization procedure described in Ref. [5] which allows the resummation of
logarithms of R in the region described by Eq. .

While we choose to study angularities as the choice of substructure observable,

2 This is distinct from the jet shape as defined in [133,/134] and studied more recently in Ref. [135,
136).

3 For an explanation of which terms are included in our cross section by working to this order, see
for example Ref. [66].
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our basic setup is much more general. Indeed, we obtain many of the results specific
to our choice of angularities by using identities that relate the jet functions and
the observable-dependent part of our soft function to analogous calculations in ete™
collisions. The part of the soft function that requires an entirely new calculation
simply imposes the experimental p§'* cut on radiation outside of the jets and the
beams. This universal part of the soft function, labeled S""™¢* encapulates all the
interjet cross-talk, and hence contains all perturbative information associated with
real emission about the directions n; and the color flow. For each jet which has
the angularity probed, which here and below we refer to (using the terminology of
Ref. [65]) as a “measured jet,” we add a jet function and a soft function contribution
that are both angularity dependent but color- and direction-trivial. Thus, other
substructure measurements can be straightforwardly incorporated by substituting
for their appropriate contributions at this step. If no measurement is performed on
a jet (that is, the jet is identified but otherwise unprobed), which we refer to as an
“unmeasured jet,” only an unmeasured jet function (which we also present to O(ay))
and S"""¢® are required. For dijet production, which is the focus of the current work,
all four Wilson lines (those of the beams and the two jets) are confined to a plane,
and the calculation of S"™™¢ to O(ay) is tractable. In addition, the effect of different
experimentally used vetoes, such as putting a p#* only on the third hardest jet (as
opposed to all out-of-jet radiation) will only result in a difference in S™™m° at O(a?)
so our calculations apply there as well.

We also point out that while for unmeasured jets, the jet size R must scale with
the SCET power counting parameter A and hence the requirement R « 1 is essen-
tial, for measured jets this is not strictly needed since 7, « 1 is sufficient to ensure
SCET kinematics. However, as we will see, both the jet algorithms and measure-
ments simplify significantly in this limit up to power corrections of the form R? and

7./ R?, respectively, although we emphasize that the exact results can be obtained
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numerically using subtractions such as those of Ref. [142]. Finally, we note that
because there is no measurement on any radiation with |y| < yeu, our factorization
formulae will include “‘unmeasured beam functions,” which to our knowledge have
not appeared in the literature.

The chapter is organized as follows. In Sec. .2 we define the classes of jet
algorithms and angularity definitions suitable for hadron colliders and relate them
to the corresponding ete™ algorithms and angularities in the small R limit. In
Sec. we outline the 2 — 2 kinematic relations needed for dijet production and
discuss how both the Born cross section and the fully factorized and resummed SCET
cross section are related to the basic building blocks that we then calculate to fixed
order in Sec. namely the hard, jet, soft, and beam functions. We then use these
results in Sec. to arrive at the NLL’ resummed cross section for a generic 2 — 2
scattering channel both for when the jets are identified but otherwise left unmeasured
(i.e., we are inclusive in the substructure properties) and for when the angularity of
either (or both) jets is measured. From our calculations, one can obtain results for
the case where the angularities of both jets 7! and 72 are separately measured (and
by integrating, the case where 7} + 72 is measured) as well as the cases where only
one or neither are measured. For illustrative purposes, in our plots we focus on the

2

case where both 7} and 72 are measured and 7} = 72. Furthermore, we present

explicit results for the simple channel q¢’ — ¢¢' with different values of R and p$**

and for several choices of the angularity parameter a, and demonstrate the reduction
in scale uncertainty resulting from the refactorization techniques of [5]. We conclude
in Sec. 5.6, The material of this chapteris collaborative work with Andrew Horning
and Thomas Mehen and was published in Ref. [5§].
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5.2 Jet Algorithms and Shapes at Hadron Colliders

The main difference between jet cross section measurements at ete™ colliders and
hadron colliders is that the latter prefer observables that are invariant under boosts
along the beam direction. The kp-type algorithms used at the LHC (described in
more detail in, for example, Ref. [143]) merge particles successively using a pairwise

metric
AR?]-

. (5.4)

pij = min{(pr)*”, (7)™}

where p = +1,0, and —1 for the kr, C/A, and anti-kr algorithms, respectively, p% is
the transverse momentum (with respect to the beam) of particle i, R is a parameter

characterizing the jet size, and

ARy =/ (Ayy)? + (Ady)?, (5.5)

where Ay;; and A¢;; are the pseudo-rapidity and azimuthal angle differences of
the particles measured with respect to the beam axis. Since pseudo-rapidities simply
shift under boosts and azimuthal angles are invariant, AR,;; is invariant under boosts
along the beam direction. This pairwise metric is compared to the single particle

metric of each particle, defined as

pi = (p)™ . (5.6)

Two particles are merged if their pairwise metric is the smallest for the (ij) pair
over all particle pairs and is less than both of the single particle metrics, i.e., p;; <

min{p;, p;}. This latter constraint amounts to

In the following, we will work under the assumption that all particles in the jet are

close to a jet axis at polar angle ; with respect to the beam axis such that AR;;
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can be expanded as

ARy = ———1/(86,)2 + sin? 0, (86,;)? + O((20;,)%, (A0

sin 9J

0,
= 2+ 0O(62), (5.8)

sin 65

where in the first equality Af;; and A¢;; are the angle differences in a spherical
coordinate system with 2 in the beam axis direction, and 6;; in the second equality is
simply the angle between particles 7 and j. This implies we can impose an ete -type
polar angle restriction that particles are within a jet of size R and rescale the results
by

R

R—>RSiD9J= s
coshy;

(5.9)

where y; is the jet pseudo-rapidity, up to O(R?) corrections. This allows us to
recycle many of the results of Ref. |[65]. The difference between our results and those
obtained from the exact expression Eq. can be obtained numerically, e.g., with
the methods of Ref. [142], although the details are beyond the scope of the present
work.

It is helpful to re-write the angularity definition used in Ref. [65] in the context
of ete™ collisions in terms of ingredients that are boost invariant, such as pr and the
right-hand side of Eq. . To do so, first recall the definition used in terms of the
pseudo-rapidities y;; and transverse momenta p%’ of particles with respect to the jet

azis,

etem 1 iJ |~ (1-a)lyis]
o = 3E > [ple vial (5.10)

i€jet
In the small angle approximation, we can write this as

7o = (2E) 7 (pr) 7 ) Ikl <9—J> _a(l +0(65)) (5.11)

icjet sin
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From the discussion above, all terms in the sum over particles are boost invariant.
The one term that is not boost invariant is just the overall factor of (2E;)?~?. There-
fore, we can arrive at a boost invariant version of 7, suitable for hadron colliders with
a simple rescaling by a dimensionless factor,

1 ! —a
Ta =Ty = o > Pl (AR:)?

T i€jet

2—a
- (Q—EJ) e 1 O(2). (5.12)
pr

We emphasize again that the quantities on the right-hand side of the first line of
Eq. are manifestly invariant under boosts along the beam axis, and that the
second line allows us to recycle many of the results of Ref. [65].

The one main difference between measurements done at e*e™ colliders and hadron
colliders that requires a novel calculation is the out-of-jet energy veto. In ete~
colliders, this is typically a cut on energy, whereas in hadron colliders it is typically

cut

a veto on transverse momentum: py = E'sinf < p3". This will require an entirely

new soft function, which we present below.
5.3 Factorized Dijet Cross Section

For dijet production at tree-level, momentum conservation implies that there are just
three non-trivial variables to describe the final state at tree level, which we can take
to be the jet (pseudo-) rapidities y*? and the jet pr = |pt| = |p%|. The momentum

fractions of the incoming partons are related to these variables via

2Pt cosh %eiy ) (5.13)

Ecm 2

T12 =
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where Ay = y; — y» is the rapidity difference of the two jets and Y = (y; + y2)/2.

The (partonic) Mandelstam variables can be written as
A
s = 4p2 cosh? Ty
A
t = —2p2e®Y/? cosh Ty

A
u = —2pre 22 cosh Ty =—s5—t1. (5.14)

The tree-level matrix element squared can be written as

|Mtree|2 = TI'{H()S()}, (515)

where Hy and Sy are the tree-level hard and soft functions, respectively, so the Born

cross section takes form

do_born pPr 1
- G Tr{H,S 1
dy, dyodpr 87rm1x2E§mNfl(ml”u)h(@’“) r{HoSo} (5.16)

where N is the normalization associated with averaging over initial particle quantum
numbers (e.g., N = 4N? for quark scattering) and f;(z;, 1) is a PDF for parton i
with momentum fraction x;.

The effect of radiative corrections to Eq. is described in the soft and
collinear limits by higher-order hard, soft, beam, and jet functions. We consider
the cases when both jets are unmeasured and when both jets are measured. When

both jets are unmeasured the all-orders cross section takes the form

do
do= ——— 5.17
dy1dyadpr ( )
P By, 1) Blaa, ) T E()S™™ () }J1 (1) Jo (1)
8rxixo B2 N ’ ’
+ O R?, age™2ent) | (5.18)

where the J;(u) are unmeasured jet functions and S"™™™* is the unmeasured soft
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function. When both jets are measured, the cross section takes the form

do
do(th 72) = 5.19
U(TajTa) dyldy2dech}dTg ( )
pr 1 B B
= SnrimEL N (w1, ) B(22, 1)

x Te{H(u)S(7}, 72, 1)} @ [ 1 (7, p) Jo (72, 11)]

+ (9(0437;/722, e Hent) |

where ® represents the two convolutions over the 712, The case of a single measured

jet, with the other jet unmeasured, is the obvious generalization of Egs. (5.17)) and

(5.19). The power corrections to Egs. (5.17) and (5.19) can be included via matching

to fixed order QCD. Resummation of logs of 7, is achieved by RG evolution of each
factorized component from its canonical scale (cf. Table to the common scale .
Both the hard and soft function are in general matrices (which here and below we
will refer to with bold face) which are hermitian and of rank R equal to the number of
linearly independent color operators associated with the hard process (e.g., R = 2 for
qq — qq, 3 for q¢ — gg, and 8 for gg — gg). These operators mix under RG evolution
which is accounted for with matrix RG equations. The fixed order calculation of the
components in Eqgs. and and their RG evolution is the subject of the

next sections.

5.4 Fixed-Order O(ay) Calculation of Factorized Components

5.4.1 Jet Functions

In Ref. [65], there are both “measured” and “unmeasured” jet functions, correspond-
ing to jets whose angularity was measured as opposed to those that were identified

but otherwise unprobed. The latter can be obtained using the hadron collider algo-
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rithms with the rescaling in Eq. (5.9). We obtain

Qg C; Yi M % i,al
Ji=14+4—||—=+ — —_ dqre 5.20
+27T[(62+6><pTR) T (5.20)

where ¢ = ¢, g for quark and gluon jets (and C; is the Casimir invariant, C;, = Cp

and C, = C4), respectively, and

3CF Bo

Ta=5 0 V=5 (5.21)

(with 3y given in Eq.(A.11))) and the finite corrections dijalg are given in Eqs. A.19
and A.30 of [65],

. 572 | Cr3 if i =
12 CA% — TRNf1_8 if 1 = g
G AR b o (5.23)
4 CA?—TRNJ'E lf'l:g

where df}kT is the same constant for all kpr-type algorithms (kr, anti-kr, and C/A).

