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Abstract

In the last decade the investigation of the heavy-meson sector has gained in importance, in par-
ticular for precision tests of the Standard Model and exploration of the physics beyond, such
as CP violation. Experimentally, with the launch of the Large Hadron Collider (among several
other experiments) great promise for high-precision analyses has been shown. At the same time
a precise understanding and rigorous treatment of the theoretical aspects of the interactions is
mandatory. In particular the strong final-state interactions, described by Quantum Chromo-
dynamics, pose a challenge: at low energies, where the hadrons are the interacting degrees of
freedom, the strong coupling becomes large and the standard perturbative solution methods fail.
One non-perturbative approach is to apply dispersion relations, providing a model-independent
framework that fulfills unitarity and analyticity constraints by construction. In this thesis we
employ such dispersive techniques that allow one to either deduce the universal final-state in-
teractions of light meson pairs from the accurately known ππ, πK, and K̄K phase shifts, or
likewise deduce crucial information on meson–meson scattering from the respective final-state
interactions. The thesis is subdivided into two projects.

The first project is concerned with the decays B̄0
d,s → J/ψ(ππ, πη, K̄K), where the J/ψ is

treated as an spectator and the pairwise final-state interactions of the light mesons are well
described by the scalar and the vector form factors. In the scalar sector a coupled-channel
treatment between the ππ and K̄K systems in the isoscalar sector and the πη and K̄K systems
in the isovector one is required. The B̄0

d,s → J/ψππ channels are studied as to demonstrate
the benefits of our formalism. We find very good agreement with the data up to 1.05 GeV
in the ππ invariant mass, with a number of parameters reduced significantly compared to a
phenomenological analysis. In addition, the phases of the amplitudes are correct by construc-
tion, a crucial feature for many CP violation measurements in heavy-meson decays. By means
of certain symmetry and coupled-channel relations we give predictions for the other channels,
providing information on πη scattering.

In the second project an analysis of the semileptonic D → πKlν decay is presented. A
deliberate and accurate treatment of the hadronic final-state interaction can deliver information
on pion–kaon scattering. The analysis is based on a modified Omnès formalism where left-hand-
cut structures are approximated by pole terms derived in Heavy-Meson Chiral Perturbation
Theory. For a precision determination of the amplitudes as it is required for an extraction of
πK phases further constraints, both experimental and theoretical, are highly desired.

Parts of this thesis have been published in the following articles:

• J. T. Daub, C. Hanhart and B. Kubis, A model-independent analysis of final-state inter-

actions in B̄0
d/s → J/ψππ, JHEP 1602 (2016) 009 [arXiv:1508.06841 [hep-ph]].

• M. Albaladejo, J. T. Daub, C. Hanhart, B. Kubis and B. Moussallam, How to employ

B̄0
d → J/ψ

(
πη, K̄K

)
decays to extract information on πη scattering, JHEP 1704 (2017)

010 [arXiv:1611.03502 [hep-ph]].

Furthermore, similar techniques are employed in the following publications:

• Y. H. Chen, J. T. Daub, F.-K. Guo, B. Kubis, U.-G. Meißner and B. S. Zou, Effect of Zb
states on Υ(3S) → Υ(1S)ππ decays, Phys. Rev. D 93 (2016) 034030 [arXiv:1512.03583
[hep-ph]].

• Y. H. Chen, M. Cleven, J. T. Daub, F. K. Guo, C. Hanhart, B. Kubis, U.-G. Meißner
and B. S. Zou, Effects of Zb states and bottom meson loops on Υ(4S) → Υ(1S, 2S)π+π−

transitions, Phys. Rev. D 95 (2017) 034022 [arXiv:1611.00913 [hep-ph]].
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Chapter 1

Introduction

Having the itch to better understand nature, dealing with questions like what is our world
made of, what are the fundamental constituents of matter and the interactions that glue these
constituents together, and of what else besides the ordinary matter the universe is made up, this
is what motivates to study particle physics. The Standard Model of Particle Physics, developed
in the 1960s and 1970s [1–4], serves as the theoretical foundation to describe the matter particles
(fermions), called quarks and leptons, and their interactions. There are four fundamental forces,
the strong force, the weak force, the electromagnetic force, and the gravitational force. The
first three of those are governed by the Standard Model, mediated by the exchange of vector
gauge bosons, namely the gluons, the W± and Z bosons, and the photon for the strong,
weak, and electromagnetic interactions, respectively. A further (scalar) boson, the Higgs boson
is introduced, explaining the fermion masses, as well as those of the W± and Z bosons. The
mathematical framework of the Standard Model is a quantum field theory, in which the particles
are described by dynamical fields. It is driven by a Lagrangian that is invariant under the
global Poincaré symmetry group as well as the local internal SU(3) × SU(2) × U(1) gauge
symmetry group. Although it is an extremely well tested and therefore the established theory
of elementary particles, not least by the discovery of the Higgs boson in 2012 [5,6], there are still
phenomena the Standard Model cannot describe properly and open questions to be answered,
from both an experimental and a theoretical point of view. Some of these deficiencies are
the unification of all four forces, i.e. including gravity in consistency with general relativity,
or the nature of dark matter and energy, dominating over the ordinary matter content in the
universe (due to the “Standard Model of cosmology”). Also the matter-antimatter asymmetry,
the hierarchy problem, and the strong CP problem (the violation of the combination of charge
conjugation C and parity P , being equivalent to a violation of time-reversal invariance T due
to the CPT theorem, stating that the theory remains invariant under the combination of these
three symmetries) are some famous examples requiring further contemplations of physics beyond
the Standard Model.

A successful tool for quantum field theory calculations is perturbation theory, i.e. the theory
is expanded in a parameter. Provided that it is small in order to ensure convergence, quantities
are calculated to a certain order in that parameter. This splendidly works for processes in Quan-
tum Electrodynamics (QED), the gauge theory that describes the electromagnetic interaction.
For strong-interaction processes, however, which are described by Quantum Chromodynamics
(QCD), the coupling constant and accordingly the expansion parameter strongly depend on
the considered energy region. While at high energies perturbative QCD proves suitable, at low
energies the strong coupling grows such that a perturbative treatment breaks down. At low
energies, the QCD degrees of freedom are hadrons that are (essentially) classified into mesons
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(quark-antiquark states) and baryons (three-quark states). It is hence the theoretical hadron
physicist who is confronted with the problem of employing (or even developing) alternative
non-perturbative methods to treat the strong-interaction processes at these low energies. Well
established frameworks are Lattice QCD, Effective Field Theories such as Chiral Perturbation
Theory, as well as dispersion relations.

Decays of heavy mesons (in particular those containing a b or b̄ quark) are of special interest
for Standard Model tests and beyond, there are for instance several experiments intended
to measure CP violation, which is required to explain the matter-antimatter imbalance in
the universe. In this context also the precise extraction of the Cabibbo-Kobayashi-Maskawa
(CKM) [7,8] matrix elements describing the quark flavor mixing is of particular importance. The
idea to explore neutral B decays in order to search for CP violation has grown up in 1980 [9–11],
and in 2001 CP violation in B decays has been experimentally confirmed in the B0 → J/ψK0

S

decay (long considered a “golden mode”) in the BaBar and the Belle experiments [12,13]. Ever
since, the CP asymmetry sin 2β measured e.g. in the B → J/ψK0

S or likewise in the B → φK0
S

or B → f0(980)K
0
S decay modes has been determined with increasing accuracy, for instance

the LHCb collaboration at the Large Hadron Collider (LHC) pursues precise measurements of
the B0 and the B0

s meson systems to determine sin 2β(s), e.g. by employing the decay modes
B̄0

(s) → J/ψ{π+π−,K+K−}, or B̄0
(s) → {J/ψ, ψ(2S)}K0

s [14–18], as well as the CP parameter

γ using e.g. the B → DK decays [19–21].

A further concern is the field of hadron spectroscopy—due to the heavy mass of the decaying
meson a large energy range, i.e. phase space, is covered, entailing quite a number of final and
intermediate states that can emerge. Amongst others so-called exotic states are observed that
are not explained by the convenient quark model description as a quark-antiquark state. There
are several charmonium- and bottomiumlike candidates observed close to or above the strong
decay thresholds, referred to as the XY Z states, for instance in the charmonium spectrum the
X(3872), discovered in the Belle detector [22] in the decay processes B± → K±π+π−J/ψ (and
confirmed by CDF [23], D0 [24], and BaBar [25]), or the Y (4260), discovered in initial state
radiation e+e− → γISRπ

+π−J/ψ [26–28]. In the bottomium spectrum the Belle collaboration
observed e.g. two charged resonances Zb(10610) and Zb(10650) in the Y (5S) → Y (ns)π+π−,
(n = 1, 2, 3) and Y (5S) → hb(mP )π

+π−, (m = 1, 2) [29, 30]. Due to the increasing number
of such exotic candidates it is a highly charged issue for both experimentalists and theoretical
physicists how to model and interpret these states—as new forms of hadronic matter such as
e.g. quark-gluon hybrids, meson molecules, tetraquarks or pentaquarks, or can these observed
phenomena be explained by (anomalous) threshold effects. For details see Ref. [31, 32] and
references therein.

This thesis deals with such heavy-meson decays, decaying weakly into hadrons that underlie
strong final-state interactions. In order to learn about the above specified phenomena that
prospectively provide an insight in New Physics beyond the SM, it is mandatory to tightly
control the non-perturbative strong final-state interaction part in these decays. We apply the
method of dispersion theory. Its advantage is that it provides a model-independent framework
that fulfills the fundamental concepts of unitarity and analyticity by construction. The decays
under investigation are discussed in Chapters 2 and 3.

In Chapter 2 the decays of the neutral B̄0 and B̄0
s mesons into J/ψ and a light pseudoscalar

meson pair, π+π−, π0η, K+K− or K̄0K0 are analyzed, with attention to the strong rescattering
effects in the isoscalar and isovector light meson system. It can be described by the respective
scalar and vector form factors, treated in a two-channel Muskhelishvili–Omnès formalism. In
particular in the pion and kaon sectors the use of dispersion relations, employed with a phase
input that is accurately determined from Roy and Roy–Steiner analyses [33–37] and experimen-
tal input, allows for a very precise understanding of the rescattering. The various final states
are linked to each other by coupled-channel and flavor relations. Once the ππ channel is ex-
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ploited to adjust unknown normalization parameters and to demonstrate that the experimental
data are successfully described by the formalism, the other decay channels can be predicted. In
particular this may reveal crucial information on the more scarcely known πη scattering.

In Chapter 3 we explore the semileptonic decay of a charmed meson, D+ → π+K−lν, where
the strong final-state interaction in the πK system is rigorously treated using dispersion theory
as well—the lepton-neutrino (lν) pair is not affected by the strong interaction such that the
leptonic part of the matrix element factorizes from the hadronic part. The hadronic partial-
wave amplitudes are calculated in Omnès representations, in which the crossed-channel effects
are approximated by simple pole terms treated in Heavy-Meson Chiral Perturbation Theory.
This approach however covers only a small phase space, caused by the restriction of a fixed
dilepton energy to a rather large value. A generalization of the formalism by extrapolating to
arbitrary dilepton energies is proposed, constrained by certain low-energy theorems.

The relevant physics background is prepended to the above-mentioned analyses, hence in
this chapter certain aspects of the Standard Model, Effective Field Theories, and scattering
theory are reviewed.

1.1 A survey of the Standard Model

In the Standard Model (SM) of Particle Physics three of the four fundamental forces, the
electromagnetic, the weak, and the strong force, are unified. Gravitation, that is very weak
compared to those, is not part of the SM. It describes the elementary particles and their
interactions, where we distinguish between spin-1/2 fermions and spin-0 and spin-1 bosons.
The fermions are separated into quarks and leptons, that each occur in three generations [8]:
there are three SU(2) doublets of quarks, built of an up and a down, a charm and a strange,
and a top and a bottom quark, respectively, as well as three lepton doublets, for the electron,
the muon, and the τ lepton, accompanied by the respective electron, muon, or τ neutrinos.
The interactions between these particles are mediated by exchange particles, spin-1 bosons:
the gluons carry the strong interactions, the photon the electromagnetic, and the W± and Z0

bosons the weak interaction. In addition the SM contains a scalar particle, the Higgs boson,
that was postulated in order to explain the breaking of the electroweak symmetry and to give
masses to the W± and Z0 bosons. The observation of the Higgs boson in the ATLAS and
CMS experiments at the LHC at CERN in 2012 [5,6] (and confirmation in 2013 [40,41]) was a
strengthening event for confirming the SM that caused lots of excitement in the particle physics
community. The theoretical framework the SM is based on is a gauge quantum field theory.
Particles are associated with fields and created or annihilated by field operators. Associated
with these fields are the generators ta of the corresponding gauge group, which obey specific
commutator relations,

[ta, tb] = ifabctc, (1.1)

where the fabc are the structure constants of the gauge group. In general fabc 6= 0, i.e. it
is a non-abelian theory. The internal gauge symmetry group contained is the local SU(3)C ×
SU(2)L×U(1)Y , accompanied by the global Poincaré symmetry, which is characteristic of every
relativistic quantum field theory. The label C denotes the color charge, Y the hypercharge
(related to the electromagnetic charge Q and the third component of the isospin t3 by Y =
2(Q− t3)), and L indicates the chiral nature of the weak interaction—only left-handed fermions
are grouped in SU(2) doublets. Such non-abelian gauge theories that combine these symmetry
properties are called Yang-Mills theories.
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1.1.1 The strong sector

The strong interaction affects the quarks and the gluons, the gauge bosons of the SU(3)C gauge
symmetry group. The interaction is defined by the QCD Lagrange density,1

LQCD = −1

4
Gµνa Gaµν + q̄(i /D −M)q, (1.2)

with the mass matrixM = diag(mu,md,ms, ...), the quark fields represented by q = (u, d, s, ...)T ,
and the covariant derivative

Dµ = ∂µ − igAaµ
λa
2
. (1.3)

The latter contains the gluon fields Aµa , the coupling constant g (related to αs = g2/(4π)), and
the SU(3) generators, the Gell-Mann matrices λa, where a is the color index (the quarks occur
in Nc = 3 colors).

Gµνa = ∂µAνa − ∂νAµa + gfabcA
µ
bA

ν
c , a = 1, . . . , N2

c − 1 = 8, (1.4)

denotes the (non-abelian) field strength tensor, where the structure constants are defined via
the SU(3) Lie algebra Eq. (1.1) with ta = λa/2. The last term in Eq. (1.4), whose appearance
results from the non-abelian nature of the strong interaction, causes the existence of the gluonic
self-interaction. Such a phenomenon is not present in abelian theories like QED: there is no
corresponding self-interaction between photons. This induces some peculiar differences to the
extremely well known QED sector that makes the strong interaction such a challenging theory:
due to an anti-screening of the color charge the strong coupling becomes weak at high energies
(known as asymptotic freedom in the weak-QCD sector, cf. Refs. [42, 43]) and large at low
energies (leading to the so-called confinement in the strong-QCD sector). As a consequence of
confinement there are no free quarks and gluons at low energies, but they are bound to color-
neutral hadrons. Furthermore, because the strong coupling increases, perturbation theory is
not applicable at low energies, necessitating alternative approaches, discussed in Section 1.2. A
mathematical understanding of these phenomena requires a closer look at the βQCD-function of
the renormalization group equation of QCD that describes how the strong coupling depends on
the energy scale. Perturbatively expanding it to one-loop order yields the following differential
equation with the solution αs(Q

2),

βQCD(αs) ≡ Q2 dαs(Q
2)

dQ2
= −

(

11− 2Nf
3

)
αs(Q

2)

2π
+O(α3

s)

⇒ αs(Q
2) ≈ αs(µ

2)

1 +
33−2Nf

12π ln
(
Q2

µ2

) , (1.5)

with Q being the momentum transfer and µ a reference scale the βQCD function depends on
implicitly only (a popular choice is µ = mZ0). Nf is the number of the considered quark flavors.
As long asNf ≤ 16 βQCD is negative, which straightforwardly implies the alluded decrease of the
coupling parameter αs at high-momentum transfer and vice versa. This is shown in Figure 1.1,
together with the extraction of the world average value of αs(M

2
Z), provided by the particle

data group [44].

1.1.2 The weak sector

The weak interaction is mediated via a charged W± or a neutral Z0, which couple to both
quarks and leptons. The term “weak” applies to a strength several orders of magnitude weaker

1For simplicity, we here ignore terms like the Θ-term or possible gauge fixing and ghost terms.
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QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

α
s (Q

2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.1: Energy scale dependence of the strong coupling αs(Q
2) as determined from several

measurements and extracted in perturbative QCD to the specified order (NLO: next-to-leading

order; NNLO: next-to-NLO; res. NNLO: NNLO matched with resummed NLO logs; N3LO:

next-to-NNLO). The world average value for αs(M
2
Z) as provided by the particle data group is

cited. The graph is taken from Ref. [44].

than the strong force. This is combined with a short-range character of the weak force due to
the large masses of the gauge bosons (due to the uncertainty principle). In the SM the weak and
the electromagnetic interaction are unified to the electroweak interaction, which is described
by the Glashow-Weinberg-Salam (GWS) theory and accomplished under the SU(2)L × U(1)Y
part of the SM gauge symmetry group. Four initially massless gauge bosons (W1, W2, W3, B)
are linearly combined to the physical gauge bosons: the charged bosons W± are given by the
combinations

W± =
W1 ± iW2√

2
, (1.6)

and the W3 boson mixes with the B, producing the physical neutral Z0 boson and photon γ,

(
γ

Z0

)

=

(
cos θW sin θW
− sin θW cos θW

)(
B

W3

)

, (1.7)

where the weak mixing angle θW is determined in terms of the weak isospin g and hypercharge
g′ by cos θW = g/

√

g2 + g′2. While the photon, mediating the electromagnetic interaction,
remains massless, the three gauge bosons corresponding to the weak interaction become massive.
This results from the spontaneous breaking of the SU(2)L ×U(1)Y symmetry down to U(1)em
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(at energies below the electroweak breaking scale Λ = 246 GeV) through the Higgs mechanism.2

The number of mass-acquiring bosons is in accordance with the number of broken generators:
three SU(2)L generators ti = σi/2 (with the Pauli matrices σi), which are the components of
the weak isospin and obey Eq. (1.1) with fabc → ǫabc. According to the Higgs mechanism the
(large) masses of theW± or Z0 are generated by the interaction with the Higgs field, a complex
SU(2) doublet with two scalar components,

φ =

(
φ+

φ0

)

. (1.8)

The scalar Higgs potential reads

V (φ) = −µ2φ†φ+ λ(φ†φ)2, (1.9)

where λ > 0 assures vacuum stability. For µ2 > 0 a nonzero vacuum expectation value emerges
that may be written as

〈φ〉 =
(

0
v√
2

)

, v =

√

µ2

λ
. (1.10)

In the unitary gauge, where the Higgs doublet is chosen as

φ =

(

0
v+h√

2

)

(1.11)

and in which the appearance of any Goldstone boson fields in the Lagrange density is removed,
but only the Higgs boson h is introduced after the spontaneous symmetry breaking (SSB), the
Lagrangian offers the desired expressions of the gauge boson mass terms. The mass generated
in this way effectively transforms as an SU(2)L doublet rather than as a scalar (naively adding
a mass term for these gauge bosons would spoil the gauge invariance of the theory).

A special feature of the weak interaction is that it allows for a flavor change between quarks
or leptons, such that for instance a d quark can be converted into a u quark or an electron
into an electron neutrino. The strength of the flavor mixing is driven by the unitary CKM
matrix in the case of quarks, determined by the Yukawa couplings of the Higgs boson to the
fermions. The magnitudes of the diagonal matrix elements significantly dominate the off-
diagonal elements, i.e. a transition within the same generation of quarks (“Cabibbo-favored”)
is much more probable than between quarks of different generations (“Cabibbo-suppressed”).
The Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix is the corresponding lepton flavor
mixing matrix.

The V −A (vector minus axial-vector or left-handed) nature of the weak interaction (it acts
on left-handed SU(2)L doublets only) corresponds to maximal violation of parity P (which
turns the left-handed into a right-handed fermion) or likewise of charge conjugation C; only
the product of these two, CP symmetry, is a rather good symmetry. However, even a violation
of the combined CP transformation is possible, first discovered in 1964 in neutral K decays
by Cronin and Fitch [45]. The investigation of CP violating phenomena, and accordingly the
precise determination of the CKM matrix elements, is still of major interest in the current
state of research, both theoretically and experimentally. Its importance becomes apparent in
the explanation of the huge preference of matter over primordial antimatter in the universe,
as the existence of C and CP violation in the early universe is one of the so-called “Sakharov
conditions” that were proposed to explain that imbalance. A remarkable success of the theory

2The specific value of the breaking scale is taken to be the vacuum expectation value of the Higgs field,

v = (GF
√
2)−1 with the Fermi constant GF .
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was the prediction [8] of a third particle generation in order to explain the non-conservation of
CP symmetry, and the succeeding experimental confirmation by the discoveries of the charm
quark in 1974 [46,47], the τ lepton in 1976 [48], and finally the bottom and top quarks in 1977
and 1995 [49–51]. Three generations allow for an irreducible phase δ in the CKM matrix, in
which the CP violation in the quark sector manifests itself. A (not unique though commonly
used) parametrization of the CKM matrix with four significant parameters, e.g. three rotation
angles θ12, θ13, and θ23, and the phase δ, reads

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





=





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.12)

with sij = sin θij and cij = cos θij . Unitarity of the CKM matrix yields the constraints

∑

k

VikV
∗
jk = δij , and

∑

k

VkiV
∗
kj = δij , (1.13)

of which the six orthogonality relations (i 6= j) form unitarity triangles in the complex plane,
whose surface areas are half of the magnitude of the Jarlskog invariant

J = ±Im (VikVjlV
∗
ilV

∗
jk) = c12c

2
13c23s12s13s23 sin δ, (i 6= j, l 6= k), |J | = (3.05± 0.18) ·10−5,

(1.14)
which is a measure of CP violation. Most attention is paid to the triangle determined by CKM
matrix elements with large phases,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.15)

giving a promising experimental access to CP violation and SM tests via measurements of the
angles of the unitarity triangle defined by

α = arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, β = arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, γ = arg

(

−VudV
∗
ub

VcdV ∗
cb

)

(1.16)

and the sides

Rt =

∣
∣
∣
∣

VtdV
∗
tb

VcdV ∗
cb

∣
∣
∣
∣
, Ru =

∣
∣
∣
∣

VudV
∗
ub

VcdV ∗
cb

∣
∣
∣
∣
, Rc =

∣
∣
∣
∣

VcdV
∗
cb

VcdV ∗
cb

∣
∣
∣
∣
= 1. (1.17)

The convenient representation of experimental constraints is given in the (ρ̄, η̄) plane, with

ρ̄+ iη̄ = Rue
iγ , (1.18)

where the coordinates (ρ̄, η̄) determine the only non-trivial apex of the normalized triangle,
the others fixed to (0, 0) and (1, 0). The latest status of experimental constraints provided
by the CKMfitter group in their global fit is shown in Figure 1.2. A detailed review on the
experimental and theoretical input and the methodology is given in Ref. [52].

Three types of CP violation (CPV) have been investigated, direct CPV, indirect CPV,
and CPV due to the interference between the direct decay and mixing amplitudes.
Direct (time-independent) CP violation can arise e.g. in kaon [53–56], and B-meson decays [12,
13], if the decay amplitude Af = 〈M |H |f〉 of a mesonM into a final state f is different from the
amplitude Āf̄ describing the CP conjugate decay M̄ → f̄ . H is the Hamiltonian that describes



8 Chapter 1: Introduction

γ

γ

Kε

Kε

α
α

dm∆

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xclu

d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ
­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

ICHEP 16

CKM
f i t t e r

γ
K

ε

α

α

d
m∆

sm∆ & dm∆

ubV

βsin 2
(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

α

βγ

ρ
­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
x
c
lu

d
e
d
 a

re
a
 h

a
s
 C

L
 >

 0
.9

5

ICHEP 16

CKM
f i t t e r

Figure 1.2: Constraints for the CKM unitarity triangle are shown in the (ρ̄, η̄) plane, for

which experimental and theoretical results for all CKM parameters enter the global fit of the

CKMfitter group. The red contoured area that combines all constraints corresponds to 68%

confidence limit. In the left panel the region of interest is magnified. The figures are taken from

Ref. [52].

the decay. Contrary to the other types of CPV it can occur in both neutral and charged meson
decays as it does not rely on mixing. Its observation requires the contribution of weak CP -odd
phases φj and at the same time strong CP -even phases δj , demanding for a tight control of the
strong-interaction effects as well. A nonzero asymmetry, defined by

ACP =
Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
, with Γ(B → f) = |Af |2 and Γ(B̄ → f̄) = |Āf̄ |2,

(1.19)
can emerge if the transition B → f involves at least two amplitudes

Aj = |Aj |ei(φj+δj), Af =

n∑

j=1

Aj , n ≥ 2. (1.20)

Consider a process with n = 2. The transition amplitude and its CP conjugate read

Af = |A1|ei(δ1+φ1) + |A2|ei(δ2+φ2),

Āf̄ = |A1|ei(δ1−φ1) + |A2|ei(δ2−φ2), (1.21)

such that the CP asymmetry is evaluated to

ACP =
2|A1||A2| sin(∆δ) sin(∆φ)

|A1|2 + |A2|2 + 2|A1||A2| cos(∆δ) cos(∆φ)
. (1.22)

Consequently, direct CPV is only observable for nonzero phase differences ∆δ = δ1 − δ2 6= 0
and ∆φ = φ1 − φ2 6= 0.

Indirect (time-dependent) CP violation relies on oscillations in neutral meson systems, e.g.
K̄0–K0 and B̄0–B0 mixing, observable if a neutral meson state converts to its CP conjugate
with a probability different from the one for the reverse process. The transition to a CP
conjugate state can proceed via a second order weak current box diagram, as depicted at the
example of a B̄0–B0 oscillation in Figure 1.3. The time-dependent CP asymmetry is given by

ACP (t) =
Γ(B0 → f)(t)− Γ(B̄0 → f)(t)

Γ(B0 → f)(t) + Γ(B̄0 → f)(t)
, with Γ(B0 → f)(t) = |

〈
f |H |B0(t)

〉
|2. (1.23)
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d t, c, u b

b̄ t̄, c̄, ū d̄

B0 B̄0W+ W−

Figure 1.3: The figure shows the ∆B = 2 box diagram, transferring a B0 meson into

its CP conjugate B̄0. This gives rise to B̄0–B0 oscillations.

The time-dependent amplitudes for the respective transition to a final CP eigenstate f that
enter this asymmetry read

〈
f |H |B0(t)

〉
= e−imte−

Γt
2

[

Af cos

(
∆mBt

2

)

+ i
q

p
Āf sin

(
∆mt

2

)]

,

〈
f |H |B̄0(t)

〉
= e−imte−

Γt
2

[

i
p

q
Af sin

(
∆mt

2

)

+ Āf cos

(
∆mBt

2

)]

, (1.24)

where the coefficients p and q occur in the transformation of the B0 and B̄0 states into eigen-
states of the weak Hamiltonian H , a light (L) and a heavy (H) one,

∣
∣B0

L,H

〉
= p

∣
∣B0
〉
± q

∣
∣B̄0

〉
; (1.25)

m is the average mass, and ∆m is the difference of the masses of the weak eigenstates (we take
the difference of the widths of B0

L and B0
H to be negligibly small). The box diagram, which is

dominated by the contribution from intermediate top quarks, yields

q

p
=
V ∗
tbVtd
VtbV ∗

td

. (1.26)

Using Eq. (1.24) the decay rates are evaluated to

Γ(B0 → f)(t) ∝ 1 +
2Imλf

1 + |λf |2
sin (∆mt)− 1− |λf |2

1 + |λf |2
cos (∆mt) ,

Γ(B̄0 → f)(t) ∝ 1− 2Imλf

1 + |λf |2
sin (∆mt) +

1− |λf |2

1 + |λf |2
cos (∆mt) , λf =

q

p

Āf
Af

, (1.27)

such that

ACP =
2Imλf

1 + |λf |2
︸ ︷︷ ︸

mixing

sin (∆mt)− 1− |λf |2

1 + |λf |2
︸ ︷︷ ︸

direct

cos (∆mt) , (1.28)

where the prefactors represent either CPV in the direct decay or due to the mixing.
Finally, CP violation can occur if a particleM and its CP conjugate M̄ decay into the same

final state f , such that M can decay directly or via mixing, M → M̄ → f . It is thus based on
the interference between the decay amplitude with and without mixing.

Originally, CP violation was investigated in kaon decays; today, major efforts in the matter
are made, adducting the field of B-physics where large CP asymmetries are expected and an
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appreciable sensitivity to New Physics beyond the SM is present. Such research was and still
is a main purpose of B-physics experiments, rendering plenty experimental evidence, e.g. at
the first generation asymmetric B factories like the Belle experiment at the KEKB collider
(upgraded to Belle II at the SuperKEKB accelerator) and the BaBar experiment at the PEP-II
collider at SLAC, likewise at the Fermilab Tevatron by the CDF and D0 collaborations, and
now continued by LHCb at the LHC, where e.g. the golden mode B0 → J/ψK0 is investigated,
as well as the CP violation in the strange sector, B0

s → J/ψφ.

1.2 Effective field theories

The non-applicability of perturbation theory for strong-interaction processes in the low-energy
regime, where quarks and gluons are confined within color-neutral bound states, the hadrons,
requires alternative approaches to hadron physics. Established methods are Effective Field
Theories (EFTs), Lattice QCD, and Dispersion Theory. This section introduces the concept
of EFTs, illustrated at the examples of Chiral Perturbation Theory (ChPT) and Heavy-Meson
Chiral Perturbation Theory (HMChPT), both being of central importance in this thesis.

The main idea in constructing an EFT is to focus on the energy/mass region of interest,
i.e. a theory that is supposed to describe strong-interaction processes at low energies is driven
by a Lagrangian where the hadrons are the relevant degrees of freedom rather than the quarks
and gluons that are the degrees of freedom of the underlying theory. This prerequires a clear
scale separation in order to identify and reliably suppress the irrelevant degrees of freedom: if
we for instance intend to describe the dynamics of the lightest hadrons (with a mass mL) in
the particle spectrum, a theory in which the particles above a given energy scale (e.g. hadrons
that contain a c or b quark) are integrated out proves beneficial, given that the heavy masses
are mH ≫ mL. The effective theory can then be expanded in a controlled way according to the
power-counting argument: given that the expansion parameter α, defined by the ratio between
the low and the high energy scale, is a sufficiently small parameter, operators Oν ∼ f(ℓi)α

ν

that are of low order in α dominate over higher-dimension operators, allowing for a systematic
ordering of the operators. The prefactor f(ℓi) is a function of an a priori unknown so-called
low-energy constant (LEC) ℓi that contains information about high-energy effects, to be fixed
phenomenologically from experiment or derived from the fundamental theory, e.g. by using
lattice simulations; furthermore, f(ℓi) ∼ O(1) (naturalness argument). At a given order both
tree-level and loop diagrams must be considered preserving (perturbative) unitarity.

The effective theory is constrained by the underlying symmetries of the fundamental theory
(the Lagrangians discussed in this section are required to be invariant under the QCD symmetry
transformations).

Note that the knowledge of the fundamental theory is not mandatory for the construction of
the effective theory that just relies on symmetry principles. This was heuristically conjectured
by Weinberg [57] and reformulated in the folk theorem (referred to as such by himself) [58]:

“if one writes down the most general possible Lagrangian, including all terms
consistent with assumed symmetry principles, and then calculates S-matrix elements
with this Lagrangian to any order of perturbation theory, the result will simply be
the most general S-matrix consistent with analyticity, perturbative unitarity, cluster
decomposition, and the assumed symmetry principles.”

Unitarity and analyticity constraints ensure that the theory conserves probability and causality,
respectively, while cluster decomposition is linked to locality.

The established EFT of QCD at low energies (in the meson sector), where the 8 Goldstone
bosons π±, π0,K±,K0, K̄0, η, the lightest hadrons in the particle spectrum, become the relevant
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effective degrees of freedom, is ChPT [59,60]. It exploits chiral symmetry, being an exact QCD
symmetry in the limit of vanishing quark masses mq → 0. This symmetry is spontaneously
broken, which entails the generation of the Goldstone bosons. The theory is systematically
expanded in powers of the Goldstone boson momenta/energies p or masses M over the chiral
symmetry breaking scale, p/Λχ orM/Λχ, Λχ ≈ 1 GeV.3 Accordingly, the range of applicability
is restricted to momenta or masses well below the chiral breaking scale.

On the contrary, for processes where mesons containing one heavy (c or b) quark are involved
Heavy-Quark Effective Theory (HQET) is an appropriate approach. There the mq → ∞ limit
is studied in which the heavy quark depends on its four-velocity vµ only but not on its spin
or mass, i.e. if Nf heavy quarks are considered the theory is invariant under an SU(2Nf) spin
flavor symmetry.4 An effective theory that exploits both chiral and spin flavor symmetry is
HMChPT, discussed in Section 1.2.2, after a brief review of ChPT given in Section 1.2.1.

1.2.1 Chiral Perturbation Theory

Projecting the quark fields on left- and right-handed fields,

qL/R = PL/Rq, PR/L =
1

2
(1± γ5) , PL + PR = 1, PL ·PR = 0 (1.29)

exhibits a decoupling of the left- and right-handed fields in the kinetic part of the QCD La-
grangian Eq. (1.2) (contrary to the mass term Lmass), such that Lkin is invariant under inde-
pendent global rotations in flavor space,

Lkin = −1

4
Gµνa Gaµν + i

(
q̄L /DqL + q̄R /DqR

)
, Lmass = (−q̄RMqL − q̄LMqR), (1.30)

with LQCD = Lkin + Lmass. This results in exact chiral symmetry of the QCD Lagrangian in
the chiral limit, mq → 0,

U(Nf )L × U(Nf)R = UL(1)× UR(1)
︸ ︷︷ ︸

= UV (1) × ✘
✘✘UA(1)

×SU(Nf)L × SU(Nf)R, (1.31)

where Nf massless quarks are considered (a convenient choice is Nf = 2 or Nf = 3, while
the heavy quarks are integrated out). Right- and left-handed symmetry transformations are
combined to vector, V = R+L, and axial-vector, A = R−L, ones. While the Noether current
of the U(1)V symmetry, associated with the baryon number, is conserved, the U(1)A symmetry
is anomalously broken due to quantum effects and hence not a symmetry of QCD.

A continuous exact global symmetry of a Lagrangian can be realized in two different ways
(Goldstone alternative): either the symmetry remains unbroken in both the equations of mo-
tion and the ground state (Wigner-Weyl realization of the symmetry) or the symmetry is
spontaneously broken (Nambu-Goldstone mode), such that the vacuum is not invariant un-
der the symmetry transformation. The annihilation of the vacuum that characterizes the
Wigner-Weyl mode implies the existence of degenerate particle multiplets. In the case of the
SU(Nf)L × SU(Nf)R symmetry the occurrence of parity doublets is expected. However, these

3The size of Λχ can be estimated in studying ππ scattering: a dimensional analysis approach, where up to

O(p4) contributions (loop vs. tree-level) are compared, yields Λχ ≈ 4πFπ ≈ 1.2 GeV (Fπ ≈ 92 MeV being the

pion decay constant), which is of the same order of magnitude as the estimation based on a phenomenological

model of resonance exchange (the lightest being the ρ meson) indicating Λχ ≈ Mres &Mρ = 770 MeV.
4Note that these symmetries are exact only in the considered limit, i.e. if for instance the charm quark

(mc ≈ 1.5 GeV) is involved rather large corrections of order O(ΛQCD/mc) (ΛQCD ≈ 200 MeV being the QCD

reference scale) may spoil the predictiveness of the effective theory.
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are not observed in the hadronic spectrum, being one of several existing arguments why the
Wigner-Weyl realization is excluded. Instead, the chiral symmetry is spontaneously broken to
the vectorial subgroup,

SU(Nf )L × SU(Nf )R → SU(Nf)V . (1.32)

The SU(Nf )V subgroup is preserved from a further SSB according to the Vafa-Witten theo-
rem [61],5 and can only be broken explicitly due to nonzero quark masses. Due to the Goldstone
theorem for every broken generator a new minimum-energy vacuum state appears, such that
the N2

f − 1 broken axial generators due to the spontaneous breaking of the chiral symmetry,
Eq. (1.32), yield the same number of massless particles, the Goldstone bosons. Depending on
the number of flavors that are taken into account, i.e. whether the strange quark is considered
to be massless (chiral SU(3) symmetry) or only the mu,md → 0 limit is considered (chiral
SU(2) symmetry), the theory involves eight Goldstone bosons (three pions, four kaons, and the
eta meson) or the pion triplet, respectively. These mesons are the lightest though not mass-
less pseudoscalar mesons in the particle spectrum. This is explained by the non-zero quark
masses: chiral symmetry is an approximate symmetry, broken explicitly by the light quark
masses, mq 6= 0. Since mq ≪ Λχ, a rather small effect is expected. In a similar way, the vector
symmetries SU(2)V and SU(3)V are approximate ones, broken by quark mass differences. In
particular the SU(2)V symmetry, whose breaking yields isospin-violating effects (ascribed to
mu 6= md) that are manifest e.g. in the kaon mass differences or in η → 3π, still proves to be a
very good symmetry; SU(3)V symmetry shows larger corrections on a 30% level, driven by the
strange quark mass that is still an order of magnitude larger than mu,d.

Having clarified the relevant degrees of freedom, the Goldstone bosons, the underlying QCD
symmetries and the discussed pattern of spontaneous chiral-symmetry breaking are built into
an effective Lagrangian. One ingredient is the unitary matrix

U = exp

(
iλaφa
F

)

, (1.33)

which transforms as U → U ′ = RUL†, R,L ∈ SU(Nf)R,L, under the chiral rotation. The
Goldstone bosons are encoded in an Nf ×Nf real matrix; we focus on the three-flavor case in
the following (the reduction to the SU(2)V symmetry is performed straightforwardly) with

1√
2
λaφa =






π0
√
2
+ η√

6
π+ K+

π− − π0
√
2
+ η√

6
K0

K− K̄0 − 2√
6
η




 , (1.34)

and neglecting π0–η mixing. In the chiral limit the constant F equals the pion decay constant
F ≈ Fπ = (92.1± 1.2) MeV [62], which is e.g. measured in the pion decay π+ → l+νl.

