
Relativistic Effects in Nuclear Physics 

Relativistic effects in nuclear physics, especially those in nuclear structure , are 
discussed . While general arguments are given which exclude several recently pro­
posed effects, two important relativistic effects remain: (1) A strongly density 
dependent repulsive term in the energy per particle (Be),c1 = 2(p/p0 )"

13 Me V, where 
Po is nuclear matter density, arises from virtual pair terms; this term is very im­
portant in saturating nuclear matter. (2) The nucleon-nucleon spin-orbit inter­
action is enhanced, since the nucleon mass which enters into this interaction is 
effectively changed locally by scalar fields which connect to negative energy states. 

INTRODUCTION 

The past few years have witnessed steadily increasing activity on 
the role of relativity in nuclear physics. Two extensive reviews are 
about to appear. The first one, by Serot and Walecka, 1 summarizes 
the developments of relativistic nuclear mean field theories. The 
second one, a book by Celenza and Shakin,2 reviews approaches 
aiming at a theoretical foundation of the highly successful Dirac 
phenomenology.3

•4 A recent Comment by Negele5 reviews the sit­
uation. Our presentation here is somewhat different in spirit. 

The purpose of this Comment is twofold: first, to point out some 
conceptual problems that one encounters in relativistic many-body 
theories; second, to present a critical discussion of some of the so­
called large relativistic effects in nuclear structure, once they are 
seen in the broader context of consistency requirements imposed 
by Fermi liquid theory. Despite their phenomenological successes, 
when applying relativistic models to nuclear structure problems, 
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one must be careful not to disregard basic results of many-body 
theory. We shall focus here primarily on two issues related to 
effects of relativity in nuclei: first, a genuine repulsive contribution 
to the nuclear binding energy; second, the detailed structure of 
the spin-orbit coupling in nuclei. Other relativistic effects discussed 
in the literature, such as the enhancement of magnetic moments, 
will be shown to disappear almost completely if treated consis­
tently. 

CONCEPTS 

The generalization of nonrelativistic many-body theory to a rela­
tivistic one is far from trivial, as pointed out long ago by Brown 
and Ravenhall6 and recently by Sucher. 7 The problem is· the fol­
lowing: consider an A-particle product wave function of the Dirac­
Hartree type, as often used in relativistic mean field theories. This 
wave function is generally written without reference to the filled 
Dirac sea of negative energy states. When a two-body interaction 
is introduced which has nonzero matrix elements between positive 
and negative energy states, there exists an infinite number of A­
particle states with identical energy, in which one particle goes to 
a positive energy continuum state and the other one to a negative 
energy state. Consequently, one cannot write down a localized, 
normalizable A-particle wave function, because it will dissolve into 
the continuum, spreading over all space. 

While this problem does not exist in phenomenological mean 
field approaches, further extensions towards "Quantum Hadro­
dynamics, "1 with inclusion of two-body interactions, become 
meaningful only when accompanied by projection operators spec­
ifying that negative energy states are filled. (In field-theoretical 
equations such as the Bethe-Salpeter equation, projection oper­
ators are correctly handled.) 

A relativistic (but not covariant) many-body Hamiltonian can 
be introduced as follows: 

H = ;ti Hv(i) + ~ ~i A+(i)A+(j)Vecr(i,j)A+(i)A+(j), (1) 

where 

-icx · V + 13M (2) 
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is the free nucleon Dirac Hamiltonian. The effective interaction 
Vcrr(i ,j) operates only in positive energy sta tes (including the small 
components of their wave functions) , owing to the Casimir pro­
jection operators 

A ±(p) 
Po ± Hv . 

2 
with Po = Vp2 + M 2 • 

Po 

The eigenfunctions of the Hamiltonian (1) are now well defined. 
In particular, in such an approach, it is possible to establish con­
nections with the nonrelativistic many-body problem and to make 
use of the great amount of experience gained in this area. 

Relativistic effects occur in the effective interaction Verr by cou­
plings to negative energy intermediate states In< - l) 

1 
Verr = v + 2: vln< - l) E _ £(-) (n< - >iv + 

n(-) II 

(3) 

where v is the two-body interaction and E~- l is in the negative 
energy continuum. Our point here is that relativistic effects can 
be understood within perturbation theory, which converges rap­
idly, given that the energy denominators in Eq . (3) are of order 
2M. In this way we may study relativistic effects by a well-defined 
procedure. 