For measured jet functions, we need to apply the rescaling Eq. (5.12)). The identity

AT (AT —7) = 6(7 — A7), (5.24)

implies that this rescaling can be accomplished to all orders via the transformation

- () () ) e

where J¢ ¢ (7,) is the jet function of [65]. This gives

Ji(ra) = JE'e (5.26)

(7a) ‘2EJ_>pT )

i.e., it is simply obtained from J{ﬁf (1,) by making the replacement 2FE; — pr.

These can be obtained for the quark case from Ref. [132] and for the gluon case by
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performing the integral in Eq. (4.22) of Ref. [65] after setting O, (z) — 0 which is

valid to O(7,/R?). We record the results here as

e = a0 - 22 (£Y (1) (A ) s s

(5.28)

2Cr [7—13a/2 7*3—5a+ 9a*/4
4 12 1—-a

fola) = 5 _1a/2 [CA <(1 —a) (f_; _ g) i %2%

- lex kit x>1—a]>

z(1—z)

20 — 23 !
— TrN; (1—8a - f dr (2z(1—2z) — 1) In[z"* + (1 - 9:)1_“])] .
0
Finally, we note that the integral over 7, of the measured jet function is not simply
related to the unmeasured jet function and refer the reader to Ref. [5] for a detailed

explanation.
5.4.2  Unmeasured Beam Functions

While the unmeasured beam function has not to our knowledge appeared in the
literature, it is directly related to the unmeasured fragmenting jet function of [70].
The unmeasured fragmenting jet function for a jet of energy E and (eTe™) cone

radius R can be written as

d !/
OB, Rosp) = 3, | 5 To( B )DL/ ) + Ogen/EY) . (5:29)

where D!'(z, 1) is a fragmentation function for parton ¢ in hadron h and the J;; are

matching coefficients which are given in Eq. (5) of Ref. [70]. The dependence on E
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and R in J;; (at least to O(c)) is such that we can write

R
Jiij(E,R, 2, u) = J;;(2E tan bx 2 ), (5.30)

i.e., £ and R always appear in the combination F tan %. Using the crossing relations
of Sec. IIIC of Ref. [144], it can be shown that an unmeasured beam function in a

collider with center-of-mass energy E., and a rapidity cut of y., can be written as

Bi (331'; ,U/) = Bi<Ecm7 Yeuts Li, :u)

d
= Z J?Zﬂj(xiEcme_yC“t, 2 M)fj (%/Za M) + O(A(QQCD/EQ) (5-31)
J

where J;; are the same matching coefficients as in Eq. (5.29)), at least to O(as)ﬁ and
we used the correspondence between an ete™ jet and a beam with label momentum

ZiEcm and rapidity cut yeut

R
E tan 3 z;Eeme v, (5.32)

which is valid up to O(e™2¥t) corrections. For the dijet cross section we consider,

the z; are fixed via Eq. (5.13)).

5.4.3 Soft Function

In general, we can write the bare soft function at O(«y) for dijet production when

both jets have 7, measured as

S(7a,7a) = 8™%6(7,)0(77) + [SoS™*(7,)d(7) + (1 = 2)] + O(ag),  (5.33)

where S"meas = Sy + O(qy) is the part of the soft function that is always present

(both when the jets are measured and unmeasured). The bare soft function is p

4 Tt is argued in 55| that measured beam and jet functions have the same anomalous dimension to
all orders (at least for the measured case), but since the PDFs and fragmentation functions differ
perturbatively at O(a?2) [145] the matching coefficients must differ for the beam and jet functions
starting at this order.
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independent, and we will distinguish the corresponding renormalized function with
an explicit argument . In the cases that neither of the jets or only one jet is mea-
sured, the corresponding S™ pieces on the right-hand are simply not included,
while S"™¢? is always included. For more jets, the result can be extended straight-
forwardly, although our explicit results only apply to planar jet configurations (as is

necessarily the case for dijet production).
Calculation of the One-Loop Ingredients

The part of the soft function corresponding to the measurement of 7! on jet i,
Smeas(71) - is obtained from summing over the interference of jet ¢ with all other
jets and the beams. Contributions from radiation arising from the interference of
jets/beams j and k with j, k # i give power corrections in R. The calculation of
Smeas(77) can be obtained from the results for S37°*(7}) given in Eq. (5.18) of Ref. [65]
through the rescaling in Eq. . We find

2—a
pr ;
Smeas ’L — 2 Smeas 7
;(QEJ) N ((2E1> Ta)

_ oG 1IN\ paiea (5.34)
e m Tl—¢)l—a\r pr ’ '

which clearly has the desired boost-invariant properties.

Sunmeas

The additional part of the soft function we require, , can be written as a

sum of contributions in the same manner as Ref. |65],

N
gumeas _ g [SOZTZ--T]- (S;;wl + 3] Sfj) + h.c.] : (5.35)
k=1

1<j
where h.c. denotes the hermitian conjugate. Here, we use the color space formalism
as described in Refs. [146,147). The 4!/(2!)? = 6 matrices T;-T; are of rank R, the

same as that of Sy, and account for the mixing of color operators in a given basis

into each other at O(a;). The difference from Ref. [65] is that now each contribution
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involves a pr veto instead of an energy veto as well as a different jet algorithm. In
particular, defining
0,, = O(k°sin Oy p < p")

Ok =0(Ri; <R), (5.36)

we now have

. 1 Ze A%k .
ginel — _%( " ) i = —g? f ( B §(k)O(K)O,, , (5.37)

gl € 2m \ p" i 2m)4=t (i - k) (ny - k)

and

Lag [ p \* dk n; - n;
5@5__( ) zk.:gwej( ()0 6,,0% , (5.38)

55 am ) 277 (s - k) (ny - K)

where 7, j, and k can each be either of the beams or one of the jets (with i # j).
We first perform the energy and trivial parts of the angular integration of Eq.

for generic 4, j (either jet or beam). To do this, we align the 1-direction (or “z”) with
direction 7; and put the 7i; vector in the 12-plane, and the beam direction 7ip in
the 123-spatial part of d-dimensional space. Using the shorthands ¢;; =1 —n; - n;,
sij = (1 —c)V?, ¢; = cosb;, and s; = sinb;, the dot products of the gluon’s 3-
momentum, /;, with these unit vectors take the form

;- k= c1

;- k= CijC1 + 8i51C2

ﬁB . k? =NnNp1C1 + npeS1Cy + nps3s1S2C3 , (539)

for the 7, j, and beam directions, respectively. In this frame, I;}ld takes the form (in
MS)

. 1 — ¢y )er=s (7 T 1 1
I}r'lcl _ ( J J dé s 1—2€ 0 J de s —2¢ 0
*J 2ﬁF(1/2 — 6) 0 LS ! 0 2 5 21 — C1 1-— CijC1 — Si551C2

I'(1/2 — T ‘
x{ ey J dfs sin~17% 93(1 — (npic1 + npssicy + ”33313203)2)

Val'(=€) Jo
(5.40)
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The quantity in parenthesis to the e! power in the second line is the square of the
sine of the gluon-beam angle and comes from doing the k% (energy) integral over the
pr veto, ©,,. For planar events (such as dijet events at hadron colliders), ngz = 0
(since the beam is in the ij-plane for all 7, j) and the integration over #3 can be easily

performed. The entire second line (the quantity in brackets) then becomes simply

[] P ) (e + npsien)?)” (5.41)

with n%, = 1 — n%,. We also note that when i is equal to the beam direction (so

np1 = 1 and nps = 0), this quantity reduces to

[] ZiTB, sin%€ ), . (5.42)

In this case, the € dependence in the overall power of sin 6; cancels and we are left
with a divergence unregulated by dimensional regularization. This is the well-known
rapidity divergence that is present for a py veto. This can be treated within the
context of SCETy; as was done for example in Ref. [111]. Here, we will opt instead
to veto on radiation only below a rapidity cut ..+ which is consistent with what is
done at the LHC since radiation going down the beam pipes is not measured. We
compute the soft function components Ifj and Ig}ld for the case ¢ and j can each
either be beams or jets in Appendix [D] and record the results in Table [5.1l For the
case that either ¢ or j is a beam, we only compute the full out-of-beam contribution,
e.g. Il + I8, (or T + T8 + B, for the case both i and j are beams) to avoid
having to regulate the rapidity divergences in individual components.

For several of the components, we use the fact that the result is boost invariant
along the beam direction to boost to the frame where the jets are back-to-back. The
relation between the back-to-back frame beam-jet angle ; and the jet rapidities in
the lab frame is

A
cos f; = tanh Ty , (5.43)
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Table 5.1: A summary of results for the “unmeasured” part of the soft function,
Sunmeas - yp to Qe Yt R?). Here, the subscript J refers to the two jets, J = 1,2,
and B and B refer to the two beams, and Ay = y; —y». BEach component is explicitly
boost invariant about the beam direction (with 2y, in the B-B interference terms
in general given by the rapidity difference of the forward and backward beam cuts).

Contribution Result
incl B
IBB + Igé + IEB 2ycut
T, + T2 O(R?)

incl B B
Ig5 +Ip; + 15,

e
2¢ Yeut Y 24

—4€ 71'2
T, 2R (1-€1)
5" O(e v, R?)
inc Ay\—2¢ € w2
Zine (2cosh S2)72(—1 + £(Ay)? + €5)
Ii, + Ity tR7(1 - E271%)
50 O (e vem)

where Ay = y; — y» is the rapidity difference of the two jets. This also means that
when putting a polar angle restriction on the emitted gluon in the back-to-back
frame, one has to apply the correspondence Eq. in using Eq. (5.9), which
amounts to the replacement

R R

- — 5.44
2 2coshAy/2’ (5.44)

tan

where dependence on the left-hand side arises from enforcing a restriction on the
polar angle of the gluon about a jet (8 < R) in the back-to-back frame.

Using the color algebra identity ), T; = 0 and the kinematic relations

In % = —ys —In(Zcoshy,)

n M — )~ In(2coshy)

5 (5.45)
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for jets J = 1,2, and

ny - No (2 cosh Ay/2)?
1 =1 5.46
S . (2 coshy;)(2coshys)’ ( )
we find
« 1
Quumeas _ Q4 20§, Sdiv 4 CilnR) — = C;In*R
ﬂ—{ l<26 pT >< 2212 ) 1212
— Ty Toln (1 +e2)In (1 + eAy)] + h.c.} +0(a?).
(5.47)
In this equation,
Sdiv — ZTZ--TJ- n 2" ycut(CB + Cp) — 2 C;In(2 cosh y;)
i<j i=1,2
= Avygs(m;) — M'(my), (5.48)

where in the second line we wrote the result in terms two functions defined by

—Ycut
Aveg(mi) = ) Ciin TEemt Eeme + M ln
= BB 1=1,2
M(m;))=-)> T, ‘T 1 5.49
(m) = = YTy 2 (5.49)

i<j

where s;; = 2p; - p; > 0 (and where p; = x;E.y, for the beams ¢ = B, B). Note that
for later convenience we have defined these functions so that each separately depends

on a set of parameters m;. The dependence on m; cancels in the sum in the second
line of Eq. (5.48)).

