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Abstract

In this thesis I discuss an alternative approach for investigating quarkonium produc-

tion in hadron colliders. I present a complete framework for developing observables

for studies of charmonium states produced within a jet. My work is based on the

use of effective field theories of quantum chromodynamics that allow for the approxi-

mate factorization of jet cross sections in perturbative calculable terms and universal

non-perturbative functions that are extracted from data. Particularly in this the-

sis I explore the factorization approach of non-relativistic quantum chromodynamics

and soft-collinear effective theory. The fragmenting jet functions play central role

in factorization theorems for cross sections for identified hadrons within jets. These

cross sections can depend on the hadron-jet energy ratio and possibly on other jet

observables. I expand this concept to jet-shape observables known as angularities

and introduce the transverse momentum dependent fragmenting jet functions. Ap-

plications of these advanced methods to J{ψ production from gluon fragmentation

in electron-positron annihilation are presented and I develop the tools for expanding

this work in hadron colliders. Additionally, I compare predictions for J{ψ produc-

tion in jets, based on the framework of fragmenting jet functions, against recent

experimental data from the LHCb collaboration.
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1

Introduction

1.1 Basics of Quarkonium

Quantum Chromodynamics (QCD) is the sector of Standard Model (SM) that de-

scribes the strong nuclear interactions between quarks through the exchange of gauge

bosons known as gluons. According to QCD, the six flavors of quarks (up (u), down

(d), strange (s), charm (c), bottom (b), and top (t)) come in three possible strong

charges referred to as color. Since QCD is a non-abelian theory (in contrast to

quantum electrodynamics (QED)) gluons also carry color and have self-interactions.

This property of gluons gives QCD very interesting properties. For example the

β-function of QCD, which describes the evolution of the strong coupling constant,

is negative, as a consequence the strong coupling constant decreases logarithmically

with increasing momentum scales, thus at sufficiently high momenta one may use

perturbative methods for making predictions. This phenomenon is also known as

asymptotic freedom. The scales at which QCD becomes non-perturbative are de-

scribed by a scheme dependent parameter ΛQCD „ 0.3´ 0.5 GeV. ΛQCD is called the

QCD scale and is defined such that at this scale the strong coupling constant αs be-

1



comes non perturbative (i.e. αspΛQCDq Á 1). Additionally, color confinement which

appears at lower energies and therefore cannot be studied perturbatively, requires

that colored particles cluster to form colorless combinations and only those may be

observed experimentally. Such states are called hadrons and are classified according

to their quark content. Quark-antiquark bound states are refered to as mesons and

three-quark hadrons are called baryons.

The interactions of quarks and gluons in QCD are described through the corre-

sponding Lagrangian:

LQCD “
ÿ

flavorpfq

ψ̄f
`

i {D ´mf

˘

ψf ´
1

4
Ga
µνG

µν
a , (1.1)

where ψ and Aaµ are the quark and gluon fields respectively, {D “ γµpiBµ ` gsA
a
µTaq,

and Ga
µν “ BµA

a
ν ´ BνA

a
µ ` gsf

abcAbµA
c
ν . Here γµ are the Dirac matrices, T a and fabc

are the generators in the fundamental representation and the structure constants

of SU(3), respectively. The Lagrangian parameter mf corresponds to the mass of

the quarks and based on that parameter we classify quarks as light quarks where

mf ă ΛQCD (f “ u, d, or s) and heavy quarks where mf ą ΛQCD (f “ c, b, or t).

Quarkonium is the bound state of a heavy quark, Q, and its antiquark, Q, due to

strong nuclear interactions. The QQ bound states can be formed either from charm

quark, c, or bottom quark, b, pairs and we refer to those states as charmonium (cc̄)

and bottomonium (bb̄) respectively. Charmonium was first discovered by groups at

SLAC [14] and BNL [15] in November of 1974. The first charmonium state discov-

ered has mass of 3.1 GeV and is now known as the J{ψ particle. At the time only

the three light quarks were experimentally observed. A fourth quark was theorized

in Ref. [16] and later in Ref. [17] a complete theoretical model (Glashow - Iliopoulos

- Maiani (GIM) mechanism) was introduced but, until 1974 no hadrons were dis-

covered containing such a quark. After the discovery of the charm quark started a

2



period with series of discoveries of other hadrons with charm content, known as the

November Revolution. The discovery of the charm quark along with the GIM mech-

anism set the foundation for the construction of the Standard Model as we know it

today. Bottomonium was first observed by a group at Ferimlab [18] in 1977 with the

discovery of Υ.

The lighter quarkonia have an approximate lifetime of 10´20 seconds which is

particularly long relative to other strongly decaying particles with typical lifetime

of 10´23 seconds. This is attributed to the fact that while the decays to pions are

suppressed by the OZI rule [19,20], the open flavor decays are forbidden kinematically

since the open flavor threshold (for charmonium this is the DD̄ threshold „ 3.74

GeV, for bottomonium this is the BB̄ threshold „ 10.56 GeV) is higher than the

mass of the quarkonium states. Excited states can have masses above the open flavor

threshold and therefore shorter lifetimes. There are eight charmonium states below

the DD̄ threshold and fourteen experimentally observed1 bottomonium states below

the BB̄ threshold.

Due to their large mass, heavy quarks have non-relativistic velocities in the rest

frame of the quarkonium. If we denote with v the relative velocity of quark and

antiquark in the the rest frame of quarkonium, from lattice calculations we have that

v2 „ 0.1 for bottomonium and v2 „ 0.3 for charmonia (see for example Ref. [21]).

This implies that one could use a potential model for the quark-antiquark interactions

and solve the Shrödinger equation to find the spectrum of quarkonium. Indeed

potential models have been applied with great success in predicting the quarkonium

spectrum. Unfortunately the exact potential cannot be calculated due to the non-

perturbative aspects of QCD but reasonable approximations can be made. At short

distances (large momentum scales compared to ΛQCD) where αs ! 1, the form of the

potential could be evaluated at leading order in perturbation theory with the single

1 The states ηbp2Sq and ηbp3Sq are expected to exist but not yet experimentally observed.
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gluon exchange interaction. This results in a Coulomb-like potential, VC “ ´Cαs{r,

where for a color singlet configuration, C “ 4{3, and for a color octet, C “ ´1{8. On

the other hand, at long distances (scales similar to ΛQCD) the qualitative features of

QCD suggest a distance independent force which translates to a linear potential of

the form VL “ Kr and the value of K is fixed from experimental data. A common

potential model that has been used in the past with great success is simply V prq “

VL ` VC

V prq “ ´
4

3

αs
r
`Kr `Opα2

sq. (1.2)

which correctly reproduces the behavior at the long and short distances. Additional

relativistic and spin-orbit coupling terms can be added to this potential for better

accuracy [22–24]. Such corrections are essential for explaining the splitting between

the χcJ states. Furthermore the splitting between 3S1 and 1S0 states can be explained

due to the hyperfine structure from spin-spin interactions. In Figs. 1.1 and 1.2 we

show the charmonium and bottomonium spectrum where by convention we use the

standard spectroscopic notation np2S`1qLJ to describe the quarkonium states.

1.2 Quarkonium production at hadron colliders

Quarkonium production in hadron colliders is usually studied within the framework

of QCD factorization. The idea of the QCD factorization is based on the fact that the

two characteristic scales of the process, the QCD confinement scale ΛQCD „ 0.3 GeV,

and the hard scale, q2, are widely separated, allowing us to factorize the underlying

physics. In this framework a generic cross section (or differential cross section) is

factorized into parton distribution functions (PDFs), denoted by fi{h and the partonic

cross section, σ̂ij,

σph1pP1q, h2pP2qq “
ÿ

ij

ż

dx1dx2fi{h1px1, µ
2
qfj{h2px2, µ

2
qσ̂ijpŝ “ x1x2s, µ

2, q2
q (1.3)
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Figure 1.1: Charmonium spectrum from [6].

where xi is the fraction of the hadron’s energy carried by the parton i, q2 is the

square of the transferred momentum in the hard process, and µ the factorization

scale. Intuitively2 we could interpret PDFs, fi{hpx, µ
2q, as the probability to find

a parton i within the region of size A „ r3 „ p1{µq3 inside the hadron, carrying x

fraction of the hadron’s energy. In hard scattering with transferred momentum qµ the

exchanged gluon (or photon) can travel distance r „ 1{|q| before getting reabsorbed.

Thus a common choice of the factorization scale in Eq.(1.3) is µ2 “ q2.

While the hard partonic cross section can be calculated systematically in per-

turbation theory, PDFs are non-perturbative objects that must be extracted from

experimental data. The predictive power of PDFs rely on their universality which

ensures that the same distributions can be used for multiple processes. Thus PDFs

2 This simplified picture of PDFs can only be used for intuitive purposes. More details regarding
the matter can be found in Ref. [25].
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Figure 1.2: Bottomonium spectrum from [6].

are extracted from some processes (e.g., neutrino Deep Inelastic Scattering (DIS))

and used to make predictions for others (e.g., quarkonium production). Though

the extraction of PDFs happen at a particular scale, usually calculations require

knowing these distributions at other scales. For this reason PDFs are evaluated

at different scales using renormalization group evolution via the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equations [26–28].

µ
d

dµ
fi{hpx, µq “

αspµq

2π

ÿ

j

ż 1

x

dz

z
Pij

´x

z

¯

fj{hpz, µq, (1.4)

where Pijpxq are the QCD splitting kernels and can be evaluated in perturbation

theory.

Up to this point we discussed the form of a generic cross section in QCD fac-

torization framework. To extend this discussion on quarkonium production we need

to establish a model on how the form of the partonic cross section, σij, is modified
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in order to describe the production of quarkonium state Q. We are going to briefly

mention two partly successful models used in early studies and discuss why they

failed to give a complete description.

1.2.1 The color evaporation model

In the color evaporation model (CEM) [29–31] the quarkonium state is produced from

the evolution of a heavy quark-antiquark pair (QQ) with invariant mass below the

open flavor threshold. The evolution is assumed independent of the polarization and

the color configuration of the pair. Therefore in the CEM framework the probability

of a QQ configuration with invariant mass ŝ to evolve in quarkonium state Q is given

by

PCEMpQQpŝq Ñ Qq “ FQ Θp4m2
Q ă ŝ ă 4M2

Qq , (1.5)

where MQ is the mass of the lightest meson containing Q and FQ is a parameter

unique for each state Q and is assumed to be universal, which needs to be extracted

from experimental data. Applying Eq.(1.5) to the QCD factorization at leading order

we have

σCEMph1pP1q, h2pP2q Ñ Qq “ FQ
ÿ

ij

ż

dx1dx2fj{h1px1, µ
2
qfi{h2px2, µ

2
q

ˆ σ̂ijÑQQpŝqpŝ, µ
2, q2

qΘp4m2
Q ă ŝ ă 4M2

Qq

ˇ

ˇ

ˇ

ŝ“x1x2s
. (1.6)

Despite its early success predicting various features of quarkonium, CEM failed

to give a complete description of the quarkonium production. For example, the

universality of the CEM parameters FQ suggest that the ratio FJ{ψ{Fχc should be

independent of the production process, in contrast to experimental results that give

different values for hadro-production compared to photo-production processes [32].
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1.2.2 The color singlet model

In contrast to CEM, the color singlet model (CSM) requires that a quarkonium state

Qpnp2S`1qLJq can only be produced from the evolution of a heavy quark-antiquark

pair in a color singlet configuration and with the same quantum numbers as the

quarkonium state. The probability of the pair3 QQpnp2S`1qL
p1q
J q to evolve into the

corresponding quarkonium state is given by the wave function of QQ pair at the

origin,

PCSM

´

QQpnp2S`1qL
p1q
J q Ñ Qpn1p2S

1`1qL1J 1q
¯

“ |Ψp0q|2δnn1δSS1δLL1δJJ 1 . (1.7)

Though the probability in equation Eq.(1.7) is true only for S-wave states (L “

0) similar relations for higher angular momentum states do exist and involve the

derivatives of the wave function at the origin. Unfortunately calculations for L ą 0

suffer from infrared divergences that require the inclusion of color-octet contribution

for their cancelation (see below). The value of |ψp0q| can be evaluated in the quark

potential model by solving Shrödinger equation for the wave function or can be

extracted from quarkonium di-lepton decay rates (ΓpQÑ `¯̀q). The cross section at

hadron colliders in CSM is given by

σCSMph1pP1q, h2pP2q Ñ Qpnp2S`1qLJqq “ |Ψp0q|
2
ÿ

ij

ż

dx1dx2fi{h1px1, µ
2
q

ˆ fi{h2px2, µ
2
qσ̂

ijÑQQpnp2S`1qL
p1q
J q
pŝ, µ2, q2

q

ˇ

ˇ

ˇ

ŝ“x1x2s
. (1.8)

The CSM was used extensively for various calculations such as the ηc and χc

production from gluon fusion [33–36] as well as the J{ψ and ηc production from B

meson decays [37,38]. The CSM approach was abandoned in 1995 after the dramatic

failure to predict the direct J{ψ production from Tevatron in pp̄ collisions.

3 The superscript p1q indicates that the QQ̄ pair are in a color singlet configuration.
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Figure 1.3: J{ψ transevse momentum spectrum from ATLAS at
?
s “ 7 TeV from

CEM (green) and CSM (red/grey). These resutls were published in Ref. [7].

Fig.1.3 from Ref. [7] shows how predictions for J{ψ production from the CSM

and CEM framework compare against data from ATLAS experiment at LHC. We

note that the NLO CSM predictions have significant disagreement with the data and

NNLO CSM predictions suffer from large theoretical uncertainties.

1.3 The NRQCD framework

Inside the quarkonium, the heavy quark and antiquark have small relative velocity,

(v2 „ 0.1 for bb̄ and v2 „ 0.3 for cc̄), therefore NRQCD [39]´which is an effec-

tive field theory that describes Quantum Chromodynamics in the non-relativistic

limit´provides the correct theoretical framework for studying their interactions.

There are three important scales that appear when studying the dynamics of non-
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relativistic heavy quarks: mQ, which is the mass of the heavy quark, mQv, is the size

of their momentum in the rest frame of quarkonium, and mQv
2, which characterizes

their kinetic energy in the same reference frame. The distance r „ 1{pmQvq gives an

estimate of the size of the quarkonium state and the separation between the heavy

quark-antiquark pair and the energy ∆E „ mQv
2 is of order of the energy splittings

of radial excitations.

For bound states such as quarkonium we should expect that kinetic energy bal-

ance the Coulomb like potential energy, i.e., mQv
2 „ αsp1{rq{r. The typical distance

r between quark and antiquark is 1{Mv and since αsppq decreases with the increase

of momentum scale (due to asymptotic freedom of QCD) we have

v „ αspmQvq ñ v Á αspmQq. (1.9)

This scaling relation has an important implication: relativistic corrections of or-

der v2n are expected to be more important than perturbative corrections of order

pαspmQqq
2n. Therefore when performing higher order calculation in the strong cou-

pling, relativistic corrections must properly taken into consideration. For this reason

we need a simultaneous expansion in the strong coupling and the relative velocity.

The NRQCD framework allows us to do exactly that.

In NRQCD the heavy quark and antiquark are described by two separate spin

1{2 non-relativistic Schrödinger fields. Thus the Lagrangian that describes the heavy

quark ψ and antiquark χ is

Lheavy “ ψ:
ˆ

iDt `
D2

2M

˙

ψ ` χ:
ˆ

iDt ´
D2

2M

˙

χ. (1.10)

Light quarks are described in the NRQCD Lagrangian by the four-component Dirac

spinor and their mass is set to zero. Also the gluon propagation and interactions are

added to the Lagrangian through the standard gauge-invariant combination of the
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Table 1.1: Table from [1] showing the velocity scaling rules for elementary operators
in NRQCD.

Operators Estimate Description

ψ pMvq3{2 Quark (annihilation) field

χ pMvq3{2 Antiquark (creation) field

Dt Mv2 Gauge covariant time derivative

D Mv Gauge covariant space derivative

gφ Mv2 Scalar potential (Coulomb gauge)

gA Mv3 Vector potential (Coulomb gauge)

gE M2v3 Chromoelectric field

gB M2v4 Chromomagnetic field

gluonic field tensor Gµν as in Eq.(1.1). The corresponding term reads

Llight “ ´
1

4
Ga

µνG
aµν
`
ÿ

nf

q̄i {Dq, (1.11)

and the full Lagrangian is

LNRQCD “ Lheavy ` Llight ` δL. (1.12)

where δL includes all the relativistic corrections up to the desired accuracy. Such

terms are

δL “ c1

8M3
rψ:

`

D2
˘2
ψ´χ:

`

D2
˘2
χs`

c2

2M
rψ:pgB ¨ σq2ψ´χ:pgB ¨ σq2χs` . . . (1.13)

Other important contributions to δL come from the four-fermion interactions

that are associated with the quarkonium annihilation but not relevant to the work

presented here. The relative importance of the operators in δL is determined by the

NRQCD power counting. For evaluating the velocity scaling rules of the different

11



operators we start with the number operator of the quark field which equals 1, i.e.,

ż

d3xψ:pxqψpxq “ 1, (1.14)

and since the integral has support only over of the quarkonium size

ż

d3x „ V3pquarkoniumq „
1

p3
„

1

pMvq3
ñ ψ „ pMvq3{2. (1.15)

Similarly we can find the estimated size of other elementary operators. A summary

of these results is shown in Table 1.1 [1].

1.3.1 Quarkonium production in fixed order NRQCD calculations

In NRQCD framework the quarkonium production cross section is factorized into the

perturbatively calculable short distance coefficients (SDC) and long distance matrix

elements (LDME) that need to be extracted from data:

dσNRQCDpa` bÑ Q`Xq “
ÿ

n

dσpa` bÑ QQ̄rns `XqxOny, (1.16)

where

OnQ “ On:2

˜

ÿ

J

ÿ

mJ

|Q`XyxQ`X|
¸

On2 and On2 “ ψ:Knχ, (1.17)

where Kn is a tensor in the Dirac and color algebra. Therefore the index n runs over

all possible color and angular momentum configurations. While the short distance

coefficients dσpa ` b Ñ QQ̄rns ` Xq in Eq.(1.16) have an expansion in the strong

coupling, αs, the LDMEs scale based on the NRQCD scaling rules. Thus truncating

the sum can give us the desirable accuracy from a simultaneous expansion in the αs

and v. In this approach for calculating quarkonium production cross sections, SDCs

appearing in Eq.(1.16) are calculated up to a specific order in perturbation theory.

For this reason we refer to these calculations as fixed order calculations.
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We note that including in the sum in Eq.(1.22) only the case where n matches the

quantum numbers of the quarkonium state, then the NRQCD framework recovers

the results from CSM. Though, for S-wave quarkonia the singlet LDME dominates

in the relative velocity expansion, for P-wave quarkonia the singlet LDME scales the

same as the leading color-octet LDMEs. This explains the necessity for inclusion

of octet states for complete cancelation of infrared divergences that appear in CSM

calculations for the P-wave quarkonia.

NRQCD has been the most successful model for the description of quarkonium

production in hadron colliders. The values of the singlet matrix element are extracted

either from quark potential model calculations and from quarkonium di-lepton decay

rates. The rest of the relevant values included in the expansion are fitted to results

from experimental data.

1.4 J{ψ production

Experimentally the most studied charmonium state is J{ψ. With quantum numbers

13S1, J{ψ has clean experimental signal through di-lepton decays as we will describe

later in this chapter. In the work presented here we focus on the production of

J{ψ but the methodology and the framework we develop can be applied to any

quarkonium state and more generally to any hadron.

In hadron colliders the major production processes of J{ψ are:

• Through b-hadron decays (i.e., hb Ñ J{ψ`X) which we refer to as non-prompt

production.

• Direct production from energetic partons.

• Feed-down decays of excited charmonium states.

The main contribution to feed-down production are radiative decays of P-wave states
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Table 1.2: LDMEs for NRQCD production mechanisms. Central values taken from
global fits in Refs. [2,3]. The values are in units of GeV3. The v scaling is also shown.

xOJ{ψp3Sp1q1 qy xOJ{ψp3Sp8q1 qy xOJ{ψp1Sp8q0 qy xOJ{ψp3P p8qJ qy{m2
c

1.32˘ 0.2 p2.24˘ 0.59q ˆ 10´3 p4.97˘ 0.44q ˆ 10´2 p´7.16˘ 0.9q ˆ 10´3

„ v3 „ v7 „ v7 „ v7

(χc Ñ J{ψγ) which approximately consists of 71% of the feed-down contribution and

hadronic decays of other excited vector states (ψp2Sq Ñ J{ψ`hadrons) [40,41] with

approximately 23% contribution to the feed-down production of J{ψ. Additionally,

any production process that does not involve b-hadron decays is refer to as prompt

production, that includes the direct production and feed-down decays.

The NRQCD framework has been applied extensively in predicting transverse

momentum of the J{ψ in excellent agreement with experimental data. These results

are demonstrated in Fig. 1.4, which shows how the predictions agree with various

experiments in hadron colliders for a large range of the transverse momentum and

rapidity. The values of the LDMEs that are used in the demonstrated calculations

are extracted in Refs. [3, 42] from global fits to the world data and are summarized

in Table. 1.2. In Fig. 1.4 only two of the thirty-two data-sets used are presented. We

note that these values are in agreement with the NRQCD velocity scaling rules in

the second line of Table. 1.2.

Despite the great success of NRQCD in describing the transverse momentum

spectrum of J{ψ, NRQCD fails to correctly predict the J{ψ polarization. Fig. 1.5

shows that measurements [11] of J{ψ polarization disagree with NRQCD predic-

tions.In Fig. 1.5 the blue band corresponds to the polarization prediction in NLO

calculations using the LDMEs from Table 1.2 [8] and the red band to same order

calculations including the effect of feed-down decays [9]. The green band, which
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Figure 1.4: J{ψ transevse momentum spectrum from experiments at LHC (ALICE,
CMS, ATLAS, LHCb) at

?
s “ 7 TeV compared against predictions from NRQCD

framework where the LDMEs are extracted from global fits to the world’s data.
Figure from Ref. [2, 3].

shows the best agreement with the data corresponds to LDMEs that are extracted

from simultaneous fits to the transverse momentum and polarization spectrum of

J{ψ [10] at high pK, at hadron colliders only. The magenta curve corresponds to

predictions from CSM calculations in kK factorization from Ref. [8]. While the ex-

perimental data find that the quarkonium is produced unpolarized (i.e. λθ „ 0)
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Figure 1.5: J{ψ pollarization spectrum in the HX frame, from LHCb at
?
s “ 7

TeV, compared against predictions from NRQCD and CSM [8]. The LDMEs for
the NRQCD predictions are extracted from three different fits (blue [8], red [9],
green [10]). These resutls were published in Ref. [11].

various theoretical studies consistently predict some or full transverse polarization.

Measurements from other experiments (e.g. CMS [43], ALICE [44], CDF [45]) find

similar results. This discrepancy between theoretical predictions and data is also

known as the polarization puzzle of J{ψ.

1.4.1 NRQCD fragmentation functions

There have been recent attempts [46,47] to resolve the polarization puzzle, by refit-

ting LDMEs from charmonium production transverse momentum spectrum at high

pT including the color-octet dominating mechanisms and resuming logarithms of

pT {mJ{ψ using renormalization group evolution techniques. This is achieved by us-

ing the leading power (LP) factorization approach which states that at large trans-

verse momenta fragmentation processes dominate the production cross section. For

a generic hadron h this is expressed through the following factorization formula:

dσph`Xq

dx
“
ÿ

i

ż 1

x

dz

z
dσipz, µqDi{h

´x

z
, µ
¯

`Opmh{p
h
Kq. (1.18)
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where dσipz, µq is the partonic cross section and Di{hpx, µq the fragmentation function

(FF). Similarly to PDFs, fragmentation functions are fundamentally non-perturbative

and describe the production of identified hadrons from energetic partons. The factor-

ization scale dependence, at leading order, is the same DGLAP evolution equation

(cf. Eq(1.4)) for the FFs as for PDFs. At higher orders the form of the evolu-

tion equation remains the same but the splitting kernels, Pijpxq, differ starting at

two loops (i.e., at Opαsq). The DGLAP evolution conserves the normalization of

fragmentation function which reads

ÿ

h

ż 1

0

dx xDi{hpx, µq “ 1. (1.19)

For a parton i fragmenting into a hadron h the operator definition of the correspond-

ing fragmentation function is given by [48]

Dq{hpz, µq “
1

z

ÿ

X

1

2Nc

δpω ´ p´X ´ p
´
h q Tr

”

{̄n

2
x0|ψp0q|XhyxXh|ψ̄p0q|0y

ıˇ

ˇ

ˇ

pX
K
“´ph

K

,

(1.20)

for quark fragmentation, and

Dµρ
g{hpz, µq “ ´

1

pd´ aqpN2
c ´ 1qωz

ÿ

X

δpω ´ p´X ´ p
´
h qx0|G

a
µνp0q|XhyxXh|G

νa
ρ p0q|0y,

(1.21)

for gluon fragmentation, where z is the fraction of the energy of the original parton,

Ei “ ω, carried by the hadron. The energy conservation delta function is expressed

in terms of the light-cone coordinates (p´ “ p0 ` p3 « 2p0).

Applying Eq.(1.18) to the NRQCD factorization conjecture in Eq.(1.16) we can

extract the quarkonium fragmentation functions [49].

Di{Qpz, µq “
ÿ

n

dni pzqxOnQy, (1.22)
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Table 1.3: Contributions to the J{ψ charm quark and gluon fragmentation function.

Mechanism LO to dni pzq LDME scaling Total scaling

cÑ pcc̄r3S
p1q
1 sq Opα2

sq „ v3 „ α2
sv

3

g Ñ pcc̄r3S
p1q
1 sq Opα3

sq „ v3 „ α3
sv

3

g Ñ pcc̄r3S
p8q
1 sq Opα1

sq „ v7 „ α1
sv

7

g Ñ pcc̄r1S
p8q
0 sq Opα2

sq „ v7 „ α2
sv

7

g Ñ pcc̄r3P
p8q
J sq Opα2

sq „ v7 „ α2
sv

7

where now dni pzq are matching coefficients that can be evaluated in perturbation

theory through a matching process from QCD onto NRQCD. Applying Eq.(1.22) in

the QCD factorization framework (i.e. Eqs.(1.18) and (1.3)) we have

dσLPNRQCDph1pP21qh2pP2q Ñ Qpxq `Xq “
ÿ

n

xOnQy

ˆ
ÿ

i

ż 1

x

dz

z
dσph1pP21qh2pP2q Ñ ipzq `Xqdni

´x

z

¯

(1.23)

In the NRQCD leading power approximation we consider charm quark and gluon

fragmentation separately. In the charm quark fragmentation the dominant produc-

tion mechanism is through a cc̄ bound state in 3S
p1q
1 configuration. In the strong cou-

pling and relative velocity expansion this mechanism scales as cÑ pcc̄r3S
p1q
1 sq`X „

α2
s v

3. In the gluon fragmentation process the situation is more complicated since

various production mechanisms have comparable contributions to the fragmentations

function. The most important mechanisms are 3S
p1q
1 , 3S

p8q
1 , 1S

p8q
0 , and 3P

p8q
J , and their

estimated sizes are summarized in Table 1.3.

The leading power factorization approach yields good fits for the cross section

data, however the extracted values of LDMEs are inconsistent with previous fits to
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the world’s data suggesting that an independent measurement of LDMEs is needed.

1.5 Quarkonium polarization

The vector states, 13S1, with JPC “ 1´´ (i.e. J{ψ and Υp1Sq) have very charac-

teristic and experimentally clean di-lepton (e`e´, µ`µ´) decays that are used for

measuring the polarization of quarkonium, where a state is transversely polarized if

Jz “ ˘1 and longitudinally polarized if Jz “ 0, and the direction ẑ is chosen along the

direction of the motion. This choice of axis is called the helicity reference frame and

other common choices are the Gottfried-Jackson frame [50], GJ, and Collins-Soper

frame [51], CS, as shown in Fig. 1.6(left). The angular distribution of the dimuons

in the quarkonium rest frame gives a direct measurement of the polarization. An

observable used widely by all high energy experiments is the coefficient, λθ, of the

polar cosine from the dimoun angular distribution

W pθ, φq “ Np1` λθ cos2 θ ` λφ sin2 θ cos 2φ` λθφ sin 2θ cosφq, (1.24)

where the angle θ and φ are the polar and azimuthal angles of the direction of the

positive charge lepton as displayed in Fig. 1.6 (right). We can derive Eq.(1.24) by

noticing that in the quarkonium rest frame the muons are approximately massless

and therefore helicity eigenstates. Also due to helicity conservation in QED the

dimuon system must have the same helicity as the decayed photon, i.e. ˘1, therefore

the spin of the two muons is parallel and pointing in the direction of their motion.

On the other hand the quarkonium state, in the most general case has components

|
3S1y “ a1|m “ 1y ` a0|m “ 0y ` a´1|m “ ´1y, (1.25)

where Jz| m y “ m| m y (in ~ “ 1 units) and ẑ is the direction of motion of the

quarkonium. Using the three dimensional unitary representation of rotations we can
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easily evaluate

W „
ÿ

`“˘1

ˇ

ˇ

ˇ
xµ`µ´; `| B̂ |3S1y

ˇ

ˇ

ˇ

2

, (1.26)

where the action of the transition operator B̂ on the quarkonium state is uniform

among the different eigenstates of Jz, due to the rotational invariance of QED as

discussed in Ref. [12],

B̂ |3S1y “ B
”

a1|m “ 1y ` a0|m “ 0y ` a´1|m “ ´1y
ı

. (1.27)

After evaluating the transition amplitude xµ`µ´; `| B̂ |3S1y and summing the prob-

abilities over the possible polarizations of the dimuon system (` “ ˘1) we recover

Eq.(1.24) with

λθ “
1´ 3|a0|

2

1` |a0|
2
. (1.28)

We note that the observable λθ is useful for measuring the polarization of quarkonium

since it has distinct behavior for all three special cases.

Transverse polarization p|a˘1| “ 1, a0 “ 0q : λθ “ `1 , (1.29)

Longitudinal polarization pa˘1 “ 0, |a0| “ 1q : λθ “ ´1 ,

No polarization pa1 “ a´1 “ a0 “ ˘1{
?

3q : λθ “ 0.

As we saw earlier in this chapter theoretical predictions fail to reproduce experi-

mental results regarding the polarization of J{ψ. This discrepancy is the well known

polarization puzzle. This thesis is focused on developing alternative observables for

studying quarkonium production to give further insight into the fragmentation pro-

duction of J{ψ and therefore shed light on the polarization puzzle.

The work presented here focuses on approaches for extracting charmonium pro-

duction LDMEs by studying jet observables in semi-inclusive processes. The pro-
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Figure 1.6: Standard reference frames for measuring quarkonium pollarization.
Picture taken from Ref. [12].

cesses we will consider are quarkonium produced within a jet4 of particles. The

production mechanisms could have great impact on the jet substructure and topol-

ogy therefore, measurements of jet observables can help discriminate between various

production mechanisms. Thus, such measurements could help perform an indepen-

dent extraction of the LDMEs. We believe that the extracted LDMEs will give us

further insight into the polarization puzzle.

Measurements on J{ψ production in jets were performed for the first time recently

by the LHCb collaboration [13]. In this measurement the transverse momentum

ratio z “ pKJ{ψ{p
K
jet is measured for jets with cone size R “ 0.5, within the pseudo-

rapidity range η P p2.5, 4.0q and transverse momentum pKjet ą 20 GeV. For J{ψ

produced promptly the observed data are compared against predictions from the

simulation package PYTHIA 8 in Fig. 1.7. We discuss the LHCb measurements in

the last section of Chapter 3 and we give semi-analytic predictions for three different

extractions of LDME, a complete analytic5 calculation is in development.