PERTURBATION THEORY AND THE MANY-BODY 
PROBLEM 

Let us now consider the case of nuclear matter and assume that 
the two-body interaction v in Eq. (3) has an attractive scalar and 
a repulsive vector component8 which in the static limit takes the 
form: 

g2 e-m,r g2 e - m,.r 
v(l,2) = __ 

4
s -- f31f32 + _

4
v -- (1 - a, · 0'.2). (4) 

7T r 7T r 

In the mean field (Hartree) approximation, Fig. 1, this leads to 
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FIGURE 1 Mean fie ld (Hart ree) approximation with the two-body interaction U. 

the one-body equation familiar from Dirac phenomenology: 

with 

where 

g; us= - 2 p,, 
m_, 

Ps = L t)i ,i ~t)i" and P = L t)i~t)i" 
" n 

(6) 

(7) 

are the scalar and fourth component vector densities, respectively. 
Typical values of the scalar and vector mean fields appearing in 
the literature are Us = -400 MeV (p/p0 ) and Uv = 300 MeV 
(p/p0) with p0 = 0.16 fm - 3 as nuclear matter density. The resulting 
Dirac "effective mass" is 

M = M + Us = 540 Me V (8) 

and the leading term in the Dirac single particle potential, at p = 
p0 , is Us + Uv = -100 MeV. The mass • .M is not to be confused 
with the effective mass M* of nonrelativistic many-body theory, 
which arises from the velocity dependence of the interaction, al­
though, as we discuss below, these two masses are related in nu­
clear matter. 

Let us now investigate, using first-order perturbation theory, 
how the relativistic effects, especially the effective mass M, tie in 
with virtual pair terms. We begin with noninteracting positive en­
ergy wave functions t)i + ;· The relation of small to large components 
here is given by 

(9) 
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so that 

l)l +. = r 
XI'~ J r X'l;2 J Po+ M 

er · · = <r · · 2,;,, p, x"' __ P, x"' 
' 11 11 + M Iii 2M 112 

( 10) 

the negative-energy solutions are of the form 

r
-(J' . P; "''" J 

2M '+'
1
'
2 

l)l ,= . 
,,.f...111 
'+' 1/2 

( 11) 

Here p0 = Yp2 + M 2 and x'l/2 and <Vi!z are two component Pauli 
spin functions with spin projection m = ± 1/2; it is sufficiently 
accurate for our work to consider p 0 = M. Note that p 0 does not 
include any interaction. With Us and U,, included, the wave func­
tions (10) and (11) are modified only by replacing M by M = M 
+ Us. Note that this replacement tends to enhance the small com­
ponents of (10) and (11) by a factor - Ml M which is - 1. 7 at nuclear 
density . 

The meah field , Fig. 1, will now admix negative-energy states 
into \)J+ ;, as shown in Fig. 2. The correction to the positive energy 
wave function is 

(12) 

Since A_\)J; + 0 , we find, approximating Vpf + M 2 by M , 

A« · p LJ 
= I" i -'.1. 
- 2M2 't'i+' (13) 

since only the« · p term in H 0 , Eq . (2), does not commute with 
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FIGURE 2 Tadpole diagram which in mean-field approximation admixes negative­
cnergy states into •Ii,;· The upward line on the right represents a positive-energy 
wave !unction; the downward one, a negative-energy one. 

(f3 U., + U,.). Thus, only the scalar interaction U., connects positive 
and negative energy states. Since 

= ( () (J') - (J' 0 (14) 

in our representation, the correction to the large components of 
ljJ +; can be neglected and 

8\)J; == - [ ·,. CT •

0 
P1 I/I ] • 

2M l X11i 
(15) 

Note that this is just the first-order correction to W;+, Eq. (10), if 
the M in the denominator is replaced by M = M + U, (as in the 
mean-field equation (5)). The expectation value of a in W+; is 

(16) 

When M is replaced by Min (10) this expectation value increases 
by the factor MIM. This does not, however, mean that the current 
is increased by this factor, as we discuss in the next section. 