Refactorization

We note here that one can also construct the ingredients needed for the refactorized

cross section as was done in Ref. [5] for the resummation of (global) logs of R from
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the ingredients in Table . In particular, the conclusions of Ref. [5] suggest that

Sunmeas ghould be factorized as
cut

P
Sunmeas _ %SO f dF [SS<E) ® Sic(ER) ® Szc(ER)] + h.c.

0

— Sy + 4—5[80( P+ Y SED (i R) ) + h.c.] +O(a?),  (5.50)
k=1,2

where ® is a convolution over the variable E and the functions S, and S% are the

global soft (with radiation anywhere except for the beams) and soft-collinear (with

radiation within jet k) functions, respectively, and where

u d u
ss(p7) = pra s(pF)
T

d
S'I;}C(p%utR) = cut SfC( CutR) (5'51)
dp$

with both functions f = S;, S normalized as f(z) = 0(z) + >,_,(22)" f™(z). Note
that all of the non-trivial color mixing occurs in S;. This is due to the fact that the
soft-collinear modes of Refs. [5,[122] are confined to a single jet and is expected to
hold to all orders.

In terms of the ingredients in Table we have

SO (pet) — () YT, [I;;Cw(ammig)(aﬂl+5ﬂ2>zzj

1<j

+0i0:i5(Z; + Iz]j)]

() [ 2 20-2D)
QDCTut S 2 12

+ 8% —2e T Toln (1+e2) In (1 + eAy)] (5.52)
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and

Sk(1)<cut7g:§ K 8 T, - T.|6..7¢ :Z_l L% _% 1_ 2
o (PFR) e<p%”> 2T j[”’“ ”] e(p%”R)[ 2€< 612)]'

1<jJ

5.5 RG Evolution and the Total NLL’ Cross Section

In this section, we apply Renormalization Group (RG) methods to the functions
calculated in this chapter and arrive at the result for the total NLL’ resummed
cross section. These functions can be divided into those which are multiplicatively
renormalized and those that renormalize via a convolution. The former include the
hard function and unmeasured jet functions and the unmeasured part of the soft

function, and the latter includes measured jet and soft functions.
5.5.1 Hard Function

The hard function H for N — 2 jet production in hadron collisions is a matrix in
color space with rank R (the same as that of the soft function). It can be written in
terms of Wilson coefficients C; as (H);; = C;CF, each of which mix into each other

under renormalization, i.e, CP¥° = Y] i(Zr(11));;C; which implies that

P = Zy () H(1)Zy (1) (5.54)

The p-independence of the left-hand side of Eq. (5.54]) implies that H = H(u) obeys

the RGE
ddli ~TyH+HTY,, (5.55)
where
T = -2 31 (5.56)
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This RGE preserves the hermiticity of H under RG evolution. I'y in Eq. (5.55) is
given (to O(a?)) by [148}149)

1Y m?
In =35 Z} [Ci [o(as) In T Le(as) M(m;) (5.57)

where 7; is given in Eq. (5.21]), Tc(c) is the cusp anomalous dimension (given in
Eq.), and m; is an arbitrary parameter(s) which can be chosen for convenience
and can be shown to cancel between the first term and M(m;). The first term is
(implicitly) proportional to an identity matrix and M in the second term involvers
a non-trivial matrix of rank R, which can be written as

M) =~ S0, [ (82—

i<j v

= M'(m;) +inT, (5.58)

where A;; is 0 for beam-jet interference and 1 for beam-beam and jet-jet interference,
si; = 2p;-p; > 0, and in the second line we explicitly separated the terms of the form

A;;In(—1) into the matrix 7T, where

T=) A;T;T;. (5.59)
i<j
and M'(m;) is defined in Eq. (5.49). The matrix M is worked out for a set of choices
of color bases for all 2 — 2 channels in Ref. [4] with the choice m? = —t > 0 (the
Mandelstam variable) in the ¢q¢' — ¢¢’ channel (and the choice for other channels
obtained by crossing relations). Importantly, for any p-independent choice for m;,
M is independent of pu.

The effect of the color-trivial component of Eq. (i.e., the contribution from
the term in brackets in Eq. ) can be obtained using the results in Appendix
and gives rise to a factor Iy as in Eq. with the parameters needed for Ky
and wy at NLL’ given in Table [5.2] We can straightforwardly include the effect of
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[.(as) M(m;) via matrix exponentiation and record the solution as

where

Iy (p, i) = exp {MLC:S(EZ) %Fc(a)} = exp {M(% In a;ffﬁi{)) + - >} , (5.61)

where in the second equality we expanded to NLL’ accuracy. This matrix expo-
nential can be defined by first constructing the matrix R of eigenvectors of M such
that R"!MR = Apy is the diagonal matrix of eigenvalues of M, and then defining
exp(M) = Rexp(Ag)R™%

5.5.2 Jet Functions and Unmeasured Beam Functions

Since the jet functions can be obtained directly from rescalings of those in Ref. [65]
as described in Sec. [5.4.1], the renormalization is similarly related to the results in

Ref. [65]. For measured (renormalized) jet functions we have

2—a, W o

, , 1 1
(7! = |2I ; In — + —~; Y —2I' ; — .62
i) = [0 ) O 2 1 % a(eD) ~ 2o () G2

which is of the general form Eq.( [A.13) with cusp (I'r[as]) and non-cusp (yr[as])
pieces given in Table[5.2] Here and below, the ‘+’ distribution is defined for example
in Eq. (A.2) of Ref. [65].

To RG evolve the jet function, we perform the integral in Eq. for the
case F' = J. Integrals of this form are most easily performed by convolving the
right-hand side against 1 = Z~'® Z and first performing the convolution of Ur with
the bare function, i.e., Z ® F, then expanding in €, and finally performing the Z~1

convolution (which just removes the 1/e poles in a minimal subtraction scheme). For
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the jet function, we obtain

TRt ) = 257 ) @ [JmeaS(r;) ® UJ(Té,u,uJ)]

= Z5 (1a 100) ® {UJ(TéaﬂaﬂJ) (1 - &ij)[ — fila)+

2
(% ) s o ) 1)}
= {UJ(Té} s ) (1 + fi(Tasw), w)) }+ : (5.63)

where f;(7€, p) is the one loop part of the renormalized jet function after RG evo-

lution,

£5(0 0 = 5 {2 ——fila) + 7 [H(—l ~Q)+(2-a) 1nﬁ] (5.64)

1—a pTTl/

and H(x) is the harmonic number function and ¢(!)(z) is the polygamma function

of order 1 and f;(a) is given in Eq. (5.28]). The natural scale for the jet function
suggested by Eq. (5.64]) is

Iur}was = pT(Té)l/(Q_a) . (565)

From the discussion in Sec. and the results of Sec. [5.4.1] we have for both

unmeasured jet functions and unmeasured beam functions the anomalous dimensions

¥ O
oD, ()OI — 4 Lo 5.66
,yjz (O[ ) inR -+ T ¢ ( )
and
v, = 2e(a)Ciln —F 4 Do (5.67)

TiEeme Yeut
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which have the form of Eq.([A.2)). We have summarized the cusp and non-cusp parts
in Table and ; is given in Eq. (5.21)) for quark and gluon jets. Egs. (5.66|) and
(5.67)) (together with Eq. ((5.20])) suggests the canonical scale choices

e = prR and pup = r;Eene vt (5.68)

with x; fixed via Eq. (5.13)).
5.5.83 Soft Function

The total measured soft function, which includes both the S"™* and a 5™ contri-
bution for each measured jet as in Eq. , can be evolved by using a multiplicative-
type RGE (cf. Eq.(A.1)) for S"% and a convolution-type RGE (cf. Eq.(A.12)) for
Smeas and each can be evolved from a separate scale (an unmeasured soft scale and
a measured soft scale, respectively). This corresponds an early version of “refactor-
ization” originally suggested in Ref. [65]. A more complete refactorization procedure

Sunmeas

was recently introduced in [5] which involves further refactorizing into a global
soft contribution and a soft-collinear contribution, as in Eq. (5.50)). In this section,
we demonstrate how both approaches are achieved so that they can be compared

numerically in Sec. [5.5.5]
Unmeasured Evolution

The unmeasured component of the soft function S""™ is renormalized much like

the hard function?|

Sunmeas,bare _ ZTS(M) Sunmeas(u) ZS(N) (569)

which gives rise to an RGE of the form

d
dln p

Sunmeas — Sunmeaslﬂgnmeas + hC , (570)

> Note that Eq. (5.69) takes the form of Eq. (5.54) but with Zy « Z:rg. This gives rise to the

RGE Eq. (5.70) which is of the form Eq. (5.55) but with I'§"™** « I‘ITJ. RGE invariance then
requires I'y = —IT'§"™°* 4+ ... where the ellipses denote color-trivial contributions.
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with

Iwgnmeas = %(Sdiv — T + Z Cz In R)

i=1,2

= % (A (mi) = M(mi) + Y nR)., (5.71)

where S and A~y are defined in Eqs. (5.48) and (5.49), and M and T are defined
in Egs. (5.58) and (5.59). In Eq. (5.71), we have inserted the factor i7T to comply

with matrix-level consistency of the anomalous dimensions, which is consistent with
the one loop bare soft function calculation Eq. (5.47)) since SoT = TTS,.
The solution to this RGE is completely analogous to that of the hard RGE

Eq. (5.55). The result is
(1, 15) = T (g, 0s) [T 1 ) S (s s pois)] (5.72)

where IT§"™ is of the form Eq. (A.7) with NLL’ parameters given in Table and

I (p, ps) = eXP{ - MLQ(E:)) %FC(Q)} = exp { - M[% In O;js((ﬁ:j)) + .- ]}
(5.73)

where in the second equality we expanded to NLL’ accuracy. Inspection of the
unmeasured soft function Eq. (5.47) suggests the canonical unmeasured soft scale
choice

luténmeas = p%ut ) (574)
Measured Evolution

When the jets are measured, RGE takes the form

d
dlnp

S(th, 72 p) = Jdr’dT”[S(T’, W s(tt =7 72 —7",pn) +he], (5.75)

with the soft anomalous dimension given to NLL accuracy by

1
To(r, 2 0) = TE™5(r1)0(72) + | 578, o (r2) + (1 = 2) |, (5:76)
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meas s given by

B (7 ) = T () G {21n MR Sy - 2(l>+} (5.77)

1—a pr T

where 7

which has the form of Eq.. The 7, dependence of measured jets requires the
inclusion of the evolution kernels U%(7,, i1, t10) as in Eq. with NLL’ parameters
given in Table[5.2l To evaluate the effect of convolving these kernels, we use the same
method as in Eqgs. and (5.64). This gives for the RG evolved measured part
of the soft function

Lay(ps)Ci €=

meas (i, :Z*1 i LT 1 -
SN Tes 1) = Zg (Tmus)®[Us(Ta’”’“S)( T R —a) T =)