In order to ensure the theory to be invariant under Lorentz transformations, odd powers
in the Goldstone boson momenta or the derivatives, respectively, are forbidden, such that the
effective Lagrangian has the schematic representation

Leff = L(2) + L(4) + . . . . (1.35)

L(0) is a constant contribution without physically meaningful impact and is therefore ignored.
Hence the leading order (LO) Lagrangian comprises terms that are of quadratic order in the
derivatives and meson masses, the latter being consistent with linear order in the quark masses

5The Vafa-Witten theorem states that vector gauge theories (as QCD without Θ-term) have an unbroken

vector symmetry, such that only the axial symmetry can be broken spontaneously.
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due to the Gell-Mann-Oakes-Renner relation (discussed later in this section). A general expres-
sion of the LO Lagrangian supplemented by the coupling to external fields reads

L(2) =
F 2

4

〈
DµUD

µU † + χU † + Uχ†〉 , (1.36)

〈. . . 〉 denotes the trace in flavor space. The coupling to vector (vµ) and axial-vector (aµ)
external sources enters via the covariant derivative,

DµU = ∂µU − irµU + iUlµ, rµ = vµ + aµ, lµ = vµ − aµ, (1.37)

and scalar (s) and pseudoscalar (p) sources are introduced by

χ = 2B(s+ ip). (1.38)

The (symmetry breaking) mass term is recovered by s = diag(mu,md,ms), thus it enters the
effective Lagrangian together with a constant B, called the order parameter of SSB, which is
not fixed by chiral symmetry. A comparison of the derivatives of the QCD and the effective
ground state (U = U0 = 1) energies with respect to the quark masses yields a relation between
B and the chiral quark condensate,

B =

∣
∣
∣
∣

〈0|q̄q|0〉
3F 2

∣
∣
∣
∣
mu,md,ms→0

with
1

3
〈0|q̄q|0〉 = 〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 6= 0. (1.39)

Considering next the mass term expanded to second order in the pseudoscalar meson fields one
can read off a proportionality of the squared pion, kaon, and eta masses to the (linear) quark
masses (Gell-Mann-Oakes-Renner relation),

M2
π± = Bm̂, M2

K± = B(mu +ms), M2
K0 = B(md +ms),

M2
π0 = Bm̂+O((mu −md)

2), M2
η =

B

3
(m̂+ 4ms) +O((mu −md)

2),

m̂ = mu +md, (1.40)

where electromagnetic effects are neglected that induce isospin breaking.
The violation of isospin symmetry is manifest in the π0η mixing, lowering the neutral pion

mass compared to the charged one, and increasing the eta mass of order (mu−md)
2 ≪ m̂2. Both

the parameter B and the quark masses depend on the QCD renormalization scale. However,
the scale dependence cancels in the product such that the mass relations are invariant under
the QCD renormalization group.

Next-to-leading (NLO) (and higher) order calculations include a considerably larger variety
of contributing operators: the NLO Lagrangian L(4) contains operator structures with four
derivatives, two derivatives and χ, or χ2. An explicit form reads [60]

L(4) = L1〈DµUD
µU †〉2 + L2〈DµUDνU

†〉〈DµUDνU †〉
+ L3〈DµUD

µU †DνUD
νU †〉+ L4〈DµUD

µU †〉〈χ†U + χU †〉
+ L5〈DµUD

µU †(χ†U + χU †)〉+ L6〈χ†U + χU †〉2
+ L7〈χ†U − χU †〉2 + L8〈χ†Uχ†U + χU †χU †〉
− iL9〈FRµνDµUDνU † + FLµνD

µU †DνU〉+ L10〈U †FRµνUF
Lµν〉, (1.41)

with LECs Li (note that in the SU(2) version the LECs are denoted by ℓi). The field strength
tensors FL,Rµν that contribute in Eq. (1.41) are defined via

FRµν = ∂µrν − ∂νrµ − i [rµ, rν ] , FLµν = FRµν(rµ → lµ). (1.42)
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Considering diagrams at NLO there can be an insertion from L(4), or one-loop graphs based on
L(2) contribute. The latter generate divergences, which are canceled by appropriately renor-
malized LECs,6

Li = Lri +
Γi

32π2
µd−4

[
2

d− 4
− (ln(4π) + Γ′(1) + 1)

]

, (1.43)

This explicit form holds for dimensional regularization, with real coefficients Γi and dimension
d. This alludes to the importance of the subject of renormalizability in the NLO domain—for
an elaborated understanding see Refs. [63–67].

1.2.2 Heavy-Meson Chiral Perturbation Theory

An EFT that combines the approximate chiral symmetry of the QCD Lagrangian (mq → 0
for the light quarks q = u, d, s) and the heavy quark symmetry in the limit of infinite masses
(mQ → ∞ for heavy quarks Q = c, b) is Heavy-Meson Chiral Perturbation Theory (HMChPT).
The latter limit manifests itself in three aspects:

• an SU(nf ) flavor symmetry: the heavy quark flavor becomes irrelevant in the mQ → ∞
limit,

• an SU(2) spin symmetry: the gluon decouples from the quark spin, implying e.g. a
degenerate multiplet of ground-state pseudoscalar (Pa) and vector (P ∗

aµ) states,

• the velocity superselection rule: the velocity v is only affected by the weak and the elec-
tromagnetic interaction but not by the strong interaction such that one cannot distinguish
between the heavy meson and the heavy quark velocity.

The spin and flavor symmetry are combined to the larger SU(2nf) spin-flavor symmetry for
each velocity. It is broken by finite quark masses, corrections of order O(ΛQCD/mQ) are sys-
tematically incorporated order by order.

Both chiral and heavy quark symmetry are implemented in a Lagrangian that describes the
dynamics between a light pseudoscalar and a heavy meson (containing a single heavy quark
and having Qq̄a flavor quantum numbers, a = 1, 2, 3).7 The light antiquark can be a ū, d̄ or s̄
quark such that the field operators Pa and P ∗

aµ that annihilate the heavy mesons with velocity
v form SU(3)V antitriplets that consist of D and D∗ mesons for Q = c, or B and B∗ mesons
for Q = b, respectively,

(P1, P2, P3) = (D0, D+, D+
s ) and (P ∗

1 , P
∗
2 , P

∗
3 ) = (D∗0, D∗+, D∗+

s ),

(P1, P2, P3) = (B−, B̄0, B̄0
s ) and (P ∗

1 , P
∗
2 , P

∗
3 ) = (B∗−, B̄∗0, B̄∗0

s ). (1.44)

These fields are of mass dimension 3/2 as factors of
√
mD,B and

√
mD∗,B∗ are absorbed in

Pa and P ∗
a , respectively. The physical polarization of vector particles constrains the fields by

ǫ · v = 0, hence P ∗ · v = 0. The operators Pa and P ∗
aµ are combined in a single object and can

be represented by the composite field

Ha =
1 + /v

2

(
P ∗
aµγ

µ − Paγ5
)
, H̄a = γ0H

†
aγ0, (1.45)

6The scale dependence of the Lri is compensated by the finite part of the loop graph, such that the physical

quantities are scale invariant.
7HMChPT is also applicable for processes in which light mesons interact with heavy quarkonia, charmonia

or bottomia. Though in this case the heavy flavor symmetry SU(nf ) is broken, there are many parallels in

constructing the effective Lagrangian that is introduced in Section 2.7.3.
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that transforms under a Lorentz transformation Λ as

Ha → D(Λ)HaD(Λ)−1, v → Λv, x→ Λx, (1.46)

where D(Λ) is the 4× 4 representation of the Lorentz group, and as

Ha → SHa, Ha → HbV
†
ab (1.47)

under a heavy-quark spin transformation S that belongs to SU(2) with [/v, S] = 0, and with a
unitary matrix V in flavor space.

At leading-order the Lagrangian reads [68, 69]

L = −iTrH̄avµ∂
µHa +

1

2
TrH̄aHbv

µ(u†∂µu+ u∂µu
†)ba +

ig

2
TrH̄aHbγ

µγ5(u
†∂µu− u∂µu

†)ba.

(1.48)
The Goldstone bosons are collected in u = U1/2; the unitary matrix U is defined in Eq. (1.33).
The normalized coupling g occurring in Eq. (1.48), which is flavor-independent in the limit
of exact chiral, spin and heavy-flavor symmetry, is related to the strong couplings gB∗Bπ and
gD∗Dπ . Since the decay B∗ → Bπ is kinematically forbidden it can be determined from the
partial decay width for D∗+ → D0π+, g = gD∗DπFπ/

√
2mDmD∗ = 0.570±0.004±0.005, where

the more precisely measured width of the BaBar collaboration [70, 71] (compared to the older
CLEO measurements [72, 73]) is taken.

To determine the propagators we take into account the higher-order Lagrangian terms

Lλ = λ1TrH̄aHb(umqu+u
†mqu

†)ba+λ
′
1TrH̄aHa(mqU +mqU

†)bb+λ2TrH̄aσµνHaσ
µν , (1.49)

that are responsible for the leading chiral-symmetry and heavy-quark-spin breaking effects, i.e.
for the mass splitting between the strange and the non-strange D/B mesons and between the

pseudoscalar and the vector triplets. After a redefinition of the heavy meson fields P
(∗)
a →

exp(i 3/4∆v ·x)P (∗)
a the effective Pa and P ∗

a propagators can be written as

iδab

2(k · v − µδas)
and

−iδab(gµν − vµvν)

2(k · v −∆− µδas)
, (1.50)

respectively, where k denotes the small residual momentum of the propagating meson and
∆ = mP∗ −mP = − 8λ2

mQ
, µ = mPs −mP = 2λ1(ms − m̂) [68], m̂ = (mu +md)/2; δas indicates

a contribution in the case of a strange propagating heavy meson (while a 6= s yields δas = 0).
The purpose of the remaining section is to provide an example for an application. Processes

for which HMChPT is a readily feasible approach are for instance semileptonic decays of heavy
mesons. In the following we restrict ourselves to semileptonic decays of the D meson in order
to simplify the notation (the B decay can be treated in analogy). In particular we calculate
D → πKlν (abbreviated by Dl4) tree-level processes, which are shown in Figure 1.4; the
diagrams (B) and (C) contain t-channelD∗-pole terms. The coupling to the left-handed leptonic
current, involving a light meson q and a heavy meson Q,

Lνa = q̄aγν(1− γ5)Q, (1.51)

has to be determined. In HMChPT this current can be rewritten as [68]

L(0)
νa =

ifD
√
mD

2
Tr
[

γν(1 − γ5)Hbu
†
ba

]

+ . . . , (1.52)

where the ellipsis denotes terms of higher order in the heavy-mass or chiral power counting.
The D-meson decay constant fD = (209.2 ± 3.3)MeV is taken from Ref. [74], where lattice
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(A)

π

K

D

(B)

π K

D D∗

(C)

π
K

D D∗ D∗
s

(D)

π K

D Ds

Figure 1.4: Tree-level diagrams for D → πK + leptonic current. D-mesons are represented by

solid lines, pseudoscalars by dashed lines and the insertion of the leptonic current is denoted

by the shaded square.

calculations with 2 + 1 dynamical quark flavors are averaged. So far we have only considered
terms at leading chiral order. Following Ref. [75] we take into account also terms coming from
the heavy-meson Lagrangian at chiral order O(E1

π), as well as the next-to-leading (NLO) effects
arising artefactually already from the leading-order expression. We translate the Lagrangian
given in Ref. [75] into an expression similar to Eq. (1.52), using the conventions of Ref. [69],

L(1)
νa = − β1

2
√
mD

Tr
[
γν(1− γ5)γµHcucb(∂

µU †)ba
]
− β2m

2
D

2
√
mD

Tr
[
γν(1− γ5)vµHcucb(∂

µU †)ba
]
.

(1.53)
The unknown couplings β1 and β2 need to be constrained either phenomenologically or by
considerations involving the underlying symmetry. In this thesis we propose a method to
determine the couplings by means of a low-energy theorem for pK → 0: it relates the Dl4 decay
matrix elements to the D+ → π0l+νl ones, exploiting the simpler structure of the latter, cf.
Appendix B.1.

To the considered next-to-leading order also SU(3) breaking effects occur in the interaction
vertices, where in the case of Dl4 the only contribution of the symmetry-violating Lagrangian
Eq. (1.49) comes from the terms ∝ λ1 and λ′1. In addition there is an NLO contribution to the
four-vertex (diagram D) coming from [76]

Lσ = σ1TrH̄aHb(u
µuµ)ba + σ2TrH̄aHbvµvν({uµ, uµ})ba. (1.54)

However, this Lagrangian only becomes important for a massive final-state lepton—if the limit
of vanishing electron mass is considered these corrections can be omitted. Other possible
terms at the NLO level [77] can be incorporated into redefinitions of the coupling constants, for
example we explicitly take into account the fD−fD(∗)

s
splitting, using the averaged lattice results

fDs = (249.8 ± 2.3) MeV [74] and from sum-rule calculations fD∗ = (252.2 ± 22.3 ± 4) MeV
and fD∗

s
= (305.5± 26.8± 5) MeV [78]. Also the SU(3) splitting between the decay constants

Fπ and FK is considered explicitly, with FK = (110.0± 0.3) MeV [62].

The NLO-corrected tree-level amplitudes, supplemented by subleading effects in the chiral
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expansion as well as in the 1/mD expansion, read

AχNLO =ipµπ
fD − 2β1
2FπFK

+ iLµ
fD − 4mDβ2v · pπ

4FπFK
,

BχNLO =ipµπ
g

2FπFK

fD∗mD∗ + 2β1v · pK + 2β2mDmD∗v · pK
v · pπ +∆

− ipµK
gfD∗

2FπFK

v · pπ
v · pπ +∆

+ iLµ
g

2FπFKmD∗

fD∗(p2π −mDv · pπ)− 2β1pK · pπ − 2β2m
2
Dv · pπv · pK

v · pπ +∆

− ǫµνρσLνpπρpKσ
β1g

FπFK

1

v · pπ +∆
,

CχNLO =− iLµ
g2fDs

2mD∗FπFK

mD∗pπ · pK −mD∗(v · pπ)(v · pK) + (v · pK)p2π + (v · pπ)(pπ · pK)

[v · pπ +∆][v · (pπ + pK) + µ]

− ǫµνρσLνpπρpKσ
g2fD∗

s

2FπFK

1

[v · pπ +∆][v · (pπ + pK) + ∆+ µ]
,

DχNLO =− iLµ
fDs

4FπFK

v · (pK − pπ) + 8σ1pπ · pK + 16σ2v · pK v · pπ + 8m̂λ1 + µ

v · (pK + pπ) + µ
. (1.55)

Note that ∆ and µ corrections are of the order of the pion mass and thus their importance in
the power counting is comparable to the chiral next-to-leading order [68]. Due to Eq. (1.49)
µ is related to the quark-mass difference ms − m̂, which conventionally is counted as chiral
order O(p2). We have thus only taken into account such quark-mass driven SU(3)-breaking
contributions to the Lagrangian which affect the D-mass (and not for instance in the case of the
coupling to the current, which is therefore corrected by hand by replacing fD by the appropriate

couplings f
(∗)
D(s)

). Finally, chiral NLO momentum corrections are included into the numerators

of the vector propagators, e.g.

−i (gµν − vµvν) → −i
(

gµν − m2
D

m2
D∗

(

vµ − qµK + qµπ
mD

)(

vν − qνK + qνπ
mD

))

. (1.56)

1.3 Scattering theory

The methodology we mainly pursue in this thesis is dispersion theory. For physical quantities
such as scattering amplitudes or form factors dispersion relations allow to recover the full am-
plitude from the discontinuity across branch cuts and single poles. These singularities as the
complete analytic structure stem from the unitarity and analyticity requirements the ampli-
tude exhibits, which are developed in S-matrix theory, see Ref. [79]. In this section we first
introduce the principles of unitarity, crossing symmetry, and analyticity and then show how
to exploit them together with Cauchy’s integral formula to derive a dispersive representation
of an amplitude. We then focus on a specific dispersive setting, in which the amplitudes are
represented in terms of Omnès functions that are analytic solutions of the dispersion integrals
for elastic scattering processes [80, 81]. The onset of inelastic contributions requires to derive
coupled-channel Muskhelishvili–Omnès representations that may be solved numerically.

1.3.1 The S-matrix

The scattering of particles in quantum field theories is commonly expressed via the S-matrix,
which is separated into an interaction part, driven by the T -matrix, and a free non-interacting
part given by the identity operator, i.e. S = 1 + iT . The transition probability of an initial
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(incoming) asymptotic state vector |i〉 scattering into a final (outgoing) asymptotic state vector
|f〉 is given by

|〈f |S|i〉|2 , (1.57)

where S is the S-matrix operator on the respective Hilbert space that specifies the underlying
interaction. The states |i〉, |f〉 are demanded to be asymptotically free states, which requires
short-range interactions, ensuring the above squared S-matrix element to be meaningful, unique,
and experimentally observable. Moreover, there are certain physically mandatory prerequisites
that constrain the S-matrix further: causality has profound impact on the analytic structure
of the S-matrix, the superposition principle resulting in a linear S-matrix, and probability
conservation linked to unitarity and crossing symmetry. In the remaining section we discuss
the consequences of these essential constraints, with a focus on the principles of unitarity and
analyticity (we restrict ourselves to the scattering of scalar, isoscalar particles). As a pedagogical
example we will consider a two-particle scattering process, with two incoming particles A and
B, and two outgoing particles C and D,

A(pA)B(pB) → C(pC)D(pD), (1.58)

where pi are the respective four-momenta. The scattering amplitude F(s, t, u) is defined by

(2π)4δ4(pA + pB − pC − pD)F(s, t, u) = 〈pA, pB|T |pC , pD〉, (1.59)

being a Lorentz scalar function of the Mandelstam variables s, t, u, given by

s =(pA + pB)
2 = (pC + pD)

2,

t =(pA − pC)
2 = (pD − pB)

2,

u =(pA − pD)
2 = (pC − pB)

2,

and s+ t+ u =M2
A +M2

B +M2
C +M2

D =: 3s0. (1.60)

F(s, t, u) is an analytic function in the complex plane, except for the non-analytic structures
demanded by unitarity and crossing symmetry.

Unitarity of the S-matrix, SS† = 1, implies T −T † = iTT †, and in terms of matrix elements
Tjk = 〈j|T |k〉 the unitarity relation reads

Tfi − T ∗
if = i(2π)4

∑

m

δ(4)(pm − pf)TfmT
∗
im

Tif=Tfi
= 2i Im Tfi, (1.61)

where the δ-function ensures energy and momentum conservation, and the sum runs over all
possible intermediate states m. The second equality holds for symmetric matrix elements
Tif = Tfi, i.e. for processes that are invariant under time reversal symmetry T (or likely
under CP symmetry due to the CPT theorem) like strong-interaction processes. However,
even without specifying to symmetric processes, Tfi and T

∗
if are related to each other due to

hermitian analyticity: considering e.g. an s-channel two-particle scattering process Eq. (1.58),
both matrix elements are described by the same analytic function F(s, t, u) in the complex
s-plane, but the physical amplitude corresponding to Tfi is the limit on the real axis from the
upper-half s-plane,

F(s, t, u) = lim
ǫ→0+

F(s+ iǫ, t, u) (1.62)

while for T ∗
if the real s axis is approached from below, s− iǫ. The left-hand side of the unitarity

relation Eq. (1.61) thus can be rewritten by the discontinuity of that analytic function,

discF(s, t, u) = lim
ǫ→0

(F(s+ iǫ, t, u)−F(s− iǫ, t, u))

= i(2π)4
∑

m

δ(4)(pm − pf )TfmT
∗
im. (1.63)
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This equation dictates the singularity structure the (otherwise analytic) amplitude F(s, t, u)
exhibits. If we exclude bound states and consider an elastic scattering process (AB = CD),
i.e. we consider energies below the onset of inelastic channels, there occurs only one single
intermediate state, and the sum in Eq. (1.63) reduces to a sole contribution for energies above
the elastic energy threshold sthr = (MC +MD)

2,

discF(s, t, u) =
i

16π2S

λ1/2(s,M2
C ,M

2
D)

2s
Θ(s− sthr)

∫

dΩ T ∗
ffTfi , (1.64)

where
∫
dΩ denotes angular integration, S is the symmetry factor, S = 1 in the case of distin-

guishable and S = 2 for identical particles, and

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx (1.65)

defines the Källén triangle function. At the two-particle threshold sthr a branch cut opens,
by convention running along the real s axis to infinity, connecting two copies of the complex
s-plane (two Riemann sheets). For higher energies, inelastic scattering effects (like multiparticle
or higher-mass intermediate states) give rise to additional terms in the unitarity relation, which
induce further cuts, each inelastic threshold corresponding to a new branch point, and further
Riemann sheets, accordingly. In addition to these so-called right-hand cuts there may exist other
non-analytic structures: poles (pointlike singularities) below the elastic threshold associated
with intermediate bound states, as well as left-hand cuts due to crossing symmetry. We discuss
the latter in the following.

Due to the property of crossing symmetry different kinematical regions can be related to each
other: the scattering amplitude that is known in a certain channel, e.g. in the s-channel, can be
analytically continued over the unphysical region to describe the dynamics in another region of
the Mandelstam plane,8 as shown in Figure 1.5, i.e. the (crossed) t- or u-channel scattering or
the decay in the case of unstable particles. Hence, all these processes are described by the same
analytic function, exploiting that it depends on kinematical invariants, such that it is invariant
under a sign flip in the energy p0i . It even describes further processes, related to each other by
CPT and PT symmetry.

For the two-particle s-channel scattering example Eq. (1.58) the following processes are
obtained by crossing, i.e. by intertwining incoming and outgoing particles,

A(pA) + C̄(−pC) → B̄(−pB) +D(pD), t−channel,

A(pA) + D̄(−pD) → B̄(−pB) + C(pC), u−channel,

A(pA) → B̄(−pB) + C(pC) +D(pD) decay.

The decay reaction requires particle A to be unstable. The bar indicates the crossed negative-
energy states to be interpreted as antiparticles.

In order to learn about the effect of crossing symmetry on the analyticity structure we eval-
uate the Mandelstam variables in a specific reference frame and demonstrate their dependencies
on each other. We choose the s-channel center-of-mass frame, with three-momenta and energies

pA = −pB ≡ p, pC = −pD ≡ p′, Ei = (M2
i + |pi|2)1/2, (1.66)

in which the scattering angle is defined by θs = ∠(pA,pC) and the center-of-mass momenta
read

|p| = λ1/2(s,M2
A,M

2
B)

2
√
s

, |p′| = λ1/2(s,M2
C ,M

2
D)

2
√
s

. (1.67)

8The Mandelstam plane, spanned by combinations of the Mandelstam variables, e.g. t − u versus s, is used

to illustrate kinematically allowed regions for the diverse scattering and decay processes.
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Figure 1.5: The Mandelstam plane with Mandelstam variables t − u versus s is depicted.

The shaded areas show the physical regions for s-, t-, and u-channel scattering processes with

unequal masses, MA > MB +MC +MD, as well as the decay region, which is enlarged in the

bottom panel.
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For states with equal masses (MA =MB ≡ m or MC =MD ≡ m) commonly also the function
σ is used, σ(s) = λ1/2(s,m2,m2)/s. In the chosen frame the Mandelstam variables are given
by

s = (EA + EB)
2 = (EC + ED)

2,

t =M2
A +M2

C − 2EAEC + 2|p||p′| cos θs,
u =M2

A +M2
D − 2EAED − 2|p||p′| cos θs, (1.68)

allowing to rewrite t and u as functions of s and θs, and to express the scattering angle in terms
of s, t, and u,

t(s, cos θs) =
3s0 − s

2
+

(
λ1/2(s,M2

A,M
2
B)λ

1/2(s,M2
C ,M

2
D)

2s
cos θs −

∆12∆34

2

)

,

u(s, cos θs) =
3s0 − s

2
−
(
λ1/2(s,M2

A,M
2
B)λ

1/2(s,M2
C ,M

2
D)

2s
cos θs −

∆12∆34

2

)

,

⇒ cos θs =
s(t− u) + ∆12∆34

λ1/2(s,M2
A,M

2
B)λ

1/2(s,M2
C ,M

2
D)
, ∆ij =M2

i −M2
j . (1.69)

Similar expressions are obtained for s(t, cos θt), s(u, cos θu), t(u, cos θu), and u(t, cos θt).
Eq. (1.68) implies that the minimal energy for s-channel scattering is the threshold energy

sthr = max((MA+MB)
2, (MC +MD)

2), and s > sthr covers the physical region, corresponding
to a branch cut as discussed above. Similarly, at the threshold energies for the other channels,
tthr = max((MA + MC)

2, (MB +MD)
2), and uthr = max((MA + MD)

2, (MB + MC)
2), the

physical regions for t- and u-channel scattering start, generating right-hand cuts for t > tthr on
the real axis in the complex t-plane, and for u > uthr in the complex u-plane. According to
Eq. (1.69) these cuts are transferred onto the complex s-plane (and similarly vice versa), where
they occur as left-hand cuts.

Once calculations of scattering amplitudes or form factors become explicit, it is expedi-
ent to deal with partial-wave unitarity relations, obtained by expanding the full amplitudes
Tij(s, cos θs) in terms of Legendre polynomials, with attention to a particular isospin I,

T Ifi(s, cos θs) = 16πS

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θs)FI
ℓ (s),

T Iff(s, cos θs) = 16πS

∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θs)T
I
ℓ (s). (1.70)

On the one hand, angular integration that arises e.g. in Eq. (1.64) can be avoided. On the other
hand an important theorem, the Watson theorem [82], is known to hold for elastic partial-wave
scattering. It states that below the lowest inelastic threshold the phase shift δIℓ (s) of a partial-

wave amplitude FI
ℓ (s) = |FI

ℓ (s)| exp
(
iδIℓ (s)

)
is given by the phase shift δI,elℓ (s) (modulo π) of

the elastic final-state scattering amplitude T Iℓ (s) = |T Iℓ (s)| exp
(
iδI,elℓ (s)

)
. Eq. (1.64) simplifies

for a process with |i〉 = |f〉, as e.g. for ππ → ππ or πK → πK scattering, which yields the
partial-wave unitarity relation

ImT Iℓ (s) =
λ1/2(s,M2

C ,M
2
D)

s
|T Iℓ (s)|2 =

2|p|√
s
|T Iℓ (s)|2. (1.71)

The matrix elements T Iℓ (s) are related to partial-wave decomposed S-matrix elements SIℓ (s) by

SIℓ (s) = 1 +
4i|p|√
s
T Iℓ (s), |SIℓ (s)| ≤ 1, (1.72)



22 Chapter 1: Introduction

F (s) Tππ

Figure 1.6: Diagrammatic representation of the vector form factor, depicted by the orange circle

(left), driving the coupling of two pions (solid lines) to the electromagnetic current (curly line).

The blue circle at the right side denotes the elastic ππ scattering amplitude.

where in the elastic, single-channel treatment |SIℓ (s)| = 1 (elastic unitarity), which yields the
parametrizations

SIℓ (s) = e2iδ
I,el
ℓ (s) ⇒ T Iℓ (s) =

√
s
e2iδ

I,el
ℓ (s) − 1

4i|p| =

√
s

2|p| e
iδI,elℓ (s) sin δI,elℓ (s). (1.73)

A quantity for which the assumption of elastic unitarity works very well (at low energies s .
1GeV2) is the pion vector form factor (Fπ)I=1

ℓ=1 ≡ FV
π (s), defined by the coupling of a pion–pion

system to an electromagnetic current jem,

〈0|jµem(0)|π+(p1)π
−(p2)〉 = (p2 − p1)

µFV
π (s), jµem =

2

3
ūγµu− 1

3
d̄γµd. (1.74)

It can be directly measured via the processes e−e+ → π+π− [83–88] or, via an isospin rotation,
using τ− → π−π0ντ [89]. The diagram that contributes to the discontinuity of the vector form
factor is shown in Figure 1.6. A further discussion can be found in Section 2.4.1.

At energies above the onset of inelasticities and the breakdown of elastic unitarity, Eq. (1.73)
must be extended to a coupled-channel version, involving the so-called inelasticity parameters
0 ≤ ηℓi (s) ≤ 1. As an example the two-channel scattering amplitude T 0

0 (s) will be given in
Section 1.3.4. We employ next the example of an elastic two-particle scattering process with
|i〉 6= |f〉 to demonstrate Watson’s final-state theorem. Unitarity together with the parametriza-
tion Eq. (1.73) implies

ImFI
ℓ (s) =

2|p|√
s
T Iℓ

∗
(s)FI

ℓ (s)

⇔ ImFI
ℓ (s) = FI

ℓ (s)e
−iδI,elℓ (s) sin δI,elℓ (s)Θ(s− sthr), (1.75)

such that
sin δIℓ (s) = ei(δ

I
ℓ (s)−δ

I,el
ℓ (s)) sin δI,elℓ (s)Θ(s− sthr). (1.76)

This equation demands the right-hand side to be real (the left-hand side obviously is), which
yields the constraint

δI,elℓ (s) = δIℓ (s)mod(π) (1.77)

in the elastic scattering regime.

1.3.2 Dispersion theory

One of the pillars of non-perturbative approaches to strong-interaction processes is dispersion
theory. With the powerful tools of complex analysis, dispersion theory exploits the fundamental
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physical principles of micro causality, probability conservation, and crossing symmetry. In the
previous section we have discussed the analytic structure of physical amplitudes, illustrating
that amplitudes are analytic functions in the complex plane except for non-analytic structures
such as branch cuts and poles, that are dictated by the above fundamental physical principles.
These fundamental physical principles constrain the amplitude under consideration such that
ideally the amplitudes can be reconstructed with little further input via Cauchy’s integral
theorem.

Let Ω be a simply connected open subset of the complex plane C and let f : U → C be a
holomorphic function, which is continuous on ∂Ω. Then Cauchy’s integral theorem states that
for y ∈ Ω, ∮

∂Ω

dy f(y) = 0, (1.78)

and Cauchy’s integral formula reads

f(z) =
1

2πi

∮

∂Ω

dy
f(y)

y − z
. (1.79)

In order to illustrate how dispersion relations are constructed we will first discuss the ex-
ample of a physical amplitude F(s) that depends only on a single kinematic variable s and
exhibits only a branch cut on the positive real axis. Such a physical scenario is provided by
form factors like the pion vector form factor. We will then turn on the more general case of
elastic two-particle scattering processes, which we already focused on in Section 1.3.1.

The analytic structure of our form factor example in the complex s-plane is depicted in
Figure 1.7, where the branch cut on the real axis starts at the squared threshold energy sthr.
Thus F(s) can be reconstructed at a point s in the complex plane via Cauchy’s integral theorem
provided that the amplitude is holomorphic in the encircled area Ω,

F(s) =
1

2πi

∫

γ

F(s′)

s′ − s
ds′ , (1.80)

where γ denotes the closed integration contour ∂Ω.
This integration contour can be deformed exploiting Cauchy’s integral theorem again, with

the condition that no non-analytic regions are crossed, which yields the contour depicted in the
right panel of Figure 1.7. Provided that F(s) vanishes sufficiently fast at complex infinity we
can enlarge the contour to complex infinity such that Eq. (1.80) reduces to a contour integral
above minus below the branch cut, i.e. to an integral over the discontinuity,

F(s) =
1

2πi

∫

γ++γ−

F(s′)

s′ − s
ds′ =

1

2πi

∫ ∞

sthr

discF(s′)

s′ − s− iǫ
ds′. (1.81)

For time-invariant processes Schwarz’s reflection principle F(s∗) = F(s)∗ holds, see Eq. (1.61),
which allows us to replace the discontinuity by the imaginary part,

discF(s) = 2i Im F(s). (1.82)

Eq. (1.81) is the desired s-channel dispersion relation representing single-variable functions like
the form factors.

If a sufficient decrease of F(s) for large s, required to ensure the convergence of the dispersion
integral, is not guaranteed, the unsubtracted representation Eq. (1.81) must be modified. For
example for a function that behaves like F(s) ∝ sn−1 for |s| → ∞ with n ∈ N the dispersion
integral must be subtracted n-times, according to the following considerations. We define the
auxiliary function G(s) = F(s)/pn(s) with pn(s) being a polynomial of order n and tune n such
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Im s

Re s
sthr

γ

Im s

Re s
sthr

γ+

γ−

|s| → ∞

Figure 1.7: Integration path. In the left panel the closed circular integration contour γ around

a point s in the complex s-plane according to Eq. (1.80) is depicted. How this contour is

enlarged to an arc with radius |s| → ∞, encircling (thus not crossing) the branch cut (gray

shaded) that starts at the threshold sthr, is illustrated in the right panel. For sufficiently fast

decreasing integrands the integral over the arc vanishes and the integral above minus below the

cut remains, γ+ + γ−.

that G(s) falls off fast enough at complex infinity to obtain a convergent dispersion integral.
Dividing by such a polynomial entails a suppression of the unknown high-energy behavior,
however, n additional poles are introduced to the function G(s). These result in unknown
constants (called subtraction constants) in the dispersion relation for F(s), which have to be
determined by other means (e.g. experimental data or supplemental theory input). We can
choose the polynomial pn(s) to be given by pn(s) = (s−s0)n, where s0 is called the subtraction
point. With the above established procedure and taking into account the additional poles, we
obtain the following dispersion relation for G(s)

G(s) = 1

2πi

∫

γs0

G(s′)
s′ − s

ds′ +
1

π

∫ ∞

sthr

Im G(s′)
s′ − s− iǫ

ds′, (1.83)

where γs0 denotes the closed contour encircling the subtraction point s0. The first integral
evaluates to a rational function of order −1 in s according to the residue theorem and we thus
obtain an n-times subtracted representation of the function F(s),

F(s) = Pn−1(s) +
(s− s0)

n

π

∫ ∞

sthr

Im F(s′)

(s′ − s0)n(s′ − s− iǫ)
ds′, (1.84)

where Pn−1(s) is called the subtraction polynomial of order n − 1, involving n unknown sub-
traction constants that require further constraints from experiment or further theory input.

The single-variable dispersion relation Eq. (1.84), however, is not valid in the more general9

case for scattering amplitudes F(s, t, u) that depend on several variables. Considering the
two-body scattering process Eq. (1.58), the presence of an additional left-hand-cut structure
caused by crossed-channel effects necessitates to consider the integration over these cuts as
well. In order to construct a dispersion relation for processes depending on multiple kinematical

9Remember that throughout this section we specify to the case of scattering of spinless particles.
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variables that exhibit right- and left-hand-cut structures, we apply the so-called reconstruction
theorem [90–95]. The main idea of this procedure is to fix kinematical variables to an arbitrary
constant without loss of generality, allowing us to write down fixed-variable dispersion relations,
which are employed to reconstruct the amplitude in question via symmetrisation. For simplicity,
we consider elastic two-body scattering of identical particles and fix one of the Mandelstam
variables, e.g. t = t0 < 0. The constraint s + t + u = 3s0 allows then to write the fixed-t
amplitude as a function composed of terms depending on one single variable only. With the
analytic structure in the s-plane given by the right-hand cut (s ≥ sthr) and the left-hand cut
due to the u-channel contribution (u ≥ uthr) one obtains the following fixed-t dispersion relation
(or similarly a fixed-u dispersion relation by keeping u at a fixed value),

F(s, t0, u) = Pn−1(s, t0, u) +
sn

π

∫ ∞

sthr

Im F(s′, t0, u(s′))

s′n(s′ − s− iǫ)
ds′ +

un

π

∫ ∞

uthr

Im F(s(u′), t0, u′)

u′n(u′ − u− iǫ)
du′.

(1.85)

If we further decompose this amplitude into partial waves

F(s, t0, u(s)) =
∑

ℓ

fℓ(s)Pℓ(cos θs), F(s(u), t0, u) =
∑

ℓ

fℓ(u)Pℓ(cos θu), (1.86)

where Pℓ(cos θx) denotes the Legendre-Polynomials with the x-channel scattering angle cos θx
and fℓ the partial waves of angular momenta ℓ, we obtain

F(s, t0, u) = Pn−1(s, t0, u) +
sn

π

∫ ∞

sthr

∑

ℓ Pℓ(cos θs′) Im fℓ(s
′)

s′n(s′ − s− iǫ)
ds′

+
un

π

∫ ∞

uthr

∑

l Pℓ(cos θu′) Im fℓ(u
′)

u′n(u′ − u− iǫ)
du′. (1.87)

Note that considering elastic two-particle scattering implies that all crossed-channels yield the
same scattering process and partial-wave decomposition, such that the amplitude is highly
symmetrical in the kinematical variables. Due to Eq. (1.69) we can express the s-channel
scattering in terms of Mandelstam variables, cos θs = (t− u)/(s− sthr) (and likewise for cos θt
and cos θu), which yields

F(s, t0, u) =Pn−1(s, t0, u) +
sn

π

∫ ∞

sthr

Im f0(s
′)

s′n(s′ − s− iǫ)

+ (t0 − u)
sn

π

∫ ∞

sthr

Im f1(s
′)

s′n(s′ − sthr)(s′ − s− iǫ)
+ . . .

+
un

π

∫ ∞

uthr

Im f0(u
′)

u′n(u′ − u− iǫ)

+ (t0 − s)
un

π

∫ ∞

uthr

Im f1(u
′)

u′n(u′ − uthr)(u′ − u− iǫ)
+ . . . , (1.88)

where the dots denote higher partial-wave contributions. Similarly, we obtain fixed-s and fixed-u
dispersion relations. Symmetrization of the three representations yields

F(s, t, u) = F0(s) + F0(t) + F0(u) + (t− u)F1(s) + (t− s)F1(u) + (s− u)F1(t) + . . . , (1.89)

where the single-variable amplitudes Fℓ incorporate the corresponding dispersion integrals of
angular momenta ℓ as well as parts of the polynomials Pn−1(s, t, u), which can be absorbed in
the subtraction polynomials Pn−1

ℓ of order n− 1:

Fℓ(x) = Pn−1
ℓ (x) +

xn

π

∫ ∞

xthr

Im fℓ(x
′)

x′n(x− xthr)(x′ − x− iǫ)
. (1.90)
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Furthermore, one straightforwardly observes that the fixed-variable dispersion relations can be
retained from this representation by fixing the corresponding variable.

1.3.3 Omnès solution

A classical method to solve the unitarity relation in a dispersive framework refers to the
Omnès problem [80]. Mathematically known as homogeneous Hilbert-type problem described
in Ref. [81] its application to hadron physics and explicitly to form factors has been noted
in Ref. [80, 96–99]. For an elastic two-particle scattering scenario it exhibits the feature that
it provides an analytic solution of the unitarity relation Eq. (1.64). The vector form factor
FV
π (s), defined in Eq. (1.74), is an ideal showcase example due to the absence of left-hand cuts

on the one hand, and a (phenomenologically) well justified elastic approximation up to energies√
s ≈ 1 GeV on the other hand. We demonstrate the solution of the Omnès problem in an

elementary matter assuming these two prerequisites, i.e. for a form factor FI
ℓ (s) that obeys

the elastic partial-wave unitarity relation Eq. (1.75). The concrete determination of the pion
vector form factor is sketched in Section 2.4.1. A generalized treatment that takes into account
inelastic channels or crossed-channel effects complicates the problem and is discussed in some
aspects afterwards.