The energies of the positive energy solutions to (5) are 

Ep = u,. + Yp2 + (M + U,) 2
• (17) 

To order U} the energy becomes 

U + 
MU., p2 z ( 

E,, = v + Po + -
2 3 U, + · · · . 18) 

Po Po 
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Let us see how the final term in (18) can be understood from 
diagrammatic perturbation theory. In second order the tadpole 
term, Fig. 2, with its matrix element -( U,IM)a · p enters squared, 
as in Fig. 3(a), to be multiplied by the energy denominator (2M)- 1 

of the intermediate pair state. The leading relativistic correction 
of this process to the energy, for small IPI < < M, is therefore 

[
u ]

2 

2 
OE,,= ~ JM' (19) 

which agrees with (18). Given that the average kinetic energy per 
nucleon is 

< 
2 > ( )2/3 

T = 2~ == 23 Me V :> , (20) 

and that U,,. == - 400 Me V (p/p0), we see that the average correction 
is 

[ ]
2 [ ]8/3 

OE = ~ T == 4.2 MeV :
1 

(21) 

Celenza and Shakin, taking into account exchange effects and dis­
tortions, find OE = 3.6 (p/p0) 2 .4, reasonably close to Eq. (21). 

As we see from Fig. 3(b ), the relativistic effects9•10 can be simply 
interpreted as a small density dependent correction to the mass 
m5 of the scalar (a)-boson, in other words, as a medium correction. 
In the vacuum, the a has self-energy contributions due to its cou-· 
piing to virtual nucleon-antinucleon pairs. In the presence of nu­
clear matter, processes with momenta p < p Fare forbidden by the 

(+) 

(a) 
(+) ( b) 

FIGURE 3 (a) Relativistic correction to the single particle propagation of a positive 
energy state; (b) corresponding correction to the energy. 
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Pauli principle. This gives rise to the repulsive contribution (21) 
to the energy per particle. 

Corrections due to correlations and exchange terms bring OE of 
Eq. (21), in the case of the HMl version of the Bonn potential, 11 

down to 

[ ]

8/3 

OE= 2 MeV ;
0 

(22) 

This correction tends to move the equilibrium density of nuclear 
matter to lower values, a desirable effect. At the same time it 
considerably stiffens the nuclear equation of state. A strictly 
p813-behavior of the mean energy per particle would imply an adi­
abatic index "I = 1113 at high densities (the adiabatic index is 
'Y = p/P dP/dp, where P is the pressure). In fact, the density 
dependence of (p/p0) 813 obtained in perturbation theory is increased 11 

to (p/p0) 3 ·4 with inclusion of higher-order effects10
·
12

; this higher 
density dependence, implicit in the work of Ref. 9, arises because 
the OEP calculated in perturbation theory goes as M - 3 (see Eq. 
(17)). Carrying higher-order terms, this M- 3 becomes N!- 3 , which 
is substantially larger than M- 3

, and has a large density depend­
ence. 

Simply adding the relativistic correction to the energies calcu­
lated in a nonrelativistic framework does not solve the nuclear 
matter problem. Detailed many-body calculations, 13 which have 
reached a much higher degree of sophistication than the relativistic 
ones, underbind nuclear matter by several MeV at normal nuclear 
matter density p0 , and give saturation at about 2p0 with roughly 
the correct binding energy. Obviously several MeV of attraction 
are needed. For example, Jackson, Rho and Krotschek9 have in­
voked the three-body term, in Fig. 4, which appears in chiral 
models, to counterbalance part of the relativistic correction OE, 
Eqs. (21) and (22), and provide the small additional binding at 
nuclear matter density. Conventional three-body forces involving 
isobars in intermediate states also give additional binding of 1-2 
Me V per particle at nuclear matter density with a weak density 
dependence. 14 

Considerations within nonlinear chiral models show that the 
process, Fig. 3, is only one of a number that must be considered. 
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FIGURE 4 Three-body contribution to the energy of nuclear matter as it arises in 
chiral models. 

Nevertheless, the result (22), together with a small attractive three­
body term of the type in Fig. 4, appears to give a reasonable 
description of many-body effects, provided that the density is not 
too high. 

