
C
ER

N
-T

H
ES

IS
-2

01
3-

24
8

13
/1

2/
20

13

Particle tracking in circular accelerators using the

exact Hamiltonian in SixTrack

Mattias Fjellström
matfje-7@student.ltu.se

Dep. of Engineering Sciences and Mathematics
Lule̊a University of Technology

Supervisors: Riccardo De Maria (CERN) and Johan Hansson (LTU)

December 2013

ii

Abstract

Particle motion in accelerators is in general complex. Tracking codes are developed to simulate
beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at
CERN, the European Organization for Nuclear Research.

A particle accelerator consists of a large number of magnets and other electromagnetic devices
that guide the particle through the accelerator. Each device defines its own equation of motion,
which often cannot be solved exactly. For this purpose, a number of approximations are introduced
in order to facilitate the solution and to speed up the computation.

In a high-energy accelerator, the particle has small transverse momentum components. This
is exploited in the small-angle approximation. In this approximation the equations of motion
are expanded to a low order in the transverse momentum components. In low-energy particle
accelerators, or in tracking with large momentum deviations, this approximation is invalid.

The equations of motion of a particle passing through a field-free region in an accelerator, a
so called drift space, has been implemented in the SixTrack code. The equations of motion are
derived from the exact Hamiltonian, keeping the non-linear term unexpanded. This solution of
the drift is called the exact drift space. Previously, the drift space has been solved using the
small-angle approximation. This solution of the drift is called the expanded drift space. The new
implementation is a step towards a more realistic, and more general, tracking code. The drift
space contains the bulk of the small-angle approximation in a tracking code, it is therefore the
most important element to address.

The new drift space implementation is applied in two simulation studies on the Large Hadron
Collider (LHC). In the first, particle losses in the collimation system of the machine are studied.
The collimation system is a collection of protective devices, used to protect the rest of the accel-
erator from particles spiraling out of the machine. The application of the exact drift space in this
simulation shows a small, but insignificant, variation compared to the expanded drift. Of the total
14 × 106 tracked particles, about 12 × 106 are absorbed in the collimators for each model. The
total number of particles lost in other locations of the ring are about 12 × 103 for both models.
The most dangerous losses are losses in the superconducting magnets, called cold losses. For the
exact drift, the number of cold losses were 4471. This is a short increase from the expanded drift,
where the number of cold losses were 4446. These results do not show that the exact drift space
is necessary in collimation studies for the LHC. It should still be an improvement to consider for
future machine protection studies.

The second simulation study on the LHC is an investigation of the tune variation as a function
of the momentum deviation of the particle. The tune is a measure of the number of oscillations
a particle makes during one complete turn around the accelerator. The number of oscillations
must avoid certain values to not induce a resonance in the motion, causing the motion to be
unstable. The momentum deviation, δ, is a measure of the momentum of a particle compared
to an ideal reference particle. The horizontal– and vertical tunes were calculated for a range of
values for δ, both with the exact– and expanded drift space. As expected the deviation between
the models grows with a larger momentum deviation. The maximum differences in the simulation
were obtained for δ = −4× 10−3, where the exact model results in a tune value larger by 3× 10−5

for the horizontal tune and 1.5 × 10−5 for the vertical tune. These tune shifts are small, and for
regular tracking simulations in the LHC they are insignificant. However, in simulations where very
high-order resonance effects are considered, these tune shifts could start to become important.

iii

iv

Preface

This Master of Science project has been carried out as a Technical Student in the BE-ABP-LCU
(Beams department, Accelerators and Beams Physics, LHC Commissioning and Upgrade) section
at CERN (the European Organization for Nuclear Research) in Geneva, Switzerland, under the
supervision of Riccardo de Maria.

I would like to thank all the people who have helped me with this work. Most of all I wish to
thank my supervisor at CERN, Riccardo, for his guidance in this project and for introducing me
to the world of accelerator physics and also for recommending me to use Linux - which will be a
permanent tool in the rest of my career. I would also like to thank my supervisor at LTU, professor
Johan Hansson, for proof reading this manuscript and for offering some of the most interesting
physics courses at LTU, without which I might not have ended up at CERN.

Thanks also to Pascal Hermes, now working on his PhD at CERN, for the help with the
collimation simulations and for providing the tools needed for analyzing the results.

This work concludes my years as a student in Engineering Physics and Electrical Engineering
with specialization in Computational Methods and Physics at LTU.

Mattias Fjellstrom,
Geneva, December 2013

v

vi

Contents

Abstract iii

Preface v

1 Introduction and motivation 1
1.1 The CERN accelerator complex . 1
1.2 Particle tracking . 4
1.3 Problem formulation . 4
1.4 Existing solutions . 5
1.5 Aim and purpose . 5
1.6 Method . 5
1.7 Thesis structure . 6

2 Theoretical background 7
2.1 Coordinate system . 7
2.2 The accelerator Hamiltonian . 8

2.2.1 Hamiltonian mechanics . 8
2.2.2 Phase space . 9
2.2.3 Canonical transformation . 9
2.2.4 Particle motion in an accelerator . 10

2.3 Accelerator physics . 11
2.3.1 Components of an accelerator . 12
2.3.2 Transverse dynamics . 13
2.3.3 Dispersion . 14
2.3.4 Longitudinal dynamics . 14

2.4 Symplectic integration . 15
2.4.1 The symplectic condition . 15
2.4.2 Example of symplectic integration . 16
2.4.3 Symplectic integration in particle tracking 17

2.5 Exact Hamiltonian . 18
2.5.1 The exact drift space . 18
2.5.2 The expanded drift space . 19

3 SixTrack 21
3.1 Purpose of a particle tracking code . 21
3.2 Code structure and building SixTrack . 22
3.3 Structure of a SixTrack simulation . 23
3.4 Input to SixTrack . 23

3.4.1 FREE/GEOM . 24
3.4.2 Initial values for tracking (INIT) . 24
3.4.3 Tracking parameters (TRAC) . 25
3.4.4 Synchrotron oscillations (SYNC) . 25

vii

viii CONTENTS

3.4.5 Single elements (SING) . 26
3.4.6 Block input (BLOC) . 26
3.4.7 Structure of elements (STRU) . 27

3.5 Output from SixTrack . 27

4 Implementation and benchmarking 29
4.1 Implementation details . 29

4.1.1 Flag for exact tracking . 29
4.1.2 Tracking routines . 30
4.1.3 Differential algebra closed orbit and optics calculations 32

4.2 Benchmark codes . 34
4.2.1 MAD-X . 34
4.2.2 PTC . 35
4.2.3 Relation to SixTrack . 35

4.3 Benchmark in 4D and 6D . 36
4.3.1 Lattice and settings . 36
4.3.2 Results . 37

4.4 Large transverse momentum . 38
4.4.1 Lattice and settings . 38
4.4.2 Results . 38

4.5 Computational speed . 39
4.5.1 Lattice and settings . 39
4.5.2 Results . 39

5 Application 41
5.1 Collimation . 41

5.1.1 LHC Collimation system . 41
5.1.2 Collimation extension to SixTrack . 42
5.1.3 Application of drift in collimation routines 42
5.1.4 Simulation of losses . 43
5.1.5 Comparison and results . 43

5.2 Tune shift in the LHC . 45
5.2.1 Resonances . 45
5.2.2 Simulation of tune shifts . 45

6 Discussion and conclusions 47
6.1 Benchmark results . 47
6.2 Impact on collimation . 47
6.3 Impact on tune variation . 48
6.4 Further simulations . 48
6.5 Comment on SixTrack . 48

Bibliography 51

A Common acronyms 55

B Derivation of the accelerator Hamiltonian 57
B.1 Straight coordinate system . 57
B.2 Curved coordinate system . 59

C Exact dipole implementation 61
C.1 Equation of motion . 61
C.2 Implementation details . 62

C.2.1 Tracking routines . 62
C.2.2 DA routine . 63

CONTENTS ix

D SixTrack input blocks 65
D.1 Comment line (COMM) . 65
D.2 Print selection (PRIN) . 65
D.3 Iteration errors (ITER) . 65
D.4 Linear optics calculation (LINE) . 66
D.5 Post processing (POST) . 66
D.6 List of all blocks . 67

E SixTrack build flags 69
E.1 Build . 69
E.2 List of all flags . 70

F Collimation study settings 71

x CONTENTS

Chapter 1

Introduction and motivation

There are many particle accelerators in the world. Most of these are small scale accelerators used
for medical diagnosis or for industrial purposes. Although fewer, the particle accelerators used in
physics research are larger and more complex. The largest particle accelerator in operation today
is the Large Hadron Collider [1] at CERN. Thousands of scientists around the world rely on the
successful operation of this machine.

Of paramount importance in the design and operation of a particle accelerator is the need
to accurately predict, and possibly correct, the behavior of the machine in various scenarios.
Miscalculations can lead to a halt in construction or operation of the accelerator, adding unwanted
costs and delaying potential physical discoveries. SixTrack [2] is a particle tracking code which,
turn by turn, simulates the motion of particles in a circular accelerator to predict the machine
behavior and performance.

This chapter aims to introduce the reader to the accelerator complex at CERN, and to the
problem of particle tracking in accelerators. The process of particle tracking in accelerators is dis-
cussed together with common approximations employed in tracking codes. The chapter concludes
by presenting the aim of this thesis along with a brief outline of the following chapters.

1.1 The CERN accelerator complex

CERN (the European Organization for Nuclear Research∗) was founded in 1954. Since then,
the struggle for new scientific discoveries has brought a cascade of increasingly expensive large
scale accelerators and other experimental equipment to CERN. The crown jewel in the CERN
accelerator complex is the Large Hadron Collider (LHC), see Figure 1.1. The LHC, measuring
close to 27 km in circumference, is located at the border between Switzerland and France. LHC
was built in the same tunnel as the previous large scale accelerator, the Large Electron Positron
collider (LEP) [3]. The accelerator complex is a chain of accelerators, see Figure 1.2. Each
accelerator increases the energy of the beam of particles before injecting the beam into the next
accelerator in the chain.

When LHC is used for proton-proton collisions, the first step in the chain is the extraction of
protons from a container of hydrogen gas. The electrons are stripped away from the hydrogen,
leaving the protons bare. The protons are accelerated in a linear accelerator, Linac 2, to an energy
of 50 MeV. The beam is then injected into the PS Booster which further ramps up the energy
to 1.4 GeV. Then the beam is injected into the PS (Proton Synchrotron) which accelerates the
particles to 25 GeV. The next step is the SPS (Super Proton Synchrotron) which is the second
largest accelerator at CERN. Here the protons reach an energy of 450 GeV, which is the required
energy for injection into the LHC. LHC in turn accelerates the particles to a record energy of
7 TeV†. During operation there are two beams circulating in opposite directions. Each beam

∗The acronym CERN originally comes from the French name Conseil Européen pour la Recherche Nucléaire.
†However, the LHC has not yet reached this energy.

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

(a) View from inside the LHC-tunnel [4]. (b) Aerial view of the LHC [5].

Figure 1.1: The Large Hadron Collider (LHC) at CERN crossing the Swiss-French border.

consists of a large number of bunches and each bunch contains on the order of 1011 protons.
Under nominal conditions, the two beams will circulate inside the LHC for many hours with this
energy. Eventually, too many particles are lost in collisions or due to other effects and the beam
is dumped to give place to a new beam.

A lesser part of the LHC-operation is spent on collisions between lead ions, or between lead ions
and protons. The lead ions are obtained from a pure sample of lead heated to around 500◦C. The
most prominent lead ion obtained from this process is Pb29+, which are extracted and accelerated

Figure 1.2: An overview of the CERN accelerator complex [6] showing the path of protons and ions in the injection
stage to the LHC. The accelerators are not drawn to scale. The four large experiments (ATLAS, ALICE, CMS and
LHCb) are marked by yellow circles along the LHC.

1.1. THE CERN ACCELERATOR COMPLEX 3

to around 5.4 MeV/u‡. They are then sent through a carbon foil which further strips away
electrons to produce Pb54+. These ions are accelerated to an energy of 72 MeV/u in LEIR (Low
Energy Ion Ring). The next step is the PS which accelerates the ions to 5.9 GeV/u and then
sends the ions through another foil before sending them on to the SPS. The ions are fully stripped
of electrons to Pb82+ in the second foil. SPS accelerates the ions to 177 GeV/u and then sends
them to the LHC, which brings them up to a final energy of 2.76 TeV/u for collisions.

The LHC started up its operation on September 10, 2008. After some minor set backs, it
could operate almost without problems between 2010 and 2013. From the end of February 2013
it has been shut down for maintenance work in what is called the Long Shutdown 1 (LS1). The
maintenance work includes replacement of several of the 15-meter long superconducting dipole
magnets. LS1 stretches into 2015, whereupon LHC will continue its operation until LS2, planned
in 2018. LHC will later undergo a larger upgrade to what is referred to as the High Luminosity
LHC (HL-LHC) [7], increasing the design value of the luminosity by a factor of 10. This will result
in a greater potential for precision measurements in the experiments. For a summary of the most
important numerical parameters of the LHC, see Table 1.1.

Table 1.1: Nominal values for the LHC machine [8].

Quantity Value

Circumference 26659 m

Dipole operating temperature 1.9 K

Number of magnets 9593

Number of main dipoles 1232

Number of RF-cavities 8 per beam

Nominal energy, protons 7 TeV

Nominal energy, ions 2.76 TeV/u

Peak magnetic dipole field 8.33 T

Minimum distance between bunches 7 m

Design luminosity 1034 cm−2s−1

Number of bunches per proton beam 2808

Number of protons per bunch 1.1× 1011

Number of turns per second 11 245

Number of collisions per second 6× 108

Located around the LHC ring are four large particle collision detectors. Two of these are
general purpose detectors; ATLAS (A Toroidal LHC ApparatuS) [9] and CMS (Compact Muon
Solenoid) [10]. These two experiments did a joint presentation on the 4th of July 2012, announcing
the discovery of a candidate to the long sought Higgs boson [11, 12]. The other two detectors are
ALICE (A Large Ion Collision Experiment) [13] and LHCb (LHC beauty)[14]. ALICE investigates
heavy ion collisions to study a state of matter known as quark-gluon plasma. LHCb studies parti-
cles containing b-quarks and searches for an explanation to the matter and antimatter asymmetry
in the universe.

There are also other accelerators at CERN. The Antiproton Decelerator, which technically
decelerates instead of accelerates particles, is responsible for providing low energy antiprotons to
experiments studying antimatter. The Compact Linear Collider (CLIC) [15] is a proposed future
linear collider for collisions of electrons and positrons at energies of several TeV. Equipment and
technology for this collider is currently being tested at the CLIC Test Facility (CTF3) at CERN.

A new linear accelerator to be used in the initial proton acceleration stage in the LHC injection
cycle is Linac 4. It will be put into operation after LS2. Linac 4 will replace the current Linac 2,
which is used for the same purpose, but Linac 4 will provide a higher beam energy.

‡eV/u is the energy in electron-volts per nucleon.

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Particle tracking

Simulating particle motion in accelerators is important to understand and predict the behavior
of the machines. In the nominal LHC-operation with protons, the total stored beam energy is
about 360 MJ. This is a large amount of energy and the desire to control this energy in a safe and
predictable way is obvious.

Particle tracking codes are used to evaluate the long term stability of accelerators and to
simulate particle losses at collimators or in the superconducting magnets, which can cause the
magnet to quench. A quench is the process during which the magnet loses its superconducting
state. Simulations can identify potential dangers and suggest machine settings to avoid these.

A single particle tracking code as SixTrack simulates the motion of a number of particles, each
particle tracked individually through the accelerator. Collective effects in a full beam of particles
are in general considered using specific simulation tools.

The process of particle tracking is simply to bring a particle with a set of initial coordinates
through each magnet in the accelerator. The effect of the magnet on the motion of the particle is
contained in what will be referred to as a map. Each magnet can be thought of as a map which
maps the initial coordinates at the entrance of the magnet to the final coordinates at the exit of
the magnet. If zi denotes the initial coordinates, zf the final coordinates and M the map of a
magnet, this mapping can be illustrated as

zf =M · zi.

For a complete turn around the accelerator, passing through n magnets, the mapping can be
written as

zf =Mn · Mn−1 · · ·M2 · M1 · zi.

The mathematical form of these maps varies depending on the approximations used in their
derivations. In a linear case they can be expressed in matrix form, and all the maps for the
complete turn can be combined into a single matrix. Generally, the individual maps are nonlinear
and a simple combination of maps might not be possible.

Once the particle has traversed the full accelerator, the process is repeated. Tracking codes
check if the particle at any point in the accelerator touches the beam pipe in which it travels. If
it does, the particle is lost.

A particle tracking code does not simulate the collisions of particles in particle detectors.
Particle detectors are no more than single points as far as the tracking code is concerned.

1.3 Problem formulation

The motion of a particle through an accelerator is in general complex, and several approximations
are used in a tracking code. Except for the complexity in deriving the equations of motion, it
can be beneficial to introduce approximations for other reasons. One concern is the time spent on
simulations, which can be in the order of days for simulations involving millions of particles. The
simulation time can be reduced using these approximations. Three common approximations will
be explained in the following.

1. The thin-lens approximation. This approximation involves replacing the actual magnets,
which will be referred to as thick magnets, with infinitely thin lenses. The thin lenses have
the same integrated strength as the original magnets. In the lowest order approximation a
thick magnet is replaced by a single thin lens located at the midpoint of the original mag-
net. A higher order approximation involves more than one thin-lens for each thick magnet.
The lowest order approximation is valid when particles do not considerably change their
trajectories while passing through the magnet, which is typical for high energy accelerators.

2. The hard-edge approximation. This is an approximation concerning the behavior of the
magnetic field at the edge of magnets. The approximation assumes that the magnetic field

1.4. EXISTING SOLUTIONS 5

of a magnet is constant inside of the body of the magnet, but ends abruptly at its edges. In
reality, this behavior is forbidden by Maxwell’s equations. The field has to change continu-
ously, with no abrupt jump at the edge of the magnet. The field at the edges of the magnets
are referred to as the fringe field. For smaller accelerators, the fringe fields can have a big
impact on the motion of a particle.

3. The small-angle approximation. In the derivation of the equations of motion for a parti-
cle in an accelerator it is assumed that the transverse momentum of the particle is much
smaller than the longitudinal momentum, ptot � px,y. This allows for the expansion of
the equations of motion to first order in the transverse momenta, greatly simplifying the
equations and allowing for computations involving linear matrices. In combination with the
thin-lens approximation, the small-angle approximation is for the most part applied for a
drift space, which is a field-free component of accelerators where particles simply drift by
without changing its momentum. This approximation will be addressed in this thesis.