=t

= Ug(Té, :u7/1’5') (1 + fé(Téaw,ls’a MS)) ) (578)

ﬂo‘ls_fia) [¢(1)(_Q) - (H(—l —Q)+1In ”Rl_a)z — %2] ., (5.79)

prT
which suggests the canonical scale choice

fe(m; Q) =

meas pTT(i

Taking the scales from which the two measured components and the unmeasured
component are evolved from to be uéﬁ and [ig, respectively, we record the final
result as

S(7a. o s s s fis) = Us (74, 11, n5)Us (73, i, 13) [1+ (f5(7a3 ws 15)

S5 (a5 Wi, i) JITE™ (o, fis) [T (11, 1) 8™ (71T (1, fis) | - (5.81)

Refactorized Evolution

The components of the refactorized S (cf. Eq. (5.50))), s, and s, for k = 1,2

evolve as

d S
dlnp

(E) = J dE's(E")To(E — E'), (5.82)
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and
d

dnp

s (ER) = j I 5 (ER)TA((E — E)R). (5.83)

respectively. The anomalous dimensions take the form Eq.( [A.13]) and satisfy the

relations

cut

1prdErk (E) = —CyLofag] In—— 4+ 4k [ay] (5.84)
- = — el | N ——— o], .
2 0 sc k p%utR ’Yheml

and

1 p%ut o i Ol
3 | ETA(B) = 3 (Cldain -t afgfon]) + 22 (A0u(mi) ~ M(m).
2 Jo i=1,2 Pr T

(5.85)
where we used that to all-orders, the non-cusp part of the anomalous dimension
for 7. is the same as that of the hemisphere thrust distribution [5] (of the color-
representation of jet k). At O(as), Vo = 0. The additional non-cusp parts of
Eq. (5.85) (which do not appear in the analogous ete™ calculation [5]) are needed

for this measurement to ensure the consistency of refactorization at O(ay),

cut

%JOpT dE (FSS(E) + ;I";C(E)) — [nmeas (5.86)

To RG evolve the refactorized soft function, we write

1 [ 2¢
1
Sgs) = _( cut) fs
€ \Pr

1 m 2e
2 S = E(p%“%) fe (5.:87)

k=1,2

where f .= > 01y € " fi. can be read off from the O(a) results Eqgs. (5.52) and

(5.53) and are given by
2= -2(C, + ) 0= —f0

S

fl =0 fl _ 4sdiv

2
2= %(01 +Cy) 2= 8T, Toln(l+e2)In(l+e2Y) — 2. (5.88)

S
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This allows us to write the RG evolved bare functions (using a similar argument as

that described above Eq. (5.63))) as
%1':

fop dE [SS(E> X USS(E/NSS7 [y NSS)] Xi=1,2 [S;c<E,R') ® U;C('ER/ILLSC? 1, MSC)]

cut

Pr . .

— | B [8,(B) ®ic12 L (ER) | @ | Ussl (B tss, 1. t105) @icr 2 Ul ER e s )|
0

_ P D(=26)1'(=Qs) ((s(piss) [ s %

a L & [1 2 ['(—2¢ — Q) A7 E £

2e
as(tse) [ fse

C E? ) SS9 sc)
= (ER> f)]Us( [h, [hss Hsc)

(5.89)

where in the 3rd line we truncated the series in parenthesis to O(a;) and we defined

Qs = wss(p, pss) + Z wt, (1, fhse) (5.90)

i=1,2
and

US(Ea QS’a Hss ,usc) = [USS(E/,Ussa M, Uss) ®i:1,2 Uzc(ER/,usca H, ,usc)] (591)

and used that Ug scales as

1
Ugoc B9 (5.92)

Expanding in € and dropping the 1/e poles gives the renormalized, refactorized and

RG evolved S"™meas(y),

cut

T
dE US(Ea QSnussa/Lsc) (593>

P

Sunmeas(lu) N Sunmezﬁ(QS’ Hsss ,Usc) J
0
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where

Qs(pss) (L9 o1+ Mss
unmeas (() = 2 —f filln—+ H(- 94
S ( 7,Usca,uss) SO + {SO|: A <2 s + 5( np%ut + ( )) (5 9 )
2
o™ _ M Hss —_0))?
+E( T - D+ (In 2+ H(-1) ))

We note that when combined into the full cross section in Sec. the p de-
pendence can be cancelled to all orders between Eq. and the remainder of the
cross section (using consistency and Eq. ) at the expense of running all factor-
ized components from pugs to the scale of the component. This means for example

that we have

QS - Z w,ic(,uss;,usc) = Wse - (595>

i=1,2

This means in particular we can make the replacement

Sunmeas(lu) — Sunmeas(wsc’ ss, ﬂsc) Usc(wsca Hss, PJSC) (596)

where

cut

U ( ) J T dE U (E ) eKsc"F"/EWSc ( Lhse )Wsc (5 97)
sc\Wscy Mssy Usc) = y Wsey Wsss Usc) = cu ) :
Hssy [ o S Hssy F(l — Wsc) Pe tR

2

where Koo = D31 5 Ksc(fss; fse). The parameters needed for K. and wg. at NLL’
(which can be expanded as in Eq.(|A.10])) can be read off from Eqs. (5.84)) and ({5.85))

and are given in Table [5.2]
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Table 5.2: Ingredients for anomalous dimensions of the color-trivial parts compo-
nents to the factorization formula and the corresponding canonical scale choices pp,
which take the form of Eq.(A.2) and (A.13). The hard and (unmeasured) soft com-
ponents require an additional color-nontrivial factor derived explicitly in the text.
Here, C; is the quadratic Casimir (Cr or Cy for quarks and gluons, respectively), 7;
is given in Eq. (5.21)), I’ = Tc(ey,) is the cusp (given in Eq.(A.3))), z; are the momen-
tum fractions of the partons in the beams (fixed via Eq. @), and A~,, is given
in Eq. (and m; is an arbitrary parameter that cancels both within I'y and
within I's and can for example be chosen based on the partonic channel to coincide
with the conventions of Ref. |4] as described in the text). For refactorizing the soft

function as in [5], the last two rows are used in place of y&™es.

| | Telos] [ vrfos] [ gr [ ome [ e ]
TH >, Ci =20 2 1 [ mz‘Oi/ 26 m;
v.,(72) IC;2=2 Loy 2—a pr pr (i) =)
Vg (ry)| —TCi, 0 1 pr/RYC | prrg /R
v, I'C; el 1 prR prR
VB; I'C; i L zEemem¥ | aiBeme e
,ygnmeas 0 . 2%% C’Alzfsg?)zin » 1 o chut
Vss | D(C1+Cy) 20 Ay () 1 P Pt
Vec -T'C; 0 1 PR PR

5.5.4 Total NLL™ Resummed Cross Section

For the case of unmeasured jets, we can now readily assemble the ingredients in

Eq. (5.17) to obtain

Pr 1 5 — — unmeas [ — =1, s
do = mN3<xla:ulB>B(x27/ﬁ3)Jl(:u1J)‘]2<:u3)H (fs, iy, g phr)
< Te{H () I (fis, porr) S (us) I (fis, pirr) } (5.98)
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where here and below we use a bar over a parameter to denote that it is an un-
measured quantity (so for example jig denotes the unmeasured soft scale while pg
denotes the measured soft scale), and z; 5 are fixed to the values in Eq. . The
function II in Eq. is defined as

as(fis) do

() Bl
— exp {Ml%ln alpn) ]} (5.99)

A (NS)

(s, ) = s, fs) Ty (1. o) = exp { M f ()

with ITy and ITg defined in Egs. (5.61)) and (5.73)), respectively, where in the second
equality we canceled the p dependence (to all orders) and in the third equality we
expanded to NLL’ accuracy. We also used the definition of the overall multiplicative

RG kernel as

™ (g, fiy”, g e ) = Wi (o o) TG (e fis) | | T (s i) | [ 10 (2 85
i=1,2 i=1,2

B ILLF wF(IELSHu/F)
— n K r(is.nr) (_) : (5.100)

F=H,By Ba,J1,J2 mr

where mp, K&, wt for F' = J;, By, H are given to NLL’ in Eq. and in terms
of the parameters of Table . To arrive at Eq. , we used the consistency of
the anomalous dimensions to explicitly cancel the p dependence to all orders. Here
and below, we denote unmeasured quantities with bars to distinguish them from the
corresponding measured quantities below.

When the angularity of one or more jets is measured, we need to include S™¢(7?)
(and its corresponding anomalous dimension v2°*(7%)) for each measured jet, and
we need to replace the unmeasured jet functions J; with measured ones J(7!) (and
replace I, — Uy (7¢)). To perform the convolutions for measured jet functions with
the measured part of the soft functions, it is easier to first do the convolutions of the

evolution factors with each other, and then convolve the resulting full kernel with
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the renormalized functions. For the case of two measured jets, this yields

1

pbr 5 m 2 12 - 12 12
dU(T;,Tf) = mﬁB(%aM}B)B(%»M%)lH eaS(TJQ,Ms Y S, g s UB 1)

[ (P b i) + Pt i) 1 (1o 2))]]

T { B () (s, ) 8™ (i) T i, e )} (5.101)

where f%(7,Q, 1) and f5(7,, 1) are given in Eqgs. (5.64) and (5.79), respectively,

and we defined
s (702 ug?, fus, g™, g’ )

Hunmeas(ﬂs, /ubb’27 M}BLQ, ,UH) . ) o )
= =3 U5 (7as s 1) @ Ug(7g, s s)
Hi:1,2 I (s ) zl:_l],:2

%

Kitvypwh i Wfs‘
meas / e'ts s o(r,
= I (1, py?, s o) | | (MS> ( ‘( )

- ; —,  (5.102)
i=1,2 P(-wg) \mj 7o) s

where v is the Euler constant. The K} and w} appearing in these Eqgs. (5.101]) and
(5.102) are expanded to NLL’ in Eq.(A.8) and (A.9) in terms of the parameters in
Table .2 and are evaluated at the scales

Ws = wg(u’f]’ MZS)

Ky = K, 1is) - (5.103)

To arrive at Eq. (5.102)), we used that

meas

Vo, (Tas 1) + 78 (1o 1) — 70, (1) 6(74) = 0 (5.104)

to explicitly cancel the p dependence of the measured jet and soft functions and the

subtracted out unmeasured jet functions (evaluated at the measured jet scale py).
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In particular, Eq. (5.104) implies that

_ Jsw(pr,ms) _ _ _
oK (ng.s) Hs = K (pr)+Ks (s ) =K (o) (5,1()5)
mg
. I Jowy () ls Jswy (1,ps) 1 —@Y (pspey)
my mg mJ ’
and that
W, ps) = w(p, ps) + w1, o) - (5.106)

Finally, we note that to refactorize the cross section and resum logarithms of R
as in Ref. |5, we simply need to make the replacement Eq. for both the case
of unmeasured and of measured jet formula, Eqgs. and , respectively,
and interpret ig — pss. We discuss the numerical impact of this effect in the next

Section.
5.5.5 A Simple Example

We consider the simple partonic channel g¢’ — g¢’. Of course to compute a physically
observable cross section we will need to sum over all partonic channels, however, this
is beyond the scope of this work. Our aim is to consider the scale variation of the
cross section and investigate the impact of refactorization of the soft function on
the differential cross section. We find the main effect of refactorization is to reduce
the normalization of the cross section and to lower the scale uncertainty, which is
qualitatively similar to what is found in the study of refactorization in ete™ collisions
recently completed in Ref. [5]. We also study the dependence of the cross section
on the parameters R, pi**, and a, and comment on the physics responsible for this
dependence.