CURRENTS 

Let us now discuss relativistic effects on the current and on mag­
netic moments. In Fermi liquid theory the isoscalar current is given 
by 

(23) 

where nP is the quasiparticle number in momentum state p. Con­
sider an nP not far from equilibrium: 

(24) 

In this case 

(25) 

where we have used the fact that the current is zero in the equi-
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librium distribution and have integrated by parts to obtain the last 
term. Here frr' is the Fermi-liquid interaction. Now 

and 

an(O) 
p - - = 

(26) 

(27) 

where Et is the Fermi energy . Interchanging the labels p and p' in 
the last term of Eq. (25) and using 

(28) 

where 

(29) 

and f 1 is the first multipole of frr" we obtain 

(30) 

Note that F1 is defined with the full 2 spin state, 2 isospin state 
density of states at the Ferm~ surface. We next use Eq. (13) of 
Ref. 15, obtained form Lorentz invariance: 

[ ap] = !: [l + Fi] 
ae Pt 3 

Pf 

(31) 

where µis the quasiparticle chemical potential. Note that the quan­
tity µ(l + F/3) plays the role of the effective mass M* at the 
Fermi surface; (ae/ap)Pr = vt. Equation (31) shows that the density 
of states at the Fermi surface, which is proportional to (ap/ae)Pr ' 
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goes as [µ(1 + F1/3)], replacing M* in the nonrelativistic theory . 
Inserting (31) into (30) gives the isoscalar current 

. f d3p p 
J = 2: (2 )3 onp - . 

CT,T 1f µ 
(32) 

This is the relativistic generalization of the nonrelativistic expres­
sion, with µreplacing the bare mass Min the denominator. 

The first term on the right-hand side of (30) involves V PE~o), 
which is the quasiparticle velocity vP. Because of the interactions, 
the moving quasiparticle causes a backflow given by the term in­
volving F1 . The sum of the two terms differs from the current j = 

p/ M of a quasiparticle in a noninteracting system only through 
binding energy effects, since µ - Mis just the binding energy per 
particle at saturation density. In the nuclear case this is ~8 Me V 
for nuclei, ~16 MeV for nuclear matter, so this is a 1-2% effect. 
(In many articles in the literature, the backflow has been left out.) 
Modifications from interactions enter the current only through 
their effect on µ. The isovector current can be calculated similarly 
and we find 

"' f d
3
p ~ 1 + FU3 T 

jisovector == L.J (2 )3 1 p /3 3 
CT,T 1f µ + 1 

(33) 

where F~ T 1 · Tz is the (dimensionless) Fermi-liquid isospin de­
pendent interaction. The electromagnetic current is the average 
of the scalar and isovector terms (32) and (33): 

(34) 

This is just the relativistic generalization of the corresponding 
expression in Migdal's book, Ref. 17. Note that the isospin-dependent 
part of the backflow in the electromagnetic current involves the 
velocity dependent effective proton-neutron interaction FrP = F1 

- F~. 
Although it is easy to calculate the current from Eqs. (32)-(34), 

they way in which one arrives at these results can be quite com-

49 



plicated in relativistic field theory. Bentz et al. 16 have derived the 
results for the currents starting from the Ward identities associated 
with baryon and charge conservation. Let us consider how (32) 
can be derived diagrammatically in the relativistic field theory. As 
noted earlier, the small components of the Dirac single-particle 
wave functions are enhanced by a factor ~(M!M). Thus, the ex­
pectation value of the Dirac operator a which gives the quasipar­
ticle velocity v1 = (aE1°l/ap)., in (30) includes this factor. The back­
flow term, with coefficient (1/3)F1 in Eq. (30), actually arises16 in 
the relativistic field theory from vacuum polarization, the lowest­
order graph of which is shown in Fig. 5. 

To see how the (1/3)F1 correction arises from this diagrammatic 
calculation, we note that the bubble in Fig. S(a) is just the current­
current correlation function xfi(q0 ,q) which in the limit lql - 0 
involves a sum over virtual pairs with the Dirac operator a,. at one 
vertex, ai at the other. In calculating the current in general, one 
should take the limit lql - 0 first, then17 q0 - 0. (This procedure 
is followed because one wishes to guarantee that aQ!at = 0, where 
Q is the total charge of the system, i.e., the q = 0 component of 
the charge density p.) Keeping only the large components of the 
IJ!+; and IJI_,., Eqs. (10) and (11), and using (19) for a, we find that 
the product of these matrix elements becomes Tr[ cr,.cri] = 2o,.i when 
one sums over spins. A further factor of 2 comes from the two 

p 

(a) 