SixTrack employs all of the above approximations, but include options to avoid the thin-lens
approximation and the hard-edge approximation by inclusion of thick element maps and special
edge-focusing elements to handle fringe field effects in dipoles. To address the small-angle approx-
imation, the equations of motion using the exact Hamiltonian formulation for a drift space has
been implemented in the SixTrack code.

1.4 Existing solutions

A number of particle tracking codes exist. Some include measures to avoid the approximations
discussed above.

The Methodical Accelerator Design code (MAD-X) [16] is mainly used for the design of an
accelerator lattice, but includes capabilities for particle tracking. The small-angle approximation
is addressed by the use of the exact Hamiltonian for the particle motion through a drift space,
similar to the solution addressed in this thesis.

Another code, the Polymorphic Tracking Code (PTC) [17], has tools to avoid all the approxi-
mations mentioned above but at a considerable cost in term of execution speed. PTC is a library
of tracking routines and not a pre-built simulation tool like SixTrack. This is inconvenient when
performing a variety of tracking simulations using different accelerator lattices and settings. In
each case, the simulation has to be built as a Fortran program on its own. In SixTrack, a simu-
lation is initiated by a few simple input-files. There is no need to access the Fortran code unless
new functionality has to be implemented.

1.5 Aim and purpose

The aim of this thesis is to introduce new physics to the particle tracking code SixTrack. The new
physics is in the motion of the particle through a drift space, a field-free region of an accelerator.
The purpose is to remove the small-angle approximation from the code. To evaluate the impact
of the small-angle approximation, the newly implemented physics will be compared to the old
through realistic case studies in the LHC. This improvement is one step towards a more realistic
tracking code, improving all future simulation studies using SixTrack.

1.6 Method

SixTrack is a simulation tool built up from about 70 000 lines of Fortran code. Fortran is a high-
speed computational programming language. A majority of the code is written in the Fortran 77
standard. The new implementations will use the same Fortran standard, as no features of modern
Fortran will be needed.

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

In order to implement new functionality into an existing large simulation code it is important
to get a complete overview of the code. Changes are then introduced gradually and tested. Once
all new features are introduced and the code is successfully compiled, the new functionality should
be benchmarked with existing codes.

The process of benchmarking is twofold. Firstly, to check that the results of a simulation do
not deviate significantly from the results of a trusted code. Depending on the implementation,
the results could be expected to be identical. Secondly, benchmarking can show improvements
compared to existing codes. Keeping the benchmark tests as simple as possible, facilitates the
identification of potential problems and causes to differences in the results.

1.7 Thesis structure

A brief overview of the following chapters in this thesis:

• Chapter 2 will introduce the reader to various theoretical topics needed to understand the
results of a tracking code. These topics include Hamiltonian mechanics with the derivation
of the accelerator Hamiltonian, symplectic integration and particle dynamics in accelerators.
In the end of the chapter the new equations of motion are derived and explained in detail.

• Chapter 3 describes the SixTrack code in some detail, explaining the process of building
SixTrack from the code. The input to, and output from, SixTrack will also be described.

• Chapter 4 provides a description of the implementation of the new physics in the code. It
also presents benchmark tests of the new implementations. SixTrack is compared to MAD-X
and PTC. The total simulation time is measured and compared between the codes as well
as between the new implementation and the existing one.

• Chapter 5 describes two case studies on the LHC. The first is of the LHC collimation system.
Particles hitting the collimators located around the accelerator ring are scattered. In the
scattering process, the particles can undergo large changes in the transverse momentum. This
is a case when the small-angle approximation should be avoided for an increased accuracy
of the simulated trajectory. The second case study is of the tune variation as a function of
the momentum deviation. The tune is the number of oscillations of the particle during one
turn in the accelerator. The value of the tune should not deviate too much from a desired
working point, as this can induce resonances in the motion.

• Chapter 6 discusses the new impact of the new physics in SixTrack. Other possible simulation
studies which could benefit from the new physics are proposed. A few observations and
suggestions for SixTrack concludes the discussion.

A number of appendices provide additional information, which has been moved out from the
regular chapters to not lead the reader astray. These include the full derivation of the accelerator
Hamiltonian, a short description of the implementation of an additional element, the exact thin
dipole, and additional details of the SixTrack build process.

Chapter 2

Theoretical background

This chapter aims to introduce the reader to particle dynamics in an accelerator. Most concepts are
introduced without a thorough derivation, but references to these are provided. The new physics
implemented in the SixTrack code will also be presented in detail at the end of the chapter.

2.1 Coordinate system

To describe particle motion in an accelerator it is convenient to introduce a special curvilinear
coordinate system as shown in Figure 2.1. This coordinate system differs from a global coordinate
system (X̂, Ŷ , Ẑ), as shown in the figure.

It is assumed that a design orbit exists, described by ~r0(s). The design orbit can be thought
of as the ideal closed orbit followed by a reference particle with constant energy in a uniform
and constant magnetic bending field. The path-length, s, is the time-like variable measuring the
distance along the design orbit from a chosen origin. The path of the tracked particle is described
by ~Q(x, y, s, t), where the transverse coordinates x and y are specified relative to the design orbit.

A circular trajectory is characterized by the bending radius ρ(s), or the inverse of the bending
radius, h(s) = 1/ρ(s). In an ideal case the bending radius is constant, in which case h(s) ≡ h =
1/ρ. The inverse bending radius is denoted as hx and hy for bending in the horizontal and vertical
plane, respectively.

Three unit vectors are used to describe the trajectory of a particle relative to the design orbit.
These are the unit tangent vector, ~es, the unit normal vector, ~eN , and the unit binormal vector,

~r0(s)

x̂(s)

ŷ(s)

ẑ(s)

ρ = 1
hx

X̂

Ŷ
Ẑ

~Q(x, y, s, t)

Figure 2.1: Moving reference frame (x̂, ŷ, ẑ) parametrized by s(t). The trajectory of a particle Q can be described
by the coordinates (x, y, s, t).

7

8 CHAPTER 2. THEORETICAL BACKGROUND

~eB . However, it is advantageous to introduce new unit vectors defined as

~ex(s) =

{
+~eN (s), orbit in horizontal plane.
−~eB(s), orbit in vertical plane.

~ey(s) =

{
+~eB(s), orbit in horizontal plane.
+~eN (s), orbit in vertical plane.

(2.1)

This definition results in ~ex(s)× ~ey(s) = ~es(s). This means {~ex(s), ~ey(s), ~es(s)} represents a right
handed orthonormal system with ~ex(s) always in the horizontal plane and ~ey(s) always in the
vertical plane. The position of the tracked particle at a time t can now be written as

~Q(x, y, s, t) = ~r0(s(t)) + x · ~ex(s(t)) + y · ~ey(s(t)). (2.2)

2.2 The accelerator Hamiltonian

This section introduce the basic framework which will be used to derive the accelerator Hamilto-
nian. The motion of a particle in an accelerator is derived from this. This Hamiltonian is thus
the heart of a particle tracking code. For a deeper discussion of Hamiltonian mechanics than this
section can provide, refer to Goldstein [18].

2.2.1 Hamiltonian mechanics

The Newtonian formulation of classical mechanics can briefly be summarized in the equation∑
i

Fi =
d(mv)

dt
.

This equation states that the sum of forces acting on a dynamical system is equal to the time rate
of change of the mechanical momentum of the system.

Another formulation of classical mechanics is the Lagrangian formulation. The Lagrangian L
of a dynamical system is defined as

L ≡ T − V.
T is the kinetic energy and V is the potential energy of the system. This equation is true if the
potential V is velocity-independent. A similar expression holds when the potential does depend
on velocities. In that case it is replaced by a generalized potential U [18]. The Lagrangian can be
shown to obey the set of equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, (j = 1, . . . , n). (2.3)

These equations are known as the Euler-Lagrange equations of motion. The coordinates qj are
called the n generalized coordinates of the system. By calculating the Euler-Lagrange equation for
each generalized coordinate qj , a set of n second order differential equations are obtained. These
can be solved together with a set of 2n initial conditions or boundary values.

A third formulation of classical mechanics is the Hamiltonian formulation. Starting with the
Lagrangian L of a dynamical system, a set of coordinates qi are chosen and a corresponding set
of conjugate momenta pi are calculated by

pi ≡
∂L(qj , q̇j , t)

∂q̇i
, (i = 1, . . . , n). (2.4)

The set qi are usually the same set of n generalized coordinates used in the Lagrangian. The
resulting set of coordinate pairs (qi, pi) are known as canonical variables. The Hamiltonian is
defined in terms of these variables, as

H =
∑
i

q̇ipi − L(q, q̇, t). (2.5)

2.2. THE ACCELERATOR HAMILTONIAN 9

If the forces acting on the system are conservative forces∗, and the equations defining qi do not
explicitly depend on time, the Hamiltonian can be expressed as H = T + V . In this case the
Hamiltonian is an expression for the total energy of the system.

The equations of motion for the dynamical system can now be derived using the Hamilto-
nian and a set of equations known as Hamilton’s equations of motion. In Cartesian coordinates
(x, y, z), with the mechanical momentum (px, py, pz) as the conjugate momenta and the time t as
independent variable, these equations are expressed as

dx

dt
= +

∂H

∂px
,

dy

dt
= +

∂H

∂py
,

dz

dt
= +

∂H

∂pz
,

dpx
dt

= −∂H
∂x

,
dpy
dt

= −∂H
∂y

,
dpz
dt

= −∂H
∂z

.

(2.6)

For n pairs of canonical coordinates this results in 2n first order differential equations. As in the
Lagrangian case, these require 2n initial conditions to be solved.

2.2.2 Phase space

The 2n canonical variables are used to described the evolution of the system in phase space. The
coordinates of this space are the 2n canonical variables. A single point in phase space completely
describes the state of the system. As the system evolves in time, the point in phase space will
move and trace out a curve.

2.2.3 Canonical transformation

A transformation from an old set of canonical coordinates (qi, pi) to a new set (Qi, Pi) is called a
canonical transformation. The canonical transformation may also involve the independent variable
t. The transformation can be expressed as

Qi = Qi(q, p, t), Pi = Pi(q, p, t), i = 1, . . . , N. (2.7)

Here, q and p in the argument of Qi and Pi represent the full set of old variables. If the transfor-
mation does not explicitly depend on the independent variable it is called a restricted canonical
transformation. A canonical transformation also involves a transformation of the Hamiltonian H.
The transformed Hamiltonian will be denoted by K.

The purpose of a canonical transformation is often to simplify the problem at hand. An
example of this is to transform from Cartesian coordinates to spherical coordinates if the problem
has spherical symmetry. In accelerator physics it is common to transform to a set of coordinates
that obtain small values. It is then possible to expand nonlinear equations of motion in terms of
these coordinates.

The new set of canonical coordinates (Qi, Pi) must obey Hamilton’s equations expressed with
the transformed Hamiltonian K, as

dQi
dt

= +
∂K

∂Pi
,

dPi
dt

= − ∂K
∂Qi

.

(2.8)

∗A force is called conservative if the work done when moving a body from a starting point to an end point does
not depend on the path taken between the points.

10 CHAPTER 2. THEORETICAL BACKGROUND

Table 2.1: Generating functions for canonical transformations [18]. The old set of coordinates is denoted as (q, p)
and the new set as (Q,P). The old Hamiltonian is H and the new Hamiltonian is K.

Generating function Coordinates Hamiltonian

F = F1(q,Q, t) pi = +∂F1

∂qi
, Pi = − ∂F1

∂Qi
K = H + ∂F1

∂t

F = F2(q, P, t)−QiPi pi = +∂F2

∂qi
, Qi = +∂F2

∂Pi
K = H + ∂F2

∂t

F = F3(p,Q, t) + qipi qi = −∂F3

∂pi
, Pi = − ∂F3

∂Qi
K = H + ∂F3

∂t

F = F4(p, P, t) + qipi −QiPi qi = −∂F4

∂pi
, Qi = +∂F4

∂Pi
K = H + ∂F4

∂t

One way of achieving a canonical transformation is through a generating function F . A generating
function is an arbitrary function of the old and new canonical coordinates and the independent
variable. The generating function acts like a bridge from the old set of coordinates and the old
Hamiltonian, to the new set of coordinates and the new Hamiltonian. Four possible generating
functions are listed in Table 2.1.

An important point to note is that the solution to Hamilton’s equations of motion (see Equa-
tion (2.6)) for a step in the independent variable, is itself a canonical transformation [19].

2.2.4 Particle motion in an accelerator

For particle tracking in accelerators the independent variable t is usually substituted for s, the
path-length of the design trajectory. It exists a number of different common choices of which set
of canonical variables to use instead of the Cartesian coordinates and the mechanical momentum.
In this thesis the variables are chosen in agreement with SixTrack, which uses (x, px, y, py, σ, pσ).
The definitions of these variables will be introduced below.

A relativistic particle of charge q moving in an electromagnetic field characterized by the
electric field E and the magnetic field B, experiences the Lorentz force

F = q(E + v ×B). (2.9)

The electric and magnetic fields are derived from the electromagnetic scalar potential φ and the
electromagnetic vector potential A as

E = −∇φ− ∂A

∂t
,

B = ∇×A.
(2.10)

The Lagrangian for a relativistic particle of charge q in an electromagnetic field is [20]

L = −m0c
2

√
1− |v|

2

c2
− qφ+ qv ·A. (2.11)

The accelerator Hamiltonian can be derived using the relation between the Lagrangian and the
Hamiltonian from Equation (2.5). The full derivation of the accelerator Hamiltonian can be found
in Appendix B. The result is

H ≡ H(x, px, y, py, σ, pσ; s),

H = pσ − (1 + hxx)

(√
(1 + δ)2 − (px − ax)2 − (py − ay)2 + as

)
,

(2.12)

where δ ≡ δ(pσ) is the momentum deviation of the particle with respect to the reference particle,
and hx is the horizontal inverse bending radius (see Figure 2.1). The elements of the magnetic
vector potential has been normalized as

ax =
q

P0
Ax, ay =

q

P0
Ay, as =

q

P0
As, (2.13)

2.3. ACCELERATOR PHYSICS 11

where P0 is the momentum of the reference particle. In general, both the inverse bending radius
hx and the components of the magnetic vector potential vary with s.

The transverse position coordinates (x, y) are the transverse displacements as in Figure 2.1.
The canonical momentum variables (px, py) are given by

px =
1

P0

 mvx√
1− |v|

2

c2

+ qAx

 ,

py =
1

P0

 mvy√
1− |v|

2

c2

+ qAy

 .

(2.14)

The longitudinal coordinates (σ, pσ) are defined as

σ = s− β0ct,

pσ =
1

β0

E − E0

P0c
.

(2.15)

The longitudinal position coordinate σ, is a measure of the delay in arrival time at a position s
for the tracked particle relative to the reference particle. It is also a measure of the longitudinal
separation of the particle from the center of the bunch. The longitudinal momentum coordinate
pσ is the energy difference (∆E = E−E0) between the tracked particle and the reference particle
scaled by β0P0c, where β0 is the speed of the reference particle.

The Hamiltonian in Equation (2.12) neglects synchrotron radiation effects that becomes rele-
vant when the particle trajectories are bent at energies several order of magnitude larger than the
rest mass of the particle. It should also be noted that this Hamiltonian does not take into account
the interactions between particles in a bunch. Additional terms for collective effects are needed
for a complete treatment.

It is usually assumed that the magnetic field from a single magnet in an accelerator is only
localized to the extent of the magnet. This is the hard edge approximation. The components of
the vector potential are different depending on the type of electromagnetic elements, the terms Ax,
Ay and As will differ and give rise to different Hamiltonians for each element. For many common
elements the terms Ax and Ay are zero, greatly simplifying the calculations of the equations of
motion.

The chosen set of canonical variables and the corresponding Hamiltonian gives the following
set of Hamilton’s equations

dx

ds
= +

∂H

∂px
,

dy

ds
= +

∂H

∂py
,

dσ

ds
= +

∂H

∂pσ
,

dpx
ds

= −∂H
∂x

,
dpy
ds

= −∂H
∂y

,
dpσ
ds

= −∂H
∂σ

.

(2.16)

These are the equations used for the derivation of transfer maps in SixTrack.

2.3 Accelerator physics

Particle accelerators vary in size from very short accelerators applied in hospitals for medical
diagnosis to very large accelerators used for fundamental particle physics research. The design
process of an accelerator in the size of the LHC [1] at CERN requires a thorough understanding of
many areas of physics. This section provides an overview of some of the common elements of an
accelerator. Important concepts of accelerator physics will also be introduced. Readers familiar
with accelerators can skip this section. For a thorough introduction to accelerator physics, see
Lee [21].

12 CHAPTER 2. THEORETICAL BACKGROUND

2.3.1 Components of an accelerator

This section provides a brief overview of the most common devices found in an accelerator. The
collection of magnets constituting the accelerator will be referred to as the accelerator lattice.

Drift space

A drift space is a field free region of the accelerator located between magnets and other elements.
A drift space provides no focusing, no bending and no acceleration of the beam. A particle entering
a drift space simply drifts through without any change of momentum. This can be compared to
a light ray passing through vacuum in between two lenses in a optical system.

In particle tracking codes using the thin-lens approximation, a drift space is the most common
element in the lattice.

Dipole magnet

The purpose of a dipole magnet is to bend the beam around the accelerator lattice. The total
bending angle of all the dipoles in a circular accelerator must add up to 2π so that the beam can
circulate the lattice. The cross-section of a superconducting dipole magnet is shown in Figure 2.2a.
The field direction inside the dipole magnet is shown in Figure 2.3a.

Quadrupole magnet

The purpose of a quadrupole magnet is to focus the beam. An example of a quadrupole is shown
in Figure 2.2b. The field direction inside a normal quadrupole is shown in Figure 2.3b.

A quadrupole focuses the beam in one plane, and defocuses the beam in the other plane. A
horizontally focusing quadrupole is often referred to as simply a focusing quadrupole. A vertically
focusing quadrupole is often referred to as a defocusing quadrupole.

Higher order magnets

Apart from dipoles and quadrupoles there are also higher order magnets. These are used for
various reasons. Sextupole magnets are mainly used for chromaticity compensation [22]. Higher
order magnets can be used to correct nonlinear behavior, or to introduce nonlinearities on purpose
to create a desired beam behavior.

(a) Dipole magnet (b) Quadrupole magnet

Figure 2.2: (a) Cross-section of a superconducting dipole magnet of the LHC. The two beam-pipes can clearly be
seen. (b) Two normal quadrupole magnets, non-superconducting.

2.3. ACCELERATOR PHYSICS 13

1

1

x

y

(a) Dipole field

−1 0 1
−1

0

1

x

y

(b) Quadrupole field

Figure 2.3: A view of the direction of the magnetic field inside (a) a dipole magnet and (b) a quadrupole magnet.