Over the past few years there has been a great effort made towards the develop-

4 A jet of particles is a collimated spray of hadrons initiated by a single energetic parton. Jets
are the result of hadronization of gluons and quarks due to confinement.

5 By complete analytic we refer to calculations that do not involve input from monte-carlo simu-
lations but will include non-perturbative parton distribution functions
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Figure 1.7: Measured normalized zpJ{ψq distributions for J{ψ mesons produced
promptly compared to predictions obtained from Pythia 8. This figure was published
in Ref. [13]

ment of theoretical tools for the study of jets. Particularly, in the framework of SCET

(Soft-Collinear Effective Theory) [52–54]´an effective theory of QCD in the soft and

collinear limit´jet observables are factorized into pieces calculable in perturbation

theory and universal nonperturbative parts. For hadron or quarkonium production

inside jets, these pieces include newly-defined fragmenting jet functions (FJFs) [55].

These advanced methods allow us to investigate the effects of the hadron’s produc-

tion mechanism on the observed substructure and topology of the jet. More details

on the development of SCET and how FJFs are constructed and enter factorization

theorems in SCET are presented in Chapters 2 and 3. In Chapter 4 we present

the generalization of FJFs to transverse momentum dependent (TMD) observables

where the transverse momentum of the identified hadron is measured with respect to

the jet axis. In Chapter 5 we evaluate all the necessary pieces for the factorization

theorem in dijet events at hadron colliders and we develop a prescription for imple-

menting the FJF formalism in such events. The work presented in Chapters 3, 4,

and 5 was published in [56–58] respectively and the manuscript closely follows the

corresponding publications.
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2

Soft Collinear Effective Theory

Beyond leading order calculations of jet cross sections in QCD, soft and collinear

divergences from the real emission diagrams cancel against infrared divergences from

the virtual emissions. The soft and collinear divergences appear from the region of

phase-space where the real particles are emitted within the jet boundary or are soft

enough such that they do not form a new jet. A characteristic example of fixed

order calculations of jet cross sections is given in Ref. [59]. In soft collinear effective

theory [52–54] collinear and soft modes are systematically extracted from the full

QCD fields. This allows us to isolate these divergences in soft and collinear functions

respectively. The infrared divergences from loop corrections to the hard process

are included in the hard functions. This way one can establish a renormalization

procedure for each function separately and using renormalization group techniques,

resum logarithms of widely separated scales that can potentially ruin the perturbative

expansion in fixed order calculations.
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2.1 Lightcone coordinates

In this section we introduce the notation that will be used in this and the following

chapters. Since in SCET we encounter collinear and soft modes of the quark and

gluon fields, is convenient to express the corresponding momenta in the lightcone

coordinates with respect to the unit vector n̂. In the context of jet cross sections

n̂ is chosen to point in the direction of the corresponding jet or beam axis. In a

particular process multiple directions are relevant, e.g. for the process pp Ñ 2 jets

four directions are of interest (the two beam and the two jet axis) and thus four unit

vectors need to employed (n̂B, n̂B̄, n̂1, and n̂2) as shown in Fig. 2.1.

n̂Bn̂B̄

n̂2

n̂1

Jet1(R, p?1 , y1, ⌧1)

Jet2(R, p?2 , y2, ⌧2)

Hard process

n̂

pµ
coll ⇠ E(�2, 1, �)

pµ
soft ⇠ E(�2, �2, �2)

Figure 2.1: Example of multiple collinear directions in a single event. In this
particular case we have a di-jet event in pp or pp̄ collision.

For every direction n̂i we define the corresponding lightlike four-vectors, nµi “

p1, n̂iq and n̄µi “ p1,´n̂iq such that n2 “ n̄2 “ 0 and n ¨ n̄ “ 2. Then every four-

vector, Aµ can be expanded in the lightcone coordinates in the following way

Aµ “
nµ

2
A´ `

n̄µ

2
A` ` AµK, (2.1)

where A` “ n ¨A, A´ “ n̄ ¨A, and AµK are the two spatial components perpendicular

to the direction of the unit vector n̂ such that AK ¨n “ AK ¨ n̄ “ 0. We represent this
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decomposition in component notation as Aµ “ pA`, A´, AµKq. Furthermore the vector

product in Minkowski metric A ¨B is writen in terms of the lightcone coordinates as

A ¨B “
A`B´

2
`
A´B`

2
` AK ¨BK “

A`B´

2
`
A´B`

2
´ ~AK ¨ ~BK . (2.2)

The momentum components pµ of energetic particles emitted in an angle θ with

respect to n̂ are p` « Ep1 ´ cos θq, p´ « Ep1 ` cos θq, and |pK| « E sin θ. For

particles collinear to the n̂ direction where θ ! 1 their four momenta scale as pµcoll. „

Epλ2, 1, λq, where λ “ E{|pK| « θ. On the other hand, momenta of soft particles

satisfy the following scaling, pµsoft „ Epλα, λα, λαq, where for α “ 2 are called ultra-

soft emissions and for α “ 1 are simply referred to as soft emissions. The version

of SCET that is associated with the ultra-soft modes is known as SCETI where

the soft modes are relevant in SCETII [52–54]. Extended versions of SCET such as

SCET` [5,60] and SCETG [61] involve additional soft-collinear and Glauber modes.

Some of the extended versions of SCET (SCET` and SCET``) will be discussed

later in Chapters 4 and 5.

The collinear and soft gluon fields are defined by the corresponding momenta that

are functions in momentum space, i.e., for the collinear gluon field we have Aµnppcollq

and for the soft gluon field Aµusppsoftq. Using the definition of the gluon propagator

we can establish a power counting of the four-vector components of the gluon field

ż

d4xeik¨xx0|AµnpxqA
ν
np0q|0y “ ´

i

k4
pk2gµν ´ p1´ ξqkµkνq, (2.3)

where ξ is the parameter that controls the choice of gauge (e.g. Feynman and ’t

Hooft gauge, in which ξ “ 1 and Landau gauge, where ξ “ 0) and since d4x has

support in a region that scales as the inverse of the corresponding momenta we

have d4x „ dx`dx´d2xK „ λ´4 and it must that AµnA
ν
n „ pk2gµν ´ ξkµkνq. By

taking the perpendicular component in both four-vector indices µ and ν, we have
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pAn,Kq
2 „ pQλq2 thus An,K „ Qλ. The `´ combination will give A`nA

´
n „ pQλq

2 and

the `` combination A`nA
`
n „ pQλq

4. Therefore the collinear gluon field four-vector

components has the same scaling as the collinear four-momenta. Similar analysis

also shows that the soft gluon field scales the same as soft four-momenta:

Aµn „ pµcoll „ Qpλ2, 1, λq and Aµus „ pµu´soft „ Qpλ2, λ2, λ2
q , (2.4)

where here and for the rest of this chapter we work in SCETI where soft radiation

scales as ultra-soft modes (i.e. psoft „ Epλ2, λ2, λ2q).

For developing the SCET Lagrangian for Dirac spinors is useful to introduce the

projection operators P`´ and P´` defined as

P`´ “
γ`γ´

4
, P´` “

γ´γ`

4
. (2.5)

where γµ are the Dirac matrices. Directly from their anti-commutation relations (i.e.

tγµ, γνu “ 2ηµν) the projection operators satisfy

P`´ ` P´` “ 1. (2.6)

Additionally we can show that tγ`, γ´u “ 4 and since γ`γ` “ γ´γ´ “ 0 the

following relations are true

P`´γ
`
“ γ`, P´`γ

´
“ γ´, and P`´γ

´
“ P´`γ

`
“ 0 , (2.7)

thus the following projection operator relations are also true

pP`´q
2
“ P`´, pP´`q

2
“ P´`, and P`´P´` “ P´`P`´ “ 0. (2.8)

2.2 The SCET Lagrangian

In this section we discuss the derivation of the SCETI Lagrangian for the collinear

quark field1. We start the derivation from the massless limit of QCD and expanding

1 The discussion closely follows the notes from Ref. [62].
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by applying Eq.(2.6) to the quark field ψ.

ψ “ pP`´ ` P´`qψ “ ξn ` ψn̄ , (2.9)

thus

LQCD “ ψ̄piγ ¨Dqψ “ pφ̄n̄ ` ξ̄nq

ˆ

i
γ`D´

2
` i

γ´D`

2
` iγK ¨DK

˙

pφn̄ ` ξnq , (2.10)

where ξn ” P`´ψ and φn̄ ” P´`ψ. To simplify this expression we expand and use

the fact that γ`ξn “ ξ̄nγ
` “ γ´φn̄ “ φ̄n̄γ

´ “ 0 which is directly derived from the

relations in Eq. (2.7). Applying these relations gives

LQCD “ ξ̄n

ˆ

i
γ´D`

2

˙

ξn ` φ̄n̄

ˆ

i
γ`D´

2

˙

φn̄ ` ξ̄npiγK ¨DKqφn̄ ` φ̄n̄piγK ¨DKqξn

` ξ̄npiγK ¨DKqξn ` φ̄n̄piγK ¨DKqφn̄ , (2.11)

The last two terms in the second line also vanish since

ξ̄npiγK ¨DKqξn “ ξ̄npiγK ¨DKqP`´ξn “ ξ̄nP`´piγK ¨DKqξn “ 0, (2.12)

where in the second line we used γKγ
˘ “ ´γ˘γK. Therefore we have

LQCD “ ξ̄n

ˆ

i
γ´D`

2

˙

ξn`φ̄n̄

ˆ

i
γ`D´

2

˙

φn̄` ξ̄npiγK ¨DKqφn̄`φ̄n̄piγK ¨DKqξn. (2.13)

Up to this point he have only expanded the QCD Lagrangian in terms of the ξn and φn̄

fields. In the next step we will eliminate the component φn̄ from the Lagrangian using

the equations of motion. This component will give subleading contributions in λ

which will not contibute to the leading order SCET Lagrangian. We may see how the

φn̄ component will give contributions of subleading orders by expanding the equation

of motion for the Dirac spinor u: 0 “ {pu “ {ppP`´ ` P´`qu “ p´ γ
`

2
pP`´uq `Opλq.

The corresponding equation of motion satisfied by φn̄ is

BL
Bφ̄n̄

“ 0 , (2.14)
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which directly leads to

γ`D´

2
φn̄ ` pγK ¨DKqξn “ 0

D´φn̄ ´ pγK ¨DKq
γ´

2
ξn “ 0 Ñ φn̄ “

1

D´
pγK ¨DKq

γ´

2
ξn . (2.15)

Using this expression for replacing the subleading component φn̄ in the QCD La-

grangian we get

L “ ξ̄n

ˆ

iD` ` i {DK
1

iD´
i {DK

˙

γ´

2
ξn , (2.16)

where we used the shorthand notation {DK ” γK ¨DK.

We continue by separating the collinear momentum to label and residual into a

similar manner as in heavy quark effective theory (HQET) [63] where pµ “ pµ` ` p
µ
r .

The residual momenta has ultra-soft scaling i.e. pµr „ Qpλ2, λ2, λ2q and the label

moment scales as pµ` „ Qp0, 1, λq. Using this decomposition we may write the ξnpxq

as ξn,p`pxrq where we explicitly show the label momentum and the coordinate variable

xr which is conjugate variable of the residual momentum. Thus the coordinate

derivative Bx now is separated in a derivative term with respect to xr and the label

momentum operator P “ p0, P̄ ,PKq: iBx Ñ P ` iBxr . For simplicity of notation

we relabel xr Ñ x and ignore the label momentum index such that ξn,p`pxrq Ñ

ξnpxq. Applying these modifications and including only the leading terms after power

counting in λ we have the final result for the SCET Lagrangian for the collinear quark

fields:

L0
nξ “ ξ̄n

ˆ

iD` ` i {Dn,K

1

iD´n
i {Dn,K

˙

γ´

2
ξn , (2.17)

where

iDµ
n,K “ PµK ` gAµn,K, iD´n “ P̄ ` gA´n , and iD` “ iB` ` gpA`n `A

`
s q. (2.18)

The superscript 0 notation denotes that this is the leading contribution to the
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SCET Lagrangian in the power counting parameter λ. The complete SCET La-

grangian also includes the collinear gluon sector, Lng, that describes the propagation

and the dynamics of gluon-gluon interactions, as well as the hard sector, Lhard, that

describes the operator matching from QCD onto SCET,

L0
SCET “

ÿ

n

`

L0
nξ ` L0

ng

˘

` Lhard `Opλq. (2.19)

In this section we are not going to perform the derivation of the other terms since

the gluon interactions sector can be derived in a similar manner as the quark sector

by expanding and performing power counting at leading order. The hard sector is

evaluated through a matching process and for the work presented here all the relevant

parts are going to be extracted from the literature. Also note that in Eq.(2.19)

we included a summation over all distinct collinear sectors. Two collinear sectors

described by the light-like vectors nµ1 and nµ2 are considered distinct if n1 ¨ n2 " λ2.

2.3 Wilson lines

In this section we review some of the properties of Wilson lines that will be used

later in this chapter. We start with the definition of Wilson lines in non-Abelian

theories.

WR
pxfin, xinitq “ P exp

ˆ

ig

ż

c

dxµARµ pxq

˙

, (2.20)

where the integration dxµ is along the contour cpxfin, xinitq, R is the representation of

the gluon field, and P the path ordering operator. We may parametrize the integral

with the parameter s that runs over the integration contour and each point on the

contour corresponds to unique value of s

WR
pxfin, xinitq “ P exp

ˆ

ig

ż sfin

sinit

ds
dxµ

ds
ARµ pxpsqq

˙

. (2.21)
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If the integration contour is a straight line in the collinear direction n̄µ and we

parametrize coordinates as xµ “ n̄µs thus dxµ{ds “ n̄µ such that

W pxq ” W px,´8q “ P exp

ˆ

ig

ż x

´8

dsA´pxpsqq

˙

, (2.22)

where we removed the representation index for simplicity. We can show that the

Wilson line satisfies the following differential equation2

´i
d

ds
W psq “ A´pxpsqqW psq

ˆ

´i
dxµ

ds
Bµ ´ A

´
pxpsqq

˙

W pspxqq “ 0

D´W pspxqq “ 0. (2.23)

Replacing the generic gluon field Aµ with the collinear gluon field Aµn and expanding

in the SCET power counting parameter, the above relation becomes

iD´nWnpspxqq “ 0 where W psqn ” Wnps,´8q “ P exp

ˆ

ig

ż s

´8

dsA´n pxpsqq

˙

,

(2.24)

where the Wilson line Wnpxq can be also written in the following form using the label

momentum operator

Wnpxq “
ÿ

perm.

exp
´

´
g

P̄A
´
n pxq

¯

, (2.25)

and the sum over all permutations is a result of path ordering operator. Using

Eq.(2.24) we can show that the action of iD´nWn on an arbitrary operator O is

iD´n pWnOq “ pP̄ ` gA´n qWnO

“ piD´nWnqO `WnP̄O

“ WnP̄O. (2.26)

2 It should be noted that this equation is analogous to the differential equation satisfied by the
time evolution operator in the Hamiltonian formalism with the transformation: P Ñ T, sÑ t, and
Hint
I ptq Ñ ´A´µ pxpsqq.
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Then, Eq.(2.26) along with the unitarity condition WnW
:
n “ 1, gives piD´n q

´1 “

W :
npP̄q´1Wn which allows us to rewrite the Lagrangian for the SCET quark field in

Eq.(2.17):

Lnξ “ ξ̄n

ˆ

iD` ´ i {Dn,KW
:
n

1

P̄Wn {Dn,K

˙

γ´

2
ξn. (2.27)

2.4 Gauge Invariance and operators in SCET

Gauge transformations in SCET are defined in a similar way as in QCD and other

non-Abelian gauge theories. Since we now have two distinct gauge fields, the collinear

and ultra-soft gluons, a gauge transformation on those fields should respect their

scaling, i.e., collinear gluons remain collinear after the transformation (and the same

holds for soft gluons). We can achive that by separating collinear and soft gauge

transformation such that BµUn{s „ pµn{sUn{s where Un{s is the gauge transformation

and pµn{s the corresponding momentum scaling. Additionally, the soft gluons due to

their large wavelength are seen as a background field from the collinear radiation.

Therefore the collinear gauge transformations do not change the soft gluon fields and

the soft gauge transformation is directly analogous to the traditional QCD gauge

transformation.

In Table 2.1 the soft covariant derivative is given by

iDµ
s “

nµ

2
P̄µ ` PµK ` i

n̄µ

2

`

B
`
´ igA`s pxq

˘

. (2.28)

For the collinear gauge transformations of the corresponding Wilson lines in the last

entry of Table 2.1 we used the fact that under gauge transformations the Wilson

line transforms as W px, yq Ñ UpxqW px, yqU :pyq and since in the particular case

y Ñ ´8, by convention Up´8q “ 1, so Wn only tranforms on the left. The soft

gauge transformation is a direct result of applying the gluon field transformation to

Wilson lines in Eq.(2.25).
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Table 2.1: The collinear and soft gauge transformations of the SCET fields

SCET fields Collinear Gauge Trnas. Soft Gauge Trans.

ξnpxq Unpxqξnpxq Uspxqξnpxq

Aµnpxq UnpxqpA
µ
npxq ` i{gD

µ
s qU

:
npxq UspxqA

µ
npxqU

:
s pxq

Aµs pxq Aµs pxq UspxqpA
µ
s pxq ` i{gB

µqU :s pxq

Wnpxq UnpxqWnpxq UspxqWnpxqU
:
s pxq

We note that the combination pξ̄n1Wn1qγ
µpW :

n2
ξn2q is gauge invariant in contrast

to ξ̄n1γ
µξn2 which at leading order matches onto the dijet QCD current JµQCD “ ψ̄γµψ.

Indeed higher order matching reveals that the complete set of SCET operators needed

to match onto the QCD current are given in the gauge invariant combination. Also

we note that the combination χn ” Wnξn is independently gauge invariant. For

this reason we use the fields χn as one of the fundamental building blocks for gauge

invariant operators in SCET. For the example of dijet events, the QCD current is

matched onto JµSCET “ χ̄n1γ
µχn2 and the operator χn is also known as the quark jet

field. Using similar gauge invariance arguments and polarization considerations we

derive the gluon jet field

BKn “
1

g
W :
npPK ` AKn qWn. (2.29)

It should be noted that we can constrain the SCET Lagrangian using gauge in-

variance and dimensionality constraints. Although, an additional operator that is

not present in the Lagrangian derived in Eq.( 2.27) is also allowed by gauge invari-

ance, it can be shown that this term can be eliminated using an additional symmetry

of SCET, namely, reparameterization invariance (RPI) [64]. RPI is the remaining

Lorentz invariance of the full QCD and describes the freedom we have in the choice

of the collinear directions n and n̄ such that collinear radiation has the same scaling.
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2.5 Factorization in SCET

SCET is a powerful tool for the study of jet cross sections where we usually con-

sider only collinear and ultra-soft (or soft) final state radiation. This is usually done

through factorization theorems that are proven within the framework of SCET and

hold up to Opλq corrections. A typical factorization theorem involves the hard func-

tion, that describes the hard interaction of energetic partons, the soft function, which

encapsulates all the interjet cross-talk and the soft out of jet radiation, and the jet

function which includes the collinear radiation within a jet. Usually those terms are

universal, meaning that can be used in a variety of processes.

The proof of any factorization theorem in SCET initiates with the BPS field

redefinition that allows us to decouple, at the level of the Lagrangian, collinear and

soft modes. It should be mentioned that the the BPS redefinition decouples soft

and collinear modes only at the leading order part of the Lagrangian that we are

considering here. Higher order operators in the Lagrangian involve interactions that

couple these modes but since in the work presented here we always consider λ ! 1,

we may ignore such contributions. Necessary for the BPS field redefinition is the

definition of the soft Wilson line in the adjoint representation which is defined as

Ynpxq “ P exp

ˆ

ig

ż 0

´8

A`s px` nsq

˙

. (2.30)

Similar to the collinear Wilson line, Wnpxq, the soft Wilson lines satisfy relations

analogous to those in Eqs.(2.24) and (2.26), specifically:

iD`s Yn “ 0, YnY
:
n “ 1, and Y :n iD

`
s rYnOs “ iB`O, (2.31)

here D`s is ` component of the soft covariant derivative defined in Eq.(2.28). Also

since the soft Wilson line involves the soft gluon field that does not have any label

momenta it commutes with the label momentum operator (rYn,Pµs “ 0). In terms
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of Ynpxq the BPS field definition is defined as

ξnpxq “ Ynpxqξ
p0q
n pxq, Aµnpxq “ YnpxqA

µp0q
n pxqY :n pxq, (2.32)

which from Eq.(2.25) implies

Wnpxq “ YnpxqW
p0q
n pxqY :n pxq. (2.33)

Applying this transformations in the Lagrangian Lp0qnξ and using the properties of the

soft Wilson lines from Eq.(2.31) we find

Lnξ “ ξ̄p0qn

ˆ

iB` ` gAnpxq
p0q
´ i {D

p0q
n,KW

:p0q
n

1

P̄W
p0q
n
{D
p0q
n,K

˙

γ´

2
ξp0qn . (2.34)

where iD
p0q
nK “ PK` gA

p0q
nKpxq. We note that the only fields appearing in the resulting

Lagrangian are ξ
p0q
n pxq and A

µp0q
n pxq, meaning the soft gluons are decoupled from the

collinear fields at the level of the Lagrangian. It should be mentioned that using the

BPS transformed fields as the fundamental fields, when performing calculations in

perturbation theory, requires the transformation of the fields in SCET currents as

well. For example in the case of the bilinear operator

JSCET “ χ̄n1γ
µχn2 ÝÑ

BPS
χ̄p0qn1

Y :n1
γµYn2χ

p0q
n2
. (2.35)

It is instructive to perform a schematic factorization of a generic process where

some jet observable, denoted τ is measured. The differential cross section for this

process is

dσ

dτ
„

ÿ

Xfin

ż

dΠXfin |xXfin|OQCD|0y|2 δpτ ´ τXfinq . (2.36)

We start with the matching procedure from QCD onto SCET.

OQCD “ CtiuOtiuSCET , (2.37)

34



where summation over the set of indices tiu is implied. The Wilson matching co-

efficients Ci are evaluated in perturbation theory by demanding that both sides of

the above equation give the same results for specific matrix elements. Applying this

relation to the differential cross section we have

dσ

dτ
„ CtiuC:tju

ÿ

Xfin

ż

dΠXfin x0|O
tiu
SCET |XfinyxXfin|Otju:SCET |0y δpτ ´ τXfinq. (2.38)

Next we use the fact that soft and collinear modes are decoupled at the level of the

Lagrangian, after performing the BPS field redefinition. This allow as to factorize

the final Hilbert state to soft and collinear final states |Xfiny Ñ |Xsy|Xny. Also

the contribution to the observable τ is separated into the contribution from the soft

radiation and the collinear radiation inside the jet. Depending on the observable, the

contribution from the soft modes may be neglected. For example, if the contribution

from a jet constituent k to the observable scales as τk „ p`k then both soft and

collinear radiation should be included since p`coll „ p`soft „ λ2. On the other hand,

if τk „ p´k then from power counting, only the collinear radiation is contributing to

the observable. The SCET operator is next separated into collinear and soft fields

such that OSCET “ OnOs:

dσ

dτ
„ CtiuC:tju

ÿ

Xn

ż

dΠXn x0|Otiun |XnyxXn|Otju:n |0y

ˆ
ÿ

Xs

ż

dΠXs x0|Otius |XsyxXs|Otju:s |0y δpτ ´ τXs ´ τXnq. (2.39)

To continue with the factorization theorem we introduce the measurement op-

erator τ̂ defined such that when acting on a state in the Hilbert space, τ̂ returns

the value of the observable that corresponds to that state (i.e. τ̂ |Xy “ τX |Xy).

The measurement operator can be defined through the use of the energy-momentum
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tensor but the exact definition depends on the observable.

dσ

dτ
„ CtiuC:tju

ż

dτsdτn
ÿ

Xn

ż

dΠXn x0|Otiun δpτn ´ τ̂q|XnyxXn|Otju:n |0y

ˆ
ÿ

Xs

ż

dΠXs x0|Otius δpτs ´ τ̂q|XsyxXs|Otju:s |0y δpτ ´ τs ´ τnq. (2.40)

We complete the factorization with the definition of the jet, soft and hard functions

JpτnqIti,ju ”
ÿ

Xn

ż

dΠXn x0|Otiun δpτn ´ τ̂q|XnyxXn|Otju:n |0y , (2.41)

Sti,jupτsq ”
ÿ

Xs

ż

dΠXs x0|Otius δpτs ´ τ̂q|XsyxXs|Otju:n |0y , (2.42)

Hti,ju ” CtiuC:tjuIti,ju , (2.43)

where Iti,ju contains all the spinor and color structure of the collinear sector that

usually factorizes from the observable dependent term. Finally the result for the

factorized cross section is

dσ

dτ
„ Hti,ju

ż

dτ 1Sti,jupτ
1
qJpτ ´ τ 1q “ Hti,juSti,ju b J . (2.44)

Eq.(2.44) is the major result of this chapter. It demonstrates how for processes

described by SCET one may perform a factorization of the cross section into collinear,

soft and hard sector. The advantage of this approach is that allows us to evaluate

each term separately and establish renormalization group equations for each term

that we can use in order to resum large logarithmic enhancements to all orders in

perturbation theory.

In multijet events the collinear part from Eq.(2.41) is further factorized in mul-

tiple jet functions since the various collinear sectors in the SCET Lagrangian are

decoupled. Ref. [65] establishes an elegant formalism for developing factorization
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theorems for n´jet cross sections in e`e´ annihilation with multiple collinear sectors

when those sectors are widely separated. Examples and applications for cases with

up to four collinear functions will be discussed in the following chapters.
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3

Analytic and Monte Carlo Studies of Jets with
Heavy Mesons and Quarkonia

3.1 Outline

In this chapter we calculate cross sections for e`e´ to jets, where one of the jets con-

tains a hadron with either open or hidden heavy flavor. In particular, we will derive

factorization theorems and perform analytical Next-to-Leading-Log prime (NLL’)

resummation1 for these cross sections using renormalization group (RG) techniques.

We will also compare our results with monte carlo simulations of the same cross

sections.

Recently, there has been considerable interest in cross sections of this type [55,67–

75]. Ref. [55] demonstrated that the cross section for producing a jet with an identi-

fied hadron can be determined using a distribution function called the fragmenting

jet function (FJF). FJFs are in turn related to the more commonly studied fragmen-

tation functions (FFs) by a matching calculation at the jet energy scale. This implies

that cross sections for jets with an identified hadron provide a new arena to mea-

1 NLL’ includes NLL resummation for each function in the factorization theorem, where all func-
tions are computed to NLO [66].
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sure FFs, which are more commonly extracted from the semi-inclusive cross section

e`e´ Ñ H`X. Especially important is that this provides an opportunity to extract

gluon FFs [74, 75], since quark FFs are more readily studied in e`e´ Ñ H `X. In

addition, it was recently shown in Ref. [73] that since the FFs for quarkonia produc-

tion can be calculated in the Non-Relativistic Quantum Chromodynamics (NRQCD)

factorization formalism [49], FJFs can be used to make novel tests of quarkonium

production theory.

Part of section 3.2 and sections 3.3-3.5 of this chapter appeared first in Ref. [56]

and section 3.6 is taken from Ref. [76].

3.2 Definition of fragmenting jet functions

The FJF was first introduced in Ref. [55] however here we give an alternative deriva-

tion constructed from measured jet functions for generic jet observable τ . It is shown

in Ref. [65] that the cross-section for the production of two jets in electron-positron

annihilation can be written as,

dσ

dτ
“ dσp0qH2pµq ˆ SΛpµq ˆ J

q̄
n̄pω, µq ˆ Smeaspτ, µq b J

q
npτ, ω, µq , (3.1)

where dσp0q is the Born cross section, H2pµq is the hard function resulting from

matching a 2-jet operator in full QCD onto the corresponding SCET operators,

SΛpµq is the soft function describes the cross-talk between the jets and the soft out-

of-jet radiation is constrained via Eout ă Λ. The measured soft and jet functions

Smeaspτ, µq and Jnpτ, ω, µq respectively describe the contribution from the soft and

collinear radiation to the jet observable τ , and Jnpω, µq is an unmeasured jet function

that describes collinear radiation within a jet in the n̂ direction that has energy
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EJ “ ω{2 (here ω “ Ecm). The measured jet function is defined in SCET as

Jqnpτq “

ż

dk`

2π

ż

d4x exppik`x´{2q
1

NC

Tr

„

{̄n

2
x0|δω,P δ0,PKχnpxqδpτ ´ τ̂qχ̄np0q|0y



.

(3.2)

where we omitted the jet energy ω and the renormalization scale dependence from the

argument of the jet function for simplicity of notation. To study jets with identified

hadrons, we insert the following expression for the identity

1 “
ÿ

X

|XyxX| “
ÿ

X

ÿ

hPHi

ż

dzd2pKh
2p2πq3

|Xhpz,phKqyxXhpz, p
K
hhq| (3.3)

Jqnpτq “
ÿ

hPHi

ż

dzd2pKh
2p2πq3

ż

dk`

2π

ż

d4x exppik`x´{2q
1

NC

ˆ
ÿ

X

Tr
”

{̄n

2
x0|δω,P δ0,PKχnpxqδpτ ´ τ̂q|Xhpz, p

K
h qyxXhpz, p

K
h q|χ̄np0q|0y

ı

. (3.4)

where h is an identified hadron within the jet. We may rewrite the above equation

in the following form

Jqnpτq “
ÿ

hPHi

ż

z dz

2p2πq3
Gi{hpτ, zq, (3.5)

where

Gi{hpτ, zq ”
1

z

ż

d2pKh

ż

dk`

2π

ż

d4x exppik`x´{2q
1

NC

ˆ
ÿ

X

Tr
”

{̄n

2
x0|δω,P δ0,PKχnpxqδpτ ´ τ̂q|Xhpz, p

K
h qyxXhpz, p

K
h q|χ̄np0q|0y

ı

, (3.6)

is the operator definition of the fragmenting jet function (FJF). Inserting this back

to Eq.(C.1) we have

dσ

dτ
“

ÿ

hPHi

ż

zdz dσp0qH2pµq ˆ SΛpµq ˆ J
q̄
n̄pω, µq ˆ Smeaspτ, µq b

Gq{hpτ, z, µq
2p2πq3

. (3.7)
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which directly implies

dσi{h

dτdz
“ dσp0qH2pµq ˆ SΛpµq ˆ J

q̄
n̄pω, µq ˆ Smeaspτ, µq b

Gq{hpτ, z, µq
2p2πq3

. (3.8)

This suggests a rather powerful rule: a factorization theorem for a jet with an iden-

tified hadron, H, is obtained from the factorization theorem for a jet cross section

by the replacement

Jipτ, µq Ñ
1

2p2πq3
GHi pτ, z, µqdz, (3.9)

where Jipτ, µq is the measured jet function initiated by parton i, and the renormal-

ization scale is µ. The FJF, denoted GHi pτ, z, µq, additionally depends on the fraction

z of the jet energy that is carried by the identified hadron. These functions implicitly

depend on the jet clustering algorithm and cone size R used to define the jets. It is

also possible to define jet functions and FJFs that depend on the total energy of the

jet rather than the invariant mass [70].

For τ “ s, with s the jet invariant mass, FJFs are related to the well-known FFs,

DH
i pz, µq, through operator product expansion by the formulae

GHi ps, z, µq “
ÿ

j

ż 1

z

dz1

z1
Jijps, z1, µqDH

j pz{z
1, µq `O

`

Λ2
QCD{s

˘

, (3.10)

where the coefficients Jijps, z, µq are perturbatively calculable matching coefficients

whose large logs are minimized at the jet scale, s, and are calculated to NLO in

Ref. [68]. For heavy quarks the Jijps, z, µq have been calculated to Opα2
sq in Ref. [72].