N 
p- q 

--l< 
a · I 

( b) 

-~ 
a · I 

FIGURE 5 Vacuum polarization corrections to the current in lowest order. The 
ex; is the ith component of the Dirac a. Of the full vacuum polarization shown in 
(a) only the part modified by the medium-that resulting from blocking of virtual 
nucleon production by nucleons in nuclear matter-should be kept. That part is 
redrawn in (b). 
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possibl Lime rdcrin s ·md the denominat r i -2M. w, n- in 
our treatment of irtual pairs a !mixed by the caJar fi eld (sec Fig. 
3(b) , o ne should include only Lhc modification of the vacuum 
polari za ti on by the mediu m; the modirica li n du t ) Lhe pr s nee 
of nucleon · is 1 block virtual pairs for al l parlicl 'S p > p1. The 
neL resu IL i. 

J - 2~\ "' f''' d'p - p 
X;1(l/111C/) = M ~ (-7i)'\ - M ,,. 

The vcclor c 'change inle racti n furni: he · a fact r - Jf../m~ ' () thal 
th contrihution f the prnc · in Fi' . 5(b) l the curre nt is 

(35) 

This is just the first-order correction to j expected from vector­
meson exchange on the basis of Eq. (32), since 

g ~ 
µ,=M+- p m;, (36) 

if only the vector coupling is present. From (30) we can identify 

-= 
2 g,, p 

- -- (37) 
3 

To lowest order this is just the result of Baym and Chin, 15 and 
Matsui. 18 The full expression was obtained by Matsui 18 by summing 
bubbles: 

-g;,p 1 
- m;, \Ip }.+ /VJ 2 + g~plm~· (38) 

The existence of an F1 signifies a velocity-dependent interaction. 
Indeed, this F1 arises directly from the velocity-dependent inter­
action (at zero frequency) 

5V = 
g;, 

- - a . a e-mvr 

4 I 2 
'TTr 

(39) 
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in the vector-meson exchange. Clearly this term should be included 
in calculations. 

One therefore sees how Fermi liquid parameters familiar from 
nonrelativistic theory emerge in a relativistic treatment. Relativ­
istic effects in the current are small, of order BIM where B is the 
binding energy. These corrections are easily treated as small per­
turbations of the nonrelativistic theory. Note that we could have 
anticipated this result from the observation that the main part of 
the problem can be formulated in the space of positive-energy 
states, with corrections involving negative-ene.rgy states introduced 
by perturbation theory. In the positive-energy space, the individ­
ually large scalar and vector interactions mainly cancel, leaving 
only relatively small corrections. (Although small in magnitude, 
the great density dependence of ~E, Eq. (22) , makes it important 
in the nuclear saturation.] The relativistic approach introduces 
considerable formalism to handle these small corrections. On the 
other hand, nonrelativistic many-body theory has been developed 
much further than the relativistic one. At best, the latter has reached 
the level of relativistic G-matrix calculations, 19

- 21 whereas the non­
relativistic theory goes far beyond this in its treatment of many­
body correlations. 13 

As we noted from Eq. (31), level spacings in the relativistic 
theory go as [µ(1 + F/3)]- 1 = [µ(l - (g~lm~) p/M)]- 1 where we 
use the lowest-order expression (37) for F1• (A similar result emerges 
in a nonrelativistic Brueckner Hartree-Fock calculation where the 
level spacings go as M* - 1 .) Such a level spacing is substantially 
larger than that observed near the Fermi surface. Detailed 
analyses22 •23 show that in heavy nuclei the level spacing in fact 
corresponds to an effective mass near unity; 

(M*) - = 1.15 ± 0.10 
M Fermi surface 

(40) 

is deduced for 208Pb. This larger effective mass near the Fermi 
surface can be understood23 in terms of the coupling of quasipar­
ticles near the Fermi surface to collective excitations which increase 
M* IM and thus reduce the level spacing substantially. 
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MAGNETIC MOMENTS OF VALEN CE NUCLEONS 