RF-cavity

An RF-cavity (Radio Frequency cavity) is used to provide longitudinal acceleration and focusing
of the beam. In electron storage rings an RF-cavity must provide enough energy to the beam
to account for lost energy due to synchrotron radiation. Protons are less subject to synchrotron
radiation than electrons since they have a mass nearly 2000 times greater.

In the LHC, the RF-systems are responsible for bringing the protons from an energy of 450
GeV to an energy of 7 TeV.

The longitudinal focusing is necessary since the particle beam consists of a number of individual
bunches, each bunch containing a large number of particles. This bunch structure is important for
many processes in and around the particle acceleration. If no longitudinal focusing is provided,
the bunch structure is lost.

2.3.2 Transverse dynamics

A particle moving without oscillations through the center of each magnet in an accelerator is
following the design orbit. In reality particles are slightly disturbed from this perfect orbit, and
due to the focusing in the accelerator they oscillate around it.

An accelerator is often built in a repetitive pattern. Long sections are repeated over and over in
the accelerator, with minor differences at locations of particle detectors or injection and extraction
regions. This periodic nature of the accelerator allows the transverse motion of particles through
drifts, dipoles and quadrupoles to be studied through the linearized Hill’s equation [21]

x′′ +Kx(s)x = 0, Kx(s) = h2x −K1(s),

y′′ +Ky(s)y = 0, Ky(s) = K1(s).
(2.17)

Kx,y are focusing functions determined by the properties of dipoles and quadrupoles. In the
following only the horizontal plane will be considered. The treatment of the vertical plane is
similar. The general solution of Hill’s equation can be written as

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ). (2.18)

ε and φ are constants determined by initial conditions. β(s) is the envelope function of transverse
oscillations. It is a periodic function determined by the focusing properties of the quadrupoles in
the lattice. ψ(s) is the phase advance function of the transverse oscillations. The relation between
β(s) and ψ(s) is

ψ(s) =

∫ s

0

ds

β(s)
. (2.19)

14 CHAPTER 2. THEORETICAL BACKGROUND

The number of complete transverse oscillations performed during one turn around the accelerator
is called the tune, Q

Q =
1

2π

∮
ds

β(s)
. (2.20)

The horizontal tune is denoted as Qx, and the vertical tune as Qy. Differentiating the general
solution in Equation (2.18) gives

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ),

x′(s) = −
√
ε√
β(s)

(α(s) cos(ψ(s) + φ) + sin(ψ(s) + φ)) ,
(2.21)

where α(s) = −β
′(s)
2 and γ(s) = 1+α(s)2

β(s) . Solving Equation (2.21) for ε gives

ε = γ(s)x(s)2 + 2α(s)x(s)x′(s) + β(s)x′(s)2. (2.22)

The value of ε remains constant throughout the motion [21]. It describes the shape of an ellipse
in the (x, x′) phase space†. Throughout the motion this ellipse will change shape and orientation
depending on the value of β(s). The area of this ellipse, πε is called the emittance.

2.3.3 Dispersion

The field inside a dipole is adjusted to the design energy E0 and momentum P0. Particles with a
momentum different than the design momentum follow a different path through the magnet. The
momentum deviation from the design momentum is denoted as δ. A particle with δ > 0 will be
bent less than the design particle, while a particle with δ < 0 will be bent more. For the horizontal
case, the position of the particle can be written as

x(s) = x0(s) + xD(s) = x0(s) +D(s)δ. (2.23)

Here x0(s) is the position of a particle with the design momentum, and D(s) is called the dispersion
function. The path length for a particle with δ 6= 0 thus deviates from the design. The ratio of the
relative change in path-length (∆L/L) to the relative momentum deviation is called the momentum
compaction factor [22]

αc =
∆L/L

δ
=

1

L0

∮
D(s)

ρ(s)
ds, (2.24)

where ρ(s) is the bending radius.

2.3.4 Longitudinal dynamics

The longitudinal motion of particles are dictated by RF-cavities. The basic principle of synchrotron
motion is explained with the help of Figure 2.4. In this discussion it is assumed that the particles
have relativistic velocities (v = c), but the main points are still valid in the realistic case (v < c).

An RF-cavity is designed to provide enough energy to the particles to account for losses due to
synchrotron radiation. This is achieved by timing the particle arrival at the cavity with a specific
phase in the oscillating voltage. Let this phase be ψ0 (see Figure 2.4). The corresponding voltage
at this phase is V0.

A particle with a larger momentum than the design momentum (δ > 0) takes a longer path-
length around the accelerator due to dispersive effects. The particle will then arrive at the RF-
cavity after the ideal particle. It will encounter a lower voltage in the cavity and thus be accelerated
less than the ideal particle. In this way the particle will get closer to the design momentum in the
next turn around the accelerator. The opposite is true for a particle with δ < 0. This particle has

†Generally, x′ is not the conjugate momentum of x. Therefore the phase space of (x, x′) is not the correct phase
space to look at from a Hamiltonian point of view. However, x′ and px are closely related.

2.4. SYMPLECTIC INTEGRATION 15

Cavity

δ < 0

δ > 0
V

Ψ

δ < 0

V
δ = 0

V0 δ > 0

ψ

ψ0

Figure 2.4: The principle of synchrotron oscillations for relativistic particles (v = c) [22]. The effect of a
momentum deviation different from zero is illustrated.

a shorter path-length and will arrive at the cavity ahead of the ideal particle. Now the particle
sees a higher voltage and is accelerated more than the ideal particle. This particle will gain in
on the ideal particle during the next turn. In this way the RF-cavity focuses the beam in the
longitudinal direction. The bunch structure of the particle beam can thus be kept.

2.4 Symplectic integration

Numerical integration of differential equations is a vast topic. Common integration schemes include
the Euler- and Runge-Kutta schemes. In what follows, an integration scheme will be referred to
as an integrator.

Symplectic integrators belong to a larger class of integrators called geometric integrators. An
integration step can be thought of as a mapping or a transformation from an initial set of co-
ordinates to a new set of coordinates. A property of all geometric integrators is that they are
canonical transformations. This is why the concept of a symplectic integrator is important in the
Hamiltonian approach in accelerator physics.

2.4.1 The symplectic condition

It is possible to check weather a given transformation, or integration step, is symplectic. The
symplectic condition is an equation which must be satisfied for a given transformation to be
symplectic. The symplectic condition can be stated as [19]

MTSM = S, (2.25)

where M is the Jacobian matrix of the transformation and S is the symplectic matrix. For a
transformation from a set of coordinates (x1, p1, x2, p2, . . . , xN , pN) to a new set of coordinates
(X1, P1, X2, P2, . . . , XN , PN) the Jacobian matrix is defined as

M =

∂X1

∂x1

∂X1

∂p1
· · · ∂X1

∂xN
∂X1

∂pN
∂X2

∂x1

∂X2

∂p1
· · · ∂X2

∂xN
∂X2

∂pN
...

...
. . .

...
...

∂XN
∂x1

∂XN
∂p1

· · · ∂XN
∂xN

∂XN
∂pN

 .

16 CHAPTER 2. THEORETICAL BACKGROUND

The symplectic matrix S is a 2N × 2N block diagonal matrix of the form

S =

0 1
−1 0

. . .

0 1
−1 0

. (2.26)

All the left-out entries are zeros. Note that the form of the symplectic matrix S depends on which
order the coordinates are defined in. If the coordinates are grouped as (x1, x2, . . . , xN , p1, p2, . . . , pN)
the correct form of the symplectic matrix is

S =

[
0 In
−In 0

]
.

In is the n×n unit matrix, where 2 ·n = N . An important point is that for a number of Jacobian
matrices M1,M2, . . . ,Mn the product

M1 ·M2 · · ·Mn = Mtotal,

will also satisfy the symplectic condition in Equation (2.25), assuming each matrix individually
satisfy this condition.

2.4.2 Example of symplectic integration

To see the effect of a symplectic integrator, consider the Hamiltonian for a simple pendulum

H(x, p) =
p2

2
+ cosx. (2.27)

The equations of motion are

ẋ = +
∂H

∂p
= p,

ṗ = −∂H
∂x

= sinx.

(2.28)

Here x is the angle coordinate and p is the canonical momentum. The mass of the pendulum is
set to unity, and the length is chosen to be 1

g , where g is the acceleration due to gravity. This
gives mgl = 1 for the pendulum.

The simplest symplectic integrator for this Hamiltonian is to split the motion in three parts.
Let the integration step size be h. First, the pendulum drifts with constant momentum for a step
of h/2. At this location the pendulum receives a kick which changes the momentum. The kick is
an instantaneous change in momentum, corresponding to the change of momentum for the total
step h. During the kick, the position x of the pendulum stays constant. Then, the pendulum
performs another drift with constant momentum for a step of h/2. From Equation (2.28), keeping
the momentum constant, the map for the drift part for a step of h/2 is

x→ x+
h

2
· p,

p→ p.
(2.29)

The corresponding map for the kick part, keeping the position constant, is

x→ x,

p→ p+ h · sinx.
(2.30)

2.4. SYMPLECTIC INTEGRATION 17

0 2 4 6

−2

0

2

x (rad)

p
(r

ad
/
s)

(a) Symplectic

0 2 4 6

−2

0

2

x (rad)

p
(r

a
d

/
s)

(b) Runge-Kutta

Figure 2.5: Phase space trajectories for a simple pendulum. The integration was performed with a step size of
h = 0.01 and for 6000 iterations. The same set of initial conditions were used in both cases.

Iterating this map yields the motion of the pendulum. The result is shown in Figure 2.5a. For
comparison the result for an asymplectic fourth-order Runge-Kutta scheme is shown in Figure 2.5b.
Each integrator was iterated for 6000 iterations with a step size of h = 0.01. In both cases, a set
of five different initial conditions were used. Each initial condition gives rise to a trajectory in
phase space.

The result for the Runge-Kutta scheme shows nonphysical behavior. The phase space trajec-
tories are making spirals, which either grows towards infinity or shrinks down to zero. In the
symplectic case the trajectories in phase space repeat for each oscillation of the pendulum. This is
the expected result for the simple pendulum when no damping forces are applied. The result for
the Runge-Kutta scheme can be improved by decreasing the step size h, but at the cost of more
computational steps.

The Jacobian matrices for the simple pendulum mappings in Equation (2.29) and (2.30) are

Mdrift =

[
1 h

2
0 1

]
, Mkick =

[
1 0

h cosx 1

]
. (2.31)

The product of the matrices for the whole transformation is

Mtotal = Mdrift ·Mkick ·Mdrift =

[
1 + h2

2 cosx h+ h3

4 cosx

h cosx 1 + h2

2 cosx

]
. (2.32)

Applying this result in the symplectic condition in Equation (2.25) shows that this transformation
is symplectic.

2.4.3 Symplectic integration in particle tracking

The drift-kick-drift symplectic integrator described for the simple pendulum has applications in
particle tracking. In the lowest order of the thin-lens approximation the motion through a magnet
is approximated by a drift-kick-drift scheme. A drift space is a field-free region which does not
change the momentum of the particle. The kick represents the integrated strength of the magnet,
located at the midpoint of the original magnet.

A higher order symplectic integrator can be built up of more than one kick, separated by drift
spaces. In SixTrack, this build up of the integrator has to be performed at the input stage of the
simulation. This can be done automatically by other tools such as MAD-X.

The sort of spiraling behavior in phase space as in Figure 2.5b is a sign of asymplecticity. In
such a case the total energy of the system is not conserved. When performing particle tracking

18 CHAPTER 2. THEORETICAL BACKGROUND

with asymplectic maps, this same spiraling behavior will appear. This behavior is not observed in
a real accelerator. When implementing new maps in a tracking code, this behavior usually results
from an error in the code or an error in the equations. It is therefore a helpful guide during the
implementation.

2.5 Exact Hamiltonian

In order to track particles for a large number of turns using a tracking code it is of vital importance
to use accurate equations. The accelerator Hamiltonian in Equation (2.12) is itself an approxima-
tion, neglecting synchrotron radiation and collective effects. Taking the accelerator Hamiltonian
as the starting point there are commonly further approximations performed. From now on, the
accelerator Hamiltonian in Equation (2.12) will be referred to as the exact Hamiltonian.

In the small-angle approximation, the total momentum of the tracked particle is assumed to
be much larger than the transverse momentum. The accelerator Hamiltonian contains a term of
the form √

(1 + δ)2 − (px − ax)2 − (py − ay)2.

The total momentum is contained in the (1 + δ) term. If px, py � (1 + δ), this term is expanded
as

(1 + δ)

√
1− (px − ax)2 + (py − ay)2

(1 + δ)2
≈ (1 + δ)

(
1− 1

2

(px − ax)2 + (py − ay)2

(1 + δ)2

)
. (2.33)

The Hamiltonian using this expansion will be referred to as the expanded Hamiltonian. This
greatly simplifies the derivation of the equations of motion and the approximation is valid in many
circumstances. However, when there are large transverse momentum variations this approximation
is unacceptable and it is necessary to keep the square root term non-expanded. As long as the
use of the exact Hamiltonian does not increase simulation times drastically, it should also be
considered of general interest to use it.

The reasons for expanding the square root term is twofold. The transverse momenta are usually
very small terms, and solving the equations of motion with the exact Hamiltonian is only possible
in very few situations. One situation where it is possible is for the motion through a drift space.

In this section, the tracking map for a drift space using the full square root term is presented.
This map has been implemented in SixTrack. Previously, SixTrack has only been using the
expanded Hamiltonian for the drift space. Another case where it is possible to solve the exact
Hamiltonian is for a thin dipole magnet. This is presented in Appendix C.

2.5.1 The exact drift space

A drift space is a field free region of an accelerator, located between magnets and other devices.
In a field free region the components of the magnetic vector potential are all zero, Ax,y,s = 0 and
ax,y,s = 0. From Equation (2.12) the exact Hamiltonian for a drift space region is

H(x, px, y, py, σ, pσ; s) = pσ −
√

(1 + δ)2 − p2x − p2y. (2.34)

Hamilton’s equation of motion for this Hamiltonian is

x′ = +
∂H

∂px
=

px√
(1 + δ)2 − p2x − p2y

, p′x = −∂H
∂x

= 0,

y′ = +
∂H

∂py
=

py√
(1 + δ)2 − p2x − p2y

, p′y = −∂H
∂y

= 0,

σ′ = +
∂H

∂pσ
=

(
1− β0

βz

)
, p′σ = −∂H

∂σ
= 0.

(2.35)

2.5. EXACT HAMILTONIAN 19

The prime denotes derivation with respect to s. Integrating Equation (2.35) for a step of length
L in the independent variable s gives the transfer map for the exact drift space

x→ x+ x′L, px → px,

y → y + y′L, py → py,

σ → σ +

(
1− β0

βz

)
L, pσ → pσ.

(2.36)

The following definitions have been introduced

x′ =
px
pz

y′ =
py
pz

βz = β · pz
1 + δ

, (2.37)

where pz =
√

(1 + δ)2 − p2x − p2y. Denoting the old coordinates with a subscript of 1, and the new

coordinates with a subscript of 2, the Jacobian matrix of this transformation is

M =

∂x2

∂x1

∂x2

∂px1
∂x2

∂y1
∂x2

∂py1
∂x2

∂σ1

∂x2

∂pσ1
∂px2
∂x1

∂px2
∂px1

∂px2
∂y1

∂px2
∂py1

∂px2
∂σ1

∂px2
∂pσ1

∂y2
∂x1

∂y2
∂px1

∂y2
∂y1

∂y2
∂py1

∂y2
∂σ1

∂y2
∂pσ1

∂py2
∂x1

∂py2
∂px1

∂py2
∂y1

∂py2
∂py1

∂py2
∂σ1

∂py2
∂pσ1

∂σ2

∂x1

∂σ2

∂px1
∂σ2

∂y1
∂σ2

∂py1
∂σ2

∂σ1

∂σ2

∂pσ1
∂pσ2
∂x1

∂pσ2
∂px1

∂pσ2
∂y1

∂pσ2
∂py1

∂pσ2
∂σ1

∂pσ2
∂pσ1

=

=

1 L
pz

+
Lp2x
p3z

0
Lpxpy
p3z

0 β0

β
Lpx(1+δ)

p3z
0 1 0 0 0 0

0
Lpxpy
p3z

1 L
pz

+
Lp2y
p3z

0 β0

β
Lpy(1+δ)

p3z
0 0 0 1 0 0

0 −β0

β
Lpx(1+δ)

p3z
0 −β0

β
Lpy(1+δ)

p3z
1 L

pz

β2
0

β2

(
(1+δ)2

p2z
− 1 + β′

β0

1+δ
pz

)
0 0 0 0 0 1

.

(2.38)

Using this Jacobian in the symplectic condition in Equation (2.25), it can be seen that the trans-
formation is symplectic.

The transverse momenta of the particle, px and py, do not change inside the drift space. This
can be understood physically since there are no magnetic fields inside the drift, thus no forces
will be acting on the particle. It can also immediately be seen using Hamilton’s equations and
noticing that the Hamiltonian in Equation (2.34) is independent of the x- and y-coordinates. The
longitudinal momentum coordinate pσ does not change either, since this requires a change in
energy of the particle.

Of course, the idea that particles pass through a drift space without any change in motion is
only valid when considering single particles. Collective effects in a bunch of particles will slightly
change the motion of each particle. This small effect is neglected in this derivation.

The drift space map is important in particle tracking. It is not only used for a pure drift space
between magnets or other devices. As in the drift-kick-drift integration scheme (see Section 2.4)
the drift map is also used in the build up of symplectic integrators for the magnets themselves. This
makes the map in Equation (2.36) an important improvement for a large part of the accelerator
lattice.

The introduction of the exact drift space in SixTrack has been a long foreseen implementa-
tion [23].

2.5.2 The expanded drift space

Performing the expansion of the Hamiltonian as in Equation (2.33), results in the expanded
Hamiltonian for a drift space

H = pσ − δ +
1

2

p2x + p2y
1 + δ

. (2.39)

20 CHAPTER 2. THEORETICAL BACKGROUND

Constant terms in the Hamiltonian have been neglected since these do not contribute to the
motion. The equations of motion are derived through Hamilton’s equations

x′ = +
∂H

∂px
=

px
1 + δ

, p′x = −∂H
∂x

= 0,

y′ = +
∂H

∂py
=

py
1 + δ

, p′y = −∂H
∂y

= 0,

σ′ = +
∂H

∂pσ
= 1− β0

β

(
1 +

1

2

p2x + p2y
(1 + δ)2

)
, p′σ = −∂H

∂σ
= 0.