From properties of FFs these matching coefficients obey the sum rule

Jips, µq “
1

2p2πq3

ÿ

j

ż 1

0

dzzJijps, z, µq . (3.11)

The properties of FJFs were further studied in Refs. [67–71]. These papers fo-

cused on the FJFs for light hadrons such as pions. FJFs for particles with a single
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heavy quark were studied in Ref. [72] and FJFs for quarkonia were calculated in

Ref. [73].

One important goal of this work is to generalize FJFs to jets in which the angu-

larity is measured. The angularity, denoted τa, is defined as [77]

τa “
1

ω

ÿ

i

pp`i q
1´a{2

pp´i q
a{2 , (3.12)

where the sum is over all the particles in the jet, and ω “
ř

i p
´
i is the large light-

like momentum of the jet. The angularity should be viewed as a generalization of

the invariant mass squared of the jet since s “ ω2τ0. We calculate the matching

coefficients appropriate for jets in which the angularity has been measured, denoted

Jijpτa, z, µq, and verify the s Ñ τa generalization of the sum rules in Eq. (3.11) in

Appendix B.

3.3 Fragmenting Jet Functions with Angularities

In this section we extend the calculation of Ref. [68] to FJFs with measured angu-

larities. We will follow the terminology of Ref. [65], in which a jet whose angularity

is measured is referred to as a “measured” jet, while a jet for whom only the total

energy is measured but the angularity is not is called an “unmeasured” jet. Here we

consider the case of two particles as this is the most that will appear in a one-loop

calculation. In Ref. [68] the measurement operator in the definition of FJFs forces

the mass squared of the jet to be s. The measurement operator takes the form

δpωpk` ´ l` ´ p`qq “ δps´ ωpl` ` p`qq, (3.13)

where kµ is the parent parton’s momentum and lµ and pµ are the momenta of the

partons carrying large lightcone components l´ “ p1 ´ zqk´ and p´ “ zk´ of the

parent’s momentum, respectively. The operator definition of the FJF with measured
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angularities is given by Eq.(3.6) where at Opαsq the operator τ̂a takes the form (cf.

Eq. (3.12))

δpτa ´ ppl
`
q
1´a{2

pl´qa{2 ´ pp`q1´a{2pp´qa{2q{ωq . (3.14)

Other than replacing Eq. (3.13) with Eq. (3.14), the integrals of all diagrams are the

same as in Ref. [68]. However, rather than using the δ-regulator and a gluon mass,

we will use pure dimensional regularization to regulate all divergences. In this limit,

it is possible to show that the one-loop evaluation of the FF yields

DiÑjpzq “ δijδp1´ zq ` Tij
αs
2π
Pijpzq

ˆ

1

εUV
´

1

εIR

˙

, (3.15)

where Tij are the color structures, Tqq “ CF , Tgg “ CA, Tqg “ CF , Tgq “ TR.

Additionally, we have verified that the same 1{εIR poles appear in the calculation

of FJFs and appropriately cancel in the matching between the FJFs and FFs for all

values of a ă 1. This justifies the formula

Ghi pτa, z, µq “
ÿ

j

ż 1

z

dx

x
Jijpτa, x, µqDjÑh

´z

x
, µ
¯

, (3.16)

which is the analog of Eq. (3.9) for FJFs that depend on the angularities.

Since the matching coefficients Jijpτa, z, µq are free of IR divergences, we can

simplify the matching calculation by using pure dimensional regularization, setting

all scaleless integrals to zero and interpreting all 1{ε poles as UV. A detailed calcu-

lation of the renormalized finite terms of Jijpτa, z, µq can be found in Appendix B,

the results of which are shown below. We parametrize the matching coefficients

Jijpτa, z, µq as

Jijpτa, z, µq
2p2πq3

“ δijδp1´ zqδpτaq

` Tij
αs
2π

”

cij0 pz, µqδpτaq ` c
ij
1 pz, µq

ˆ

1

τa

˙

`

` c2δijδp1´ zq

ˆ

ln τa
τa

˙

`

ı

,

(3.17)
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where

cij0 pz, µq “
1´ a{2

1´ a
δijδp1´ zq

”

ln2 µ
2

ω2
´
π2

6

ı

` cijpzq

´ P̄ji

«

ln
µ2

ω2
`

1

1´ a{2
ln

˜

1`

ˆ

1´ z

z

˙1´a
¸

` pδij ´ 1q
1´ a

1´ a{2
lnp1´ zq

ff

,

cij1 pz, µq “ ´
2

1´ a
δijδp1´ zq ln

µ2

ω2
`

1´ a

1´ a{2
P̄ij ,

c2 “
2

p1´ aqp1´ a{2q
, (3.18)

with

cqqpzq “ 1´ z `
1´ a

1´ a{2
p1` z2

q

ˆ

lnp1´ zq

1´ z

˙

`

,

cggpzq “
1´ a

1´ a{2

2p1´ z ` z2q2

z

ˆ

lnp1´ zq

1´ z

˙

`

,

cqgpzq “ z ,

cgqpzq “ 2zp1´ zq , (3.19)

and where the P̄ij are the splitting functions of Ref. [68] except for the case i “ j “ q,

P̄qq “ Pqq ´
3

2
δp1´ zq “

1` z2

p1´ zq`
,

P̄gg “ Pgg “ 2
p1´ x` x2q2

xp1´ xq`
,

P̄qg “ Pqg “ x2
` p1´ xq2 ,

P̄gq “ Pgq “
1` p1´ xq2

x
.

(3.20)

Notice that our results for the matching coefficients Jijpτa, z, µq are independent of

the jet algorithm and the jet size parameter R. To include modifications of the

Jijpτa, z, µq that come from these effects, one would have to multiply the measure-

ment operator in Eq. (3.14) by an additional Θ-function that imposes the phase
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space constraints required by the jet algorithm. However, for jets with measured

angularities, it was shown in Ref. [65] that jet-algorithm dependent terms for cone

and kT -type algorithms are suppressed by powers of τa{R
2. Inuitively, this is because

as τa Ñ 0 all the particles in the jet lie along the jet axis so the result must be insen-

sitive to which algorithm is used and to the value of R in this limit. For the values

of τa and R considered here, τa{R
2 is negligible and we will drop these corrections.

As a non-trivial check of our results we show in Appendix B that our Jijpτa, z, µq

satisfy the following identities and sum rules,

lim
aÑ0
Jijpτa, z, µq “ ω2Jijps, z, µq , (3.21)

and

Jipτa, µq “
1

2p2πq3

ÿ

j

ż 1

0

dz z Jijpτa, z, µq , (3.22)

where Jijps, z, µq are the matching coefficients for measured jet invariant mass found

in Ref. [68] and Jipτa, µq are the jet functions for measured jets that can be found in

Ref. [65].

3.4 e`e´ Ñ 2 Jets with a B Meson

In this section we present an analytic calculation of the cross section for e`e´ to two

b jets in which the B meson is identified in a measured jet. Following the analysis of

Ref. [65], the factorization theorem for the cross section for one measured b jet and

one unmeasured b̄ jet is

1

σ0

dσ

dτa
“ H2pµq ˆ S

unmeas
pµq ˆ J

pb̄q
n̄ pµq ˆ

”

Smeas
pτa, µq b J

pbq
n pτa, µq

ı

, (3.23)

where H2pµq is the hard function, Sunmeaspµq and Smeaspτa, µq are the unmeasured and

measured soft functions, J
pb̄q
n̄ pµq is the unmeasured jet function containing the b̄ quark

45



and J
pbq
n pτa, µq is the measured jet function containing the b quark. These describe

the short-distance process, surrounding soft radiation, and radiation collinear to

unmeasured and measured jets, respectively. At NLO the τa-independent functions

are given by

H2pµq “ 1´
αspµqCF

2π

„

8´
7π2

6
` ln2 µ

2

ω2
` 3 ln

µ2

ω2



,

Sunmeas
pµq “ 1`

αspµqCF
2π

„

ln2 µ2

4Λ2
´ ln2 µ2

4Λ2r2
´
π2

3



,

J
pb̄q
n̄ pµq “ 1`

αspµqCF
2π

Jqalgpµq,

(3.24)

where Λ is a veto on out-of-jet energy, r “ tan pR{2q and Jqalgpµq is a function that

depends on the algorithm used (and we will use the cone algorithm below) and

is given in Eq. (A.18) of Ref. [65]. We note that unlike measured jets, algorithm

dependent contributions to the unmeasured jet are not power suppressed. We also

note that, beginning at Opα2q, non-global logarithms of the ratio Qτa{p2Λr2q begin

to appear in the cross-section [5]. For the values of the parameters we consider, these

ratios are such that we can treat these logarithms as Op1q and thus these would enter

as fixed order corrections needed at NNLL’ accuracy, which is beyond the scope of

this work.

We suppress the dependence of all these functions on scales other than the renor-

malization scale µ. Measured functions are convolved according to

fpτq b gpτq “

ż

dτ 1 fpτ ´ τ 1qgpτ 1q. (3.25)

To calculate the differential cross section for a measured jet with an identified B

hadron, we apply the analogous replacement rule in Eq. (3.9) to Eq. (3.23) and use
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the expression for the FJF in Eq. (3.16) to obtain

1

σ0

dσpbq

dτadz
“ H2pµq ˆ S

unmeas
pµq ˆ J

pb̄q
n̄ pµq

ˆ
ÿ

j

”´

Smeas
pτa, µq b

J pbqbj pτa, z, µq

2p2πq3

¯

‚DjÑBpzq
ı

, (3.26)

where

Gpzq ‚ F pzq “ F pzq ‚Gpzq ”

ż 1

z

dx

x
F pxqG

´z

x

¯

. (3.27)

To obtain an NLL’ resummed formula for the cross section, we evaluate each function

in the factorization theorem in Eq. (3.26) at its “characteristic” scale (where poten-

tially large logarithms are minimized) and, using renormalization group techniques,

evolve each function to a common scale, µ, which we will choose to be equal to the

hard scale. The details of this evolution are discussed in Appendix A.

The convolutions in Eq. (3.26) must be performed over angularity over Smeas, Jij,

and factors arising from RG equations. Since such RG factors are distributions (δ or

plus-distributions) in the angularity our final answer is written in terms of distribu-

tions that can be computed analytically using Eqs. (A.21-A.22). Upon performing

convolutions and resummation to NLL’ accuracy we find for the cross section

dσpτa, zq ”
1

σ0

dσpbq

dτadz
“ H2pµHq ˆ S

unmeas
pµΛq ˆ J

pb̄q
n̄ pµJn̄qˆ (3.28)

ˆ
ÿ

j

#

ˆ

Θpτaq

τ 1`Ω
a

˙

”

δbjδp1´ zq p1` fSpτa, µSmeasqq ` f bjJ pτa, z, µJnq
ı

‚
DjÑBpz, µJnq

2p2πq3

ˆ Πpµ, µH , µΛ, µJn̄ , µJn , µSmeasq

+

`

,

where the ‘`’ distribution is defined in Eq. (A.18) (and acts on all τa-dependent

quantities, including any implicit dependencies arising from the choice of scales µF )
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and ΩpµJn , µSmeasq “ ωJnpµ, µJnq ` ωSmeaspµ,µSmeasq, the functions ωJn and ωSmeas are

given in Appendix A, the function fS is given by [65]

fSpτ, µq “ ´
αspµqCF

π

1

1´ a

$

&

%

«

ln
µ tan1´a R

2

ωτ
`Hp´1´ Ωq

ff2

`
π2

6
´ ψp1qp´Ωq

,

.

-

,

(3.29)

and f ijJ are written in terms of the coefficients cij0 , cij1 and c2 presented in Eq. (3.18)

as

f ijJ pτ, z, µq “ Tij
αspµq

2π

˜

cij0 pz, µq ` c
ij
1 pz, µq

´

ln τ ´Hp´1´ Ωq
¯

` c2δijδp1´ zq
´

pln τ ´Hp´1´ Ωqq2 ` π2{6´ ψp1qp´Ωq

2

¯

¸

.

(3.30)

The evolution kernel Π is given in terms of KF pµ, µ0q and ωF pµ, µ0q (cf. Appendix A),

Πpµ, µH , µΛ, µJn̄ , µJn , µSmeasq “
ź

F“H,Jn̄,Sunmeas

eKF pµ,µF q
ˆ

µF
mF

˙ωF pµ,µF q

(3.31)

ˆ
1

Γp´ΩpµJn , µSmeasqq
ˆ

ź

F“Jn,Smeas

epKF pµ,µF q`γEωF pµ,µF qq
ˆ

µF
mF

˙jFωF pµ,µiq

,

where µF , mF and jF are given in Table 4.1. Because they involve FFs (cf. Ap-

pendix B), the z convolutions must be evaluated numerically. For the fragmentation

of the b quark we use a two-parameter power model FF introduced in Ref. [78], in

which DbÑBpz, µ “ mb “ 4.5 GeVq is proportional to zαp1 ´ zqβ. Values for the

parameters α “ 16.87 and β “ 2.628 with χ2
d.o.f. “ 1.495 were determined using a

fit to LEP data in Ref. [79] for the inclusive process e`e´ Ñ B `X. Errors in these

parameters were not quoted in Ref. [79], so we cannot quantify errors associated

with the extracted FF in our calculation. Additionally, we neglect the contribution

from the fragmentation of other partons for our e`e´ collider studies as in Ref. [79].
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Figure 3.1: The z distributions for dσpτ0, zq at τ0 “ p1.5, 2.0, 2.5q ˆ 10´3 for
analytic calculations with theoretical uncertainty are shown in green. Monte carlo
simulations using Madgraph ` PYTHIA and Madgraph ` Herwig are shown in black
and red, respectively.

In proton-proton collisions at the LHC, gluon FJFs must also be included since the

dijet channel gg Ñ gg gives a significant contribution to the production of jets with

heavy flavor [75]. For the evolution of the FF up to the jet scale we solve the DGLAP

equation using an inverse Mellin transformation as done in Ref. [73].

Fig. 3.1 shows the z distributions from dσpτ0, zq for τ0 “ p1.5, 2.0, 2.5q ˆ 10´3 of

our analytic NLL’ calculation (green) and monte-carlo simulations using Madgraph

` PYTHIA (black) and Madgraph ` HERWIG (red). For each monte carlo and for

each NLL’ calculation, the graphs are independently normalized to unit area. For

plots with fixed τa we use a z-bin of ˘ 0.1 and for plots with fixed z we use a τa bin

of size ˘ 2ˆ10´4. Jets are reconstructed in PYTHIA using the Seedless-Infared-Safe

Cone (SISCONE) algorithm in the FastJets package [80] with R “ 0.6, which will be
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Figure 3.2: Analytic results for the z distributions of dσpτ0, zq at τ0 “

p1.5, 2.0, 2.5q ˆ 10´3. The orange curve is calculated with a measured jet scale
that does not depend on z whereas the green curve uses a scale that does depend on
z (as in Fig. 3.1).

used throughout this work. We produced simulated dijet events at Ecm “ 250 GeV

in which each jet has an energy of at least pEcm ´ Λq{2 where Λ “ 30 GeV.2 The

central green line corresponds to the NLL’ calculation with the various functions in

the factorization theorem evaluated at their characteristic values shown in Table 4.1,

and the green band corresponds to the estimate of theoretical uncertainty obtained by

varying the scales of the unmeasured functions by ˘50%, and using profile functions

[58, 81, 82] to estimate the uncertainty of the measured functions. Profile functions

allow us to introduce an angularity dependent scale variation that freezes at the

characteristic scale for high values of τa where the factorization theorem breaks down

2 This is different than simply placing a cut Λ on energy outside the jets (which is what is assumed
in our analytical results), but this difference only appears at Opα2

sq in the soft function, which is
higher order than we work here.
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and at a fixed scale for small values of τa where we reach the non-perturbative regime.

This method for estimating theoretical uncertainties is used throughout this work.

Additional details on the profile functions we use can be found in Appendix A.

Table 3.1: Characteristic scales of the different functions in the factorization theorem
of Eq. (3.23).

Function pF q H2 J b̄n̄ Sunmeas J pτ, zq Smeaspτq

Scale pµF q Ecm ωn̄r 2Λr1{2 ωnτ
1{p2´aqp1´ zqp1´aq{p2´aq ωnτ{r

1´a

mF ω wn̄r 2Λr1{2 ωn ωn{r
1´a

jF 1 1 1 2´ a 1

The orange curves in Fig. 3.2 show the differential cross section as a function of

z for fixed τ0 where µJpτq “ µJpτ, z “ 0q “ ωτ 1{p2´aq is chosen as the characteristic

scale of the measured jet function, and the error band is obtained the same way as

for Fig. 3.1. As in Fig. 3.1, the green curves show the cross section for a measured jet

scale µJpτ, zq “ ωτ 1{p2´aqp1´zqp1´aq{p2´aq. The reorganization of logarithms of p1´zq

shown in Eq. (A.26) suggests that we can improve the accuracy of our calculations

for z Ñ 1 by choosing the characteristic value of the measured jet scale to be µJpτ, zq.

This improvement is clearly seen in Fig. 3.2 which shows the scale variation for the

choices µJpτq and µJpτ, zq, the latter choice gives smaller scale variation near the

peak in the z distribution.

In Fig. 3.3 we present the results for the τ0 distributions of the differential cross

section dσpτa, zq for z “ 0.4, 0.6, and 0.8. The color and normalization schemes

match those in Fig. 3.1. We see that for higher values of z the distributions of τ0 are

shifted towards smaller values. This is expected since the majority of the energy of

the jet is carried by the B meson which results in narrower jets. Figs. 3.1 and 3.3 show

that our results are consistent within the monte carlo uncertainty that is suggested by
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Figure 3.3: Angularity distributions of dσpτa, zq for a “ 0 at z “ 0.4, 0.6, 0.8.
Analytic results are shown as green bands. Monte carlo results are shown as black
lines for Madgraph ` PYTHIA and red lines for Madgraph ` HERWIG.

the difference between PYTHIA and HERWIG predictions. This gives us confidence

that the FJF formalism combined with NLL’ resummation can be used to correctly

calculate both the substructure and the identified hadron’s energy fraction within a

jet.

3.5 e`e´ Ñ 3 Jets with the Gluon Jet Fragmenting to J{ψ

We can also use the FJF formalism to calculate the cross section for e`e´ Ñ 3

jets with a J{ψ. As we expect gluon fragmentation to be the dominant production

channel at the LHC, we focus on the case where J{ψ is found within a gluon jet.

In addition, we assume that the angularity of this jet is also measured. To obtain

a physical observable, one must also include contributions from all jets fragmenting

to J{ψ, however, we expect the contribution from quark jets to be smaller. It is
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theoretically possible to isolate the J{ψ coming from gluon jets in experiments by

b-tagging the other two jets in the event, so we will focus on the process e`e´ Ñ bb̄g

followed by gluon fragmentation to J{ψ.

The analytic expression for this cross section is

1

σ0

dσpgq

dτadz
“ H3pµHq ˆ S

unmeas
pµΛq ˆ J

pb̄q
n1
pµJn1

q ˆ J pbqn2
pµJn2

q

ˆ
ÿ

i

#

ˆ

Θpτaq

τ 1`Ω
a

˙

”

δgiδp1´ zqp1` fSpτa, µSmeasqq ` f giJ pτa, z, µJn3
q

ı

‚
DiÑJ{ψpz, µJn3

q

2p2πq3

ˆ Πpµ, µH , µΛ, µJn1
, µJn2

, µJn3
, µSmeasq

+

`

, (3.32)

where Ω ” ΩpµJn3
, µSmeasq “ ωJnpµ, µJn3

q`ωSmeaspµ,µSmeasq, the b-quark initiated jets

J
pbq
n1 and J

pb̄q
n2 are unmeasured, the expression for fS is the same as Eq. (5.79) with CF

replaced by CA, and our expressions for f ijJ are given in terms of the coefficients cij0 ,

cij1 and c2 given in Eq. (3.18). Here σ0 is the LO cross section for e`e´ Ñ bb̄g. We will

focus on the Mercedes Benz configuration in which all three jets have (approximately)

the same energy, and consider jets with energies large enough that the mass of b-quark

can be neglected. Here, H3pµq is 1 ` Opαsq where the Opαsq comes from the NLO

virtual corrections to e`e´ Ñ bb̄g. We do not include this correction. The primary

effect of its omission will be on the normalization of the cross section, which is not

important for our discussion of the distributions we show below, and to increase the

scale uncertainty associated with varying µH ; however this is not a very important

source of uncertainty in our calculations.

While the calculation for B mesons requires a phenomenological FF, the FFs for

J{ψ production can be calculated in NRQCD [49]. Refs. [83–86] showed that a J{ψ

FF can be calculated in terms of analytically calculable functions of αsp2mcq and z

multiplied by nonperturbative NRQCD long-distance matrix-elements (LDMEs). As
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discussed in Chapter 1 for J{ψ production, the most important gluon fragmentation

mechanisms are the color-singlet mechanism, in which the cc̄ is produced perturba-

tively in a 3S
p1q
1 state, and the color-octet mechanisms, in which the cc̄ is produced

perturbatively in a 1S
p8q
0 , 3S

p8q
1 , or 3P

p8q
J state. Here 2S`1L

p1,8q
J refers to the angular

momentum and color quantum numbers of the cc̄. The numerical values for the cor-

responding LDMEs are taken to be the central values from the global fits performed

in Refs. [2, 3], and are shown in Table 1.2.

The color-singlet LDME scales as v3, where v is the typical relative velocity of

the cc̄ in the J{ψ, while the color-octet LDMEs scale as v7 [49]. This v4 suppression

is clearly seen in the numerical values of the LDMEs in Table 1.2. In the calculation

of the gluon FF, this v suppression is compensated by powers of αs since the leading

color-octet contributions are Opα2
sq in the 1S

p8q
0 and 3P

p8q
J channels and Opαsq in

the 3S
p8q
1 channel, while the color-singlet contribution is Opα3

sq. In this work we

focus on the gluon FJF, GJ{ψg , and separately compute each of the four NRQCD

contributions to GJ{ψg . To calculate GJ{ψg , we evolve each FF from the scale µ “ 2mc

to the characteristic scale of the measured jet µJn3
pτaq “ ωτ

1{p2´aq
a using the DGLAP

evolution equations. For most values of z considered in this section, we do not

expect that using a z dependent scale will result in significant improvement in the

scale variation. In addition, using a z dependent scale in the 3P
p8q
J channel yields

unphysical results, such as negative values for the FF. After evolution, we perform

the convolution rD ‚ fJ s pzq in z with the matching coefficients derived in Section 3.4.

Before discussing the comparison of our results with monte carlo, we briefly re-

view how the Madgraph ` PYTHIA monte carlo handles color-singlet and color-octet

quarkonium production. We produce quarkonia states in Madgraph from the follow-

ing processes: e`e´ Ñ bb̄ggcc̄r3S
p1q
1 s, e`e´ Ñ bb̄gcc̄r1S

p8q
0 s, and e`e´ Ñ bb̄cc̄r3S

p8q
1 s.

The quantum numbers 2S`1L
p1,8q
J are for the cc̄ produced in the event. We only in-
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clude diagrams in which the virtual photon couples to the bb̄ so in all cases the cc̄ plus

any additional gluons come from the decay of a virtual gluon. We did not simulate

production in the 3P
p8q
J channel in e`e´ Ñ bb̄g Ñ bb̄cc̄g because IR divergences in

the matrix elements require much longer running times to get the same number of

events. We then perform showering and hadronization on these hard processes using

PYTHIA. Analysis is done using RIVET [87]. During PYTHIA’s showering phase,

color-singlet J{ψ do not radiate gluons. Thus if these J{ψ are produced within a jet,

all surrounding radiation is due to the other colored particles in the event [88, 89].

We require that after showering there are only three jets in the event, two from the

b-quarks and one from a gluon that contains the J{ψ. We simulate three-jet events

at Ecm “ 250 GeV in the Mercedes-Benz configuration by requiring the jets each

have energies Ejet ą pEcm ´ Λq{3 with Λ “ 30 GeV, analagous to what was done in

Sec. 3.4.

For cc̄ produced in a color-octet state PYTHIA allows the color-octet cc̄ to emit

gluons with a splitting function 2Pqqpzq. Since Pqqpzq is peaked at z “ 1, the color-

octet cc̄ pair typically retains most of its energy after these emissions. This model

of the production mechanism is very different than the physical process implied by

the NLL’ calculation. In the NLL’ calculation, the FF is calculated at the scale 2mc,

then evolved up to the jet energy scale using Altarelli-Parisi evolution equations.

Since this is a gluon FF, the most important splitting kernel in this evolution is

Pggpzq. We find that the FFs obtained at the jet energy scale are not significantly

changed if we use only this evolution kernel and ignore mixing with quarks. Thus

the production process implied by the NLL’ calculation is that of a highly energetic

gluon produced in the hard process with virtuallity of order the jet energy scale,

which then showers by emitting gluons until one of the gluons with virtuality of

order 2mc hadronizes into the J{ψ. Because Pggpzq is peaked at z “ 0 and z “ 1 the

resulting J{ψ distribution in z is much softer than the model employed by PYTHIA.
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PYTHIA does not allow one to change the actual splitting function, only to modify

the color-factor. Therefore, in order to get a softer z distribution we changed the

coefficient of PYTHIA’s splitting kernel for a gluon radiating off a color-octet cc̄

pair from 2Pqq to CAPqq “ 3Pqq. This results in a slighter softer z distribution than

default PYTHIA, but is still inconsistent with the NLL’ calculation. This change

does not have significant impact on the τa distributions. The τa distributions are

generally in better agreement. The variable τa depends on all of the hadrons in the

jet and is therefore less sensitive to the behavior of the J{ψ, especially when the J{ψ

carries a small fraction of the jet energy. In that case, τa distributions in the NLL’

calculation look similar for all color-octet mechanisms.

In an attempt to see if PYTHIA can be modified to reproduce the z distributions

obtained in our NLL’ calculations, and confirm the physical picture of the NLL’

calculation described above, we generate e`e´ Ñ bb̄g events in Madgraph and allow

PYTHIA to shower but not hadronize the events. If we allow the shower to evolve

to a scale where the typical invariant mass of a gluon is 2mc and then convolve the

gluon distribution with the NRQCD FFs at this scale, we expect that the resulting z

distributions should mimic our NLL’ calculation. The lower cutoff scale in PYTHIA’s

parton shower is set by the parameter TimeShower:pTmin, which is related to the

minimal virtuality of the particles in the shower, and whose default value is 0.4 GeV.

We change this parameter to 1.6 GeV, which corresponds to a virtuality of „ 2mc,

then obtain a z distribution for the gluons by randomly choosing a gluon from the

gluon initiated jet. We then numerically convolve this z distribution with the analytic

expression for the NRQCD FF. This procedure, which we will refer to as Gluon

Fragmentation Improved PYTHIA (GFIP), yields z distributions that are consistent

with our NLL’ result, as we will see below. We tested an analogous procedure for two-

jet events with B mesons by showering e`e´ Ñ bb̄ with PYTHIA with hadronization

turned off. We then convolved the resulting b quark distribution with the b-quark FF
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Figure 3.4: Angularity distributions of dσpτa, zq for a “ 0 at z “ 0, 1, 0.3, 0.5, 0.7.

Analytic calculations are shown as red (green) bands for the 3S
p8q
1 (1S

p8q
0 ) production

mechanisms. Results from Madgraph ` PYTHIA are shown as red (green) dashed
lines for the same mechanisms.

at the scale 2mb, and found results for B mesons that are consistent with our NLL’

calculations. Note that PYTHIA treats the radiation coming from the octet cc̄ pair

the same regardless of the angular momentum quantum numbers. In contrast, GFIP

like the NLL’ calculation gives different results for all three channels by applying

different FFs at the end of the parton shower phase. Also GFIP can be applied to all

four NRQCD production mechanisms, since convergence issues for the 3P
p8q
J channels

are absent.

Fig. 3.4 shows our NLL’ calculation and Madgraph ` PYTHIA results for the

distribution of τ0 for various fixed values of z for the 3S
p8q
1 (red) and 1S

p8q
0 (green)

channels. We see fairly good agreement between analytic and Monte Carlo results

in the peak regions for smaller values of z and notice some qualitative differences
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Figure 3.5: Angularity distributions of dσpτa, zq for a “ `1{2, 0, ´1{2, ´1 at

z “ 0.5. Analytic calculations are shown as red (green) solid lines for the 3S
p8q
1

(1S
p8q
0 ) production mechanisms. Results from Madgraph ` PYTHIA are shown as

red (green) dashed lines for the same mechanisms.

in the tail regions, especially for the 1S
p8q
0 channel. At higher values of z where the

number of final state particles is small, differences in the τ0 distributions could be

attributed to the increasing influence of Pythia’s unrealistic model of quarkonium

production. As z Ñ 0, we also see similar τ0 dependence for the two color-octet

channels in our analytic results. This suggests that in the small z region, the jet

substructure is independent of the production mechanism. Thus, attempts to use

angularity distributions to extract the various LDMEs should focus on the range

0.3 ă z ă 0.7.

In Fig. 3.5, we show the angularity distributions (without uncertainties) for the

1S
p8q
0 and 3S

p8q
1 mechanisms for a “ `1{2, 0, ´1{2, ´1. These are computed an-

alytically and using monte carlo and we again see reasonable agreement. As a is
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Figure 3.6: z distributions of dσpτa, zq for NLL’ analytic calculations (bands),
PYTHIA (dashed lines), and GFIP (solid lines) for fixed values of τ0 “ p4, 5, 6q ˆ
10´3.

decreased, we see less discrimination between the two production mechanisms. Thus

extraction of LDMEs should ideally be done with larger values of a, for a ă 1 where

factorization in SCETI holds, with the caveat that there is a trade-off since the

predictability of the analytical results is limited for a too close to 1 since power

corrections grow as 1{p1´ aq [90].

In contrast to the angularity distributions, Fig. 3.6 shows that analytic and monte

carlo calculations of the z distributions using Madgraph ` PYTHIA yield strikingly

different results, with Madgraph+PYTHIA yielding a much harder z-distribution.

59



Fig. 3.6 also shows the z distributions using GFIP. The GFIP modification yields

significantly different results for the z distributions that align more closely with NLL’

calculation. While this is far from a proper modification of PYTHIA, it shows us that

implementing the missing g Ñ J{ψ fragmentation yields encouraging similarities to

our analytical calculations using the FJF formalism with NRQCD FFs. This also

suggests that if monte carlo is modified to properly include NRQCD FFs at the scale

2mc it will yield results that are consistent with FJFs combined with NLL’ resumma-

tion. Correct monte carlo implementation of the NRQCD FFs is important because

the GFIP modification can only be used to calculate the z distribution. There are

many other jet shape observables, such as N -subjettiness or ∆R (where ∆R is the

angle between the J{ψ and the jet axis), that should be able to discriminate between

NRQCD production mechanisms, and many of these are most easily predicted using

monte carlo.