From the results of Ref. [4] we have the (MS renormalized) hard function to O(a)
in the color basis that corresponds to the t-channel 8 ® 8 and 1 ® 1 operators,

H(u) = 8¢ (Ho + T-Hy (1) + 0(a2) | (5.107)
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where

s+u? (1 0
Hy- = (0 0) , (5.108)

and

2 2 _y i
[Hi(p)]n = - ;u (—4CF1H2 2 + 2Re[ X (s, t,u)] lnF + ZY)

82 u2
+ 5 (CA - 40F) Re[Z(s,t,u)] + 5 (4Cr — 2C) Rel Z(u 1, 5)]

2+ u? —t s C u? C
Hi()ler = =5 Xas b5 ac, At T gaa-Zluts)

[Hi(1)]22 = 0, (5.109)

where X5, Z, and Y are defined in Egs. (33)-(36) of [4] and s, ¢, and u are given in
terms of the jet rapidities and pr in Eq. (5.14]).

To use the convention of |4, we set m; = 1/—t for this channel and have

40pIn = —Cyln% 2ln=4
M/(vi) = (s TGl 2 s (5.110)
C—hl— 0
A s
and
M(y/—t) = M/'(v/—t) + inT, (5.111)
where
_[(=2/Cy 2
T = <CF/CA 0) . (5.112)
Computing the eigenvalues of M gives
CA ut . —Uu .
H _ 4 - -
Alo 5 <ln 2 + 2@7r> + QC’F<ln . —I—z7r>
CA/. ut . \2 —u —t
i\/j(1n§+2lﬂ'> fZCFCA<lnT+m><1n?+m>, (5.113)

121



and for the eigenvectors we find
R = . %) (5.114
B %(h‘—“—kiﬂ) %(ln_—“—i-mr) ’ 114)
A S A S

The MS renormalized soft function for the naive factorization is given by

Sunmeas(#) _ SO + %{SO [(Sdiv + QCF In R) In ]% — CF 1112 R
m T

— T Toln (1+ eAy) In (1+ e_Ay)] + h.c.} . (5.115)

whereas the refactorized result is obtained with the replacement Eq. ((5.96)). The tree

level soft function in this basis is given by

1
So = (QCSOA c%) (5.116)

In addition to Sy and the matrix component M'(m;) of SY given above, we need

the matrix T;- T, which for a general 2 — 2 scattering is given by

1
Tl'TQZTB'TB+§(CB+CB*01*CQ). (5117)

For qq — qq, C; = CFp for all i so the C; cancel and we have

1
T = S[2Tp Tp + 2T, To| = 2T, T (5.118)

To estimate uncertainty from higher orders in perturbation theory, we vary the
hard scale puy and the unmeasured jet and soft scales, iy and fig, separately by
+50% around their central values, which we take to be the canonical scales up
given in Table [5.2] For the refactorized case, we vary the soft scales pgs and .
simultaneously. However, to avoid varying the measured jet and soft scales for p1; 5 ~
Aqcp, we vary them around profile functions [81,82]. This is done by defining s, s
as

% )

ps(ra) = (1 + esg(T))u(r,)

(1) = (1 + esg() (prR) = (u(r)) 7+ . (5.119)
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FIGURE 5.1: Profile functions for pug and p;. These functions are defined in

Eq. (5.119)) and below.

with ey g € (—1/2,1/2). The total uncertainty bands are defined to be the envelope
of all of the above variations.

In terms of the function

1
0.(z) = , 5.120
(%) 1+ exp(—z/e) ( )
which becomes a Heaviside step function in the limit € — 0,
lin% O (z) =0(x), (5.121)
the function g(7) is chosen to be
g(1) = 0,(1 — 7™) O (T — 1), (5.122)
and p(7) is chosen to be
fio + TP y/—t, T < pmin
w(r) = { prT - (5.123)
W, T>T s

where v and f3 are fixed by the continuity of u(7) and its first derivative to be

o — pr
ﬁ(Tmin)B—lnl—a\/jt
1—a\ —1
5:(1—“0R. ) , (5.124)
pTTmln
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FIGURE 5.2: Differential cross section for four different values of R with soft function
refactorized (blue) and without (red). Central values are dotted lines and band
includes scale variation.

respectively. The continuity conditions also require that g is greater than unity
which implies we need 7™ > R /pyp.

The profile functions for ug and py, for a = 0, are shown in Fig. u Eqgs.
and together ensure that for sufficiently small 7, the scale choice becomes
frozen to be po (and non-perturbative physics dominates), above some scale 7™ we
recover the canonical choices (cf. m ;g of table Table , and above a third scale

max individual H,J, S scale variation begins to dampen (as that should be han-

-
dled by the traditional p variation of fixed-order QCD using a tail-region matching
scheme). This is expected to give reasonable scale variation for the range of validity,

roughly Foin o pmax
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do (1)
[ cut __ G ] r cut __ G 1
15000 Pl = 20 GeV 20000 i p = 30 GeV
[ 1
I
L 1
L 15000 i
10000 - [ !
I 1
r 1
10000 - !
L [ 1
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i 5000 f >
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cut
T .

FI1GURE 5.3: Differential cross sections for three different values of p

For the sake of illustration, we plot the “normalized cross section” (which neglects
the PDFs and effects of the fixed order beam function corrections, the latter of which

can be found in following the discussion in Sec. [5.4.2)), defined as

d5_(7_ ) = B<x17:u = /'LH)?('Q:Q?M = :uH) dU(Tal?Tg) ) (5125)
‘ B(ay, = pp) B2, p = p) oM°(p = pimr) Tl=r2=7,

For the kinematic and algorithm /observable parameters, we choose for a set of default
parameters (fixed to these values unless explicitly varying them in the figures)

pr = 500 GeV R =06

Eem = 10 TeV 4 = 1.0
. (5.126)

a=20 Yo = 1.4 Pt =20 GeV Yeur = 1.7
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which corresponds to (via Egs. (5.13)) and (5.14))

t/s = —0.401
u/s = —0.599 and , (5.127)
V8/Eem = 0.051

and for the profile functions parameters, we choose

. & €
7 (1 — )R /pr = 00032(1 — a) = o = 107
and T T
7 — 002 110 = 200 MeV

(5.128)

In Fig. [5.2] we show the NLL’ calculations for four different values of R, with all
other parameters set to their default values in Eq. . In these plots the blue
bands are the predictions with a refactorized soft function and the red bands are
the predictions without refactorization. In the limit R — 1 the scales g and g,
coincide and the two calculations must give the same result, as seen in the figure. For
the smallest value of R = 0.4, refactorization lowers the normalization of the cross
sections by a factor of roughly two, without changing the shape of the distribution
or the location of the peak. Refactorization gives a small reduction in the scale
uncertainty for R < 1. Note that as R decreases the peak in the 7y distribution
shifts to smaller values of 7y because the jets are narrower.

Fig. shows the refactorized NLL’ resummed cross section for three different
values of p§** with all other parameters set to their defaults in Eq. . Interest-
ingly the shape of the distribution and the location of the peak in the cross section
are completely independent of p$'*, only the normalization of the cross section is
affected. As expected, the cross section is larger for larger values of p**. As dis-
cussed in the Introduction, the NGLs, which are of the form a?In™(p$* R?/ps. 7a),

cut

for n > 2, combine p7"* and 7, in a nontrivial way. It is possible that when the NGLs

are included in the calulcation, the location of the peak of the 7, distribution may
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cut cut

no longer be p7" independent. Therefore, the dependence of the peak on pi" might

be an observable that is sensitive to the NGLs.

do(7,)
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FIGURE 5.4: Differential cross sections for four different values of a.

Fig. shows the refactorized NLL’ resummed cross section for four different
values of a with other parameters set to the default values. As a is made large and
negative, the contribution to the angularity from particles collinear to the jet axis
is suppressed by large powers of the angle with the jet axis. Correspondingly the
distribution is peaked at smaller values of 7,, a behavior also seen in calculations
of jet angularities in ete™ collisions . It is important for obtaining sensible
scale variation for all values of a that the parameter 7™" defined in Eq. is
proportional (1 — a). Both perturbative and power corrections grow with 1/(1 — a)

and factorization breaks down completely for a = 1 in SCET] (although an SCET};
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approach can be used for a = 1 [103]). Thus, one expects increasing uncertainty as
a — 1 from below, and we see from Fig. [5.3]that the uncertainties in the predictions

are substantially larger for a = 0.5 than for a < 0.
5.6 Conclusion

In this work, we presented the factorization formulae valid for jet production in
hadron colliders with rapidity cuts about the beams, an out-of-jet p** veto, and the
jets identified with either a kp-type (including kr, C'/A, and anti-k7) or cone-type
algorithm. We considered the cases that the jets can either be identified but otherwise
unprobed (“unmeasured” jets) or are further probed with angularities (“measured”
jets). The ingredients of these formulae involved jet functions, unmeasured beam
functions, and an observable dependent soft function. This soft function was further
written in terms of a universal piece, S"™  which encodes the out-of-jet energy
veto pS™* and angularity independent (but color and direction dependent) pieces.
We were able to relate all of the ingredients of the factorization formula except for
Sunmeas t6 analogous quantities that have previously been calculated in the context
of eTe™ collisions to NLL’ accuracy. S"™"™ was explicitly computed for the case of
dijet production (for which all Wilson lines are coplanar) in terms of color operators
T;-T; that encode the color correlations at this order. We in turn explicitly presented
results for these color operators (which become matrices in color space) for the g¢' —
qq' channel, and plotted the corresponding distribution for the illustrative example
where both jets are measured with 7, for @ = 0 in the 7} = 72 bin. We also generalized
the refactorization of Ref. [5] to include color-mixing effects and found that, as was

*e~, the normalization of the cross section and the corresponding

already seen in e
scale uncertainty were reduced. Using the results of Ref. [5], our results can now be
straightforwardly extended to NNLL for any combination of measured (at least for

a = 0) and unmeasured jets. The non-global logarithms which we do not include
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and would appear in a fixed order calculation of the soft function beginning at O(a?)
have arguments of order p$*R?/ps7, which for the peak region of the distribution
(where we trust our calculation) is O(1) to within a decade.