(2.40)

Integrating the solutions for a step of L in the independent variable s results in the transfer map
for the expanded drift space

x→ x+ x′L, px → px,

y → y + y′L, py → py,

σ → σ +

(
1− β0

β

(
1 +

1

2

p2x + p2y
(1 + δ)2

))
· L, pσ → pσ.

(2.41)

Compare the transverse motion (x, y) in Equation 2.41 with that of the exact drift space in
Equation (2.36). The difference between the exact drift space and the expanded drift space is in
the definition of x′ and y′. For the exact drift space the definition of (x′, y′) is

x′ =
px√

(1 + δ)2 − p2x − p2y
,

y′ =
py√

(1 + δ)2 − p2x − p2y
,

(2.42)

while for the expanded drift space the corresponding definition is

x′ =
px

1 + δ
,

y′ =
py

1 + δ
.

(2.43)

The main thing to notice is the coupling between x′ and y′ in Equation (2.42), which is not present
in Equation (2.43). The behavior of x′ for the exact and the expanded case is shown in Figure 2.6.
The value of py and δ are set to zero for this comparison.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

px (rad)

x
′

(r
ad

)

Expanded model
Exact model

δ = 0, py = 0

(a)

0 0.2 0.4 0.6 0.8 1

10−4

10−2

100

px (rad)

|x
′ ex

a
c
t
−
x
′ e
x
p
a
n
d
e
d
|(

ra
d

)

δ = 0, py = 0

(b)

Figure 2.6: Comparison of x′ for the exact and expanded model of the drift space. The expanded model is, as
expected, only valid at low values of the transverse momentum px.

Chapter 3

SixTrack

SixTrack [2] is a single particle six-dimensional symplectic tracking code used for studies of parti-
cle dynamics in circular accelerators. It has been used for the LHC in dynamic aperture studies,
tune optimization and collimation studies. The core program is a single executable file generated
by about 70 000 lines of Fortran code. SixTrack is based on the four-dimensional tracking code
RACETRACK [24], by including the longitudinal degrees of freedom and extending post-analysis
capabilities. SixTrack has been under continued development during the past twenty years. Future
improvements of SixTrack include GPU-implementation of computational heavy parts, implemen-
tation of new elements and tracking of particles with different mass and charge states [25].

This chapter introduces SixTrack, from the process of building the executable file from the
source code, to explaining the input and output of a simulation.

3.1 Purpose of a particle tracking code

The purpose of a particle tracking code is to analyze beam properties and the long-term stability
of a particle accelerator. The individual position of a single particle at a certain time is not of
interest, but rather the overall properties of a beam of particles and the long term behavior of a
collection of single particles.

A single particle tracking code tracks individual particles around the accelerator. The actual
number of tracked particles can be large, but collective effects due to interactions between the
particles are not included in such a code.

The six dimensions of a tracking code refers to the six degrees of freedom of a tracked particle.
The horizontal and vertical motion counts for four degrees of freedom. The longitudinal coordi-
nates related to the energy and position along the accelerator counts as the last two degrees of
freedom. A four-dimensional code excludes the longitudinal degrees of freedom. An example of
this is the code RACETRACK.

Many different tracking codes exists. Most tracking codes are designed for a specific purpose,
or a specific machine. All codes contain approximations to a certain degree. Some codes might
not be applicable to single pass systems such as a linear accelerator (Linac) and some codes are
constructed for tracking in small accelerator rings. SixTrack was constructed and used mostly for
tracking in large circular accelerators, in particular the LHC.

Another well used and long lived code is MAD-X [16], which has tracking capabilities included
but is mainly used in the design process of accelerators. MAD-X includes capabilities of tracking
with PTC (Polymorphic Tracking Code) [17].

21

22 CHAPTER 3. SIXTRACK

make six

.ast

+
.s

new directory

.f
make
file

SixTrack

Figure 3.1: SixTrack build process. The make six file generates an .ast file for each Fortran file to be produced.
The .ast files produce the Fortran files from the source code in the three .s files, sixtrack.s, lielib.s and
dabnew.s. The Fortran files are linked and compiled to produce the SixTrack executable file.

3.2 Code structure and building SixTrack

The process of producing the executable file for SixTrack is illustrated in Figure 3.1. The complete
source code∗ is contained in three files, sixtrack.s, lielib.s and dabnew.s. These files can be
used to generate a specific version of SixTrack by specifying a number of flags. A flag is a logical
switch to include certain functionalities. Using the gfortran compiler on Linux, the build of
SixTrack is initiated through the make six file as illustrated in Listing 3.1.

Listing 3.1: Command to build SixTrack on Linux using the gfortran compiler.

1 ./ make_six gfortran [list of flags]

A full list of the currently available flags can be found in Appendix E. In the first stage of the build
process, a number of ASTUCE-files (file ending with .ast) are generated. These files contain a
blueprint of what the Fortran files will contain. The .ast files together with the correct content
from the .s files produce the required Fortran files. An intermediate step is the application of the
Differential Algebra extension of Fortran (DAFOR) to convert special expressions in the .s files
starting with *FOX, to Fortran code [26].

The Fortran source files contain a subset of the source code available in the .s files. In the
regular version of SixTrack there are five Fortran files generated. A description of these files are
listed below.

track.f This is the file containing the tracking maps. The list of element maps include dipole,
quadrupole, sextupole, octupole and magnets of higher order, RF-cavity, solenoid, multipole,
beam-beam lens, crab cavity and more. There are subroutines for tracking in both four– and
six dimensions along with different versions for thin-lens tracking and thick-lens tracking.
Some tracking maps are only available in six-dimensional thin-lens tracking.

sixve.f This file contains the main program along with a large number of subroutines for closed
orbit calculation, acceleration and deceleration of the particle, input parsing, optics calcula-
tions, post processing and other tasks.

sixvefox.f SixTrack has the capability to calculate the lattice optics and closed orbit using a
differential algebra approach. Subroutines for this purpose are located in this file.

lielib.f This file contains subroutines by E. Forest for normal form calculations [27].

dabnews.f This file contains the differential algebra subroutines by Berz [26]. The subroutines
in this file are called from sixvefox.f in the closed orbit calculation.

The Fortran files are compiled and linked to produce the executable file.
After building SixTrack through make six with a set of flags a new directory is created. The

name of this directory depends on the set of flags. Building SixTrack using the gfortran compiler
with the collimat flag produces the directory SixTrack coll gfortran O4. The digit at the end

∗The SixTrack source code can be obtained through SVN as svn co http://svn.cern.ch/guest/SixTrack

http://svn.cern.ch/guest/SixTrack

3.3. STRUCTURE OF A SIXTRACK SIMULATION 23

of the directory name is related to the level of optimization used by the compiler. A value of
0 (zero) corresponds to no optimization. This is useful when debugging the code. The level of
optimization can be changed in the make six file.

The produced directory contains the executable file, the Fortran source code and a new make-
file. Changes to the code can now be made directly in the Fortran files, and the new makefile is
used to compile and link these files to produce the new executable. There is no need to re-build
SixTrack through make six. However, it is required to apply changes directly in the .s files when
adding new permanent features to the code. The .s files will overwrite any changes made directly
in the Fortran files the next time make six is run.

There are a few special statements available in the .s files, which simplifies the code structure.
These statements are summarized below:

+cd name-of-block This can be used to define a block of code, which can then be included at as
many locations as desired. Changes to the code in the block are made at a single location,
and the changes are included everywhere the block is used. The name of the block is limited
to 8 characters.

+ca name-of-block This is used to insert a previously defined block of code at a desired location.

+if (conditional statement) If certain parts of the code only should be included if a specific
flag is used in the building of SixTrack, this can be accomplished with the +if statement.
This statement is terminated by a +ei statement.

3.3 Structure of a SixTrack simulation

Below follows a simplified overview of the steps in a tracking simulation with SixTrack. Two files,
fort.2 and fort.3 are required as input. After running SixTrack, a large number of output files
called fort.# (where # is a number, # > 3), are created.

The first step is to generate the input data which defines the simulation. This can be done
automatically from other codes such as MAD-X or done by hand following the SixTrack manual
closely. When SixTrack is launched with the input data the following steps are performed:

• The simulation settings are read from fort.3 along with the description of the accelerator
elements from fort.2.

• All necessary parameters and variables are initialized depending on the settings in fort.3.

• The four– and six dimensional closed orbits are computed as well as all the optical parameters
of the lattice (α, β, γ, . . .). These calculations can be performed using a DA-approach.

• The tracking is performed using the settings specified in fort.3. At this stage the decision
between tracking with thick or thin lenses is done.

• The tracking data is processed and analyzed according to the specified settings in fort.3.
If desired, a number of plots of the analyzed data are also generated.

Output is written to the screen, and to a number of output files, during the entire simulation. The
output data is used for post processing in SixTrack or with other tools.

3.4 Input to SixTrack

The main input data needed to perform particle tracking are located in two files. The fort.2 file
contains the description of every single element contained in the lattice along with the definition
of the positions of each element within the lattice. The fort.3 file contains all the other settings
defining the simulation such as the total number of particles to be tracked, the initial positions of
the particles and the number of turns to be simulated.

24 CHAPTER 3. SIXTRACK

There are also a few other input files which are used for specific tasks. The fort.12 file is used
when prolonging a simulation by specifying all relevant coordinates of the tracked particles. The
fort.32 can be created in the first stages of the simulation. It contains a complete description
of the accelerator structure and parameters. In a subsequent run the full description can be read
from this file to the program.

The input in fort.2 and fort.3 are divided into a number of different blocks, each block
defining a set of parameters. Each block begins with a unique four-letter keyword and ends with
a line starting with the keyword NEXT. Between these two rows, a varying number of lines of input
data are located. Only the first four letters of the opening line of a block are important. After
these there may be other characters to clarify the purpose of the input block. For instance, a line
beginning with TRAC or with TRACKING PARAMETERS are both valid. In the latter case the purpose
of the block is more clear.

Below, the most common input blocks are described in detail. A few additional blocks are de-
scribed in Appendix D. For a complete reference of all the available input blocks and corresponding
settings, see the SixTrack user manual [2].

3.4.1 FREE/GEOM

The very first line in fort.3 must start with one of the keywords FREE or GEOM. This will dictate
where the lattice is read from. The keyword FREE means that the lattice will be read from the
same file (fort.3). The keyword GEOM means the lattice is read from fort.2 instead. The latter
is the most common way and if the lattice is large (e.g. the LHC) it is very convenient to separate
the lattice description from the rest of the simulation settings.

A title of the simulation can be specified on the first row of fort.3 using column nine and
onward. An example of this is shown in Listing 3.2.

Listing 3.2: GEOM/FREE line of the fort.3 input file.

1 GEOM Title of simulation

This block is not ended by the keyword NEXT. However, at the very end of fort.3, a line with the
keyword ENDE will mark the end of the input for SixTrack. The combination of GEOM (or FREE)
with ENDE can be seen as a large input block containing all the other blocks. This is shown in
Listing 3.3.

Listing 3.3: GEOM block terminated by ENDE.

1 GEOM Example simulation -------------------------

2

3 (all other input blocks)

4

5 ENDE --

3.4.2 Initial values for tracking (INIT)

This block specifies the initial phase space coordinates for two particles to be tracked along with
some related parameters. The structure of this input block is shown in Listing 3.4.

Listing 3.4: INIT input block for fort.3.

1 INITIAL VALUES -------------------------------------

2 itra chi0 chid rat iver

3 (+ 15 lines of initial coordinates)

4 NEXT --

3.4. INPUT TO SIXTRACK 25

The first line of values specifies the number of particles to be tracked (itra), the starting phase
of the initial coordinate in the horizontal and vertical phase space projections (chi0), the phase
difference between the first and second particle (chid) and the emittance ratio of horizontal and
vertical motion (rat).

SixTrack tracks pairs of particles, a regular particle and a twin particle. The itra controls the
number of particles to be tracked. However, the actual number of particles tracked is controlled in
the TRACinput block (see below). itra can be set to 0, 1 or 2. A value of 0 means the coordinates
from the list in this input block are used. A value of 1 means the twin particle is ignored, while
a value of 2 includes the twin particle. In the TRAC input block, the number of particle pairs can
be controlled.

The following six lines specifies the initial phase space coordinates for the first particle. The
coordinates are (x, x′), (y, y′) and (σ, δ). The next six lines specifies the initial phase space
coordinates for the second particle. The last three rows specifies the total energy of the reference
particle along with the total energy of particle one and two. All in all, the last 15 lines specifies
(x1, x

′
1, y1, y

′
1, σ1, δ1, x2, x

′
2, y2, y

′
2, σ2, δ2, E0, E1, E2).

3.4.3 Tracking parameters (TRAC)

This block controls a number of parameters directly related to particle tracking. It also provides
an automatic way of specifying the initial coordinates of the tracked particles. The structure of
this input block is shown in Listing 3.5.

Listing 3.5: TRAC input block for fort.3.

1 TRACKING PARAMETERS ---------------------------------

2 numl numlr napx amp (1) amp0 ird imc

3 idy (1) idy(2) idfor irew iclo6

4 nde (1) nde(2) nwr(1) ... nwr(4) ntwin ibidu iexact

5 NEXT --

The parameter numl specifies the number of tracking turns. The three parameters napx, amp(1)
and amp0 specify the number of amplitude variations, the starting amplitude and the ending
amplitude, respectively. These parameters can be used to automatically generate several starting
conditions for tracking. Each starting condition will count as an individual particle, and it is
possible to generate up to 64 particles this way (32 particle pairs). It is also possible to specify
a number of variations in the momentum deviation δ with the imc parameter. It is necessary
to make sure the total number of combinations of amplitude and momentum variations does not
exceed 64. If it does, the simulation will end prematurely with an error.

The iclo6 flag specifies if the closed orbit is to be calculated with the DA-package. A value
of 0 switches the DA-closed orbit calculation off, a value of 1 switches the calculation on and a
value of 2 switches the calculation on as well as adds the closed orbit to the initial coordinates.

During tracking, the particle coordinates after each turn are printed in the output. This can
be changed by the nwr(4) parameter. The coordinates are only printed every nwr(4):th turn.

A flag of interest in this block is iexact, which switches on or off the exact tracking model.
This is a new flag added for the exact drift space implementation.

3.4.4 Synchrotron oscillations (SYNC)

This input block controls the behavior of RF-cavities in the accelerator lattice, which is responsible
of longitudinal acceleration of particles. The structure of this input block is shown in Listing 3.6.

26 CHAPTER 3. SIXTRACK

Listing 3.6: SYNC input block for fort.3.

1 SYNCHROTRON OSCILLATIONS ----------------------------

2 harm alc u0 phag tlen pma ition dppoff

3 dpscor sigcor

4 NEXT --

The harm parameter is the harmonic number, followed by alc which is the momentum compaction
factor (αc), u0 is the total voltage of all the cavities in the accelerator, phag is the phase angle
of the cavity, tlen the total length of the accelerator, pma the mass of the particle, ition is the
transition energy switch. The transition energy switch can have one of three values, -1, 0 or +1. A
value of 0 turns off the synchrotron motion, while -1 and +1 means below or above the transition
energy, respectively. dppoff is the relative momentum deviation offset. The second row specifies
dpscor and sigcor, the scaling factors for the relative momentum deviation and the path length
difference, respectively.

The parameters of this block is only used if the only cavity in the lattice is defined with the
keyword CAV. A cavity defined like this is added to the lattice description in fort.2 at the desired
location in the lattice. The other way to define a cavity is in the SING input block (see below). In
that case, the parameters of this input block is ignored.

3.4.5 Single elements (SING)

Within this block, all single elements (magnets, cavities, kickers, drifts, ...) in the accelerator
lattice are defined. The order in which they are defined does not matter at this point. An example
of the use of this block is shown in Listing 3.7 where four elements needed to construct a simple
FODO-cell† with a cavity are defined.

Listing 3.7: SING input block for fort.2.

1 SINGLE ELEMENTS -------------------------------------

2 drift 0 0.000e+00 0.0 1.00e+00

3 qf 2 -1.400e-02 0.0 0.0

4 qd 2 1.400e-02 0.0 0.0

5 cav 12 3.000e-01 1.00e+00 1.80e+02

6 NEXT --

The first row of values describes a drift space of length 1 m, the next two rows describe a focusing
and a defocusing quadrupole, respectively. Both quadrupoles are of zero length, with strengths of
equal magnitude but opposite signs. The last line specifies an RF-cavity.

One important (and easily confusing) point is that the columns in this block do not necessarily
specify the same property for each element. The fifth column in the drift definition specifies the
length of the drift, while the fifth column in the cavity definition specifies the phase lag angle of
the cavity. Thus, it is necessary to check the definitions for each element in the SixTrack user
manual [2] when defining the elements.

3.4.6 Block input (BLOC)

This input block‡ can be used to construct combinations of linear elements. The linear single
elements include drift spaces, thick dipoles, thick quadrupoles and dipole edge effect elements.
Using the elements from the SING input block above, only the drift space could be used in a block.
This is shown in Listing 3.8. It is required to have at least one block.

†A FODO-cell is a construction of elements containing a focusing quadrupole, a defocusing quadrupole and
either drifts or dipoles in between. This cell is often repeated throughout the entire accelerator.
‡Do not confuse the name of this input block (BLOC) with a general input block to SixTrack.

3.5. OUTPUT FROM SIXTRACK 27

Listing 3.8: BLOC input block for fort.2.

1 BLOCK INPUT ---

2 BLOC1 drift

3 NEXT --

In thin-lens tracking the only element contained in a block is the drift space.

3.4.7 Structure of elements (STRU)

With this input block the actual structure of all the elements and blocks are constructed. This is
where the order of the elements is important. The elements from the SING block in Listing 3.7 can
be used to construct two FODO-cells in a row with a cavity at the end as shown in Listing 3.9.
The drift space is included as the block defined in Listing 3.8.

Listing 3.9: STRU input block for fort.2.

1 STRUCTURE INPUT -------------------------------------

2 qf BLOC1 qd

3 BLOC1 qf BLOC1

4 qd BLOC1 cav

5 NEXT --

The starting point of the accelerator can be changed by including the keyword GO at the desired
location.

3.5 Output from SixTrack

The following list describes the output to screen when running SixTrack with standard settings.

• Starting time and date of the simulation

• A list of all defined elements. This is a formatted table containing the same information as
in fort.2.

• A summary of the important tracking parameters in a formatted list.

• Details of the regular 4D-closed orbit calculation.

• A detailed table of optical parameters for each element in the ring. Also the horizontal and
vertical tune.

• Details of the differential algebra 6D-closed orbit calculation.

• A list of the initial coordinates of all the particles.

• Turn-by-turn print of all the coordinates of the particles.