The unitarity condition Eq. (1.75) is solely driven by the elastic scattering phase shift δI,elℓ

(coinciding with the phase δIℓ (s) of the form factor regarding Watson’s final-state theorem).
Hence, all the physics that enters the Omnès problem is incorporated in that phase that will
determine the dispersion integral in the representation of the Omnès function. The Omnès
function is introduced via the ansatz

FI
ℓ (s) = P Iℓ (s)Ω

I
ℓ (s), (1.91)

where P Iℓ (s) is an arbitrary polynomial and ΩIℓ (s), constrained by

ΩIℓ (0) = 1 and ΩIℓ (s) 6= 0 ∀ s, (1.92)

solves the dispersion integral

FI
ℓ (s) =

1

π

∫ ∞

sthr

Im FI
ℓ (s

′)

s′ − s− iǫ
ds′, (1.93)

with Im FI
ℓ (s) given by the unitarity relation Eq. (1.75). It is appropriate to consider the

logarithm of the Omnès function ln ΩIℓ (s), for which the discontinuity takes a simple form,

disc
(
lnΩIℓ (s)

)
= ln

(
ΩIℓ (s+ iǫ)

)
−
(
ΩIℓ (s− iǫ)

)
= 2iδIℓ (s), (1.94)

with ΩIℓ (s± iǫ) = |ΩIℓ (s)| exp(±iδIℓ ). This yields the dispersive representation

lnΩIℓ (s) = Pn−1(s) +
(s− s0)

n

2πi

∫ ∞

sthr

disc (lnΩIℓ (s
′))

(s′ − s0)n(s′ − s− iǫ)
ds′

⇒ ΩIℓ (s) = exp

(

Pn−1(s) +
(s− s0)

n

π

∫ ∞

sthr

δIℓ (s
′)

(s′ − s0)n(s′ − s− iǫ)
ds′
)

⇒ ΩIℓ (s) = exp

(
s

π

∫ ∞

sthr

δ(s′)

s′(s′ − s− iǫ)
ds′
)

, (1.95)

where in the last step one subtraction enforces the demanded normalization, as well as ensures
a converging dispersion integral (assuming that the phase is bounded).
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We need to pay special attention to the high-energy region: demanding the asymptotic
behavior of the form factor and correspondingly of the Omnès function to be at least ∝ 1/s (as
known from perturbative QCD [100]) yields a constraint for the asymptotic value of the input
phase. In the typical scope of application for the Omnès formalism like processes that involve
pions or kaons, the scattering phase shifts are known very precisely at low energies, e.g. from
Roy and Roy–Steiner analyses [33–39], but not for large s, where we can however employ the
relation between the phase and the fall-off of the Omnès function,

δIℓ (s)
s→∞−→ nπ ⇐⇒ ΩIℓ (s)

s→∞−→ s−n, n ≥ 1. (1.96)

Above a certain cutoff energy we therefore guide the phases smoothly to a multiple of π to
ensure the required high-energy behavior.

Beyond the elastic case the coupling between various channels that we will discuss in the
next section affects the above relation: the asymptotic behavior of the Omnès solution depends
on the sum of eigen phase shifts

∑
δIℓ (s) [101],

∑

δIℓ (s)
s→∞−→ mπ ΩIℓ (s)

s→∞−→ 1

s
. (1.97)

We briefly want to discuss how scattering and decay processes, which exhibit left-hand cut
structures, can be treated in the Omnès representation framework. In the previous section we
have constructed dispersion relations for these processes employing the so-called reconstruction
theorem. However, it has been shown that simple dispersion relations for the single-variable
amplitudes are not necessarily unique [102]. This drawback can be cured by extending the
above Omnès solution to the Khuri–Treiman framework [103]. The starting point is once again
the unitarity relation and the decomposition of the amplitude in question into single-variable
amplitudes Eq. (1.89). For simplicity we resort to the case of elastic scattering of a specific
isospin, such that the unitarity relation is given by Eq. (1.64). Projecting the unitarity rela-
tion on the corresponding angular moments provides unitarity relations for the single-variable
amplitudes analogously to Eq. (1.75),

discFℓ(s) = 2i
(

Fℓ(s) + F̂ℓ(s)
)

e−iδ
el
ℓ (s) sin δelℓ (s)Θ(s− sthr), (1.98)

where F̂ℓ(s) denotes the projection of the full amplitude on the ℓth angular moment neglecting
the corresponding single-variable amplitude Fℓ(s),

F̂ℓ(s) =
2ℓ+ 1

2

∫ 1

−1

d cos θs F (s, t(s, cos θs), u(s, cos θs))Pℓ(cos θs)−Fℓ(s). (1.99)

Thus the crossed channels and therefore the left-hand cuts contribute through the function
F̂ℓ to the single-variable amplitude of angular moment ℓ, Fℓ. In the case of decays it gives
rise to crossed-channel rescattering contributions and three-particle rescattering. The unitarity
relation (1.98) is an inhomogeneous Hilbert problem, which reduces to the homogeneous Hilbert
problem Eq. (1.75) in the special case of F̂ = 0. The latter problem is solved by the Omnès
solution. It is therefore natural to solve the unitarity relation for the single-variable amplitudes
by the following product ansatz,

Fℓ(s) = Ωℓ(s)φ(s), (1.100)

where Ωℓ(s) is the Omnès solution and φ(s) is to be determined. The product ansatz results in
the following dispersion relation, which is known as Khuri–Treiman dispersion relation,

Fℓ(s) = Ωℓ(s)

{

Pn−1(s) +
sn

π

∫ ∞

sthr

dx
sin δelℓ (x)F̂ℓ(x)
|Ωℓ(x)|xn(s− x)

}

, (1.101)

where Pn−1 again denotes the subtraction polynomial of order n− 1.
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1.3.4 Coupled-channel Omnès formalism

A strong coupling between various hadronic systems necessitates a combined treatment of these
channels in the determination of quantities like e.g. form factors. Such a dependency of two
systems occurs for instance in the scalar isoscalar sector between the S-wave pions and kaons,
and in the scalar isovector channel between the S-wave π0η and the two-kaon systems. Con-
sequently the derivation of these scalar form factors requires a coupled-channel approach, and
it is thus mandatory to generalize the single-channel Omnès problem presented in the previ-
ous section to the two-channel Muskhelishvili–Omnès problem. We demonstrate this on the
example of the pion and kaon scalar form factors. These form factors are defined by the matrix
elements

〈
0 |(q̄q)I=0|M+

1 M
−
2

〉
= Bq0Γq,I=0

M1M2
(s), (1.102)

with the isoscalar scalar currents (q̄q)I=0 = (ūu+d̄d)/2 for the light non-strange quarks (q = n),
or (q̄q)I=0 = s̄s for the strange quarks (q = s). Furthermore,

Bn0 =
M2
π

mu +md
, Bs0 =

2M2
K −M2

π

2ms
. (1.103)

More details concerning these definitions can be found in Section 2.4.2. Parts of this section
are taken from Ref. [104], where further details are provided.

The two-channel unitarity relation reads

discΓ(s) = 2iT 0∗
0 (s)Σ(s)Γ(s), (1.104)

where the components of the two-dimensional vector Γ(s) are the pion and kaon scalar isoscalar
form factors, and T 0

0 (s) and Σ(s) are two-dimensional matrices,

T 0
0 (s) =







η00(s)e
2iδ00(s) − 1

2iσπ(s)
|g00(s)|eiψ

0
0(s)

|g00(s)|eiψ
0
0(s)

η00(s)e
2i(ψ0

0(s)−δ00(s)) − 1

2iσK(s)






, (1.105)

and Σ(s) = diag
(
σπ(s)Θ(s− 4M2

π), σK(s)Θ(s− 4M2
K)
)
, with σi(s) =

(
1− 4M2

i /s
)1/2

and Θ(.)
denoting the Heaviside function. Three functions serve as input for the T -matrix, the ππ S-wave
isoscalar phase shift δ00(s) and the ππ → KK̄ S-wave amplitude g00(s) = |g00(s)|exp(iψ0

0(s)) with
modulus and phase. The modulus |g00(s)| is related to the inelasticity parameter η00(s) by

η00(s) =
√

1− 4σπ(s)σK(s)|g00(s)|2Θ(s− 4M2
K). (1.106)

In the limit of a single channel η00 → 1 the
(
T 0
0

)

11
matrix element reduces to the elastic

scattering case Eq. (1.73). Writing down the two-dimensional dispersion integral over the
discontinuity (1.104) leads to a system of coupled Muskhelishvili–Omnès equations,

Γ(s) =
1

π

∫ ∞

4M2
π

T 0∗
0 (s′)Σ(s′)Γ(s′)

s′ − s− iǫ
ds′. (1.107)

A solution can be constructed introducing a two-dimensional Omnès matrix, which is connected
to the form factors by means of a multiplication with a vector containing the normalizations
Γq,I=0
ππ (0) and Γq,I=0

KK (0) [105],
(

Γq,I=0
ππ (s)

2√
3
Γq,I=0
KK (s)

)

=

(
Ω11(s) Ω12(s)

Ω21(s) Ω22(s)

)(

Γq,I=0
ππ (0)

2√
3
Γq,I=0
KK (0)

)

, (1.108)
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Figure 1.8: Modulus of the scalar pion (top) and kaon (bottom) non-strange (left panels) and

strange (right panels) form factors Γq,I=0
ππ,KK(s), q = n, s, depicted for three different normaliza-

tions inside the allowed range, illustrated by the uncertainty band.

where Γq,I=0
ππ,KK(s) represents both strange (q = s) and non-strange (q = n) form factors, which

differ merely in their respective normalizations. Thus the problem reduces to finding a matrix
Ω(s) that fulfills

Im Ω(s) = T 0∗
0 (s)Σ(s)Ω(s), Ω(s) =

1

π

∫ ∞

4M2
π

T 0∗
0 (s′)Σ(s′)Ω(s′)

s′ − s− iǫ
ds′, Ω(0) = 1. (1.109)

While the single-channel Omnès problem can be solved analytically this is not the case in the
coupled-channel approach, where one has to resort to numerical methods [101, 104–107]. An
adequate asymptotic behavior of the two-channel Omnès solution is ensured by guiding the
sum of the eigen phase shifts to 2π, cf. Eq. (1.97). Figure 1.8 shows the results obtained for
the moduli of the pion and kaon form factors (see also Ref. [112]). The sensitivity due to the
uncertainty in the kaon form factor normalization is illustrated by the uncertainty bands. The
strange form factor exhibits a peak around 1GeV, which is produced by the f0(980) resonance.
On the contrary in the pion non-strange form factor the σ meson appears as a broad bump
(notice the non-Breit–Wigner shape) around 500MeV.

According to the Feynman–Hellmann theorem [108,109], the form factors for zero momen-
tum are related to the corresponding Goldstone boson masses, which at next-to-leading order in
the chiral expansion in terms of quark masses depend on certain low-energy constants. These
are determined in lattice simulations with Nf = 2 + 1 dynamical flavors at a running scale
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µ = 770 MeV [110], limiting the form factor normalizations to the ranges10

Γn,I=0
ππ (0) = 0.984± 0.006, Γs,I=0

ππ (0) = (−0.001 . . .0.006) ≈ 0,

Γn,I=0
KK (0) = (0.4 . . . 0.6), Γs,I=0

KK (0) = (0.95 . . .1.15). (1.110)

10Similar ranges, with slightly increased values in the case of the kaon form factor normalizations, are found

in simulations with Nf = 2 + 1 + 1 dynamical flavors [111], cf. Eq. (2.50).



Chapter 2

Final-state interactions in

B̄0
d/s

→ J/ψ{ππ, πη, K̄K}1

2.1 Introduction

B-meson decays can be exploited for Standard Model tests and beyond, in particular to de-
termine the Cabibbo–Kobayashi–Maskawa (CKM) couplings and to study CP violation. For
a theoretical description of many of these decays, it is mandatory to understand the strong
final-state interactions in terms of amplitude analysis techniques [115], with tight control over
the magnitudes and phase motions of the various partial waves involved. For example, the
decays B → f0(980)KS and B → φ(1020)KS are explored for an experimental determination
of the CP asymmetry sin 2β [116–119], β being one of the angles of the unitarity triangle. An
analysis of decays into scalar final states such that the former of those decay channels requires
precise knowledge of the strange and non-strange scalar form factors that we discuss in this
chapter.

We focus on the decays B̄0
d,s → J/ψM1M2, with M1M2 being a pair of light pseudoscalar

hadrons, π+π−, π0η, K+K− or K̄0K0. The tree-level process of the weak decay into J/ψ and a
qq̄ pair is depicted in Figure 2.1 (exemplarily for the B̄0

s decay). The interactions of the lightest
hadrons, the pions, with themselves as well as with kaons, the next-lightest strongly-interacting
particles within the pseudoscalar ground-state octet, are known to excellent precision. The
combination of dispersion relations in the form of Roy or Roy–Steiner equations, constrained
by chiral perturbation theory at lowest energies and using experimental data as input, has
increased our knowledge of the leading partial waves of pion–pion [33–36] and pion–kaon [37–39]
scattering enormously. This has a large impact on a wide range of scattering or decay processes
in which pions and kaons are produced: dispersion relations allow to relate the final-state
interactions to the scattering phase shifts in a model-independent way [113, 120–131]. The
hadronizations into pions and kaons and the rescattering in the ππ and KK̄ systems for S- and
P -waves can be described by the pion and kaon scalar and vector form factors, a consequence
of the universality of the final-state interactions.

Contrary to the vector form factor, where a single-channel (elastic) treatment as it is ex-
plained in Section 1.3.3 works well below 1GeV, the elastic approximation breaks down in the
scalar sector: both reactions—ππ and πK scattering—are closely intertwined in the isospin-0

1published in Refs. [113, 114]
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B̄0
s

π+π−

J/ψ

b

s̄

s̄

sW−

c̄

c

Γs,I=0
ππ

Figure 2.1: The B̄0
s → J/ψπ+π− diagram to leading order viaW− exchange. The hadronization

into pions (S-wave dominated) proceeds through the pion strange scalar form factor Γs,I=0
π (s).

In the case of the B̄0
d → J/ψπ+π− decay, with s ↔ d, the pions are generated out of a

non-strange scalar source, i.e. Γs,I=0
π (s) is replaced by the pion non-strange scalar form factor

Γn,I=0
π (s) for S-wave and by the vector form factor for P -wave pions. For the (S-wave dom-

inated) B̄0
d → J/ψπ0η final state the isoscalar scalar form factor is replaced by the isovector

scalar form factor Γn,I=1
πη . Considering KK̄ final states, the kaons emerge from both isoscalar

and isovector form factors, Γn,I=0
KK̄

and Γn,I=1
KK̄

, in the B̄0
d decay, while it is purely isoscalar,

Γs,I=0

KK̄
, in the B̄0

s decay.

S-wave system. There the reaction ππ → K̄K, the crossed process of πK scattering, domi-
nates the inelasticity in pion–pion scattering near the K̄K threshold, the region of the f0(980)
resonance; for these (scalar) quantum numbers, therefore a coupled-channel treatment is manda-
tory [101,105]. A two-channel approach breaks down at energies where inelasticities caused by
4π states become important, we are thus not able to cover the complete phase space, but restrict
ourselves to the low-energy range

√
s ≤ 1.05GeV. Information on the scattering of pions off the

η, which would complete our understanding of pion reactions off the pseudoscalar ground-state
octet, is much scarcer. Two important resonances are known in the I(JP ) = 1(0+) sector,
namely the a0(980) and a0(1450) [44]. Several models for the πη S-wave scattering amplitude
have been proposed in the literature [132–136], some of them constrained by the results from
chiral perturbation theory at threshold [137]. Very recently, first information about this ampli-
tude has also come from lattice QCD simulations [138,139]. There is one remarkable similarity
of πη S-wave scattering to the ππ I = 0 S-wave: for πη, the first important inelastic channel
is given by K̄K, whose threshold also there coincides with the presence of a scalar resonance,
the isospin-1 a0(980) resonance. Therefore in this case, a coupled-channel treatment of πη and
K̄K (in I = 1) is required as well in order to describe the energy region around 1GeV. A
corresponding unitary T -matrix has recently been constructed in Ref. [140], to which chiral
constraints [60] have been imposed as well as experimental information available on the a0(980)
and a0(1450) resonances. However, the result still has considerable uncertainties due to the
limited accuracy of the experimental input.

To demonstrate that the description in terms of form factors, constructed in Muskhelishvili–
Omnès representations, works very well, we consider the decays B̄0

d → J/ψπ+π− and B̄0
s →

J/ψπ+π−, measured by the LHCb collaboration [141,142]. These analyses complement former
related studies of B̄0

d and B̄0
s decays by the BaBar [143], Belle [144], CDF [145], and D0 [146]

Collaborations as well as older LHCb results [147, 148]. In the LHCb analyses no obvious
structures in the J/ψπ+ invariant mass distribution are found, suggesting that left-hand-cut
contributions in the π+π− system due to the crossed-channel J/ψπ+ interaction are small and
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can be neglected.

In Ref. [141] the B̄0
d decay is described by six resonances in the π+π− channel, f0(500),

ρ(770), ω(782), ρ(1450), ρ(1700), and f2(1270), which are modeled by Breit–Wigner functions.
This parametrization of especially the f0(500) meson is somewhat precarious, as the broad
bump structure of this scalar resonance is not well described by a Breit–Wigner shape. As
demonstrated for the first time in the context of B decays in Ref. [149], it should be replaced by
the corresponding scalar form factor. In the present work this idea is extended and rigorously
applied using form factors derived from dispersion theory. The advantage of the dispersive
framework is that all constraints imposed by analyticity (i.e., causality) and unitarity (proba-
bility conservation) are fulfilled by construction. Further, it is a model-independent approach,
so we do not have to specify any contributing resonances or conceivable non-resonant back-
grounds. In particular, there is no need to parametrize any resonance, since the input required
to describe the final-state interactions is taken from known phase shifts, and therefore the
f0(500) appears naturally in the non-strange scalar form factor. The B̄0

s decay, described in the
experimental analysis by five resonances, f0(980), f0(1500), f0(1790), f2(1270), and f ′

2(1525)
(Solution I) or with an additional non-resonant contribution (Solution II), dominantly occurs
in an S-wave state [142], while the P -wave is shown to be negligible. Given the almost pure s̄s
source the pions are generated from, this decay shows great promise to provide insight into the
strange scalar form factor.

The idea of such a “scalar-source model”, where an S-wave pion pair is generated out of a
quark–antiquark pair and the final-state interactions are described by the scalar form factor, is
also used in Ref. [150] for the description of the B̄0

s and B̄0
d decays into the scalar resonances

f0(980) and f0(500), respectively. It was employed earlier e.g. in analyses of the decay of the
J/ψ into a vector meson (ω or φ) and a pair of pseudoscalars (ππ or KK̄) [151, 152]. In
these references the strong-interaction part is described by a chiral unitary theory including
coupled channels, which yields a dynamical generation of the scalar mesons. In contrast to
the present study, the very precise information available on pion–pion [35, 36, 153, 154] and
pion–kaon [37–39] phase shifts is not strictly implemented there. Related studies using the
chiral unitary approach are performed in Ref. [155], where the J/ψ–vector-meson final state is
analyzed, and in Ref. [156], which includes resonances beyond 1GeV. In contrast to models of
dynamical resonance generation, the scalar resonances are considered as qq̄ or tetraquark states
in Ref. [157]. Other theoretical approaches employ light-cone QCD sum rules to describe the
form factors [158]. Progress on the short-distance level is made in Ref. [159], where factorization
formulae are improved in a perturbative QCD framework.

While our main interest in studying the B̄0
d,s → J/ψπ+π− is to show whether the dispersive

formalism works and to adjust the amplitude normalizations using available data, we can give
predictions also for the other final state, namely for the B̄0

s → J/ψK+K− S-wave as well as the
S-wave dominated decays B̄0

d → J/ψ{K+K−, K̄0K0} and B̄0
d → J/ψπ0η . Because the strange

source s̄s has an isoscalar component only, the B̄0
s → J/ψK+K− S-wave, where the kaon pair

emerges from a strange source s̄s, can be predicted straightforwardly based on the ππ–K̄K
coupled-channel relations solely. Considering the non-strange mode B̄0

d → J/ψK̄K the source
term is given dominantly in terms of d̄d quark bilinears; it produces isoscalar and isovector
meson pairs with known relative sign and strengths. With the strength of the dimeson source
fixed from experimental data on B̄0

d → J/ψπ+π−, and given the analogous isovector scalar form
factors for πη and K̄K [140], we can thus give an absolute prediction for the B̄0

d → J/ψπ0η
channel. The combination of isoscalar and isovector scalar form factors for the kaons then
allows one to fully analyse the physical K+K− and K0K̄0 final states.

The outline of this chapter is as follows. In Section 2.2, we review the construction of the
transversity amplitudes and partial waves, after sketching elementary kinematics, exemplified on
the B̄0

d → J/ψπ0η channel. We provide explicit expressions that relate the theoretical quantities
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B̄0
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π0η
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φ

θη θJ/ψ
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Figure 2.2: Definition of the kinematical variables for B̄0
d → J/ψπ0η.

to the angular moments determined in experiment. We introduce the required dimeson scalar
and vector form factors in Section 2.4, and construct the amplitudes for the respective decay
modes in terms of these form factors. The fits to the LHCb data, using the B̄0

d,s → J/ψπ+π−

angular moment distributions, are discussed in Section 2.5, where we use several configurations
with and without D-wave corrections to study the impact of certain corrections to our fits.
Results for B̄0

d → J/ψπ0η predictions are presented in Section 2.6. Section 2.7 provides further
arguments for our treatment of the S-wave in terms of scalar form factors and the suppression of
higher partial waves in the B̄0

d → J/ψπ0η decay. Potential contributions due to t- and u-channel
exchange of the ψ(2S) and B∗ mesons are studied, the latter also for the B̄0

d,s → J/ψπ+π−

decay. The predictions for the K̄K final states are treated in Section 2.8. We conclude in
Section 2.9.

2.2 Kinematics, decay rate, and angular moments

In this section we introduce the elementary decay kinematics and derive the decay rates in terms
of partial-wave amplitudes up to D-waves, employing the transversity formalism of Ref. [160].
This is exemplified on the B̄0

d → J/ψπ0η decay mode, where final-state hadrons of unequal
masses are involved, exhibiting the most general structure of the decays under investigation.
We therefore do not spell out the formulae for the ππ and K̄K final states explicitly—they can
be obtained from the following in a straightforward manner.

The kinematics of the decay B̄0
d(pB) → J/ψ(pψ)π

0(p1)η(p2) (J/ψ → µ+µ−) can be de-
scribed by four variables: the invariant dimeson mass squared, s = (p1 + p2)

2, and three
helicity angles, see Figure 2.2, namely

• the angle θJ/ψ between the µ+ in the J/ψ rest frame (ΣJ/ψ) and the J/ψ in the B̄0
d rest

frame (ΣB);

• the angle θη between the η in the π0η center-of-mass frame Σπη and the π0η line-of-flight
in ΣB ;

• the angle φ between the π0η and the dimuon planes, where the latter originate from the
decay of the J/ψ.

The three-momenta of the pion or the η in the π0η center-of-mass system (pπη) and that of the
J/ψ in the B̄0

d rest frame (pψ) are given by

|pπη| =
λ1/2(s,M2

π ,M
2
η )

2
√
s

≡ Y
√
s

2
, |pψ | =

λ1/2(s,m2
ψ,m

2
B)

2mB
≡ X

mB
, (2.1)
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with the Källén function λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc). The function Y reduces to
σP = (1− 4M2

P /s)
1/2 in the case of equal-mass final-states. We define two further Mandelstam

variables as

t = (pB − p1)
2 and u = (pB − p2)

2, (2.2)

where the difference of these two determines the scattering angle θη,

t− u = −2Y X cos θη +
∆m

s
, ∆m = (m2

B −m2
ψ)(M

2
η −M2

π). (2.3)

We decompose the matrix element for the decay in the following way:

Mfi =
GF√
2
VcbV

∗
cdMeff ,

Meff = fψmψǫ
∗µ(PµA1 +QµA2 + (pψ)µA3 + iǫµνρσp

ν
ψP

ρQσV
)

= fψmψǫ
∗
µ(pψ, λ)

(

pµψ
mψ

Ft +
mψP

µ
(0)

X
F0 +

Qµ(‖)√
s
F‖ −

ip̄µ(⊥)√
s

F⊥

)

=: fψmψǫ
∗µMπη

µ , (2.4)

where fψ ≈ 405MeV is the J/ψ decay constant, GF = 1.166365 × 10−5GeV−2 is the Fermi
constant, Vcb and Vcd are the CKM matrix elements for c → b and c → d, and ǫ∗µ(pψ, λ) is the
corresponding polarization vector of helicity λ. The matrix element containing the πη system
is given on the one hand in the standard basis of momentum vectors (pµψ, P

µ = pµ1 + pµ2 ,

Qµ = pµ1 − pµ2 ) associated with three axial form factors Ai and one vector form factor V ; on the
other hand it is represented by the transversity form factors Ft, F0, F‖, and F⊥, reflecting the
polarization states of the J/ψ. The unphysical time component Ft does actually not contribute.
In the ongoing study we will use the set of transversity form factors Fτ . They correspond to
the orthogonal basis of momentum vectors [160]

Pµ(0) = Pµ − P · pψ
p2ψ

pµψ, p̄µ(⊥) =
ǫµαβγ

X
(pψ)αPβQγ ,

Qµ(‖) = Qµ +
p2ψ(P ·Q)− (P · pψ)(Q · pψ)

X2
Pµ +

P 2(Q · pψ)− (P · pψ)(P ·Q)

X2
pµψ, (2.5)

thus generalizing the formulae discussed previously [160] to unequal masses. Again, the relations
for the ππ and K̄K final states simplify accordingly. We employ ǫµαβγ with the convention
ǫ0123 = −ǫ0123 = +1. The associated orthonormal basis of polarization vectors of the J/ψ
meson reads [160]

ǫµ(t) =
pµψ
Mψ

, ǫµ(0) = −Mψ

X
Pµ(0), ǫµ(±) = − 1√

2s Y sin θη

(

Qµ(‖) ∓ ip̄µ(⊥)

)

e∓iφ. (2.6)

The transversity (or helicity) form factors are then defined via the contractions of the hadronic
matrix element Mπη

µ with the respective polarization vectors,

Hλ = Mπη
µ ǫµ†(λ). (2.7)

Both transversity and helicity form factors are related via

Ht = Ft, H0 = F0, H± = (F‖ ±F⊥)
Y√
2
sin θηe

±iφ. (2.8)
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Although dealing with three sets of form factors may cause confusion, it still helps to establish
understanding of the remaining section. In particular the partial-wave expansions are well-
known for helicity amplitudes,

Hλ(s) =
∑

ℓ

√
2ℓ+ 1H(ℓ)

λ (s)dℓλ0(θη)e
λiφ, (2.9)

where the dℓλλ′ are the small Wigner-d functions. Using

dℓ00(θη) = Pℓ(cos θη), dℓ10(θη) = −dℓ−10(θη) = − sin θη
√

ℓ(ℓ+ 1)
P ′
ℓ(cos θη), (2.10)

we see that the zero-component H0(s) is expanded in terms of Legendre polynomials Pℓ(cos θη)
and thus contains all S-, P -, and D-wave contributions, while the H±(s) partial-wave expan-
sions, proceeding in derivatives of the Legendre polynomials P ′

ℓ(cos θη), start with the P -wave
amplitudes, i.e.

H0(s) = H(S)
0 (s) +

√
3 cos θηH(P )

0 (s) +

√
5

2

(
3 cos2 θη − 1

)
H(D)

0 (s) + . . . ,

H±(s) = ∓
√

3

2
sin θη

(

H(P )
± (s) +

√
5 cos θηH(D)

± (s)
)

e±iφ + . . . , (2.11)

where the ellipses denote F -waves and larger.2 Equivalently, due to Eq. (2.8) and using

H(ℓ)
± (s) = ∓ Y√

2

(
F (ℓ)

‖ (s) ± F (ℓ)
⊥ (s)

)
, we arrive at the partial-wave expansion of the transver-

sity form factors,

F0(s, θη) =
∑

ℓ

√
2ℓ+ 1F (ℓ)

0 (s)Pℓ(cos θη)

= F (S)
0 (s) +

√
3 cos θηF (P )

0 (s) +

√
5

2

(
3 cos2 θη − 1

)
F (D)

0 (s) + . . . ,

F‖,⊥(s, θη) =
∑

ℓ

√
2ℓ+ 1

√

ℓ(ℓ+ 1)
F (ℓ)

‖,⊥(s)P
′
ℓ(cos θη) =

√

3

2

(

F (P )
‖,⊥(s) +

√
5 cos θηF (D)

‖,⊥ (s)
)

+ . . . .

(2.12)

The partial waves defined in this way still contain kinematical zeros that have to be removed
for a dispersive treatment, such that the transversity partial waves are represented by functions
whose only non-analytic behavior is related to unitarity. We relate the transversity amplitudes
to the standard set {Ai, V},

F⊥ = −√
sXV , F‖ =

√
sA2, F0 =

X

Mψ
A1 +

(

Y cos θη(P · pψ)
Mψ

+
X

Mψ

M2
π −M2

η

s

)

A2,

Ft =
P · pψ
Mψ

A1 +
1

Mψ

(

XY cos θη +
(P · pψ)(M2

π −M2
η )

s

)

A2 +MψA3, (2.13)

in order to make the reader aware of the kinematical factors
√
s, X and Y introduced into

the transversity form factors. These factors give rise to artificial branch cuts in the unphysical

2Though we expect the D- and higher waves to be small and therefore describe only S- and P -waves in the

Omnès formalism, we present the formulae including the D-wave contribution, as we will study their impact at

a later stage.
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region. Given that the form factors Ai and V are regular, we can read off from Eq. (2.13) how

to construct partial waves f
(ℓ)
τ that are free of such kinematical singularities,

CF (S)
0 (s) = Xf

(S)
0 (s), CF (P )

0 (s) = Y f
(P )
0 (s),

CF (P )
‖ (s) =

√
sf

(P )
‖ (s), CF (P )

⊥ (s) =
√
sXf

(P )
⊥ (s), (2.14)

where C is defined in Eq. (2.21). The partial waves f
(ℓ)
τ are treated in the Omnès formalism as

presented in Sections 1.3.3 and 2.4.
The structure of the matrix element in Eq. (2.4), its decomposition in terms of transver-

sity form factors, as well as the partial-wave expansion of the latter is independent of any
factorization assumption, and entirely general. Factorization of the form

Meff = aeff(µ)Mπη
µ Mcc̄ µ + . . . , Mπη

µ = 〈π0(p1)η(p2)|d̄γµ(1− γ5)b|B̄0
d(pB)〉,

Mcc̄ µ = 〈J/ψ(pψ, ǫ)|c̄γµc|0〉, (2.15)

which leads to the same decomposition as in Eq. (2.4), is only required if we want to identify
the transversity form factors explicitly with those that, after an isospin rotation, describe the
semileptonic decays B̄0

d → π+ηℓ−ν̄ℓ; no such attempt is made in the following study. The
effective coupling aeff(µ) is related to Wilson coefficients of the effective weak Hamiltonian that
governs the b→ cc̄d transition [161]; in terms of the usual set of 14 operators it reads

Heff =
GF√
2

∑

p=u,c

λp

(

C1Q
p
1 + C2Q

p
2 +

∑

i=3,...,10

CiQi + C7γQ7γ + C8gQ8g

)

+ h.c., (2.16)

using the same notation as in Ref. [162] except for the obvious replacement of s by d in the
case of the B̄0

d decay, in particular the λp are products of the CKM matrix elements for c → b
and c→ d,

λc = VcbV
∗
cd, λu = VubV

∗
ud, (2.17)

and the local current–current operators Qpi read

Qc1 = 4 c̄Lγ
µbL d̄LγµcL = 4 c̄iLγ

µcjL d̄
j
Lγµb

i
L, Qu1 = 4 ūLγ

µbL d̄LγµuL,

Qc2 = 4 c̄iLγ
µbjL d̄

j
Lγµc

i
L = 4 c̄Lγ

µcL d̄LγµbL, Qu2 = 4 ūiLγ
µbjL d̄

j
Lγµu

i
L, (2.18)

where qL,R = 1
2 (1 ∓ γ5)q and i, j are color indices. In the second step the quark operators are

regrouped by means of a Fierz rearrangement. For the processes under consideration it is clear,
at first, that the electromagnetic penguin operators Q7−10 as well as Q7γ can be neglected
compared to Qc1, Q

c
2. We make the further assumption that the two operators Qu1 , Q

u
2 can also

be neglected, such that the set of 14 operators is reduced to seven operators. The latter neglect
is justified by the Okubo–Zweig–Iizuka (OZI) rule: in order to produce a J/ψ in the final state
from the operators Qu1 , Q

u
2 one must proceed via quark-disconnected diagrams involving three

gluons. The OZI rule is known to be quite effective for heavy-quarkonium production or decays.
The effective coupling aeff(µ) in Eq. (2.15) is thus given by aeff(µ) = C2(µ) + C1(µ)/Nc, with
the ellipses in Eq. (2.15) denoting higher-order corrections to factorization that compensate for
the scale dependence of aeff(µ) [163] .

In order to calculate the differential decay rate for the B̄0
d → J/ψπ0η decay we sum over

the squared helicity amplitudes,

∣
∣M
∣
∣
2
=
G2
F

2
|Vcb|2|Vcq|2f2

ψM
2
ψ

(
|H0|2 + |H+|2 + |H−|2

)
(q = {d, s}), (2.19)
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and integrate over the invariant three-particle phase space, which is given by

dΦ(3) =
XY

4(4π)2m2
B

ds d cos θη dφ. (2.20)

Neglecting waves higher than D-waves and integrating over φ we arrive at

d2Γ

d
√
s d cos θη

=
G2
F |Vcb|2|Vcd|2f2

ψm
2
ψXY

√
s

4(4π)3m3
B

{

|F0(s, θη)|2 + Y 2 sin2 θη
(
|F‖(s, θη)|2 + |F⊥(s, θη)|2

)}

≈ XY
√
s

4mB
|C|2

{∣
∣
∣F (S)

0 (s) +
√
3 cos θηF (P )

0 (s) +

√
5

2

(
3 cos2 θη − 1

)
F (D)

0 (s)
∣
∣
∣

2

+
3

2
Y 2 sin2 θη

(∣
∣
∣F (P )

‖ +
√
5 cos θηF (D)

‖ (s)
∣
∣
∣

2

+
∣
∣
∣F (P )

⊥ +
√
5 cos θηF (D)

⊥ (s)
∣
∣
∣

2
)}

,

C =
GFVcbV

∗
cdfψmψ

√

(4π)3mB

, (2.21)

where in the second step partial waves up to and including D-waves are considered.
By weighting this decay rate by spherical harmonic functions Y 0

ℓ (cos θη), we define the
angular moments

〈Y 0
ℓ 〉(s) =

∫ 1

−1

d2Γ

d
√
s d cos θη

Y 0
ℓ (cos θη)d cos θη, (2.22)

commonly used by the LHCb collaboration, as well as later in this text. With the orthogonality
property

∫ 1

−1

Y 0
i (cos θη)Y

0
j (cos θη)d cos θη =

δij
2π
, (2.23)

we obtain

√
4π〈Y 0

0 〉 =
XY

√
s

2mB

∣
∣ C
∣
∣
2
{∣
∣
∣F (S)
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(2.24)

where 〈Y 0
0 〉 corresponds to the differential decay rate dΓ/d

√
s, 〈Y 0

1 〉 describes the interference
between S- and P -wave as well as P - and D-wave amplitudes, and 〈Y 0

2 〉 contains P -wave,
D-wave, and S–D-wave interference contributions.
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When comparing the angular moments to the experimental data—available for the π+π−

and K+K− final states—we have to deal with flavor-averaged expressions due to the B0–B̄0

mixing and take into account the CP -conjugated amplitudes (the B0
d decay mode) as well. For

the B̄0
d → J/ψπ+π− decay mode the interfering term between the amplitudes is found to be

negligibly small [141], hence the decay rate can be written as the sum of the decay rates for the
direct B̄0

d and the mixed CP -conjugated B0
d mode,

d2Γ
(
B̄0
d → J/ψπ+π−)

d
√
s d cos θπ

≈ d2Γ (direct)

d
√
s d cos θπ

+
d2Γ

(
B0
d → J/ψπ+π−)

d
√
sd cos θπ

. (2.25)

This neglect is less justified when applying the formulae to the B̄0
s → J/ψπ+π− decay rate. In

the analysis of Ref. [142] an interference term is added to Eq. (2.25). However, in Section 2.5.2
we find that it is sufficient to take into account S-waves. In that case the interference term
does not affect the fit procedure and merely generates a tiny shift of the resulting fit parameter
(the normalization cs0). The same argument applies to the π0η final state: we prove the S-wave
dominance compared to P -waves in Section 2.7: as we discuss in Section 2.7.1, the production
vertex for a πη P -wave is chirally suppressed; it is generically smaller relative to the S-wave
by a factor of YM2

K/(4πFπ)
2, which around 1GeV amounts to one order of magnitude. In

Sections 2.7.2 and 2.7.3, we calculate the P -wave contributions generated by t- and u-channel
resonance exchanges, and find them to be even more suppressed than this generic estimate.
Furthermore, the πη P -wave has exotic quantum numbers; final-state-interaction effects should
thus be small below 1GeV. We therefore find it safe to assume it to be negligible in the energy
range considered in this study, and well within the uncertainty of the S-wave contribution. We
will briefly discuss the impact of D-waves in Section 2.7, mainly to demonstrate that they also
only become important for dimeson energies well above 1GeV.

The expressions we have provided in this section refer to one particular mode. The corre-
sponding expressions for the CP -conjugated modes are related straightforwardly to the above
equations by certain sign changes due to the CP eigenvalues ηCP = ±1 in the definitions of

the transversity partial-wave amplitudes. We declare the amplitudes F (ℓ)
τ to describe the B0

d

decay, then the corresponding B̄0
d decay amplitudes are given by

F̄ (ℓ)
τ = ηCPF (ℓ)

τ , (2.26)

with ηCP = +1 for the τ = 0, ‖ P -waves and the τ =⊥ D-wave, and ηCP = −1 otherwise.
Consequently the angular moments 〈Y 0

0 〉 and 〈Y 0
2 〉 are unchanged under CP conjugation, while

the conjugated moment 〈Y 0
1 〉 has opposite sign, such that when considering flavor-averaged

quantities and summing over the B0
d and B̄0

d contributions, 〈Y 0
1 〉 vanishes. In the following we

thus consider 〈Y 0
0 〉 and 〈Y 0

2 〉 only.