Magnetic moments are a good example of how, by ignoring well­
established consistency requirements, one can be led to "large" 
relativistic effects at the level of Hartree theory. The clearest ex­
ample is the isoscalar Dirac magnetic moment, which involves the 
expectation value of a x r. As discussed just below Eq. (16), the 
expectation value of a in the exact Dirac state equals p/M. One 
might therefore expect that the moment would be enhanced24 by 
a factor M = 1. 7. Indeed, adding the first-order relativistic cor­
rection, Fig. 6, to the free Dirac moment, the nuclear magneton 
e/2M is multiplied by a factor (1 - U,!M) [see Eq. (15) and fol­
lowing discussion]. Carried out to all orders, this would replace 
e/2M by e/2M. This effect is given a serious discussion at several 
places in the literature, although it clearly destroys our under­
standing of Schmidt lines and well-controlled corrections to these. 
The point is that the vacuum polarization effect involving NN pairs 
should be included [see Fig. 5 and discussion surrounding Eqs. 
(32) and (36)] and this cancels all but a small binding-energy cor­
rection from the Ml M "enhancement. " 25 The c'orrections to the 
isovector magnetic moments do not cancel as completely as for 
the isoscalar moments, as we see in Eq. (33), since F; =I= F 1 . The 
correction term to the orbital angular momentum part of the proton 
moment, from (34), is 

(41) 

After correction downwards for effects of high-energy virtual ad­
mixtures, chiefly from the two-body tensor interaction, this agrees 
well with experiment. 26 

FIGURE 6 Renormalization of the transverse velocity o.r in nuclear matter. 
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With the exception of the factor Mlµ this expression is identical 
to the nonrelativistic correction in Migdal's book. 17 (A factor of 2 
enters in Migdal's expression because of a different definition of 
the density of states.) As the relativistic and nonrelativistic for­
mulas are essentially the same, the correction term Eq. (41) de­
pends on the magnitude of the Landau-parameters F1 and F;. In 
the relativistic mean field as well as in the nonrelativistic Brueckner 
Hartree-Fock calculations, the F1 derived from the effective mass 
is very large and negative (F{ = - (1/2)F1

27
) which is in disagree­

ment with the observed density of states at the Fermi surface of 
heaving mass nuclei. Higher-order corrections which are not con­
sidererd in these calculations increase the effective mass appreci­
ably. If second-order corrections are included, Fantoni et al. 28 

found that the effective mass in nuclear matter increased from 0.6 
to 0.82. In finite nuclei, surface vibrations will further increase the 
effective mass. As long as these effects are not included in the 
relativistic mean field and nonrelativistic Brueckner Hartree-Fock 
calculations, a reliable estimate of og, from Eq. ( 41) is not possible. 

Brown and Rho,29 beginning with the nonrelativistic form of 
(34), found, from TI- and p-exchange, Fock terms (8g1)proron = 

0.22. However, this model underestimates the magnitude of F1 as 
well as Fi. Fujita and Hirata30 have connected 8g1 with the en­
hancement K' of the nuclear dipole sum rule in the giant resonance 
region: 

(42) 

A recent accurate measurement31 for 209Bi gives K' = 0.46 ± 0.05 
in close agreement with the suggested og,. 

THE SPIN-ORBIT INTERACTION 

The primary success of Dirac phenomenology has been in pre­
dicting the very detailed structure in the spin-rotation parameter 
measured in high energy proton-nucleus scattering,32 once the 
strengths and shapes of the scalar and vector potentials have been 
chosen so as to reproduce the elastic scattering and polarization. 
Polarization and spin rotation in scattering of high energy nucleons 
arise because of the spin-orbit interaction, through a rather com-
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plicated interference between waves from different paths of the 
nucleon through the nucleus. The density dependence of the spin­
orbit interaction introduced through relativistic effects changes the 
interference patterns dramatically, improving greatly32 the fits to 
the data. Spin observables are the obvious domain for applications 
of relativistic mean field theory, since coupling to the spin emerges 
in a natural way in Dirac theory. 