Armed with this foundation, we can now (after including all the partonic chan-
nels) make meaningful comparisons with Monte Carlo event generators and directly
with data. It will be of particular interest to study the sensitivity of the proposed,
factorized cross section to effects like multiple parton interactions. Other observables
that are sensitive to radiation near the beam pipes like beam thrust [150] have been
noted to receive O(1) corrections from these effects. We expect that our observables
will be less sensitive to this effect because the jets are isolated and the unmeasured
beam functions should not be sensitive to radiation near the beam pipe. We also
hope to be able to incorporate other effects with the recent developments for NGLs
as discussed in the Introduction. In addition, we are interested in extending the
results of this chapter to cross sections for jets in which there is an identified heavy
quarkonia, especially J/¢ and T. The cross sections will take essentially the same
form as the cross sections in this chapter, with an additional convolution of the cross
section with the heavy quark or quarkonium fragmentation as well as a modified
fs factor that depends on the matching coefficients in the fragmenting jet function.
We expect to compare these predictions to Monte Carlo event generators and LHC

measurements [151].
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6

Conclusions

In this thesis the development of a complete framework for studies of quarkonium
production within jets is presented. The methodology used is based on the factor-
ization theorems of Soft-Collinear Effective Theory and Non-Relativistic Quantum
Chromodynamics. In Chapter |3| we show how this formalism can be extended to
various jet observables and particularly we studied a family of jet-shape observables
referred to as angularities. We calculated the cross section at NLL accuracy for the
production of B mesons and J /1 through b-quark and gluon fragmentation, respec-
tively. For the case of J/1 we considered four NRQCD production mechanisms, in
particular: BSP], 15’([)8], 35{8], and 3P}8]. We compare our results against monte
carlo simulations using PyTHiA and HerwiG simulation packages. While our ana-
lytic calculations are in very good agreement with the results from simulations for
the case of B mesons, they differ significantly for J/¢). The problem was traced
to the unrealistic showering of color-octet c¢ pair in the simulations. By modifying
the simulations in order to implement a more realistic showering process, we found
consistency with our analytic calculations. Furthermore our results showed some

discriminating power between the various production mechanisms of .J /1.
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As an extension of the work on FJFs, in Chapter ] we introduced the Trans-
verse Momentum Dependent FJF (TMDFJF). Similar to the standard FJFs, the
TMDFJFs describe a hadron produced within a jet and in addition the transverse
momentum of the hadron is measured with respect to the jet axis. Using the frame-
work of TMDFJF, we derive expressions for the angular distributions of hadrons with
respect to the jet axis. We implement our results for the case of J /1) production for
the four mechanisms mentioned earlier. The mean angle, as a function of the energy
fraction, was found to have significant discriminating power between the production
mechanisms.

As a step towards applying this formalism to similar cross sections in hadron
colliders, we completed the calculations of all the necessary parts for evaluating
the dijet cross section at LHC. For this purpose we constructed the universal part
of the soft function and introduced the unmeasured beam functions that describe
the initial state jets. We also presented the implementation of a recently-developed
factorization approach for resumation of the global logarithms of the jet cone size
parameter.

We also performed a semi-analytic calculation for proton-proton collisions at
Vs = 13 GeV and compared against recent measurements from the LHCb collab-
oration. Our formalism showed that the energy ratio parameter z is sensitive to
the values of LDMEs and that various extractions of the LDMEs give significantly
different distributions. LDMEs extracted from high p, hadron collider data show
much better agreement with the experimental data.

The work presented in this thesis consists of a complete formalism that can be
used to study quarkonium production in jets at hadron colliders that will give a

further insight into quarkonium production mechanisms.
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Appendix A

Renormalization Group and Resummation

A.1 Evolution of Measured and Unmeasured Functions

The RGEs satisfied by the elements of the factorization theorem are separated into
two categories; terms that do depend on the variable 7, and terms that do not. The

latter satisfy the following RGE

u%f(u) — (W) f (). (A1)

where yp(11) is the anomalous dimension

: d = (% 1 [1,_2 19"
ZF(M)N@ZF(N) INACH <m%) +yr(as) (A.2)

Yr(p) = —

where mp is related to the characteristic scale for the particular function, and Zg(pu)
is the renormalization function for F'(u). The coefficient I'r(ay) is proportional to

the cusp anomalous dimension, I'cysp (i), which can be expanded in ay



and I'p = (I'%/T%)Ccysp. The non-cusp part, yp(as), has a similar expansion

(e =3 (5) ok (A4)

=0

The solution to RGE is given by

wr (ksp0)
Flo) = exp (G o)) (22) 7 Py, (A5)
or equivalently
F(p) = Hp(p, to) Fpo) , (A.6)

where the evolution kernel 11z is given by

wr (1,10)
ey 1) = €/ (”—) , (A7)

mpg

where the exponents Kz and wp are given in terms of the anomalous dimension,

aro) oy @ do/ alko)  doy
et =2 |Gt | B Ly T 4

a(po)  Jo

MFF(Q), (A.9)

wr(p, o) = QJ

a(p)

and for up to NLL and NLL’ accuracy are given by

0 0 1
Y 2rlpr—=1+rinr r, g\1—-r+lnr
K = ——Inr — ) [
pluspo) = =55 17 (60)2[ o\ R am
Bl 2
|
+8Wﬁ0nr],
2 L B\ as(mo)
=——L | e e | A.10
wF(/”’? MO) jF/BO [ nr + <Fg /80> 47T (T )]7 ( )

where 7 = a(u)/a(uo) and f,, are the coefficients of the QCD [-function,

(A.11)



The RGEs for functions that depend on the variable 7, are of the form

u%ﬁ@mﬁ=hﬂ@®ﬂmhm, (A12)

where

F(74, 1) = exp (Kp + YpWwr) L (&)jFW [ <(@ﬂ> ) ® F (74, Mo)] .

['(—wr) \mp Ty )1 Twr
(A.14)
or equivalently
F(Tav H) = JdT’ UF(Ta - 7_(/“ 122 ,UO)F(Té? HO) ) <A15)
where to all orders in «y the evolution kernel Ur is given by [152H156|
e (g \ T O(n)
Up(Tas 14, = — | — — | A16
F(Tas 11, o) T(—wy) (mF) l(Ta)1+wF]+ ( )

where v is the Euler constant.
A.1.1 Plus-distribution identities

We begin with the equation

JdT”[(@(T_T”) ]+[ o(r" —1') ]+ _ F(—wl)F(—wg)[ O(r — 1) :|+7

T — 7-//)1+w1 (7—// _ 7—/)1+w2 F(_wl _ w2) (7— _ 7-/)1+w1+w2

(A.17)
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which can be easily proven using Laplace transforms and the defining equation of

the plus distribution,

[F)L. =l =[0G = AF(] (A18)
where F'(7) is defined as
F(r) = L arfe, (A.19)

which yields

c{ <Tll+w)+ } = *T(—w). (A.20)

The following equations can be derived by setting 7/ — 0 in Eq. (A.17), expanding

in ws both sides and matching powers:

JdT’[(@(T—_T/)]JFE_l(T/) = [%]Jr, (A.21)

T — 7-/>1+w

JdT,[(@(T —7) | Lo = [@(T)L (In7— H(~1-w)),

T — 7./)1+w 7—1+w

[ar[ S0 gy - [Bl2)] Gar =t — W)+ /2~ 0 ()

T — 7—/)1+w Fltw 9 )

where we used [65]

[@(T)L = i (—w)"Ln(7), (A.22)

where

L_y(r)=6(r) and £n>_1(7')=[w]+. (A.23)
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A.2 Reorganization of logarithms of (1 — 2)

The convolutions in the variable z need to be performed numerically since they
involve the evolved FFs, which are evaluated by solving the DGLAP equation using
Mellin transformations. For this reason we expand the plus-distributions using the

following relations

f d_ft( 1 )+f (i) _ Jldx 1 (lf (3) _f(z)> +f(2)In(1—2), (A.24)

., T \1—u x . l—z\z" \z

fd_x<M>+f (2) :fdxw(lf (2) - 52)) + r b - ).

. T 11—z x l—2z \z" \z

(A.25)

Thus for every function D(z) the convolution with f}j (T, 2, 1) gives

Tt P )« D) = g (r ) D) = () + om0, (420
where

fimz = 2 (przm) + ’ i(i)@a_/ Y /2)%2 -4 _‘”;1))((1‘ 2 ot

hrz) =2 () ) (A27)

o) = [ 0 0 (P o0 (2)),

0o(, 2 1) = f dr [ey(x) - 1_1a/2 In <1 + (1;“%)1) pj;(“')] on(2),
with
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FIGURE A.1: Profile functions for uf% (75) and pt* (), the mo-dependent renormal-
ization scales that we use in the scale variations of our measured soft function and
measured jet function. Also shown are traditional scale variations done by varying
w by £50%.

cwle) = 2,
wlz) = 0,
ulz) = 21-2),
wlz) = 1L

and

f(x)oglx) = flz)g(z),
[f(2)(W(x))+]og(z) = h(x)[f(x)g(x) = f(1)g(1)].

A.3 Profile Functions

Here, we write down the profile functions used to perform scale variations for our
measured soft and measured jet functions. We use profile functions to introduce a
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T.~-dependent scale variation that freezes at the characteristic scale for high values
of 7, where the factorization theorem breaks down and at a fixed scale for small
values of 7, where we reach the non-perturbative regime. The profile function for
the measured soft function, pu5¥ (), and the profile function for the measured jet
function, u5* (1), are plotted in Fig. (for the case a = 0). The analytic formulae

for these functions are

)

g(Ta)] y {umm + atf 0 <7, < Tonin

PF
Ta) = |1+ €
s (1a) [ (1) W7 /r1=%) Tonin < Ta

WP () = [1 re

9(7a) (wr) == (i, + ar2)VE7D 0 < 7 < T
| XY ve-a ’ )

g<1) WTa Tmin < Ta
(A.28)
where we have defined
1
g(1) = , (A.29)
exp (1-26(Tmin — T)/Tmm> +1
and where o and [ are defined to be
Tmi w
= e d = A.30
B Tmin — H’minr(l_a)/w o “ 57’5;}7”(1_‘1) ( )

These choices for a and 8 ensure that the profile functions and their first derivatives
are continuous. We use the following values for the parameters
Tmin = 2,Ulmin7’17a/w

tmin = 0.3 GeV . (A.31)

We define our scale variations via

€s/g =1/2 —  +50% variation,
€s/g = —1/2 —  —50% variation,

€s)g =0 —  Canonical scale,
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and take the final scale variation bands as the envelope of the set of bands from the

individual variations.
A.4 Rapidity RG Evolution

The RRG equation in momentum space for a renormalized function F'¥ is given by

d
VEFR(pia M?/“L/V) = Vf(pla 22 V) ®J_ FR(pL7/~L7:U’/V)J <A32)

where the anomalous dimension can be written in the following generic form,

YE (P, v) = T ag]Lo(P?, 1?) + 7E [as]6@ (p)), (A.33)
where
1
5@ (p,) = —~o(p?). (A.34)

The cusp and non-cusp parts of the anomalous dimension are listed in Table [A.T]
Taking the Fourier transform of Eq. (A.32)) yields,

d - o .
dlnI/F(b’M’y) =M (b,M,I/)F(b,M,V), (A35)
where the Fourier conjugate of p, is b where |b| = b and using the form of the

anomalous dimensions in Eq. (4.42}4.43)) gives that,

- ) lo] p o lo]
F(p, ,Vz—”sln( )—i—” =2 A.36
where puc(b) = 2e772/b. Integrating Eq. (A.35)) yields
F(b,ju,v) = F(b, 1) Ve (b, 1, v, 15), (A.37)
where
u nF(ﬂvl/:VO)
Ve (b, u, v, 1) = exp [GF([J,, v, 1/0)] (—) : (A.38)
1206
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with

G, v, 1) = V(ZETO)‘Q] In <i> and e, v, v) = —F(;ES‘Z] In (i) . (A.39)

) 140

Table A.1: Values of the cusp and non-cup parts of the anomalous dimensions for
the collinear and collinear-soft functions.