• Details and summary of the post-processing. These include

The coordinates of each pair of particles can be sent to output files in the range fort.69-fort.90.
For a full list of output files, see Appendix C in the SixTrack manual [2].

28 CHAPTER 3. SIXTRACK

Chapter 4

Implementation and
benchmarking

This chapter describes the details of the new implementation in SixTrack. Benchmark tests with
other tracking codes will be performed to evaluate the behavior of the implementation.

4.1 Implementation details

4.1.1 Flag for exact tracking

A new logical flag called iexact has been introduced in order to allow the exact model to be
turned on or off, depending on the needs for a simulation. This flag is specified in the TRAC input
block in fort.3 (see Section 3.4.3). The default value of 0 corresponds to having the exact model
turned off. A value of 1 corresponds to having the exact model turned on.

In the code, the iexact flag is added to a new Fortran common-block named exact. This
common-block must be included in all subroutines that need to know which model is in use.
The concerned subroutines are listed in Table 4.1. The code for the common block is shown in
Listing 4.1.

Listing 4.1: Code for including iexact to a subroutine.

1 integer iexact

2 common/exact/iexact

Table 4.1: Subroutines with access to the iexact-flag.

Name Location Purpose

maincr sixve.f main SixTrack-program

comnul sixve.f set common parameters and variables to zero

daten sixve.f parse input data from fort.2 and fort.3

umlauda sixvefox.f 6D closed orbit calculation

thin4d track.f 4D thin-lens tracking

thin6d track.f 6D thin-lens tracking

thin6dua track.f 6D thin-lens tracking with acceleration

collimate2 track.f scattering routine for collimation

29

30 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

In the sixtrack.s source file, the code in Listing 4.1 can be included through a code block
named commonex. Adding this code block to a subroutine is done by writing +ca commonex at the
appropriate location in sixtrack.s.

The default value of iexact is set to 0 in the comnul subroutine. The specified value is parsed
from fort.3 in the daten subroutine. If the value is missing in fort.3 the default value is kept.
This is to avoid introducing changes to old simulations where the iexact flag is not set.

4.1.2 Tracking routines

The physics of the exact drift is implemented in the tracking subroutines thin4d, thin6d and
thin6dua. The thin4d subroutine excludes the longitudinal degrees of freedom. Both the thin6d

and the thin6dua subroutines include the longitudinal degrees of freedom. The difference between
the two 6D tracking subroutines is that in thin6dua, acceleration of the reference particle is
possible.

Due to how SixTrack is implemented there is no corresponding exact version in thick-lens
tracking. In thick-lens tracking, the maps for all linear elements (drift, dipole, quadrupole and
the edge-focusing element) are evaluated using matrices. For consecutive linear elements, these
matrices are combined to form a single matrix. This is done to speed up the computations. The
definition of (x′, y′) for the thick elements differ from the definition for the exact drift space. This
is why the exact drift is incompatible with the current implementation of the thick-lens tracking
routines.

In SixTrack the unit of (x, y) is mm, and the unit of (x′, y′) is mrad. The unit of the longitudinal
coordinate σ is also mm. SixTrack does not explicitly use pσ as the sixth coordinate in the code.
Instead it uses the momentum deviation δ, from which pσ can be derived. The name of the
coordinates in the code can be found in Table 4.2. Below follows a description of the exact
drift map calculation in SixTrack. This description is for the thin6d/thin6dua subroutines. The
calculations in the thin4d subroutine follows the same steps, but excludes all calculations involving
the longitudinal coordinate σ.

1. At the entrance of the drift, a conversion from mm to m (and from mrad to rad) is performed
by multiplication of 10−3.

(x, x′, y, y′, σ)→ (x, x′, y, y′, σ) · 10−3. (4.1)

The momentum deviation δ = P−P0

P0
is a fraction and does not need to be converted. The

code for this conversion is shown in Listing 4.2.

Table 4.2: Particle variables in the SixTrack tracking routines.

Variable Description Unit

xv(1,j) x-coordinate for particle j mm

xv(2,j) y-coordinate for particle j mm

yv(1,j) x′-coordinate for particle j mrad

yv(2,j) y′-coordinate for particle j mrad

sigmv(j) σ-coordinate for particle j mm

dpsv(j) δ-coordinate for particle j -

rvv(j) β0

β(j)
for particle j , β0 is the speed of the reference particle -

4.1. IMPLEMENTATION DETAILS 31

Listing 4.2: Converting from mm to m (and mrad to rad).

1 xv(1,j) = xv(1,j)*c1m3

2 xv(2,j) = xv(2,j)*c1m3

3 yv(1,j) = yv(1,j)*c1m3

4 yv(2,j) = yv(2,j)*c1m3

5 sigmv(j)= sigmv(j)*c1m3

The constant c1m3 is declared to be 1d-3, which is the double precision notation for 10−3

in Fortran.

2. To calculate the value of pz =
√

(1 + δ)2 − p2x − p2y, the values of px and py are needed. These

values can be found from the angle coordinates (x′, y′) in the small angle approximation.
From Equation (2.43),

px = x′(1 + δ) py = y′(1 + δ). (4.2)

Substituting these expressions for px and py in the exact drift map in Equation (2.36) give
for the transverse coordinates

x→ x+ L · x′(1 + δ)√
(1 + δ)2 − x′2(1 + δ)2 − y′2(1 + δ)2

,

y → y + L · y′(1 + δ)√
(1 + δ)2 − x′2(1 + δ)2 − y′2(1 + δ)2

.

These expressions simplifies to

x→ x+ L · x′√
1− x′2 − y′2

y → y + L · y′√
1− x′2 − y′2

.

From Equation (2.36) and Equation (2.37), and using the expressions for px and py from
Equation (4.2) the map for the longitudinal coordinate can be written as

σ → σ +

(
1− β0

β

1 + δ√
(1 + δ)2 − x′2(1 + δ)2 − y′2(1 + δ)2

)
· L.

This simplifies to

σ → σ +

(
1− β0

β

1√
1− x′2 − y′2

)
· L.

The code for the calculations in this step is shown in Listing 4.3.

Listing 4.3: Code for the exact drift map.

1 pz=sqrt(one -(yv(1,j)**2+yv(2,j)**2))

2 xv(1,j)=xv(1,j)+ stracki *(yv(1,j)/pz)

3 xv(2,j)=xv(2,j)+ stracki *(yv(2,j)/pz)

4 sigmv(j)=sigmv(j)+(stracki -((rvv(j)/pz))* stracki)

stracki is the length of the drift.

32 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

3. Finally, at the exit of the drift, a conversion back to mm and mrad is performed

(x, x′, y, y′, σ)→ (x, x′, y, y′, σ) · 103. (4.3)

The code for this transformation is shown in Listing 4.4.

Listing 4.4: Converting from m to mm (and rad to mrad).

1 xv(1,j)=xv(1,j)*c1e3

2 xv(2,j)=xv(2,j)*c1e3

3 yv(1,j)=yv(1,j)*c1e3

4 yv(2,j)=yv(2,j)*c1e3

5 sigmv(j)=sigmv(j)*c1e3

The constant c1e3 is declared to be 1d3, i.e. 103 in the Fortran double precision notation.

The description above does not include the details of the crlibm flag. This flag is issued by default
when building SixTrack, but it can be excluded. When using this flag, the crlibm mathematical
library [28] is used. The only modification to the drift map is in the calculation of pz. The code
for the calculation of pz with the crlibm flag is shown in Listing 4.5.

Listing 4.5: Calculating pz when the crlibm flag is active.

1 pz=exp_rn(half*log_rn(one -(yv(1,j)**2+yv(2,j)**2)))

The exp rn and log rn are special versions of the exponential and logarithmic functions, ensuring
correctly rounded results.

4.1.3 Differential algebra closed orbit and optics calculations

Apart from in the tracking subroutines, the exact drift map is implemented in the file sixvefox.f.
This file contains subroutines performing closed orbit and optics calculations using a differential
algebra approach. The calculation is performed with the subroutines The implementation of this
map follows the steps outline for the regular tracking routines, with a minor difference. The
momentum coordinates px and py are already available in this routine and they are directly used
to calculate pz without the need to calculate them from x′ and y′. The name of the coordinates
used in the code can be found in Table 4.3.

The code implementation is a bit different from the regular tracking subroutines. First of all,
there is no loop over particles. Only a single particle is used. The calculations use the differential
algebra (DA) package by Berz [26]. Each line of code starts with the marker *FOX and ends with
semi-colon. This tells the DAFOR pre-processor that these lines of code should be handled by the
DA package. Below follows a description of the drift map used in the 6D closed-orbit calculations

Table 4.3: Particle variables in the SixTrack DA-routines.

Variable Description Unit

X(1) x-coordinate mm

X(2) y-coordinate mm

YP(1) px-coordinate mrad

YP(2) py-coordinate mrad

SIGMDA σ-coordinate mm

DPDA δ-coordinate -

RV β0

β(j)
, β0 is the speed of the reference particle -

4.1. IMPLEMENTATION DETAILS 33

1. First, a conversion to m and rad is performed. The code for this step is shown in Listing 4.6.

Listing 4.6: Converting from mm to m (and mrad to rad) in DA routines.

1 *FOX X(1)=X(1)* C1M3 ;

2 *FOX X(2)=X(2)* C1M3 ;

3 *FOX Y(1)=Y(1)* C1M3 ;

4 *FOX Y(2)=Y(2)* C1M3 ;

5 *FOX SIGMDA=SIGMDA*C1M3 ;

As in the regular tracking subroutines, the constant C1M3∗ is declared to be 10−3.

2. Next, the drift map is computed. The code for this computation is shown in Listing 4.7.

Listing 4.7: Exact drift map in DA routines.

1 *FOX PZ=SQRT((ONE+DPDA)**2-YP(1)**2 -YP (2)**2) ;

2 *FOX X(1)=X(1)+EL(JX)*YP(1)/PZ ;

3 *FOX X(2)=X(2)+EL(JX)*YP(2)/PZ ;

4 *FOX SIGMDA=SIGMDA +(ONE -(RV/PZ))*EL(JX) ;

EL(JX) is the length of the drift.

3. Finally, a conversion back to mm and mrad is performed. The code for this conversion is
shown in Listing 4.8.

Listing 4.8: Converting from m to mm (and rad to mrad) in DA routines.

1 *FOX X(1)=X(1)* C1E3 ;

2 *FOX X(2)=X(2)* C1E3 ;

3 *FOX Y(1)=Y(1)* C1E3 ;

4 *FOX Y(2)=Y(2)* C1E3 ;

5 *FOX SIGMDA=SIGMDA*C1E3 ;

C1E3 is declared to 103 as before.

After the pre-processing with DAFOR, these calculations are broken down into the constituent
parts and each part is handled by the appropriate DA routine. There are special routines to
handle addition, subtraction, multiplication and other elementary operations. As an example, the
code generated by the DAFOR pre-processor for the calculation of X(1) in Listing 4.7 is shown
in Listing 4.9.

Listing 4.9: Map for x after DAFOR preprocessing.

1 CALL DACOP(X((1)), ISCRDA (1+ IDAA))

2 RSCRRI (2+ IDAA) = EL(JX)

3 CALL DACOP(YP((1)), ISCRDA (3+ IDAA))

4 CALL DACMU(ISCRDA (3+ IDAA), RSCRRI (2+ IDAA),

5 ISCRDA (5+ IDAA))

6 CALL DADIV(ISCRDA (5+ IDAA), PZ , ISCRDA (6+ IDAA))

7 CALL DAADD(ISCRDA (1+ IDAA), ISCRDA (6+ IDAA),

8 ISCRDA (7+ IDAA))

9 CALL DACOP(ISCRDA (7+ IDAA), X((1)))

∗Note that Fortran is case-insensitive. The two variables c1m3 and C1M3 are the same. This is contrary to
modern programming languages such as Python or C++.

34 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

Table 4.4: Differential Algebra subroutines in dabnews.f

Subroutine Purpose

DAALL(A,I,T,O,N)
Allocates space for I vectors A. T is the variable name.

O is the order and N the number of variables.

DACOP(A,C) Performs C = A

DAFUN(F,A,C) Performs C = F (A) (where F is an elementary function)

DAMUL(A,B,C) Performs C = A ·B
DASUB(A,B,C) Performs C = A−B
DASUC(A,RA,C) Performs C = RA−A

An explanation for the different subroutines in this code is given in Table 4.4. In the first line the
old value of X(1) is copied to the array ISCRDA. Then the variable RSCRRI is assigned the length
of the drift EL(JX). The third line makes a copy of the momentum px in YP(1) to the ISCRDA

array. In the fourth line the value of px is multiplied by the length of the drift, and the result is
saved to ISCRDA. Then the result of that computation is divided by PZ and the new result is once
again stored in the array ISCRDA. The line second to last adds the old value of x (X(1)) with the
result from the previous calculation, Lpx/pz. The last step is to copy the result back to the X(1)

variable.
In this way, very simple expressions are built up from the elementary computational steps. This

is necessary to be able to handle the differential algebra approach numerically. For an explanation
of the differential algebra approach, see [29].

Variables to be used in DA computations has to be defined in a special way. For this imple-
mentation, PZ had to be defined. The code declaring the pz variable is shown in Listing 4.10.

Listing 4.10: Declaring the PZ variable.

1 *FOX D V DA INT PZ NORD NVAR ;

The sequence of letters D V DA INT specifies the type of the variable. PZ is the name of the
variable. NORD and NVAR are related to the DA map to be produced, giving the order and the
number of variables. The Fortran code generated from this is shown in Listing 4.11.

Listing 4.11: Code for the PZ declaration after DAFOR preprocessing.

1 INTEGER PZ

2 CALL DAALL(PZ , 1, ’PZ ’, NORD , NVAR)

The purpose of the DAALL subroutine is given in Table 4.4.

4.2 Benchmark codes

In the following benchmark tests the newly implemented code in SixTrack will be compared with
two other codes with similar implementations. The first is MAD-X and the second is PTC,
although PTC is activated through a MAD-X script. First, a short introduction to these two
codes.

4.2.1 MAD-X

The Methodical Accelerator Design (MAD) [16] code is mainly used in the design phase of accel-
erator structures. The code includes tracking capabilities using the thin lens approximation and

4.2. BENCHMARK CODES 35

more recently supports tracking through thick quadrupole magnets [30]. The most recent version
of MAD is MAD-X, first introduced in 2002. MAD-X uses the exact Hamiltonian solution for the
drift space in its tracking routine, similar to the new implementation in SixTrack.

MAD-X can be run either in an interactive mode or in a batch mode. In the interactive mode
the input is given through a command line, similar to how MATLAB or Mathematica can be run.
In the batch mode, all input is written to a file which is then executed with MAD-X.

MAD-X uses the canonical coordinate pairs (x, px), (y, py) and (c∆t, pt) This differs from
SixTrack in the longitudinal coordinates. MAD-X uses the longitudinal coordinates (c∆t, pt), and
SixTrack uses (σ, pσ). The Hamiltonian for the set of canonical coordinates in MAD-X is [31]

H ≡ H(x, px, y, py, c∆t, pt; s) =

=
pt
β0
− (1 + hx)

(√
p2t +

2pt
β0

+ 1− (px − ax)2 − (py − ay)2 + as

)
.

(4.4)

It should be remembered that h and ax,y,s in general depend on s. For a drift space, the Hamil-
tonian in these coordinates is

H(x, px, y, py, c∆t, pt; s) =
pt
β0
−
√
p2t +

2pt
β0

+ 1− p2x − p2y. (4.5)

4.2.2 PTC

The Polymorphic Tracking Code (PTC) [17] is a symplectic thick lens tracking code. PTC has
an option to switch on the exact Hamiltonian. The drift space solution is the same as in MAD-X
and hence similar to the new implementation in SixTrack. PTC use the same set of canonical
coordinates as MAD-X, with the exception of using pt as the fifth variable which necessitates the
change c∆t→ −c∆t as the sixth coordinate. The canonical coordinate pairs used by PTC is thus
(x, px), (y, py) and (pt,−c∆t).

PTC includes an exact geometric solution of the sector bending magnet, as well as more
complicated magnet geometries which are solved by compositions of different maps.

PTC attaches a local frame of reference to each individual element in the lattice most appro-
priate for the element at hand. The philosophy of the code is that, as far as the particle traversing
a magnet is concerned it does not matter if the magnet is located on a table in an office or as
part of the LHC, the tracking is done in the same way regardless. Geometric transformations are
performed between different frames of reference for the elements, giving PTC the possibility to
track through arbitrarily shaped accelerator lattices. This differs to the approach used by Six-
Track and MAD-X. For the full details of the physics implemented in PTC refer to [32]. This
sophistication in the code comes at the expense of being more complicated to handle. PTC does
not have the command line interaction as MAD-X or the simple input files as SixTrack. PTC is
being integrated as a part of MAD-X, which simplifies its use. However, the available features of
PTC through MAD-X is still fairly limited.

PTC also has capabilities to track particles using a one-turn map instead of the traditional
element-to-element tracking. This one-turn map is a high-order map which maps the coordinates
for a whole turn around the accelerator lattice. A lot of information can be extracted from this
one-turn map, such as the optical functions and the tunes.

4.2.3 Relation to SixTrack

There is a conversion routine implemented in MAD-X which converts the accelerator lattice used
in MAD-X to the correct form needed for SixTrack. MAD-X is more suited to construct a working
lattice than SixTrack, which is why SixTrack is always used in combination with MAD-X for the
generation of the lattice. A small part of the input needed in fort.3 is also generated in this
process, but the majority of the content needs to be written by the user.

MAD-X can invoke tracking using the PTC tracking library. The availability of the PTC
library is limited to a few standard elements. No use of the more advanced features of PTC is

36 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

possible with the current version of MAD-X. In particular, there are three different integration
methods available. The three methods are

• drift-kick-drift

• matrix-kick-matrix

• delta-matrix-kick-matrix

The first is the regular drift-kick-drift integration method used in thin-lens tracking in SixTrack.
This method does not include any exact elements [17]. The matrix-kick-matrix method is a fast
integration method since the matrices do not depend on δ. They do not need to be recomputed
every time they are used. This is achieved by including a δ-dependent correction term for each
application of the matrix elements. The delta-matrix-kick-matrix method is similar in spirit but
the matrices are δ-dependent. This method is similar to how SixTrack performs calculations in
thick lens tracking. Both matrix methods include the use of the exact drift space.

The longitudinal coordinates of MAD-X and PTC are related to the longitudinal coordinates
of SixTrack by the speed of the reference particle β0 through [31]

pt = β0 · pσ

c∆t =
1

β0
· σ.