2.3 Chiral-symmetry based relations

In this section we demonstrate how the B̄0
d → J/ψπ0η S-wave can be predicted by means of

a flavor relation to the B̄0
d → J/ψπ+π− S-wave. To begin with we briefly discuss how this

relation can be derived based on chiral symmetry. For this purpose we consider the effective
weak Hamiltonian, Eq. (2.16). In Section 2.2 we explained that seven of the usual 14 oper-
ators can be neglected. The remaining seven operators all transform simply as d̄L under the
SU(3)L × SU(3)R chiral group. We can then construct a chiral Lagrangian that encodes this
transformation property and describes the dynamics in the region where the light pseudoscalar
meson pair has a very small energy; this is detailed in the subsequent subsection. At lead-
ing order in the chiral expansion, the following relation can be derived between the B̄0

d-decay
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amplitudes and the vacuum matrix elements of d̄d operators:

〈J/ψ(π0η)ℓ=0|Od̄|B̄0
d〉

〈J/ψ(π+π−)ℓ=0|Od̄|B̄0
d〉

=
〈π0η|d̄d|0〉
〈π+π−|d̄d|0〉 . (2.27)

This relation will be used at energy s = 0.

We emphasize that it is important to use chiral symmetry to derive this result rather than
flavor symmetry alone. Indeed, under the flavor symmetry group SU(3)F , the state (ππ)I=0

appears both in the singlet and in the octet representations, while (πη) belongs to the octet.
Therefore, no relation can be derived between the corresponding B̄0

d decay amplitudes based
on flavor symmetry alone. For simplicity, we will however still refer to these as flavor relations
in the following.

2.3.1 Flavor relations from a chiral Lagrangian for B0
d
→ J/ψM1M2

In the following we construct a chiral Lagrangian that provides the above derived relation
between the B̄0

d-decay amplitudes and the d̄d matrix elements, Eq. (2.27), that we use in Sec-
tion 2.4.4 for predicting the B̄0

d → J/ψπ0η S-wave. We consider the decays B0
d → J/ψM1M2,

where Mi is a light pseudoscalar meson (π, K, η). We assume that there exists a kinematical
regime where the light mesons are soft, and that we can describe the dynamics in this situation
via a chiral expansion. We can write a chiral Lagrangian that reflects the chiral transforma-
tion properties of the weak transition operator following the method described e.g. in [165] for
K → ππ and K → 3π decays, where the K was assumed to be heavy. The two dominant
operators have the following structure:

Od ∼ c̄LγµdL b̄Lγ
µcL, (2.28)

such that, under the chiral symmetry group SU(3)L × SU(3)R, they transform simply as dL.
In order to construct a chiral Lagrangian we introduce a three-vector spurion field tL, which
transforms as

tL → gL tL, gL ∈ SU(3)L, (2.29)

such that t†L(Ou, Od, Os) is a chiral invariant. tL will ultimately be set to tL = (0, 1, 0)t. The
heavy vector field Ψµ is left invariant by chiral symmetry, while the B0

d can be considered as
part of a three-vector B = (B+, B0

d, B
0
s )
t, which transforms as

B → hB, (2.30)

where h is the non-linear realization of the chiral group. That is, if U is the chiral field matrix
and U = u2,

U → gR U g
†
L, u→ gR u h

† = hu g†L, gR ∈ SU(3)R. (2.31)

At leading chiral order the Lagrangian that describes the decays B0
d → J/ψ + light mesons has

two independent terms:

L1 = g1a t
†
L u

†uµBΨµ + ig1b t
†
L u

†∇µBΨµ + h.c., (2.32)

with

uµ = i(u†∂µu− u∂µu
†), ∇µB = (∂µ + Γµ)B, Γµ =

1

2
(u†∂µu+ u∂µu

†), (2.33)
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using the same notation as e.g. in Ref. [166]. We are interested in the production of meson pairs:
expanding the Lagrangian (2.32) to quadratic order in the light fields and using integration by
parts, we find

Lφ2

1,B0
d

= − ig1
4F 2

π

Ψµ
{

∂µB
0
d

[1

2
(π0)2 + π+π− − 1√

3
π0η +

1

6
η2 +K0K̄0

]

+B0
d

[

π+∂µπ
− − π−∂µπ

+ + K̄0∂µK
0 −K0∂µK̄

0
]}

+ h.c., (2.34)

with g1 = 2g1a+ g1b. The second line in Eq. (2.34) contributes to amplitudes where the M1M2

pair is in a P -wave (note that there is no contribution to πη at this order). The first line in
Eq. (2.34) contributes to amplitudes where the pair is in a relative S-wave. This gives a set of
definite relations among ππ, πη, and K̄K S-wave amplitudes. These are exactly the same as
for the d̄d scalar form factors at chiral order p2. Indeed, the d̄d form factors at leading order
are obtained by expanding the O(p2) chiral Lagrangian piece

L2 =
F 2
π

4
〈χ+〉, (2.35)

with χ+ = u†χu†+uχ†u, χ = 2B0 diag(0, 1, 0). Similar arguments to derive such relations have
also been formulated in Ref. [167].

In addition we can write the contributions to the decays of the B+ meson, B+ → J/ψM1M2,
as

Lφ
2

1,B+ = − ig1
4F 2

π

Ψµ
{

∂µB
+

[√

2

3
π−η +K0K−

]

+B+
[√

2(π0∂µπ
− − π−∂µπ

0) +K−∂µK
0 −K0∂µK

−
]}

+ h.c.. (2.36)

The above derivation is rather general: it does not rely on factorization, the large-Nc ex-
pansion, or other hypotheses. The relations obtained are, however, valid only at leading order.
Indeed, at next-to-leading order, the one-loop divergences of the d̄d form factors are absorbed
into the standard chiral coupling constants Li [60], while the one-loop divergences of the B0

d

amplitudes are absorbed into coupling constants g3a, g3b, . . . , pertaining to the higher-order
generalization of the Lagrangian (2.32). These are obviously unrelated to the couplings Li. It
is also likely that the chiral logarithms of the B0

d amplitudes will be different from those of the
d̄d form factors.

2.4 Partial waves and Omnès formalism

We describe the S- and P -wave amplitudes that contribute to the angular moments, Eq. (2.24),
using dispersion theory. This approach allows us to treat the rescattering effects in the ππ, πη
or K̄K systems in a model-independent way, based on the fundamental principles of unitarity
and analyticity, see Section 1.3.1: the partial waves are analytic functions in the whole s-
plane except for a branch-cut structure dictated by unitarity. In the following we deal with the
functions f ℓ,Iτ (s) (referring to isospin I, transversity τ and angular momentum ℓ and introduced
in Eq. (2.14)) that possess a right-hand cut starting at the respective two-meson threshold: the
pion–pion threshold sthr = 4M2

π in the isoscalar or the pion–eta threshold sthr = (Mπ +Mη)
2

in the isovector sector. They are analytic elsewhere, i.e. we do not consider any left-hand-cut or
pole structure related to crossing symmetry. In the case of the ππ system this is justified from
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the observation that there are practically no structures observed for the (exotic) crossed J/ψπ+

channel in the region of interest [141]. This phenomenology-inspired assumption of negligible
crossed-channel processes is adopted in the study of the related decays into J/ψ{K+K−, K̄0K0}
and J/ψπ0η. There, however, the justification is not quite so clear: e.g. the ψ(2S) decays into
J/ψη, and therefore will show up as a resonance in the corresponding distribution.3 However,
due to the anomalous nature of the ψ(2S) → J/ψη vertex, this ψ(2S)-exchange mechanism only
contributes to the transversity form factor F⊥, whose partial-wave expansion begins with a P -
wave, see Eq. (2.12), and hence cannot contribute to the π0η S-wave that we will concentrate
on below. In addition, the coupling ψ(2S) → J/ψη violates the OZI rule and is still rather
weak: compare

B(B̄0
d → ψ(2S)π0) = (1.17± 0.19)× 10−5 [164],

B(ψ(2S) → J/ψ η) = (3.36± 0.05)× 10−2 [44] (2.37)

to B(B̄0
d → J/ψπ+π−) = (4.03± 0.18)× 10−5 [44]; we will see in Section 2.6 that the branching

ratio B(B̄0
d → J/ψπ0η) is predicted to be of a comparable size. Further, in Section 2.7.2,

we calculate the ψ(2S)-exchange contribution explicitly and show that below
√
s ≈ 1.34GeV,

where the ψ(2S) cannot go on-shell, its effect is even more suppressed. We assume that other
charmonium resonances whose exchange in the t- (or even u-)channel can contribute to the π0η
S-wave (such as axialvector ones of negative C-parity) couple similarly weakly. Furthermore, in
Section 2.7.3 we study the effect of t- and u-channel B∗-exchange diagrams in the B̄0

d → J/ψπ0η
decay, whose cut contributions lie well outside the physical decay region; however even then,
the pole terms are suppressed in the S-wave due to chiral and heavy-quark symmetry. We
therefore neglect the influence of left-hand cuts altogether. Such B∗-exchange diagrams may
contribute to the B̄0

d → J/ψπ+π− decay as well. We claim that in that channel the neglect of
left-hand-cut structures is well-founded on the phenomenological observations, where, however,
crossed-channel effects in the strong final-state interaction are excluded. To also exclude that
our formalism is spoiled by effects occurring already in the weak decay mechanism we provide an
(a-posteriori) confirmation in Section 2.7.4 by considering the t-channel B∗ exchange process.

Considering the lowest (i.e. ππ or πη, respectively) intermediate states only, Watson’s the-
orem holds: the phase of the partial wave is given by the elastic pion–pion or pion–eta phase
shift [82], and the discontinuity across the cut can be written as

discf ℓ,Iτ (s) = f ℓ,Iτ (s+ iǫ)− f ℓ,Iτ (s− iǫ) = 2iY f ℓ,Iτ (s)
[
tIℓ (s)

]∗
= f ℓ,Iτ (s)e−iδ

I
ℓ sin δIℓ . (2.38)

A solution of this unitarity relation can be constructed analytically, setting (compare Ref. [168])

f ℓ,Iτ (s) = Pτ (s)Ω
I
ℓ (s), (2.39)

where Pτ (s) is a polynomial not fixed by unitarity, and the Omnès function ΩIℓ (s) is entirely
determined by the phase shift δIℓ (s) [80],

ΩIℓ (s) = exp

{
s

π

∫ ∞

sthr

δIℓ (s
′)

s′(s′ − s− iǫ)
ds′
}

, (2.40)

with

ΩIℓ (0) = 1 and ΩIℓ (s) 6= 0 ∀ s. (2.41)

3Actually, the same problem arises already for J/ψπ0, another observed decay channel of the ψ(2S), which

however breaks isospin symmetry and hence is very weak.
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2.4.1 P -waves and vector form factor

The pion–pion4 P -wave amplitudes can be well described in the elastic approximation up to
energies of roughly 1GeV. The simplest possible application is the pion vector form factor
FV
π (s), defined in Eq. (1.74), which obeys a representation like (2.39) with a linear polynomial

PFV
π
(s) = 1 + αs, α ≈ 0.1GeV−2 [169] up to

√
s ≈ 1GeV, with the exception of a small

energy region around the ω resonance that couples to the two-pion channel via isospin-violating
interactions. In this context it is important to note that the electromagnetic current jµem,
introduced in Eq. (1.74), can be decomposed as

jµem =
1

2

(
ūγµu− d̄γµd

)
+

1

6

(
ūγµu+ d̄γµd

)
. (2.42)

Thus it contains with the first term an isovector and with the second term an isoscalar com-
ponent. The latter couples directly to the ω, whose decay into π+π− is suppressed by isospin,
but enhanced by a small energy denominator (i.e., the small width of the ω), hence leading
to a clearly observable effect in the pion form factor [87, 88, 170]. Theoretically, this effect is
correctly taken into account by the replacement [99, 171, 172]

PFV
π
(s)Ω1

1(s) −→ PFV
π
(s)Ω1

1(s)

(

1 +
κem s

M2
ω − iMωΓω − s

)

. (2.43)

Note that in case of the ω the use of a Breit–Wigner parametrization is appropriate since
the ω pole is located far above the relevant decay thresholds and since Γω = 8.5MeV is very
small. A fit of the form factor parametrization introduced in Eq. (2.43) to the KLOE data [88]
yields κem ≈ 1.8 × 10−3 [173]. This fixes the strength of the so-called ρ–ω mixing amplitude
phenomenologically. The isospin-violating coupling κem is of the usual size, however, near the
ω peak its smallness is balanced by the factor Mω/Γω ≈ 90 from the ω propagator, giving
rise to an isospin-violating correction as large as 15% on the amplitude level, corresponding to
30% in observables due to interference with the leading term. Note also that the ρ–ω mixing
amplitude has been pointed out to significantly enhance certain CP -violating asymmetries in
hadronic B-meson decays [174].

The effect of the ω on the B̄0
d → J/ψπ+π− decay can be related straightforwardly to that on

the pion vector form factor. To see this observe that the source term for the pion–pion system
is d̄d at tree level, see Figure 2.1, such that the isospin decomposition of the corresponding
vector current reads

d̄γµd = −1

2

(
ūγµu− d̄γµd

)
+

1

2

(
ūγµu+ d̄γµd

)
. (2.44)

Comparison to Eq. (2.42) shows that the relative strength of the isoscalar component differs from
the electromagnetic current by a factor of −3, such that we will fix the ρ–ω mixing contribution
in analogy to Eq. (2.43), but with the replacement κem → κ = −3κem ≈ −5.4× 10−3. Notice
that this is in contrast with the experimental analysis [141], where the ω contribution is fitted
with free coupling constants.

2.4.2 S-waves and scalar form factors

The (elastic) single-channel treatment, introduced in the beginning of this section, cannot be
used in the S-wave case: there are strong inelastic effects in the region around 1GeV due to

4Out of the considered final-state meson pairs only for the two-pion system P -waves are considered in the

dispersive representation, the other channels are either dominated by the S-wave that is treated below or at

least the S-wave background is of particular interest. The P -wave in the K̄K final-state is dominated by the φ-

resonance, which has a sufficiently small width such that it is well described by a Breit–Wigner parametrization.
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the opening of the KK̄ channel, coinciding with the I = 0 f0(980) resonance or the I = 1
a0(980) resonance, respectively. This affects the phase of the scalar isoscalar pion or isovector
pion-eta form factors (see e.g. the discussion in Ref. [175]). Thus the Omnès formalism has to
be generalized to a coupled-channel problem, with the Watson theorem fulfilled in the elastic
region and inelastic effects included above the KK̄ threshold. This leads to the two-channel
Muskhelishvili–Omnès equations that intertwine the scalar isoscalar pion and kaon form factors
on the one hand, defined as

〈
π+(p1)π

−(p2) |(q̄q)I=0| 0
〉
= Bq0Γq,I=0

ππ (s),
〈
K+(p1)K

−(p2) |(q̄q)I=0| 0
〉
= Bq0Γq,I=0

K̄K
(s), (2.45)

and on the other hand the scalar isovector πη and K̄K form factors

〈
π0(p1)η(p2) |(q̄q)I=1| 0

〉
= B∆

0 ΓI=1
πη (s),

〈
K+(p1)K

−(p2) |(q̄q)I=1| 0
〉
= B∆

0 ΓI=1
K̄K(s). (2.46)

The quark flavors in the isovector sector are (q̄q)I=1 = (ūu − d̄d)/2 and the isoscalar scalar
currents may be either (q̄q)I=0 = (ūu + d̄d)/2 for the light quarks, with the superscript q =
n denoting the corresponding scalar form factor, or (q̄q)I=0 = s̄s for strange quarks (with
superscript q = s). The strange scalar current is purely isoscalar, therefore there are two
isoscalar but only one isovector form factor. Furthermore, B∆

0 is related to the QCD mass
difference M2

K+ − M2
K0 , B∆

0 = (M2
K+ − M2

K0)/∆ud, ∆ud = mu − md; for the definitions of

the Bq0, see Eq. (1.103). Note that the form factors Γq,IM1M2
(s) are invariant under the QCD

renormalization group, while the hadronic matrix elements are not due to the scale dependence
inherent in the factors Bq,∆0 . This in turn allows for the cancellation of the scale dependence
in the Wilson coefficients introduced in the effective Hamiltonian of Section 2.2. Some details
concerning the isospin and physical states involved in the definitions of the form factors can be
found in Appendix A.1.

Appealing to the tree-level diagram of Figure 2.1, we expect the non-strange scalar form
factors to contribute dominantly in the B̄0

d decay, while the strange ones should feature mainly
in the corresponding decay of the B̄0

s . As discussed in detail in Section 2.5, these expectations
are confirmed by the data analysis of B̄0

d,s → J/ψπ+π−.
The two-channel Muskhelishvili–Omnès formalism was briefly reviewed for the isospin-0 pion

and kaon form factors in Section 1.3.4. The isoscalar T -matrix parametrization requires three
input functions: in addition to the ππ phase shift already necessary in the elastic case, modulus
and phase of the ππ → KK̄ S-wave amplitude also need to be known. Our main solution is
based on the Roy equation analysis by the Bern group [153, 154] for the ππ phase shift, the
modulus of the ππ → KK̄ S-wave as obtained from the solution of Roy–Steiner equations
for πK scattering performed in Orsay [37], and its phase from partial-wave analyses [176,
177]. Alternatively, we employ the T -matrix constructed by Dai and Pennington (DP) in
Ref. [127]: here, a coupled-channel K-matrix parametrization is fitted to ππ data [178–182],
and the Madrid–Kraków Roy-equation analysis [36] is used as input; furthermore, the KK̄
threshold region is improved by fitting also to Dalitz plot analyses of D+

s → π+π−π+ [183] and
D+
s → K+K−π+ [184] by the BaBar Collaboration.
For the isovector sector, we use the result of Ref. [140]. In that work, a coupled-channel

T -matrix is constructed that fulfills unitarity, and the amplitudes are approximately matched
with the perturbative ones derived from O(p4) chiral perturbation theory. With this method
six phenomenological parameters are introduced, to be determined by experimental information
about the a0(980) and a0(1450) resonances. Specifically, five experimental constraints are
imposed, and hence there is still a one-parameter freedom in the model that can be associated
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with the sum of the phase shifts of the πη (δ11) and K̄K (δ22) channels at the mass of the
a0(1450), δ12 ≡ (δ11 + δ22)(s = m2

a0(1450)
).

The scalar coupled-channel form factors in the Omnès formalism read
(

ΓI=0
ππ (s)

2√
3
ΓI=0
KK(s)

)

=

(
ΩI=0

11 (s) ΩI=0
12 (s)

ΩI=0
21 (s) ΩI=0

22 (s)

)

·
(

ΓI=0
ππ (0)

2√
3
ΓI=0
KK(0)

)

(2.47)

for the isoscalar meson pairs, and
(

ΓI=1
πη (s)√
2ΓI=1

KK(s)

)

=

(
ΩI=1

11 (s) ΩI=1
12 (s)

ΩI=1
21 (s) ΩI=1

22 (s)

)

·
(

ΓI=1
πη (0)√
2ΓI=1

KK(0)

)

(2.48)

for the isovector πη–K̄K system. The resulting form factors depend on two normalization
constants ΓIM1M2

(0), i.e. even in the simplest case, corresponding to the polynomial of Eq. (2.39)
reducing to a constant, the channel coupling manifests itself through the fact that the scalar
form factors depend on two such constants. In contrast to the single-channel case, here the
shape of the resulting form factors depends on the relative size of these two normalization
constants; on the other hand, once this relative strength is fixed, it relates the final states ππ
and KK̄ in the isospin-0 case or πη and KK̄ in the isospin-1 case to each other unambiguously.
We will make use of this additional predictiveness in Section 2.8.1.

We constrain the form factor normalizations from their chiral one-loop (or next-to-leading-
order) representations. The ππ and K̄K matrix elements at s = 0 are related to quark-
mass derivatives of the corresponding Goldstone boson masses via the Feynman–Hellmann
theorem, while the πη one obeys a Ward identity relating it to a similar vector-current matrix
element [140]. At leading order in the chiral expansion we find the normalizations

Γn,I=0
ππ (0) = 1, Γn,I=0

KK (0) =
1

2
, Γs,I=0

ππ (0) = 0, Γs,I=0
KK (0) = 1, ΓI=1

πη (0) =
1√
3
, ΓI=1

KK(0) =
1

2
.

(2.49)
The next-to-leading order results depend on certain low-energy constants. We emphasize

that for these, the universality of the relative couplings to different mesons, comparing the scalar
form factors and the S-waves appearing in the B̄0

d decays, see Eq. (2.27), is not guaranteed,
and one might argue in favor of simply using the leading-order relations of Eq. (2.49); see
the discussion in Section 2.3. However, in order to obtain at least a realistic estimate of
the uncertainties induced by next-to-leading-order corrections, we take those from the scalar
form factor matrix elements. The corresponding low-energy constants are determined in lattice
simulations with Nf = 2+1+1 dynamical flavors at a running scale µ = 770MeV [111], limiting
the form factor normalizations to the ranges5

Γn,I=0
ππ (0) = 0.984± 0.006, Γn,I=0

KK (0) = (0.44 . . . 0.68),

Γs,I=0
ππ (0) = (0.001 . . .0.013) ≈ 0, Γs,I=0

KK (0) = (1.0 . . .1.2),

ΓI=1
πη (0) = (0.56 . . . 0.87), ΓI=1

KK(0) = (0.38 . . . 0.56). (2.50)

Since the form factor shape depends on the relative size of the two pairs of normalization
constants, there is some uncertainty in the shape of the isoscalar scalar form factors. The
variations in the isovector form factor normalizations are strongly correlated, i.e. their ratio for
small and large values of the low-energy constants varies at the 5% level only.

5Note that in Ref. [113] the form factor normalizations are based on lattice simulations with Nf = 2 + 1

dynamical flavors [110], which yields similar ranges. In particular, for the fits performed in Ref. [113] and

presented in Section 2.5 the normalization of the isoscalar kaon form factor was set to the leading-order result

Γn,I=0
KK

(0) = 0.5, which is compatible with both normalization ranges (according to either the Nf = 2 + 1 + 1

or the Nf = 2 + 1 lattice simulation).
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2.4.3 ππ partial waves in the Omnès formalism

We start with the discussion of the representation of the partial waves in the system. As this
channel is measured it provides a test how well the data are described by our ansatz. In order to
apply the Omnès formalism to the transversity partial waves we have to deal with the partial

waves f
(ℓ)
τ (s) that we have constructed in Eq. (2.14), being free of kinematical singularities.

The S- and P -waves read

f
(S,I=0)
0 (s) = P

(S,n)
0 (s)Γn,I=0

ππ (s) + P
(S,s)
0 (s)Γs,I=0

ππ (s), f (P,I=1)
τ (s) = P (P )

τ (s)Ω1
1(s). (2.51)

For the S-wave, we a priori allow for contributions of both non-strange (n) and strange (s)

scalar form factors. The coefficients of the polynomials P
(ℓ)
τ (s) are to be determined from a fit

to the efficiency-corrected and background-subtracted LHCb data, in particular to the angular
moments 〈Y 0

0 〉 and 〈Y 0
2 〉.

Basically we assume the various polynomials to be well approximated by constants. However,
to study the impact of a linear correction at a later stage, we also consider linear polynomials

P
(S,n)
0 = bn0 (1 + b′n0 s) and P

(P )
τ = aτ (1 + a′τs) for the non-strange S-wave and the P -wave

amplitudes, respectively. The strange S-wave contribution is expected to be very small (in the
LHCb analysis of B̄0

d → J/ψπ+π− the f0(980) meson is not seen), but tested in the fits. On the
contrary, the B̄0

s → J/ψπ+π− distribution is dominated by the f0(980) resonance, described

by a constant polynomial times Omnès function, P
(S,s)
0 = cs0, while there is no structure in

the f0(500) region reported by LHCb. Thus in that case the non-strange S-wave amplitude is
assumed to be negligible, to be confirmed in the fits.

Although the first D-wave resonance seen is the f2(1270), it may affect also the region
below

√
s ≈ 1GeV due to its finite width, Γf2 = 185.1+2.9

−2.4MeV [62]. Therefore we also test its
influence on the fit. The D-waves could be treated in the same dispersive way as S- and P -
waves, but this would increase the number of free parameters in our fits to the LHCb data. As
the effect of D-wave corrections is rather small, we avoid introducing additional fit parameters
and take over the amplitudes (with fixed couplings) used in the LHCb analysis, where the
f2(1270) resonance is modeled by a Breit–Wigner shape.

Combining Eqs. (2.24), (2.14) and (2.51) in order to write 〈Y 0
i 〉 in terms of Omnès functions

for S- and P -waves, supplemented by the D-wave resonance contribution, yields

√
4π〈Y 0

0 〉 = N q
π

XY
√
s

2mB

{

X2
∣
∣bn0 (1 + b′n0 s)Γ

n,I=0
ππ (s) + cs0Γ

s,I=0
ππ (s)

∣
∣
2

+ Y 2
∣
∣Ω1

1(s)
∣
∣
2
([
a0(1 + a′0s)

]2
+ s
[
a‖(1 + a′‖s)

]2
+ sX2

[
a⊥(1 + a′⊥s)

]2
)

+
∑

τ=0,⊥,‖

∣
∣
∣αf2τ e

iφf2
τ A(τ)

f2
(s)
∣
∣
∣

2
}

= N q
π

√
4π〈Y 0

0 〉LHCb ,

√
4π〈Y 0

2 〉 = N q
π

XY
√
s

2mB

{

2Re

(

X
[

bn0 (1 + b′n0 s)Γ
n,I=0
ππ (s) + cs0Γ

s,I=0
ππ (s)

][

αf20 e
iφ

f2
0 A(0)

f2
(s)
]∗)

+
Y 2

√
5

∣
∣Ω1

1(s)
∣
∣
2
(

2
[
a0(1 + a′0s)

]2 − s
[
a‖(1 + a′‖s)

]2 − sX2
[
a⊥(1 + a′⊥s)

]2
)

+

√
5

7

(

2
∣
∣
∣α
f2
0 e

iφ
f2
0 A(0)

f2
(s)
∣
∣
∣

2

+
∑

τ=‖,⊥

∣
∣
∣αf2τ e

iφf2
τ A(τ)

f2
(s)
∣
∣
∣

2
)}

= N q
π

√
4π〈Y 0

2 〉LHCb .

(2.52)

For details concerning the definition of the Breit–Wigner amplitudes A(τ)
f2

(s), τ = 0, ‖,⊥, see
Ref. [141].



2.4 Partial waves and Omnès formalism 47

Since the experimental data for the B̄0
d → J/ψπ+π− spectrum [141], used for the determi-

nation of the unknown parameters in Section 2.5, are given in arbitrary units, we introduce the
normalization constants N q

π , q = {n, s}, that relate the LHCb angular moments to properly
normalized ones. This will allow us to adapt the fit results of the π+π− distribution to the πη
and K̄K predictions. For this purpose we use the absolute branching fractions [44]

B
(
B̄0
d → J/ψπ+π−) = (4.03± 0.18)× 10−5,

B
(
B̄0
s → J/ψπ+π−) = (2.14± 0.18)× 10−4, (2.53)

and define the strengths b̄n0 =
√
Nn
π b

n
0 and c̄s0 =

√
N s
πc
s
0 with the normalization constants

Nn,s
π =

B(B̄0
d/s → J/ψπ+π−) Γtot(B̄0

d/s)

N(B̄0
d/s → J/ψπ+π−)

. (2.54)

For the respective total numbers of signal events in Refs. [141, 142], defined by

N(B̄0
d/s → J/ψπ+π−) =

√
4π

∫ 〈

Y 0
0

(

B̄0
d/s → J/ψπ+π−

)〉

d
√
s, (2.55)

we find N(B̄0
d → J/ψπ+π−) = 24080.5 ± 148 and N(B̄0

s → J/ψπ+π−) = 34878 ± 182; fur-
ther, Γtot(B̄0

d/s) = 1/τ(B̄0
d/s), with τ(B̄0

d) = (1.519 ± 0.005) ·10−12s and τ(B̄0
s ) = (1.505 ±

0.005) ·10−12s [44], such that Γtot(B̄0
d) = 4.333 ·10−13GeV and Γtot(B̄0

s ) = 4.373 ·10−13GeV.

2.4.4 πη partial waves

We employ the flavor relation between the B̄0
d S-wave amplitudes to the J/ψπ+π− and the

J/ψπ0η final states that we have derived in Section 2.3, see Eq. (2.27). Given that the B̄0
d →

J/ψπ+π− S-wave is indeed proportional to the scalar form factor (in particular, in Section 2.5.1
we will show that not even a linear polynomial is required at the present accuracy of the
data [141]), the B̄0

d → J/ψπ0η S-wave amplitude will by analogy be proportional to the scalar
πη isovector form factor Eq. (2.46). Both the isoscalar and the isovector meson pairs are
generated from a pure d̄d source. The isospin decomposition of the scalar current reads

d̄d = −1

2

(
ūu− d̄d

)
+

1

2

(
ūu+ d̄d

)
, (2.56)

from which we read off the relative strength of the isoscalar to the isovector component,

η0/η1 = −1. Thus given a known isoscalar S-wave CF (S,I=0)
0 (s) = Xb̄n0Γ

n,I=0
ππ (s) (where the

subtraction/normalization constant b̄n0 =
√Nπb

n
0 is related to the fit constant bn0 introduced in

Eq. (2.52)), we can predict the isovector S-wave

CF (S,I=1)
0 (s) = −Xb̄n0ΓI=1

πη (s), (2.57)

such that the resulting angular moment 〈Y 0
0 〉 or differential decay rate, respectively, is given by

√
4π〈Y 0

0 〉B̄0
d→J/ψπ0η =

dΓB̄0
d→J/ψπ0η

d
√
s

=
X3Y

√
s

2mB

∣
∣b̄n0Γ

I=1
πη (s)

∣
∣
2
. (2.58)

The constant b̄n0 is the same as for the π+π− final state precisely due to the symmetry
relation (2.27). Similarly, potential linear terms in s multiplying the scalar form factors would
also be symmetry-related for both meson pairs under consideration: as long as the data do not
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suggest the necessity to include such a term in the description of the B̄0
d → J/ψπ+π− S-wave,

it will be negligible also in B̄0
d → J/ψπ0η.

By means of an isospin rotation the πη form factor Eq. (2.46) likewise describes the transition
to a charged π+η pair via a ūd source,

〈
π+(p1)η(p2) |ūd| 0

〉
=

√
2B∆

0 ΓI=1
πη (s). (2.59)

This straightforwardly allows for a prediction of the charged B± → J/ψπ±η mode as well,
whose differential decay rate dΓ/d

√
s differs from the B̄0

d one, Eq. (2.58) by a factor 2 (except
for negligible kinematical replacements due to isospin-violating mass differences).

2.4.5 K̄K partial waves

The prediction of the B̄0
d → J/ψπ0η spectrum in Section 2.6 relies on the connection to the

isoscalar π+π− mode due to chiral symmetry. For the final states involving a K̄K pair we
employ in addition the channel coupling between the S-wave pions and kaons to predict the
B̄0
d/s → J/ψK+K− S-waves. Given that the kaons emerge from a clean isoscalar s̄s source,

the B̄0
s → J/ψK+K− S-wave is purely isoscalar. Aside from the appropriate kinematical

replacements it is straightforwardly related to the B̄0
s → J/ψπ+π− S-wave and reads

CG(s,S)
c (s) = Xc̄s0Γ

s,I=0
KK (s), (2.60)

where the kaon form factor is defined in Eq. (2.45). Though the B̄0
s → J/ψK+K− decay

is P -wave dominated, this prediction allows us to calculate the S-wave background to the
prominent φ(1020) resonance. To approximate the P -wave we adopt the LHCb Breit–Wigner
parametrization, valid in the mass window ±12MeV around the φ(1020) [185], and find for the
angular moment

√
4π
〈
Y 0
0

〉
∣
∣
∣

|√s−mφ|.12MeV

B̄0
s→J/ψK+K−

≈ XY
√
s

2mB

(

X2
∣
∣
∣c̄s0Γ

s,I=0
KK

∣
∣
∣

2

+
∑

τ

∣
∣
∣αφτA(τ)

φ (s)
∣
∣
∣

2
)

. (2.61)

On the contrary the B̄0
d → J/ψ{K+K−, K̄0K0} decays are dominated by the S-wave. In

the K̄K P -wave there are contributions from the ρ and ω resonances, which, in principle, can be
related to the ππ P -wave. These resonances peak below the K̄K threshold, however, and their
contributions are expected to be rather small above. The contribution from the φ resonance
that dominates the K̄K P -wave above threshold is now suppressed by the OZI rule, as we
are effectively dealing with a d̄d source. The suppression of the P -wave (and the dominance
of the S-wave) in this decay has indeed been confirmed experimentally in Ref. [186]. Hence,
we here include only the S-wave component, and make no attempt to consider K̄K P -wave
amplitudes. Deriving the S-wave amplitudes requires both the flavor relation that links the
isospin-0 to the isospin-1 meson pairs, and the coupled-channel relations between the kaons and
the respective light pseudoscalars. According to Eq. (2.56) now both the isoscalar and isovector
S-wave components contribute, with known relative strengths η0/η1 = −1 or +1 for charged or
neutral kaon systems, respectively, i.e. the S-wave amplitude reads

CG(n,S)
c (s) = Xb̄n0

(
Γn,I=0
KK (s)− ΓI=1

KK(s)
)
,

CG(n,S)
n (s) = Xb̄n0

(
Γn,I=0
KK (s) + ΓI=1

KK(s)
)
, (2.62)

with the kaon form factors defined in Eqs. (2.45) and (2.46). The resulting angular moments
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〈Y 0
0 〉 or differential decay rates, respectively, read

√
4π〈Y 0

0 〉B̄0
d→J/ψK+K− =

X3Y
√
s

2mB

∣
∣b̄n0
(
Γn,I=0
KK (s)− ΓI=1

KK(s)
)∣
∣
2
,

√
4π〈Y 0

0 〉B̄0
d→J/ψK̄0K0 =

X3Y
√
s

2mB

∣
∣b̄n0
(
Γn,I=0
KK (s) + ΓI=1

KK(s)
)∣
∣
2
. (2.63)

Similarly to the B̄0
d/s → J/ψπ+π− distributions the B̄0

d/s → J/ψK+K− angular moments
provided by LHCb are not properly normalized, which we have to be aware of when we compare
to these data or extract the strength of the φ(1020) Breit–Wigner amplitude in Section 2.8.2.
We therefore define the normalization constants

Nn,s
K =

B(B̄0
d/s → J/ψK+K−) Γtot(B̄0

d/s)

N(B̄0
d/s → J/ψK+K−)

, (2.64)

such that

〈Y 0
0 〉B̄0

d/s
→J/ψK+K− = Nn,s

K 〈Y 0
0 〉LHCb

B̄0
d/s

→J/ψK+K− . (2.65)

The absolute branching fractions are given by B
(
B̄0
s → J/ψK+K−) = (7.9 ± 0.7) × 10−4

and B
(
B̄0
d → J/ψK+K−) = (2.6 ± 0.4) × 10−6 [44]. The total number of events N(B̄0

s →
J/ψK+K−) is however not determined as in Eq. (2.55) since no data for the efficiency-corrected
angular moments in Ref. [185] are available. We therefore calculate the normalization constant
N s
K by taking the published expected signal yield Nexp(B̄

0
s → J/ψK+K−) = 19195± 150; in

analogy we use Nexp(B̄
0
d → J/ψK+K−) = 228± 27.

2.5 Final-state interactions in B̄0
d/s → J/ψππ

2.5.1 Fits to the LHCb data I: B̄0
d
→ J/ψπ+π−

We fit the angular moments 〈Y 0
0 〉 and 〈Y 0

2 〉, Eq. (2.52), simultaneously. Taking up the discussion
of Section 2.4, our basic fit, FIT I, includes three fit parameters (to be compared to 14 free
parameters in the Breit–Wigner parametrization used in the LHCb analysis, see below): the

normalization factors for the S-wave (bn0 ) and for two P -waves f
(P )
0 and f

(P )
‖ (a0, a‖). (We

find that including the τ =⊥ P -wave amplitude practically does not change the χ2, i.e. a⊥ is a
redundant parameter.) In the basic fit only S- and P -waves are considered. Beyond that, we
study the relevance of certain corrections: in FIT II we use again the same three parameters
as in FIT I, but in addition we include the D-wave contributions, fixed to their strengths as
determined by LHCb. To further improve FIT II, supplemental linear terms (b′0, a

′
0, a

′
‖—cf.

Eq. (2.52)) are allowed in FIT III. Performing FIT III we find that two of the slope parameters,
the linear non-strange S-wave term (b′0) and the τ =‖ P -wave slope (a′‖), yield no significant
improvement of the fits; their values are compatible with zero within uncertainties. We thus fix
them to zero, and in FIT III only the four parameters bn0 , a0, a‖, and a

′
0 are varied. Furthermore,

the effect of an inclusion of a strange S-wave component is tested. Its strength is found to be
compatible with zero, justifying its omission.

Note that the scalar pion form factors depend on the normalizations of both the pion and
kaon form factors. While the normalizations in the case of the pion form factor are known quite
precisely, there are considerable uncertainties for the kaon form factor normalizations, having
an impact on the shapes of both pion form factors, see Section 1.3.4. The non-strange kaon
normalization Γn,I=0

KK (0) is limited to the range (0.4 . . . 0.6) if results for Nf = 2 + 1 lattice
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simulations are used. In our fits we fix the value to Γn,I=0
KK (0) = 0.5, which is compatible with

the current algebra result (and also with the Nf = 2 + 1 + 1 lattice simulation results). The

effect from a variation of Γn,I=0
KK (0) in the allowed interval shows up only in the second decimal

place of the χ2/ndf.

The fitted coefficients and the resulting χ2/ndf, referring to Eq. (2.52), are listed in Table 2.1
(these parameters still ought to be multiplied by the factor

√Nπ , in particular when adopting
these results for the prediction of other final states, see the discussion at the end of Section 2.4.3).
The large uncertainties can be traced back to the correlations between the fit parameters,
especially present in FIT III. For a comparison to the LHCb fit, we insert their fit results (best
model) into our definition of the χ2. In more specific terms this means that we do not compare
to the χ2 published in Ref. [141], for which the full energy range up to

√
s = 2.1GeV is fitted

with 34 parameters and the data of all angular moments 〈Y 0
i 〉 for i = 0, . . . , 5 are included, but

we calculate the χ2 in the region we use in our fits, i.e. including data up to
√
s = 1.02GeV

and the angular moments 〈Y 0
0 〉 and 〈Y 0

2 〉 only. We obtain χ2
LHCb/ndf = 2.08. In this limited

energy range the Breit–Wigner description, including the f0(500), ρ(770) and ω(782), requires
14 fit constants, while we have three (FIT I, II) or four (FIT III) free parameters and find
χ2/ndf = 2.0 (FIT I), χ2/ndf = 1.5 (FIT II) and χ2/ndf = 1.3 (FIT III). The calculated
angular moments for the three fit models in comparison to the data are shown in Figure 2.3.