Function (F) re vE TS 7%
Disn —(8m)a,C; + O(a?) | O(a?) | 0 | 4C;(In(v?/w?) + )
SE, (8m)a,C; + O(a?) | O(a?) | 4C; 0
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Appendix B

FJFs matching Coefficients and Consistency Checks

B.1 Evaluation of matching coefficients

In pure dimensional regularization all diagrams contributing to the FFs vanish, and
the only diagrams that contribute to the angularity FJF for quarks are Figs. 3a)
and 3b) of Ref. [68]. For Fig. 3a) we get

Cra, (4np®)(1—¢) 1—2z
27 [[1—¢ 1-—a/2

2ae/(2—a) (1 . Z)—Q(l—a)e/(Z—a)

| o)lma\20/@-a)
(Y ey

—a 83/4’26/(27(1)
and for Fig. 3b) we get

CF&S 2z (471-“2)6 w2ae/(2—a) 1
2n 1 —a/2T[1 — €] (1 — z)1+20-a)¢/(2—a)

1— 1—a\ 2¢/(2—a) 1
x <1 4 ﬁ) . (B2)

1—a 14+2¢/(2—a
p SLr2e-a)

where s, = w?7,. The first expression is singular as 7, — 0 the second is singular as
z — 1 and 7, — 0, but the singularities are regulated by dimensional regularization.
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Employing the distributional identity

and similarly for 7, we find for the divergent terms

Crag 2—al 2-al 1 3
1— = -In|— —
27 ((5(5,1)(5( ?) [1—@(—:2 M n(w2> * 26]

where P, is defined in Eq. . The first four terms in this expression are the ex-
pected UV poles for the angularity jet function (multiplied by 6(1—z2)), see Eq. (3.37)
of Ref. [132]. In order to simplify this expression we have redefined 4me™"2pu? — p?,
i.e., we are working in the MS scheme. The last term is the expected UV pole in
the perturbative evaluation of the QCD fragmentation function. Since G;(7,, 2, u) is
expected to evolve like the angularity jet function, this is the correct structure of UV

divergences implied by Eq. (3.10]). The finite pieces are given by

1 Tl zn) CFasi{é(Ta)5(1_2)2—a ( ™ L (“_2)>

w2 2(2m)3 27 w? l—a\ 12 2 w?

+6(7) (1 - lln <5—z) * _1a/2 In (1 e ;Zil_aﬂ (iji
- 11:0;;2(1 +7) (%) +)
o) amass o0 a2an ()

e lliZ“U | .
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In the limit @ — 0 this becomes

%jqq(ro,z,u) _ Cray {5(3)5(1 ~2) <_%2 +In? (“_2))

2 22n) o e
T 5(s) (1 i (g) % Finz Pyy(z) + (14 22) (%) +) (B.6)

s HoL (% —25(1— 2)In <Z—z)) +25(1 - 2) lh%L} ,

where we have used 6(79)/w? = §(s). Using the following distributional identities

1 [1] 1 [w? 1 2 2
2] -3 312 e )
w?ltf, wls], u s | w

L[] L[] L) bt ]

2

w? 2

o ], Wl s/w? 1L s/ p? L s
1 2
5 (E) 5(s), (B.7)

which are readily verified by integrating both sides over s, one finds that in the a — 0

limit the finite piece is given by

jqq(SVJ,M) o C’FOZS
2(2m)3) 2«

- 2] - [4) ). s

which agrees with the matching coefficient found in Eq. (2.32) of Ref. [68].

Next we calculate Jg4(7,, 2, 1t). Naively this is related to Jyq(7,, 2, 1) by the
replacement z — 1 — z. However, because in the convolution integral of Eq.
the argument of J;;(7,, 2/2’, i) is never zero, there is no need to regulate poles of z.

Therefore, a divergent factor of (1 — 2)7'7¢ in Jy,(74, 2, 1) becomes in Jyy(7a, 2, i)

1 1 1
Sy O(é?). (B.9)

143



Thus, J44(7a, 2, pt) is obtained by making the substitution 2 — 1 — z and then
dropping all 6(z) and plus prescriptions. This is true for the J,,(s, z, p) calculated

in Ref. [68] and remains true for J,,(7,, 2, ). We thus find for the divergent terms

1 jqi]w(Taaznu) 1 C’FO-/s 1
— Y oo Z5(1,) Po(2) B.1
wg 2(271')3 (,UQ I € (T) gq(z) ( 0)

where Py, is given in Eq. (3.20). For the finite pieces we get

1 Jag(Tas 2, 1) _ Crag 1 {5(7‘a) (z . [1 _1&/2 1n( 2lma(] — )i-a )

w2 2(27)3 o w? zlma 4 (1 — z)l-a

i (Zé) |Pu() + 5 _1a/2 HL qu(z)} |

Again, these reproduce the matching coefficients of Ref. [68] in the a — 0 limit.

(B.11)

For the divergent contributions to Jy,(7a, 2, i) we get (from the diagrams in Fig. 4

of Ref. [68])
1 Ty (Tas2,11)  Cya 1 2—al 2-al (p? By 1
— = il 1 — - ZIn £ B
B2 2(2m)? or w2 | 070 =) [1 e TTae " (w) o, e]
1 2 1 a, 1 1-
_ = azé(l — Z) [:a]+> — %E(s(Ta)Eng(Z) s <B12>

where the ]599(2) is the full QCD splitting function that includes the term propor-
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tional to Byd(1 — z). For the finite parts of J,4(7,, 2, 1) we find

1 Tyg(Tas 2, 1) Caas 1 2—a( w 1 o[y
—dgg\la 5P - 1— AT R i
w?  2(27)3 21 w? O(ra)o(1 = 2) o\ 12 2" (o2

oo (oo (E) g 252
S ()
2] (oot (5)

" _2(;()1(1__2;/2) [IHTTL} ) (B.13)

where P, is given in Eq. (3.20). In the limit a — 0, this expression reduces to
Tug(8, 2, 1) /(1673) found in Eq. (2.33) of Ref. [68].

For the divergent contributions to Jy,(74, 2, ) we find

1 jgdqw(Taa z, M) 1 asTR 1
02 202703 w2 —0(7a) P ) B.14
w? o 2027)° 0 om e 00a)Pay(2) (B.14)
For the finite parts we get
1 Jgq(Tar 2, 1) aTr 1 1 1
W22 W o T 0(7a)22(1 - B.15
w2 2(2m)? 2 w? |1—a/2 |7 ], ag(2) +0(7a)22(1 — 2) (B.15)

o [ (e ) 0 ()]

where P, is again given in Eq. (3.20]). In the limit @ — 0, this expression reduces to
Tya(8, 2, 1) /(1673) in Eq. (2.33) of Ref. [68].
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B.2 Sum Rules

The sum rules,

1 1
i = 5/o 3 ij B.1
ACH 2 ;L dz 2 J;j(Ta, 2) (B.16)
can be checked for ¢ = ¢ by performing the integral
1 1
Jo(Ta) = W;L dz 2 Jyj(Ta, 2) (B.17)
1 rt
= B.1
2(27‘(’)3 b dzz (‘-ZIQ(TW Z) + ‘7(19(7—11’ Z)) ( 8)
1 (!
= 2(271')3 b dZZ (jQQ(TGH Z) + ‘7‘1(1(7—‘17 ]‘ - Z)) (Blg)
1 (!
= d as I B2
22y ), 4% Jaal7a: %) (B.20)

where in the last line we changed variables to 2z — 1 — 2z in the 2nd term. Inserting

the expression in Eq. (B.5)) into this integral yields the J,(7,) found in Eq. (3.35) of
Ref. [132).

In the case of the i = g we have

1

Jy(7a) = WJ; dz 2 (Tgg(Tas 2) + Tgq(Tas 2))

= 1 Jl dz jgg(Taa ’Z) + qu(Ta, Z)
0

o . , (B.21)

because both Jy,(7, 2) and Jyq(7,, 2) are symmetric under z — 1 — z. The sum
rule is easiest to verify by writing the d-dimensional expressions for J,,(7,,2) and
Jgq(Tas 2) before expanding in € = (4 — d)/2. We find

L Tlrzp) (L (AmEN Caos 11 e (g ey
w?  2(2m)3 w2\ w? 2r T'[1—¢€]1—a/2

X (%)Hl (12_’2Z + 2(1; 2 L oa(1— z)) , (B.22)
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2¢

(7 + (1= )

1 Tgq(Tasz,1) 1 A\ Troy 1 1
w?  2(2m)3 w? \ w? 2n T[1—€¢]1—a/2

1 1+ 2e
<(2)
Ta

o (1 - i 2(1- z)> . (B.23)

Inserting these two expressions into Eq. (B.21]) one obtains exactly the integral ex-
pression for the d-dimensional J,(7,) found in Eq. (4.22) of Ref. [65].
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Appendix C

TMDEFJFs in Factorization Theorems

C.1 Definition and relation to jet functions

Much like the standard FJFs, TMDFJFs appear in factorization theorems for cross-
sections that are differential in z, the fraction of a jet initiating parton’s energy
carried by an identified hadron, and p,, the transverse momenta of the hadron
measured from the parton’s momentum. It is shown in Ref. [65] that the cross-section

for the production of two jets in electron-positron annihilation can be written as,
do = do ™ Hy(p1) x Sa(p) x J4(w, i) x Jd(w, ), (C.1)

where do® is the Born cross section, Hy(p) is the hard function resulting from
matching a 2-jet operator in full QCD onto the corresponding SCET operators,
Sa() is a soft function that describes soft scale cross-talk between the jets and the
soft out-of-jet radiation is constrained via E,, < A, and J,(w, ) is a jet function
that describes collinear radiation within a jet in the n direction that has energy
E; =w/2 (here w = E.y). The jet function can be defined in SCET as

7

. dk™ 4 o 1
JHw, ) = o d*z exp(ik™x /Q)N—CTI 5
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To study jets with identified hadrons, we insert the following expression for the

identity

EDNLEEDIP) J ded” pL|Xh< POXXR(=Dh) (C3)

X heH;

1
Ne

dzd*p, [ dk* N
JHw d*z exp(iktz=/2
) h;f f J p(ik"z” /2) 7
« SR 008, 5 ) XAz DY B(= DR O0)] ()

where h is an identified hadron within the jet. Performing the integration over =z,

which is the Fourier conjugate of the residual momenta, and the residual k% yields

Tiw.n) = 3 [ 2ded’p, Gyl n). (©5)
heH,;

Insetrting this back to Eq.(C.1)) we have

do = ) [ sdap, oV Ha(u) x Sa(u) % Gyn(pr,zop) x Hw). (CO
heH;

which directly implies

A A
= do O Hy(p) x Sa(1) % Gyn(p1, 2, 1) x JE(w, p) + O < #) . (C.7)
E;’ by

This suggests a rather powerful rule (already known to be true for the standard
FJFs) for constructing the factorization theorem in SCET with identified hadron
with measured transverse momenta :

do.i/h

dodp, dU[Ji(w, 1) = Gim(pL, z,u)] (C.8)
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C.2 Matching calculation

In this Appendix we provide details for the evaluation of the matching coefficients,

Jijj- From the sum of diagrams in Figs. [1.2h) and [4.2p) we get:

20 eVEe U 1 ,U2 1+e€
pBEO) _aswCF <_> Ll
q/q (pJ_7Z7lu” I/) T 1’1(1 _E) w 27_‘_#2 pi

« {2 <1iz>1+n+(1—6)(1—z)}

a,w?C 2 1
e 2 (Lt )

b0 (%) +3) w050 - 9 - Ry w.)