(4.6)

If no acceleration of the reference particle is performed, β0 stays constant. This allows the result
of MAD-X and PTC to be compared with that of SixTrack, by the simple relation in Equation 4.6.
However, SixTrack uses a different sixth coordinate in the code than in the derivation of maps. In
the code, SixTrack uses the momentum deviation δ = P−P0

P0
. To be able to compare SixTrack to

MAD-X and PTC a conversion between δ and pt is needed. The relation is

(1 + δ)2 = p2t +
2pt
β0

+ 1. (4.7)

This can be seen by comparing the Hamiltonian for the exact drift in SixTrack, Equation 2.34,
with the corresponding Hamiltonian in MAD-X and PTC, Equation 4.5.

4.3 Benchmark in 4D and 6D

The purpose of this benchmark test is to verify the behavior for regular tracking at realistic
amplitudes. The exact model of the drift in SixTrack is compared to the exact drift in MAD-X
and PTC.

4.3.1 Lattice and settings

Two simple accelerator lattices were created and used to verify the behavior of the new imple-
mentation. The first lattice was a single FODO-cell, with no cavity. This lattice is referred to as
the 4D lattice. The structure of the 4D lattice is{

1

2
QF D QD D

1

2
QF

}
.

QF represents a thin focusing quadrupole, QD represents a thin defocusing quadrupole and D
represents a drift space. The cell is symmetrically constructed, with the focusing quadrupole
split in half. In the simulation this means that the focusing quadrupole is defined with half the
integrated strength of the original unsplit quadrupole. In these tests the drift spaces in between
the quadrupoles are of the exact kind.

4.3. BENCHMARK IN 4D AND 6D 37

The second lattice, which will be referred to as the 6D lattice, is a larger lattice consisting of
34 FODO-cells of the same kind as for the 4D-lattice. An RF-cavity is included at the end point
of the lattice.

The settings for each lattice element as well as for the particles are presented in Table 4.5.

Table 4.5: Benchmark settings

4D lattice 6D lattice

Number of turns 106 106

Initial coordinates
x1 = 0.3 mm, y1 = 0.1 mm x1 = 0.4 mm

x2 = 0.6 mm, y2 = 0.1 mm x2 = 0.8 mm

δ1,2 = 0 δ1,2 = 0.01

Quadrupole integrated strength 4.0× 10−1 1.4× 10−2

Drift length 2.0 m 1.0 m

Total cell length 4.0 m 2.0 m

Total lattice length 4.0 m 68.0 m

Cavity voltage - 0.3 MV

Cavity harmonic number - 1

Cavity lag angle - 0.0 rad

4.3.2 Results

The results are presented as phase space plots. For the 4D lattice, the horizontal and vertical
phase space projections are shown in Figure 4.1. In the horizontal plane, the two particles have
different amplitudes, but they have the same amplitude in the vertical plane.

For the 6D lattice, the horizontal and longitudinal phase space projections are shown in Fig-
ure 4.2. The two particles follow the same path in the longitudinal phase space.

−5 0 5

·10−4

−5

0

5

·10−5

x (m)

p
x

(r
ad

)

−1 −0.5 0 0.5 1

·10−4

−2

0

2

·10−5

y (m)

p
y

(r
ad

)

SixTrack MAD-X PTC

Figure 4.1: Horizontal– and vertical phase space projections of the motion.

38 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

−1 −0.5 0 0.5 1

·10−3

−1

0

1

·10−5

x (m)

p
x

(r
a
d

)

−10 −5 0 5 10

−5

0

5

·10−3

c∆t (m)

p
t

(r
a
d

)

SixTrack MAD-X PTC

Figure 4.2: Horizontal– and longitudinal phase space projections of the motion.

4.4 Large transverse momentum

In this benchmark test, the exact model is compared to the expanded model for large transverse
momentum.

4.4.1 Lattice and settings

This test was performed in 4D with the same lattice as from the test above. A single particle was
tracked, with an initial horizontal angle coordinate of x′1 = 300 mrad, all other coordinates were
set to zero. This is unrealistic because of the very large oscillations of the particle, but it serves
to show the deviation between the exact– and expanded models. MAD-X was used as a reference
code to verify the behavior of the exact model at large transverse momenta.

4.4.2 Results

The horizontal phase space projection of the motion is shown in Figure 4.3.

−2 −1 0 1 2

−0.2

0

0.2

x (m)

p
x

(r
ad

)

SixTrack (exact)

SixTrack (expanded)
MAD-X

Figure 4.3: Horizontal phase space projection of the motion. The exact model of the drift is compared to the
expanded model at large transverse momentum.

4.5. COMPUTATIONAL SPEED 39

4.5 Computational speed

The exact drift map contains additional computational steps than the expanded drift map. This
can be seen from Equation (2.36) and Equation (2.41). In this test the two different models are
compared to each other in terms of speed. SixTrack is also compared to PTC, with both codes
using the exact drift space.

4.5.1 Lattice and settings

For a realistic test, the full LHC lattice was used. The LHC lattice can be obtained from the
CERN web [33]. The optics version used in this test was 6.503 for beam 1.

The settings for SixTrack and PTC were kept at a minimum level, so that as much of the
simulation time as possible was for the actual tracking. One particle was tracked for a varying
number of turns in the range [101, 106]. The initial coordinates for the particle were x = 0.1 mm,
y = 0.1 mm and δ = 10−4. All other coordinates were set to zero.

For each of the two models, a total of 46 simulations were performed. The number of turns
ranged from 101 to 106. For each value of turns, the simulation was repeated five times and the
average simulation time was calculated.

All simulations were performed on a desktop computer running Ubuntu 13.04 with an Intel
Core i7-3770 CPU at 3.40 GHz.

4.5.2 Results

The result of the comparison between the exact– and expanded drift space in SixTrack is shown
in Figure 4.4a. The result of the comparison between SixTrack and PTC is shown in Figure 4.4b.

101 102 103 104 105 106

0

100

200

300

Number of turns

T
im

e
(s

)

Expanded model
Exact model

(a) Exact–, and expanded drift in SixTrack.

101 102 103 104 105 106

100

101

102

103

104

Number of turns

T
im

e
(s

)

PTC
SixTrack

(b) SixTrack and PTC, using the exact drift.

Figure 4.4: Simulation time as a function of the number of turns in the LHC. In (a) a comparison of the exact
and expanded model of the drift space in SixTrack. In (b) a comparison of PTC and SixTrack, both with the exact
drift space.

40 CHAPTER 4. IMPLEMENTATION AND BENCHMARKING

Chapter 5

Application

In this chapter the new implementation of the exact drift space in SixTrack is applied in two case
studies. In the first, the impact of the exact drift is evaluated for the LHC collimation system.
In the second, the change of the transverse tunes of the LHC as a function of the momentum
deviation of the particle is investigated.

5.1 Collimation

5.1.1 LHC Collimation system

The beam in an accelerator is not a static collection of particles keeping its shape turn by turn.
Various beam dynamics processes and errors induce motion of the particles within the beam.
Particles drift away from the center of the beam to populate what is called the beam halo. Particles
located in the beam halo could move further away from the beam center, eventually hitting the
inside of the beam pipe.

A collimation system is used to protect an accelerator from particles in the beam halo. When
particles hit a superconducting magnet, they can cause a magnet to quench. This is when the
magnet loses its superconducting state and the material in the magnet becomes resistive again.
This process will cause the magnet to quickly heat up, which can lead to serious damages to the
magnet.

In the LHC, the total stored beam energy can reach a value of 360 MJ∗. This can be compared
to the stored energy in a normal car traveling at a velocity of almost 800 km/h. This energy is
two order of magnitude above the beam energy obtained in HERA or Tevatron [34]. A local loss
of 4 × 107 protons in a superconducting magnet would induce an energy of about 30 mJ/cm−3.
This energy would be enough to cause a quench [35].

A conceptual layout of a small part of the LHC collimation system is shown in Figure 5.1. The
collimation is set up as a multi-stage collimation system. The first set of collimators encountered
by the beam is called the primary collimators. These collimators define the primary aperture of
the collimator system. Some protons are not absorbed by these collimators, which necessitates the
multi-stage system. Protons hitting the primary collimator may scatter off with large momentum-
deviations or induce showers of other particles. These particles form a secondary halo which may
also contribute to a possible magnet quench. Particles surviving the secondary collimators form
the so called tertiary halo. This halo is handled by the tertiary collimator which is an important
last protection stage located before sensitive systems of the particle detectors. There are in total
eight insertion regions (IR) in the LHC. Two of these are dedicated to beam cleaning. IR3 houses
the momentum cleaning and IR7 the betatron cleaning. These beam cleaning regions each contain
a large number of collimators. Betatron cleaning limits the transverse extensions of the beam halo.

∗Calculated for a proton beam of 7 TeV energy with 2808 particle bunches and 1.15 · 1011 particles per bunch.

41

42 CHAPTER 5. APPLICATION

Beam

cleaning insertion arc(s) IP

(1) (2) (3)

SC triplet
secondary halo

tertiary halo

Figure 5.1: Principle of multi-stage cleaning. The three layers of collimation stages are numbered in the figure.

Momentum cleaning catch particles with a longitudinal momentum different from the reference
momentum.

5.1.2 Collimation extension to SixTrack

A special version of SixTrack including subroutines for collimation is available [36]. This extension
to SixTrack includes a new input block COLL, where the desired settings related to the collimation
calculations are set. The collimators are defined in a separate database file. For each collimator
the database contains its name, the nominal opening, length, material, orientation as well as the
design β-function values at the location of the collimator.

The collimation addition to SixTrack allows for tracking of a large number of halo particles as
well as taking into account the interaction between halo particles and arbitrarily placed collimators.
When a halo particle hits the collimator jaws particle scattering occurs. The scattering effects are
computed using COLLTRACK/K2 routines [36, 37].

Particle losses around the accelerator are recorded throughout the simulation. Post-processing
routines create a loss map showing the locations where the losses occurs. There are three types of
losses of interest, warm, cold and collimator losses. Preferably all particle losses should occur in a
collimator. A cold loss is when a particle has been absorbed in a superconducting magnet. Losses
of this type can cause a quench. The loss map can thus give information about locations where a
quench might occur.

5.1.3 Application of drift in collimation routines

In SixTrack, a collimator of length L is located at a single point, corresponding to the mid-point
of the actual collimator length, see Figure 5.2. The motion through the initial half and the final
half is computed using the drift map.

x

z

mid-point

collimator jaws

L

particle path

mid-point

d

Figure 5.2: Thin lens model of a collimator in the collimation routine in SixTrack.

5.1. COLLIMATION 43

When the particle passes the mid-point of the collimator a check is done to see if the particle
is inside the aperture limits of the collimator. If it is, the particle is transported back by half the
length of the collimator. The location where the particle hits the collimator aperture is located.
The scattering of this particle in the collimator material is calculated with special scattering
routines.

5.1.4 Simulation of losses

A simulation of the LHC collimation system involves tracking a large number of particles with
large oscillation amplitudes for a relatively few number of turns. Particles are lost around the
ring, and the locations of these losses are recorded.

Simulation settings

A total number of 14.028×106 particles were used for each simulation case (100 sets of 6 particles
× 2192 simulation runs). Each particle was tracked for 500 turns. The beam energy was set to 3.5
TeV, corresponding to the beam energy used during the 2011 LHC run. The momentum deviation
was set to δ = 0 in all simulations. The complete input files to SixTrack used in these simulations
can be found in Appendix F. A description of the COLL input block for SixTrack collimation studies
is also provided in the same appendix.

5.1.5 Comparison and results

The local inefficiency is the number of particles lost in a certain bin divided by the total number
of particles lost over the length of the aperture bin. This is illustrated in a loss map, where the
number of lost particles is counted for a number of bins. Each bin corresponds to a certain distance
along the accelerator.

The results using the exact drift space is shown in Figure 5.3a, and the results using the regular
drift space is shown in Figure 5.3b. The upper plots shows the entire LHC ring, where each bin
corresponds to a distance of 100 m. The lower plots in Figure 5.3a and 5.3b show a zoom on
the betatron cleaning in IR7 where a majority of the losses occur, here each bin corresponds to a
distance of 10 m. The three loss types shown in a loss map are collimator losses, cold losses and
warm losses. A collimator loss is when a particle has been absorbed in the collimator material.
This is the desired loss case, when the collimators are successfully protecting the machine. A cold
loss is when a particle is lost in a superconducting magnet. Too many particles lost in the same
magnet in a short time span will induce a quench. A warm loss is when a particle is lost in another
element which is not kept at superconducting temperatures. These losses are not in themselves as
harmful, but they can induce showers of other particles.

Details of the losses in the exact case is presented in Table 5.1 and details for the regular case
is presented in Table 5.2.

Table 5.1: Details of losses for the collimation simulation with the exact drift space.

Exact drift space

Total n.o. runs 2192

Total n.o. particles absorbed in collimators 1.217× 107

Total n.o. particles lost in ring 12269

Global inefficiency 1.009× 10−3

Total n.o. particles lost in cold regions 4471

Total n.o. particles lost in warm regions 7798

Highest cold loss At s = 20334.1 m, η = 2.219× 10−5

Highest warm loss At s = 19850.3 m, η = 1.167× 10−4

44 CHAPTER 5. APPLICATION

5000 10000 15000 20000 25000

101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7L
o
ca

l
in

effi
ci

en
cy

η c Collimator
Warm
Cold

19500 20000 20500 21000 21500 22000

101

100

10−1

10−2

10−3

10−4

10−5

10−6

s [m]

L
o
ca

l
in

effi
ci

en
cy

η c

(a) Exact drift space.

5000 10000 15000 20000 25000

101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7L
o
ca

l
in

effi
ci

en
cy

η c Collimator
Warm
Cold

19500 20000 20500 21000 21500 22000

101

100

10−1

10−2

10−3

10−4

10−5

10−6

s [m]

L
o
ca

l
in

effi
ci

en
cy

η c

(b) Regular drift space.

Figure 5.3: Particle loss map for the LHC. The losses on the vertical scale is a measure of the local inefficiency.
The upper plot shows the complete LHC circumference and the lower plot is a zoom on the betatron cleaning
insertion IR7.

5.2. TUNE SHIFT IN THE LHC 45

Table 5.2: Details of losses for the collimation simulation with the regular drift space.

Regular drift space

Total n.o. runs 2192

Total n.o. particles absorbed in collimators 1.218× 107

Total n.o. particles lost in ring 12392

Global inefficiency 1.017× 10−3

Total n.o. particles lost in cold regions 4446

Total n.o. particles lost in warm regions 7946

Highest cold loss At s = 20334.1 m, η = 2.708× 10−5

Highest warm loss At s = 19850.3 m, η = 1.420× 10−4

5.2 Tune shift in the LHC

5.2.1 Resonances

Multipole field errors in magnets induce resonances which should be avoided. The horizontal and
vertical tunes of the machine needs to be carefully chosen. In general, the betatron oscillations in
the two planes are coupled, leading to coupled resonances. The condition for a resonance is

m ·Qx + n ·Qy = p, (5.1)

where m, n and p are integers. The order of the resonance is determined by the sum |m| + |n|.
It is in fact the fractional part of the tune which is the important value. For a tune of 60.32, the
fractional tune is 0.32. The number of complete oscillations do not affect the results. Example of
3rd and 5th order resonance diagrams are shown in Figure 5.4. The working point of the LHC
(0.31,0.32) is marked out in red. A higher order diagram quickly becomes very messy and it can
seem hopeless to find a working point. However, the effect of higher order resonances are very
weak, and usually only up to fifth order are considered in practice [22].

0 0.5 1

0

0.5

1

Qx

Q
y

(a) 3rd order

0 0.5 1

0

0.5

1

Qx

Q
y

(b) 5th order

Figure 5.4: Resonance diagrams for 3rd and 5th order. The working point for the LHC (0.31,0.32) is marked in
red. Increasing the order quickly complicates the process of finding a suitable working point.

5.2.2 Simulation of tune shifts

The variation of the tunes due to a variation in the relative momentum deviation δ for the LHC
is of interest. A simulation with the new implementation in SixTrack has been compared to the

46 CHAPTER 5. APPLICATION

expanded drift space. For these simulations the relative momentum deviation was varied in the
range [−4, 4] × 10−3. For each value of δ, 104 tracking turns were performed. The tunes were
calculated through Fourier analysis of the x-coordinates for the horizontal tune, and y-coordinates
for the vertical tune. The results are presented in Figure 5.5.

−4 −2 0 2 4

·10−3

0.31

0.32

0.33

0.34

δ

Q
x

Exact model
Expanded model

(a) Horizontal tune.

−4 −2 0 2 4

·10−3

0.32

0.34

0.36

0.38

δ
Q
y

Exact model
Expanded model

(b) Vertical tune.

−4 −3 −2 −1 0 1 2 3 4

·10−3

0

0.5

1

1.5

2

2.5

3

3.5

·10−5

δ

Q
e
x
a
c
t
−
Q

e
x
p
a
n
d
e
d

Horizontal tune, Qx
Vertical tune, Qy

(c) Difference between the exact– and expanded models.

Figure 5.5: Horizontal– and vertical tune variations as a function of momentum deviation δ in the LHC.

Chapter 6

Discussion and conclusions

6.1 Benchmark results

The new implementation agrees well with PTC and MAD-X. However, small initial differences
in the results grows with time. This is also true between PTC and MAD-X. Initially the results
agree down to the 18:th or 19:th decimal place, which is far away from what could possibly be
measured in a real machine. The difference after 109 turns in the simple FODO-lattice grows to a
few 10−14 m, indicating that the growth is very slow. More simulations are needed to figure out if
this error grows up to measurable levels. An investigation as to why there is a difference between
MAD-X and PTC could also be performed. These two codes should agree exactly since the same
set of canonical variables are used and the same tracking maps.

From Figure 4.3 it is clear that the two models deviate when there is a large transverse mo-
mentum of the particle. This deviation shows up in the x-values, where the expanded model has
a smaller amplitude than the exact model. This is the expected result when δ = 0 and py = 0. In

the expanded model, the change in x is Lpx. In the exact model, the change in x is Lpx/
√

1− p2x.
The value of the square-root term is less than one, making the change of x larger.

The new implementation has additional computational steps to perform. It is thus expected
that a simulation involving many drifts should take more time. This is seen from Figure 4.4a.
Looking at the calculation of the map in Listing 4.3 one can count to eight steps for the computation
of x. This can be compared to only two steps for the expanded drift space. This small number of
steps for the expanded drift space comes from the fact that SixTrack keeps x′ in memory instead
of px. The increased number of steps for the exact map is due to the computation of pz.