3.6 Semi-analytic calculations for ppÑ jetpJ{ψq `X

In this section we perform the corresponding calculation for the LHCb experiment

already discussed in Chapter 1. We do not use a factorization theorem analogous to

Eq. (3.23) for pp collisions, which would have the added complication that it would

need to include convolution over incoming parton densities and beam functions. We

instead perform the calculation in two different ways. Our first method is analogous

to the GFIP calculation discussed in the previous section. We start by generating

events corresponding to hard production of c quarks and gluons in pp collisions at
?
s “ 13 GeV using MadGraph [91].3 In the LHCb data, all jets have pseudorapidity

2.5 ă y ă 4.0, R “ 0.5, and the jets are required to have pT ą 20 GeV. The hard

partons generated by MadGraph satisfy the jet constraints of LHCb. PYTHIA is

3 Note that the contribution from quarks from the hard collision other than c give contributions
to J{ψ production that are suppressed, either due to the soft gluon emission or by αs evaluated at
a large energy scale, and are therefore we neglect their contribution.
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Figure 3.7: PYTHIA predictions for c and g z distributions (where z is the fraction

of the energy of the parton initiating the jet) after showering to the scale 2mc.

then used to shower the event down to a scale of „ 2mc. Jet algorithms are applied

to the output of the PYTHIA shower and the c quarks and gluons must be within

jets of radius R “ 0.5 satisfying the criteria of the LHCb data described above. The

resulting c and gluon distributions are shown in Fig. 3.7. Note that the c quark

distribution is peaked near z “ 1 while the gluon z distribution is much softer and

peaked near z “ 0. The pT and y distributions for the c quarks and gluons are

then convolved manually with the NRQCD fragmentation functions evaluated at

leading order (LO) in perturbation theory to obtain pT and y distributions for J{ψ.

We consider contributions only from the five production mechanisms included in

Table 1.3.

At the LHCb the J{ψ is identified through the di-muon decay where is required

that both muons have 2.0 ă y ă 4.5, energy ą 5 GeV, and pT ą 0.5 GeV. The energy

cut clearly suppresses contributions from partons with low z and hence enhances the

contribution from c quark initiated jets. We implement the muon cuts by assuming

the J{ψ are unpolarized and therefore decays to µ`µ´ isotropically in its rest frame,

and the LHCb cuts on the muons are applied to the muons after they are boosted

back to the lab frame. From this a normalized distribution in zpJ{ψq is constructed

for each production mechanism. Each mechanism is characterized by an initial parton
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Figure 3.8: Predicted zpJ{ψq distribution using GFIP (gray) and FJF (red) for

the three choices of LDME in Table 1 and the LHCb measurements of zpJ{ψq.

i and quantum numbers n, and is multiplied by a weight

rpi, nq “
dσ̂pppÑ i`Xq

ş1

0
dzDn

iÑJ{ψpzq

dσ̂pppÑ c`Xq
ş1

0
dzD

3S
r1s
1

cÑJ{ψpzq
. (3.33)

The weight in Eq. (3.33) ensures that the total number of J{ψ coming from each

mechanism are in the proper ratio. This is where the fitted LDMEs enter the cal-

culation as Dn
iÑJ{ψpzq9xOJ{ψpnqy. Because of possible large corrections near z Ñ 0

and z Ñ 1, we only compare with LHCb data in the range 0.1 ă z ă 0.9. Finally,

the overall normalization is adjusted to agree with the normalization of the LHCb

data in this range.

Our second method, which we will refer to as the FJF method, employs FJFs eval-

uated at the jet energy scale, EJ , combined with hard events generated by Madgraph.

While this calculation does not include soft and other jet functions in Eq. (3.23), these

functions are independent of zpJ{ψq, so the zpJ{ψq dependence of the cross section

is controlled by the FJF. The energy distribution of hard partons is combined with

the FJFs for anti-kT jets with R “ 0.5 to produce a zpJ{ψq distribution for each of

the five mechanisms. To account for the muon cuts we apply a correction that is

obtained from the GFIP calculations of zpJ{ψq. The zpJ{ψq distributions from each

mechanism are weighted by the factors in Eq. (3.33) as before.

Fig. 3.8 shows the predicted zpJ{ψq distributions for the three choices of LDME’s
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Table 3.2: NRQCD LDMEs for J{ψ production mechanisms used in this paper in
units of GeV3.

xOp3Sr1s1 qy xOp3Sr8s1 qy xOp1Sr8s0 qy xOp3P r8s0 qy{m2
c

ˆ GeV3 ˆ10´2 GeV3 ˆ10´2GeV3 ˆ10´2GeV3

B & K [2,3] 1.32˘ 0.20 0.224˘ 0.59 4.97˘ 0.44 ´0.72˘ 0.88

Chao, et al. [92] 1.16˘ 0.20 8.9˘ 0.98 0.30˘ 0.12 0.56˘ 0.21

Bodwin et al. [46] 1.32˘ 0.20 1.1˘ 1.0 9.9˘ 2.2 0.49˘ 0.44

in Table 3.2 using the GFIP (gray) and FJF (red) methods, which are in good agree-

ment. Uncertainties are due to LDMEs only. In the case of Ref. [46], the errors in

Table 3.2 are supplemented with an error correlation matrix provided by the authors

through private communication. In Ref. [92] a fixed relationship between the 3S
r8s
1

and 3P
r8s
J LDMEs is required to obtain unpolarized J{ψ. This constraint is taken

into account when computing the uncertainty due to the LDMEs. These constraints

significantly reduce the uncertainty in the predictions relative to naively adding un-

certainties in Table 3.2 in quadrature. Other sources of uncertainty such as scale

variation have not been included. Estimating theory uncertainties reliably in the

absence of a complete factorization theorem is difficult. For example, using the FJF

method, the µ dependence of the FJF should be cancelled by µ dependence in hard

and soft functions that have not been computed. Note that since the normalization

of theoretical curves is fixed to the LHCb data, any scale variation that affects nor-

malization but not the shapes of the zpJ{ψq distribution will not contribute to the

uncertainty.

All three choices of LDMEs give better agreement to the LHCb data than de-

fault PYTHIA shown in Ref. [13]. This gives support to the picture of quarkonium

production in the previous and this section. The LDMEs from global fits [2, 3] give
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worse agreement than the fits from Refs. [46, 92]. The LHCb data is a decreasing

function of zpJ{ψq as zpJ{ψq Ñ 1. This is a property of the 3S
r1s
1 and 1S

r8s
0 FJFs,

but not the 3S
r8s
1 and 3P

r8s
J FJFs, which actually diverge as z Ñ 1. In order to obtain

negligible polarization at high pT , the 3S
r8s
1 and 3P

r8s
J LDMEs of Refs. [46, 92] have

relative signs such that they roughly cancel, so the 1S
r8s
0 dominates production and

J{ψ are unpolarized. The same cancellation here allows the zpJ{ψq distribution go

to zero as zpJ{ψq Ñ 1. Such a cancellation does not occur for the LDMEs from the

global fits so the zpJ{ψq distribution starts to turn up at large zpJ{ψq.

3.7 Conclusion

The study of hadrons within jets provides new tests of perturbative QCD dynamics.

The distribution in z (the fraction of jet energy carried by the identified hadron)

can be calculated as a convolution of the well-known fragmentation functions (FFs)

for that hadron with perturbative matching coefficients that are calculable at the jet

energy scale, which is typically well above ΛQCD. At hadron colliders this provides

a new way to extract FFs and will be especially important for pinning down gluon

FFs, which are of subleading importance in e`e´ colliders where FFs are usually

measured. The production of heavy quarkonia within high energy jets in collider

experiments also provides new tests of NRQCD.

In this chapter, we studied cross sections for jets with heavy mesons as a function

of z and the substructure variable angularity, τa. We provided for the first time the

NLO matching coefficients for jets with measured τa, and used these along with the

known RGE for the hard, jet, and soft functions to obtain NLL’ accuracy calcula-

tions of cross sections for jets with heavy mesons. We considered the production

of B mesons in two-jet events in e`e´ collisions at Ecm “ 250 GeV as well as J{ψ

production in three-jet events at the same energies. Though not relevant to any ex-
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periment, this is useful for comparing NLL’ calculations with monte carlo simulations

of fragmenting jets whose energy is comparable to those measured at the LHC. In

the simulations of quarkonia production, the underlying hard process was generated

using Madgraph and then PYTHIA was used to shower and hadronize the events.

In the simulations involving B meson production we also used HERWIG.

For B mesons, we find that the z and τa distributions computed using monte carlo

and NLL’ are in excellent agreement, giving us confidence in our analytic approach.

In the case of J{ψ, we considered three-jet events in which the jets all had the same

energy and the J{ψ in both simulation and NLL’ calculations was required to come

from the gluon jet. This allowed us to study J{ψ production via the fragmentation

of high energy gluon initiated jets, which we expect to be an important mechanism

at the LHC. Earlier studies of gluon FJFs in Ref. [73] indicated that the z and E

dependence of these jets could discriminate between various NRQCD production

mechanisms. The analytic NLL’ studies of this chapter are consistent with Ref. [73];

we also find that the τa and z distributions can discriminate between different various

NRQCD production mechanisms.

For monte carlo simulations, we used Madgraph to calculate e`e´ Ñ bb̄g followed

by the gluon fragmenting into a a cc̄ pair in either a 3S
p8q
1 , 1S

p8q
0 , or 3S

p1q
1 state. As

explained earlier we do not simulate events in the 3P
p8q
J channel. The events were

then showered and hadronized using PYTHIA. While the τa distributions are similar

to analytical calculations, the z distributions are much harder and their shape looks

nothing like the NLL’ calculation. We attribute this to a naive model that PYTHIA

uses for simulating the radiation of gluons from color-octet cc̄ pairs.

We then considered an alternative simulation approach where e`e´ Ñ bb̄g events

are generated using Madgraph, then PYTHIA is used to shower the event to a

low scale near 2mc without hadronization. The resulting gluon distribution is then
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convolved with the analytically calculated NRQCD FFs calculated at the scale 2mc.

This procedure yields z distributions that are in much better agreement with our

NLL’ calculations.

We have analyzed the recent LHCb data on J{ψ production within jets. We used

a combination of Madgraph, PYTHIA, and LO NRQCD fragmentation functions

first introduced in Ref. [56] as well as an approach based on monte carlo evaluation

of the hard process combined with J{ψ FJFs evolved to the jet energy scale. Both

methods yield zpJ{ψq distributions that agree much better with data than default

PYTHIA simulations. The zpJ{ψq distributions are very well described by LDMEs

from fits to large pT data, and less well described by LDMEs from global fits. It would

be interesting to perform a combined fit to the LHCb data and the large pT data

used in Refs. [46,92] to see if consistent LDMEs with smaller errors can be obtained.

Experimental measurement of jets at central rapidity and the polarization of J{ψ as

a function of zpJ{ψq [93] would also be of interest. Finally it would be especially

interesting to find ways of discriminating charm and gluon initiated jets [94], as a

sample containing only gluon initiated jets will have greater sensitivity to color-octet

LDMEs.

Future work will focus on extending the NLL’ calculations to hadron colliders,

where the unmeasured jet and soft function calculated in 5 (also cf. Ref. [58]) must

be combined with the FJFs calculated in this chapter. It would be of great interest to

compare the results of these calculations with data from the LHC on high energy jets

with heavy mesons and quarkonia. Finally, there needs to be more work on improving

the understanding of the differences between NLL’ and monte carlo simulations.

Monte carlo simulations that can properly simulate the production of quarkonia

within jets will be essential for calculating other jet observables for which NLL’

calculations are either unavailable or impractical.
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4

Transverse Momentum Dependent Fragmenting Jet
Functions with Applications to Quarkonium

Production

4.1 Outline

In this chapter we extend FJFs to transverse momentum dependent distributions

(TMDs). Recently, TMDs have been studied extensively within and outside the

framework of SCET [95–103]. TMDs offer a new technology for the study of hadron

substructure in hadron colliders (TMD parton distribution functions (TMDPDFs))

and hadron production (TMD fragmentation functions (TMDFFs)). TMDPDFs

have been used in SCET for studies of Higgs production in the small transverse mo-

mentum limit at the LHC [103–108]. TMD fragmenting jet functions (TMDFJF)

depend on three kinematic variables: the jet energy, ω{2, the fraction of this en-

ergy carried by the identified hadron, z, and the hadron transverse momentum with

respect to the axis of direction of the original parton, phK. The modes that give
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important contributions to the transverse momentum are

collinear-soft: pµcs „ ωpλr, λ{r, λq, λ “ pK{ω

collinear: pµn „ ωpλ2, 1, λq, (4.1)

where collinear-soft modes are soft modes collinear to the direction of the jet axis

first introduced in Ref. [60] and r ” tan pR{2q for jet cone size R. Similar modes are

also studied in [5]. To incorporate contributions from soft-collinear modes, we make

use of the SCET` formalism. SCET` and other similar extensions of SCET have

been used to study processes with multiple well-separated scales and distinct phase

space regions (e.g. [5, 60,101,109]).

In Section 4.2, we give a definition of the TMDFJF and show how it emerges

from definitions of TMDFFs in the literature. We then perform a matching cal-

culation at next-to-leading order (NLO) onto SCET` and derive a result that is

completely factorized into hard, collinear, collinear-soft, and ultra-soft modes. We

present a calculation of the matching coefficients Jij between the TMDFJF and the

more traditionally studied FFs. Additionally, we present a perturbative calculation

of the corresponding collinear-soft function at NLO. In Section 4.3, we use renormal-

ization group (RG) and rapidity renormalization group (RRG) techniques to resum

logarithms to next-to-leading-log-prime (NLL’) accuracy. The TMDFJF formalism

is applied to the production of J{ψ in gluon jets where the FFs are calculated to

LO in NRQCD. We find that distributions in pK and z as well as the average angle

of J{ψ relative to the axis of the jet can discriminate between the various NRQCD

production mechanisms. The material of this chapter was published in Ref. [57].

4.2 Transverse momentum dependent fragmenting jet function

In this section we will present the definition of the TMDFJF, connecting it with

definitions of TMDFFs from the literature. We first show the matching calculation of
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the TMDFJF onto SCET` and its factorization into pure collinear, soft-collinear, and

hard pieces. We then present perturbative calculations of the matching coefficients,

Ji{j, from matching the pure collinear function onto the FF as well as the one-loop

expression for the soft-collinear function.

4.2.1 Definition and factorization

The operator definition of the quark FF is given by [48]:

Dq{hpz, µq “
1

z

ÿ

X

1

2Nc

δpω´p´X´p
´
h q Tr

”

{̄n

2
x0|ψp0q|XhyxXh|ψ̄p0q|0y

ı
ˇ

ˇ

ˇ

pX
K
“´ph

K

, (4.2)

where ψpxq is the quark field in QCD. The TMDFF is given by a similar expression

but is unintegrated in the transverse components of the hadron momentum. It is

defined by [110]

Dq{hpp
h
K, z, µq “

1

z

ż

d2xK
p2πq2

ÿ

X

1

2Nc

δpω ´ p´X ´ p
´
h q

ˆ Tr
”

{̄n

2
x0|ψp0, 0, xKq|XhyxXh|ψ̄p0q|0y

ı

, (4.3)

such that,
ż

d2phK Dq{hpp
h
K, z, µq “ Dq{hpz, µq. (4.4)

Here, phK is the transverse momentum of the hadron h with respect to the direction of

the original fragmenting quark. In order to identify the experimentally measured jet

axis with the direction of the parton initiating the jet, there needs to be a constraint

that only ultrasoft radiation is outside the jet. Alternative definitions of the TMDFF

often involve the transverse momentum measured with respect to different axes (e.g.,

the beam axis). In order to extend this concept to identified hadrons within jets we

consider the collinear limit of Eq.(4.3) by matching onto SCET where now z ”
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Eh{EJ . This yields the operator definition of the TMDFJF

Gq{hppK, z, µq “
1

z

ÿ

X

1

2Nc

δpp´Xh;rqδ
p2q
ppK ` pXK q

ˆ Tr
”

{̄n

2
x0|δω,Pχ

p0q
n p0q|XhyxXh|χ̄

p0q
n p0q|0y

ı

, (4.5)

where in the equation above the states |Xhy corresponds to the a final state of

collinear particles within a jet, in contrast with the the state |Xhy in Eqs. (4.2) and

(4.3) which correspond to the inclusive case. The index p0q indicates that the field

has been decoupled from the ultra-soft gluons via BPS field redefinitions

χp0qn,ωpxq “ Y :n pxqχnpxq and Ap0qn pxq “ Y :n pxqAnpxqYnpxq, (4.6)

and χn ” W :
nξn is defined in terms of the collinear quark fields of SCET and the

ultrasoft and collinear Wilson lines are

Y :n pxq “ P exp

ˆ

ig

ż 8

0

ds n ¨ Auspx` snq

˙

and Wnpxq “
ÿ

perms

exp
´

´g

n̄ ¨ P n̄ ¨ Anx
¯

.

(4.7)

As we show in Appendix C.1, the expression for the TMDFJF given in Eq.(4.5) is

closely related to the FJF introduced in Ref. [55].

As discussed in the introduction, the TMDFJF receives contributions from two

different modes, collinear and colllinear-soft or csoft . In order to make the contri-

bution of the csoft modes explicit, we now match our expression onto SCET`,

Gq{hppK, z, µq “ C:`pµqC`pµq
1

z

ÿ

X

1

2Nc

δpp´Xh;rqδ
p2q
ppK ` pXK q

ˆ Tr
”

{̄n

2
x0|δω,PV

: p0q
n p0qχp0qn p0q|XhyxXh|χ̄

p0q
n p0qV

p0q
n p0q|0y

ı

, (4.8)

where

V p0qn pxq “
ÿ

perm

exp
´

´g

n̄ ¨ P n̄ ¨ A
p0q
n, cspxq

¯

, (4.9)

70



are Wilson lines of csoft fields (the csoft analogue of Wn) and C`pµq are SCET`

matching coefficients. In order to decouple the collinear fields A
p0q
n and χ

p0q
n from

the csoft gluons, we now perform field redefintions similar to those of the BPS proc-

dure [60]

Gq{hppK, z, µq “ C:`pµqC`pµq
1

z

ÿ

X

1

2Nc

δpp´Xh;rqδ
p2q
ppK ` pXK q

ˆ Tr
”

{̄n

2
x0|δω,PV

: p0q
n p0qU p0qn p0qχ

p0,0q
n p0q|Xhy

ˆ xXh|χ̄p0,0qn p0qU : p0qn p0qV p0qn p0q|0y
ı

, (4.10)

where

U : p0qn pxq “ P exp

ˆ

ig

ż 8

0

ds n ¨ Ap0qn, cspns` xq

˙

, (4.11)

and the superscript p0, 0q denotes that the corresponding fields are decoupled from

both ultra-soft and collinear-soft modes. Having factorized our operators, we now

factorize the phase-space into collinear and collinear-soft Hilbert states.

|Xhy Ñ |Xnhy|Xcsy, (4.12)

ÿ

X

Ñ
ÿ

Xn

ÿ

Xcs

, (4.13)

δp2qppK ` pXK q Ñ δp2qppK ` pXnK ` pXcsK q. (4.14)

This allows us to factorize the TMDFJF into three pieces

Gq{hppK, z, µq “ H`pµq ˆ
”

Dq{h bK SC
ı

ppK, z, µq , (4.15)

whereH` is proportional to the square of the matching coefficient from Gq{h in SCETI

to SCET`, and Dq{h and SC are the contributions collinear and the collinear-soft

modes of SCET` to the TMDFJF, respectively. These are defined by

H`pµq “ p2πq
2Nc C

:
`pµqC`pµq , (4.16)
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Dq{hppD
K , zq ”

1

z

ÿ

Xn

1

2Nc

δpp´Xh;rqδ
p2q
ppKXh;rqTr

”

{̄n

2
x0|δω,Pχnp0qδ

p2q
pPXnK ` pD

Kq|Xnhy

ˆ xXnh|χ̄np0q|0y
ı

, (4.17)

SCpp
S
Kq ”

1

Nc

ÿ

Xcs

Tr
”

x0|V :n p0qUnp0qδ
p2q
pPK ` pSKq|XcsyxXcs|U

:
np0qVnp0q|0y

ı

, (4.18)

where the Tr is over Dirac and color indices in Dq{h and color indices in SC . From now

on, we drop the p0q and p0, 0q superscripts since the different collinear, soft-collinear,

and ultra-soft modes are now factorized. We also employ the following shorthand for

the convolution in the K components

Dq{h bK SCppKq “
ż

d2p1K
p2πq2

Dq{hppK ´ p1KqSCpp
1
Kq. (4.19)

Analogously for gluon fragmentation we have

Dg{hppK, z, µq “ ´ gµν
1

z

ÿ

X

ω

pd´ 2qpN2
c ´ 1q

δpp´Xh;rqδ
p2q
ppK ` pXK q

ˆ x0|δω,PBν,an,Kp0qδp2qpPXnK ` pD
Kq|XhyxXh|Bµ,an,Kp0q|0y, (4.20)

where the collinear gluon field is

Bµ
n,Kpyq “

1

g

“

W :
npyqiDnKWnpyq

‰

, (4.21)

and iDnK “ PµnK ` gAµnK is the standard K-collinear covariant derivative in SCET.

At this point, only the purely collinear term Di{h contains information about

the hadron h. The collinear-soft function (SC) and the hard function (H`) are

universal functions dependent on the fragmenting parton i but not on the hadron

h. Additionally, in the limit that |pK| " ΛQCD, we may use the operator product

expansion to factorize Di{h into short distance coefficients and the more commonly
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studied FFs, Dj{h, via,

Di{hppK, z, µ, νq “
ż 1

z

dx

x
Ji{jppK, x, µ, νqDj{h

´z

x
, µ
¯

` O
ˆ

Λ2
QCD

|pK|
2

˙

, (4.22)

where Ji{j are the short distance coefficients that do not depend on the final hadron

and can be calculated order by order in perturbation theory.

(a) (b)

(c) (d)

Figure 4.1: Feynman diagrams that give non-scaleless contributions to the gluon
TMDFJF at NLO in αs. Diagram (b) also has a mirror image that is not explicitly
shown.

4.2.2 Perturbative results

The Opαsq diagrams contributing to the gluon and quark TMDFJFs are shown in

Figs. 4.1 and 4.2, respectively. At NLO, the matching coefficients Ji{j are directly

related to the matching coefficients Ii{j between TMDPDFs and the more commonly
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Figure 4.2: Associated non-scaleless diagrams that contribute to the quark TMD-
FJF at NLO. Again, Diagram (b) has a mirror image that is not explicitely drawn
above.

studied PDFs calculated in Refs. [101, 103] by the substitution Ii{j Ñ Jj{i. See Ap-

pendix C.2 for additional details of the matching calculation. Following Ref. [103], a

rapidity regulator is used to regulate rapidity divergences in the perturbative calcu-

lation. This is implemented by first modifying the form of the collinear and collinear-

soft Wilson lines

Wn “
ÿ

perms

exp

ˆ

´
g w2

n̄ ¨ P
|n̄ ¨ Pg|´η
ν´η

n̄ ¨ An

˙

Vn “
ÿ

perms

exp

˜

´
g w

n̄ ¨ P
|n̄ ¨ Pg|´η{2
ν´η{2

n̄ ¨ An,cs

¸

,

(4.23)

with similar modifications to Un. This introduces a regulator η, a bookkeeping

parameter w, and a new dimensionful parameter ν. The dependence of our results

on ν should of course cancel amongst the terms in our factorization theorem. The

renormalized results for the Ji{j in the MS scheme can be written,

Ji{jppK, z, µ, νq “ δijδp1´ zqδ
p2q
ppKq

`
αsTij
π

!

ˆ

δijδp1´ zq ln

ˆ

ω2

ν2

˙

` P̄jipzq

˙

L0pp
2
K, µ

2
q ` cijpzqδ

p2q
ppKq,

)

, (4.24)
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with

P̄qqpzq “ Pqqpzq ´ γ̄qδp1´ zq “ p1` z
2
qL0p1´ zq,

P̄gqpzq “ Pgqpzq “
1` p1´ zq2

z
,

P̄qgpzq “ Pqgpzq “ z2
` p1´ zq2,

P̄ggpzq “ Pggpzq ´ γ̄gδp1´ zq “ 2
p1´ z ` z2q2

z
L0p1´ zq, (4.25)

and

cqqpzq “
1´ z

2
, cqgpzq “

z

2
, cggpzq “ 0, cgqpzq “ zp1´ zq, (4.26)

where Tqq “ Tqg “ CF , Tgg “ CA, Tgq “ TF , γ̄q “ 3{2 and γ̄g “ β0{p2CAq. For

convenience we use the following shorthand notation for the vector plus-distributions,

Lnpp2
K, µ

2
q “

1

2πµ2
Ln

ˆ

p2
K

µ2

˙

“
1

2πµ2

ˆ

µ2

p2
K

lnnpµ2
{p2
Kq

˙

`

. (4.27)

Performing the convolutions in the energy ratio parameter z we get,

Di{hpp2
K, z, µ, νq “ Di{hpz, µqδ

p2q
ppKq `

αs
π

!”

TiiDi{hpz, µq ln

ˆ

ω2p1´ zq2

ν2

˙

` f
i{h
PbDpz, µq

ı

L0pp
2
K, µ

2
q ` f

i{h
cbDpz, µqδ

p2q
ppKq

)

, (4.28)

where

f
i{h
PbDpz, µq “

ÿ

j

!

δijTii

ż 1

z

dx

1´ x

”

pipxqDi{h

´z

x
, µ
¯

´ 2Di{h pz, µq
ı

` p1´ δijqTij

ż 1

z

dx

x
PjipxqDj{h

´z

x
, µ
¯)

, (4.29)

with pqpxq “ p1` x
2q{x, pgpxq “ 2p1´ x` x2q2{x2 and

f
i{h
cbDpz, µq “

ÿ

j

Tij

ż 1

z

dx

x
cijpxqDj{h

´z

x
, µ
¯

, (4.30)
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V †
n

UnU †
n

Vn An,cs
V †
n

UnU †
n

Vn An,cs

(a) (b)

Figure 4.3: Real gloun emission diagrams that contribute to the collinear-soft func-
tion SiCppK, z, µ, νq at Opαsq. The gluons passing through the shaded oval indicate
they are contained within the phase-space of the jet.

At NLO, the collinear-soft function, defined by Eq. (4.18), receives contributions

from the two diagrams shown in Fig. 4.3. The real gluon is contained within a jet

defined by a cone or kT -type jet algorithm with cone size parameter R. A global

soft funciton of similar form has been calculated at NLO in Ref. [103] and at NNLO

in Ref. [105] in studies of Higgs pT spectrum. The two diagrams in Fig. 4.3 yield

identical contributions and thier sum is given by,

S
i,Bp1q
C ppKq “ g2w2

ˆ

eγEµ2

4π

˙ε

νη Ci

ż

dk`dk´dd´2kK
2p2πqd´1

2 δpk2q

k`pk´q1`η
δp2qpkK ` pKq Θalg

“
αsw

2Ci
π

eγEε

Γp1´ εq

ˆ

νr

µ

˙η
1

η

1

2πµ2

ˆ

µ2

p2
K

˙1`ε`η{2

, (4.31)
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where Θalg defines the jet algorithm, r ” tanpR{2q, and Cq “ CF , Cg “ CA. After

an expansion in η followed by an expansion in ε and summing both diagrams we get,

Si,BC ppK, µ, νq “ δp2qppKq `
αsw

2Ci
π

!2

η

ˆ

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

˙

` δp2qppKq

ˆ

1

2ε2
`

1

2ε
ln

ˆ

µ2

r2ν2

˙˙

´ L0pp
2
K, µ

2
q ln

ˆ

µ2

r2ν2

˙

` L1pp
2
K, µ

2
q

´
π2

24
δp2qppKq

)

, (4.32)

The renormalized result (where we have now set w Ñ 1)in the MS scheme is thus

Si,RC ppK, µ, νq “ δp2qppKq ´
αsCi
π

!

L0pp
2
K, µ

2
q ln

ˆ

µ2

r2ν2

˙

´ L1pp
2
K, µ

2
q `

π2

24
δp2qppKq

)

.

(4.33)

While in general this expression receives contributions from virtual gluon emission

diagrams at NLO, these diagrams yield scaleless integrals when using this particular

set of regulators. Thus virtual diagrams are neglected and all singularities from these

real emission diagrams are interpreted as UV divergences. We also verified, using

a set of regulators where such virtual gluons give non-zero contributions, that the

result is identical.1 Note if pure dimensional regularization is used for ultraviolet

and infrared divergences then H` “ p2πq
2Nc as discussed in Ref. [101].

4.3 Numerical Results

4.3.1 Renormalization Group (RG) and Rapidity Renormalization Group (RRG)

Individual diagrams for the collinear-soft function SC and the matching coefficients

Ji{j suffer from infra-red (IR), ultra-violet (UV) and rapidity divergences (RD). We

use dimensional regularization and a rapidity regulator (as introduced and developed

in Ref. [103, 111]) to regulate these divergences. IR divergences in the collinear-soft

1 In order to verify that all IR divergences do indeed cancel, we used a gluon mass, rapidity regula-
tor, and dimensional regulator where diagrams with virtual gluons give non-scaleless contributions.
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function cancel when summing over all diagrams. In the matching coefficients Ji{j,

IR divergences cancel in the matching of the collinear functions Di{h onto traditional

FFs, Dj{h. The remaining poles (UV and rapidity), are removed by renormalization.

In addition to the scale µ introduced by dimensional regularization our use of a

rapidity regulator requires the introduction of an additional scale, ν. With this scale

are associated rapidity renormalization group (RRG) equations which can be used

to resum large logarithms by evolving each function from its canonical scale to a

common scale. Bare and renormalized quantities are related through the following

convolution with the renormalization factor Z,

FB
ppKq “ ZF ppK, µ, νq bK F

R
ppK, µ, νq, (4.34)

where F can be either Di{h or SiC and satisfies the following RG and RRG equations,

d

d lnµ
FR
ppK, µ, νq “ γFµ pµ, νq ˆ F

R
ppK, µ, νq

d

d ln ν
FR
ppK, µ, νq “ γFν ppK, µ, νq bK F

R
ppK, µ, νq. (4.35)

Here γFµ and γFν are the anomalous dimensions associated to RG and RRG respec-

tively and are defined by,

”

p2πq2δp2qppKq
ı

ˆ γFµ pµ, νq “ ´Z
´1
F ppK, µ, νq bK

d

d lnµ
ZF ppK, µ, νq

γFν ppK, µ, νq “ ´Z
´1
F ppK, µ, νq bK

d

d ln ν
ZF ppK, µ, νq. (4.36)

For the renormalization factors we find,

ZD
ppK, µ, νq “p2πq

2δp2qppKq ` p4πqαsw
2CF

!

´
2

η

ˆ

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

˙

`
1

2ε

ˆ

ln

ˆ

ν2

ω2

˙

` γ̄i

˙

δp2qppKq
)

(4.37)
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ZSC ppK, µ, νq “p2πq
2δp2qppKq ` p4πqαsw

2CF

!

`
2

η

ˆ

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

˙

`
1

2ε

ˆ

ln

ˆ

µ2

r2ν2

˙

`
1

ε

˙

δp2qppKq,
)

(4.38)

The µ anomalous dimensions are found using Eq. (4.36),

γDµ pνq “
αsCi
π

ˆ

ln

ˆ

ν2

ω2

˙

` γ̄i

˙

(4.39)

γSCµ pνq “
αsCi
π

ln

ˆ

µ2

r2ν2

˙

, (4.40)

For the ν anomalous dimensions, our bookkeeping parameter w plays an analogous

role to the coupling g for the case of the µ anomalous dimension, although w itself

is not a coupling, such that,

ν
B

Bν
w “ ´

η

2
w, (4.41)

thus yielding

γDν ppK, µq “ ´p8πqαsCi L0ppK, µ
2
q (4.42)

γSCν ppK, µq “ `p8πqαsCi L0ppK, µ
2
q. (4.43)

The anomalous dimensions satisfy

γDµ pνq ` γ
SC
µ pνq “ γJµ “

αsCi
π

ˆ

ln

ˆ

µ2

r2ω2

˙

` γ̄i

˙

, (4.44)

where γJ is the anomalous dimension of the unmeasured quark jet function [65] and

γDν ppK, µq ` γ
S
ν ppK, µq “ 0. (4.45)

In order to resum our results to NLL’ accuracy we evolve the purely collinear function

and the collinear-soft function from their characteristic scales where logarithms are

minimized to common scales in µ and ν using the RG and RRG respectively. To

79



perform the evolution, we first solve the Fourier transforms of both the RRG and

RG equations. We then perform the evolution using the RG and RRG before finally

performing the inverse Fourier transform. The simplest resummation procedure is,

in this case, to first evolve our collinear-soft function in RRG space and choose

the common scale to be ν “ νD. We then evolve both functions in RG space to

the common scale µ “ ωr. Notice that SC and D have the same characteristic

renormalization scale µSC “ µD ” µC . The equivalence of the virtualities of the soft

and collinear modes is a defining feature of SCETII.