These successes are related to genuine relativistic effects in the 
spin-orbit interaction. The spin-orbit interaction results from the 
small components of the Dirac wave functions. To derive the spin­
orbit interaction we first eliminate the small components from the 
Dirac equation (5), and find that the large components tjJ (a two 
component spinor) obey the second-order equation: 

(p2 + (M + U,) 2 + Ws.o. + Wr·p)tjJ(r) = (E - U,,)2tjJ(r) (43) 

where the spin-orbit term is 

wso l ~ !!___ (U - Us) 
(E + M + Us - U,,) r dr " 

(44) 

and 

-i 1 d 
W,.p = -(E_+_M_+_U_s--U-,,) ~ d r ( Uu - Us) r . p. ( 45) 

Equation ( 43) lends itself to scattering calculations since it has the 
same structure as a nonrelativistic Schrodinger equation for scat­
tering, with a spin-orbit term Ws.0 _/2M. 33 However, if we take the 
nonrelativistic limit of ( 43), we find the Pauli equation 

[ Z~(r) P2 + Us(r) + U,,(r) + Vs.o + Vr·p J tjJ(r) 

(E - M)tjJ(r) (46) 

where now 

(47) 
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Since the observable nonrelativistic single-particle energy occurs 
on the right-hand side of the equation, we identify vs.a. as the spin­
orbit potential. We note also that in deriving equivalent potentials 
to use in the Schrodinger equation from the relativistic theory, one 
should in fact keep terms quadratic in Uv and U,, which reduce 
the magnitude of the central potential in ( 46) from Uv + Us = 
-100 MeV. 

The process leading to the spin-orbit interaction can be described 
diagrammatically as in Fig. 7(a). As noted earlier, use of the exact 
Dirac spinor (10, 11 with M) or in diagrammatic language, the 
admixture of negative-energy states by the process, Fig. 7(b ), changes 
M - 1 in Fig. 7(a) into !V!- 1, resulting in a large enhancement of 
the spin-orbit potential at nuclear matter density. This enhance­
ment, which is less significant in the surface region of finite nuclei, 
has been the main success of Dirac phenomenology in des"cribing 
the behavior of spin observables. 

In nuclear matter one should take into account Fermi liquid 
corrections to Us .a .. In an infinite system, the screening of the scalar 
and fourth-component vector interaction, with the approximation 
that the scalar density Ps = p, would introduce a factor (1 + F0)-

1. 

One cannot use this factor in finite nuclei in the local-density 
approximation because this factor blows up10 for p ~ 2/3 p0 . The 
fact that the simple screening correction blows up in local density 
approximation indicates that it may be appreciable in finite nuclei. 
In finite nuclei, one should rather introduce the induced coupling 
of the two nucleons via exchange of the giant monopole resonance. 

uspin-orbit 

(a) ( b) 

FIGURE 7 The spin-orbit interaction (47) results from the small components of 
the Dirac wave functions in the process (a). Coupling to negative-energy states (b) 
enhances U, 0 • 
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These effects from interaction via vibrations are "shaken off" in 
high energy scattering and can be neglected there. Detailed cal­
culations have yet to be carried out. 

TIME COMPONENT OF THE NUCLEAR AXIAL 
CURRENT 

The time component of the axial current Aµ.(x) has recently re­
ceived some interest34 as an operator _that couples to negative­
energy states and is possibly strongly renormalized. As we argue, 
in the long wavelength limit the time component is insensitive to 
relativistic effects. 

The axial current of a nucleon moving in Dirac scalar and vector 
mean fields, taking a pseudo-vector coupling to the pion field, is 

(48) 

where gA is the axial current renormalization constant (and we 
suppress form factors and the isospin). Using the Dirac equation 
(5), we may write its divergence as 

= (49) 

This equation, in the form of a Ward identity, connects the axial 
vector coupling vertex with the potential experienced by the nu­
cleon. In (49), the vector part f3Uv of the potential anticommutes 
with 'Ys and drops out; the scalar field breaks chirality, however. 

In the limit in which momentum transfers are small (jqj ~ 0), 
as is appropriate for (3 decay, the space-like part V · A = iq · A 
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of the axial current divergence is small, and we may write Eq. ( 49) 
as 

. . m~ 
Ao = 2igA 2 2 (M + Us) ~"Ysl)J. 

q - m" 
(50) 

The time derivative is replaced by a factor - iw in nuclear matrix 
elements, where w is the energy transferred to the nucleus. 