In the comparison between PTC and SixTrack in Figure 4.4b it is clear why SixTrack is the
superior code to use in large scale simulations. SixTrack is orders of magnitude faster than PTC,
even with the new “slower” exact drift implementation. The simulation speed of PTC is not
appreciably improved by switching off the exact model. The simulation speed of MAD-X was
tested to be approximately the same as for PTC, but this is not reported in this thesis.

6.2 Impact on collimation

The new implementation has no major impact on the resulting loss map for collimation. This is
a desired result since the existing loss maps are close in agreement to measured values in the real
LHC. However, it is also an indication that the exact drift map is not necessarily needed in this
case. When dealing with machine protection simulations it is of utmost importance to do realistic
simulations, and the exact drift implementation should still be considered.

From Table 5.1 and Table 5.2 we can see that approximately the same number of particles
are absorbed in the collimators. More importantly, the number of particles absorbed in the cold
regions are about the same. A total of 4471 particles in the exact case, and a total of 4446 particles
in the regular case. The highest cold loss occurs at the same position in each case.

47

48 CHAPTER 6. DISCUSSION AND CONCLUSIONS

6.3 Impact on tune variation

Studying Figure 5.5 is is clear that the impact of the exact drift is small in this case. However, as
expected there is a growing variation with a larger momentum deviation δ. This growth has an
exponential behavior. At δ = −4× 10−3, the horizontal tune is about 3.3× 10−5 larger with the
exact drift than with the regular drift.

For the horizontal case, the tune variation over the interval δ = [−4, 4]× 10−3 is in the range
Qx ≈ [0.31, 0.34]. The corresponding vertical tune variation is Qy ≈ [0.32, 0.38]. In the real
machine, variations of ∆Q ≈ ±0.1 are measured in nominal operation [1]. This means that the
interval studied here is larger than what we could expect during normal LHC operation.

Tune variations on the order of 10−5 are not possible to measure. However, in simulations this
is very much possible to measure and this could potentially be important for studies of high-order
resonance effects.

6.4 Further simulations

The impact of the exact drift space could be further investigated in simulations with small rings.
A typical small ring (e.g. LEIR or the PS Booster at CERN) contains four short straight sections
and four 90◦ arcs. The beam energy in such a ring is much smaller than in a large scale accelerator.
This means the small-angle approximation could be invalid (depending on the exact energy of the
beam). Approximations such as the hard-edge approximation must also be avoided.

A continued investigation of the collimation system can be performed by running simulations
with different values of the momentum deviation δ. This can be used to see at what value of δ the
difference between the exact and regular model become significant. It would also be beneficial to
simulate the motion of the scattered particles from collimator losses. These particles are ejected
with a wide range of momentum deviations.

Implementation of an exact thin dipole was also done (see Appendix C). This dipole has not
been fully tested, and therefor not discussed at any length in this thesis. It has to be combined
with the exact drift space, which again makes the drift space the more important map. There is no
corresponding element in MAD-X or PTC, and it can therefore not be directly benchmarked with
these codes to evaluate its behavior. Future simulations can compare this implementation with
the regular thin dipole. It would also be beneficial to compare this dipole with the geometrically
exact solution of the sector dipole magnet [32], to see at what bending angle these two dipoles
agree.

6.5 Comment on SixTrack

To quote from the developer manual for SixTrack, “SixTrack is wonderful, but it is bloody com-
plicated!”. The implementation of the exact drift would have been facilitated if the code used the
canonical momentum px and py instead of the angles x′ and y′. It is suspicious to use the small-
angle approximation of px and py in the calculation of pz as in Listing 4.3. However, with the
present set of coordinates in the code this is the only possible way to perform the implementation.

When tracking in 4D with the momentum deviation δ = 0, the two sets of coordinates
(x, px, y, py) and (x, x′, y, y′) are the same. It can then be expected that the results should agree
very well in this case. This is seen from the 4D benchmarking results where even after 106 turns
the three codes agree well. When tracking in 6D with a varying δ this perfect agreement can
no longer be expected. This is due to the approximation used to calculate pz. It is difficult to
evaluate the exact impact of this, since other factors differing between the codes can contribute as
well. However, from the simple 6D benchmark test reported in this thesis, the agreement is very
good.

There are a lot of features in SixTrack which does not seem to be optional. The need to include
at least one block of linear elements in the BLOC part of fort.3 is one example. If this could be

6.5. COMMENT ON SIXTRACK 49

avoided it would be possible to also implement the exact drift in the thick-lens tracking routines.
However, most simulations are performed with thin-lens tracking.

50 CHAPTER 6. DISCUSSION AND CONCLUSIONS

Bibliography

[1] L. Evans and P. Bryant. LHC Machine. JINST, 3(S08001), 2008.

[2] F. Schmidt. SIXTRACK: Single particle tracking code treating transverse motion with syn-
chrotron oscillations in a symplectic manner. Technical Report 94-56, CERN, 1994.

[3] CERN. LEP design report. Technical Report LEP-84-01, CERN, 1984.

[4] Maximilien Brice. Views of the LHC tunnel sector 3-4. Obtained from http://cds.cern.

ch/record/1211045?ln=en. Accessed: 2013-11-06.

[5] Maximilien Brice. Aerial View of CERN taken in 2008. Obtained from http://cds.cern.

ch/record/1295244. Accessed: 2013-11-06.

[6] CERN. TE-EPC machines. http://te-dep-epc.web.cern.ch/te-dep-epc/machines/

general.stm. Accessed: 2013-11-06.

[7] CERN. HL-LHC: High Luminosity Large Hadron Collider. http://hilumilhc.web.cern.

ch/HiLumiLHC/index.html. Accessed: 2013-11-06.

[8] CERN FAQ, LHC the guide. http://cds.cern.ch/record/1165534/files/

CERN-Brochure-2009-003-Eng.pdf. Accessed: 2013-11-06.

[9] The ATLAS Collaboration. The ATLAS experiment at the CERN LHC. JIST, 3(S08003),
2008.

[10] The CMS Collaboration. The CMS experiment at the CERN LHC. JIST, 3(S08004), 2008.

[11] The ATLAS Collaboration. Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1, 2012.

[12] The CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC. Phys. Lett. B, 716:30, 2012.

[13] The ALICE Collaboration. The ALICE experiment at the CERN LHC. JIST, 3(S08002),
2008.

[14] The LHCb Collaboration. The LHCb Detector at the LHC. JIST, 3(S08005), 2008.

[15] R. W. et al Assmann. A 3 TeV e+e− Linear Collider Based on CLIC Technology. CERN,
Geneva, 2000.

[16] H. Grote and F. Schmidt. MAD-X – An Upgrade from MAD8. Technical Report 2003-024,
CERN-AB, 2003.

[17] E. Forest, E. McIntosh, and F. Schmidt. Introduction to the polymorphic tracking code: Fibre
bundle, polymorphic taylor types and exact tracking. Technical Report 2002-044, CERN-SL,
2002.

[18] H. Goldstein, C. Poole, and J. Safko. Classical Mechanics. Addison Wesley, 3rd edition, 2002.

51

http://cds.cern.ch/record/1211045?ln=en
http://cds.cern.ch/record/1211045?ln=en
http://cds.cern.ch/record/1295244
http://cds.cern.ch/record/1295244
http://te-dep-epc.web.cern.ch/te-dep-epc/machines/general.stm
http://te-dep-epc.web.cern.ch/te-dep-epc/machines/general.stm
http://hilumilhc.web.cern.ch/HiLumiLHC/index.html
http://hilumilhc.web.cern.ch/HiLumiLHC/index.html
http://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf
http://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf

52 BIBLIOGRAPHY

[19] J. R. Rees. Symplecticity in Beam Dynamics: An Introduction. Technical Report PUB-9939,
SLAC, 2003.

[20] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., 3rd edition, 1999.

[21] S. Y. Lee. Accelerator Physics. World Scientific Publishing Co. Pte. Ltd., 3rd edition, 2012.

[22] K. Wille. The Physics of Particle Accelerators. Oxford University Press, 1st edition, 2000.

[23] K. Heinemann, G. Ripken, and F. Schmidt. Construction of nonlinear symplectic six-
dimensional thin-lens maps by exponentiation. Technical Report 95-189, DESY, 1995.

[24] A. Wrulich. RACETRACK: a computer code for the nonlinear particle motion in accelerators.
Technical Report 84-026, DESY, 1984.

[25] R. De Maria, R. Bruce, R. Calaga, L. Deniau, M. Giovannozzi, M. Fjellstrom, Y. Levinsen,
E. McIntosh, A. Mereghetti, S. Redaelli, H. Renshall, A. Rossi, D. Sinuela, F. Schmidt,
R. Tomas, V. Vlachoudis, G. Robert-Demolaize, D. Banfi, J. Barranco, B. Dalena, L. Lari,
V. Previtali, R. Appleby, and D. Brett. Recent Developments and Future Plans for SixTrack.
Technical Report CERN-ACC-2013-0060, CERN, Geneva, May 2013.

[26] M. Berz. DAFOR – Differential Algebra Precompiler Version 3, Reference Manual. Technical
Report 755, MSUCLB, 1991.

[27] E. Forest. LBL differential algebra package and LieLib, unpublished. http://cds.cern.ch/
record/1295244.

[28] CRlibm correctly rounded mathematical library. http://lipforge.ens-lyon.fr/www/

crlibm/. Accessed: 2013-12-04.

[29] M. Berz. Differential algebraic treatment of beam dynamics to very high order including
applications to spacecharge. AIP Conferene Proceedings, 177(1):275–300, 1988.

[30] A. Latina. Implementation of a thick quadrupole in the MAD-X tracking module. Technical
Report ACC-NOTE-2013-0021, CERN, 2013.

[31] R. De Maria and M. Fjellstrom. Sixtrack physics manual (draft). Technical report, CERN,
2013.

[32] E. Forest. Beam Dynamics: A New Attitude and Framework. Harcourt Academic Publisher,
1st edition, 1999.

[33] CERN. Accelerator Optics. http://cern-accelerators-optics.web.cern.ch/

cern-accelerators-optics/. Accessed 2013-11-19.

[34] R. W. Assmann. Collimators and cleaning, could this limit the LHC performance? Technical
Report AB-2003-008 ADM, CERN, 2003.

[35] O. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock. LHC
Design Report. CERN, Geneva, 2004.

[36] G. Robert-Demolaize, R. Assmann, S. Redaelli, and F. Schmidt. A New Version of SIX-
TRACK with Collimation and Aperture Interface. Proceedings of PAC05, 2005.

[37] T. Trenkler and J.B. Jeanneret. K2: A Software Package evaluating Collimation Systems in
Circular Colliders (Manual). Technical Report SL/94-56 (AP), CERN, 1994.

[38] Brian William St. Leger Montague. Basic Hamiltonian mechanics. Proceedings of the CERN
Accelerator School, 5th Advanced Accelerator Physics Course, Rhodes, Greece, CERN Yellow
Report CERN-95-06, pages 1–14, 1993.

http://cds.cern.ch/record/1295244
http://cds.cern.ch/record/1295244
http://lipforge.ens-lyon.fr/www/crlibm/
http://lipforge.ens-lyon.fr/www/crlibm/
http://cern-accelerators-optics.web.cern.ch/cern-accelerators-optics/
http://cern-accelerators-optics.web.cern.ch/cern-accelerators-optics/

BIBLIOGRAPHY 53

[39] D. P. Barber, K. Heinemann, G. Ripken, and F. Schmidt. Symplectic thin-lens transfer maps
for SIXTRACK: Treatment of bending magnets in terms of the exact hamiltonian. Technical
Report 96-156, DESY, 1996.

[40] CERN. SixTrack - 6D Tracking Code. http://sixtrack-ng.web.cern.ch/sixtrack-ng/ ¿
sources.

[41] CERN. LHC Collimation Project. http://lhc-collimation-project.web.cern.ch/

lhc-collimation-project/code-tracking-2012.php. Accessed 2013-11-18.

http://sixtrack-ng.web.cern.ch/sixtrack-ng/
http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/code-tracking-2012.php
http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/code-tracking-2012.php

54 BIBLIOGRAPHY

Appendix A

Common acronyms

ALICE A Large Ion Collision Experiment

ATLAS A Toroidal LHC ApparatuS

CERN Conseil Européen pour la Recherche Nucléaire

CLIC Compact Linear Collider

CMS Compact Muon Solenoid

IP Interaction Point

IR Interaction Region

LEP Large Electron-Positron collider

LHC Large Hadron Collider

LHCb LHC beauty

LS Long Shutdown

MAD Methodical Accelerator Design

PTC Polymorphic Tracking Code

PS Proton Synchrotron

SC Superconducting
SPS Super Proton Synchrotron

55

56 APPENDIX A. COMMON ACRONYMS

Appendix B

Derivation of the accelerator
Hamiltonian

The derivation in this appendix follow the steps outlined in Reference [38].
The Lagrangian for a charged particle of mass m0 and charge q traveling in an electromagnetic

field with speed v is

L = −m0c
2

√
1− |v|

2

c2
− qφ+ qv ·A, (B.1)

where A is the electromagnetic vector potential and φ is the scalar potential from which the
electric and magnetic fields E and B are derived as

E = −∇φ− ∂A

∂t
,

B = ∇×A.

B.1 Straight coordinate system

To simplify the derivation, begin by considering a straight coordinate system (x, y, z) moving in
the z-direction. The Hamiltonian H is derived from the Lagrangian as

H = q̇ipi − L(q, q̇, t). (B.2)

Inserting the Lagrangian L from Equation (B.1) in Equation (B.2) gives

H =
√

(p− qA)2c2 +m2c4, (B.3)

where the scalar potential has ben set to zero, φ = 0. This Hamiltonian is expressed with time the
t as the independent coordinate. It is favorable and intuitive to instead introduce s, the position
along the accelerator, as the independent coordinate. A particle circulating in an accelerator
passes an element at a certain position in the accelerator, but the time when the particle passes
the element is not as clear. This change of independent coordinate is possible only if t is a
monotonically increasing quantity, which is true in this case.

To perform the change of independent coordinate, consider the variation of the action S [18],
which should be zero,

δS = δ

[∫ t1

t0

L dt
]

= 0. (B.4)

Inserting the Lagrangian as expressed in Equation (B.2) gives the action

S =

∫ t1

t0

(pxẋ+ py ẏ + pz ż −H) dt (B.5)

57

58 APPENDIX B. DERIVATION OF THE ACCELERATOR HAMILTONIAN

where the dot represents derivation with respect to t. Now changing the integration variable to z
by, dt = dt

dzdz

S =

∫ z1

z0

(
px
dx

dz
+ py

dy

dz
−H dt

dz
+ pz

)
dz. (B.6)

Comparing this with Equation (B.5), to correctly describe the mechanics in the Hamiltonian
framework with s as the independent coordinate the new Hamiltonian must be chosen as Ĥ = −pz
and the canonical coordinate pairs as (x, px), (y, py) and (−t,H). Solving for the new Hamiltonian
gives

Ĥ = −
√
E2

c2
−m2c2 − (px − qAx)2 − (py − qAy)2 − qAz, (B.7)

where the old Hamiltonian H has been replaced with the total energy of the particle, E. Nor-
malizing the transverse momentum variables as p̄i → pi

P0
, as well as performing the substitution

H̄ → Ĥ
P0

to make Hamilton’s equations remain invariant gives

H̄P0 = −
√
E2

c2
−m2c2 − (P0p̄x − qAx)2 − (P0p̄y − qAy)2 − qAz, (B.8)

or by simplifying further

H̄ = −

√
E2

P 2
0 c

2
− m2c2

P 2
0

− (p̄x − ax)2 − (p̄y − ay)2 − az. (B.9)

Here ai = q
P0
Ai are the normalized components of the vector potential. By using the relation

between momentum, mass and energy, (Pc)2 = E2− (mc2)2, the two first terms inside the square
root can be simplified as

E2

P 2
0 c

2
− m2c2

P 2
0

=
E2 −m2c4

P 2
0 c

2
=
P 2c2

P 2
0 c

2
= (1 + δ)2, (B.10)

where the relative momentum deviation is δ = P−P0

P0
and 1 + δ = P

P0
. The Hamiltonian is then

H1 = −
√

(1 + δ)2 − (px − ax)2 − (py − ay)2 − az. (B.11)

The canonical variable pair (−t, E) is not very convenient to use since t is an ever increasing
quantity. Therefore, introduce the generating function for a canonical transformation from the

old variables (x, p̄x, y, p̄y,−t, E) to the new variables
(
X,Px, Y, Py, σ = s− β0ct, pσ = E−E0

β0P0c

)
as

F2 = xPx + yPy + (s− β0ct)
(
pσ +

E0

β0P0c

)
. (B.12)

The new position coordinates and the new Hamiltonian is obtained from

Qi =
∂F2

∂Pi
,

K = H +
∂F2

∂s
.

(B.13)

This gives

X = x, Y = y, Z = = z − β0ct = σ. (B.14)

The transverse momentum variables are left unchanged (Px = p̄x and Py = p̄y) but the relation
between the old and the new longitudinal momentum variable pσ becomes

E

P0
= β0c

(
E0

β0P0c
+ pσ

)
. (B.15)

B.2. CURVED COORDINATE SYSTEM 59

The new Hamiltonian is

K = pσ −
√

(1 + δ)2 − (Px − ax)2 − (Py − ay)2 − az. (B.16)

Finally, rename the variables as K → H, Px → px and Py → py and end up with the final
accelerator Hamiltonian in a straight coordinate system

H = pσ −
√

(1 + δ)2 − (px − ax)2 − (py − ay)2 − az. (B.17)

B.2 Curved coordinate system

Consider a coordinate system with a curvature in the horizontal plane, but no curvature in the
vertical plane. This is the most common case in particle tracking but the final result can easily
be generalized to the case with curvature in both planes. A curved reference frame is the most
natural frame for a dipole magnet, whose main objective is to bend the trajectory of particles.

x

z
ρ

X

S

Figure B.1: Curved reference system in the x-z plane.

The coordinates in the straight coordinate system are (x, y, z) and the coordinates in the curved
frame are (X,Y, S). From Figure B.1 the relation between these two sets of coordinates are

x = (ρ+X) cos(S/ρ)− ρ,
y = Y,

z = (ρ+X) sin(S/ρ).

(B.18)

Now, construct a generating function which gives the right coordinate transformation, and which
will give the corresponding conjugate momenta in the curved reference system

F3(X, px, Y, py, S, pz) = −
[
(ρ+X) cos

S

ρ
− ρ
]
px − Y py −

[
(ρ+X) sin

S

ρ

]
pz. (B.19)

The old coordinates (x, px, y, py, z, pz) are related to the new coordinates (X,Px, Y, Py, S, Ps)
through

xi = −∂F3

∂pi
, Pi = −∂F3

∂Xi
. (B.20)

The coordinates transform to the form in Equation (B.18) as desired. The new momentum coor-
dinates are given by

Px = px cos
S

ρ
+ pz sin

S

ρ
,

Py = py,

Ps = pz

(
1 +

X

ρ

)
cos

S

ρ
− px

(
1 +

X

ρ

)
sin

S

ρ
.