# (0= (L) + Pul)) £obh ) + (15 00)]
L OO, (C.9)

where we define ¢, (2) = (1 — 2)/2. The superscripts B and R denote bare and
renormalized quantities, respectively, and the superscript (1) indicates that this is

the O(ag) contribution. The NLO matching coefficient is given by

R(1 R(1 R(1
T D,z ) = DSV (D1 2, 1) — DIV (2,1)6@ (b)), (C.10)
where
R(1) _ asCF 1
Dy, (2) = === Py(2)5. (C.11)

The 1/e pole appearing in the FF is interpreted as an infrared divergence. Although
for extracting the renormalized matching coefficients [J;/; we can ignore scaleless
integrals and interpret the finite terms as the renormalized result to that particular

order, here we are interested in the origin of the poles since this will allow us to
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extract the anomalous dimensions. Performing the matching we get:
\Z]}/%q(pj_u 2y My V) = 5(2) (pl)6(1 - Z)

CYSCF

™

{ (5(1 ~ ) (j-j) + qu(z)> Lo(p2, 12) + cqq(z)(s(m(pl)}. (C.12)

For the coefficient J,/, we simply perform the replacement z — (1 — z) and drop
d(z) and plus-distributions since these functions are always integrated for values of

z greater than zero. Thus

Qg C1F

T 1,2, v) = S Py () LoD 1) + €40 (2)00 (p) |, (C.13)

™

where ¢,y(2) = ¢4q(1 — 2) = z/2. For the gluon splitting we get

DB/(I)(MZMV)=%CAw2 - () 1 <M2)HE
g/g ) ) Y

r T(1—e \w/ 272 \p?
z (1—2)
x 2 [(1—2)”77 o +z(1—z)]. (C.14)
Expanding in 1 and € we have
B(1 asCaw? 1
Dg/g])(PgZ,lh V) = T [_ £5(2)(pj_) +£0(p3_7:u2):|

<[~ %5(1 -l (:—Z) 5(1 - 2) + By(2)

_asCAw2 2 1 (2) 2 2
i {[ o (_Z‘S (P1) + Lo(P1,17)

. (m (w_) + %5) 5 p,)]5(0 — 2) ~ o P20 (p)

# (- m (%) + Pue) £atbt ), (C.15)

and since the corresponding FF' is given by:

DE () = 6(1 - 2) — %ng(z)%e +0(a?), (C.16)

9/9
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where the 1/e pole is an infrared divergence, we have

R _ 5@ _ aCy B w_2 _ y
\7g/g<pj_727l’['7 V) 0 (pj_)5(1 Z)+ 5(1 Z) In 12 +PQQ(Z) ‘CO(pLa:u )

T
(C.17)

A similar calculation yields the kernel 7,

1+e
B(1) a,Tpw? eE 1 u? _
Dg/q (pJJZaM?V) = T F(Q—E) 27‘-/1/2 E X (qu(z)—e)
a Trw? 1 - _
= S {(ega(2) = 5o Pag(20)6P (01) + Lo(P 1) Pyg (2)

(C.18)

where cgq(2) = 2(1— z). Performing the matching and since the corresponding FF is

DF () = -2 p L L o), (C.19)

9/q T ¢

where again the 1/e pole is an infrared divergence, we get

jgjjq(plaznua V) = 5(2)(pL)6<1 - Z) +
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Appendix D

Calculations of Soft Function Components

In this Appendix, we calculate the various components needed for S"™™™  As ex-
plained in the main body of the text, we only calculate combinations of terms that
explicitly remove radiation out of the beams, i.e., with y > Yy Or ¥y < —Yeur- We
use the definitions c¢; = iy - fip, s; = (1 — ¢3)V2, ¢; = cos b;, and s; = sinf;. All the
expressions are special cases of the general form Eq. in the planar limit, given
by the substitution in Eq. (5.41)). For subtraction terms S defined in Eq.
there is an additional factor of —©% given in Eq. (5.36)).

153



D.1 Beam-Beam Interference Terms

We first calculate the beam-beam interference with the gluon out of the beams

out __ ~incl B B
IB% :TEE; +IBB +IBB

e frde g, 1 fd@ n—2¢
= - S11 S11n
NG DN e T T ?
eVEE J‘tanhycut dey
Tl —e) tanhgen L — €

1 + tanh yeut
n _—
1 — tanh yey

= 2ycut . (D]_)

The region that must be added to remove radiation in the jets goes as R? and
so is power suppressed for small jets, but we record it here for completeness. In a

frame where the jet is perpendicular to the beam,

e’YEG R ) o us o il
Ipp = WL df; sin' 2 elfo dfy sin~* 5[1 — (s1¢2)?] . (D.2)

In this frame (6; = 7/2), we can make the substitution R — Rsin7/2 = R to get a

frame invariant result. This gives

w2 1

Ths= %ln(l —R?) — e(ﬁ -3 Lip(1 — R2)> = O(R?). (D.3)

D.2 Beam-Jet Interference Terms

The beam-jet interference term with the gluon out of both beams is simplest to

compute in the polar coordinates about the beam axis. Defining cosf, = t.
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tanh y.u, it can be written as

I35 = I};ﬁl +I5,+15;

1—cy)eree (7% T 1 1
_ U=ce f df; sin 6, J df sin™* 6,
2ﬁf(1/2—e) . 0 1—011—CJ01—SJ8102
eEe (e dey 1—¢ =
= Fi(1/2,1;1 — ¢ D.4
9 ftcl—cfl—clcﬁ 1( / 5 672)7 ( )

where z = (1 — ¢3)(1 — ¢4)/(1 — c1¢5)?. We can proceed by extracting the c; = ¢

singular via the identity

-1 \/E 1—010J L+2e
A 11— ¢2) = ‘
? 1(27 1-62) F(l/?—e)coswe[z (|CI_CJ|>

ev/mo o~ ,3 3
—Fi(=,1;= ;1 — . (D.
+F(1—€)2 1(2, ,2+€, Z) ( 5)

The singularities are regulated by the |¢; — ¢ J‘_I_QE in the first term in brackets on
the right hand side of Eq. (and the second term is finite and O(e)). After
adding and subtracting the rest of the functional dependence on ¢, f(c;), at the
point ¢; = ¢y (so that |¢; — CJ|71726 (f(e1) — f(ey)) can safely be expanded in €) and

performing some algebra, we arrive at the result

Iout — i _ i + 1 In (62(ycut*y‘]) _ 1) + In (1 _ 6*2(ycut+yJ)
BTl —e | 2 2
_ e[% In2 (1 _ e_Q(ycut_yJ)) + Liy (6_2(ycut_yJ)) + %IDZ (1 _ e_Q(ycut+yJ)):|}
_ eVE*€ 1 n + O( —ycut> (D 6)
T I(1—¢) 9 Yeu Y c ' '

For the jet region subtraction term S75, in coordinates about the jet axis, we
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have

(]__Cj)e’YEG R 1o T o
T}, = VAT (/2= 6) 0d01 sin' 7€ 6, ) df, sin~>* 0,

1 1 .
1-— 2]
" IL—c1l—=cjer — 858102 [ (C‘]CI + SJSlC?)
(]. — CJ)€'YE€ J*l N
) der(l - ‘ D.7
2VTT(1/2 =€) Joonr a(l—ca) " fla), (D.7)

where we defined

Fl6) = (14 6)° Jﬂdez sin—2 0, [1 = (coe+55(1 =) e0)?] (D.8)

0 1—cje—s5(1—c2)2¢

Up to corrections that scale as O(R?), we can set f(c) = f(1) which is just

9-c  JAT(1/2 —¢)
T == "Ta-9

(D.9)

Using the substitution Eq. (5.9)), we find

71, - 7 L ome) (D.10)
BT T —€) 2¢

D.3  Jet-Jet Interference Terms

For the jet-jet interference terms, we work in coordinates about the jet axes in the
frame where they are back-to-back, and then convert to lab frame variables. For the
term with the gluon allowed anywhere, labeling the jets as 1 and 2, we have in the

frame of back-to-back jets,

J erre r 1-2 " 2
Ih; = ————— | df; sin- >0 df, sin™ ¢ 0
BJ ﬁr(l/Q—e)L 1 S1n 1L 2 S1N 2
1 1 €
1— 2]
X 1_611+01[ (cje1 + $y8102)
e’YE'e

e, 1)
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where we defined

glc)=(1+ c)_l_ef df sin™> 651 — (cjc + s;(1 — 02)1/202)2]6. (D.12)
0

As before, we can add and subtract ¢g(1), with

271=e , /al(1/2 —¢)
= 1_CJ3J Ti—q (D.13)

9(1)

and expand the part of the integrand with (1 —u)~'=¢(f(u) — f(1)) in €. To evaluate

the result, note that

" - e\ 201 _ 2)1/2 2
h(cy,c1) = Jd@lnl (crey+ (1 —cf)*(1 —c5)* cosb)

2
0 L=cj

3=

2
In [i(”g"') ] for |c1| < |ey|

= e : (D.14)
QIH# for |c1| > |cy|
and that
1 2
de; T 1. 51—cy
S W e D.15
L1—c§f(c°”cl) 6 2" Tre (D-15)

to finally obtain

. evee 1 —cos?d;\° 1 €. ,1—cy
Tinel — A . D.16
12 F(l—e)( 4 )[ €+2n1+CJ] ( )

Noting that ¢; = cosf; in the back-to-back frame is related to the jet rapidities in
the lab frame via cos#; = tanh Ay/2 (cf. Eq. (5.43)), we find

T =~ (2cosh(Ay/2)) | — S(ay)?
12 I'(1—c¢ e 2
2|1 € A
= —(2cosh(Ay/2)) P i(Ay) “ 13| (D.17)
For the jet region subtraction terms, we have
1 e’VEE 1 d 1
Iy = ———2 1—c) ¢ D.1
12 JT(1/2 — ¢ £OSR ci( c1) g(ar), (D.18)
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which now involves the integral of h(cy,c1) (cf. Eq. (D.14]) over the range ¢; €
(cos R, 1) with ¢; < cos R (so only the case |¢;1| > |cy| is needed). After some algebra
and using the substitution tan R/2 — R /(2 cosh Ay/2), we arrive at the result

7o g (D.19)
2T —e)2e ’ '
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