To make the interpretation of our plots easier, we study the quantity Gi{hppK, z, µq

which is related to the TMDFJF by the change of variables from vector transverse

momenta (pK) to the amplitude (pK “ |pK|). Performing the evolutions described

above we find,

Gi{hppK, z, µq “ p2πq2 pK
ż 8

0

db bJ0pbpKqUSC pµ, µSC ,mSC qUDpµ, µD, 1q

ˆ VSC pb, µSC , νD, νSC qFT
”

Di{hppK, z, µD, νDq bK S
i
CppK, µSC , νSC q

ı

, (4.46)

where b is the Fourier conjugate variable of pK, J0 is a Bessel function of the first

kind,

UF pµ, µ0,mF q “ exp pKF pµ, µ0qq

ˆ

µ0

mF

˙ωF pµ,µ0q

, (4.47)

and VF pb, µ, ν, ν0q “

ˆ

µ

µCpbq

˙ηF pµ,ν,ν0q

where µCpbq “ 2 expp´γEq{b, (4.48)

are the evolution kernels resulting from solving the RG and RRG equations respec-

tively. The pure collinear term Di{h in Eq.(4.46) involves the convolution of the

perturbatively calculated short distance coefficients and the standard fragmentation

functions evolved from their canonical scale to the canonical scale of the collinear

term in momentum space, µ “ pK. The form of the fragmentation functions is fixed
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during the Fourier transforms in Eq.(4.46). The scales µF , νF and mF for each of

the functions are given in Table 4.1 and more details of the RG and RRG evolution

are provided in Appendix A.

Table 4.1: Characteristic scales of the different functions in the factorization theorem.

Function pF q RG scale (µF ) RRG scale (νF ) mF

Di{h µCpbq ω n.a.

SiC µCpbq µCpbq{r νr

4.3.2 Applications to quarkonium production

In this section we apply our TMDFJF formalism to the production of quarkonium

in jets. We will focus on J{ψ production within jets initiated by gluons, though our

results can be easily generalized to Υ or other quarkonia and jets initiated by quarks.

Our goal is to see if the z and pK dependence of the TMDFJF can discriminate

between these competing mechanisms.

The TMDFJF as a function of pK for fixed z, for z “ 0.3, 0.5, 0.7, and 0.9, are

shown Figs. 4.4 and 4.5, for jet energies of 100 GeV and 500 GeV, respectively. In

order to make it easier to view all distributions simultaneously, we have rescaled

the 3S
r8s
1 , 1S

r8s
0 , 3P

r8s
J ,and 3S

r1s
1 distributions, by factors of 106, 106, 3.0 105 and

4.0 105, respectively. The same rescaling factor is used in all eight plots in Figs. 4.4

and 4.5, and theoretical uncertainties are calculated by varying the RRG and RG

scales νSC , νD, and µ by a factor of 2 and 1{2. The central dashed lines in the

figures correspond to the scale choices ν “ νD “ ω and µ “ ωr. Though we plot our

distributions in the range 0 ă pK ă 20 GeV, it is important that to keep in mind

that our calculations are only reliable for pK ě 2mc “ 3 GeV.

These plots show that the TMDFJF does in fact provide discriminating power
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Figure 4.4: The TMDFJF as a function of the pK of the J{ψ for the
3S
r1s
1 , 3S

r8s
1 , 1S

r8s
0 , 3P

r8s
J production mechanisms where the for jet energies EJ “

100 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1{2 and 2.

amongst the four mechanisms. For z “ 0.3, all four distributions look similar for both

EJ “ 100 GeV and 500 GeV. The distributions peak at roughly the same location

and they have same slope for large pK. For z ě 0.5, the color-singlet 3S
r1s
1 mechanism

and the color-octet 1S
r8s
0 mechanism peak at lower values of pK and fall more steeply

with pK than the 3S
r8s
1 and 3P

r8s
J color-octet mechanisms. The 3P

r8s
J mechanism has

the peculiar feature that in order to obtain a positive FF we need to have a negative

LDME, as is found in the fits of Refs. [2, 3]. The peaks in the pK distribution for
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Figure 4.5: The TMDFJF as a function of the pK of the J{ψ for the
3S
r1s
1 , 3S

r8s
1 , 1S

r8s
0 ,3 P

r8s
J production mechanisms where the for jet energies EJ “

500 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1{2 and 2.

the 3S
r1s
1 and 1S

r8s
0 mechanisms are at very low pK where perturbation theory is not

reliable. On the other hand, the peaks of the 3S
r8s
1 and 3P

r8s
J distributions are at

larger values of pK „ 6 ´ 8 GeV where perturbation theory can be trusted. The

3P
r8s
J gives a slightly harder pK distribution than 3S

r8s
1 mechanism, and both are

significantly harder than the other mechanisms.

It is interesting to study the dependence of the TMDFJF as a function of z with

pK fixed to be a perturbative scale. In Fig. 4.6 we plot the TMDFJF as a function

83



��� ��� ��� ��� ��� ���
�

�

�

�

�

�

�

��� ��� ��� ��� ��� ���
�

�

�

�

�

× × × ×

Figure 4.6: The TMDFJF as a function of the z of the J{ψ for the
3S
r1s
1 , 3S

r8s
1 , 1S

r8s
0 ,3 P

r8s
J production mechanisms, with pK “ 10 GeV for EJ “ 100 and

500 GeV. Theoretical uncertainties are calculated by varying the renormalization
scales by factors of 1{2 and 2.

of z for pK “ 10 GeV for jets with energy EJ “ 100 and 500 GeV. Large logarithms

and shape function effects will affect these distributions in both the z Ñ 0 and z Ñ 1

limits, but our calculations should be reliable for intermediate values of z. While for

z ă 0.5 the distributions have similar shapes, in the range 0.5 ă z ă 0.9, the shapes

of all four mechanisms are different. The z dependence of the TMDFJF for fixed pK

can be used to differentiate between the NRQCD production mechanisms.

The TMDFJF formalism also allows us to calculate the angle at which J{ψ are

produced relative to the jet axis. The average production angle for the J{ψ is given

by

xθypzq “

ş

θdθpdσ{dθdzq
ş

dθpdσ{dθdzq
. (4.49)

Using the small angle approximation the differential cross section can be written as

dσ

dθdz
“

ż

dpK δ

ˆ

θ ´
2pK
zω

˙

dσ

dpKdz
. (4.50)
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Substituting this into Eq. 4.49 yields

xθypzq “
2
ş

dpKpKpdσ{dpKdzq

zω
ş

dpKpdσ{dpKdzq
. (4.51)

As discussed in Appendix C.1, the cross section dσ{dθdz can be factorized into hard,

soft and collinear terms in SCET. In general the hard and soft contributions will

not cancel because there is a sum over partonic channels in both the numerator

and denominator of Eq. 4.51. However, they will if gluon fragmentation dominates

production, then the expression above can be written as

xθypzq „
2
ş

dpK pKGg{hppK, z, µq
zω

ş

dpK Gg{hppK, z, µq
” fhω pzq, (4.52)

where Gg{hppK, z, µq is the gluon TMDFJF. Fig. 4.7 the function f
J{ψ
ω pzq is plotted

at points z “ 0.3, 0.5, 0.7, and 0.9 for ω “ 2EJ “ 200 GeV and 1 TeV for J{ψ with

pK P r5, 20s GeV and pK P r5, 60s GeV, respectively. As was done earlier we have

fixed the scale µ “ ωr. Note the typical angles are small enough that the small

angle approximation is justified. The dashed lines in figure show the results of a fit

to the functional form, C0 expp´z C1q, the values of C0 and C1 for each mechanism

at each energy are shown in Table 4.2. Again we see that differences between the

various NRQCD mechanisms become more pronounced as z increases. This shows

that the average angle does in fact yield some discriminating power between the octet

mechanisms. In particular the slope on the semilog plot, which is determined by the

parameter C1 in Table 4.2, differs by as much as 20% between the various NRQCD

mechansims for EJ “ 100 GeV and and as much as 40% for EJ “ 500 GeV. Note

however that 1S
r8s
0 and 3S

r1s
1 give very similar predictions for this observable.
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Figure 4.7: The function f
J{ψ
ω pzq (as defined in the text) as a function of z relative

to the jet axis for each NRQCD production mechanism where the jet has EJ “ ω{2 “
100 GeV(left) and 500 GeV (right). The J{ψ is restricted to have pK P r5, 20s GeV
in the 100 GeV jet and pK P r5, 60s GeV in the 500 GeV jet.

Table 4.2: Results of fits of ln pfωpzqq shown in Fig. 4.7 to the function C0 expp´z C1q.

EJ “ 100 GeV

2S`1L
r1,8s
J C0 C1

3S
r1s
1 3.92 0.92

3S
r8s
1 3.86 0.84

1S
r8s
0 3.88 0.90

3P
r8s
J 3.75 0.74

EJ “ 500 GeV

2S`1L
r1,8s
J C0 C1

3S
r1s
1 3.75 1.68

3S
r8s
1 3.48 1.39

1S
r8s
0 3.66 1.64

3P
r8s
J 3.28 1.20

4.4 Conclusions

In this chapter we introduce the transverse momentum dependent fragmenting jet

function (TMDFJF) in the framework of SCET and show how it is related to the

previously introduced TMDFFs and fragmenting jet functions (FJFs). TMDFJFs

describe the transverse as well as longitudinal momentum distribution of an identified

hadron within a jet. TMDFJFs evolve with the renormalization group (RG) scale µ

and obey RG equations similar to jet functions. Using SCET` we show that this new

distribution can be further factorized into soft and purely collinear terms. The purely
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collinear factor can be written as a convolution of perturbatively calculable short

distance coefficients and the standard FFs, where the soft factor is given by a vacuum

matrix element of product of Wilson lines. This factorization introduces rapidity

divergences that are regulated with the rapidity regulator. We check that at NLO

the regulator dependence vanishes in the final product. Associated with rapidity

divergences are rapidity renormalization group (RRG) equations. By evolving the

collinear and soft terms separately using the RG and RRG equations all orders

resummation of large logarithms in the TMDFJF can be performed.

As an example we implement this formalism for the case of quarkonium pro-

duction. In the case of quarkonia the TMDFJF can be calculated in terms of the

NRQCD FFs which are perturbatively calculable at the scale 2mQ. For the gluon

TMDFJF for J{ψ, we study the pK and z dependence predicted by the four pro-

duction mechanisms: 3S
r1s
1 , 3S

r8s
1 , 1S

r8s
0 , and 3P

r8s
J . We use the leading order (in αS)

NRQCD FF for each of these mechanisms, and the RG and RRG equations are used

to calculate the TMDFJFs to next-to-leading-logarithmic-prime (NLL’) accuracy.

We find that the z dependence (for fixed pK) is different for all four mechanisms. We

also find that the dependence on pK and the average angle of the J{ψ relative to the

jet axis can discriminate between the various NRQCD production mechanisms.
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5

Jet Shapes in Dijet Events at the LHC in SCET

5.1 Outline

Jet measurements at hadron colliders typically involve identifying jets of size R with

the use of a jet algorithm, imposing a veto on the out-of-jet transverse momentum

pcut
T for all radiation1 with (pseudo-)rapidity y in the range |y| ă ycut measured with

respect to the beam axis. Such measurements are sensitive to hard scales (such as

the Mandelstam variables s, t, u in the case of dijet production) in addition to scales

induced by the parameters R, ycut, and pcut
T . When the substructure of jets is probed

in the context of a jet measurement, additional scales such as Qe and Qeα for jet

shapes are induced. Thus, there are not only scales associated with the substructure

itself but also those associated with the more global context with which the probed

jet was produced, and the large set of scales involved can span a wide range of

energies.

Many of the ratios of these scales can be resummed using well known techniques

such as SCET in similar ways to those described above for e`e´. In addition to

1 As discussed below, to the order we work this is the same as putting a veto on the third hardest
jet.
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the ingredients used in e`e´ collisions, factorization formulae for hadronic collisions

involve beam functions B which account for initial-state radiation [112,113], and we

schematically have

dσpp „ H ˆB b B̄ b Jn1 b ¨ ¨ ¨ b JnN b SBB̄n1n2¨¨¨
. (5.1)

While RGE of the functions appearing in Eq. (5.1) resums a large set of logarithms,

others, such as logarithms of R [114–116] and non-global logarithms (NGLs) [117–

120], can present more of a challenge. Importantly, resummation of the jet sizeR has

recently been explored in the context of subjets in [121] and in jet rates in the context

of e`e´ collisions in [5,122], and in addition there has been progress in understanding

NGLs both at fixed-order [123–126] and more recently a few novel approaches to

understanding their all-orders resummation have been proposed [122,127,128].

In this chapter we consider the case where the kinematics are such that NGLs

are not enhanced and instead focus on resummation of logarithms of ratios of the

dynamical scales associated with substructure (such as Qe{Q and Qeα{Q) with fixed

pcut
T , ycut, R, and jet pJT . To this end, we restrict ourselves to the kinematic region

e´ycut ! 1

pJT „
?
ŝ „

a

t̂ „
?
û

pcut
T R2

{pJT „ e ! R2
! 1 . (5.2)

Our approximations are valid to the order we work within about a decade of the

value(s) of these parameters for which the NGLs are minimized. In the example

we present, we have e „ Op10´3q in the peak region of the distribution and R2 „

Op10´1q, which means the leading NGLs, which are of the form αns lnnppcut
T R2{pJT eq

(and first appear for n ě 2), are not enhanced for pcut
T {p

J
T „ Op10´2q.

One class of event shapes that has been studied extensively in the literature and is

the focus of the present work is that of angularities τa, parameterized by a continuous
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variable a (with a ă 2 for IR safety). The choice a “ 0 corresponds to the classic

event shape thrust and a “ 1 corresponds to jet broadening. Angularities were

originally defined in [77, 129] and studied in the context of SCET in [130–132]. In

Ref. [65], “jet shapes”2 were defined by restricting the angularities to the constituents

of a jet as defined by a jet algorithm (as opposed to all particles in the event) and were

resummed to next-to-leading logarithmic (NLL) accuracy. In this work we consider

a modified definition of angularities that is designed to be boost invariant about the

colliding hadrons’ axis, i.e., the beam axis.

We also note that the definition of the angularities we consider (which differs

from that defined for e`e´ colliders by a rescaling in the small τa limit) is such that

the choice a “ 0 is closely related to the jet mass,

τ0 “ m2
J{pp

J
T q

2
`Opτ 2

0 q . (5.3)

Jet mass resummation has been studied indirectly by looking at the 1-jettiness global

event shape [137] for single jet events in Ref. [138], by using pQCD methods that

neglect color interference effects in Ref. [139], and in the threshold limit in Refs. [140,

141], but to our knowledge has not been studied with the cuts described above,

with full NLL’ color interference effects3, and in a manner that is valid away from

the threshold limit. In addition, our results for a “ 0 can be straightforwardly

extended to NNLL using the known anomalous dimensions together with the recently

deduced two-loop unmeasured jet function anomalous dimension [5], which controls

the evolution of both unmeasured jet and beam functions. In addition, we apply

the refactorization procedure described in Ref. [5] which allows the resummation of

logarithms of R in the region described by Eq. (5.2).

While we choose to study angularities as the choice of substructure observable,

2 This is distinct from the jet shape as defined in [133,134] and studied more recently in Ref. [135,
136].

3 For an explanation of which terms are included in our cross section by working to this order, see
for example Ref. [66].
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our basic setup is much more general. Indeed, we obtain many of the results specific

to our choice of angularities by using identities that relate the jet functions and

the observable-dependent part of our soft function to analogous calculations in e`e´

collisions. The part of the soft function that requires an entirely new calculation

simply imposes the experimental pcut
T cut on radiation outside of the jets and the

beams. This universal part of the soft function, labeled Sunmeas, encapulates all the

interjet cross-talk, and hence contains all perturbative information associated with

real emission about the directions ni and the color flow. For each jet which has

the angularity probed, which here and below we refer to (using the terminology of

Ref. [65]) as a “measured jet,” we add a jet function and a soft function contribution

that are both angularity dependent but color- and direction-trivial. Thus, other

substructure measurements can be straightforwardly incorporated by substituting

for their appropriate contributions at this step. If no measurement is performed on

a jet (that is, the jet is identified but otherwise unprobed), which we refer to as an

“unmeasured jet,” only an unmeasured jet function (which we also present to Opαsq)

and Sunmeas are required. For dijet production, which is the focus of the current work,

all four Wilson lines (those of the beams and the two jets) are confined to a plane,

and the calculation of Sunmeas to Opαsq is tractable. In addition, the effect of different

experimentally used vetoes, such as putting a pcut
T only on the third hardest jet (as

opposed to all out-of-jet radiation) will only result in a difference in Sunmeas at Opα2
sq

so our calculations apply there as well.

We also point out that while for unmeasured jets, the jet size R must scale with

the SCET power counting parameter λ and hence the requirement R ! 1 is essen-

tial, for measured jets this is not strictly needed since τa ! 1 is sufficient to ensure

SCET kinematics. However, as we will see, both the jet algorithms and measure-

ments simplify significantly in this limit up to power corrections of the form R2 and

τa{R2, respectively, although we emphasize that the exact results can be obtained
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numerically using subtractions such as those of Ref. [142]. Finally, we note that

because there is no measurement on any radiation with |y| ă ycut, our factorization

formulae will include “‘unmeasured beam functions,” which to our knowledge have

not appeared in the literature.

The chapter is organized as follows. In Sec. 5.2, we define the classes of jet

algorithms and angularity definitions suitable for hadron colliders and relate them

to the corresponding e`e´ algorithms and angularities in the small R limit. In

Sec. 5.3 we outline the 2 Ñ 2 kinematic relations needed for dijet production and

discuss how both the Born cross section and the fully factorized and resummed SCET

cross section are related to the basic building blocks that we then calculate to fixed

order in Sec. 5.4, namely the hard, jet, soft, and beam functions. We then use these

results in Sec. 5.5 to arrive at the NLL’ resummed cross section for a generic 2 Ñ 2

scattering channel both for when the jets are identified but otherwise left unmeasured

(i.e., we are inclusive in the substructure properties) and for when the angularity of

either (or both) jets is measured. From our calculations, one can obtain results for

the case where the angularities of both jets τ 1
a and τ 2

a are separately measured (and

by integrating, the case where τ 1
a ` τ 2

a is measured) as well as the cases where only

one or neither are measured. For illustrative purposes, in our plots we focus on the

case where both τ 1
a and τ 2

a are measured and τ 1
a “ τ 2

a . Furthermore, we present

explicit results for the simple channel qq1 Ñ qq1 with different values of R and pcut
T

and for several choices of the angularity parameter a, and demonstrate the reduction

in scale uncertainty resulting from the refactorization techniques of [5]. We conclude

in Sec. 5.6. The material of this chapteris collaborative work with Andrew Horning

and Thomas Mehen and was published in Ref. [58].
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5.2 Jet Algorithms and Shapes at Hadron Colliders

The main difference between jet cross section measurements at e`e´ colliders and

hadron colliders is that the latter prefer observables that are invariant under boosts

along the beam direction. The kT -type algorithms used at the LHC (described in

more detail in, for example, Ref. [143]) merge particles successively using a pairwise

metric

ρij “ mintppiT q
2p, ppjT q

2p
u
∆R2

ij

R2
, (5.4)

where p “ `1, 0, and ´1 for the kT , C/A, and anti-kT algorithms, respectively, piT is

the transverse momentum (with respect to the beam) of particle i, R is a parameter

characterizing the jet size, and

∆Rij ”

b

p∆yijq2 ` p∆φijq2 , (5.5)

where ∆yij and ∆φij are the pseudo-rapidity and azimuthal angle differences of

the particles measured with respect to the beam axis. Since pseudo-rapidities simply

shift under boosts and azimuthal angles are invariant, ∆Rij is invariant under boosts

along the beam direction. This pairwise metric is compared to the single particle

metric of each particle, defined as

ρi “ pp
i
T q

2p . (5.6)

Two particles are merged if their pairwise metric is the smallest for the pijq pair

over all particle pairs and is less than both of the single particle metrics, i.e., ρij ă

mintρi, ρju. This latter constraint amounts to

∆Rij ă R . (5.7)

In the following, we will work under the assumption that all particles in the jet are

close to a jet axis at polar angle θJ with respect to the beam axis such that ∆Rij
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can be expanded as

∆Rij “
1

sin θJ

b

p∆θijq2 ` sin2 θJp∆φijq2 `Opp∆θijq2, p∆φijq2q

“
θij

sin θJ
`Opθ2

ijq , (5.8)

where in the first equality ∆θij and ∆φij are the angle differences in a spherical

coordinate system with ẑ in the beam axis direction, and θij in the second equality is

simply the angle between particles i and j. This implies we can impose an e`e´-type

polar angle restriction that particles are within a jet of size R and rescale the results

by

RÑ R sin θJ “
R

cosh yJ
, (5.9)

where yJ is the jet pseudo-rapidity, up to OpR2q corrections. This allows us to

recycle many of the results of Ref. [65]. The difference between our results and those

obtained from the exact expression Eq. (5.5) can be obtained numerically, e.g., with

the methods of Ref. [142], although the details are beyond the scope of the present

work.

It is helpful to re-write the angularity definition used in Ref. [65] in the context

of e`e´ collisions in terms of ingredients that are boost invariant, such as pT and the

right-hand side of Eq. (5.8). To do so, first recall the definition used in terms of the

pseudo-rapidities yiJ and transverse momenta piJK of particles with respect to the jet

axis,

τ e
`e´

a “
1

2EJ

ÿ

iPjet

|piJK |e
´p1´aq|yiJ | . (5.10)

In the small angle approximation, we can write this as

τ e
`e´

a “ p2EJq
´p2´aq

ppT q
1´a

ÿ

iPjet

|piT |

ˆ

θiJ
sin θJ

˙2´a
`

1`Opθ2
iJq

˘

. (5.11)
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From the discussion above, all terms in the sum over particles are boost invariant.

The one term that is not boost invariant is just the overall factor of p2EJq
2´a. There-

fore, we can arrive at a boost invariant version of τa suitable for hadron colliders with

a simple rescaling by a dimensionless factor,

τa ” τ ppa ”
1

pT

ÿ

iPjet

|piT |p∆RiJq
2´a

“

ˆ

2EJ
pT

˙2´a

τ e
`e´

a `Opτ 2
a q . (5.12)

We emphasize again that the quantities on the right-hand side of the first line of

Eq. (5.12) are manifestly invariant under boosts along the beam axis, and that the

second line allows us to recycle many of the results of Ref. [65].

The one main difference between measurements done at e`e´ colliders and hadron

colliders that requires a novel calculation is the out-of-jet energy veto. In e`e´

colliders, this is typically a cut on energy, whereas in hadron colliders it is typically

a veto on transverse momentum: pT “ E sin θ ă pcut
T . This will require an entirely

new soft function, which we present below.

5.3 Factorized Dijet Cross Section

For dijet production at tree-level, momentum conservation implies that there are just

three non-trivial variables to describe the final state at tree level, which we can take

to be the jet (pseudo-) rapidities y1,2 and the jet pT “ |p
1
T | “ |p

2
T |. The momentum

fractions of the incoming partons are related to these variables via

x1,2 “
2pT
Ecm

cosh
∆y

2
e˘Y , (5.13)
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where ∆y “ y1 ´ y2 is the rapidity difference of the two jets and Y “ py1 ` y2q{2.

The (partonic) Mandelstam variables can be written as

s “ 4p2
T cosh2 ∆y

2

t “ ´2p2
T e

∆y{2 cosh
∆y

2

u “ ´2p2
T e
´∆y{2 cosh

∆y

2
“ ´s´ t . (5.14)

The tree-level matrix element squared can be written as

|Mtree|
2
“ TrtH0S0u , (5.15)

where H0 and S0 are the tree-level hard and soft functions, respectively, so the Born

cross section takes form

dσborn

dy1dy2dpT
“

pT
8πx1x2E4

cm

1

N
f1px1, µqf2px2, µqTrtH0S0u (5.16)

where N is the normalization associated with averaging over initial particle quantum

numbers (e.g., N “ 4N2
c for quark scattering) and fipxi, µq is a PDF for parton i

with momentum fraction xi.

The effect of radiative corrections to Eq. (5.16) is described in the soft and

collinear limits by higher-order hard, soft, beam, and jet functions. We consider

the cases when both jets are unmeasured and when both jets are measured. When

both jets are unmeasured the all-orders cross section takes the form

dσ ”
dσ

dy1dy2dpT
(5.17)

“
pT

8πx1x2E4
cm

1

N
Bpx1, µqB̄px2, µqTrtHpµqSunmeas

pµquJ1pµqJ2pµq

`OpαsR2, αse
´2ycutq , (5.18)

where the Jipµq are unmeasured jet functions and Sunmeas is the unmeasured soft
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function. When both jets are measured, the cross section takes the form

dσpτ 1
a , τ

2
a q ”

dσ

dy1dy2dpTdτ 1
adτ

2
a

(5.19)

“
pT

8πx1x2E4
cm

1

N
Bpx1, µqB̄px2, µq

ˆ TrtHpµqSpτ 1
a , τ

2
a , µqu b rJ1pτ

1
a , µqJ2pτ

2
a , µqs

`Opαsτ ia{R2, αse
´2ycutq ,

where b represents the two convolutions over the τ 1,2
a . The case of a single measured

jet, with the other jet unmeasured, is the obvious generalization of Eqs. (5.17) and

(5.19). The power corrections to Eqs. (5.17) and (5.19) can be included via matching

to fixed order QCD. Resummation of logs of τa is achieved by RG evolution of each

factorized component from its canonical scale (cf. Table 5.2) to the common scale µ.

Both the hard and soft function are in general matrices (which here and below we

will refer to with bold face) which are hermitian and of rank R equal to the number of

linearly independent color operators associated with the hard process (e.g., R “ 2 for

qq Ñ qq, 3 for qq Ñ gg, and 8 for gg Ñ gg). These operators mix under RG evolution

which is accounted for with matrix RG equations. The fixed order calculation of the

components in Eqs. (5.17) and (5.19) and their RG evolution is the subject of the

next sections.

5.4 Fixed-Order Opαsq Calculation of Factorized Components

5.4.1 Jet Functions

In Ref. [65], there are both “measured” and “unmeasured” jet functions, correspond-

ing to jets whose angularity was measured as opposed to those that were identified

but otherwise unprobed. The latter can be obtained using the hadron collider algo-
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rithms with the rescaling in Eq. (5.9). We obtain

Ji “ 1`
αs
2π

„ˆ

Ci
ε2
`
γi
ε

˙ˆ

µ

pTR

˙2ε

` di,alg
J



(5.20)

where i “ q, g for quark and gluon jets (and Ci is the Casimir invariant, Cq “ CF

and Cg “ CA), respectively, and

γq “
3CF

2
, γg “

β0

2
. (5.21)

(with β0 given in Eq.(A.11)) and the finite corrections di,alg
J are given in Eqs. A.19

and A.30 of [65],

di,cone
J “ 2γi ln 2´ Ci

5π2

12
`

#

CF
7
2

if i “ q

CA
137
36
´ TRNf

23
18

if i “ g
(5.22)

di,kTJ “ ´Ci
3π2

4
`

#

CF
13
2

if i “ q

CA
67
9
´ TRNf

23
9

if i “ g
(5.23)

where di,kTJ is the same constant for all kT -type algorithms (kT , anti-kT , and C/A).

For measured jet functions, we need to apply the rescaling Eq. (5.12). The identity

A´1δ
`

A´1τ ´ τ̂
˘

“ δ
`

τ ´ Aτ̂
˘

, (5.24)

implies that this rescaling can be accomplished to all orders via the transformation

Jipτaq “

ˆ

pT
2EJ

˙2´a

Je
`e´

i

ˆˆ

pT
2EJ

˙2´a

τa

˙

, (5.25)

where Je
`e´

i pτaq is the jet function of [65]. This gives

Jipτaq “ Je
`e´

i pτaq
ˇ

ˇ

2EJÑpT
, (5.26)

i.e., it is simply obtained from Je
`e´

i pτaq by making the replacement 2EJ Ñ pT .

These can be obtained for the quark case from Ref. [132] and for the gluon case by
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performing the integral in Eq. (4.22) of Ref. [65] after setting Θalgpxq Ñ 0 which is

valid to Opτa{R2q. We record the results here as

Jipτaq “ δpτaq ´
αs
2π

„ˆ

µ

pT

˙2εˆ
1

τa

˙1` 2ε
2´a

ˆ

1

ε

2Ci
1´ a

`
γi

1´ a{2

˙

´ δpτaqfipaq



, (5.27)

where

fqpaq “
2CF

1´ a{2

„

7´ 13a{2

4
´
π2

12

3´ 5a` 9a2{4

1´ a
(5.28)

´

ż 1

0

dx
1´ x` x2{2

x
lnrx1´a

` p1´ xq1´as



fgpaq “
1

1´ a{2

„

CA

ˆ

p1´ aq

ˆ

67

18
´
π2

3

˙

`
π2

6

p1´ a{2q2

1´ a

´

ż 1

0

dx
p1´ xp1´ xqq2

xp1´ xq
lnrx1´a

` p1´ xq1´as

˙

´ TRNf

ˆ

20´ 23a

18
´

ż 1

0

dx
`

2xp1´ xq ´ 1
˘

lnrx1´a
` p1´ xq1´as

˙

.

Finally, we note that the integral over τa of the measured jet function is not simply

related to the unmeasured jet function and refer the reader to Ref. [5] for a detailed

explanation.

5.4.2 Unmeasured Beam Functions

While the unmeasured beam function has not to our knowledge appeared in the

literature, it is directly related to the unmeasured fragmenting jet function of [70].

The unmeasured fragmenting jet function for a jet of energy E and (e`e´) cone

radius R can be written as

GpE,R, z, µq “
ÿ

i

ż

dz1

z1
JijpE,R, z1, µqDh

j pz{z
1, µq `OpΛ2

QCD{E
2
q , (5.29)

where Dh
i px, µq is a fragmentation function for parton i in hadron h and the Jij are

matching coefficients which are given in Eq. (5) of Ref. [70]. The dependence on E
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and R in Jij (at least to Opαsq) is such that we can write

JijpE,R, z1, µq ” Jijp2E tan
R

2
, z1, µq , (5.30)

i.e., E and R always appear in the combination E tan R
2

. Using the crossing relations

of Sec. IIIC of Ref. [144], it can be shown that an unmeasured beam function in a

collider with center-of-mass energy Ecm and a rapidity cut of ycut can be written as

Bipxi, µq ” BipEcm, ycut, xi, µq

“
ÿ

j

ż

dz

z
JijpxiEcme

´ycut , z, µqfjpxi{z, µq `OpΛ2
QCD{E

2
q (5.31)

where Jij are the same matching coefficients as in Eq. (5.29), at least to Opαsq,4 and

we used the correspondence between an e`e´ jet and a beam with label momentum

xiEcm and rapidity cut ycut

E tan
R

2
Ñ xiEcme

´ycut , (5.32)

which is valid up to Ope´2ycutq corrections. For the dijet cross section we consider,

the xi are fixed via Eq. (5.13).