(B.21)

60 APPENDIX B. DERIVATION OF THE ACCELERATOR HAMILTONIAN

The components of the electromagnetic vector potential are transformed as

AX = Ax cos
S

ρ
−Az sin

S

ρ
,

AY = Ay,

AS = Az cos
S

ρ
+Ax sin

S

ρ
.

(B.22)

Now, the procedure is the same as in the case of a straight coordinate system, except for a factor
of (1 +X/ρ) coming from PS when changing the Hamiltonian from H to −PS . The final result is

H = pσ − (1 + hx)

(√
(1 + δ)2 − (px − ax)2 − (py − ay)2 + as

)
. (B.23)

h = 1/ρ is the inverse bending radius. Setting h = 0 gives the accelerator Hamiltonian for a
straight reference system as in Equation (B.17).

Appendix C

Exact dipole implementation

In this appendix, the implementation of an exact dipole kick is described. This dipole kick is
dependent on the map for the exact drift in Equation 2.36. Many details are the same as in the
exact drift implementation, this appendix is thus more sparse for brevity.

C.1 Equation of motion

In a curvilinear reference frame a dipole magnet with an inverse horizontal bending radius hx is
characterized by the magnetic vector potential

Ax = 0, Ay = 0, As = −Byx
(

1− hxx

2(1 + hxx)

)
.

This vector potential gives rise to a pure dipole field in the y-direction. A particle with a positive
charge q moving in the direction of increasing s experiences a force towards the right (towards
negative x-values, see Figure 2.1).

From Equation (2.12) the Hamiltonian for a particle in a dipole magnet is

H = pσ − (1 + hxx)pz +
qB0

P0
x

(
1 +

hxx

2

)
,

where

pz =
√

(1 + δ)2 − p2x − p2y. (C.1)

Assuming that the magnetic field of the dipole is properly matched to the curvature of the reference
trajectory, qB0

P0
= hx, simplifies the Hamiltonian to

H = pσ − (1 + hxx)pz + hxx

(
1 +

hxx

2

)
. (C.2)

In order to derive the equations of motion while keeping pz unexpanded it is necessary to split the
Hamiltonian into solvable parts. The Hamiltonian is split as

H = HI +HII , (C.3)

where

HI = −δhxx+
1

2
(hxx)2

HII = −hxx(pz − (1 + δ)) + pσ − pz
(C.4)

These parts can be solved individually [39]. The complete transfer map can be expressed as a
composition of maps,

M = TII(L/2) ◦ TI(L) ◦ TII(L/2). (C.5)

61

62 APPENDIX C. EXACT DIPOLE IMPLEMENTATION

The map TII(L) is the solution to HII , and is given by

px →
1

1 + (hxL)2

px + (hxL)(1 + δ)

√1−
p2x + p2y − C

(1 + δ)2
− 1

 ,
x→ x+ (hxL)x · px

pz
,

y → y + (hxL)x · py
pz
,

σ → σ − (hxL)x · β0
β

(
1 + δ

pz
− 1

)
,

(C.6)

with C = −(hxL)2p2y + 2(hxL)(1 + δ)px. The map TI(L) is the solution to HI , and is given by

px → px − h2xLx+ (hxL) · δ,

σ → σ − (hxL)x · β0
β
.

(C.7)

To apply this map for a dipole of length L in a first order thin-lens approximation it must be
surrounded by two exact drift spaces of length L/2. In the original derivation [39] the contribution
of the drift space is included in the map TII in (C.6). In Equation C.6, the contribution of the
drift space has been removed.

C.2 Implementation details

Below follows a description of the steps for the calculation of the dipole kick map in SixTrack.
The steps describe the calculation for a horizontal dipole. The steps are the same for a vertical
dipole, interchanging the roles of x and y (and x′ and y′). Some of the details are the same as in
the implementation details for the exact drift space, see Section 4.1

C.2.1 Tracking routines

Below, the implementation details for the thin-lens tracking routines are presented. This map is
implemented in all three versions of thin-lens tracking.

1. At the entrance of the kick, the coordinates are converted from mm to m. This is done in
the exact same way as for the drift, shown in Listing 4.2.

2. The value of hx is calculated as in Listing C.1. In the code hx is called hbend. This value
is calculated from the bending angle dki(ix,1) and the length dki(ix,3). These two
properties are given in the input file fort.2.

Listing C.1: Calculation of hx in tracking routines.

1 hbend=-dki(ix ,1)/ dki(ix ,3)

The sign is reversed, because SixTrack has the opposite definition of the bending radius in
the code. This sign reversion is done so that the equations of motion can be implemented
as in Equation (C.6) and Equation (C.7).

3. Next the map TII in (C.6) is calculated, the code for this map is shown in Listing C.2.

C.2. IMPLEMENTATION DETAILS 63

Listing C.2: Code for the TII map.

1 Lbend=dki(ix ,3)* half

2 theta=Lbend*hbend

3 cbend=-(theta **2)*(yv(2,j)**2)+ two*(theta*yv(1,j))

4 sqrtterm=sqrt(one -((yv(1,j)**2+ yv(2,j)**2)- cbend))

5 yv(1,j)=(yv(1,j)+ theta*(sqrtterm -one))/(one+theta **2)

6 pz=sqrt((one -(yv(1,j)**2+yv(2,j)**2)))

7 xv(2,j)=xv(2,j)+((theta*xv(1,j))*yv(2,j))/pz

8 sigmv(j)=sigmv(j)+(theta *(rvv(j)*(xv(1,j)*(one -one/pz))))

9 xv(1,j)=xv(1,j)+((theta*xv(1,j))*yv(1,j))/pz

In the first line half the length of the dipole is stored in Lbend and then half of the bend-
ing angle is calculated in theta. The following lines calculate the map, by breaking the
calculations down in smaller steps.

4. Next, the map TI in Equation (C.7) is performed. The code for this step is shown in
Listing C.3.

Listing C.3: Code for the TI map.

1 Lbend=dki(ix ,3)

2 theta=hbend*Lbend

3 yv(1,j)=yv(1,j)-(hbend*theta*xv(1,j)-(theta*dpsv(j)))/

4 &(one+dpsv(j))

5 sigmv(j)=sigmv(j)-theta*rvv(j)*xv(1,j)

5. Then, the map TII is applied again, as in Listing C.2.

6. Finally, a conversion back to m is performed. The same code as in Listing 4.4 is used.

C.2.2 DA routine

Below the implementation details for the DA closed orbit and optics calculations are presented.
The calculations follow the same principle as in the tracking routines. For details of the special
*FOX notation, see the implementation details for the exact drift space in Section 4.1.

1. First, a conversion from mm to m. This is the same code as for the drift space shown in
Listing 4.6.

2. The inverse bending radius is assigned to the variable HBEND, this is shown in Listing C.4.

Listing C.4: Calculation of hx in DA routines.

1 *FOX HBEND=-DKI(IX ,1)/ DKI(IX ,3) ;

3. The map TII is then calculated as shown in Listing C.5.

64 APPENDIX C. EXACT DIPOLE IMPLEMENTATION

Listing C.5: Code for the TII map in the DA routines.

1 *FOX LBEND=DKI(IX ,3)* HALF ;

2 *FOX THETA=LBEND*HBEND ;

3 *FOX CBEND=-(THETA*THETA)*(Y(2)*Y(2))+ TWO*(THETA*Y(1)) ;

4 *FOX SQRTTERM=SQRT(ONE -Y(1)*Y(1)-Y(2)*Y(2)+ CBEND) ;

5 *FOX Y(1)=(Y(1)+ THETA *(SQRTTERM -C1E3))/(ONE+THETA*THETA) ;

6 *FOX PZ=SQRT(ONE -Y(1)*Y(1)-Y(2)*Y(2)) ;

7 *FOX X(2)=X(2)+((THETA*X(1))*Y(2))/ PZ ;

8 *FOX SIGMDA=SIGMDA+THETA*RV*X(1)*(ONE -ONE/PZ) ;

9 *FOX X(1)=X(1)+((THETA*X(1))*Y(1))/ PZ ;

4. Then the map TI is calculated as shown in Listing C.6.

Listing C.6: Code for the TI map in the DA routines.

1 *FOX LBEND=DKI(IX ,3) ;

2 *FOX THETA=HBEND*LBEND ;

3 *FOX Y(1)=Y(1)-((HBEND*THETA)*X(1)-THETA*DPDA)/(ONE+DPDA) ;

4 *FOX SIGMDA=SIGMDA -THETA*RV*X(1) ;

5. Then the map TII is calculated again, following the same code as in Listing C.5.

6. The last step is the conversion from m back to mm. The code is the same as for the drift
space, shown in Listing 4.8.

Appendix D

SixTrack input blocks

This appendix provides details on a few additional input blocks for the input file fort.3 used in a
SixTrack simulation. These blocksi, together with the blocks described in Chapter 3, are the ones
that appear in most SixTrack simulations.

D.1 Comment line (COMM)

This block provides a chance to add a comment describing the simulation. This comment will
appear in the output from SixTrack. This can be useful when scripts are used to automatically
parse the output for post-processing.

D.2 Print selection (PRIN)

This block contains no content and is not ended by the NEXT keyword. By adding this block the
input data will be printed to the file fort.6. This can be useful when automatically doing a large
number of simulations where the fort.3 file is changed in each simulation. In this case fort.6

can be saved as a log of the input.

D.3 Iteration errors (ITER)

This block provides a way to define the maximum number of iterations for closed orbit calculations,
tune variations and chromaticity corrections along with desired precision of the calculations. The
structure of the input block is shown in Listing D.1.

Listing D.1: ITER input block for fort.3.

1 ITERATION ERRORS ------------------------------------

2 itco dma dmap

3 itqv dkq dqq

4 itcro dsm0 dech

5 de0 ded ds1 aper (1) aper (2)

6 NEXT --

The first line specifies the number of iterations for the closed orbit calculation (itco) along with
the desired precision for the closed orbit displacements (dma) and the derivative of the closed orbit
displacements (dmap).

The second line specifies the number of iterations for the tune adjustments (itqv) along with
the variation magnitude of the quadrupole magnet strengths needed to achieve the desired tunes
(dkq) and also the demanded precision of the tune values (dqq).

65

66 APPENDIX D. SIXTRACK INPUT BLOCKS

The third line specifies the number of iterations for the chromaticity corrections (itcro) along
with the variation of the magnitude of the sextupole magnets strengths needed to achieve the
desired chromaticity (dsm0) and also the demanded precision of the chromaticity (dech).

The last line specifies the variation of momentum spread for the chromaticity calculation (de0),
the variation of momentum spread for evaluation of dispersion (ded), the demanded precision of
the desired orbit r.m.s value (ds1) and also the horizontal and vertical aperture limitations in
millimeters (aper(1) and aper(2)).

D.4 Linear optics calculation (LINE)

This input block controls the calculation of the linear parameters of the lattice. The structure of
this input block is shown in Listing D.2.

Listing D.2: LINE input block for fort.3.

1 LINEAR OPTICS CALCULATION ---------------------------

2 mode number -of -blocks ilin ntco E_I E_II

3 name (1) name (2) ... name(nele)

4 NEXT --

In the first line, mode is specified as either ELEMENT or BLOCK. This will cause the linear
parameters to be calculated and printed at each single element or each block of elements. The
number-of-blocks can be used to specify at how many elements or block the linear parameters
should be printed. By setting this value to zero the linear parameters will be printed for all elements
or blocks in the lattice. ilin is a switch to select the traditional 4D closed orbit calculation or
the 6D differential algrebra (DA) approach. ntco is a switch to select write out of linear coupling
parameters.

The emittances of mode 1 and mode 2 are set in E I and E II, respectively.
The last row(s) are used to specify the names of the single elements or blocks where the linear

parameters should be printed. The list of elements together with the optical functions will appear
in the output before the tracking starts.

D.5 Post processing (POST)

This input block controls a number of post processing options available. The structure of this
input block is shown in Listing D.3.

Listing D.3: POST input block for fort.3.

1 POST PROCESSING -------------------------------------

2 comment title

3 iav nstart nstop iwg dphix dphiy iskip iconv imad cma1 cma2

4 Qx0 Qy0 ivox ivoy ires dres ifh dfft

5 kwtype itf icr idis icow istw iffw nprint ndafi

6 NEXT --

The first line of input is reserved for a comment witch will appear in the output of the run. The
second line specifies the amount of data to be saved and processed as well as ways to scaling the
data. The third line specifies details about the FFT analysis of the tunes. The last line of input
specifies which plots to produce and the number of data-files to be processed.

D.6. LIST OF ALL BLOCKS 67

D.6 List of all blocks

An overview of all the available input blocks in SixTrack is given in Table D.1.

Table D.1: Input blocks for SixTrack simulations.

Block Descriptive title

BEAM Beam-beam element

BLOC Block definition

CHRO Chromaticity correction

CORR Tune-shift corrections

COMB Combination of elements

COMM Comment line

DECO Decoupling

DIFF Differential algebra

DISP Displacement of elements

FLUC Random fluctuation starting number

INIT Initial coordinates

ITER Iteration errors

LIMI Aperture limitation

LINE Linear optics

MULT Multipole coefficients

NORM Normal form

ORBI Orbit adjustment

ORGA Organisation of random numbers

POST Post-processing

PRIN Printout selection

RESO Resonance compensation

RIPP Power supply ripple

SEAR Search for resonance compensation positions

SING Single elements

STRU Structure input

SUBR Sub-resonance calculation

SYNC Synchrotron oscillations

TRAC Tracking parameters

TUNE Tune variation

TROM ”Phase trombone” element

68 APPENDIX D. SIXTRACK INPUT BLOCKS

Appendix E

SixTrack build flags

A list of the currently available build flags for SixTrack is provided in this appendix, as well as a
brief description of how to build SixTrack.

E.1 Build

The source code can be obtained from the SixTrack web [40]. A regular build of SixTrack using
the gfortran compiler on Linux is initiated as

./make_six gfortran

To include a certain flag simply add the name of the flag, or several names separated by a space
as

./make_six gfortran flag1 flag2 flag3

To exclude a certain flag add a minus sign before the flag name as

./make_six gfortran -flag1

This is useful since some flags are added by default. The make six command supports five Fortran
compilers

• Intel ifort

• gfortran

• NAG nagfor

• PGI pgf90

• Lahey-Fujitsu lf95

69

70 APPENDIX E. SIXTRACK BUILD FLAGS

E.2 List of all flags

The following build flags are available in SixTrack

• automatc

• beamgas

• big

• bignblz

• bnlelens

• boinc

• bpm

• collimat

• cr

• crlibm

• ctrack

• debug

• fast

• fio

• hdf5

• hhp

• iibm

• nagfor

• rvet

• small

• tilt

• time

• vvector

Appendix F

Collimation study settings

These are the settings used in the collimation study in SixTrack. The details of the simulation
can be found in Section 5.1. The special collimation input block COLL is shown in Listing F.1, this
block is part of the fort.3 input file but for the purpose of presentation it is shown separately.

Listing F.1: The COLL input block in fort.3.

1 COLLIMATION --
2 .TRUE.
3 100 3500000
4 2 5.7 .0015 0. 0. "nothing" 1.129E-4 75.5
5 .TRUE. 12. 15.6 15.6 17.6 5.7 8.5 8.5 17.7 900. 999. 9.8 9.3 999.
6 11.8 26.0 11.8 11.8 11.8 26.0 11.8 11.8
7 0 19789.0 20150.0 1 1
8 -1.3899e-6 -9.345e-5 5.05324e-3 -1.6595e-2 2.15955e-2 -9.96261e-3 1.0
9 -1.3899e-6 -9.345e-5 5.05324e-3 -1.6595e-2 2.15955e-2 -9.96261e-3 1.0

10 1.005E-09 1.005E-09
11 .FALSE. .FALSE. 0 .TRUE. TCP.C6L7.B1 .FALSE. .TRUE. .TRUE. .TRUE.
12 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 .FALSE.
14 .FALSE. 6.003 .0015
15 0 0 .FALSE. .FALSE.
16 0 .00213 0 0.288e-3 1
17 "CollDB_V6 .503 _lowb_st.b1.data" 1
18 .TRUE. .FALSE. WAbsVertLowbcoll 101 1 1.
19 NEXT ---

The COLL input block specifies all settings needed for a collimation simulation in SixTrack. A brief
description of the important parameters is given below, and a complete description can be found
at [41]. The first line is a logical switch to turn on (.TRUE.) or off (.FALSE.) the collimation
studies. The second row specifies the number of sets of particles to be tracked, each set contains
64 particles.

The beam energy in MeV is also specified, in this case the energy is set to 3.5 TeV. The third
line specifies the initial beam distribution. Settings related to the collimators are given in line four
to line 15. Line 16 specifies the name of the collimator database and which beam is to be tracked
(beam 1 or 2).

The main input file to SixTrack used for the collimation study (Chapter 5) is shown below.
The COLL input block has been separated from the rest of the input for clarity. See the detailed
description of the COLL input block below.

71

72 APPENDIX F. COLLIMATION STUDY SETTINGS

Listing F.2: The fort.3 input file.

1 GEOM --

2 PRINT INPUT ---

3 NEXT --

4 TRACKING PARAMETERS ---------------------------------

5 500 0 32 0 17 0 1

6 1 1 0 0 0

7 0 0 1 1 1 20000 2 1 1

8 NEXT --

9 INITIAL COORDINATES ---------------------------------

10 2 0 0 1

11 0.0

12 0.0

13 0.0

14 0.0

15 0.0

16 0.0

17 0.0

18 .000001

19 0.0

20 0.0

21 0.0

22 0.0

23 3500000.0

24 3500000.0

25 3500000.0

26 NEXT --

27 FLUCTUATION ---

28 100000 1 7 3

29 NEXT --

30 ITERATION ACCURACY ----------------------------------

31 50 0.10E-13 0.10E-14

32 10 0.10E-09 0.10E-09

33 10 0.10E-04 0.10E-05

34 0.10E-07 0.10E-11 0.10E-09

35 NEXT --

36 LINEAR OPTICS ---------------------------------------

37 ELEMENT 0 1 1 3.5 3.5

38 NEXT --

39 BEAM --

40 0.110E+12 3.5 3.5 0.0755E+00 0.4716E-03 1 1 1

41 NEXT --

42 SYNCHROTRON OSCILLATIONS ----------------------------

43 35640 .0003225 16 0 26658.864 938.2796 1

44 1 1

45 NEXT --

46 ENDE --