We see now that in this limit A 0 is insensitive to relativistic 
effects, since the factor (M + Us) in Eq. (50) precisely cancels the 
characteristic enhancement factor (M + Us)- 1 which arises from 
the coupling by "Ys to the small components of the Dirac wave 
function. The energy transfer w, on the other side of the equation, 
just reflects the nuclear excitation spectrum, which is well de­
scribed by nonrelativistic theory. Hence as lql ~ 0 the time-like 
axial current A 0 is not sensitive to relativistic effects. We should 
note, however, that at large momentq.m transfers, as in muon 
capture, the space-like term in ( 49) cannot be neglected and one 
cannot conclude that the relativistic corrections are small. Indeed 
the spatial component A in ( 48) contributes significantly in muon 
capture.35 

CONCLUSIONS 

The two important effects arising from the relativistic theory, as 
we have seen, are: 

(1) A repulsive term in the energy per particle which varies with 
a high power of the density. Although the repulsive term is small 
in magnitude, it has an extremely strong de"nsity dependence, which 
is important for saturation. Since relativistic effects add only re­
pulsion and since good two-body calculations underbind at nuclear 
matter density, clearly substantial attractive three-body forces must 
enter. Much of this contribution might be describable in terms of 
the underlying three-body force in the chiral Lagrangian. 

(2) The spin-orbit interaction is enhanced, essentially by the 
inverse squared of the density dependent effective mass M. This 
leads to the effects which are the main successes of Dirac phe­
nomenology, which we have referred to only sketchily in this Com­
ment. 

58 



APPENDIX: CONT ACT WITH REALITY 

The relativistic mean field model of Walecka and Serot 1 is a toy 
model, far from reality in many respects. The relationship between 
the Walecka-Serot model and realistic calculations have been made 
by Celenza and Shakin2 ; we sketch the most important points here. 

First, what is the er meson in the mean field theory? In nature 
there is no low-mass elementary er. Attraction in this channel comes 
from the exchange of correlated two-pion systems, coupled to J 
= 0, I = 0. From the point of view of the chiral Lagrangian, the 
er-meson starts out with a mass m" ;:;::: M, if one is to understand 
the smoothness of soft-pion extrapolations, which go as q;!m~. 
However, this elementary er couples to pions, as shown in Fig. 8, 
increasing the range of the er-exchange interaction considerably 
beyond hmac; most of the range comes from the two-pion loops. 36 

From the usual uncertainty principle argument applied to virtual 
states with two pions, one finds a range ~h/2 V m; + k 2 where k 
is a typical virtual pion momentum. Kinetic energies arc usually 
at least of order of the pion rest mass, so this range can be estimated 
to be ~li/4m"'. 

In the Bonn potential,37 exchange of correlated two-pion systems 
produce the attraction, as above. However, in a rough approxi­
mation their' exchange can be replaced by the exchange of an 
effective scalar meson with a mass m,, = 550 Me V, not far from 
4m"'. This is the scalar meson in the Walecka model, and the one 
we have been discussing in the text. 

Celenza and Shakin2 have shown that with introduction of anti­
symmetry, additional effective scalar interactions come from ex­
change terms in w, 'IT, etc., exchange. They have also shown that 
short-range correlations are quantitatively very important in the 
strongly repulsive vector-meson exchange. 

The pion is neglected in the Walecka-Serot model; however, 
while the lowest-order pion exchange goes out with averages over 

FIGURE 8 A typical modification in CT-exchange when coupling to pions is included. 
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spin and isospin in a Hartree mean-field theory, the second- and 
higher-order pion exchange terms do not. A rough but instructive 
way to include these higher-order interactions is as a second-order 
interaction with an average energy denominator36 

V?cnsor 
E 

(Al) 

where v[CllSOI is the tensor force from pion exchange (which gives 
most of the contribution) and36 

3 
E = 2m"'. (A2) 

Note that the tensor interaction acts only in S = 1 states, and 
hence VertCr) of (Al) cannot be summarized as an effective scalar 
interaction. Because of Pauli blocking in intermediate states and 
other effects, veff tends to decrease rapidly in magnitude with 
increasing density. This behavior, rather than repulsion from vector­
meson exchange, is chiefly responsible for saturation in nuclear 
matter calculations. The vector-meson interactions are too short 
in range compared with the average distance between nucleons 
( ~2.5 fm) to have much effect on saturation. (Because short-range 
correlations in the wave functions are neglected in the Walecka 
model, vector mesons there provide ~2.5 times more repulsion 
than they should.) Second- and higher-order tensor as well as 
exchange terms due to antisymmetry are included in the Dirac­
Brueckner approach, as first done by Celenza and Shakin, and 
more recently in Refs. 20, 21 and 38. 
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