Probably the most striking feature of our solution is the pronounced effect of the ω that
leads to the higher peak in Figure 2.3. As mentioned above, this isospin-violating contribution
is fixed completely from an analysis of the pion vector form factor, however, its appearance
here is utterly different, since the coupling strength is multiplied by a factor of −3. This not
only enhances the impact of the ω on the amplitude level to about 50%, but also implies that
the change in phase of the signal is visible a lot more clearly: while in case of the vector form
factor the ω amplitude leads to an enhancement on the ρ-peak and some depletion on the right
wing, forming a moderate distortion of the line shape, here we obtain a depletion on the ρ-peak
accompanied by an enhancement on the right wing. The origin of this effect is illustrated in
Figure 2.4, taken from Ref. [188]. The thick, red solid line shows the pion vector form factor,
related to the electromagnetic current, from which the strength of the ρ–ω mixing is fixed in a
fit to the data. Inverting the sign of the mixing amplitude yields the dashed, magenta line. The
narrow, sharp ω-type peak that is already visible in the that curve is enhanced by a factor of 3
in the black solid line, leading to a similar signal as the one depicted in Figure 2.3. While the
current data do not show the ω peak clearly, a small shape variation due to the ρ–ω interference
is better seen in Ref. [187], where a finer binning is used. The ρ–ω mixing strength obtained
from a fit in that reference is consistent with the strength we obtain in a parameter-free manner.
Nonetheless, improved experimental data are called for, since an experimental confirmation of
the ω effect on B̄0

d → J/ψπ+π− would allow one to establish that the B̄0
d decay indeed provides

a rather clean d̄d source.

A key feature of the formalism employed here is its correct description of the S-wave.
Figure 2.5 shows the comparison of the S-wave amplitude strength of the LHCb Breit–Wigner
parametrization with the ones obtained in FIT I–III, and in Figure 2.6 the corresponding phases
are compared. In the elastic region, the phase of the non-strange scalar form factor δΓn =
arg(Γn,I=0

ππ ) coincides with the ππ phase shift δ00 that we use as input for the Omnès matrix, in
accordance with Watson’s theorem. Right above the KK̄ threshold, δΓn drops quickly, which
causes the dip in the region of the f0(980), visible in the modulus of the amplitudes as well
as the non-Breit–Wigner bump structure in the f0(500) region. We find that the phase due
to a Breit–Wigner parametrization largely differs from the dispersive solution, indicating that
parametrizations of such kind are not well suited for studies of CP violation in heavy-meson
decays.

Note that in the analysis of Ref. [187] the f0(500) is modeled not by a Breit–Wigner func-
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Figure 2.3: 〈Y 0
0 〉 (top) simultaneously fitted with 〈Y 0

2 〉 (bottom), using three parameters with-

out D-wave contribution (FIT I, red, solid), and improving step by step by adding a Breit–

Wigner-parametrized D-wave contribution (FIT II, blue, dashed) and by allowing for four free

parameters, also supplemented by the D-wave contribution (FIT III, green, dotted).
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χ2/ndf |bn0 | [GeV− 7
2 ] |a0| [GeV− 3

2 ] |a‖| [GeV− 5
2 ] a′0 [GeV− 5

2 ]

FIT I 1.97 10.3+1.5
−1.8 46.5+6.0

−6.8 51.8+9.0
−11.0 –

FIT II 1.54 10.3+1.5
−1.8 47.6+5.8

−6.6 49.5+9.4
−11.7 –

FIT III 1.32 10.6+1.5
−1.8 37.7+20.3

−21.3 48.2+9.8
−12.4 0.4+2.4

−0.7

Table 2.1: Resulting fit parameters and χ2/ndf for the various fit configurations FIT I–III for

the B̄0
d → J/ψπ+π− decay.
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Figure 2.4: Illustration of the ρ–ω mixing strength in B̄0 → J/ψπ+π−, emerging from the

mixing in the pion vector form factor FV
π (

√
s). The figure shows a fit to data of the pion vector

form factor [87,88] including mixing (red, thick solid), with the sign flip in the mixing amplitude

(magenta, dashed), and with the mixing amplitude times −3 (black, thin solid). The figure is

taken from Ref. [188].
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tion, but by the theoretically better motivated parametrization of Ref. [189]. In this work,
higher resonances are included by multiplying S-matrix elements. While this procedure pre-
serves unitarity, it produces terms at odds with any microscopic description of the coupled
ππ–KK̄ system. As such also this approach introduces uncontrolled theoretical uncertainties
into the analysis. The only stringently model-independent way to include hadronic final-state
interactions is via dispersion theory.

2.5.2 Fits to the LHCb data II: B̄0
s
→ J/ψπ+π−

The B̄0
s → J/ψπ+π− distribution in the region up to roughly 1GeV is clearly dominated by

the f0(980). We therefore describe the data with the strange S-wave component only, using
a constant subtraction polynomial (cs0). The only non-zero contribution to the fit thus comes
from 〈Y 0

0 〉. Fitting the data up to
√
s = 1.05 (1.02)GeV yields χ2/ndf = 2.2 (1.8) and for

both fit scenarios cs0 = (16.8 ± 0.4)GeV− 7
2 . In analogy to the B̄0

d decay we also perform the
fit including the D-wave parametrization of the LHCb analysis [142]. This yields an additional
non-zero contribution to 〈Y 0

2 〉 due to the S–D-wave interference, which is fitted simultaneously
with 〈Y 0

0 〉. Further, the influence of a linear subtraction polynomial for the strange S-wave is
tested. However, none of these corrections exhibits a considerable improvement.

In the LHCb analysis the full energy range,
√
s ≤ 2.1GeV, is fitted with 22 (24) param-

eters for Solution I (II). Confining to the region we examine in our fit and considering the
f0(980) resonance only, the number of fit parameters reduces to four (six), and we calculate
χ2
LHCb/ndf = 0.76 (0.82), when using our definition of the χ2.
The strange scalar form factor, or the f0(980) peak in the dispersive formalism, depends

crucially on the ππ → KK̄ S-wave transition amplitude, which is not as accurately known as
elastic ππ scattering (and even contains subtleties as non-negligible isospin breaking effects due
to the different thresholds of charged and neutral kaons, see e.g. Ref. [190]). As there are no
error bands available for the Omnès matrix (or the various input quantities), to estimate the
theoretical uncertainty we use and compare the fits resulting from the two different coupled-
channel T -matrices described in Section 2.4. A minimization of the χ2 using the modified
Omnès solution based on Ref. [127] yields χ2/ndf = 3.4 and cs0 = (18.3 ± 0.5)GeV− 7

2 or

χ2/ndf = 2.4 and cs0 = (18.2 ± 0.5)GeV− 7
2 when fitting the data up to

√
s = 1.05GeV or√

s = 1.02GeV, respectively.6 The resulting 〈Y 0
0 〉 curves for both fits, using the phase input

from the Bern [153, 154] and Orsay [37] groups (B+O), as well the one of Ref. [127] (DP),
are presented in Figure 2.7. Furthermore we show the phase shifts and the phases of the
strange form factor for both phase inputs in Figure 2.8 and compare to the LHCb phase due to
Solution II (with f0(980) and a non-resonant S-wave contribution) as well as Solution I (f0(980)
parametrization only). While the latter phase has a negative slope for s . 1GeV2, which does
not agree with the known phase shift, the phase extracted in Solution II is remarkably close to
both the Bern and Madrid phase motions.

2.6 B̄0
d → J/ψπη: a flavor related prediction

The relative strength between the production amplitudes of different isospin is known. Since we
have shown in Section 2.5.1 that the dispersive formalism fits the data for the B̄0

d → J/ψπ+π−

mode very well and the fit parameters were determined, we can make predictions for the B̄0
d →

J/ψπ0η (and the B± → J/ψπ±η) distribution. The maximal range of this assumed dominance

6A similar procedure for the B̄0
d
decay has a rather small effect since the S-wave is not dominant in that case,

and the difference of the P -wave phase of Refs. [36,153,154] is quite small (the S- or P -wave phase modification

yields, in the most perceptible cases, a 4% correction of the χ2).
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Figure 2.7: 〈Y 0
0 〉 fitted using the strange S-wave with constant subtraction polynomial for two

different phase inputs (red, solid: B+O input [37,153,154], green, dotted: DP input [127], based
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is estimated by predicting the π0η D-wave as well. Note that the πη P -wave has exotic quantum
numbers, such that final-state-interaction effects are supposed to be negligible. Therefore we
expect the S-wave to dominate the spectrum up to the onset of the D-wave, with a significant
contribution in the region of the a2(1320) resonance.

Two different values are obtained for bn0 , namely (a) bn0 = 10.3GeV−7/2 corresponding to a
fit with only constant subtraction polynomials for S- and P -waves, and (b) bn0 = 10.6GeV−7/2,
corresponding to a fit with a linear (in s) contribution to the P -wave polynomial as well as
a D-wave contribution, which has an effect on the ππ S-wave [141]. We therefore obtain
b̄n0 = 2.77 ·10−10GeV−3 and b̄n0 = 2.85 · 10−10GeV−3, respectively, using Eq. (2.54).

In Figure 2.9 (top panel) the predicted differential decay rate dΓ/d
√
s for B̄0

d → J/ψπ0η
is depicted. The distribution is shown for three different input phases δ12 = 90◦, 110◦, 125◦,
limited to an interval compatible with constraints discussed in Ref. [140]. We see that the
dependence on δ12, and hence on details of the πη interaction, is strong, and completely over-
whelms the uncertainty due to the production strength as fixed from the corresponding π+π−

channel. In order to provide a clearer representation, we refrain from showing uncertainty
bands due to the I = 1 πη and K̄K form factor normalizations calculated at next-to-leading
order according to Eq. (2.50). We choose the isovector form factor normalizations in the upper
allowed range. This corresponds to similar low-energy constants as we used for the isoscalar
form factor normalizations, though not exactly the same, as we use updated lattice results any-
way. Furthermore, the isovector form factor normalizations depend on additional low-energy
constants.

Our conclusion is that a measurement of this decay channel will provide important infor-
mation on the final-state interactions of the πη S-wave system, and in particular the a0(980)
resonance, which dominates this partial wave in the energy range around 1GeV.

To further substantiate the assumed S-wave dominance, we estimate the πη D-wave back-
ground, which should become significant in the region of the a2(1320) resonance. We model
the a2 by a simple Breit–Wigner shape; its coupling strength is related to that of the f2(1270)
by SU(3) symmetry, which decays to π+π− and hence is determined in the B̄0

d → J/ψπ+π−

analysis of Ref. [141]. In the determination of the a2 strength we employ two ratios: the ratio
between the isovector and the isoscalar contributions, Eq. (2.56), that yields a relative minus
sign between the B̄0

d → J/ψf2 and the B̄0
d → J/ψa2 couplings, as well as the relative strength

between the f2 → π+π− and the a02 → π0η couplings. The coupling of a tensor meson to a
pseudoscalar pair is obtained from the interaction Lagrangian [129, 191]

LTPP = gT 〈Tµν{uµ, uν}〉, (2.66)

where 〈.〉 is the trace in flavor space, Tµν contains the a2 and f2 mesons and uµ = i(u†∂µu −
u∂µu

†) the pseudoscalars. As we are interested in the non-strange part of the Lagrangian only,
we use for simplicity the SU(2) representations

Tµν =





a02√
2
+ f2√

6
a+2

a−2 − a02√
2
+ f2√

6





µν

, u = exp

(
iφ

2Fπ

)

, φ =

(

π0 + η√
3

√
2π+

√
2π− −π0 + η√

3

)

,

(2.67)
where Fπ = 92.2MeV denotes the pion decay constant. The coupling constant gT = 28MeV can
be obtained consistently from both the f2 → ππ [191] and the a2 → πη decay [129], confirming
SU(3) symmetry. From the Lagrangian we can finally read off the relative strength of the
coupling to ππ and πη and find g2a2πη = g2f2ππ/3.

The right panel of Figure 2.9 shows the predicted D-wave. Compared to the S-wave contri-
bution shown in the left panel the D-wave is negligible in the energy region we consider here,
justifying the assumed S-wave dominance.
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Figure 2.9: Top panel: dΓ/d
√
s for B̄0

d → J/ψπ0η. The distribution is plotted for three different

input phases δ12 = 90◦, 110◦, 125◦ and two normalization constants b̄n0 due to the fits (a) and

(b). The bottom panel shows the predicted D-wave contribution to dΓ/d
√
s (note the different

ranges of the axes).
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Finally we quote the branching fraction for B̄0
d → J/ψπ0η from the a0(980) region. We

integrate the spectrum in the region of the a0(980) and find

B
(
B̄0
d → J/ψπ0η

)
∣
∣
∣√
s≤ 1.1GeV

=
1

Γtot(B̄0
d)

∫ 1.1GeV

Mπ+Mη

dΓ(B̄0
d → J/ψπ0η)

d
√
s

d
√
s

=







(6.0 . . . 6.4)× 10−6 for δ12 = 90◦,

(1.1 . . . 1.2)× 10−5 for δ12 = 110◦,

(1.6 . . . 1.7)× 10−5 for δ12 = 125◦,

(2.68)

where the lower and upper values of the given ranges correspond to the b̄n0 fit results (a) and
(b), respectively. We can compare our results with those of Ref. [192]. Even if this latter
work predicts the B̄0

d → J/ψπ0η differential decay width without absolute normalization, our
distribution can be seen to be narrower. We further note that the numbers in Eq. (2.68) are
around 3 to 8 times larger than the value (2.2 ± 0.2) × 10−6 estimated in Ref. [192], which
however only refers to the a0(980) contribution. To compute it, the authors remove a smooth
but large background from the differential decay. Hence, it is quite natural to obtain a larger
value for this branching ratio than the one quoted in Ref. [192].

The corresponding numbers for B(B± → J/ψπ±η)
∣
∣√
s≤ 1.1GeV

are obtained from Eq. (2.68)

by multiplying the B̄0
d branching fractions with a factor of 2.15, taking into account the relative

isospin factor of 2 and a small correction due to the different lifetimes of B± and B̄0
d [44].

2.7 Estimates for the πη P -waves and left-hand cuts

Developing the formalism for the B̄0
d → J/ψπ0η prediction in the previous sections involves

two assumptions: the absence of considerable crossed-channel effects on the one hand and the
suppression of P - and higher waves (up to the energy region around 1GeV) on the other hand.
We now aim for a quantification of our arguments for the treatment of the S-wave in terms of
scalar form factors and its dominance. For this purpose we demonstrate in Section 2.7.1 the
generic chiral suppression of the πη P -wave production vertex, and provide explicit calculations
of P - and D-wave contributions that are generated by potential t- and u-channel resonances in
Sections 2.7.2 and 2.7.3. Besides justifying the neglect of P - and higher waves these calculations
are supposed to theoretically assure the absence of crossed-channel effects.

Although in the B̄0
d → J/ψπ+π− case the absence of left-hand-cut structures is confirmed by

the experimental analysis, in Section 2.7.4 we rerun the calculation of the B∗ t- and u-channel
exchange in that mode as well, in analogy to what we do for the π0η final state.

2.7.1 Chiral Lagrangians

In order to generate a non-vanishing πη P -wave contribution, the chiral Lagrangian that was
constructed in Section 2.3 needs to involve an explicit symmetry-breaking mass term ∝ χ± =
u†χu† ± uχ†u, where χ = 2B0 diag(mu,md,ms) is proportional to the quark mass matrix. The
lowest-order chiral Lagrangian that can produce a πη pair in a P -wave is

L3 =
g3
8
t†Lu

†B ψµ〈χ+ uµ〉+
g′3
16
t†Lu

†uµB ψ
µ〈χ−〉+ h.c.. (2.69)

An expansion of L3 to quadratic order in the light fields yields

Lφ
2

3 =
i(M2

K −M2
π)

4
√
3F 2

π

[
(g3 + g′3)∂µ(π

0η) + (−g3 + g′3)(∂µπ
0η − ∂µηπ

0)
]
Bd ψ

µ+. . .+h.c., (2.70)
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where the ellipsis denotes terms involving other meson pairs than πη. The last term contributes
to a P -wave amplitude, which we can compare to the S-wave:

M3,P =
(g3 − g′3)(M

2
K −M2

π)

4
√
3F 2

π

(pµ1 − pµ2 )ǫ
∗
µ ,

M1,S =
g1 − (g3 + g′3)(M

2
K −M2

π)

4
√
3F 2

π

(pµ1 + pµ2 )ǫ
∗
µ . (2.71)

We express the matrix elements in the basis of the momentum vectors Eq. (2.5), using

Pµ = (pµ1 + pµ2 ) =
P · pψ
m2
ψ

pµψ + Pµ(0),

Qµ = (pµ1 − pµ2 ) =
Q · pψ
m2
ψ

pµψ +

(

Y (P · pψ)
X

cos θη −
M2
η −M2

π

s

)

Pµ(0) +Qµ‖ . (2.72)

A natural order of magnitude estimate for the ratio of the chiral coupling constants is

g3 − g′3
g1

∼ 1

Λ2
, Λ ≃ 4πFπ ≃ 1GeV. (2.73)

Putting pieces together, we estimate the P -wave-to-S-wave ratio in the amplitude F0

F (P )
0 (s)

F (S)
0 (s)

=
(M2

K −M2
π)Y (P · pψ)√

3Λ2X
+ . . . , (2.74)

and replacing the kinematic functions X , Y , and P · pψ = (m2
B − s−m2

ψ)/2, we arrive at

F (P )
0 (s)

F (S)
0 (s)

=
(M2

K −M2
π)√

3Λ2

λ1/2(s,M2
η ,M

2
π)

s
+ . . . , (2.75)

where we have neglected terms of higher order in the chiral expansion.

While this is derived from a chiral Lagrangian, it is plausible that the chiral estimate for
the P -wave should be valid up to

√
s ≃ 1GeV due to the absence of final-state interactions.

Since the final-state interactions for the S-wave increase its value significantly, we can derive
an upper bound for the ratio from (2.75),

|F (P )
0 (s)/F (S)

0 (s)| . 0.05, (2.76)

which should be valid in the region
√
s ≤ 1GeV.

It is obvious from Eqs. (2.71) and (2.72) that the Lagrangian L3 also produces a P -wave in
the transversity form factor F‖. Just for completeness, we in addition show a Lagrangian term
that generates a P -wave in the remaining form factor F⊥:

L4⊥ =
g4⊥
8
t†L u

† ǫµναβuµ∇αB ψβ〈χ+uν〉. (2.77)

This also involves an explicit symmetry-breaking mass term, however, as indicated by the
notation, it is of higher chiral order than the terms in Eq. (2.69).
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π η

ψ(2S)B J/ψ

π/η η/π

B∗B J/ψ

Figure 2.10: We depict the t-channel ψ(2S) exchange diagram (left panel) and the t/u-channel

diagrams for a B∗ exchange (right panel). The weak decay vertex is marked by a gray square in

both cases. Note that the u-channel ψ(2S) exchange is negligible due to the isospin suppression

of the decay ψ(2S) → J/ψπ0.

2.7.2 ψ(2S)-exchange

We calculate the contribution of t-channel exchange of the ψ(2S) ≡ ψ′ resonance to the decay
amplitude B̄0

d(pB) → J/ψ(pψ)π
0(p1)η(p2) as depicted in Figure 2.10 (left panel). We write the

vertex for B̄0
d(pB) → ψ′(q)π0(p1) in terms of an effective coupling constant ζ as

GF√
2
VcbV

∗
cdfψmψ ζ (pB + p1)µǫ

µ∗(q, ν), (2.78)

where ǫ∗µ(q, ν) denotes the polarization vector of the ψ′ with helicity ν, which yields a partial
width

Γ(B̄0
d → ψ′π0) =

G2
F |Vcb|2|Vcd|2f2

ψm
2
ψ

2

|ζ|2
16π

λ3/2
(
m2
B,m

2
ψ′ ,M2

π

)

m3
Bm

2
ψ′

. (2.79)

From the branching fraction B
(
B̄0
d → ψ′π0

)
= (1.17 ± 0.19) × 10−5 [164] and the life time

τB̄0
d
= (1.519± 0.005)× 10−12 s [44], we find

|ζ| ≈ 0.14. (2.80)

The subsequent decay ψ′(q) → J/ψ(pψ)η(p2) is parametrized in terms of an amplitude

i ξǫµναβ ǫ
µ∗(pψ, λ) p

ν
ψ ǫ

α(q, ν) qβ , (2.81)

leading to a partial width

Γ
(
ψ′ → J/ψη) =

ξ2

96π

λ3/2
(
m2
ψ′ ,m2

ψ,M
2
η

)

m3
ψ′

. (2.82)

From the branching fraction B(ψ′ → J/ψη) = (3.36 ± 0.05)% and the total width Γ(ψ′) =
(296 ± 8) keV [44], we deduce the coupling |ξ| ≈ 0.218GeV−1. Altogether, ψ′-exchange leads

to a contribution to the B̄0
d → J/ψπ0η transversity form factor F (ψ′)

⊥ of the form

F (ψ′)
⊥ (s, t) =

ζξ
√
sX

t−m2
ψ′

. (2.83)

The leading P -wave can be obtained from the partial-wave expansion (2.12), we find

F (ψ′)(P )
⊥ (s) =

√

3

2
ζξ

√
s

Y

(

w − w2 − 1

2
log

w + 1

w − 1

)

, (2.84)
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with the kinematical variables X , Y as defined in the main text, and

w =
1

2XY

[

Σ− 2m2
ψ′ − s+

∆m

s

]

, Σ = m2
B +m2

ψ +M2
π +M2

η . (2.85)

Note that w > 1 except for the interval s ∈ [s1, s2],

s1/2 =
1

2

[

Σ−m2
ψ′ −

(m2
B −M2

π)(m
2
ψ −M2

η )± λ1/2
(
m2
B,m

2
ψ′ ,M2

π

)
λ1/2

(
m2
ψ′ ,m2

ψ,M
2
η

)

m2
ψ′

]

≈
{
(1.34GeV)2, (1.83GeV)2

}
. (2.86)

The ψ(2S)-exchange mechanism contributes by far most of its strength in this interval, where
the resonance can go on-shell, and the partial-wave approximation (2.84) is insufficient; however,
the integrated partial width due to this mechanism, see Eq. (2.37), is two orders of magnitude
smaller compared to the one integrated in the a0(980) region, Eq. (2.68). In addition, at energies
around 1GeV, in contrast, the P -wave fully dominates the ψ(2S) exchange, and contributes to
the differential decay rate according to

dΓ

d
√
s

∣
∣
∣
∣
ψ(2S)

=
G2
F |Vcb|2|Vcd|2f2

ψm
2
ψXY

√
s

2(4π)3m3
B

∣
∣
∣Y 2F (ψ′)(P )

⊥ (s)
∣
∣
∣

2

. (2.87)

We find this to be smaller than the a0(980) signal by about five orders of magnitude: this
particular contribution to the P -wave as well as to the left-hand cut of the process is entirely
negligible.

2.7.3 B∗-exchange in B̄0
d
→ J/ψπ0η

An alternative mechanism generating a left-hand-cut structure is given by the exchange of a
B∗ meson in either the t- or u-channel, see Figure 2.10 (right panel). In contrast to the ψ(2S)-
exchange discussed in the previous section, the B∗ cannot go on-shell in the decay, therefore the
associated left-hand cut is outside the physical decay region. On the other hand, the exchange
of a B∗ is not suppressed in any obvious manner (such as by the OZI mechanism), hence it is
potentially much more sizable. The coupling of a B/B∗ to a light pseudoscalar is given by the
Lagrangian term [68]

g

2
Tr
[
H̄aHbγνγ5

]
uνba, (2.88)

where Tr[. . .] denotes the Dirac trace, a, b are flavor indices, and H = 1
2 (1 + /v)[B∗

µγ
µ − Bγ5]

is the covariant field combining the pseudoscalar and vector B mesons (B−(∗), B̄0(∗), B̄(∗)
s ) of

velocity v, taken to be mass-degenerate in the heavy-quark limit.7 These fields are of mass
dimension 3/2 as factors of

√
mB and

√
mB∗ are absorbed in the B∗

µ and B fields. Heavy-flavor
symmetry dictates that the same coupling g also determines the couplings of charmed D/D∗

mesons to light pseudoscalars [with mB → mD in (2.88)]; the resulting partial width

Γ
(
D+∗ → D+π0

)
=

g2m2
D

192πF 2
π

λ3/2(m2
D∗ ,m2

D,M
2
π)

m5
D∗

(2.89)

allows one to pin down the coupling g ≈ 0.58. For the weak vertex B∗ → J/ψM2, M2 = π0, η,
we use a Lagrangian with four different trace structures obeying the desired transformation

7Some more details on the Heavy-Meson Chiral Perturbation Theory formalism are given in Section 1.2.2.
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behavior under heavy-quark spin symmetry [198],

G̃F t
†
Lu

†
{

Tr
[
(α1 + α2 /v

′)γµ(1− γ5)Jγµ(1 − γ5)H̄
]

+Tr
[
γµ(1 − γ5)J

]
Tr
[
(β1 + β2 /v

′)γµ(1− γ5)H̄
]}

,

G̃F =
GF√
2
VcbV

∗
cdfψmψ. (2.90)

The structure of this Lagrangian is motivated in Appendix A.2. J = 1
2 (1 + /v′)[Ψµγµ − ηcγ5]

combines the lightest pseudoscalar (ηc) and vector (J/ψ) charmonium fields that carry velocity
v′. Similarly to the B-meson fields they are of mass dimension 3/2 and taken to be mass-
degenerate in the heavy-quark limit. We therefore can relate the required B∗ → J/ψM2 vertex
to decays B0 → J/ψM2 and B0 → ηcM2,

Γ
(
B0 → J/ψπ0

)
=

G̃2
F

4F 2
π

λ1/2(m2
B ,m

2
ψ,M

2
π)

16πm3
B

(m2
B −m2

ψ)
2

4mBmψ
|α̃1|2 ≈ 3 Γ

(
B0 → J/ψη

)
,

Γ
(
B0 → ηcπ

0
)
=

G̃2
F

4F 2
π

λ1/2(m2
B ,m

2
ηc ,M

2
π)mηc

16πm2
B

∣
∣
∣
∣
α̃2 +

m2
B +m2

ψ

2mBmψ
α̃1

∣
∣
∣
∣

2

≈ |Vcd|2
2|Vcs|2

Γ
(
B0 → ηcK

0
)
, α̃1 = 4(α1 + β1), α̃2 = 4(α2 + β2), (2.91)

for which the branching fractions are measured [44],

B(B0 → J/ψπ0) = (1.76± 0.16)× 10−5,

B(B0 → J/ψη) = (1.08± 0.24)× 10−5,

B(B0 → ηcK
0) = (8.0± 1.2)× 10−4. (2.92)

We therefore can fix the (combinations of) couplings |α̃1| ≈ 0.055GeV, which is the average
of the values determined from the branching fractions into J/ψπ0 and J/ψη, as well as |α̃2 +
(m2

B +m2
ψ)/(2mBmψ) · α̃1| ≈ 0.028GeV. To satisfy the latter relation, we have two choices for

|α̃2|,8 |α̃2| ≈ 0.035GeV or |α̃2| ≈ 0.091GeV, with the constraint α̃2/α̃1 < 0.
The B∗-exchange graphs for B(pB) → J/ψ(pψ)π

0(p1)η(p2) then lead to an amplitude con-
tribution of the form

Meff
B∗ ≈ − G̃F g

√

m3
Bmψ

2
√
3F 2

π

{

pµ1

[(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

t−m2
B∗

+
1

m2
B∗

(

α̃1 +
mB

mψ
α̃2

)]

+ pµ2

[(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

u−m2
B∗

+
1

m2
B∗

(

α̃1 +
mB

mψ
α̃2

)]

+ iǫµναβpψνp2αp1β
α̃2

mψmB

(
1

t−m2
B∗

− 1

u−m2
B∗

)}

ǫ∗µ(pψ, λ)

= − G̃F g
√

m3
Bmψ

4
√
3F 2

π

{

Qµ
[(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)(
1

t−m2
B∗

− 1

u−m2
B∗

)]

+ Pµ
[(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)(
1

t−m2
B∗

+
1

u−m2
B∗

)

+
2

m2
B∗

(

α̃1 +
mB

mψ
α̃2

)]

+ iǫµναβpψνPαQβ
α̃2

mψmB

(
1

t−m2
B∗

− 1

u−m2
B∗

)}

ǫ∗µ(pψ, λ), (2.93)

8As a simple estimation of the error due to the unknown sign of α̃1 we focus on the linear combination of

couplings |α̃1 + (m2
B + m2

ψ
)/(2mBmψ) · α̃2| entering the B∗ → J/ψM2 amplitude, which is affected by this

uncertainty on a 30% level; therefore we prove the P -wave suppression for both values.
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where terms of order M2
π/η/m

2
B or (mB∗ −mB)/mB have been neglected. In order to project

this expression onto the transversity form factors F0, F‖, we need to replace Qµ by Qµ(‖) =

Qµ + γPµ + . . ., where γ can be read off from Eq. (2.5). We find that we can approximate γ
according to

γ = 1 +
2(t−m2

B)

m2
B −m2

ψ

+O
(
s,M2

π ,M
2
η

)
= −1− 2(u−m2

B)

m2
B −m2

ψ

+O
(
s,M2

π ,M
2
η

)
, (2.94)

such that

F (B∗)
0 (s, t, u) =

g
√
mBmψX√
3F 2

π

1

m2
B −m2

ψ

(

α̃2 +
m2
B +m2

ψ

2mBmψ
α̃1

)

,

F (B∗)
‖ (s, t, u) = −g

√

m3
Bmψ s

4
√
3F 2

π

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)[
1

t−m2
B∗

− 1

u−m2
B∗

]

,

F (B∗)
⊥ (s, t, u) =

g
√
mB sX

4
√
3mψF 2

π

α̃2

[
1

t−m2
B∗

− 1

u−m2
B∗

]

. (2.95)

The partial-wave expansion of F (B∗)
0 contains an S-wave only. We find that the S-wave expres-

sion induced by B∗-exchange does not actually include a left-hand cut: the t- and u-channel
pole contributions cancel, leaving behind an effectively point-like source for an S-wave πη pair.
In this way, B∗-exchange provides a model for the coupling constant that was obtained purely
phenomenologically by fitting to data in the main text. In order to compare the strength of
the B∗-exchange-induced S-wave to the phenomenological one, we calculate the analogue of
the (fitted and afterwards properly normalized) constant b̄n0 ≈ 2.8 · 10−10GeV−3 by means of
Eq. (2.57). We find a strength |b̄B∗

0 | ≈ 1.6 · 10−10GeV−3: the combination of the two couplings
α̃1/2 is exactly the one fixed from B0 → ηcK

0 above, hence the ambiguity in α̃2 just translates
into a sign ambiguity once more. The effective coupling strength therefore indeed produces an
S-wave rate of the correct order of magnitude, pointing towards an essential role of the B∗ in
the explanation of the production mechanism; a more systematic investigation of this strength
is beyond the scope of the present article.

Our main focus here is rather on the P -waves in F (B∗)
‖ and F (B∗)

⊥ , which are given by

F (B∗)(P )
‖ (s) = −g

√

m3
Bmψ s

4
√
2F 2

π

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

XY

(

v+ − v2+ − 1

2
log

v+ + 1

v+ − 1

− v− +
v2− − 1

2
log

v− + 1

v− − 1

)

,

F (B∗)(P )
⊥ (s) =

g
√
mB s

4
√
2mψF 2

π

α̃2

Y

(

v+ − v2+ − 1

2
log

v+ + 1

v+ − 1
− v− +

v2− − 1

2
log

v− + 1

v− − 1

)

,

v± =
1

2XY

[

Σ− 2m2
B∗ − s± ∆m

s

]

, (2.96)

and the pairs of terms depending on v±, coming from the t- and u-channel pole terms, almost
cancel each other. The D-waves, given by

F (B∗)(D)
‖ (s) = −

√
5g
√

m3
Bmψ s

4
√
2F 2

π

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

XY

(

v2+ − v+(v
2
+ − 1)

2
log

v+ + 1

v+ − 1

+ v2− − v−(v2− − 1)

2
log

v− + 1

v− − 1
− 4

3

)

,
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F (B∗)(D)
⊥ (s) =

√
5g

√
mB s

4
√
2mψF 2

π

α̃2

Y

(

v2+ + v2− − 4

3
− v+(v

2
+ − 1)

2
log

v+ + 1

v+ − 1

− v−(v2− − 1)

2
log

v− + 1

v− − 1

)

, (2.97)

are actually as large as the P -waves around
√
s ≈ 1GeV. Both τ =‖ and τ =⊥ P - and D-waves

yield contributions to dΓ/d
√
s suppressed relative to F (B∗)

0 by two orders of magnitude, proving
yet again the strong dominance of the S-wave in this decay. This is illustrated in Figure 2.11 for
the two sets of coupling strengths; there the respective P - and D-wave contributions to dΓ/d

√
s

are divided by the predicted differential decay rate as determined in equation (2.58), where only
the S-wave is included and the πη final-state interaction is considered. In Section 2.7.4 in the
context of the π+π− final state we argue that there is a preference in choosing the smaller
value for the coupling |α̃2| ≈ 0.035GeV; for that choice the P -wave contribution to dΓ/d

√
s

is suppressed relative to the S-wave contribution by even three orders of magnitude (see top
panel of Figure 2.11).

2.7.4 B∗-exchange in B̄0
d
→ J/ψπ+π−

In the B̄0
d(pB) → J/ψ(pψ)π

+(p1)π
−(p2) case the absence of left-hand-cut structures is confirmed

by the experimental analysis that shows that there are no considerable structures in the J/ψπ
channel within the Dalitz plot. However, this phenomenological argument does not exclude the
possibility of crossed-channel effects occurring already in the weak decay mechanism, i.e. the
B∗ exchange. We rerun the calculation of the B∗ t-channel exchange in that mode as well, in
analogy to what we do for the π0η final state, to theoretically substantiate the neglect of any
crossed-channel structures. There is no crossing symmetry for the π+π− final state, such that
there is no contribution from the u-channel exchange to the effective matrix element, which
reads

Meff
B∗ ≈ G̃F g

√

m3
Bmψ

F 2
π

{

pµ1

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

t−m2
B∗

+ (pµ1 + pµ2 )

(

α̃1 +
mB

mψ
α̃2

)
1

2m2
B∗

+ iǫµναβpψνp2αp1β
α̃2

mψmB

1
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B∗

}

ǫ∗µ(pψ, λ)

=
G̃F g

√

m3
Bmψ
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π

{

Pµ
[(
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ψ

2mBmψ
α̃2

)
1
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+

(
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)
1
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]

+Qµ
(

α̃1 +
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ψ

2mBmψ
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)
1
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B∗

+ iǫµναβpψνPαQβ
α̃2

mψmB

1

t−m2
B∗

}

ǫ∗µ(pψ, λ).

(2.98)

Performing the same steps as in Section 2.7.3 yields the transversity amplitudes

F (B∗)
0 (s, t, u) = −g

√
mBmψX

F 2
π

1

m2
B −m2

ψ

(

α̃2 +
m2
B +m2

ψ

2mBmψ
α̃1

)

,

F (B∗)
‖ (s, t, u) =

g
√

m3
Bmψ s

2F 2
π

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

t−m2
B∗

,

F (B∗)
⊥ (s, t, u) = −g

√
mB sX

2
√
mψF 2

π

α̃2

t−m2
B∗

, (2.99)

where in F (B∗)
0 the pole contribution cancels, such that it contains a point-like S-wave only,

similarly to the result of Section 2.7.3.
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Figure 2.11: Relative size of the higher-wave contributions to the differential decay rate dΓ/d
√
s:

the ratios of the τ =⊥ P -to-S-wave (solid, red), τ =‖ P -to-S-wave (dashed, blue), τ =⊥D-to-S-

wave (dash-dotted, orange) and τ =‖ D-to-S-wave (dotted, green) contributions are depicted

for the two sets of couplings strengths |α̃2| ≈ 0.035GeV (top panel) or |α̃2| ≈ 0.091GeV

(bottom panel). For the S-wave our predicted differential decay rate is used, including final-

state-interaction effects and S-wave dominance, see Section 2.6.
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We extract the B∗-exchange-induced S-wave strength |b̄B∗

0 | ≈ 2.5 · 10−10GeV−3 that nearly
saturates the phenomenological parameter |b̄n0 | ≈ 2.8 · 10−10GeV−3, revealing that the pro-
duction mechanism may be approximately modeled by the B∗ exchange. A comparison of
Eqs. (2.95) and (2.99) reveals that the S-wave amplitudes differ by a factor −

√
3. The same

relative factor appears when transferring the B̄0
d → J/ψππ amplitude to the πη channel for a

prediction using the fitted ππ amplitude strength, such that one might expect comparable state-
ments concerning the saturation between both the B∗-exchange-induced and phenomenological
strengths. This is indeed the case when retaining leading symmetry relations and inserting the
LO form factor normalizations Eq. (2.49). The worse saturation seen in Section 2.7.3 for the
πη scenario hence is caused by NLO chiral corrections.

The P -wave amplitudes F (B∗)(P )
‖ and F (B∗)(P )

⊥ read

F (B∗)(P )
‖ (s) =

g
√

m3
Bmψ s

2F 2
π

√

3

2

(

α̃1 +
m2
B +m2

ψ

2mBmψ
α̃2

)
1

XY

(

v+ − v2+ − 1

2
log

v+ + 1

v+ − 1

)

,

F (B∗)(P )
⊥ (s) = − g

√
mB s

2
√
mψF 2

π

√

3

2

α̃2

Y

(

v+ − v2+ − 1

2
log

v+ + 1

v+ − 1

)

. (2.100)

Contrary to the exotic P -wave in the π0η system the π+π− P -wave is not suppressed. We
compare the B∗-exchange-induced P -waves with the full P -waves that we have fitted to the
data, see Section 2.5.1,

CF (P )
‖ (s) =

√

Nπsa‖Ω
1
1(s), CF (P )

⊥ (s) =
√

NπsXa⊥Ω
1
1(s). (2.101)

For simplicity we neglect here the correction due to ρ–ω mixing. Therefore we calculate the

strengths a
(B∗)
τ (τ =‖,⊥) that correspond to the fitted coupling strengths aτ . For the two sets

of couplings |α̃2| these strengths are shown in Figure 2.12. Note that for a
(B∗)
τ s-dependent

curves are shown due to the t-pole dynamics. The only non-analytic behavior (that might
cause an effect from the left-hand cut) shows up at s = 0 due to square-root singularities

in a
(B∗)
τ (s), i.e. below the π+π− threshold. Further, the P -wave is kinematically suppressed

near the threshold: the aτ contributions to dΓ/d
√
s are multiplied by sY 2 = sσ2

π = s− 4M2
π.