5.4.3 Soft Function

In general, we can write the bare soft function at Opαsq for dijet production when

both jets have τa measured as

Spτ 1
a , τ

2
a q “ Sunmeasδpτ 1

a qδpτ
2
a q ` rS0S

meas
pτ 1
a qδpτ

2
a q ` p1 Ø 2qs `Opα2

sq , (5.33)

where Sunmeas “ S0 ` Opαsq is the part of the soft function that is always present

(both when the jets are measured and unmeasured). The bare soft function is µ

4 It is argued in [55] that measured beam and jet functions have the same anomalous dimension to
all orders (at least for the measured case), but since the PDFs and fragmentation functions differ
perturbatively at Opα2

sq [145] the matching coefficients must differ for the beam and jet functions
starting at this order.
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independent, and we will distinguish the corresponding renormalized function with

an explicit argument µ. In the cases that neither of the jets or only one jet is mea-

sured, the corresponding Smeas pieces on the right-hand are simply not included,

while Sunmeas is always included. For more jets, the result can be extended straight-

forwardly, although our explicit results only apply to planar jet configurations (as is

necessarily the case for dijet production).

Calculation of the One-Loop Ingredients

The part of the soft function corresponding to the measurement of τ ia on jet i,

Smeaspτ iaq, is obtained from summing over the interference of jet i with all other

jets and the beams. Contributions from radiation arising from the interference of

jets/beams j and k with j, k ‰ i give power corrections in R. The calculation of

Smeaspτ iaq can be obtained from the results for Smeas
ij pτ iaq given in Eq. (5.18) of Ref. [65]

through the rescaling in Eq. (5.12). We find

Smeas
pτ iaq “ 2

ÿ

iăj

ˆ

pT
2EJ

˙2´a

Smeas
ij

ˆˆ

pT
2EJ

˙2´a

τ ia

˙

“
1

ε

αsCi
π

eγEε

Γp1´ εq

1

1´ a

ˆ

1

τ ia

˙1`2εˆ
µ

pT

˙2ε

R2εp1´aq , (5.34)

which clearly has the desired boost-invariant properties.

The additional part of the soft function we require, Sunmeas, can be written as a

sum of contributions in the same manner as Ref. [65],

Sunmeas
“ S0 `

„

S0

ÿ

iăj

Ti ¨Tj

´

Sincl
ij `

N
ÿ

k“1

Skij

¯

` h.c.



, (5.35)

where h.c. denotes the hermitian conjugate. Here, we use the color space formalism

as described in Refs. [146, 147]. The 4!{p2!q2 “ 6 matrices Ti ¨Tj are of rank R, the

same as that of S0, and account for the mixing of color operators in a given basis

into each other at Opαsq. The difference from Ref. [65] is that now each contribution
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involves a pT veto instead of an energy veto as well as a different jet algorithm. In

particular, defining

ΘpT ” Θpk0 sin θkB ă pcut
T q

Θk
R ” ΘpRkJ ă Rq , (5.36)

we now have

Sincl
ij ”

1

ε

αs
2π

ˆ

µ

pcut
T

˙2ε

I incl
ij “ ´g2µ2ε

ż

ddk

p2πqd´1

ni ¨ nj
pni ¨ kqpnj ¨ kq

δpk2
qΘpk0

qΘpT , (5.37)

and

Skij ”
1

ε

αs
2π

ˆ

µ

pcut
T

˙2ε

Ikij “ g2µ2ε

ż

ddk

p2πqd´1

ni ¨ nj
pni ¨ kqpnj ¨ kq

δpk2
qΘpk0

qΘpTΘk
R , (5.38)

where i, j, and k can each be either of the beams or one of the jets (with i ‰ j).

We first perform the energy and trivial parts of the angular integration of Eq. (5.37)

for generic i, j (either jet or beam). To do this, we align the 1-direction (or “ẑ”) with

direction ~ni and put the ~nj vector in the 12-plane, and the beam direction ~nB in

the 123-spatial part of d-dimensional space. Using the shorthands cij ” 1 ´ ni ¨ nj,

sij ” p1 ´ c2
ijq

1{2, ci ” cos θi, and si ” sin θi, the dot products of the gluon’s 3-

momentum, ~k, with these unit vectors take the form

~ni ¨ ~k “ c1

~nj ¨ ~k “ cijc1 ` sijs1c2

~nB ¨ ~k “ nB1c1 ` nB2s1c2 ` nB3s1s2c3 , (5.39)

for the i, j, and beam directions, respectively. In this frame, I incl
ij takes the form (in

MS)

I incl
ij “

p1´ cijqe
γEε

2
?
πΓp1{2´ εq

ż π

0

dθ1 sin1´2ε θ1

ż π

0

dθ2 sin´2ε θ2
1

1´ c1

1

1´ cijc1 ´ sijs1c2

ˆ

„

Γp1{2´ εq
?
πΓp´εq

ż π

0

dθ3 sin´1´2ε θ3

`

1´ pnB1c1 ` nB3s1c2 ` nB3s1s2c3q
2
˘ε



.

(5.40)
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The quantity in parenthesis to the ε1 power in the second line is the square of the

sine of the gluon-beam angle and comes from doing the k0 (energy) integral over the

pT veto, ΘpT . For planar events (such as dijet events at hadron colliders), nB3 “ 0

(since the beam is in the ij-plane for all i, j) and the integration over θ3 can be easily

performed. The entire second line (the quantity in brackets) then becomes simply
„

¨ ¨ ¨



planar
ÝÝÝÑ

`

1´ pnB1c1 ` nB2s1c2q
2
˘ε
, (5.41)

with n2
B2 “ 1 ´ n2

B1. We also note that when i is equal to the beam direction (so

nB1 “ 1 and nB2 “ 0), this quantity reduces to
„

¨ ¨ ¨



ni“nB
ÝÝÝÝÑ sin2ε θ1 . (5.42)

In this case, the ε dependence in the overall power of sin θ1 cancels and we are left

with a divergence unregulated by dimensional regularization. This is the well-known

rapidity divergence that is present for a pT veto. This can be treated within the

context of SCETII as was done for example in Ref. [111]. Here, we will opt instead

to veto on radiation only below a rapidity cut ycut which is consistent with what is

done at the LHC since radiation going down the beam pipes is not measured. We

compute the soft function components I iij and I incl
ij for the case i and j can each

either be beams or jets in Appendix D and record the results in Table 5.1. For the

case that either i or j is a beam, we only compute the full out-of-beam contribution,

e.g. I incl
JB ` IBJB (or I incl

BB̄
` IB

BB̄
` IB̄

BB̄
for the case both i and j are beams) to avoid

having to regulate the rapidity divergences in individual components.

For several of the components, we use the fact that the result is boost invariant

along the beam direction to boost to the frame where the jets are back-to-back. The

relation between the back-to-back frame beam-jet angle θJ and the jet rapidities in

the lab frame is

cos θJ “ tanh
∆y

2
, (5.43)
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Table 5.1: A summary of results for the “unmeasured” part of the soft function,
Sunmeas, up to Ope´ycut ,R2q. Here, the subscript J refers to the two jets, J “ 1, 2,
and B and B̄ refer to the two beams, and ∆y “ y1´y2. Each component is explicitly
boost invariant about the beam direction (with 2ycut in the B-B̄ interference terms
in general given by the rapidity difference of the forward and backward beam cuts).

Contribution Result

I incl
BB̄
` IB

BB̄
` IB̄

BB̄
2ycut

I1
BB̄
` I2

BB̄
OpR2q

I incl
BJ ` IBBJ ` IB̄BJ ´ 1

2ε
` ycut ´ yJ ` ε

π2

24

IJBJ 1
2ε
R´2ε

`

1´ ε2 π
2

12

˘

Ik‰J,BBJ Ope´ycut ,R2q

I incl
12 p2 cosh ∆y

2
q´2εp´1

ε
` ε

2
p∆yq2 ` επ

2

12
q

I1
12 ` I2

12
1
ε
R´2ε

`

1´ ε2 π
2

12

˘

IB,B̄12 Ope´ycutq

where ∆y “ y1 ´ y2 is the rapidity difference of the two jets. This also means that

when putting a polar angle restriction on the emitted gluon in the back-to-back

frame, one has to apply the correspondence Eq. (5.43) in using Eq. (5.9), which

amounts to the replacement

tan
R

2
Ñ

R
2 cosh ∆y{2

, (5.44)

where dependence on the left-hand side arises from enforcing a restriction on the

polar angle of the gluon about a jet (θ ă R) in the back-to-back frame.

Using the color algebra identity
ř

i Ti “ 0 and the kinematic relations

ln
nJ ¨ nB

2
“ ´yJ ´ lnp2 cosh yJq

ln
nJ ¨ n̄B

2
“ yJ ´ lnp2 cosh yJq , (5.45)
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for jets J “ 1, 2, and

ln
n1 ¨ n2

2
“ ln

p2 cosh ∆y{2q2

p2 cosh y1qp2 cosh y2q
, (5.46)

we find

Sunmeas
“ S0 `

αs
π

"

S0

„ˆ

1

2ε
` ln

µ

pcut
T

˙

´

Sdiv
`

ÿ

i“1,2

Ci lnR
¯

´
1

2

ÿ

i“1,2

Ci ln
2R

´T1 ¨T2 ln
`

1` e∆y
˘

ln
`

1` e´∆y
˘



` h.c.

*

`Opα2
sq .

(5.47)

In this equation,

Sdiv
“
ÿ

iăj

Ti ¨Tj ln
ni ¨ nj

2
´ ycut

`

CB ` CB̄q ´
ÿ

i“1,2

Ci lnp2 cosh yiq

“ ∆γsspmiq ´M1
pmiq , (5.48)

where in the second line we wrote the result in terms two functions defined by

∆γsspmiq “
ÿ

i“B,B̄

Ci ln
xiEcme

´ycut

mi

`
ÿ

i“1,2

Ci ln
pT
mi

M1
pmiq ” ´

ÿ

iăj

Ti ¨Tj ln
sij

mimj

, (5.49)

where sij ” 2pi ¨ pj ą 0 (and where pi “ xiEcm for the beams i “ B, B̄). Note that

for later convenience we have defined these functions so that each separately depends

on a set of parameters mi. The dependence on mi cancels in the sum in the second

line of Eq. (5.48).

Refactorization

We note here that one can also construct the ingredients needed for the refactorized

cross section as was done in Ref. [5] for the resummation of (global) logs of R from
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the ingredients in Table 5.1. In particular, the conclusions of Ref. [5] suggest that

Sunmeas should be factorized as

Sunmeas
“

1

2
S0

ż pcut
T

0

dE
”

sspEq b s
1
scpERq b s2

scpERq
ı

` h.c.

“ S0 `
αs
4π

1

2

”

S0

´

Sp1qs pp
cut
T q `

ÿ

k“1,2

Skp1qsc pp
cut
T Rq

¯

` h.c.
ı

`Opα2
sq , (5.50)

where b is a convolution over the variable E and the functions Ss and Sksc are the

global soft (with radiation anywhere except for the beams) and soft-collinear (with

radiation within jet k) functions, respectively, and where

sspp
cut
T q ”

d

dpcut
T

Sspp
cut
T q

skscpp
cut
T Rq ”

d

dpcut
T

Skscpp
cut
T Rq (5.51)

with both functions f “ Ss, S
k
sc normalized as fpxq “ θpxq`

ř

i“1p
αs
4π
qnf pnqpxq. Note

that all of the non-trivial color mixing occurs in Ss. This is due to the fact that the

soft-collinear modes of Refs. [5, 122] are confined to a single jet and is expected to

hold to all orders.

In terms of the ingredients in Table 5.1, we have

Sp1qs pp
cut
T q “

4

ε

ˆ

µ

pcut
T

˙2ε
ÿ

iăj

Ti ¨Tj

„

I incl
ij ` pδiB ` δiB̄qpδjJ1 ` δjJ2qI iij

` δiBδiB̄pI iij ` Ijijq


“
4

ε

ˆ

µ

pcut
T

˙2ε„
ÿ

i“1,2

Ci
2ε

´

1´ ε2
π2

12

¯

` Sdiv
´ 2εT1 ¨T2 ln

`

1` e∆y
˘

ln
`

1` e´∆y
˘



(5.52)
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and

Skp1qsc pp
cut
T Rq “

4

ε

ˆ

µ

pcut
T

˙2ε
ÿ

iăj

Ti ¨Tj

”

δikI iij
ı

“
4

ε

ˆ

µ

pcut
T R

˙2ε
”

´
Ck
2ε

´

1´ ε2
π2

12

¯ı

.

(5.53)

5.5 RG Evolution and the Total NLL’ Cross Section

In this section, we apply Renormalization Group (RG) methods to the functions

calculated in this chapter and arrive at the result for the total NLL’ resummed

cross section. These functions can be divided into those which are multiplicatively

renormalized and those that renormalize via a convolution. The former include the

hard function and unmeasured jet functions and the unmeasured part of the soft

function, and the latter includes measured jet and soft functions.

5.5.1 Hard Function

The hard function H for N ´ 2 jet production in hadron collisions is a matrix in

color space with rank R (the same as that of the soft function). It can be written in

terms of Wilson coefficients Ci as pHqij “ CiC
˚
j , each of which mix into each other

under renormalization, i.e, Cbare
i “

ř

jpZHpµqqijCj which implies that

Hbare
“ ZHpµqHpµqZ

:

Hpµq . (5.54)

The µ-independence of the left-hand side of Eq. (5.54) implies that H ” Hpµq obeys

the RGE

dH

d lnµ
“ ΓH H`H Γ:H , (5.55)

where

ΓH ” ´Z´1
H

d

d lnµ
ZH (5.56)
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This RGE preserves the hermiticity of H under RG evolution. ΓH in Eq. (5.55) is

given (to Opα2
sq) by [148,149]

ΓH “
1

2

N
ÿ

i“1

„

Ci Γcpαsq ln
m2
i

µ2
´
αs
π
γi



` ΓcpαsqMpmiq , (5.57)

where γi is given in Eq. (5.21), Γcpαsq is the cusp anomalous dimension (given in

Eq.(A.3)), and mi is an arbitrary parameter(s) which can be chosen for convenience

and can be shown to cancel between the first term and Mpmiq. The first term is

(implicitly) proportional to an identity matrix and M in the second term involvers

a non-trivial matrix of rank R, which can be written as

Mpmiq ” ´
ÿ

iăj

Ti ¨Tj

„

ln

ˆ

p´1q∆ij
sij

mimj

´ i0`
˙

“ M1
pmiq ` iπT , (5.58)

where ∆ij is 0 for beam-jet interference and 1 for beam-beam and jet-jet interference,

sij “ 2pi¨pj ą 0, and in the second line we explicitly separated the terms of the form

∆ij lnp´1q into the matrix iπT, where

T ”
ÿ

iăj

∆ij Ti ¨Tj . (5.59)

and M1pmiq is defined in Eq. (5.49). The matrix M is worked out for a set of choices

of color bases for all 2 Ñ 2 channels in Ref. [4] with the choice m2
i “ ´t ą 0 (the

Mandelstam variable) in the qq1 Ñ qq1 channel (and the choice for other channels

obtained by crossing relations). Importantly, for any µ-independent choice for mi,

M is independent of µ.

The effect of the color-trivial component of Eq. (5.55) (i.e., the contribution from

the term in brackets in Eq. (5.57)) can be obtained using the results in Appendix A

and gives rise to a factor ΠH as in Eq. (A.7) with the parameters needed for KH

and ωH at NLL’ given in Table 5.2. We can straightforwardly include the effect of
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ΓcpαsqMpmiq via matrix exponentiation and record the solution as

Hpµ, µHq “ ΠHpµ, µHqΠHpµ, µHqHpµHqΠ
:

Hpµ, µHq , (5.60)

where

ΠHpµ, µHq ” exp
!

M

ż αspµq

αspµHq

dα

βrαs
Γcpαq

)

“ exp
!

M
´ 2

β0

ln
αspµHq

αspµq
` ¨ ¨ ¨

¯)

, (5.61)

where in the second equality we expanded to NLL’ accuracy. This matrix expo-

nential can be defined by first constructing the matrix R of eigenvectors of M such

that R´1MR “ ΛH is the diagonal matrix of eigenvalues of M, and then defining

exppMq ” R exppΛHqR
´1.

5.5.2 Jet Functions and Unmeasured Beam Functions

Since the jet functions can be obtained directly from rescalings of those in Ref. [65]

as described in Sec. 5.4.1, the renormalization is similarly related to the results in

Ref. [65]. For measured (renormalized) jet functions we have

γJipτ
i
a, µq “

„

2ΓcpαsqCi
2´ a

1´ a
ln

µ

pT
`
αs
π
γi



δpτ iaq ´ 2ΓcpαsqCi
1

1´ a

ˆ

1

τ ia

˙

`

, (5.62)

which is of the general form Eq.( A.13) with cusp (ΓF rαss) and non-cusp (γF rαss)

pieces given in Table 5.2. Here and below, the ‘`’ distribution is defined for example

in Eq. (A.2) of Ref. [65].

To RG evolve the jet function, we perform the integral in Eq. (A.15) for the

case F “ J . Integrals of this form are most easily performed by convolving the

right-hand side against 1 “ Z´1bZ and first performing the convolution of UF with

the bare function, i.e., Z b F , then expanding in ε, and finally performing the Z´1

convolution (which just removes the 1{ε poles in a minimal subtraction scheme). For
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the jet function, we obtain

Jmeas
pτ ia, µq “ Z´1

J pτ
i
a, µJq b

”

Jmeas
pτ iaq b UJpτ

i
a, µ, µJq

ı

“ Z´1
J pτ

i
a, µJq b

#

UJpτ
i
a, µ, µJq

˜

1´
αspµJq

2π

„

´ fipaq`

ˆ

1

ε

2Ci
1´ a

`
γi

1´ a{2

˙

Γp´2ε{p2´ aqqΓp´ωiJq

Γp´2ε{p2´ aq ´ ωiJq

ˆ

µJ
pT pτ iaq

1{p2´aq

˙2ε
¸+

`

“

"

UJpτ
i
a, µ, µJq

´

1` f iJpτ
i
a;ω

i
J , µJq

¯

*

`

, (5.63)

where fJpτ,Ω, µq is the one loop part of the renormalized jet function after RG evo-

lution,

f iJpτ,Ω, µq “
αs

πp2´ aq

"

2´ a

2
fipaq ` γi

„

Hp´1´ Ωq ` p2´ aq ln
µ

pT τ 1{p2´aq



(5.64)

`
Ci

1´ a

„ˆ

Hp´1´ Ωq ` p2´ aq ln
µ

pT τ 1{p2´aq

˙2

´ ψp1qp´Ωq `
π2

6

*

,

and Hpxq is the harmonic number function and ψp1qpxq is the polygamma function

of order 1 and fipaq is given in Eq. (5.28). The natural scale for the jet function

suggested by Eq. (5.64) is

µmeas
J ” pT pτ

i
aq

1{p2´aq . (5.65)

From the discussion in Sec. 5.4.2 and the results of Sec. 5.4.1, we have for both

unmeasured jet functions and unmeasured beam functions the anomalous dimensions

γJi “ 2ΓcpαsqCi ln
µ

pTR
`
αs
π
γi , (5.66)

and

γBi “ 2ΓcpαsqCi ln
µ

xiEcme´ycut
`
αs
π
γi , (5.67)
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which have the form of Eq.( A.2). We have summarized the cusp and non-cusp parts

in Table 5.2 and γi is given in Eq. (5.21) for quark and gluon jets. Eqs. (5.66) and

(5.67) (together with Eq. (5.20)) suggests the canonical scale choices

µunmeas
J “ pTR and µB “ xiEcme

´ycut , (5.68)

with xi fixed via Eq. (5.13).

5.5.3 Soft Function

The total measured soft function, which includes both the Sunmeas and a Smeas contri-

bution for each measured jet as in Eq. (5.33), can be evolved by using a multiplicative-

type RGE (cf. Eq.(A.1)) for Sunmeas and a convolution-type RGE (cf. Eq.(A.12)) for

Smeas, and each can be evolved from a separate scale (an unmeasured soft scale and

a measured soft scale, respectively). This corresponds an early version of “refactor-

ization” originally suggested in Ref. [65]. A more complete refactorization procedure

was recently introduced in [5] which involves further refactorizing Sunmeas into a global

soft contribution and a soft-collinear contribution, as in Eq. (5.50). In this section,

we demonstrate how both approaches are achieved so that they can be compared

numerically in Sec. 5.5.5.

Unmeasured Evolution

The unmeasured component of the soft function Sunmeas is renormalized much like

the hard function5

Sunmeas,bare
“ Z:SpµqS

unmeas
pµqZSpµq (5.69)

which gives rise to an RGE of the form

d

d lnµ
Sunmeas

“ SunmeasΓunmeas
S ` h.c. , (5.70)

5 Note that Eq. (5.69) takes the form of Eq. (5.54) but with ZH Ø Z:S . This gives rise to the

RGE Eq. (5.70) which is of the form Eq. (5.55) but with Γunmeas
S Ø Γ:H . RGE invariance then

requires ΓH “ ´Γunmeas
S ` ¨ ¨ ¨ where the ellipses denote color-trivial contributions.
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with

Γunmeas
S ”

αs
π
pSdiv

´ iπT`
ÿ

i“1,2

Ci lnRq

“
αs
π

´

∆γsspmiq ´Mpmiq `
ÿ

i“1,2

Ci lnR
¯

, (5.71)

where Sdiv and ∆γss are defined in Eqs. (5.48) and (5.49), and M and T are defined

in Eqs. (5.58) and (5.59). In Eq. (5.71), we have inserted the factor iπT to comply

with matrix-level consistency of the anomalous dimensions, which is consistent with

the one loop bare soft function calculation Eq. (5.47) since S0T “ T:S0.

The solution to this RGE is completely analogous to that of the hard RGE

Eq. (5.55). The result is

Sunmeas
pµ, µSq “ Πunmeas

S pµ, µSq
“

Π:

Spµ, µSqS
unmeas

pµSqΠSpµ, µSq
‰

(5.72)

where Πunmeas
S is of the form Eq. (A.7) with NLL’ parameters given in Table 5.2 and

ΠSpµ, µSq ” exp
!

´M

ż αspµq

αspµSq

dα

βrαs
Γcpαq

)

“ exp

"

´M

„

2

β0

ln
αspµSq

αspµq
` ¨ ¨ ¨

*

(5.73)

where in the second equality we expanded to NLL’ accuracy. Inspection of the

unmeasured soft function Eq. (5.47) suggests the canonical unmeasured soft scale

choice

µunmeas
S ” pcut

T . (5.74)

Measured Evolution

When the jets are measured, RGE takes the form

d

d lnµ
Spτ 1

a , τ
2
a , µq “

ż

dτ 1dτ 2rSpτ 1, τ 2, µqΓSpτ
1
a ´ τ

1, τ 2
a ´ τ

2, µq ` h.c.s , (5.75)

with the soft anomalous dimension given to NLL accuracy by

ΓSpτ
1
a , τ

2
a , µq “ Γunmeas

S δpτ 1
a qδpτ

2
a q `

”1

2
γmeas
S pτ 1

a , µqδpτ
2
a q ` p1 Ø 2q

ı

, (5.76)
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where γmeas is given by

γmeas
S pτ ia, µq “ ´ΓcpαsqCi

1

1´ a

"

2 ln
µR1´a

pT
δpτ iaq ´ 2

ˆ

1

τ ia

˙

`

*

(5.77)

which has the form of Eq.(A.13). The τa dependence of measured jets requires the

inclusion of the evolution kernels U i
Spτa, µ, µ0q as in Eq. (A.16) with NLL’ parameters

given in Table 5.2. To evaluate the effect of convolving these kernels, we use the same

method as in Eqs. (5.63) and (5.64). This gives for the RG evolved measured part

of the soft function

Smeas
pτ ia;µq “ Z´1

S pτ
i
a, µSq b

„

U i
Spτ

i
a, µ, µSq

ˆ

1`
1

ε

αspµSqCi
πp1´ aq

eγEε

Γp1´ εq

ˆ
Γp´2εqΓp´ωiSq

Γp´2ε´ ωiSq

ˆ

µSR1´a

pT τ ia

˙2ε˙

`

“ U i
Spτ

i
a, µ, µSq

´

1` f iSpτ
i
a;ω

i
S, µSq

¯

, (5.78)

f iSpτ ; Ω, µq “
αsCi

πp1´ aq

„

ψp1qp´Ωq ´

ˆ

Hp´1´ Ωq ` ln
µR1´a

pT τ

˙2

´
π2

8



, (5.79)

which suggests the canonical scale choice

µmeas
S ”

pT τ
i
a

R1´a
. (5.80)

Taking the scales from which the two measured components and the unmeasured

component are evolved from to be µ1,2
S and µ̄S, respectively, we record the final

result as

Spτ 1
a , τ

2
a , µ, µ

1
S, µ

2
S, µ̄Sq “ U1

Spτ
1
a , µ, µ

1
SqU

1
Spτ

2
a , µ, µ

2
Sq
“

1` pf 1
Spτ

1
a ;ω1

S, µ
1
Sq

` f 2
Spτ

2
a ;ω2

S, µ
2
Sqq

‰

Πunmeas
S pµ, µ̄Sq

“

Π:

Spµ, µ̄SqS
unmeas

pµ̄SqΠSpµ, µ̄Sq
‰

. (5.81)

Refactorized Evolution

The components of the refactorized Sunmeas (cf. Eq. (5.50)), ss and skcs for k “ 1, 2

evolve as
d

d lnµ
sspEq “

ż

dE 1 sspE
1
qΓsspE ´ E

1
q , (5.82)
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and
d

d lnµ
skscpERq “

ż

dE 1 skscpE
1RqΓkscppE ´ E

1
qRq , (5.83)

respectively. The anomalous dimensions take the form Eq.( A.13) and satisfy the

relations

1

2

ż pcut
T

0

dE ΓkscpEq “ ´CkΓcrαss ln
µ

pcut
T R

` γkhemirαss , (5.84)

and

1

2

ż pcut
T

0

dE ΓsspEq “
ÿ

i“1,2

`

CiΓcrαss ln
µ

pcut
T

´ γihemirαss
˘

`
αs
π
p∆γsspmiq ´Mpmiqq ,

(5.85)

where we used that to all-orders, the non-cusp part of the anomalous dimension

for γsc is the same as that of the hemisphere thrust distribution [5] (of the color-

representation of jet k). At Opαsq, γihemi “ 0. The additional non-cusp parts of

Eq. (5.85) (which do not appear in the analogous e`e´ calculation [5]) are needed

for this measurement to ensure the consistency of refactorization at Opαsq,
1

2

ż pcut
T

0

dE
`

ΓsspEq `
ÿ

k

ΓkscpEq
˘

“ Γunmeas
S . (5.86)

To RG evolve the refactorized soft function, we write

Sp1qss “
1

ε

ˆ

µ

pcut
T

˙2ε

fs

ÿ

k“1,2

Skp1qsc “
1

ε

ˆ

µ

pcut
T R

˙2ε

fc (5.87)

where fs,c “
ř

ti“0,1,2u ε
i´1f is,c can be read off from the Opαsq results Eqs. (5.52) and

(5.53) and are given by

f 0
c “ ´2pC1 ` C2q f0

s “ ´f
0
c

f 1
c “ 0 f1

s “ 4Sdiv

f 2
c “

π2

6
pC1 ` C2q f2

s “ ´8T1 ¨T2 lnp1` e∆y
q lnp1` e´∆y

q ´ f 2
c . (5.88)
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This allows us to write the RG evolved bare functions (using a similar argument as

that described above Eq. (5.63)) as

ż pcut
T

0

dE
”

sspEq b UsspE{µss, µ, µssq
ı

bi“1,2

”

siscpERq b U i
scpER{µsc, µ, µscq

ı

“

ż pcut
T

0

dE
”

sspEq bi“1,2 s
i
scpERq

ı

b

”

UsspE{µss, µ, µssq bi“1,2 U
i
scpER{µsc, µ, µscq

ı

“

ż pcut
T

0

dE

„

1´ 2
Γp´2εqΓp´ΩSq

Γp´2ε´ ΩSq

ˆ

αspµssq

4π

ˆ

µss
E

˙2ε

fs

`
αspµscq

4π

ˆ

µsc
ER

˙2ε

fc

˙

USpE, µ, µss, µscq ,

(5.89)

where in the 3rd line we truncated the series in parenthesis to Opαsq and we defined

ΩS ” ωsspµ, µssq `
ÿ

i“1,2

ωiscpµ, µscq (5.90)

and

USpE,ΩS, µss, µscq ”
”

UsspE{µss, µ, µssq bi“1,2 U
i
scpER{µsc, µ, µscq

ı

(5.91)

and used that US scales as

US9
1

Γp´ΩSq
E´1´ΩS . (5.92)

Expanding in ε and dropping the 1{ε poles gives the renormalized, refactorized and

RG evolved Sunmeaspµq,

Sunmeas
pµq Ñ Sunmeas

pΩS, µss, µscq

ż pcut
T

0

dE USpE,ΩS, µss, µscq (5.93)
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where

Sunmeas
pΩ, µsc, µssq ” S0 `

"

S0

„

αspµssq

4π

ˆ

1

2
f2
s ` f1

s

´

ln
µss
pcut
T

`Hp´Ωq
¯

(5.94)

` f0
s

´π2

6
´ ψp1qp1´ Ωq `

`

ln
µss
pcut
T

`Hp´Ωq
˘2
¯

˙

`
αspµscq

4π

ˆ

1

2
f 2
c ` f

1
c

´

ln
µsc
pcut
T R

`Hp´Ωq
¯

` f 0
c

´π2

6
´ ψp1qp1´ Ωq `

`

ln
µsc
pcut
T R

`Hp´Ωq
˘2
¯

˙

` h.c.

*

.

We note that when combined into the full cross section in Sec. 5.5.4, the µ de-

pendence can be cancelled to all orders between Eq. (5.93) and the remainder of the

cross section (using consistency and Eq. (5.86)) at the expense of running all factor-

ized components from µss to the scale of the component. This means for example

that we have

ΩS Ñ
ÿ

i“1,2

ωiscpµss, µscq ” ωsc . (5.95)

This means in particular we can make the replacement

Sunmeas
pµq Ñ Sunmeas

pωsc, µss, µscqUscpωsc, µss, µscq (5.96)

where

Uscpωsc, µss, µscq ”

ż pcut
T

0

dE USpE,ωsc, µss, µscq “
eKsc`γEωsc

Γp1´ ωscq

ˆ

µsc
pcut
T R

˙ωsc

, (5.97)

where Ksc ”
ř

i“1,2Kscpµss, µscq. The parameters needed for Ksc and ωsc at NLL’

(which can be expanded as in Eq.( A.10)) can be read off from Eqs. (5.84) and (5.85)

and are given in Table 5.2.
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Table 5.2: Ingredients for anomalous dimensions of the color-trivial parts compo-
nents to the factorization formula and the corresponding canonical scale choices µF ,
which take the form of Eq.(A.2) and (A.13). The hard and (unmeasured) soft com-
ponents require an additional color-nontrivial factor derived explicitly in the text.
Here, Ci is the quadratic Casimir (CF or CA for quarks and gluons, respectively), γi
is given in Eq. (5.21), Γ ” Γcpαsq is the cusp (given in Eq.(A.3)), xi are the momen-
tum fractions of the partons in the beams (fixed via Eq. (5.13)), and ∆γss is given
in Eq. (5.49) (and mi is an arbitrary parameter that cancels both within ΓH and
within ΓS and can for example be chosen based on the partonic channel to coincide
with the conventions of Ref. [4] as described in the text). For refactorizing the soft
function as in [5], the last two rows are used in place of γunmeas

S .