In the region where the P -wave becomes more important the strengths a
(B∗)
τ (s) can be well

approximated by an analytic (almost constant) function, such that there is no conflict with
describing the partial waves by a polynomial multiplied with the Omnès function, even if the
B∗ has considerable influence in the unphysical region. Focusing on that region above threshold,
where P -waves are not suppressed, we even find that for one set of couplings |α̃2| the strength

a
(B∗)
‖ (s) converges to the fitted a‖, the latter shown by a band regarding the uncertainty due to

different fit scenarios. This is a remarkable outcome as it supports our suggestion we made in
the context of the B̄0

d → J/ψπ0η S-wave that the B∗ plays an essential role in the production

mechanism, see Section 2.7.3. The coupling a
(B∗)
‖ (s) that results from the other choice of |α̃2| is

more than twice as large as the fitted coupling. As the non-analyticity in the physical region is
still small this does not contradict our Omnès-times-polynomial ansatz. However, this scenario
appears to be less plausible: if the impact of the B∗ to the production mechanism is that large,
contributions from other mechanisms of similar size will be required that cancel each other. We
therefore argue for a preference of using the former value of the coupling, i.e. |α̃2| ≈ 0.035GeV.

Finally we see that the couplings a
(B∗)
⊥ (s) are small compared to the (fitted or B∗-induced) a‖

values, with a constant ratio
∣
∣
∣
∣
∣
∣

a
(B∗)
⊥

a
(B∗)
‖

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

F (P )
⊥

XF (P )
‖

∣
∣
∣
∣
∣
∣

=
2α̃2

2mBmψα̃1 + (m2
B +m2

ψ)α̃2
= {0.14, 0.11}, (2.102)
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Figure 2.12: For the normalized coupling strength a‖ a band (red) is shown, spanned by the re-

sults of different fit scenarios, see Section 2.5.1. The a
(B∗)
‖ curves (blue, solid for α̃

(1)
2 , dashed for

α̃
(2)
2 ) differ considerably for the two sets of couplings α̃2: while the dashed curve is considerably

larger than the strength obtained in the fits, the solid curve nearly saturates the strength of the

fitted P -wave and converges to the band, at least aside from the region around the threshold

(indicated by the vertical line) and below. Both a
(B∗)
⊥ (green, dotted) are small compared to

a
(B∗)
‖ .

where the two results again correspond to the ambiguity in |α̃2|. There are no fitted a⊥ results
we can compare to, as we found it to be a redundant parameter in our fits. Instead in our
fits we figured out a considerable contribution due to the F0 P -wave corresponding to the fit
parameter a0—there was no considerable preference for the choice of the transversity P -wave in
our formalism.9 Actually the transversity-0 P -wave is not explained by the B∗ exchange, given
that Eq. (2.99) rules out a P -wave. We test whether this discrepancy can be compensated by
the aB

∗

⊥ contribution, which is indeed the case. This is demonstrated in Figure 2.13, where the
〈Y 0

0 〉 distribution calculated with the B∗-exchange induced coupling strengths instead of the
fitted subtraction polynomials is compared to the LHCb data (we confine ourselves to using

9Formally, in the combination 〈Y 0
0 〉 + 〈Y 0

2 〉 the parameter a0 is actually uncoupled from the a‖ and a⊥
parameters, which becomes obvious when considering the terms in the brackets in Eq. (2.52), written as

〈Y 0
0 〉 ∼ a20 + (a2‖ + β0a

2
⊥)s+ β1a

2
⊥s

2 + ...

〈Y 0
2 〉 ∼ 2a20 − (a2‖ + β0a

2
⊥)s− β1a

2
⊥s

2 + ...,

where we denote X2 ≡ β0+β1s+.... However, we found that fitting the full set of parameters aτ did not improve

the data description compared to a two-parameter fit. Given the limited amount of data as well as the closeness

to s = 1 GeV2 we even could perform fits of similar fit quality by either using the a0 parameter, entering as a

constant term in the above relation, or the aτ parameter that determines the strenght of a quadratic term. A

quantitatively considerable decoupling of these terms requires more statistics.
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Figure 2.13: The 〈Y 0
0 〉 distribution with the coupling strengths constrained by the B∗-exchange

model (blue solid line) is compared to the LHCb data. For completeness the fitted distribution

(FIT I, see Section 2.5.1) (red, dashed) is depicted as well.

the preferred solution of |α̃2|). The data are remarkably well described by our theoretical
curve. Consequently, there is evidence that describing the energy distribution in terms of
the parameter a⊥ is more expedient than using a0. Constrained by heavy-meson and chiral
symmetry, analyticity and unitarity, we achieve a 100% predictive capability, superseding any
fit procedures and providing yet a test of heavy-meson symmetries. Of course this noticeable
grade of quality may to some extent be accidental (actually, the equivalent estimation for the
B∗-exchange induced strength for the 〈Y 0

2 〉 distribution is by far not that close to the fitted
result, but still of the same order of magnitude) but this certainly demonstrates that modelling
the short-distance physics by B∗ exchange works really well; it just induces some restrictions
upon which transversity P -waves contribute.

We next study whether these observations are corroborated by some chiral considerations,
similar to those made in Section 2.7.1. There a chiral Lagrangian was constructed to demon-
strate the neglect of the πη P -wave. The ππ P -wave is already present at leading chiral order,
cf. Eq. (2.34), from which we calculate the P -to-S-wave ratio. There are contributions to the
form factors F0 and F‖. We find

∣
∣
∣
∣
∣

F (P )
0

F (S)
0

∣
∣
∣
∣
∣
=
Y (P · pψ)√

3X
≡ Y aχ0
Xbχ0

, P · pψ =
m2
B − s−m2

ψ

2
, (2.103)

and compare the ratio
aχ0
bχ0

=
P · pψ√

3
= (5.0...5.28) GeV2 (2.104)

(the small value is obtained for s = 0, the large value for s = 1, we hence find a rather stable



2.8 B̄0
d/s → J/ψK̄K: coupled-channel related predictions 69

ratio under a varying energy) to the corresponding ratio of fit parameters (see Table 2.1)

a0
bn0

= 4.51+0.88
−1.03 GeV2. (2.105)

In analogy the ratio ∣
∣
∣
∣
∣
∣

F (P )
‖

F (S)
0

∣
∣
∣
∣
∣
∣

=

√
2smψ√
3X

≡
√
saχ‖
Xbχ0

(2.106)

implies
aχ‖
bχ0

=

√

2

3
mψ = 2.53 GeV, (2.107)

which has at least the same order of magnitude as the ratio of the fitted strengths

a‖
bn0

= 5.03 GeV. (2.108)

In contrast to the above calculation of the B∗ exchange modelling the short-distance physics
this chiral estimation and comparison to the phenomenological fits results in a contribution from
the transversity-0 P -wave that is of comparable size, and there is no evidence at all to prefer
the transversity form factor F⊥, which emerges from a Lagrange density at higher order.

Let us summarize what we have learned from these considerations. We have discussed two
distinct approaches to estimate the P -waves, on the one hand by explicitly calculating the B∗

exchange diagrams, and on the other hand we have employed the chiral Lagrangian introduced
in Section 2.7.1, from which we have calculated ratios between the S-wave and the various
transversity P -waves. We have then extracted coupling strengths that are comparable to the
fit parameters. The B∗ exchange model rules out a transversity-0 P -wave, but a contribution
from the other transversity P -waves proves quite satisfactory to describe the 〈Y 0

0 〉 distribu-
tion. However, the comparison of the 〈Y 0

2 〉 prediction shows larger discrepancies to the data
and hence to our fit results; in particular the exclusion of a transversity-0 P -wave results in
a negative 〈Y 0

2 〉 distribution, while all LHCb data points are positive (however, with a signifi-
cant uncertainty). Contrary, our chiral consideration entails a transversity-0 P -wave, and the
P τ=0-wave-to-S-wave ratio is sufficiently comparable to the one obtained using the fit results.
However, for the transversity-‖ P -wave-to-S-wave ratio the comparison of the chiral vs. fit-
ted ratios is less convincing, but yields at least the same order of magnitude. This imprecise
matching, together with the discrepancy in the 〈Y 0

2 〉 distribution casts doubts on the mentioned
100% predictiveness employing the B∗ exchange to model the short-disctance physics. Both
ansätze yield suitable constraints for rough estimations, e.g. to decide whether one can expect a
noticeable contribution from the P -wave or whether it is mandatory to take into account effects
from left-hand cuts, but they do not provide strict constraints from which one can calculate
accurate, precise numerical results.

2.8 B̄0
d/s → J/ψK̄K: coupled-channel related predictions

As explained in Sections 1.3.4 and 2.4, in the coupled-channel treatment the relative strengths
between the ππ or πη and the isoscalar or isovector K̄K scalar form factors are fixed, thus
the respective final states are related to each other unambiguously. We therefore are able to
make predictions for the B̄0

s → J/ψK+K− as well as the B̄0
d → J/ψK+K−/K0K̄0 S-wave

amplitudes. The latter we assume to dominate the differential decay rates in the energy region
considered such that we make a prediction for the differential decay rates. In contrast, in the
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Rf0/a0
th δ12 = 90◦ δ12 = 100◦ δ12 = 110◦ δ12 = 125◦

√
sp = 1.05 GeV 0.35 . . . 0.46 0.25 . . . 0.35 0.16 . . . 0.23 0.11 . . . 0.15

√
sp = 1.20 GeV 0.33 . . . 0.43 0.22 . . . 0.31 0.15 . . . 0.22 0.11 . . . 0.15

Table 2.2: Theoretical determination of the ratio Rf0/a0 , Eq. (2.109), for different values of the

phase δ12 entering in the determination of the I = 1 K̄K form factor, ΓI=1
KK , and the upper

integration limit sp. The given range for the respective values is due to the uncertainty in the

form factor normalizations.

case of the B̄0
s decay the P -wave dominates the spectrum. There we calculate the S-wave

background to the prominent φ(1020) resonance.

2.8.1 B̄0
d
→ J/ψK̄K spectral distributions

We discuss our results for the B̄0
d → J/ψK̄K decays, where K̄K can be either a neutral or

a charged kaon pair. Note that a few data points are available for the latter channel [186].
In Ref. [147] properties of the f0(980) are deduced based on an amplitude analysis including
both resonant and non-resonant terms performed in the same paper. However, on the phys-
ical axis a decomposition into resonant and non-resonant contributions is not possible in a
model-independent way. Accordingly the only well-defined quantity that compares the f0(980)
contribution to the a0(980) contribution is

Rf0/a0 =

∫ sp
4M2

K

∣
∣X2Y

√
sΓI=0

KK

∣
∣
2
ds

∫ sp
4M2

K

∣
∣X2Y

√
sΓI=1

KK

∣
∣
2
ds
, (2.109)

which is dominated by the two scalar resonances for values of sp that are not too large. Our
determinations for this quantity are shown in Table 2.2 for different values of the input phase
δ12 and of the upper integration limit sp. There is some weak dependence on sp, however,
as the table clearly shows, Rf0/a0 is very sensitive to the input phase δ12. This sensitivity is
even stronger than the uncertainty on the form factor normalizations, which are not accurately
determined, cf. Table 2.2. A measurement of Rf0/a0 would thus be very valuable to further
constrain the so far badly determined phase δ12.

Next we turn to our predictions for the physical final states, K+K− and K0K̄0.10 In a very
naive picture, we would expect a d̄d source term to produce a pair of neutral kaons only, and no
charged ones. Equation (2.50) in combination with Eq. (2.62) suggests that at (the unphysical
point) s = 0, this naive view is indeed close to reality. If this behavior persisted in the energy
region around 1GeV, we would expect a destructive interference of f0(980) and a0(980) for
charged kaons, but a constructive one for the neutral pairs.

In Figure 2.14 we present our results for 〈Y 0
0 〉 for physical K̄K states, namely K+K− (top

panel) and K0K̄0 (bottom panel), which differ by the sign of the interference term between
the isoscalar and the isovector component, according to Eq. (2.62). A simple inspection of the
figure shows that the interference pattern anticipated in the previous paragraph does not hold
at all. To understand the origin of this, we show the two (I = 0, 1) kaon form factors in the
Figures 2.15 (magnitude) and 2.16 (phases): we see that the I = 1 one completely dominates

10For simplicity, we discuss the neutral kaon channel in terms of the strong eigenstates. For even partial waves,

the relation to the weak eigenstates, neglecting effects of CP -violation, is given by dΓ(B̄0
d

→ J/ψKSKS) =

dΓ(B̄0
d
→ J/ψKLKL) = dΓ(B̄0

d
→ J/ψK0K̄0)/2.
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Figure 2.14: 〈Y 0
0 〉(s) for B̄0

d → J/ψK+K− (top) and B̄0
d → J/ψK0K̄0 (bottom). The curves

are calculated for different values of the phase δ12 (see text for further details). The error bands

reflect the uncertainties in the normalizations of the form factors. The experimental points are

taken from Ref. [186].

over the I = 0 form factor, or in other words, the a0(980) signal is much stronger than the
f0(980) one; hence, both the K+K− and K0K̄0 angular moments are dominated by the I = 1
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Figure 2.15: Moduli of the scalar form factors ΓIKK for I = 0, 1. The two bands for the

I = 0 form factor refer to the T -matrix solutions of Ref. [127] (DP) and Refs. [37,153] (B+O),

respectively.

form factor, which explains why the interference pattern is not the one naively expected. The
small value theoretically obtained for Rf0/a0 is a direct consequence of the I = 1 dominance
found here, as can be seen from its definition, Eq. (2.109). The difference in strengths of the two
resonances is somewhat remarkable. It is not due to significant differences in the pole positions,
as the I = 1 T -matrix of Ref. [140] uses an a0(980) pole position (on the second sheet) of

√

sIIa0(980) =
(
994± 2− i(25.4± 5.0)

)
MeV (2.110)

as a constraint [193,194], while the second-sheet pole of the f0(980) corresponding to our (main)
I = 0 T -matrix parametrization is given by [195]

√

sIIf0(980) =
(

996+4
−14 − i

(
24+11

−3

))

MeV, (2.111)

determined from pion–pion Roy equations. It seems, therefore, that rather the residues of the
resonance couplings to the respective currents are very different, which might be in conflict with
at least a simple interpretation of both scalar resonances as K̄K molecules: in such a picture,
similar binding energies would imply similar coupling strengths to the K̄K channel according
to the Weinberg criterion [196, 197], at least as long as the coupling to the second channel (ππ
and πη) is weak enough to be perturbative.11 More detailed investigations of the couplings
of the scalars to q̄q operators, completing Ref. [195] also in the I = 1 sector, would be very
interesting to clarify this issue.

11Note that the central values for the pole positions quoted in Eqs. (2.110), (2.111) also slightly discourage

such a simple picture, as they lie somewhat above the K̄K threshold.
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I = 0 form factor refer to the T -matrix solutions of Ref. [127] (DP) and Refs. [37,153] (B+O),

respectively.

It is remarkable to note that the phases of the two form factors, see bottom right panel
of Figure 2.15, change almost perfectly in parallel, starting from the πη threshold—the only
difference is the low-energy phase growth in the isospin-0 channel, associated with the f0(500).
In a single-channel phase-dispersive Omnès representation, the isospin-0 will then roughly equal
the isospin-1 form factor, multiplied with a second Omnès function that contains the low-energy
phase rise between ππ and πη thresholds only. It is easily seen that this factor, leading to the
famous f0(500) enhancement, simultaneously depletes the resonance signal of the f0(980) quite
significantly: while it is (broadly) peaked around

√
s = 500MeV, it falls well below 1 around

1GeV, the region of the second resonance.

Figure 2.17 depicts the described phase rise at low energies due to the f0(500) resonance
(red, solid curve), given roughly by the difference of the isoscalar (green, dotted curve) and the
isovector (orange, dash-dotted) K̄K form factor phases, as well as the corresponding Omnès
functions. Our main interest here is to qualitatively illustrate the emergence of the f0(500)
enhancement; we therefore refrain from including error bands due to the uncertainties in the
form factor normalizations or different possible input phases δ1,2 (such as those presented in
Figure 2.16)—we rather pick one configuration set (δ12 = 90◦ and the lower edge of the uncer-
tainty bands) and approximate the phase difference by an exactly constant term above the πη
threshold. In the left panel of Figure 2.17 the Omnès solutions are shown. The green, dotted
and the orange, dash-dotted curves are calculated as single-channel approximations based on
the phases extracted from the coupled-channel form factor solutions shown in the right panel.
Both solutions exhibit a prominent peak in the f0(980)/a0(980) region. We observe the f0(500)
enhancement in the I = 0 Omnès solution that is attended by the congruent bump in the
Omnès solution constructed out of the phase difference (red, solid curve). Further, the figure
shows the discussed depletion near 1GeV in the I = 0 Omnès solution.
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Figure 2.17: Illustration of the f0(500) enhancement emerging from the phase difference between

isoscalar and isovector KK̄ form factor phases. The left panel shows the Omnès solutions

constructed as single-channel approximations for the I = 0 and I = 1 K̄K Omnès solutions, as

well as the Omnès function constructed using the phase difference argΓI=0
KK(s) − arg ΓI=1

KK(s).

The right panel shows this phase difference (approximated by a constant term above the πη

threshold) as well as the phases extracted from the coupled-channel K̄K I = 0 and I = 1 form

factors.

Finally, it can be seen in Figure 2.15 that the peak in the K+K− angular moment is located
around

√
s ≃ 990MeV and is quite narrow, whereas the K0K̄0 threshold lies at

√
s ≃ 995MeV.

Accordingly the peak in the K0K̄0 distribution is phase-space suppressed.

There are three experimental points available in the charged kaon spectrum in the region
we investigate, providing a test of our prediction, which is solely based on coupled-channel and
isospin relations.12 Each of the two data points that are located above threshold agrees with one
of our different determinations of 〈Y 0

0 〉, depending on the value of the input phase δ12. Tempting
as it would be, we refrain from fitting these data points by modifying our theoretical input. We
content ourselves with illustrating that new and improved data would help in constraining the
πη–K̄K form factors, and thus our theoretical understanding of their final-state interactions
and the properties of the a0(980) and (indirectly) the f0(980) resonances.

2.8.2 B̄0
s
→ J/ψK+K− S-wave prediction

Having obtained the B̄0
s → J/ψπ+π− fit parameters, we can straightforwardlymake a prediction

for the B̄0
s → J/ψK+K− S-wave amplitudes. The s̄s source that produces the kaons is purely

isoscalar, such that we do not have to consider an I = 1 S-wave contribution (with an a0(980)
resonance). Hence we can use in a direct way the relation between the ππ and the KK̄ final
states provided by the coupled-channel formalism, cf. Sections 1.3.4 and 2.4.5.

In particular an understanding of the S-wave background to the prominent φ(1020) is of
interest. In the LHCb analysis [185], the f0(980) as well as a non-resonant S-wave content
is reported within a mass window of ±12MeV around the φ(1020), which contribute an S-
wave fraction of (1.1 ± 0.1+0.2

−0.1)%—consistent with former measurements from LHCb, CDF,
and ATLAS [199–201], with the newest LHCb analysis for the B̄0

s → J/ψK+K− decay [202],
as well as theoretical estimates [203]. We calculate the S-wave fraction in the same mass

12Note that the data we compare to is binned; to compare the spectrum with charged to the one with neutral

kaon pairs in the final states we rescale the latter.
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interval ±12MeV around the φ(1020) mass adopting the LHCb Breit–Wigner parametrization
for the φ(1020), but using the predicted S-wave for the J/ψK+K− final state. As discussed in
Section 2.4.5, this S-wave can be obtained by replacing the pion scalar form factor and all pion
masses and momenta by the respective kaon quantities and taking the resulting fit parameters
from the pion case, after properly normalizing both ππ and K̄K experimental spectra.

The S-wave contribution to the φ(1020) peak region is given by

RS/φ ≡
∫mφ+12MeV

mφ−12MeV
X3Y

√
s |c̄s0ΓsK(

√
s)|2 d

√
s

∫mφ+12MeV

mφ−12MeV

√
4π
〈
Y 0
0

〉

B̄0
s→J/ψK+K− d

√
s
, (2.112)

where we can approximate the (normalized) angular moment in the region of interest by the S-
wave and the φ(1020) contribution, cf. Eqs. (2.61) and (2.65). Using the B+O input, we obtain
RS/φ = 1.1%, in agreement with the LHCb results. However, there is a notable uncertainty due
to the estimated ambiguity in the phase input in the region of the f0(980) resonance discussed
in Section 2.5.2. Using the DP phase instead of the B+O phase input yields a fraction of 1.95%.

2.9 Summary and outlook

In this chapter, we have described the strong-interaction part of the B̄0
d/s → J/ψM1M2 de-

cays, M1M2 being a light meson pair π+π−, π0η, K+K− or K0K̄0, by means of dispersively
constructed scalar and vector pion form factors. This formalism respects all constraints from
analyticity and unitarity. The non-strange and strange scalar form factors are calculated from a
two-channel Muskhelishvili–Omnès formalism that in the isoscalar case requires the pion–pion
elastic S-wave phase shift as well as modulus and phase of the corresponding ππ → KK̄ am-
plitude as input. For the vector form factor, an elastic Omnès representation based solely on
the pion–pion P -wave phase shift is sufficient, supplemented by an enhanced isospin-breaking
contribution of ρ–ω mixing, which can be fixed from data on e+e− → π+π−. The isovector
scalar form factors are calculated using the approach of Ref. [140], where chiral constraints and
unitarity have been imposed.

We employed the ππ spectra to determine the fit parameters and to demonstrate that for
energies

√
s ≤ 1.02GeV, a minimal description of all S- and P -waves (constructed in a form

free of kinematical singularities) as the corresponding form factors, multiplied by real constants,
is sufficient. Allowing for subtraction polynomials with linear s-dependence leads to a slightly
improved fit quality solely in the case of one P -wave component, with a slope still compatible
with zero within uncertainties. In particular considering the S-wave slope as a free fit parameter
(as opposed to fixing it to zero) only yields a minimal improvement of the χ2. In accordance
with expectations from the underlying tree-level decay mechanism, below the onset of D-wave
contributions that become important with the f2(1270), only the non-strange scalar and the
vector form factors feature in the B̄0

d decay, while the strange scalar form factor determines the
B̄0
s S-wave.
The overall fit quality in the energy range considered is at least as good as in the phe-

nomenological fits by the LHCb collaboration [141, 142], where Breit–Wigner resonances and
non-resonant background terms were used. However, since the dispersive analysis allows one
to use input from other sources, our analysis calls for a much smaller number of parameters to
be determined from the data. In addition, a comparison of the B̄0

d S-wave obtained from the
dispersive analysis with the one deduced from the LHCb analysis shows drastic differences in
both modulus and phase: it is well-known that the f0(500) does not have a Breit–Wigner shape,
and therefore such parametrizations should be avoided—especially when it comes to studies of
CP violation that need a reliable treatment of the phases induced by the hadronic final-state
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interactions [149]. The LHCb analysis of the B̄0
s S-wave uses a Flatté parametrization of the

f0(980), solely (corresponding to their Solution I) or combined with a non-resonant background
(Solution II). Only Solution II yields a phase that is close to the phase of the strange scalar
form factor, and approximately compatible with Watson’s final-state interaction theorem in the
elastic region.

Having shown that our formalism works, we have made predictions for the S-waves in
B̄0
d/s → J/ψ{π0η,K+K−, K̄0K0}, which are related to the corresponding π+π− final states

through channel coupling and chiral symmetry. For the B̄0
s → J/ψK+K− S-wave only the

results of the fit to the π+π− final state are required to predict an S-wave fraction below the
φ(1020) resonance of about 1.1%, in agreement with the findings by the LHCb collaboration.
Describing the B̄0

d modes involves the isovector scalar form factors that are constrained except
for a free parameter δ12. We demonstrated that experimental data for B̄0

d → J/ψ(πη, K̄K)
can be used to further constrain this parameter, that is crucial to pin down the πη scattering
amplitude. Around 1GeV, the latter is dominated by the pole of the scalar meson a0(980). A
high-accuracy determination of δ12 would, however, need further theoretical development.

In addition, in the scalar sector enhanced isospin-violating effects can occur around the
two-kaon thresholds, driven by both the proximity of resonances in the isoscalar (f0(980))
as well as isovector (a0(980)) channels, and the 8MeV gap between the K+K− and K0K̄0

thresholds [204]. This phenomenon is usually referred to as a0–f0 mixing in the literature, and
has been argued to be significant for, e.g., η(1405) → 3π [205, 206], weak decays of Ds/Bs
mesons [207], and J/ψ → φπ0η [190, 208]. The predictions of the last mentioned theoretical
calculations were confirmed experimentally at BES III [209, 210].

First steps towards a rigorous dispersive treatment of a0–f0 mixing are reported in Ref. [211,
212]. An adaption of this formalism to the reactions at hand will be pursued elsewhere. Here it
would in particular be important to perform a detailed study of B̄0

s → J/ψπ0η, since the weak
decay that drives the transition leads to a purely isoscalar source.

To extend our description of the form factors to higher energies, eventually covering most
of the energy range accessible in B̄0

d/s → J/ψπ+π−, inelastic channels with corresponding
higher resonances have to be taken into account. Here, a formalism developed for the vector
form factor [99] that correctly implements the analytic structure and unitarity, reduces to the
Omnès representation in the elastic regime, but maps smoothly onto an isobar-model picture
at higher energies should be extended to the scalar sector. There is an ongoing study that
adopts this formalism to the considered Bd/s decays [213]. Even an extraction of the scalar
form factors from these high-precision LHCb data sets seems feasible, and should be pursued
in the future.



Chapter 3

Analysis of the decay

D+ → K−π+l+νl

3.1 Introduction

The pion–kaon system is one of the most prominent two-particle systems in hadronic reactions.
Extracting information on pion–kaon phase shifts with high accuracy is therefore essential for
precision studies of any process involving pions and kaons in the final state. We investigate
the semileptonic decay D+ → K−π+l+νl (abbreviated by Dl4), in particular we consider De4,
where the final-state lepton is an electron. The Dl4 decay is supposed to be the most suitable
one for the purpose of such a phase-shift analysis [214]. This assumption relies on its analogy
to the K → ππlν (Kl4) decays, from which the phase differences δ00 − δ11 for the isoscalar S-
and isotriplet P -wave ππ scattering phase shifts were extracted [215–218]. Similar techniques
applied to the Dl4 decay seem to be feasible in order to gain information about the I = 1/2 πK
phases. In particular an analysis of the full angular decay distribution including interference

terms provides information about the πK S- and P -wave difference δ
1/2
1 − δ

1/2
0 . Alternative

D-meson decays involving pion–kaon systems may also shed light on the pion–kaon phase shifts.
For example the D+ → Kππ+ Dalitz plot is dominated by I = 1/2 πK partial waves. How-
ever, three-particle interactions considerably shape the phases of the involved amplitudes and
therefore complicate the extraction of two-particle phase-shift information [130, 131].

In contrast to the Kl4 decays, the Dl4 decay gives access to dynamics also at higher energies
with a clear resonant structure visible in the Dl4 P -wave due to the K∗(892). Achieving a high-
precision phase-shift determination hence requires to accurately describe the hadron-physics
aspects, taking into account the final-state interactions of the hadrons. We will treat this within
a dispersive approach, being model-independent, and using πK phase shifts obtained from
Roy–Steiner analyses [37]. This treatment is very closely related to the analysis of the decay
B → ππlν (Bl4) [126], suggested to extract the Cabibbo–Kobayashi–Maskawa (CKM) matrix
element |Vub|. We use and develop further the method used there: Omnès representations, in
which the crossed-channel effects are approximated by simple pole terms calculated in Heavy-
Meson Chiral Perturbation Theory (HMChPT), are employed to describe the hadronic partial-
wave amplitudes. By transferring this method to the Dl4 decay, we are confronted with several
challenging aspects: for example we have to scrutinize the application of HMChPT in the Dl4

case, where the convergence of the heavy-mass and chiral expansions is much slower than for
the Bl4 amplitudes, and hence have to carefully consider the limitations of that description.
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Further, we have to generalize the formalism of Ref. [126] to unequal-mass pseudoscalars in the
final state.

Such a modified Omnès formalism, in which left-hand-cut structures are approximated by
resonance exchange, is also utilized in the analyses of γγ → ππ [122], η → ππγ [129], and
the Υ(3S) → Υ(1S)ππ and Υ(4S) → Υ(1S, 2S)ππ decays [219, 220]. A limiting factor of the
approach, discussed in Ref. [126], is the restricted kinematic range: the dispersive formalism
as applied there requires to fix the dilepton energy at a rather large value, forcing the pion
momenta to be small, i.e. only a small part of the phase space can be described. We therefore
propose a generalization of this formalism that allows for a reliable description of a much larger
kinematic range, by extrapolating the dispersive representations to arbitrary dilepton energies.
For this purpose we employ certain low-energy theorems that yield constraints for the dilepton
energy dependency of the S-wave representation.

The organization of this chapter is as follows. In Section 3.2 the kinematics of the Dl4

decay is reviewed and the definitions of the form factors constituting the matrix element as well
as their partial-wave expansions are introduced. The dispersive representation of the partial
waves using the modified Omnès formalism is presented in Section 3.3. Employing HMChPT
expressions for the pole terms, their partial-wave projections (called inhomogeneities) and the
reconstructed partial waves in the dispersive representation are explicitly derived. We discuss
matching conditions, e.g. from high-energy constraints. A digression to Dl3 form factors is
performed in Section 3.4, introducing the soft-pion and soft-kaon theorems. These provide a
cross-check for the calculated Dl4 pole terms, as well as a tool for the extrapolation to smaller
dilepton energies as mentioned above. We propose a parametrization in conformal variables for
the subtraction polynomials and give a prediction for the S-wave. We summarize and discuss our
results in Section 3.5 with a critical view on the presented formalism, working out the limitations
and exposing certain weak points of our approach. Certain technical issues like investigating
the analytic behavior of several kinematic functions and supplementary calculations, e.g. the
determination and error analysis of coupling constants that contribute at NLO to the HMChPT
Lagrangian, are relegated to the Appendices B.1-B.5.

3.2 Kinematics and decay rate

The kinematics of the decay D+(pD) → K−(pK)π+(pπ)l
+(pl)νl(pν) can be described by five

variables, defined in three different reference frames, see Figure 3.1 [215, 221, 222]:

• the invariant dimeson mass squared, s = (pπ + pK)2;

• the invariant dilepton mass squared, sl = (pl + pν)
2;

• the angle θK between the kaon in the πK center-of-mass frame ΣπK and the dimeson
line-of-flight in the D+ rest frame ΣD;

• the angle θl between the charged lepton l in the lν center-of-mass frame Σlν and the
dilepton line-of-flight in ΣD;

• the angle φ between ΣπK and Σlν .

We define the two remaining Mandelstam variables as

t = (pD − pπ)
2 and u = (pD − pK)2, (3.1)
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Figure 3.1: Definition of the kinematical variables for Dl4.

and introduce four additional vectors as combinations of the above four-momenta,

P = pK + pπ, Q = pK − pπ,

L = pl + pνl , N = pl − pνl ,

P ·L =
m2
D − s− sl

2
. (3.2)

For later purposes we give the Mandelstam variable t in terms of s and cos θK ,

t(s, cos θK) =
3s0 − s

2
−XY cos θK +

∆m

2s
, (3.3)

where 3s0 = m2
D +M2

π +M2
K + sl, ∆m = (m2

D − sl)(M
2
K −M2

π), and

X = [(P ·L)2 − sls]
1/2 =

λ1/2(m2
D, sl, s)

2
, Y =

λ1/2(s,M2
π ,M

2
K)

s
, (3.4)

with the Källén function

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (3.5)

A similar relation for u(s, cos θK) yields

t− u = −2XY cos θK +
∆m

s
. (3.6)

Since the functions X and Y are only well-defined in the physical region (Mπ +MK)2 ≤ s ≤
(mD −√

sl)
2, they have to be analytically continued outside this region according to

X =







|X |, s ≤ (mD −√
sl)

2

−|X |, s ≥ (mD +
√
sl)

2

i|X |, else

, Y =







|Y |, s ≥ (Mπ +MK)2

−|Y |, s ≤ (MK −Mπ)
2

i|Y |, else

. (3.7)

Note that this assumes values for sl as physically accessible in the decay.

The Dl4 matrix element can be written in terms of four dimensionless form factors F, G, R,
and H ,

Mfi =
GF√
2
Vcs 〈π(pπ)K(pK)|s̄γµ(1− γ5)c|D(pD)〉
︸ ︷︷ ︸

Mhad
µ

× ū(pν)γ
µ(1 − γ5)v(pl)

︸ ︷︷ ︸

Mµ
lept

,

Mhad
µ = − i

mD
(PµF +QµG+ LµR)−

1

m3
D

ǫµνρσL
νP ρQσH, (3.8)
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whereGF = 1.166365×10−5 GeV−2 is the Fermi constant, Vcs denotes the CKMmatrix element
for a c → s quark transition, and we define ǫµνρσ with the convention ǫ0123 = −ǫ0123 = +1.
Considering the De4 decay, with me ≪ 1, the contribution from the form factor R can be
neglected.

In order to calculate the differential decay distribution we take the absolute square of the
matrix element Eq. (3.8) and sum over the lepton polarizations,

∑

spins

|Mfi|2 = 4G2
F |Vcs|2HµνL

µν ,

Hµν = Mhad
µ

(
Mhad

ν

)∗
,

Lµν =
1

8
Mµ

lept

(
Mν

lept

)∗
=

1

2
(LµLν −NµNν − slg

µν − iǫρµσνLρNσ) . (3.9)

We obtain
d5Γ

dsdsld cos θKd cos θldφ
=
G2
F |Vcs|2

(4π)6m3
D

XY · I(s, sl, θK , θl, φ), (3.10)

with

I =I1 + I2 cos 2θl + I3 sin2 θl cos 2φ+ I4 sin 2θl cosφ+ I5 sin θl cosφ+ I6 cos θl
+ I7 sin θl sinφ+ I8 sin 2θl sinφ+ I9 sin2 θl sin 2φ,

I1 =
1

4m2
D

[

|F1|2 +
3

2
sin2 θKY

2ssl

(

|F2|2 +
|F3|2X2

m4
D

)]

,

I2 =− 1

4m2
D

[

|F1|2 −
1

2
sin2 θKY

2ssl

(

|F2|2 +
|F3|2X2

m4
D

)]

,

I3 =− Y 2ssl
4m2

D

(

|F2|2 −
|F3|2X2

m4
D

)

sin2 θK ,

I4 =
Y
√
ssl

2m2
D

Re (F ∗
1 F2) sin θK ,

I5 =
Y X

√
ssl

m4
D

Re (F ∗
1 F3) sin θK ,

I6 =
Y 2Xssl
m4
D

Re (F ∗
2 F3) sin

2 θK ,

I7 =
Y
√
ssl

m2
D

Im (F1F
∗
2 ) sin θK ,

I8 =
Y X

√
ssl

2m4
D

Im (F1F
∗
3 ) sin θK ,

I9 =− Y 2Xssl
2m4

D

Im (F2F
∗
3 ) sin

2 θK , (3.11)

where we use an alternative set of form factors Fi, i = {1 . . .3} (F4 is only relevant for ml 6= 0),

F1 = XF +

[

−Y (P ·L) cos θK +

(
M2
K −M2

π

s

)

X

]

G, F2 = G, F3 = H, (3.12)

which allows to express the Ii, i = 1 . . . 9, in such a compact form.1 The partial-wave expansions

1These new form factors are introduced when rewriting the matrix element Eq. (3.8) instead of the standard
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for the form factors Fi(s, sl, cos θK) in the helicity formalism read

F1(s, sl, cos θK) =

∞∑

l=0

F̃1,l(s, sl)Pl(cos θK) ≡ X

∞∑

l=0

fl(s, sl)Pl(cos θK),

F2(s, sl, cos θK) =
∞∑

l=1

1
√

l(l+ 1)
F̃2,l(s, sl)P

′
l (cos θK) ≡

∞∑

l=1

gl(s, sl)P
′
l (cos θK),

F3(s, sl, cos θK) =

∞∑

l=1

1
√

l(l+ 1)
F̃3,l(s, sl)P

′
l (cos θK) ≡

∞∑

l=1

hl(s, sl)P
′
l (cos θK). (3.13)

In the following we will consider S- and P -waves only, assuming that higher partial waves
are negligible in the here considered energy region. This assumption is based on several ex-
perimental observations by the FOCUS, BaBar and BES III collaborations [223–225], that the
Kπ system is P -wave dominated by the K̄∗(892)0 component; also S-wave contributions were
found, while the D-wave sets in at a higher energy with a K̄∗

2 (1430)
0 resonance. Hence the

form factors are expressed as

F1(s, sl, cos θK) = X
(

|f0(s, sl)|eiδ
1/2
0 (s,sl) + cos θK |f1(s, sl)|eiδ

1/2
1 (s,sl)

)

,

F2(s, sl, cos θK) = |g1(s, sl)|eiδ
1/2
1 (s,sl),

F3(s, sl, cos θK) = |h1(s, sl)|eiδ
1/2
1 (s,sl). (3.14)

Integrating Eq. (3.10) over the angles θl and φ in the limits 0 ≤ θl ≤ π and 0 ≤ φ ≤ 2π
yields

d3Γ

dsdsld cos θK
=

G2
F |Vcs|2

3(4π)5m5
D

XY

[

|F1|2 + sin2 θKY
2ssl

(

|F2|2 +
|F3|2X2

m4
D

)]

. (3.15)

If we insert the partial-wave expanded form factors, neglect waves higher than P -waves, and
integrate over the angle cos θK in the limits 0 ≤ θK ≤ π, we obtain

d2Γ

dsdsl
=

2G2
F |Vcs|2

3(4π)5m5
D

XY

[

X2

(

|f0|2 +
1

3
|f1|2

)

+
2

3
Y 2ssl

(

|g1|2 +
|h1|2X2

m4
D

)]

. (3.16)

The differential decay rates thus obtained depend on the magnitudes of the partial wave
form factors only, while the information on the S- and P -wave phases is integrated out—
the above relations hence are unsuitable for the target extraction of the phase-shift difference

δ
1/2
0 (s) − δ

1/2
1 (s). For the purpose of such an extraction, however, it is expedient to integrate

Eq. (3.10) over the angle θK and the dilepton energy sl (in the limit 0 ≈ m2
e ≤ sl ≤ (mD−√

s)2)

basis of momenta Pµ, Qµ, Lµ in a different basis of momentum vectors that correspond to the orthonormal

basis of polarization vectors of the leptonic current, which directly links to the helicity basis, for details see

Refs. [113, 160]. The partial-wave expansions of the Fi(s) are then easily obtained, as they are well-known for

helicity amplitudes Hλ(s),

Hλ(s) =
∑

l

√
2l+ 1H(l)

λ
(s)dlλ0(θK)eλiφ,

where the dl
λλ′ are the small Wigner-d functions, with

dl00(θK) = Pl(cos θK), dl10(θK) = −dl−10(θK) = − sin θK
√

l(l + 1)
P ′
l (cos θK).
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instead. We define

X̃(s) =

∫ ∫

X(s, sl)dsld cos θK = 2

∫

X(s, sl)dsl,

X̃〈Ii(s)〉 =
∫ ∫

X(s, sl)Ii(s, sl, cos θK)d cos θKdsl, (3.17)

such that

〈Ii(s)〉 =
∫ ∫

X(s, sl)Ii(s, sl, cos θK)d cos θKdsl

2
∫
X(s, sl)dsl

, (3.18)

which allows to write the differential decay rate as

d3Γ

dsdφd cos θl
=
G2
F |Vcs|2

(4π)6m3
D

Y X̃〈I(s, θl, φ)〉, (3.19)

where 〈I(s, θl, φ)〉 is decomposed in analogy to Eq. (3.11), with averages 〈Ii(s)〉 that are ac-
cessible independently via variation in θl and φ. The following 〈Ii〉 (the S–P -wave interference
terms) depend on the desired phase shift difference δ

1/2
0 (s)− δ

1/2
1 (s),

〈
I4
〉
=
πY

√
s

8m2
D

〈
X |f0||g1|

〉
cos
(
δ
1/2
0 − δ

1/2
1

)
,

〈
I5
〉
=
πY

√
s

4m4
D

〈
X2|f0||h1|

〉
cos
(
δ
1/2
0 − δ

1/2
1

)
,

〈
I7
〉
=
πY

√
s

4m2
D

〈
X |f0||g1|

〉
sin
(
δ
1/2
0 − δ

1/2
1

)
,

〈
I8
〉
=
πY

√
s

8m4
D

〈
X2|f0||h1|

〉
sin
(
δ
1/2
0 − δ

1/2
1

)
, (3.20)

with
〈
Xn|f0||g1|

〉
=

∫ √
slX

n|f0||g1|dsl
∫
Xdsl

(3.21)

and similarly for |g1| ↔ |h1|. The last equality can be read off when inserting the Ii, Eq. (3.11),
explicitly into Eq. (3.18) and performing the angular integration. Hence in order to attain

information on δ
1/2
0 − δ

1/2
1 , it is appropriate to determine either 〈I4〉 and 〈I7〉, or 〈I5〉 and 〈I8〉,

since (assuming the absence of D- and higher partial waves)

tan
(

δ
1/2
0 − δ

1/2
1

)

=
1

2

〈I7〉
〈I4〉

and tan
(

δ
1/2
0 − δ

1/2
1

)

= 2
〈I8〉
〈I5〉

. (3.22)

3.3 Partial waves in the modified Omnès formalism

We study the partial-wave amplitudes f0, f1, g1, and h1 defined in the expansion Eq. (3.13)
within dispersion theory, very closely related to the recent analysis of the Bl4 decay [126].
The formalism, introduced in Ref. [102], is based on Omnès representations and was also used
for an analysis of the related Kl4 decays [128]. We do not apply dispersion theory to treat
the sl dependence of the amplitudes, so we consider them at fixed sl and will suppress the
sl dependence for the moment. The range of s we consider here (confined by the physical
decay region for a dilepton energy fixed at a rather large sl) can be well described in the
elastic approximation, where Watson’s theorem [82] is valid, i.e. the phases of the partial-wave
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amplitudes coincide with the pion–kaon scattering phase shifts (the elastic approximation works
well up to the Kρ “threshold” in the case of the P -wave and up to the Kη′ threshold for the
S-wave). Due to the principle of maximal analyticity they are analytic in the whole complex
s-plane except for singularities dictated by unitarity and crossing symmetry. That is, there is a
right-hand cut starting at the pion–kaon threshold s = (Mπ +MK)2, as well as a left-hand cut
due to the crossed process of πD scattering for s ≤ (MK −Mπ)

2, which follows from Eq. (3.3),

t
(
cos θK = −1, s ≤ (MK −Mπ)

2
)
≥ (mD +Mπ)

2. (3.23)

Due to the lack of experimental information on πD scattering we will approximate the crossed
process by D∗-pole terms. The form factors are split into pole and non-pole contributions,
Fi = F pole

i + F non−pole
i . Instead of Eq. (3.13) we can perform a partial-wave expansion for the

pole-term-subtracted amplitudes,

F1(s, z) =F
pole
1 (s, z) +X

∞∑

l=0

Ml(s)Pl(z) = F pole
1 (s, z) +XM0(s) + zXM

(0)
1 (s)

=F pole
1 (s, z) +X

(

M0(s)−
s(t− u)−∆m

sX2
M1(s)

)

, M1(s) =
X

2Y
M

(0)
1 (s),

F2(s, z) =F
pole
2 (s, z) +

∞∑

l=1

Ul(s)P
′
l (z) = F pole

2 (s, z) + U1(s),

F3(s, z) =F
pole
3 (s, z) +

∞∑

l=1

Vl(s)P
′
l (z) = F pole

3 (s, z) + V1(s), (3.24)

with z = cos θK . D- and higher partial waves are suppressed. We have rescaled M
(0)
1 (s) →

M1(s) in order to avoid singular behavior at the pseudo-threshold s =
(
mD −√

sl
)2
, where

X = 0. Note that the amplitudes M0(s), M1(s), U1(s), and V1(s) have no poles by definition
and are analytic except for a right-hand cut. Comparing Eq. (3.24) with Eq. (3.13) we directly
infer that over the right-hand cut we have

Im f0(s) = ImM0(s), Im f1(s) = Im

(
2Y

X
M1(s)

)

,

Im g1(s) = ImU1(s), Imh1(s) = ImV1(s). (3.25)

Therefore we can rewrite the partial waves by

f0(s) =M0(s) + M̂0(s), f1(s) =
2Y

X

(

M1(s) + M̂1(s)
)

,

g1(s) = U1(s) + Û1(s), h1(s) = V1(s) + V̂1(s), (3.26)

where we have introduced the inhomogeneities M̂0(s), M̂1(s), Û1(s), and V̂1(s) that are real on
the the right-hand cut by construction and are given by the respective partial-wave projections
of the pole terms, e.g.

M̂l(s) =
2l+ 1

2

∫ 1

−1

dz
F pole
1 (s, z)

X
Pl(z). (3.27)

It is evident from Eq. (3.24) that the partial-wave expansions of F2 and F3 proceed in derivatives
of Legendre functions; to project onto their partial waves we therefore use

∫ 1

−1

P ′
i (z) [Pj−1(z)− Pj+1(z)] dz = 2δij , (3.28)
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Figure 3.2: The πK phase shifts for I = 1/2 S- (left panel) and P -waves (right panel) are

shown.

and find

Ûl(s) =
1

2

∫ 1

−1

dz F pole
2 (s, z) [Pl−1(z)− Pl+1(z)] , (3.29)

and similarly for V̂l.
In order to construct the full partial-wave amplitudes we employ dispersion relations in

terms of the Omnès formalism. In the following we will work in the elastic approximation and
therefore start out with the elastic unitarity relation for the partial waves fl, gl, hl. E.g. for f0
the unitarity relation reads

Im f0(s) = f0(s)e
−iδ0(s) sin δ0(s). (3.30)

In Eq. (3.26) the partial waves are given as the sum of the inhomogeneities M̂0(s), M̂1(s),
Û1(s), and V̂1(s), being the partial-wave projections of the pole terms, and of the functions
M0(s), M1(s), U1(s), and V1(s), which possess no left-hand cuts or poles.

Together with Eq. (3.25) we can rewrite the partial-wave unitarity relations in favor of the
pole-term-subtracted partial-wave amplitudes and their inhomogeneities,

ImMi(s) =
(

Mi(s) + M̂i(s)
)

e−iδi(s) sin δi(s). (3.31)

This type of unitarity relations yields the following dispersive representation, also known as
Khuri–Treiman type equation [103], see Section 1.3.3,

Mi(s) = Ωi(s)

{

Pn−1(s) +
sn

π

∫ ∞

(Mπ+MK)2

M̂i(s
′) sin δi(s′)ds′

|Ωi(s′)|(s′ − s− iǫ)s′n

}

, (3.32)

and similarly for U1(s) and V1(s). The first part Ωi(s)Pn−1(s) solves the homogeneous unitari-
ty relation, where all inhomogeneities are turned off and therefore no left-hand-cut structure
contributes.

The Omnès functions [80] for S- and P -waves, respectively, are constructed from a dispersion
integral starting from the pion–kaon threshold s = (Mπ +MK)2, including πK phase shifts

δ0,1 ≡ δ
1/2
0,1 ,

Ωi(s) = exp

{

s

π

∫ ∞

(Mπ+MK)2

δi(s
′)ds′

s′(s′ − s− iǫ)

}

. (3.33)
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Figure 3.3: The modulus (red solid), real (blue dashed), and imaginary (green dotted) parts

and of the πK Omnès solutions for the I = 1/2 S- (top panel) and P -waves (bottom panel) are

shown.
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Beyond a certain cutoff point s0 the phase shifts are approximated by

δ0(s) = 2π + (δ0(s0)− 2π)
2

1 + ( ss0 )
3/2

, s0 = (2.1 GeV)2,

δ1(s) = π + (δ0(s0)− π)
2

1 + ( ss0 )
3/2

, s0 = (2.3 GeV)2, (3.34)

such that they approach a multiple of π for large s, which translates to the Omnès function
behaving like ∼ s−n for δi → nπ in the asymptotic s limit,

δ0(s) → 2π : Ω0(s) ∼ 1/s2,

δ1(s) → π : Ω1(s) ∼ 1/s. (3.35)

The phase shifts and resulting Omnès solutions are shown in Figures 3.2 and 3.3. In the low-
energy region

√
s . 1 GeV the Omnès solution for the P -wave exhibits a prominent peak due

to the K∗(892) resonance, while there is little structure in the S-wave—a rather rudimental
rise is visible, adumbrating the broad κ resonance.

3.3.1 Inhomogeneities

We obtain explicit expressions of the inhomogeneities in the framework of HMChPT. The
main concepts are briefly introduced in Section 1.2.2, and exemplified on the derivation of the
contributing tree-level processes depicted in Figure 1.4; diagrams (B) and (C) contain the t-
channelD∗-pole terms. The application of HMChPT in the case ofD-mesons is quite precarious
due to the handling of the charm quark as heavy; also the symmetry breaking by the kaon mass
involves a large uncertainty. We will therefore consider next-to-leading order contributions as
well. Furthermore, it was pointed out in Ref. [160] in connection with Bl4 decays that HMChPT
is only applicable for large values of sl and small s. Due to a smaller phase space in Dl4 decays,
the range of sl is restricted,

√
sl ≤ mD −MK −Mπ ≈ 1.2 GeV. An in-depth discussion on the

reliability of HMChPT in our approach and the challenges and issues involved is presented in
Section 3.5.

The form factors at NLO are calculated from the O(p) tree-level amplitudes Eq. (1.55),
which implies for the form factors F , G, R and H , defined by Eq. (3.8), to be of the orders
O(p0), O(p0), O(p), and O(p−1), respectively. We find

R =− 1

2FπFK

(
fDmD

2
− fDsmDs

2

v · (pK − pπ) + µ+ 8m̂λ1 + 8pK · pπσ1 + 16v · pπσ2
v · (pK + pπ) + µ

+
gfD∗

(
p2π − v · pπmD∗

)

∆+ v · pπ
− g2fDsmDs

(
p2π(v · pK) + v · pπ (pK · pπ)

)

(∆ + v · pπ) (v · pK + v · pπ + µ)
− 2β2m

2
Dv · pπ

− g2fDs (pK · pπ − (v · pπ) (v · pK))

(∆ + v · pπ) (v · pK + v · pπ + µ)
− 2β1gpK · pπ + 2β2gm

2
D∗v · pπv · pK

∆+ v · pπ

)

,

G =
(fD − 2β1)mD

4FπFK
+

gmD

4FπFK

fD∗v · pπ + fD∗mD∗ + 2β1v · pK + 2β2m
2
D∗v · pK

∆+ v · pπ
,

H =− 1

4FπFK

(
2m2

Dβ1g

∆+ v · pπ
+

g2fD∗
s
mD∗

s
m2
D

(∆ + v · pπ) (∆ + v · pK + v · pπ + µ)

)

,

F =− 1

4FπFK

(

(fD − 2β1)mD

− gfD∗(mD∗v · pπ +mD∗mD) + 2mD (β1 + β2mD∗mD) v · pK
∆+ v · pπ

)

. (3.36)
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By means of Eq. (3.12) the pole and non-pole contributions to the form factors F1, F2, and
F3 in HMChPT are obtained. In analogy to Ref. [226] we replace the effective Pa and P ∗

a

propagators by the full relativistic propagators to keep manifest Lorentz covariance and ensure
the correct analytic behavior,

1

k · v +∆
=− 2mD∗

(pD − k)2 −m2
D∗

k=pπ−→ − 2mD∗

t−m2
D∗

,

1

k · v + µ
=− 2mDs

(pD − k)2 −m2
Ds

k=pπ+pK−→ − 2mDs

sl −m2
Ds

,

1

k · v +∆+ µ
=− 2mD∗

s

(pD − k)2 −m2
D∗

s

k=pπ+pK−→ − 2mD∗
s

sl −m2
D∗

s

, (3.37)

and express the t-channel poles in terms of s and z, according to Eq. (3.3),

t(s, z)−m2
D∗ = XY (y − z) with y =

1

2XY

(

3s0 − s− 2m2
D∗ +

∆m

s

)

≡ ỹ

XY
. (3.38)

Note that the numerators of the F pole
1 and F pole

2 amplitudes also have an angular dependence
due to Eq. (3.3). It is therefore expedient to express the pole terms in the form

F pole
1 =

ζ0 + ζ1z + ζ2z
2

y − z
, F pole

2 =
ξ0 + ξ1z

y − z
, F pole

3 =
γ

XY (y − z)
,

ζ0 =
gmD∗

4FπFKY s2

[
(
β1 + β2m

2
D∗

)[

s2 −
(
M2
K −M2

π

)2
]

(m2
D − sl + s)

+ 2sm2
DfD∗

(

s−M2
K +M2

π +
2∆s

mD

)]

,

ζ1 =
gmD∗

4FπFKXs

[
(
β1 + β2m

2
D∗

)[(
M2
K −M2

π + s
)
(m2

D − sl + s)(P ·L)

+ 2X2
(
M2
K −M2

π − s
)]

+ 2m2
DfD∗(P ·L)s

]

,

ζ2 =− gmD∗

2FπFK
(P ·L)Y

(
β1 + β2m

2
D∗

)
,

ξ0 =− gmD∗

4FπFKXY

[
(
β1 + β2m

2
D∗

)
(

s+M2
K −M2

π − sl +m2
D +

∆m

s

)

+ 2m2
DfD∗

]

,

ξ1 =
gmD∗

2FπFK

(
β1 + β2m

2
D∗

)
, γ =

gm2
DmD∗

FπFK

(

gm2
D∗

s
fD∗

s

sl −m2
D∗

s

− β1

)

. (3.39)

The non-pole contributions read

F non-pole
1 =

XgmDfD∗

4FπFK
+

[

−Y (P ·L)z +
(
M2
K −M2

π − s

s

)

X

]
mD

4FπFK
(fD − 2β1) ,

F non-pole
2 =

mD

4FπFK
(fD − 2β1) , F non-pole

3 = 0 . (3.40)

The sl dependency of these form factors is of polynomial nature except for a pole (sl−m2
D∗

s
)−1

in the function γ entering F pole
3 .

The partial-wave projections of the non-pole parts of the amplitudes, Ml(s), Ul(s), and
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Vl(s), are obtained in analogy to Eqs. (3.27) and (3.29). We identify

MHMChPT
0 (s) =

mD

4FπFK

{
M2
K −M2

π

s

(
fD − 2β1

)
+
(
gfD∗ − fD + 2β1

)
}

,

MHMChPT
1 (s) =

mD

4FπFK

{
1

4

(
s+ sl −m2

D

)(
fD − 2β1

)
}

,

UHMChPT
1 (s) =

mD

4FπFK
(fD − 2β1) ,

V HMChPT
1 (s) =0. (3.41)

These functions are labeled by HMChPT in order to distinguish from the dispersively recon-
structed amplitudes Ml(s), Ul(s), and Vl(s) derived below, including a controlled final-state
interaction. These dispersive representations involve subtraction polynomials that have to be
determined. An approved ansatz to constrain these polynomials is to match them onto the
respective HMChPT non-pole expressions, see e.g. Ref. [126].

We observe that due to the non-vanishing difference in the pseudoscalar masses, the pure
pole-term-subtracted S-wave amplitude MHMChPT

0 (s) has a contribution, which diverges for
s→ 0,

M∞
0 (s) ∝ M2

K −M2
π

s
, (3.42)

while the full amplitude F non-pole
1 (s) is a polynomial in the Mandelstam variables. This poses

a challenge for the matching approach. However, similarly to Ref. [219] we can get rid of that
singularity in the partial wave by rewriting the singular expression in terms of the scattering
angle cos θK and the Mandelstam variables t and u according to Eq. (3.6). This entails on the
one hand a redefinition of the S- and P -wave,

M̃HMChPT
0 (s) =

mD

4FπFK

[

gfD∗ − fD + 2β1

]

,

M̃HMChPT
1 (s) =− mD

4FπFK

[
1

4

(
s+ sl −m2

D

)
+

X2

sl −m2
D

]
(
fD − 2β1

)
, (3.43)

and on the other hand additional contributions δM̂0(s) and δM̂1(s) to the inhomogeneities are
introduced, stemming from polynomial S-wave amplitudes in the t- and u-channels that are
projected onto the s-channel,

δM̂0(s) =
mD

4FπFK

M2
K −M2

π

s

(
fD − 2β1

)
, δM̂1(s) =

mD

4FπFK

X2

sl −m2
D

(
fD − 2β1

)
. (3.44)

Hence, the singularity is shifted to the inhomogeneities, away from the non-pole amplitudes,
such that the subtraction polynomials can be matched to those. This procedure introduces poles
∼ (sl −m2

D)
−1 in the P -wave projections of the non-pole and pole contributions, M̃HMChPT

1

and δM̂1 (cancelling in the sum M̂1 + M̃HMChPT
1 ). The only nontrivial analytic structure in sl

that resides in the final representation is due to these poles in M̃HMChPT
1 , δM̂1, and γ.

Our next step is to derive the inhomogeneities, given by the partial-wave projected pole
terms, and supplemented by the contributions δM̂0,1, Eq. (3.44). We notice that the integrals
in Eqs. (3.27) and (3.29) have the form of Legendre functions of second kind,

Ql(y) =
1

2

∫ 1

−1

dz
Pl(z)

y − z
. (3.45)
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The lowest of those functions (l ≤ 2) explicitly read

Q0(y) =
1

2
log

(
y + 1

y − 1

)

, Q1(y) = yQ0(y)− 1, Q2(y) =
3y2 − 1

2
Q0(y)−

3

2
y. (3.46)

Finally, the inhomogeneities can be written as

M̂0(s) =
1

X

[
ζ0Q0(y) + (ζ1 + yζ2)Q1(y)

]
+ δM̂0(s),

M̂1(s) =
3Q1(y)

2Y

[
ζ0 + y(ζ1 + yζ2)

]
− ζ2

2Y
+ δM̂1(s),

Û1(s) =(ξ0 + ξ1y)(Q0(y)−Q2(y))− ξ1,

V̂1(s) =
γ

XY
(Q0(y)−Q2(y)). (3.47)

They are depicted in Figure 3.4 for a fixed dilepton energy sl = 0.8 GeV2 ≈ (mD − 1 GeV)2.
The coefficients β1,2 that enter the amplitudes at NLO are determined in Appendix B.1, via
matching the NLO HMChPT expression of the Dl3 (D → πlν or D → Klν) or Bl3 (B → πlν)
form factors f+(t) that depend on the same parameters β1,2 onto a conformal parametrization.
Such parametrizations are provided by a BES III analysis from a fit to data [227] in the case
of the Dl3 decays, and in the case of the Bl3 decay we refer to an analysis performed by the
Belle collaboration [228]. Whenever we perform explicit calculations or show figures we will
use the results as determined in FIT II. We evade propagating the errors on the LO couplings
and decay constants as the errors δβi on the couplings β1,2 are expected to dominate the
uncertainties. There is a considerable impact on the Dl4 partial waves induced by the errors
on the β1,2. Therefore, the presented figures and the following numerical results have to be
understood exemplarily as a demonstration of our formalism rather than accurate predictions.
To improve the predictive power one would need to control the symmetry breaking effects and
the convergence of the NLO terms better.

It is visible that the inhomogeneities are real above the pseudo-threshold s = (MK−Mπ)
2 ≡

s− and that there is a singular behavior at s = s−. As discussed in Appendix B.3.1, where we
study the analytic properties of the inhomogeneities in more detail, the S-wave M̂0(s) diverges
as M̂0(s) ∼ (s− s−)−1/2, whereas the P -waves M̂1(s), Û1(s), and V̂1(s) grow like (s− s−)−3/2.

3.3.2 Subtraction polynomials

For energies above the threshold, where the inhomogeneities contribute to the dispersion in-
tegral in the representation of the pole-term-subtracted amplitude Eq. (3.32), we assume the
inhomogeneities to be nearly constant in the physical region s . 1 GeV2, see Appendix B.4 and
Figure B.11. Consequently, we need three subtractions in the case of the S-wave and two for
the P -wave amplitudes. Remember that in the dispersive representation we deal with functions
that are analytic except for the cut; following the discussion in Section 3.3 where a singularity
at s = 0 was revealed in MHMChPT

0 (s), we rename the amplitudes Mi(s) → M̃i(s) (in analogy
to the regular amplitude M̃HMChPT

0 that is used for the matching in the following),

M̃0(s) =Ω0(s)

{

a0 + a1s+ a2s
2 +

s3

π

∫ ∞

(Mπ+MK)2

M̂0(s
′) sin δ0(s′)ds′

|Ω0(s′)|(s′ − s− iǫ)s′3

}

,

M̃1(s) =Ω1(s)

{

a′0 + a′1s+
s2

π

∫ ∞

(Mπ+MK)2

M̂1(s
′) sin δ1(s′)ds′

|Ω1(s′)|(s′ − s− iǫ)s′2

}

,
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Figure 3.4: The real (top panel) and imaginary (bottom panel) parts of the inhomogeneities

M̂0(s) (green), M̂1(s) (purple), Û1(s) (red), and V̂1(s) (blue), are shown with error bands due

to the uncertainties on β1,2. The black line denotes the pseudo-threshold.
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U1(s) =Ω1(s)

{

b0 + b1s+
s2

π

∫ ∞

(Mπ+MK)2

Û1(s
′) sin δ1(s′)ds′

|Ω1(s′)|(s′ − s− iǫ)s′2

}

,

V1(s) =Ω1(s)

{

c0 + c1s+
s2

π

∫ ∞

(Mπ+MK)2

V̂1(s
′) sin δ1(s′)ds′

|Ω1(s′)|(s′ − s− iǫ)s′2

}

. (3.48)

We develop two approaches to constrain the subtraction polynomials. On the one hand
we demonstrate a direct determination in analogy to Ref. [126], which relies on matching the
subtraction polynomials to the non-pole HMChPT tree-level amplitudes. On the other hand
we aim for a representation of subtraction “functions” that depend on the squared dilepton
energy sl employing certain low-energy theorems. In every respect parts of the subtraction
polynomials are adjusted in order to ensure a proper high-energy behavior. The discussion of
the latter method is relegated to Section 3.4.1 and we focus here on the direct method.

At low energies the subtraction constants of low orders are those that dominate the sub-
traction polynomials. In particular a0, a

′
0, a

′
1, b0, and c0 can be determined via matching to

the HMChPT non-pole contributions, Eq. (3.43), most reliable at very low energies. While in
the context of the Bl4 decay [126], s = 0 was assumed to be a good matching point because
of the good convergence of the chiral expansion, the Dl4 left-hand-cut structure extends to the
pseudo-threshold and it seems to be more plausible to match the amplitudes above that point.
In analogy to the subthreshold point in πK scattering, s =M2

K+M2
π might be a better choice.2

As we match our amplitudes to tree-level amplitudes, where no rescattering is taken into ac-
count, we set Ωi(s) ≡ 1 (i.e. all scattering phases are set to zero), and only the subtraction
polynomial is considered. We find the following set of subtraction constants,

a0 =M̃HMChPT
0 (M2

K +M2
π) = 20.2± 1.8,

a′0 =M̃HMChPT
1 (M2

K +M2
π) = (−18.0± 2.5) GeV2,

a′1 =
d

ds
M̃HMChPT

1 (s)
∣
∣
s=M2

K+M2
π
= 13.4± 1.8,

b0 =UHMChPT
1 (M2

K +M2
π) = −13.4± 1.8,

c0 =V HMChPT
1 (M2

K +M2
π) = 0, (3.49)

where the βi coefficients due to FIT II are taken, β1 = (0.25 ± 0.02) GeV, β2 = (0.05 ±
0.02) GeV−1. The errors on the subtraction constants are propagated from the uncertainties of
the couplings β1,2, which are expected to dominate other uncertainties.

The remaining subtraction constants a1, a2, b1, and c1 become relevant at higher energies s,
such that it is appropriate to fix them in a sense that they enforce the requested fall-off of the
amplitudes at large s. According to Ref. [126], whose argumentation concerning the dispersive
representation of constant inhomogeneities is summarized in Appendix B.5, we choose the
subtraction constants as

a1 =AΩ̇(0), a2 = A

(
1

2
Ω̈(0)− Ω̇2(0)

)

, (3.50)

where A is the constant the corresponding inhomogeneity approaches. The first and second

2The choice of the matching point only affects the subtraction constants a′i, as the P -wave M̃HMChPT
1 is linear

in s. We observe that there is no significant discrepancy in the subtraction constants evaluated by matching at

s = M2
π +M2

K
and s = 0. Note that in the case of nonzero matching points s0 the subtraction polynomial is

expanded in powers of (s− s0)n; the numbers a′i presented here are then transferred to the polynomial a′0 +a′1s

as given in Eq. (3.48).
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Figure 3.5: We depict the magnitudes of the partial waves f0(s) = M̂0(s) + M0(s),

X/(2Y )f1(s) = M̂1(s) +M1(s), g1(s) = Û1(s) + U1(s) and h1(s)/m
2
D = (V̂1(s) + V1(s))/m

2
D

(the latter being rescaled due to a clearer representation, as well as the S-wave |f0(s)| in the

top panel). In the top panel the partial waves are derived with the FIT II results for the βi
couplings (according to the numerical results shown in the main text), in the bottom panel the

FIT I results are used. The dilepton energy is fixed at sl = 0.8 GeV2.
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derivative of the Omnès function at the origin read

Ω̇(0) =
dΩ(s)

ds

∣
∣
∣
∣
s=0

=
1

π

∫ ∞

(Mπ+MK)2

δ(s′)

s′2
ds′,

Ω̈(0) =
d2Ω(s)

ds2

∣
∣
∣
∣
s=0

= Ω̇(0)2 +
2

π

∫ ∞

(Mπ+MK)2

δ(s′)

s′3
ds′. (3.51)

As the inhomogeneities are not exactly constant at tree level due to the perturbation of the
singularities from the left-hand-cut structure at the pseudo-threshold, a matching point sm has
to be chosen, at which the inhomogeneities are evaluated to give the constant A; we choose the
mass of the K∗ resonance, sm = M2

K∗ . With Ω̇0(0) = 1.12 GeV−2, Ω̇1(0) = 1.22 GeV−2, and
Ω̈0(0) = 2.43 GeV−4 we find

a1 =M̂0(sm) Ω̇0(0) = (−23.7± 4.3) GeV−2 ,

a2 =M̂0(sm)

(
1

2
Ω̈0(0)− Ω̇2

0(0)

)

= (0.8± 0.1) GeV−4 ,

b1 =Û1(sm) Ω̇1(0) = (39.3± 9.0) GeV−2 ,

c1 =V̂1(sm) Ω̇1(0) = (154.5± 6.6) GeV−2 . (3.52)

Due to the linear nature of the HMChPT non-pole amplitude MHMChPT
1 the subtraction

constant a′1 has been fixed by the low-energy matching. Hence the full M̃1 subtraction poly-
nomial is determined, and no high-energy constraint has been implemented so far. To build in
the requested fall-off at large energies we calculate the constant a′1 in the sense of Eq. (3.50),
a′1 = M̂1(sm) Ω̇1(0) = −14.6 ± 3.3. We observe that this number is not compatible with the
value determined in Eq. (3.49). Consequently, the question arises whether the low-energy or
the high-energy constraint has higher priority, or whether it is suitable to combine both re-
sults and use their sum as proposed in Ref. [126]. To answer this question we employ a naive
unitarisation approach: we ignore any left-hand cuts, such that the terms in the bracket in
Eq. (3.48) reduce to a pure polynomial, given by the partial-wave projection of the HMChPT
non-pole term. The partial wave is then constructed by multiplying the complete partial-wave
projection of the HMChPT expression M̂1 + M̃1 by the respective Omnès function in order
to build in the final-state interaction. This poses a criterion: the naively unitarised partial
wave should approximately match the dispersively constructed one. We observe that indeed
the implementation of both (low-energy and high-energy) constraints to fix a′1, i.e. taking the
sum of the above quoted values, yields the best agreement, hence we fix this constant to

a′1 = M̂1(sm) Ω̇1(0) = −1.2± 1.4. (3.53)

The full partial waves are depicted in Figure 3.5. In order to illustrate the uncertainty
induced by the NLO couplings βi we show the partial waves evaluated with the FIT I results as
well; a further discussion of the impact of the βi uncertainty on the partial waves is relegated
to Appendix B.1.2. Figures 3.6 and 3.6 illustrate the impact of the low-energy and high-
energy constraints that are used to fix the subtraction constants, and employed in particular
in the determination of a′1. We show the partial waves with the full subtraction polynomials as
determined above (red, solid curves), without implementing the high-energy constraints (blue,
dashed), and without matching in the low-energy region (green, dotted). In the case of f1(s)
we additionally depict a curve (green, dot-dashed) where only the constant a′0 is determined by
means of the low-energy matching, but not the linear term. We finally compare these curves
to the naively unitarised partial waves (black, dot-dot-dashed). We observe that the set of
subtraction constants we developed above, including both low- and high-energy constraints,
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Figure 3.6: We depict the magnitudes of the various S- and P -waves (for fixed sl = 0.8 GeV2

and corresponding to to the FIT II results for the βi couplings) with modified subtraction poly-

nomials. They are compared to the respective partial waves obtained using a naive unitarisation

approach (black, dot-dot-dashed). The red, solid curves correspond to the waves and subtrac-

tion polynomials as discussed in the main text, the other curves show dispersively constructed

partial waves without implementing high-energy (blue, dashed) and low-energy (green, dotted)

constraints. We disregard the propagation on the β1,2 errors for this illustration.

provides the best accordance. The agreement between the naively and rigorously unitarized
solutions is of astonishing quality—the neglect of left-hand-cut structures hence entails a rather
moderate effect, at least in regard to the considerable uncertainty due to NLO corrections in
the HMChPT amplitudes. We will come back to this comparison in Section 3.5.

We can further calculate the partial decay rate, Eq. (3.16), for a fixed sl = 0.8 GeV2, shown
in Figure 3.8. The S-wave is formidably suppressed: integrating the full decay rate and the
S-wave contribution over s yields the S-wave ratio (for the specific sl we consider here)

RS−wave . 0.5%, (3.54)

where the range is due to the uncertainty on the couplings βi. This ratio is an order of magnitude
smaller than the one obtained from the branching fractions published in the BES III analysis,
Ref. [225], Rexp

S−wave ≈ 6%. The observed difference however is plausible due to the variability
of and integration over the dilepton energy, considered in the experimental analysis; there is no
evidence for assuming a stable S-wave fraction for different sl. Furthermore, there is a large
discrepancy between the ratio determined with the FIT I and the FIT II sets. For the FIT I
scenario we find RFIT I

S−wave . 10%, hence in this case the S-wave has a considerable contribution
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Figure 3.7: In analogy to Figure 3.6 we compare the magnitudes of the various S- and P -waves

using the FIT I results of β1,2 to the respective partial waves obtained in a naive unitarisation

approach (black, dot-dot-dashed). The red, solid curves correspond to the waves as discussed

in the main text, the other curves show dispersively constructed partial waves without imple-

menting high-energy (blue, dashed) and low-energy (green, dotted) constraints. We disregard

the propagation on the β1,2 errors for this illustration.

to the decay rate. This is also evident in Figure 3.8, where in the FIT I decay rate a smooth
increase in the region of the κ is visible.

We notice that the S-wave suppression in the FIT II constellation is even amplified compared
to the FIT I results (note the rescaling in the top panel of Figure 3.5). This is traced back
to the strong dependency of the inhomogeneities (and accordingly the dispersive integrals and
subtraction polynomials) on the β1,2 coefficients. The dispersive representations Eq. (3.48)

before multiplying by the S- and P -wave Omnès functions, M̃i(s)Ω
−1
i (s), differ drastically for

the various fit configurations: for FIT I the considered sum is considerably larger for the S-
wave than for the P -wave, which has a compensating effect on the strong dominance of the
P -wave Omnès function over the S-wave one due to the K∗(872) resonance. Considering the
peak region, where a difference in the M̃i(s)Ω

−1
i (s) has the most significant impact, we find

∣
∣
∣M̃0(s)Ω

−1
0 (s)

∣
∣
∣

∣
∣
∣
∣
s=m2

K∗(872)

= 21.9,
∣
∣
∣M̃1(s)Ω

−1
1 (s)

∣
∣
∣

∣
∣
∣
∣
s=m2

K∗(872)

= 7.8 for FIT I,

∣
∣
∣M̃0(s)Ω

−1
0 (s)

∣
∣
∣

∣
∣
∣
∣
s=m2

K∗(872)

= 6.9,
∣
∣
∣M̃1(s)Ω

−1
1 (s)

∣
∣
∣

∣
∣
∣
∣
s=m2

K∗(872)

= 15.1 for FIT II (3.55)
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Figure 3.8: Differential decay width d2Γ/dsdsl, evaluated for sl = 0.8 GeV2 and for the sets of

NLO couplings βi determined in FIT I and FIT II. The uncertainty band refers to the error on

the βi.

(this calculation is just of an illustrating nature such that we disregard the error propagation
here).

We finally investigate the stability of the partial waves determined in the dispersive for-
malism for varying sl in the vicinity of the considered energy. We rerun the calculations for
different sl with 0.7 GeV2 ≤ sl ≤ 0.9 GeV2. The magnitudes of the partial waves for dilepton
energies 0.7 GeV2 ≤ sl ≤ 0.9 GeV2 (illustrated by the bands) are displayed in Figure 3.9, where
we have turned off the uncertainty on the couplings βi to visualize the effect of varying sl. The
effect of a variation in sl on the partial waves is rather small, in particular in view of the amount
of uncertainty induced by NLO corrections. Hence the existence of poles in sl − m2

D
(∗)

(s)

does

not play a significant role in the sl region considered here. On the one hand, the poles are
well separated from the physically allowed region. There is a pole in sl − m2

D∗
s
entering the

h1 partial wave via the V̂1(s) inhomogeneity; for the largest value sl = 0.9 GeV2 of the above
considered energies there is a gap of about 3.6 GeV2. On the other hand, h1 enters the decay
rate Eq. (3.16) in a term ∝ X2|h1|2, we therefore investigate

X2

(sl −m2
D∗

s
)2

=
1

4
+O

(

s

sl −m2
D∗

s

,
m2
D∗

s
−m2

D

sl −m2
D∗

s

)

. (3.56)

The closer the dilepton energy approaches the pole position, the smaller the s energy range
becomes, manifestly suppressing the contribution of the terms ∝ (sl −m2

D∗
s
)−1. Another pole

has been artificially introduced in the inhomogeneity M̂1, which is closer to the physical region
(sl−m2

D|sl=0.9 GeV2 ≈ 2.6 GeV2), but still sufficiently separated. Furthermore, we expect little
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impact from this term as the pole cancels in the combination M̂1 + M̃1 such that it can only
contribute to the correction due to the left-hand-cut structure, being of moderate significance,
see the discussion above.

3.4 Connection to Dl3 form factors

A digression to the semileptonic D → πlν (Dl3) decay, connected to the Dl4 decay by means of
low-energy theorems, not only provides a tool to confirm the form factor expressions, Eq. (3.36),
but rather allows us to extrapolate our analysis to the region of lower dilepton energies. So far
we assume sl to be fixed to a rather large value (we choose sl = 0.8 GeV2 ≈ (mD − 1 GeV)2),
as demanded in the modified Omnès formalism, used to obtain the dispersive representations
of the partial waves, Eq. (3.48), consisting of a dispersive integral and a subtraction polynomial
multiplied by the respective Omnès function. We develop a method to generalize the repre-
sentations Eq. (3.48) for non-fixed sl. The basic idea is that the subtraction constants are
strictly speaking subtraction functions, depending on sl, for which we propose a parametriza-
tion. For this purpose we exploit that the Dl3 decay, having a simpler structure compared to
Dl4, can be well described in conformal variables with very low polynomials [229], employed
in certain experimental analyses, see e.g. Refs. [227, 228, 230–232]. Theoretical studies using
the light-cone sum-rule approach, lattice QCD, or dispersion theory yield useful and promising
constraints [233–235].

In the case of the S-wave we can even make a prediction how such a parametrized sl
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dependency explicitly looks like, combining the soft-pion and soft-kaon theorems, introduced
in this section.

3.4.1 Low-energy theorems

In analogy to the Callan–Treiman theorem for Kl3 decays, the Dl4 hadronic decay matrix
elements, Eq. (3.8) fulfill two low-energy theorems, which connect the Dl4 with the Dl3 matrix
elements,

iFK〈π+K− |s̄γµ(1− γ5)c|D+〉 = 〈π0
∣
∣d̄γµ(1 − γ5)c

∣
∣D+〉 for pK → 0,

iFπ〈π+K− |s̄γµ(1− γ5)c|D+〉 = 0 for pπ → 0, (3.57)

where in the first expression an isospin rotation has been performed. This allows to express the
Dl4 form factors in terms of the Dl3 form factors f+ and f−, defined via

〈π0
∣
∣d̄γµ(1 − γ5)c

∣
∣D+〉 = 1√

2
[(pD + pπ)µf+ + (pD − pπ)µf−] . (3.58)

For pK → 0 the relations read
√
2FK
mD

(F −G−R) = f+ − f− +O(M2
K) and

√
2FK
mD

R = f+ + f− +O(M2
K), (3.59)

while for pπ → 0 we find

Fπ
mD

(F +G−R) = O(M2
π) and

Fπ
mD

R = O(M2
π). (3.60)

For further investigations we take the sum of the respective two soft-pion or soft-kaon
relations, being independent of the form factors R and f− (the information about those is
contained in the difference that is hence suppressed by the squared lepton mass),

Fπ
mD

(F +G)|pπ→0 = O(M2
π),

√
2FK
mD

(F −G)|pK→0 = 2f+ +O(M2
K). (3.61)

By taking the low-energy limits pπ,K → 0 naively, the Mandelstam variables reduce to

s|pπ=0 =M2
K , t|pπ=0 = m2

D, u|pπ=0 = sl,

s|pK=0 =M2
π , t|pK=0 = sl, u|pK=0 = m2

D, (3.62)

which in this form actually spoils the on-shell relation s+ t + u = 3s0. However, this relation
can still be satisfied: we can shift the Mandelstam variables by terms of orders O(M2

π,K),
respectively, given that the low-energy relations are valid up to those orders. In that sense we
allow for the shifts s → s + aπ,K1 M2

π,K , t → t + aπ,K2 M2
π,K and u → u + aπ,K3 M2

π,K , with the

constraint aπ,K1 + aπ,K2 + aπ,K3 = 1.
It is consequently not completely determined how to distribute the mass squares among the

Mandelstam variables. However, we establish three criteria that yield different, independent
constraints on the parameters aπ,Ki . These are not necessarily compatible to each other, such
that we also need to investigate the impact of disregarding certain conditions in order to find
the best compromise.