ΓF rαss γF rαss jF mF µF

γH ´Γ
ř

iCi ´
ř

i
αs
π
γi 1

ś

im
Ci{

ř

j Cj
i mi

γJipτ
i
aq ΓCi

2´a
1´a

αs
π
γi 2´ a pT pT pτ

i
aq

1{p2´aq

γmeas
S pτ iaq ´ΓCi

1
1´a

0 1 pT {R1´a pT τ
i
a{R1´a

γJi ΓCi
αs
π
γi 1 pTR pTR

γBi ΓCi
αs
π
γi 1 xiEcme

´ycut xiEcme
´ycut

γunmeas
S 0

2αs
π

∆γsspmiq

`2αs
π
pC1 ` C2q lnR 1 — pcut

T

γss ΓpC1 ` C2q
2αs
π

∆γsspmiq 1 pcut
T pcut

T

γisc ´ΓCi 0 1 pcut
T R pcut

T R

5.5.4 Total NLL’ Resummed Cross Section

For the case of unmeasured jets, we can now readily assemble the ingredients in

Eq. (5.17) to obtain

dσ “
pT

8πx1x2E4
cm

1

N
Bpx1, µ

1
BqB̄px2, µ

2
BqJ1pµ̄

1
JqJ2pµ̄

2
JqΠunmeas

pµ̄S, µ̄
1,2
J , µ1,2

B , µHq

ˆ TrtHpµHqΠ
:
pµ̄S, µHqS

unmeas
pµ̄SqΠpµ̄S, µHqu (5.98)
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where here and below we use a bar over a parameter to denote that it is an un-

measured quantity (so for example µ̄S denotes the unmeasured soft scale while µS

denotes the measured soft scale), and x1,2 are fixed to the values in Eq. (5.13). The

function Π in Eq. (5.98) is defined as

Πpµ̄S, µHq “ ΠSpµ, µ̄SqΠHpµ, µHq “ exp
!

M

ż αspµ̄Sq

αspµHq

dα

βrαs
Γcpαq

)

“ exp

"

M

„

2

β0

ln
αspµHq

αspµ̄Sq
` ¨ ¨ ¨

*

(5.99)

with ΠH and ΠS defined in Eqs. (5.61) and (5.73), respectively, where in the second

equality we canceled the µ dependence (to all orders) and in the third equality we

expanded to NLL’ accuracy. We also used the definition of the overall multiplicative

RG kernel as

Πunmeas
pµ̄S, µ̄

1,2
J , µ1,2

B , µHq ” ΠHpµ, µHqΠ
unmeas
S pµ, µ̄Sq

ź

i“1,2

Πi
Bpµ, µ

i
Bq

ź

i“1,2

Π̄i
Jpµ, µ̄

i
Jq

“
ź

F“H,B1,B2,J1,J2

eKF pµ̄S ,µF q
ˆ

µF
mF

˙ωF pµ̄S ,µF q

, (5.100)

where mF , K
i
F , ω

i
F for F “ Ji, Bi, H are given to NLL’ in Eq.(A.8) and (A.9) in terms

of the parameters of Table 5.2. To arrive at Eq. (5.100), we used the consistency of

the anomalous dimensions to explicitly cancel the µ dependence to all orders. Here

and below, we denote unmeasured quantities with bars to distinguish them from the

corresponding measured quantities below.

When the angularity of one or more jets is measured, we need to include Smeaspτ iaq

(and its corresponding anomalous dimension γmeas
S pτ iaq) for each measured jet, and

we need to replace the unmeasured jet functions Ji with measured ones Jpτ iaq (and

replace Π̄i
J Ñ UJpτ

i
aq). To perform the convolutions for measured jet functions with

the measured part of the soft functions, it is easier to first do the convolutions of the

evolution factors with each other, and then convolve the resulting full kernel with
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the renormalized functions. For the case of two measured jets, this yields

dσpτ 1
a , τ

2
a q “

pT
8πx1x2E4

cm

1

N
Bpx1, µ

1
BqB̄px2, µ

2
Bq

„

Πmeas
pτ 1,2
a , µ1,2

S , µ̄S, µ
1,2
J , µ1,2

B , µHq

ˆ
“

1`
`

f 1
Spτ

1
a ;ω1

S, µ
1
Sq ` f

1
J pτ

1
a ;ω1

S, µ
1
Jq ` p1 Ø 2q

˘‰



`

ˆ Tr
!

HpµHqΠ
:
pµ̄S, µHqS

unmeas
pµ̄SqΠpµ̄S, µHq

)

, (5.101)

where f iJpτ,Ω, µq and f iSpτ,Ω, µq are given in Eqs. (5.64) and (5.79), respectively,

and we defined

Πmeas
pτ 1,2
a , µ1,2

S , µ̄S, µ
1,2
J , µ1,2

B , µHq

”
Πunmeaspµ̄S, µ

1,2
J , µ1,2

B , µHq
ś

i“1,2 Π̄i
Jpµ, µ

i
Jq

ź

i“1,2

U i
Jpτ

i
a, µ, µ

i
Jq b U

i
Spτ

i
a, µ, µ

i
Sq

“ Πunmeas
pµ̄S, µ

1,2
J , µ1,2

B , µHq
ź

i“1,2

eK
i
S`γE ω

i
S

Γp´ωiSq

ˆ

µiS
mi
S

˙ωiS Θpτ iaq

pτ iaq
1`ωiS

, (5.102)

where γE is the Euler constant. The Ki
S and ωiS appearing in these Eqs. (5.101) and

(5.102) are expanded to NLL’ in Eq.(A.8) and (A.9) in terms of the parameters in

Table 5.2 and are evaluated at the scales

ωiS ” ωiSpµ
i
J , µ

i
Sq

Ki
S ” Ki

Spµ
i
J , µ

i
Sq . (5.103)

To arrive at Eq. (5.102), we used that

γJipτ
i
a, µq ` γ

meas
S pτ ia, µq ´ γJipµq δpτ

i
aq “ 0 (5.104)

to explicitly cancel the µ dependence of the measured jet and soft functions and the

subtracted out unmeasured jet functions (evaluated at the measured jet scale µJ).
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In particular, Eq. (5.104) implies that

eK
i
SpµJ ,µSq

ˆ

µS
mS

˙jSω
i
SpµJ ,µSq

“ eK
i
J pµ,µJ q`K

i
Spµ,µSq´K̄

i
J pµ,µJ q (5.105)

ˆ

ˆ

µJ
mJ

˙jJω
i
J pµ,µJ q

ˆ

µS
mS

˙jSω
i
Spµ,µSq

ˆ

µJ
m̄J

˙´ω̄iJ pµ,µJ q

,

and that

ωiSpµJ , µSq “ ωiSpµ, µSq ` ω
i
Jpµ, µJq . (5.106)

Finally, we note that to refactorize the cross section and resum logarithms of R

as in Ref. [5], we simply need to make the replacement Eq. (5.96) for both the case

of unmeasured and of measured jet formula, Eqs. (5.98) and (5.101), respectively,

and interpret µ̄S Ñ µss. We discuss the numerical impact of this effect in the next

Section.

5.5.5 A Simple Example

We consider the simple partonic channel qq1 Ñ qq1. Of course to compute a physically

observable cross section we will need to sum over all partonic channels, however, this

is beyond the scope of this work. Our aim is to consider the scale variation of the

cross section and investigate the impact of refactorization of the soft function on

the differential cross section. We find the main effect of refactorization is to reduce

the normalization of the cross section and to lower the scale uncertainty, which is

qualitatively similar to what is found in the study of refactorization in e`e´ collisions

recently completed in Ref. [5]. We also study the dependence of the cross section

on the parameters R, pcut
T , and a, and comment on the physics responsible for this

dependence.

From the results of Ref. [4] we have the (MS renormalized) hard function to Opαsq

in the color basis that corresponds to the t-channel 8b 8 and 1b 1 operators,

Hpµq “ 8g4
`

H0 `
αs
4π

H1pµq `Opα2
sq
˘

, (5.107)
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where

H0 “
s2 ` u2

t2

ˆ

1 0
0 0

˙

, (5.108)

and

rH1pµqs11 “
s2 ` u2

t2

ˆ

´ 4CF ln2 ´t

µ2
` 2 RerX1ps, t, uqs ln

´t

µ2
` 2Y

˙

`
s2

t2

´

CA ´ 4CF

¯

RerZps, t, uqs `
u2

t2
p4CF ´ 2CAqRerZpu, t, sqs

rH1pµqs21 “
s2 ` u2

t2
X2ps, t, uq ln

´t

µ2
´
s2

t2
CF
2CA

Zps, t, uq `
u2

t2
CF
2CA

Zpu, t, sq

rH1pµqs12 “ rH1pµqs
˚
21

rH1pµqs22 “ 0 , (5.109)

where X1,2, Z, and Y are defined in Eqs. (33)-(36) of [4] and s, t, and u are given in

terms of the jet rapidities and pT in Eq. (5.14).

To use the convention of [4], we set mi “
?
´t for this channel and have

M1
p
?
´tq “

ˆ

4CF ln ´u
s
´ CA ln tu

s2
2 ln ´u

s
CF
CA

ln ´u
s

0

˙

(5.110)

and

Mp
?
´tq “ M1

p
?
´tq ` iπT , (5.111)

where

T “

ˆ

´2{CA 2
CF {CA 0

˙

. (5.112)

Computing the eigenvalues of M gives

λH1,2 “ ´
CA
2

´

ln
ut

s2
` 2iπ

¯

` 2CF

´

ln
´u

s
` iπ

¯

˘

c

C2
A

4

´

ln
ut

s2
` 2iπ

¯2

´ 2CFCA

´

ln
´u

s
` iπ

¯´

ln
´t

s
` iπ

¯

, (5.113)
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and for the eigenvectors we find

R “

˜

λH1 λH2
CF
CA

´

ln ´u
s
` iπ

¯

CF
CA

´

ln ´u
s
` iπ

¯

¸

. (5.114)

The MS renormalized soft function for the naive factorization is given by

Sunmeas
pµq “ S0 `

αs
π

"

S0

„

pSdiv
` 2CF lnRq ln

µ

pcut
T

´ CF ln2R

´T1 ¨T2 ln
`

1` e∆y
˘

ln
`

1` e´∆y
˘



` h.c.

*

, (5.115)

whereas the refactorized result is obtained with the replacement Eq. (5.96). The tree

level soft function in this basis is given by

S0 “

ˆ

1
2
CFCA 0

0 C2
A

˙

(5.116)

In addition to S0 and the matrix component M1pmiq of Sdiv given above, we need

the matrix T1 ¨T2, which for a general 2 Ñ 2 scattering is given by

T1 ¨T2 “ TB ¨TB̄ `
1

2
pCB ` CB̄ ´ C1 ´ C2q . (5.117)

For qq Ñ qq, Ci “ CF for all i so the Ci cancel and we have

T “
1

2

”

2TB ¨TB̄ ` 2T1 ¨T2

ı

“ 2T1 ¨T2 . (5.118)

To estimate uncertainty from higher orders in perturbation theory, we vary the

hard scale µH and the unmeasured jet and soft scales, µ̄J and µ̄S, separately by

˘50% around their central values, which we take to be the canonical scales µF

given in Table 5.2. For the refactorized case, we vary the soft scales µss and µsc

simultaneously. However, to avoid varying the measured jet and soft scales for µJ,S „

ΛQCD, we vary them around profile functions [81, 82]. This is done by defining µJ,S

as

µiSpτ
i
aq “ p1` eSgpτqqµpτ

i
aq

µiJpτ
i
aq “ p1` eJgpτqq

`

pTR
˘

1´a
2´a

`

µpτ iaq
˘

1
2´a . (5.119)
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⌧0

⌧min ⌧max

Figure 5.1: Profile functions for µS and µJ . These functions are defined in
Eq. (5.119) and below.

with eJ,S P p´1{2, 1{2q. The total uncertainty bands are defined to be the envelope

of all of the above variations.

In terms of the function

θεpxq ”
1

1` exp p´x{εq
, (5.120)

which becomes a Heaviside step function in the limit εÑ 0,

lim
εÑ0

θεpxq “ θpxq , (5.121)

the function gpτq is chosen to be

gpτq “ θε1pτ ´ τ
min
q θε2pτ

max
´ τq , (5.122)

and µpτq is chosen to be

µpτq “

#

µ0 ` ατ
β
?
´t, τ ă τmin

pT τ

R1´a
, τ ą τmin ,

(5.123)

where α and β are fixed by the continuity of µpτq and its first derivative to be

α “
pT

βpτminqβ´1R1´a
?
´t

β “

ˆ

1´
µ0R

1´a

pT τmin

˙´1

, (5.124)
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Figure 5.2: Differential cross section for four different values of R with soft function
refactorized (blue) and without (red). Central values are dotted lines and band
includes scale variation.

respectively. The continuity conditions also require that β is greater than unity

which implies we need τmin ą µ0R1´a{pT .

The profile functions for µS and µJ , for a “ 0, are shown in Fig. 5.1. Eqs. (5.122)

and (5.123) together ensure that for sufficiently small τ , the scale choice becomes

frozen to be µ0 (and non-perturbative physics dominates), above some scale τmin we

recover the canonical choices (cf. mJ,S of table Table 5.2), and above a third scale

τmax individual H, J, S scale variation begins to dampen (as that should be han-

dled by the traditional µ variation of fixed-order QCD using a tail-region matching

scheme). This is expected to give reasonable scale variation for the range of validity,

roughly τmin ă τ ă τmax.
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Figure 5.3: Differential cross sections for three different values of pcut
T .

For the sake of illustration, we plot the “normalized cross section” (which neglects

the PDFs and effects of the fixed order beam function corrections, the latter of which

can be found in [70] following the discussion in Sec. 5.4.2), defined as

dσ̃pτaq ”
Bpx1, µ “ µHqB̄px2, µ “ µHq

Bpx1, µ “ µ1
BqB̄px2, µ “ µ2

Bq

dσpτ 1
a , τ

2
a q

σLOpµ “ µHq

ˇ

ˇ

ˇ

ˇ

τ1
a“τ

2
a“τa

. (5.125)

For the kinematic and algorithm/observable parameters, we choose for a set of default

parameters (fixed to these values unless explicitly varying them in the figures)

Ecm “ 10 TeV

a “ 0

y1 “ 1.0

y2 “ 1.4

pT “ 500 GeV

pcut
T “ 20 GeV

R “ 0.6

ycut “ 1.7
, (5.126)
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which corresponds to (via Eqs. (5.13) and (5.14))

t{s “ ´0.401

u{s “ ´0.599

?
s{Ecm “ 0.051

and
x1 “ 0.169

x2 “ 0.015
, (5.127)

and for the profile functions parameters, we choose

τmin
“ 2p1´ aqµ0R1´a

{pT “ .00032p1´ aq

τmax
“ .002

and

ε1
τmin

“
ε2
τmax

“ 10´0.1

µ0 “ 200 MeV

.

(5.128)

In Fig. 5.2 we show the NLL’ calculations for four different values of R, with all

other parameters set to their default values in Eq. (5.126). In these plots the blue

bands are the predictions with a refactorized soft function and the red bands are

the predictions without refactorization. In the limit R Ñ 1 the scales µss and µsc

coincide and the two calculations must give the same result, as seen in the figure. For

the smallest value of R “ 0.4, refactorization lowers the normalization of the cross

sections by a factor of roughly two, without changing the shape of the distribution

or the location of the peak. Refactorization gives a small reduction in the scale

uncertainty for R ă 1. Note that as R decreases the peak in the τ0 distribution

shifts to smaller values of τ0 because the jets are narrower.

Fig. 5.3 shows the refactorized NLL’ resummed cross section for three different

values of pcut
T with all other parameters set to their defaults in Eq. (5.126). Interest-

ingly the shape of the distribution and the location of the peak in the cross section

are completely independent of pcut
T , only the normalization of the cross section is

affected. As expected, the cross section is larger for larger values of pcut
T . As dis-

cussed in the Introduction, the NGLs, which are of the form αns lnnppcut
T R2{pJT τaq,

for n ě 2, combine pcut
T and τa in a nontrivial way. It is possible that when the NGLs

are included in the calulcation, the location of the peak of the τa distribution may
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no longer be pcut
T independent. Therefore, the dependence of the peak on pcut

T might

be an observable that is sensitive to the NGLs.
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Figure 5.4: Differential cross sections for four different values of a.

Fig. 5.4 shows the refactorized NLL’ resummed cross section for four different

values of a with other parameters set to the default values. As a is made large and

negative, the contribution to the angularity from particles collinear to the jet axis

is suppressed by large powers of the angle with the jet axis. Correspondingly the

distribution is peaked at smaller values of τa, a behavior also seen in calculations

of jet angularities in e`e´ collisions [65]. It is important for obtaining sensible

scale variation for all values of a that the parameter τmin defined in Eq. (5.128) is

proportional p1 ´ aq. Both perturbative and power corrections grow with 1{p1 ´ aq

and factorization breaks down completely for a “ 1 in SCETI (although an SCETII
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approach can be used for a “ 1 [103]). Thus, one expects increasing uncertainty as

aÑ 1 from below, and we see from Fig. 5.3 that the uncertainties in the predictions

are substantially larger for a “ 0.5 than for a ď 0.

5.6 Conclusion

In this work, we presented the factorization formulae valid for jet production in

hadron colliders with rapidity cuts about the beams, an out-of-jet pcut
T veto, and the

jets identified with either a kT -type (including kT , C{A, and anti-kT ) or cone-type

algorithm. We considered the cases that the jets can either be identified but otherwise

unprobed (“unmeasured” jets) or are further probed with angularities (“measured”

jets). The ingredients of these formulae involved jet functions, unmeasured beam

functions, and an observable dependent soft function. This soft function was further

written in terms of a universal piece, Sunmeas, which encodes the out-of-jet energy

veto pcut
T and angularity independent (but color and direction dependent) pieces.

We were able to relate all of the ingredients of the factorization formula except for

Sunmeas to analogous quantities that have previously been calculated in the context

of e`e´ collisions to NLL’ accuracy. Sunmeas was explicitly computed for the case of

dijet production (for which all Wilson lines are coplanar) in terms of color operators

Ti¨Tj that encode the color correlations at this order. We in turn explicitly presented

results for these color operators (which become matrices in color space) for the qq1 Ñ

qq1 channel, and plotted the corresponding distribution for the illustrative example

where both jets are measured with τa for a “ 0 in the τ 1
a “ τ 2

a bin. We also generalized

the refactorization of Ref. [5] to include color-mixing effects and found that, as was

already seen in e`e´, the normalization of the cross section and the corresponding

scale uncertainty were reduced. Using the results of Ref. [5], our results can now be

straightforwardly extended to NNLL for any combination of measured (at least for

a “ 0) and unmeasured jets. The non-global logarithms which we do not include
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and would appear in a fixed order calculation of the soft function beginning at Opα2
sq

have arguments of order pcut
T R2{pJT τa which for the peak region of the distribution

(where we trust our calculation) is Op1q to within a decade.

Armed with this foundation, we can now (after including all the partonic chan-

nels) make meaningful comparisons with Monte Carlo event generators and directly

with data. It will be of particular interest to study the sensitivity of the proposed,

factorized cross section to effects like multiple parton interactions. Other observables

that are sensitive to radiation near the beam pipes like beam thrust [150] have been

noted to receive Op1q corrections from these effects. We expect that our observables

will be less sensitive to this effect because the jets are isolated and the unmeasured

beam functions should not be sensitive to radiation near the beam pipe. We also

hope to be able to incorporate other effects with the recent developments for NGLs

as discussed in the Introduction. In addition, we are interested in extending the

results of this chapter to cross sections for jets in which there is an identified heavy

quarkonia, especially J{ψ and Υ. The cross sections will take essentially the same

form as the cross sections in this chapter, with an additional convolution of the cross

section with the heavy quark or quarkonium fragmentation as well as a modified

fJ factor that depends on the matching coefficients in the fragmenting jet function.

We expect to compare these predictions to Monte Carlo event generators and LHC

measurements [151].
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6

Conclusions

In this thesis the development of a complete framework for studies of quarkonium

production within jets is presented. The methodology used is based on the factor-

ization theorems of Soft-Collinear Effective Theory and Non-Relativistic Quantum

Chromodynamics. In Chapter 3 we show how this formalism can be extended to

various jet observables and particularly we studied a family of jet-shape observables

referred to as angularities. We calculated the cross section at NLL accuracy for the

production of B mesons and J{ψ through b-quark and gluon fragmentation, respec-

tively. For the case of J{ψ we considered four NRQCD production mechanisms, in

particular: 3S
r1s
1 , 1S

r8s
0 , 3S

r8s
1 , and 3P

r8s
J . We compare our results against monte

carlo simulations using PYTHIA and HERWIG simulation packages. While our ana-

lytic calculations are in very good agreement with the results from simulations for

the case of B mesons, they differ significantly for J{ψ. The problem was traced

to the unrealistic showering of color-octet cc̄ pair in the simulations. By modifying

the simulations in order to implement a more realistic showering process, we found

consistency with our analytic calculations. Furthermore our results showed some

discriminating power between the various production mechanisms of J{ψ.
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As an extension of the work on FJFs, in Chapter 4 we introduced the Trans-

verse Momentum Dependent FJF (TMDFJF). Similar to the standard FJFs, the

TMDFJFs describe a hadron produced within a jet and in addition the transverse

momentum of the hadron is measured with respect to the jet axis. Using the frame-

work of TMDFJF, we derive expressions for the angular distributions of hadrons with

respect to the jet axis. We implement our results for the case of J{ψ production for

the four mechanisms mentioned earlier. The mean angle, as a function of the energy

fraction, was found to have significant discriminating power between the production

mechanisms.

As a step towards applying this formalism to similar cross sections in hadron

colliders, we completed the calculations of all the necessary parts for evaluating

the dijet cross section at LHC. For this purpose we constructed the universal part

of the soft function and introduced the unmeasured beam functions that describe

the initial state jets. We also presented the implementation of a recently-developed

factorization approach for resumation of the global logarithms of the jet cone size

parameter.

We also performed a semi-analytic calculation for proton-proton collisions at
?
s “ 13 GeV and compared against recent measurements from the LHCb collab-

oration. Our formalism showed that the energy ratio parameter z is sensitive to

the values of LDMEs and that various extractions of the LDMEs give significantly

different distributions. LDMEs extracted from high pK hadron collider data show

much better agreement with the experimental data.

The work presented in this thesis consists of a complete formalism that can be

used to study quarkonium production in jets at hadron colliders that will give a

further insight into quarkonium production mechanisms.
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Appendix A

Renormalization Group and Resummation

A.1 Evolution of Measured and Unmeasured Functions

The RGEs satisfied by the elements of the factorization theorem are separated into

two categories; terms that do depend on the variable τa and terms that do not. The

latter satisfy the following RGE

µ
d

dµ
fpµq “ γf pµqfpµq , (A.1)

where γF pµq is the anomalous dimension

γF pµq “ ´
1

ZF pµq
µ
d

dµ
ZF pµq “ ΓF pαsq ln

ˆ

µ2

m2
F

˙

` γF pαsq , (A.2)

where mF is related to the characteristic scale for the particular function, and ZF pµq

is the renormalization function for F pµq. The coefficient ΓF pαsq is proportional to

the cusp anomalous dimension, Γcusppαsq, which can be expanded in αs

Γcusppαsq “
8
ÿ

n“0

´αs
4π

¯1`n

Γnc , (A.3)
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and ΓF “ pΓ
0
F {Γ

0
cqΓcusp. The non-cusp part, γF pαsq, has a similar expansion

γF pαsq “
8
ÿ

i“0

´αs
4π

¯1`i

γiF . (A.4)

The solution to RGE is given by

F pµq “ exp pKF pµ, µ0qq

ˆ

µ0

mF

˙ωF pµ,µ0q

F pµ0q , (A.5)

or equivalently

F pµq “ ΠF pµ, µ0qF pµ0q , (A.6)

where the evolution kernel ΠF is given by

ΠF pµ, µ0q “ eKF pµ,µ0q

ˆ

µ0

mF

˙ωF pµ,µ0q

, (A.7)

where the exponents KF and ωF are given in terms of the anomalous dimension,

KF pµ, µ0q “ 2

ż αpµ0q

αpµq

dα

βpαq
ΓF pαq

ż α

αpµ0q

dα1

βpα1q
`

ż αpµ0q

αpµq

dα

βpαq
γF pαq, (A.8)

ωF pµ, µ0q “ 2

ż αpµ0q

αpµq

dα

βpαq
ΓF pαq, (A.9)

and for up to NLL and NLL’ accuracy are given by

KF pµ, µ0q “ ´
γ0
F

2β0

ln r ´
2πΓ0

F

pβ0q
2

”r ´ 1` r ln r

αspµq
`

ˆ

Γ1
c

Γ0
c

´
β1

β0

˙

1´ r ` ln r

4π

`
β1

8πβ0

ln2 r
ı

,

ωF pµ, µ0q “ ´
Γ0
F

jFβ0

”

ln r `

ˆ

Γ1
c

Γ0
c

´
β1

β0

˙

αspµ0q

4π
pr ´ 1q

ı

, (A.10)

where r “ αpµq{αpµ0q and βn are the coefficients of the QCD β-function,

βpαsq “ µ
dαs
dµ

“ ´2αs

8
ÿ

n“0

´αs
4π

¯1`n

βn . (A.11)
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The RGEs for functions that depend on the variable τa are of the form

µ
d

dµ
F pτa, µq “

”

γF pµq b F pµq
ı

pτaq , (A.12)

where

γF pτa, µq “ ´
”

Z´1
F pµq b µ

d

dµ
ZF pµq

ı

pτaq

“ ΓF pαsq

ˆ

ln
µ2

m2
F

´
2

jF

ˆ

Θpτaq

τa

˙

`

˙

` γF pαsqδpτaq ,

(A.13)

and the solution to this equation is given by

F pτa, µq “ exp pKF ` γEωF q
1

Γp´ωF q

ˆ

µ0

mF

˙jFωF
«

ˆ

Θpτaq

pτaq1`ωF

˙

`

b F pτa, µ0q

ff

.

(A.14)

or equivalently

F pτa, µq “

ż

dτ 1 UF pτa ´ τ
1
a, µ, µ0qF pτ

1
a, µ0q , (A.15)

where to all orders in αs the evolution kernel UF is given by [152–156]

UF pτa, µ, µ0q “
eKF`γEωF

Γp´ωF q

ˆ

µ0

mF

˙jFωF
„

Θpτaq

pτaq1`ωF



`

, (A.16)

where γE is the Euler constant.

A.1.1 Plus-distribution identities

We begin with the equation

ż

dτ 2
” Θpτ ´ τ 2q

pτ ´ τ 2q1`ω1

ı

`

” Θpτ 2 ´ τ 1q

pτ 2 ´ τ 1q1`ω2

ı

`
“

Γp´ω1qΓp´ω2q

Γp´ω1 ´ ω2q

” Θpτ ´ τ 1q

pτ ´ τ 1q1`ω1`ω2

ı

`
,

(A.17)
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which can be easily proven using Laplace transforms and the defining equation of

the plus distribution,

rfpτqs
`
” lim

βÑ0

d

dτ
rθpτ ´ βqF pτqs , (A.18)

where F pτq is defined as

F pτq ”

ż τ

1

dτ 1fpτ 1q , (A.19)

which yields

L
!

ˆ

1

τ 1`ω

˙

`

)

“ sωΓp´ωq . (A.20)

The following equations can be derived by setting τ 1 Ñ 0 in Eq. (A.17), expanding

in ω2 both sides and matching powers:

ż

dτ 1
” Θpτ ´ τ 1q

pτ ´ τ 1q1`ω

ı

`
L´1pτ

1
q “

”Θpτq

τ 1`ω

ı

`
, (A.21)

ż

dτ 1
” Θpτ ´ τ 1q

pτ ´ τ 1q1`ω

ı

`
L0pτ

1
q “

”Θpτq

τ 1`ω

ı

`
pln τ ´Hp´1´ ωqq ,

ż

dτ 1
” Θpτ ´ τ 1q

pτ ´ τ 1q1`ω

ı

`
L1pτ

1
q “

”Θpτq

τ 1`ω

ı

`

pln τ ´Hp´1´ ωqq2 ` π2{2´ ψp1qp´ωq

2
,

where we used [65]

”Θpτq

τ 1`ω

ı

`
“

8
ÿ

n“´1

p´ωqnLnpτ 1q, (A.22)

where

L´1pτq “ δpτq and Lną´1pτ
1
q “

”Θpτq lnnpτq

τ

ı

`
. (A.23)
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A.2 Reorganization of logarithms of p1´ zq

The convolutions in the variable z need to be performed numerically since they

involve the evolved FFs, which are evaluated by solving the DGLAP equation using

Mellin transformations. For this reason we expand the plus-distributions using the

following relations

ż 1

z

dx

x

´ 1

1´ x

¯

`
f
´z

x

¯

“

ż 1

z

dx
1

1´ x

´1

x
f
´z

x

¯

´ fpzq
¯

` fpzq lnp1´ zq, (A.24)

ż 1

z

dx

x

´ lnp1´ xq

1´ x

¯

`
f
´z

x

¯

“

ż 1

z

dx
lnp1´ xq

1´ x

´1

x
f
´z

x

¯

´ fpzq
¯

` fpzq
1

2
ln2
p1´ zq.

(A.25)

Thus for every function Dpzq the convolution with f ijJ pτ, z, µq gives

1

Tij

2π

αspµq
f ijJ pτ, z, µq ‚Dpzq “ δij f1pτ, z, µq Dpzq ´ g1pτ, z, µq ` g2pτ, z, µq, (A.26)

where

f1pτ, z, µq “
1´ a{2

1´ a

´

f2pτ, z, µq
¯2

`
ap1´ a{4q

p1´ aqp1´ a{2q

π2

6
´

ψp1qp´Ωq

p1´ aqp1´ a{2q
,

f2pτ, z, µq “ 2 ln

ˆ

µ

µJpτ, zq

˙

`
1

1´ a{2
Hp´1´ Ωq, (A.27)

g1pτ, z, µq “

ż 1

z

dx f2pτ, x, µq
´ P̄jipxq

x
˝D

´z

x

¯¯

,

g2pτ, z, µq “

ż 1

z

dx
”

cijpxq ´
1

1´ a{2
ln

˜

1`

ˆ

1´ x

x

˙1´a
¸

P̄jipxq

x

ı

˝D
´z

x

¯

,

with

µJpτ, zq “ ωτ 1{p2´aq
p1´ zqp1´aq{p2´aq,
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Figure A.1: Profile functions for µPFS pτ0q and µPFJ pτ0q, the τ0-dependent renormal-
ization scales that we use in the scale variations of our measured soft function and
measured jet function. Also shown are traditional scale variations done by varying
µ by ˘50%.

cqqpzq “
1´ z

z
,

cggpzq “ 0,

cgqpzq “ 2p1´ zq,

cqgpzq “ 1,

and

fpxq ˝ gpxq “ fpxqgpxq ,

rfpxqphpxqq`s ˝ gpxq “ hpxqrfpxqgpxq ´ fp1qgp1qs .

A.3 Profile Functions

Here, we write down the profile functions used to perform scale variations for our

measured soft and measured jet functions. We use profile functions to introduce a
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τa-dependent scale variation that freezes at the characteristic scale for high values

of τa where the factorization theorem breaks down and at a fixed scale for small

values of τa where we reach the non-perturbative regime. The profile function for

the measured soft function, µPFS pτ0q, and the profile function for the measured jet

function, µPFJ pτ0q, are plotted in Fig. A.1 (for the case a “ 0). The analytic formulae

for these functions are

µPFS pτaq “

„

1` εS
gpτaq

gp1q



ˆ

#

µmin ` ατ
β
a 0 ă τa ă τmin

ωτa{r
p1´aq τmin ď τa

,

µPFJ pτaq “

„

1` εJ
gpτaq

gp1q



ˆ

#

pωrqp1´aq{p2´aqpµmin ` ατ
β
a q

1{p2´aq 0 ă τa ă τmin

ωτ
1{p2´aq
a τmin ď τa

,

(A.28)

where we have defined

gpτq “
1

exp
´

1.26pτmin ´ τq{τmin

¯

` 1
, (A.29)

and where α and β are defined to be

β “
τmin

τmin ´ µminrp1´aq{ω
and α “

ω

βτβ´1
min r

p1´aq
. (A.30)

These choices for α and β ensure that the profile functions and their first derivatives

are continuous. We use the following values for the parameters

τmin “ 2µminr
1´a
{ω

µmin “ 0.3 GeV . (A.31)

We define our scale variations via

εS{J “ 1{2 Ñ `50% variation,

εS{J “ ´1{2 Ñ ´50% variation,

εS{J “ 0 Ñ Canonical scale ,
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and take the final scale variation bands as the envelope of the set of bands from the

individual variations.

A.4 Rapidity RG Evolution

The RRG equation in momentum space for a renormalized function FR is given by

ν
d

dν
FR
ppK, µ, µ{νq “ γFν ppK, µ, νq bK F

R
ppK, µ, µ{νq, (A.32)

where the anomalous dimension can be written in the following generic form,

γFν ppK, µ, νq “ ΓFν rαssL0pp
2
K, µ

2
q ` γFν rαssδ

p2q
ppKq, (A.33)

where

δp2qppKq “
1

π
δpp2

Kq. (A.34)

The cusp and non-cusp parts of the anomalous dimension are listed in Table A.1.

Taking the Fourier transform of Eq. (A.32) yields,

d

d ln ν
F̃ pb, µ, νq “ γ̃Fν pb, µ, νqF̃ pb, µ, νq, (A.35)

where the Fourier conjugate of pK is b where |b| “ b and using the form of the

anomalous dimensions in Eq. (4.42,4.43) gives that,

γ̃Fν pb, µ, νq “ ´
ΓFν rαss

p2πq2
ln

ˆ

µ

µCpbq

˙

`
γFν rαss

p2πq2
, (A.36)

where µCpbq “ 2e´γE{b. Integrating Eq. (A.35) yields

F̃ pb, µ, νq “ F̃ pb, µ, ν0qVF pb, µ, ν, ν0q, (A.37)

where

VF pb, µ, ν, ν0q “ exp
”

GF pµ, ν, ν0q

ı

ˆ

µ

µC

˙ηF pµ,ν,ν0q

, (A.38)
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with

GF pµ, ν, ν0q “
γFν rαss

p2πq2
ln

ˆ

ν

ν0

˙

and ηF pµ, ν, ν0q “ ´
ΓFν rαss

p2πq2
ln

ˆ

ν

ν0

˙

. (A.39)

Table A.1: Values of the cusp and non-cup parts of the anomalous dimensions for
the collinear and collinear-soft functions.

Function pF q ΓFν γFν Γ0
F γ0

F

Di{h ´p8πqαsCi `Opα2
sq Opα2

sq 0 4Ciplnpν
2{ω2q ` γ̄iq

SiC p8πqαsCi `Opα2
sq Opα2

sq 4Ci 0
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Appendix B

FJFs matching Coefficients and Consistency Checks

B.1 Evaluation of matching coefficients

In pure dimensional regularization all diagrams contributing to the FFs vanish, and

the only diagrams that contribute to the angularity FJF for quarks are Figs. 3a)

and 3b) of Ref. [68]. For Fig. 3a) we get

CFαs
2π

p4πµ2qεp1´ εq

Γr1´ εs

1´ z

1´ a{2
ω2aε{p2´aq

p1´ zq´2p1´aqε{p2´aq

ˆ

ˆ

1`
p1´ zq1´a

z1´a

˙2ε{p2´aq
1

s
1`2ε{p2´aq
a

, (B.1)

and for Fig. 3b) we get

CFαs
2π

2z

1´ a{2

p4πµ2qε

Γr1´ εs
ω2aε{p2´aq 1

p1´ zq1`2p1´aqε{p2´aq

ˆ

ˆ

1`
p1´ zq1´a

z1´a

˙2ε{p2´aq
1

s
1`2ε{p2´aq
a

, (B.2)

where sa “ ω2τa. The first expression is singular as τa Ñ 0 the second is singular as

z Ñ 1 and τa Ñ 0, but the singularities are regulated by dimensional regularization.
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Employing the distributional identity

1

p1´ zq1`ε
“ ´

1

ε
δp1´ zq `

ˆ

1

1´ z

˙

`

´ ε

ˆ

lnp1´ zq

1´ z

˙

`

` ... , (B.3)

and similarly for τa we find for the divergent terms

CFαs
2π

˜

δpsaqδp1´ zq

„

2´ a

1´ a

1

ε2
`

2´ a

1´ a

1

ε
ln

ˆ

µ2

ω2

˙

`
3

2ε



´
1

1´ a

2

ε
δp1´ zq

1

ω2

„

1

τa



`

´ δpsaq
1

ε
Pqqpzq

¸

, (B.4)

where Pqq is defined in Eq. (3.20). The first four terms in this expression are the ex-

pected UV poles for the angularity jet function (multiplied by δp1´zq), see Eq. (3.37)

of Ref. [132]. In order to simplify this expression we have redefined 4πe´γEµ2 Ñ µ2,

i.e., we are working in the MS scheme. The last term is the expected UV pole in

the perturbative evaluation of the QCD fragmentation function. Since Gipτa, z, µq is

expected to evolve like the angularity jet function, this is the correct structure of UV

divergences implied by Eq. (3.10). The finite pieces are given by

1

ω2

Jqqpτa, z, µq
2p2πq3

“
CFαs

2π

1

ω2

"

δpτaqδp1´ zq
2´ a

1´ a

ˆ

´
π2

12
`

1

2
ln2

ˆ

µ2

ω2

˙˙

` δpτaq

ˆ

1´ z ´

„

ln

ˆ

µ2

ω2

˙

`
1

1´ a{2
ln

ˆ

1`
p1´ zq1´a

z1´a

˙

1` z2

p1´ zq`

`
1´ a

1´ a{2
p1` z2

q

ˆ

lnp1´ zq

1´ z

˙

`

˙

`

„

1

τa



`

ˆ

1

1´ a{2

1` z2

p1´ zq`
´ δp1´ zq

2

1´ a
ln

ˆ

µ2

ω2

˙˙

`
2δp1´ zq

p1´ aqp1´ a{2q

„

ln τa
τa



`

*

. (B.5)
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In the limit aÑ 0 this becomes

1

ω2

Jqqpτ0, z, µq

2p2πq3
“
CFαs

2π

"

δpsqδp1´ zq

ˆ

´
π2

6
` ln2

ˆ

µ2

ω2

˙˙

` δpsq

ˆ

1´ z ´ ln

ˆ

µ2

ω2

˙

1` z2

p1´ zq`
` ln z Pqqpzq ` p1` z

2
q

ˆ

lnp1´ zq

1´ z

˙

`

˙

`
1

ω2

„

1

τ0



`

ˆ

1` z2

p1´ zq`
´ 2δp1´ zq ln

ˆ

µ2

ω2

˙˙

` 2δp1´ zq
1

ω2

„

ln τ0

τ0



`

*

,

(B.6)

where we have used δpτ0q{ω
2 “ δpsq. Using the following distributional identities

1

ω2

„

1

τ0



`

“
1

ω2

„

ω2

s



`

“
1

µ2

„

µ2

s



`

` ln

ˆ

µ2

ω2

˙

δpsq ,

1

ω2

„

ln τ0

τ0



`

“
1

ω2

„

lnps{ω2q

s{ω2



`

“
1

µ2

„

lnps{µ2q

s{µ2



`

`
lnpµ2{ω2q

µ2

„

µ2

s



`

`
1

2
ln

ˆ

µ2

ω2

˙

δpsq , (B.7)

which are readily verified by integrating both sides over s, one finds that in the aÑ 0

limit the finite piece is given by

Jqqps, z, µq
2p2πq3q

“
CFαs

2π

!

δpsq

ˆ

1´ z ` ln z Pqqpzq ` p1` z
2
q

´ lnp1´ zq

1´ z

˙

`

´
π2

6
δp1´ zq

¯

`
1

µ2

„

µ2

s



`

1` z2

p1´ zq`
` 2δp1´ zq

1

µ2

„

lnps{µ2q

s{µ2



`

)

, (B.8)

which agrees with the matching coefficient found in Eq. (2.32) of Ref. [68].

Next we calculate Jqgpτa, z, µq. Naively this is related to Jqqpτa, z, µq by the

replacement z Ñ 1 ´ z. However, because in the convolution integral of Eq. (3.10)

the argument of Jijpτa, z{z1, µq is never zero, there is no need to regulate poles of z.

Therefore, a divergent factor of p1´ zq´1´ε in Jqqpτa, z, µq becomes in Jqgpτa, z, µq

1

z1`ε
“

1

z
´ ε

ln z

z
`Opε2q . (B.9)
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Thus, Jqgpτa, z, µq is obtained by making the substitution z Ñ 1 ´ z and then

dropping all δpzq and plus prescriptions. This is true for the Jqgps, z, µq calculated

in Ref. [68] and remains true for Jqgpτa, z, µq. We thus find for the divergent terms

1

ω2

J div
qg pτa, z, µq

2p2πq3
“ ´

1

ω2

CFαs
2π

1

ε
δpτaqPgqpzq , (B.10)

where Pgq is given in Eq. (3.20). For the finite pieces we get

1

ω2

Jqgpτa, z, µq
2p2πq3

“
CFαs

2π

1

ω2

#

δpτaq
´

z `
” 1

1´ a{2
ln

ˆ

z1´ap1´ zq1´a

z1´a ` p1´ zq1´a

˙

´ ln

ˆ

µ2

ω2

˙

ı

Pgqpzq
¯

`
1

1´ a{2

„

1

τa



`

Pgqpzq

+

.

(B.11)

Again, these reproduce the matching coefficients of Ref. [68] in the aÑ 0 limit.

For the divergent contributions to Jggpτa, z, µq we get (from the diagrams in Fig. 4

of Ref. [68])

1

ω2

J div
gg pτa, z, µq

2p2πq3
“
CAαs

2π

1

ω2

˜

δpτaqδp1´ zq

„

2´ a

1´ a

1

ε2
`

2´ a

1´ a

1

ε
ln

ˆ

µ2

ω2

˙

`
β0

2CA

1

ε



´
1

1´ a

2

ε
δp1´ zq

„

1

τa



`

¸

´
αs
2π

1

ω2
δpτaq

1

ε
P̃ggpzq , (B.12)

where the P̃ggpzq is the full QCD splitting function that includes the term propor-
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tional to β0δp1´ zq. For the finite parts of Jggpτa, z, µq we find

1

ω2

Jggpτa, z, µq
2p2πq3

“
CAαs

2π

1

ω2

"

δpτaqδp1´ zq
2´ a

1´ a

ˆ

´
π2

12
`

1

2
ln2

ˆ

µ2

ω2

˙˙

`δpτaq

ˆ

´Pggpzq

„

ln

ˆ

µ2

ω2

˙

`
1

1´ a{2
ln

ˆ

1`
p1´ zq1´a

z1´a

˙

`
1´ a

1´ a{2

2p1´ z ` z2q2

z

ˆ

lnp1´ zq

1´ z

˙

`

˙

`

„

1

τa



`

ˆ

1

1´ a{2
Pggpzq ´ δp1´ zq

2

1´ a
ln

ˆ

µ2

ω2

˙˙

`
2δp1´ zq

p1´ aqp1´ a{2q

„

ln τa
τa



`

*

, (B.13)

where Pgg is given in Eq. (3.20). In the limit a Ñ 0, this expression reduces to

Jggps, z, µq{p16π3q found in Eq. (2.33) of Ref. [68].

For the divergent contributions to Jgqpτa, z, µq we find

1

ω2

J div
gq pτa, z, µq

2p2πq3
“ ´

1

ω2

αsTR
2π

1

ε
δpτaqPqgpzq . (B.14)

For the finite parts we get

1

ω2

Jgqpτa, z, µq
2p2πq3

“
αsTR
2π

1

ω2

"

1

1´ a{2

„

1

τa



`

Pqgpzq ` δpτaq2zp1´ zq (B.15)

` δpτaqPqgpzq

„

1

1´ a{2
ln

ˆ

z1´ap1´ zq1´a

z1´a ` p1´ zq1´a

˙

´ ln

ˆ

µ2

ω2

˙*

,

where Pqg is again given in Eq. (3.20). In the limit aÑ 0, this expression reduces to

Jgqps, z, µq{p16π3q in Eq. (2.33) of Ref. [68].
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B.2 Sum Rules

The sum rules,

Jipτaq “
1

2p2πq3

ÿ

j

ż 1

0

dz z Jijpτa, zq , (B.16)

can be checked for i “ q by performing the integral

Jqpτaq “
1

2p2πq3

ÿ

j

ż 1

0

dz z Jqjpτa, zq (B.17)

“
1

2p2πq3

ż 1

0

dz z pJqqpτa, zq ` Jqgpτa, zqq (B.18)

“
1

2p2πq3

ż 1

0

dz z pJqqpτa, zq ` Jqqpτa, 1´ zqq (B.19)

“
1

2p2πq3

ż 1

0

dz Jqqpτa, zq, (B.20)

where in the last line we changed variables to z Ñ 1 ´ z in the 2nd term. Inserting

the expression in Eq. (B.5) into this integral yields the Jqpτaq found in Eq. (3.35) of

Ref. [132].

In the case of the i “ g we have

Jgpτaq “
1

2p2πq3

ż 1

0

dz z pJggpτa, zq ` Jgqpτa, zqq

“
1

2p2πq3

ż 1

0

dz
Jggpτa, zq ` Jgqpτa, zq

2
, (B.21)

because both Jggpτa, zq and Jgqpτa, zq are symmetric under z Ñ 1 ´ z. The sum

rule is easiest to verify by writing the d-dimensional expressions for Jggpτa, zq and

Jgqpτa, zq before expanding in ε “ p4´ dq{2. We find

1

ω2

Jggpτa, z, µq
2p2πq3

“
1

ω2

ˆ

4πµ2

ω2

˙ε
CAαs

2π

1

Γr1´ εs

1

1´ a{2
pza´1

` p1´ zqa´1
q

2ε
2´a

ˆ

ˆ

1

τa

˙1` 2ε
1´a

ˆ

2z

1´ z
`

2p1´ zq

z
` 2zp1´ zq

˙

, (B.22)
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1

ω2

Jgqpτa, z, µq
2p2πq3

“
1

ω2

ˆ

4πµ2

ω2

˙ε
TRαs
2π

1

Γr1´ εs

1

1´ a{2
pza´1

` p1´ zqa´1
q

2ε
2´a

ˆ

ˆ

1

τa

˙1` 2ε
1´a

ˆ

1´
2

1´ ε
zp1´ zq

˙

. (B.23)

Inserting these two expressions into Eq. (B.21) one obtains exactly the integral ex-

pression for the d-dimensional Jgpτaq found in Eq. (4.22) of Ref. [65].
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Appendix C

TMDFJFs in Factorization Theorems

C.1 Definition and relation to jet functions

Much like the standard FJFs, TMDFJFs appear in factorization theorems for cross-

sections that are differential in z, the fraction of a jet initiating parton’s energy

carried by an identified hadron, and pK, the transverse momenta of the hadron

measured from the parton’s momentum. It is shown in Ref. [65] that the cross-section

for the production of two jets in electron-positron annihilation can be written as,

dσ “ dσp0qH2pµq ˆ SΛpµq ˆ J
q
npω, µq ˆ J

q̄
n̄pω, µq , (C.1)

where dσp0q is the Born cross section, H2pµq is the hard function resulting from

matching a 2-jet operator in full QCD onto the corresponding SCET operators,

SΛpµq is a soft function that describes soft scale cross-talk between the jets and the

soft out-of-jet radiation is constrained via Eout ă Λ, and Jnpω, µq is a jet function

that describes collinear radiation within a jet in the n̂ direction that has energy

EJ “ ω{2 (here ω “ Ecm). The jet function can be defined in SCET as

Jqnpω, µq “

ż

dk`

2π

ż

d4x exppik`x´{2q
1

NC

Tr

„

{̄n

2
x0|δω,P δ0,PKχnpxqχ̄np0q|0y



. (C.2)
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To study jets with identified hadrons, we insert the following expression for the

identity

1 “
ÿ

X

|XyxX| “
ÿ

X

ÿ

hPHi

ż

dzd2phK
2p2πq3

|Xhpz,phKqyxXhpz,p
h
Kq| (C.3)

Jqnpω, µq “
ÿ

hPHi

ż

dzd2pK
2p2πq3

ż

dk`

2π

ż

d4x exppik`x´{2q
1

NC

ˆ
ÿ

X

Tr
”

{̄n

2
x0|δω,P δ0,PKχnpxq|Xhpz,pKqyxXhpz,pKq|χ̄np0q|0y

ı

. (C.4)

where h is an identified hadron within the jet. Performing the integration over x,

which is the Fourier conjugate of the residual momenta, and the residual k` yields

Jqnpω, µq “
ÿ

hPHi

ż

zdzd2pK Gq{hppK, z, µq. (C.5)

Insetrting this back to Eq.(C.1) we have

dσ “
ÿ

hPHi

ż

zdzd2pK dσ
p0qH2pµq ˆ SΛpµq ˆ Gq{hppK, z, µq ˆ J q̄n̄pω, µq. (C.6)

which directly implies

dσi{h

dzd2pK
“ dσp0qH2pµq ˆ SΛpµq ˆ Gq{hppK, z, µq ˆ J q̄n̄pω, µq `O

ˆ

Λ

EJ
,
Λ2

QCD

p2
K

˙

. (C.7)

This suggests a rather powerful rule (already known to be true for the standard

FJFs) for constructing the factorization theorem in SCET with identified hadron

with measured transverse momenta :

dσi{h

dzd2pK
“ dσ

”

J ipω, µq Ñ Gi{hppK, z, µq
ı

(C.8)
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C.2 Matching calculation

In this Appendix we provide details for the evaluation of the matching coefficients,

Ji{j. From the sum of diagrams in Figs. 4.2a) and 4.2b) we get:

DBp1qq{q ppK, z, µ, νq “
αsw

2CF
π

eγEε

Γp1´ εq

´ ν

ω

¯η 1

2πµ2

ˆ

µ2

p2
K

˙1`ε

ˆ

!

2z

ˆ

1

1´ z

˙1`η

` p1´ εqp1´ zq
)

“
αsw

2CF
π

!”

´
2

η

ˆ

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

˙

`
1

2ε

ˆ

ln

ˆ

ν2

ω2

˙

`
3

2

˙

δp2qppKq
ı

δp1´ zq ´
1

2ε
Pqqpzqδ

p2q
ppKq

`

ˆ

´δp1´ zq ln

ˆ

ν2

ω2

˙

` P̄qqpzq

˙

L0pp
2
K, µ

2
q ` cqqpzqδ

p2q
ppKq

)

`Opη, εq, (C.9)

where we define cqqpzq “ p1 ´ zq{2. The superscripts B and R denote bare and

renormalized quantities, respectively, and the superscript p1q indicates that this is

the OpαSq contribution. The NLO matching coefficient is given by

J Rp1q
q{q ppK, z, µq “ D

Rp1q
q{q ppK, z, µq ´D

Rp1q
q{q pz, µqδ

p2q
ppKq, (C.10)

where

D
Rp1q
q{q pzq “ ´

αsCF
π

Pqqpzq
1

2ε
. (C.11)

The 1{ε pole appearing in the FF is interpreted as an infrared divergence. Although

for extracting the renormalized matching coefficients Ji{j we can ignore scaleless

integrals and interpret the finite terms as the renormalized result to that particular

order, here we are interested in the origin of the poles since this will allow us to
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extract the anomalous dimensions. Performing the matching we get:

J R
q{qppK, z, µ, νq “ δp2qppKqδp1´ zq

`
αsCF
π

!

ˆ

δp1´ zq ln

ˆ

ω2

ν2

˙

` P̄qqpzq

˙

L0pp
2
K, µ

2
q ` cqqpzqδ

p2q
ppKq

)

. (C.12)

For the coefficient Jq{g we simply perform the replacement z Ñ p1 ´ zq and drop

δpzq and plus-distributions since these functions are always integrated for values of

z greater than zero. Thus

J R
q{gppK, z, µ, νq “

αsCF
π

!

P̄gqpzqL0pp
2
K, µ

2
q ` cqgpzqδ

p2q
ppKq

)

, (C.13)

where cqgpzq “ cqqp1´ zq “ z{2. For the gluon splitting we get

DBp1qg{g ppK, z, µ, νq “
αsCAw

2

π

eεγE

Γp1´ εq

´ ν

ω

¯η 1

2πµ2

ˆ

µ2

p2
K

˙1`ε

ˆ 2
” z

p1´ zq1`η
`
p1´ zq

z
` zp1´ zq

ı

. (C.14)

Expanding in η and ε we have

DBp1qg{g ppK, z, µ, νq “
αsCAw

2

π

”

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

ı

ˆ

”

´
2

η
δp1´ zq ´ ln

ˆ

ν2

ω2

˙

δp1´ zq ` P̄ggpzq
ı

“
αsCAw

2

π

!”

´
2

η

ˆ

´
1

2ε
δp2qppKq ` L0pp

2
K, µ

2
q

˙

`
1

2ε

ˆ

ln

ˆ

ν2

ω2

˙

`
1

2
β0

˙

δp2qppKq
ı

δp1´ zq ´
1

2ε
Pggpzqδ

p2q
ppKq

`

ˆ

´δp1´ zq ln

ˆ

ν2

ω2

˙

` P̄ggpzq

˙

L0pp
2
K, µ

2
q

)

, (C.15)

and since the corresponding FF is given by:

DR
g{gpzq “ δp1´ zq ´

αsCA
π

Pggpzq
1

2ε
`Opα2

sq, (C.16)
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where the 1{ε pole is an infrared divergence, we have

J R
g{gppK, z, µ, νq “ δp2qppKqδp1´ zq`

αsCA
π

ˆ

δp1´ zq ln

ˆ

ω2

ν2

˙

` P̄ggpzq

˙

L0pp
2
K, µ

2
q.

(C.17)

A similar calculation yields the kernel Jg{q,

DBp1qg{q ppK, z, µ, νq “
αsTFw

2

π

eεγE

Γp2´ εq

1

2πµ2

ˆ

µ2

p2
K

˙1`ε

ˆ
`

P̄qgpzq ´ ε
˘

“
αsTFw

2

π

!

pcgqpzq ´
1

2ε
P̄qgpzqqδ

p2q
ppKq ` L0pp

2
K, µ

2
qP̄qgpzq

)

,

(C.18)

where cgqpzq “ zp1´ zq. Performing the matching and since the corresponding FF is

DR
g{qpzq “ ´

αsTF
π

Pqgpzq
1

2ε
`Opα2

sq, (C.19)

where again the 1{ε pole is an infrared divergence, we get

J R
g{qppK, z, µ, νq “ δp2qppKqδp1´ zq `

αsTF
π

!

L0pp
2
K, µ

2
qP̄qgpzq ` cgqpzqδ

p2q
ppKq

)

.

(C.20)
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Appendix D

Calculations of Soft Function Components

In this Appendix, we calculate the various components needed for Sunmeas. As ex-

plained in the main body of the text, we only calculate combinations of terms that

explicitly remove radiation out of the beams, i.e., with y ą ycut or y ă ´ycut. We

use the definitions cJ ” ~nJ ¨ ~nB, sJ ” p1´ c
2
Jq

1{2, ci ” cos θi, and si ” sin θi. All the

expressions are special cases of the general form Eq. (5.40) in the planar limit, given

by the substitution in Eq. (5.41). For subtraction terms Skij defined in Eq. (5.38)

there is an additional factor of ´Θk
R given in Eq. (5.36).
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D.1 Beam-Beam Interference Terms

We first calculate the beam-beam interference with the gluon out of the beams

Iout
BB̄ ” I incl

BB̄ ` IBBB̄ ` IB̄BB̄

“
eγEε

?
πΓp1{2´ εq

ż π

0

dθ1 sin θ1
1

1´ c1

1

1` c1

ż π

0

dθ2 sin´2ε θ2

“
eγEε

Γp1´ εq

ż tanh ycut

´ tanh ycut

dc1

1´ c2
1

“ ln
1` tanh ycut

1´ tanh ycut

“ 2ycut . (D.1)

The region that must be added to remove radiation in the jets goes as R2 and

so is power suppressed for small jets, but we record it here for completeness. In a

frame where the jet is perpendicular to the beam,

IJBB̄ “
eγEε

?
πΓp1{2´ εq

ż R

0

dθ1 sin1´2ε θ1

ż π

0

dθ2 sin´2ε θ2

“

1´ ps1c2q
2
‰´1`ε

. (D.2)

In this frame (θJ “ π{2), we can make the substitution RÑ R sin π{2 “ R to get a

frame invariant result. This gives

IJBB̄ “
1

2
lnp1´R2

q ´ ε

ˆ

π2

12
´

1

2
Li2p1´R2

q

˙

“ OpR2
q . (D.3)

D.2 Beam-Jet Interference Terms

The beam-jet interference term with the gluon out of both beams is simplest to

compute in the polar coordinates about the beam axis. Defining cos θc ” tc ”
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tanh ycut, it can be written as

Iout
BJ ” I incl

BJ ` IBBJ ` IB̄BJ

“
p1´ cJqe

γEε

2
?
πΓp1{2´ εq

ż π´θc

θc

dθ1 sin θ1

ż π

0

dθ2 sin´2ε θ2
1

1´ c1

1

1´ cJc1 ´ sJs1c2

“
eγEε

2

ż tc

´tc

dc1

1´ c2
1

1´ c1

1´ c1cJ
2F̃1p1{2, 1; 1´ ε; zq , (D.4)

where z “ p1 ´ c2
1qp1 ´ c2

Jq{p1 ´ c1cJq
2. We can proceed by extracting the cJ “ c1

singular via the identity

2F̃1

`1

2
, 1; 1´ ε; z

˘

“

?
π

Γp1{2´ εq cosπε

„

zε
ˆ

1´ c1cJ
|c1 ´ cJ |

˙1`2ε

`
ε
?
π

Γp1´ εq
2F̃1

`3

2
, 1;

3

2
` ε; 1´ z

˘



. (D.5)

The singularities are regulated by the |c1 ´ cJ |´1´2ε in the first term in brackets on

the right hand side of Eq. (D.5) (and the second term is finite and Opεq). After

adding and subtracting the rest of the functional dependence on c1, fpc1q, at the

point c1 “ cJ (so that |c1 ´ cJ |´1´2ε
pfpc1q´ fpcJqq can safely be expanded in ε) and

performing some algebra, we arrive at the result

Iout
BJ “

eγEε

Γp1´ εq

"

´
1

2ε
`

1

2

„

ln
`

e2pycut´yJ q ´ 1q ` ln
`

1´ e´2pycut`yJ
˘



´ ε

„

1

2
ln2

`

1´ e´2pycut´yJ q
˘

` Li2
`

e´2pycut´yJ q
˘

`
1

2
ln2

`

1´ e´2pycut`yJ q
˘

*

“
eγEε

Γp1´ εq

„

´
1

2ε
` ycut ´ yJ `Ope´ycutq



. (D.6)

For the jet region subtraction term SJJB, in coordinates about the jet axis, we
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have

IJBJ “
p1´ cJqe

γEε

2
?
πΓp1{2´ εq

ż R

0

dθ1 sin1´2ε θ1

ż π

0

dθ2 sin´2ε θ2

ˆ
1

1´ c1

1

1´ cJc1 ´ sJs1c2

”

1´ pcJc1 ` sJs1c2q
2
ıε

“
p1´ cJqe

γEε

2
?
πΓp1{2´ εq

ż 1

cosR

dc1p1´ c1q
´1´εfpc1q , (D.7)

where we defined

fpcq “ p1` cq´ε
ż π

0

dθ2 sin´2ε θ2

“

1´ pcJc` sJp1´ c
2q1{2c2q

2
‰ε

1´ cJc´ sJp1´ c2q1{2c2

. (D.8)

Up to corrections that scale as OpR2q, we can set fpcq “ fp1q which is just

fp1q “
2´ε

1´ cJ
s2ε
J

?
πΓp1{2´ εq

Γp1´ εq
. (D.9)

Using the substitution Eq. (5.9), we find

IJBJ “
eγEε

Γp1´ εq

1

2ε
R´2ε

`OpR2
q . (D.10)

D.3 Jet-Jet Interference Terms

For the jet-jet interference terms, we work in coordinates about the jet axes in the

frame where they are back-to-back, and then convert to lab frame variables. For the

term with the gluon allowed anywhere, labeling the jets as 1 and 2, we have in the

frame of back-to-back jets,

IJBJ “
eγEε

?
πΓp1{2´ εq

ż R

0

dθ1 sin1´2ε θ1

ż π

0

dθ2 sin´2ε θ2

ˆ
1

1´ c1

1

1` c1

”

1´ pcJc1 ` sJs1c2q
2
ıε

“
eγEε

?
πΓp1{2´ εq

2

ż 1

0

dc1p1´ c1q
´1´εgpc1q , (D.11)
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where we defined

gpcq “ p1` cq´1´ε

ż π

0

dθ2 sin´2ε θ2

“

1´ pcJc` sJp1´ c
2
q
1{2c2q

2
‰ε
. (D.12)

As before, we can add and subtract gp1q, with

gp1q “
2´1´ε

1´ cJ
s2ε
J

?
πΓp1{2´ εq

Γp1´ εq
, (D.13)

and expand the part of the integrand with p1´uq´1´εpfpuq´ fp1qq in ε. To evaluate

the result, note that

hpcJ , c1q ”
1

π

ż π

0

dθ ln
1´ pc1cJ ` p1´ c

2
1q

1{2p1´ c2
Jq

1{2 cos θq2

1´ c2
J

“

$

&

%

ln
”

1´c21
1´c2J

´

1`|cJ |
2

¯2ı

for |c1| ă |cJ |

2 ln 1`|c1|
2

for |c1| ą |cJ |
, (D.14)

and that
ż 1

0

dc1

1´ c2
1

fpcJ , c1q “ ´
π2

6
`

1

2
ln2 1´ cJ

1` cJ
, (D.15)

to finally obtain

I incl
12 “

eγEε

Γp1´ εq

ˆ

1´ cos2 θJ
4

˙ε„

´
1

ε
`
ε

2
ln2 1´ cJ

1` cJ



. (D.16)

Noting that cJ ” cos θJ in the back-to-back frame is related to the jet rapidities in

the lab frame via cos θJ “ tanh ∆y{2 (cf. Eq. (5.43)), we find

I incl
12 “ ´

eγEε

Γp1´ εq

`

2 coshp∆y{2q
˘´2ε

„

1

ε
´
ε

2
p∆yq2



“ ´
`

2 coshp∆y{2q
˘´2ε

„

1

ε
´
ε

2
p∆yq2 ´

π2

12



. (D.17)

For the jet region subtraction terms, we have

I1
12 “

eγEε
?
πΓp1{2´ εq

2

ż 1

cosR

dc1p1´ c1q
´1´εgpc1q , (D.18)
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which now involves the integral of hpcJ , c1q (cf. Eq. (D.14)) over the range c1 P

pcosR, 1q with cJ ă cosR (so only the case |c1| ą |cJ | is needed). After some algebra

and using the substitution tanR{2 Ñ R{p2 cosh ∆y{2q, we arrive at the result

I1
12 “

eγEε

Γp1´ εq

1

2ε
R´2ε . (D.19)
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