First, the deviation from the exact soft-pion or soft-kaon point, given by Eq. (3.62), should
be minimal. From the explicit form of the HMChPT form factors at NLO, Eqs. (3.36) and
(B.1), we read off the conditions

aK2 = 0, aK1 = aK3 → aK1 = 1− aK3 =
1

2
, aπ2 = 0, aπ1 = 1− aπ3 , (3.63)
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which yield a cancelation among the various shifts and result in an exact reproduction of the
low-energy relations.

The following second and third criteria aim at the usability of the low-energy theorems:
the soft-pion and soft-kaon theorems are employed to find constraints on the yet undetermined
subtraction polynomials of our partial wave amplitudes; details and concrete calculations are
shown below. Transferring the low-energy theorems as given in Eq. (3.61) to relations that
contain the dispersively constructed partial-wave amplitudes M0,1(s), U1(s), and V1(s) requires
to change the set of form factors (F, G) to (F1, F2), related by Eq. (3.12). For our second
criterion we demand that in performing this transition no artificial, significant corrections are
generated. Since the dispersive representation describes the pole-term-subtracted amplitudes,
there is actually no need to replace the complete F and G form factors and we will apply the
following considerations for the pole-term-subtracted parts. In the soft-kaon limit the form
factor F1 reduces to F1 = X

[
F + f(aK1 , a

K
3 )G

]
, such that

F −G =
F1

X
−
(
f(aK1 , a

K
3 ) + 1

)
F2, with f(aK1 , a

K
3 ) = −1 +O(M2

K). (3.64)

However, the neglect of O(M2
K) corrections has to be examined carefully, since the kaon mass is

not distinctly small on the considered energy range (in particular compared to the pion mass)
and may yield quite considerable corrections. Indeed, expanding the function f(aK1 , a

K
3 ) + 1 in

the kaon and the pion masses reveals that the leading term is of order O(M2
K/M

2
π),

f(aK1 , a
K
3 ) = −1 +

M2
K

M2
π

(
2aK1 + 2 +O(M2

π)
)
. (3.65)

The O(M2
π) correction in the bracket contains a pole in sl, but it lies outside the physical

region, i.e. also when considering sl as a dynamic variable in the following this pole will not be
approached, ensuring the smallness of that correction. In order to achieve a minimal deviation
from the soft-kaon theorem in its original form, Eq. (3.61), we set aK1 = −1, canceling the
otherwise large and therefore spoiling correction term. This value is not compatible with the
one given in Eq. (3.63) due to our first criterion. However, we decide to loosen the constraints
given there in favor of the second criterion in order to avoid the described large artificial
correction term; the O(M2

K) correction that enters via a deviation from the exact soft-kaon
point is at least theoretically well-founded. We have fixed aK2 = 0 as demanded by Eq. (3.63),
since we treat t-channel poles and the relations are therefore most sensitive to a shift in t. This
implies aK3 = 2, constrained by the on-shell relation. With these shifts the artificial terms that
enter the soft-kaon relation when changing the set of form factors are suppressed. At the same
time this choice of aKi yields an O(M2

K) correction to Eq. (3.61) that is of a similar magnitude
as the correction term resulting from an evaluation at the soft-kaon point. In the soft-pion limit
the relation t|pπ=0 = m2

D holds such that the pole at t = m2
D∗ is approached very closely; the

denominator shrinks to O(mD∆). Therefore any deviation from the original soft-pion relation,
Eq. (3.61), where the numerator cancels exactly, requires a careful treatment. We consider the
soft-pion analogon to Eq. (3.65), which is obtained by interchanging π ↔ K and taking the sum
F +G instead of the difference. Fixing aπ1 = −1 and aπ3 = 2 in analogy to the soft-kaon case3

the term proportional toM2
π/M

2
K cancels and the next correction is of order O(M2

π/(sl−m2
D)),

which is sufficiently small (numerically confirmed).
As a third criterion we demand that the soft-pion and soft-kaon points should be chosen in

energy regions where a partial-wave expansion of the amplitudes is well-defined and an analytic
continuation of the partial waves into the unphysical region can be performed. A condition

3Concerning the first criterion, the sum F + G is s- and u-independent, such that this condition is met in

either case and the choice of aπ1 and aπ3 remains unconstrained.
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precedent to the convergence of the expansion applies to the scattering angle: |z| = | cos θK | < 1.
For a detailed discussion concerning the function z(s, t, u) see Appendix B.3. We observe there
that the above choice of aπKi is compatible with this criterion.

We end up with the modified soft-pion and soft-kaon points

s|pπ=0 =M2
K −M2

π, t|pπ=0 = m2
D, u|pπ=0 = sl + 2M2

π ,

s|pK=0 =M2
π −M2

K , t|pK=0 = sl, u|pK=0 = m2
D + 2M2

K . (3.66)

Note, however, that we deal with certain criteria that yield conditions on the aK,πi that are
not directly compatible. We argue that the second criterion is the preferred one in order to
determine aK1 and aK3 . This choice however implicates an error on a 50% level for the soft-kaon
relation compared to the exact relation, originating from the significance of O(M2

K) corrections,
which should be kept in mind.

The given set of shifted soft-pion and soft-kaon points allows to rewrite the low-energy
relations, Eq. (3.61), in a compact form: the pole-term-subtracted parts are given in terms of
the partial-wave expansion of F1(s) according to Eq. (3.13),

O(M2
π) =F

pole +Gpole +

∞∑

l=0

MlPl(z)
∣
∣
∣
pπ→0

= −gmDfD∗

2FπFK
+ δM̂0 + M̃0

∣
∣
∣
s=M2

K−M2
π

O(M2
K) =f+ − FK√

2mD

[

F pole −Gpole +

∞∑

l=0

MlPl(z)
]∣
∣
∣
pK→0

=fnon-pole
+ − FK√

2mD

[

δM̂0 + M̃0

]∣
∣
∣
s=M2

π−M2
K

(3.67)

In the respective second steps the explicit expressions for the pole terms obtained in HMChPT,
Eq. (3.36), are inserted, which yields a cancellation between the Dl3 and Dl4 pole terms in the
soft-kaon limit, and a constant term in the soft-pion case. Furthermore, the sum over partial
waves reduces to a contribution from the S-wave, the only surviving wave in the pπ,K → 0
limit. We assign two reasons for that. First, due to a chiral argument only S- and P -waves can
contribute at the considered chiral order; higher powers of the scattering angle are attributed
to terms ∝ (t − u)n that arise at higher chiral orders. Second, the scattering angle z =
cos θK , Eq. (3.6), evaluated at the soft pion/kaon points, Eq. (3.66), becomes z = O(M2

π,K),
respectively; we evaluate z numerically at the specific points and find |z|pπ→0 . 0.03 and
|z|pK→0 . 0.08. This implicates a suppression of all odd waves. The insertion of the partial-
wave expansion in the above relations is not trivial. If the low-energy theorems are evaluated
in the unphysical region it is mandatory to assure the convergence of the expansion, which is
restricted to certain regions in the Mandelstam plane, see the discussion in Appendix B.3.

Note that we aim for an expression of the subtraction functions of the redefined S-wave
amplitude M̃0(s, sl), in order to have a direct cross check with the subtraction constants that
we have determined in Section 3.3 at a fixed sl = 0.8 GeV2 ≈ (mD − 1 GeV)2. We insert the
dispersive representation, Eq. (3.48), into Eq. (3.67) and solve the soft-pion relation for a1(sl),
which allows to eliminate one of the subtraction functions,

a1(sl) =− a0(sl)

M2
K

− a2(sl)M
2
K −M4

K I(M2
K −M2

π , sl)

−
δM̂0(M

2
K −M2

π)− gmDfD∗

2FπFK

Ω0(M2
K −M2

π) ·M2
K

+O(M2
π),

I(s, sl) =
1

π

∫ ∞

(Mπ+MK)2

M̂0(s
′, sl) sin δ0(s′)ds′

|Ω0(s′)|(s′ − s− iǫ)s′3
. (3.68)



3.4 Connection to Dl3 form factors 101

The a2(sl) function is already fixed in the sense of the constraints on the subtraction constants
presented in Ref. [126] and reviewed in Section 3.3 and Appendix B.5: as a2(sl) is associated
with the highest power in s in the subtraction polynomial it is the dominant contribution at high
dimeson energies, and needs to be adjusted to ensure a proper high-energy behavior. The fixing
of a2 presented Appendix B.5 is based on the nearly constant behavior of M̂0(s) at s . 1 GeV2,
approximated by the constant A = M̂0(s), and is straightforwardly generalized to sl dependent
quantities. We find that a variation of sl yields a negligibly small distortion of the shape of the
inhomogeneities and mainly induces a constant shift, such that we remain at the assumption
of a nearly constant behavior in s, i.e.

a2(sl) = M̂0(sm, sl)
(1

2
Ω̈0(0)− Ω̇2

0(0)
)

. (3.69)

Inserting Eqs. (3.68) and (3.69) into the S-wave M̃0(s, sl), Eq. (3.48), yields

M̃0(s, sl) =Ω0(s)

{

a0(sl)
(

1− s

M2
K

)

− sM4
K I(M2

K −M2
π , sl) + s3 I(s, sl)

+ M̂0(sm, sl)
(1

2
Ω̈0(0)− Ω̇2

0(0)
)

(s2 − sM2
K)−

δM̂0(M
2
K −M2

π)− gmDfD∗

2FπFK

Ω0(M2
K −M2

π) ·M2
K

s

}

.

(3.70)

We can finally determine a parametrization for the unknown function a0(sl) from the matching
to the Dl3 form factor as given by the soft-kaon constraint in Eq. (3.67),

√
2mD

FK
fnon-pole
+ (sl) =Ω0(M

2
π −M2

K)

{

2a0(sl) + M̂0(sm, sl)
(

Ω̈0(0)− Ω̇2
0(0)

)

M4
π

+ M6
π

(
I(M2

π −M2
K , sl) + I(M2

K −M2
π, sl)

)
}

− gmDfD∗

2FπFK

−
(

δM̂0(M
2
π −M2

K)− gmDfD∗

2FπFK

)(

1− Ω0(M
2
π −M2

K)

Ω0(M2
K −M2

π)

)

+O(M2
K),

(3.71)

In the last equality we have made use of δM̂0(s) = −δM̂0(−s). This formula is correct up
to orders O(M2

K ,M
2
π) and smaller due to the validity of the low-energy theorems and the

NLO HMChPT expressions. So far we have kept also terms beyond that order, in order to
conceptually demonstrate the formalism. In the following we restrict ourselves to the specific
case and disregard terms of higher than quadratic order in the light meson masses.

The above expression is free of pole terms as they were canceled out due to the low-energy
relations, see Section 3.4.1. Therefore we choose a parametrization for f+(sl) of the following
form,

f+(sl) =
cfix

sl −m2
D∗

+
∑

k

αkz(sl)
k, (3.72)

with the conformal variable z(t, t0) defined by

z(t, t0) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

, (3.73)

with t0 = t+(1−
√

1− t−/t+) and t± = (mD±Mπ)
2, for details see Appendix B.1. This repre-

sentation differs from the one presented there: only the non-pole part of f+(sl) is parametrized
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BES III parametrization
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Figure 3.10: Dl3 form factor f+(t): the green band shows our proposed parametrization, where

the pole term is expressed in the HMChPT framework. The non-pole part is parametrized by

a polynomial in the conformal variable z, with the coefficients determined by matching to the

conformal parametrization as determined by the BES III collaboration (red error band).

by a conformal polynomial, while the pole-term contribution is added to the conformal poly-
nomial with the residue (cfix) fixed by the HMChPT expression.

The coefficients αk are determined from matching the above proposed parametrization for
f+(sl) to the conformal parametrization determined in the BES III analysis [227]. Using a
two-parameter parametrization we obtain α0 = 0.79 ± 0.06 and α1 = −2.1 ± 0.6 (performing
a three-parameter fit results in an α2 compatible with zero within the error margin and the
fit quality is not improved further). In Figure 3.10 the form factor f+(t) for both the BES III
conformal parametrization and our pole-term-separated conformal parametrization is depicted
with the respective error bands.

Putting pieces together we finally find a very simple conditional equation for the subtraction
function a0(sl),

a0(sl) =
mD√

2FKΩ0(M2
π −M2

K)

[−fD + 2β1 + 2gfD∗

4
√
2Fπ

(

1− Ω0(M
2
π −M2

K)

Ω0(M2
K −M2

π)

)

+
gfD∗

2
√
2Fπ

+ α0 + α1z(sl)

]

+O(M2
π,K)

≡γ0 + γ1z(sl) +O(M2
π,K). (3.74)

With Ω0(M2
π − M2

K) ≈ 0.80 and Ω0(M2
K − M2

π) ≈ 1.34 we determine the coefficients γi
to γ0 = 27.3 ± 0.9 and γ1 = −31.7 ± 9.1. It is rather interesting to compare this result
to the one obtained in Section 3.3 where (at a dilepton energy fixed at sl = 0.8 GeV2, for
which z(0.8 GeV2) ≈ 0.1) the subtraction polynomials are matched in the low-energy regime
to the non-pole HMChPT expressions, resulting in ā0 = 20.2 ± 1.8. We can even reproduce
the analytic expression for determining a0 by means of matching if we set the phases to zero
(corresponding to Ωi(s) ≡ 1), and replace the conformal parametrization of fnon-pole

+ by the
HMChPT term. Evaluating Eq. (3.74) at the same dilepton energy sl = 0.8 GeV2 we obtain
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a0(0.8 GeV2) = 23.7±1.9±0.5, where the first (second) error is due to the uncertainties on α0,1

(β1,2).
4 The comparison between both ansätze shows that they yield comparable results. This is

actually quite satisfactory, given the sources of uncertainty for our approach: on the one hand we
have made several rough estimations, such as neglecting corrections of orders O(M2

π ,M
2
K) while

employing HMChPT and the low-energy theorems, on the other hand some steps were though
well motivated not strictly constrained, e.g. choosing the fit region for the βi determination or
the evaluation points of the low-energy theorems.

In principle the a1(sl) subtraction function, Eq. (3.68), could be determined in a next
step by inserting the parametrization obtained for a0(sl), Eq. (3.74). However, regarding the
above mentioned concern of the validity of the HMChPT amplitudes up to corrections of or-
der O(M2

π ,M
2
K), we have a closer look at the rewritten low-energy theorems, Eq. (3.67). The

pole terms that enter these relations are only correct up to orders O(M2
π ,M

2
K). Evaluated

at the respective soft-pion or soft-kaon points, only the s-independent part of the subtraction
polynomial, a0(sl), contributes to the relations at the considered order. We therefore cannot
expect to obtain any reasonable numerical result for the a1(sl) function.

As a consequence the above determinations of the subtraction constants/functions should
not be regarded as high-precision predictions but we rather want to provide a method how one
can parametrize such functions. Further input is however highly demanded, in particular for a
more precise determination of the βi parameters.

3.5 Discussion and summary

The main area of concern in our analysis is of conceptual nature, originating from applying
HMChPT in the case of Dl4 decays, where the scale separation between the heavy decaying
meson and the light final-state mesons is not that stringent as it is e.g. in the case of the
Bl4 analysis from which we adapt the formalism. On the one hand mD ≪ mB, and on the
other hand the situation is even compounded by the kaon in the final state, with MK ≫ Mπ.
For this reason it is up to debate whether the application of HMChPT in our analysis is
meaningful. Our attempt to increase its reliability by including NLO effects induces the problem
that such effects yield significant contributions, due to the slow convergence of the expansion
in 1/mD and the light meson masses/momenta. There is hence a considerable impact on the
Dl4 partial waves from tiny variations in the couplings induced by these subleading terms. We
discuss in Appendix B.1 the determination of the coefficients β1,2, the coupling constants to
the semileptonic current in the NLO Lagrangian, as well as a detailed investigation how the
uncertainty in these couplings influences the dispersion integrals for the Dl4 partial waves. Two
issues thwart our attempts: first, the determination of the βi, for which we fit the HMChPT
Dl3 and Bl3 form factors to data, using conformal parametrizations and theory input from
lattice QCD and light-cone sum-rules, exhibits a substantial uncertainty. We find e.g. a non-
controllable sensitivity to the chosen fit interval. Further, the fit parameters are strongly
correlated, inhibiting their disentanglement in the fits. Second, even if we could control the
uncertainty in these couplings better, we would have to deal with a considerable impact on the
Dl4 partial waves, where the uncertainty is even amplified, shown by the large error bands e.g.
in Figure 3.5.

A further point of criticism is that only a small phase space is covered (small s, large sl),

4There is a large uncertainty in the determination of the couplings βi, and the quoted error refers to the

uncertainty when using the βi as determined in FIT II. We therefore quote the result in dependency on the

parameter β1 as well: a0(0.8 GeV2) = 17.8±1.9+23.6β1. For the less preferred set of βi couplings corresponding

to FIT I we obtain a0(0.8 GeV2) = 25.1 ± 1.9, and if the βi corrections are set off, βi = 0, the result is

a0(0.8 GeV2) = 17.8 ± 1.9.
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such that it becomes less attractive for experimentalists to adopt our formalism. We therefore
tried to improve on this by extrapolating to smaller dilepton energies. We employed low-
energy theorems to find sl dependent subtraction polynomials. This turned out cautiously
satisfactory, as we were confronted with another major issue, which is generated by using low-
energy theorems. The soft-pion and soft-kaon theorems are valid up to orders O(M2

π) and
O(M2

K), respectively. The same holds for the Mandelstam variables, i.e. the soft-kaon points
are given by s = M2

π +O(M2
K), which is in particular problematic as MK ≫ Mπ. Hence it is

not fundamentally evident whether the soft-kaon theorem is evaluated at e.g. s = M2
π (below

the πK threshold) or s =M2
π+2M2

K (well above the πK threshold). We have discussed several
constraints and criteria on how to choose the soft-pion and soft-kaon points: we demanded a
minimal deviation from the relations as evaluated at the exact soft-pion/soft-kaon points (which
are not used as we demand the on-shell relation to be fulfilled), as well as a reduction of induced
O(M2

π,K) effects in the calculations performed in Section 3.4. However, these are no axiomatic
criteria and do not induce stringent and distinct conditions.

We are confronted with the issue that (similar to our concerns in the determination of the βi
coefficients) even small fluctuations in the Mandelstam variables induce significant variations in
theDl4 amplitudes. These variations are even amplified when approaching the pseudo-threshold
s− = (MK −Mπ)

2, where the Dl4 amplitudes become singular. For instance the original soft-
kaon point s = M2

π is located in the unphysical region below the pseudo-threshold. If s is
(even marginally) shifted to larger values s > s− the singularity is crossed, which completely
determines the behavior of the Dl4 amplitudes.

As a consequence we refrain from our original proposition to rigorously control the final-
state interaction as presented in this thesis, supposed to deduce high-precision πK phase-shift
information.

We conclude with three main statements: first, it is highly problematic to employ HMChPT
in high-precision analyses of decays of D-mesons due to the slow convergence, in particular in
the combination with kaons in the final states. Second, the extrapolation to lower sl by means
of low-energy theorems does not show great promise: on the one hand only constraints for the
(small) S-wave component can be derived, and on the other hand even for these constraints
the predicitveness is restricted by the validity of the low-energy theorems up to orders of the
squared light meson masses, such that there is freedom in choosing the evaluation point. Third,
a comparison between the fully dispersively constructed partial-wave amplitudes as presented
in this thesis and the partial waves obtained in a naive unitarization approach revealed a
good accordance, in particular in regard of the large uncertainties involved in the dispersive
treatment. In such an approach we have described the amplitudes by polynomials in smultiplied
by the respective Omnès functions. We have shown that linear polynomials in s should deliver a
sufficient amount of flexibility. Undisputably, our formalism has powerful merits like the model
independence and the inherent fulfillment of unitarity and analyticity. However, it involves a
degree of complexity that must not be overlooked. Therefore one might deliberate whether
a simplified version is more suitable. As long as the diverse uncertainties discussed above
inhibit an accurate treatment of the partial waves, we recommend the suggested simplified
approach of unitarizing the partial waves, which seems to attain a well-balanced compromise
of complexibility and benefit.



Thesis summary and outlook

In this thesis we have employed dispersion relations to analyze heavy-meson decays. The disper-
sive framework relies on a crucial correlation between scattering and decay processes: accurately
known scattering phase shifts serve as input to the dispersive construction of decay amplitudes,
exploiting the universality of strong final-state interactions and Watson’s theorem. This re-
dundantizes any modelling of resonant terms in the final-state interaction. Dispersion relations
hence provide a tight control of the strong final-state interactions in a model-independent way,
respecting the fundamental constraints from unitarity and analyticity. At the same time a thor-
ough understanding of the hadronic final-state interactions in decay processes delivers highly
valuable knowledge on scattering dynamics. This has been demonstrated very successfully in
the extraction of pion–pion scattering phase shifts and scattering lengths from Kl4 decays,
measured with an impressive precision.

We have pursued both objectives, exploiting scattering data to constrain decay amplitudes,
as well as deducing scattering information from our decay analyses. We have exemplified this
concretely by the decays of heavy B- and D-mesons. In particular we have analyzed the
non-leptonic decays of a B̄0

d,s-meson into J/ψ and two light mesons, π+π−, π0η, K+K− or

K̄0K0, and the semileptonic D+ → π+K−l+ν decay. The pairwise rescattering of the final-
state hadrons as well as crossed-channel effects were described in an Omnès formalism. In the
consideredB-meson decays the interaction of the light final-state meson pairs has been described
by scalar and vector form factors. The neglect of rescattering with the J/ψ is inspired by
phenomenological observations and symmetry-related arguments. For the scalar form factors
we pursued a coupled-channel approach, mandatory due to the strong coupling between the
S-wave ππ and K̄K (πη and K̄K) in the isoscalar (isovector) case. We solved two-channel
Muskhelishvili–Omnès equations based on three input functions in the isoscalar case: the ππ
elastic S-wave phase shift, and modulus and phase of the ππ → K̄K amplitude. In the case
of the isovector scalar form factors we adopted the Muskhelishvili–Omnès equations as solved
in Ref. [140] that relies on unitarity and chiral constraints. For the pion vector form factor an
elastic approximation is well reliable. We used a single-channel Omnès representation for which
the elastic ππ phase shift serves as input. Isospin-violating effects due to the ρ–ω mixing have
been taken into account without introducing further degrees of freedom as the strength could
be fixed from data of the pion vector form factor.

We established our framework on the decays B̄0
d,s → J/ψπ+π−. Fitting the spectra to

LHCb data revealed fits of a similar fit quality as in the experimental analysis for energies√
s . 1.02 GeV, yet with a significantly reduced number of fit parameters. A description

in terms of S- and P -waves, which are represented by the respective form factors multiplied
by real subtraction constants, is satisfactory. The benefit gathered by the regard for D-wave
corrections or linear subtraction polynomials is superfluous: D-waves become important at
energies near the f2(1270) resonance and higher, above the region considered here; allowing
for free linear slopes has an effect only for one P -wave component, and does not induce a
considerable improvement on the fit quality. Consequently, by studying the B̄0

d,s → J/ψπ+π−



modes we assessed conspicuous benefits in our dispersive approach compared to the formalism
employed in former experimental analyses, where Breit–Wigner representations supplemented
by non-resonant background have been used. We achieved by construction unitarity, analyticity,
model-independency, and (in contrast to the Breit–Wigner parametrization) the correct phase
motion according to Watson’s theorem, without diminishing the quality of the fits. Quite on
the contrary the predictive power is enhanced given the reduced number of free fit parameters.

In a next step we employed these fit results in order to make predictions for the B̄0
d →

J/ψ{π0η,K+K−, K̄0K0} decay spectra and the B̄0
s → J/ψK+K− S-wave. The light meson

pairs in these channels are linked to the π+π− system by coupled-channel and chiral symmetry
relations, which can be transferred (as explicitly shown) to the full decay amplitudes. For B̄0

s →
J/ψK+K−, dominated by the P -wave φ(1020) resonance, we obtained an S-wave contribution
of about 1.1%, which is compatible with the background determined in the LHCb analysis.
Since the kaons emerge from a purely isoscalar s̄s source, the non-strange decay modes B̄0

d →
J/ψ{π0η,K+K−, K̄0K0} involve both the isoscalar and isovector scalar form factors, the latter
exhibiting a rather large uncertainty due to a yet undetermined parameter δ12. We recommend
an experimental exploration of these decays in order to constrain this parameter, mandatory
for an accurate determination of the πη scattering amplitude.

The second part of this thesis deals with the Dl4 analysis. A motivation to study this decay
is its analogy to the Kl4 decay, which was employed for a highly accurate extraction of ππ
phase shifts: the Dl4 decay might be used for a similar extraction of πK phases. Also here
we employed the powerful tools of dispersion relations. In a modified Omnès formalism left-
hand cut structures have been approximated by pole terms. We have explicitly calculated the
corresponding exchange processes in HMChPT, which served as input simplifying the framework
of Khuri–Treiman equations. According to the concern of the reliability of heavy-quark and
chiral symmetries in the case of D-meson decays and a final-state kaon NLO corrections in
the HMChPT amplitudes have been taken into account. A similar formalism was applied
in the study of B → ππlν [126], which we have generalized to unequal-mass mesons in the
final state. A delimiting factor of this approach is that it requires to fix the dilepton energy
sl to a large value, where HMChPT can be applied. We have developed a strategy how to
increase the covered phase space and to extrapolate the amplitudes to smaller sl by means of
parametrizing the sl-dependent subtraction polynomials in conformal variables. Certain low-
energy theorems supposed to constrain these functions have been applied in the case of the
S-wave. The predictive power however is impaired by several conceptual issues that have to
be faced when applying soft-pion and soft-kaon theorems in such a context, in particular on
account of the numerical significance of corrections of orders O(M2

K), evident in the choice
of the evaluation points of the respective low-energy theorems, as well as in the rather slow
convergence of the HMChPT expansion.

A promising project that is closely related to the B̄0 analyses but not pursued in this thesis
is a study of the B̄0

s → J/ψπ0η decay in an analogous formalism. This process features a
purely isoscalar source providing an ideal basis to investigate isospin-violating effects, which
become evident in the phenomenon of a0–f0 mixing. Furthermore, the extension to energies
above ∼ 1 GeV has not been treated so far. This requires the consideration of further inelastic
channels in the scalar sector as well as higher partial waves. Data of a sufficient precision also
allows to accomplish an extraction of the scalar form factor in that energy range.



Appendix A

Supplements to the

B̄0
d/s

→ J/ψM1M2 analyses

A.1 Isospin basis and unitarity relations

Often the scalar form factors are defined as follows,

〈0 |(q̄q)I |M1M2〉I = Bq,∆0 Fq,I
M1M2

(s) (A.1)

(further information on the scalar currents q̄q and the parameters Bq,∆0 are given in Sec-
tion 2.4.2), where the isospin basis is used. The isospin-0 pion and kaon states read

|ππ〉I=0 = − 1√
3
(|π−π+〉+ |π+π−〉+ |π0π0〉), |KK̄〉I=0 = − 1√

2
(|K+K−〉+ |K0K̄0〉). (A.2)

A comparison with the form factors Bq,∆0 Γq,IM1M2
(s) =

〈
0 |(q̄q)I |M i

1M
i
2

〉

I
defined in Section 1.3.4

in the euclidean basis |M i
1M

i
2〉 (or using physical states, e.g. M+

1 M
−
2 , respectively) yields

Fq,I=0
ππ (s) =

√
3Γq,I=0

ππ (s) and Fq,I=0
KK (s) =

√
2Γq,I=0

KK (s). The normalization constants we have

deduced by means of the Feynman–Hellmann theorem refer to those Γq,I=0
M1M2

(s).
The relation between the form factors in the isospin and the euclidean basis is meaningful for

the formulation of the unitarity relations. The partial waves (S-waves) that enter are defined
in the partial-wave expansions of the ππ → ππ amplitude T I(s, z), the ππ → K̄K amplitude
GI(s, z) and the K̄K → K̄K amplitude RI(s, z), given by

T I(s, z) =16π

∞∑

J=0

(2J + 1) 2 tIJ(s)PJ (z),

GI(s, z) =16π
∞∑

J=0

(2J + 1)
√
2 gIJ(s)PJ (z),

RI(s, z) =16π

∞∑

J=0

(2J + 1) rIJ (s)PJ (z) (A.3)

(note the different symmetry factors
√
2). From the above considerations one can deduce the
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unitarity relations

√
3 ImΓπ ∼1

2
2 t00 σππ

√
3Γπ +

√
2 g00 σKK

√
2 ΓK ,

ImΓπ ∼t00 σππΓπ +
2√
3
g00 σKKΓK ,

√
2 ImΓK ∼1

2

√
2 g00 σππ

√
3Γπ + r00 σKK

√
2ΓK ,

ImΓK ∼
√
3

2
g00 σππΓπ + r00 σKKΓK ,

with σM1M2 =
λ1/2(s,m2

M1
,m2

M2
)

s
, (A.4)

explaining the occurrence of the factor 2/
√
3 in the isoscalar pion–kaon coupled-channel formu-

lation.
The corresponding relations in the isovector case follow analogously. The isospin-1 πη and

K̄K states read

|πη〉I=1 = |πη〉, |KK̄〉I=1 = − 1√
2
(|K+K−〉 − |K0K̄0〉), (A.5)

from which Fq,I=0
πη (s) = Γq,I=0

πη (s) and Fq,I=0
KK (s) =

√
2Γq,I=0

KK (s) follows. The relevant partial

waves are defined in the expansions of the πη → πη and πη → K̄K amplitudes

U I(s, z) =16π

∞∑

J=0

(2J + 1) uIJ(s)PJ (z), V I(s, z) = 16π

∞∑

J=0

(2J + 1) vIJ(s)PJ (z), (A.6)

and of the K̄K → K̄K amplitude RI(s, z). They are combined in the unitarity relations

ImΓπη ∼u10 σπη Γπη +
√
2 v10 σK ΓK̄K ,√

2 ImΓK̄K ∼
√
2 v10 σπη Γπη + r10 σK ΓK̄K , (A.7)

where the relative factor
√
2 between the two channels appears.

A.2 Construction of an weak-interaction HMChPT La-

grangian

The concern of this appendix is to motivate the structure of the Lagrangian Eq. (2.90) in Sec-
tion 2.7.3, following Refs. [198, 236]. It describes weak-interaction processes involving heavy
mesons, heavy quarkonia and light pseudoscalars. In order to properly implement the con-
straints from the heavy-quark (HQ) spin symmetry the operators Q1, Q2,

1 see Eq. (2.18) (we

suppress here the superscripts c for the operators to avoid confusion with the HQ fields Qb,cv,v′
that have velocities v, v′ and polarizations ǫ, ǫ′), are written as Lorentz tensors (with two Lorentz
indices that will be contracted in the end),

Q1 = d̄γµ(1− γ5)cc̄γµ(1 − γ5)b −→ Qµν1 (v, v′) = d̄γµ(1− γ5)Qcv′Q̄
c
v′γ

ν(1− γ5)Qbv,

Q2 = c̄γµ(1− γ5)c d̄γµ(1− γ5)b −→ Qµν2 (v, v′) = Q̄cv′γ
µ(1− γ5)Qcv′ d̄γ

ν(1− γ5)Qbv.
(A.8)

1The weak interactions are not invariant under HQ spin rotations, therefore the effective weak Hamiltonian

at the quark level (involving the operators Q1 and Q2) is considered for studying the transformation properties.
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Under the velocity-dependent HQ spin rotations the fields Qbv and Qcv′ transform as

Qbv → γ5 /v/ǫ Qbv,

Qcv′ → γ5 /v
′
/ǫ′ Qcv′ , (A.9)

where v · ǫ = v′ · ǫ′ = 0, and the antiquark field Q̄cv′ as

Q̄cv′ → Q̄cv′(−γ5 /v′/ǫ′∗) . (A.10)

The resulting transformation properties of the operators Qµν1 (v, v′) and Qµν2 (v, v′) must be
reproduced in the hadronic representation of the operator.

One can show that the operator Q1 is left invariant assuming that the matrices γµ(1− γ5)
and γν(1 − γ5) transform as

γµ(1− γ5) → γµ(1 − γ5)γ5 /v′/ǫ′∗,

γν(1− γ5) → −γ5 /v′/ǫ′ γν(1− γ5)γ5 /v/ǫ∗, (A.11)

together with /ǫ∗/v= − /v/ǫ∗ and ǫ · ǫ∗ = −1. It seems thus necessary that the matrices γµ(1−γ5),
γν(1−γ5) appear in the effective hadronic Lagrangian. For the operator Qµν2 (v, v′) we consider
the spurion transformation of γµ(1 − γ5), γν(1− γ5) under HQ spin symmetry to be

γµ(1− γ5) → −γ5 /v′/ǫ′ γµ(1 − γ5)γ5 /v′/ǫ′∗,

γν(1− γ5) → γν(1− γ5)γ5 /v/ǫ∗ . (A.12)

The heavy-meson fields that enter the HMChPT Lagrangians, encoded in the two matrices2

J =
1+ /v

′

2

(
γ5ηc− /Ψ

) 1− /v
′

2
→ 1+ /v

′

2

(
γ5ηc− /Ψ

)
,

H =
1+ /v

2

(
γ5B0− /B

∗)
, (A.13)

exhibit the proper transformation properties under the spin rotations of the two heavy quarks,
Eq. (A.9),

H → γ5 /v/ǫ H,

J → γ5 /v
′
/ǫ
′
J, (A.14)

and under the spin rotation of the heavy charm antiquark, Eq. (A.10),

J → J(−γ5 /v′/ǫ′∗). (A.15)

In addition to spin rotations the Lagrangian under consideration is required to behave prop-
erly under Lorentz transformations, which is achieved by implementing traces. The simplest
Lagrangian representation of the operator Q1 incorporates two independent terms,

Lµν1 = A1Tr
(
γµ(1 − γ5)Jγν(1− γ5)H

)

+A2Tr
(
/v γµ(1− γ5)Jγν(1 − γ5)H

)
,

(A.16)

and for the operator Q2 the Lagrangian has two independent terms as well, which have a double
trace form,

Lµν2 = B1Tr
(
γµ(1 − γ5)J

)
Tr
(
γν(1− γ5)H

)

+B2Tr
(
γµ(1− γ5)J

)
Tr
(
/v′ γν(1− γ5)H

)
.

(A.17)

2Note that the factor (1− /v′)/2 on the right of J is superfluous; due to v′ ·ψ = 0 it can be moved to the left.



110 App. A: Supplements to the B̄0
d/s → J/ψM1M2 analyses



Appendix B

Supplements to the Dl4 analysis

B.1 Fixing the next-to-leading order couplings β1,2

B.1.1 Analysis of Dl3 and Bl3 decay form factors

The NLO correction terms induced by the Lagrangian Eq. (1.53) incorporate two new coupling
constants β1 and β2, which are unknown so far. For an estimation of those we employ that
from the same Lagrangian Eq. (1.53) we can calculate the HMChPT tree-level amplitudes for
the Dl3 decay, the form factors f± therefore depend on the same coefficients β1,2,

f+ =− gfD∗mD∗

2
√
2Fπ

1

∆ + v · pπ
− fD − 2β1 − 2β2pD · pπ

2
√
2Fπ

+O
(
Mπ

mD
,
∆

mD

)

,

f− =
gfD∗

2
√
2Fπ

mD∗ − 2∆

∆+ v · pπ
− fD − 2gfD∗ + 2β1 − 2β2pD · pπ

2
√
2Fπ

+O
(
Mπ

mD
,
∆

mD

)

. (B.1)

We consider the form factor f+ and replace the effective propagator by the full relativistic one
according to Eq. (3.37). The considered correction appears in form of a linear polynomial,

f+ = − 1

2
√
2Fπ

(

fD − 2β1 − β2(m
2
D − t)− 2gfD∗m2

D∗

t−m2
D∗

)

. (B.2)

A parametrization of the Dl3 form factor in terms of a series expansion in conformal variables,
which converges very quickly and which fulfills analyticity, is well reliable. The idea of such an
expansion is that the complex plane is mapped onto the unit circle, by mapping the variable t
onto the variable z by

z(t, t0) =

√
t+ − t−√

t+ − t0√
t+ − t+

√
t+ − t0

, (B.3)

with t0 = t+(1 −
√

1− t−/t+) and t± = (mD ±Mπ)
2. This is illustrated in Figure B.1. The

physical region of the Dl3 decay is mapped onto an interval z ∈ [−0.167, 0.167], shown by the
gray-shaded box.

An appropriate form factor expansion reads1

f+(t) =
∞∑

k=0

ak(t0)z
k(t, t0), (B.4)

1D decays are well described by such a simplified conformal parametrization, where a unitarity-entailing

function Φ(t, t0) that is often found in the literature is set to 1. Elaborated discussions concerning unitarity

bounds as well as effects arising from above-threshold poles can be found e.g. in Refs. [237–241].
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z(t = 0)

z

z(t+)

z(t > t+)

z(t−)

z(t < 0)

Figure B.1: We show the conformal mapping of the complex t-plane onto the unit circle. The

physical region for the Dl3 decay is shown by the gray box on the real axis, with z(t−) < z <

z(t = 0) and |z(t−)| = |z(0)| ≈ 0.167. The left-hand cut t < 0 is mapped onto the positive

real axis (red). When increasing t, z(t) runs along the negative real axis until z(t+) = −1, and

moves along the unit circle for energies t > t+ (blue).

as long as no sub-threshold poles exist, which is the case for the Dl3 decay, where the lowest
pole appears just above the threshold (mD∗ − √

t+ > 0) with a narrow width. Due to the
good convergence the series can be truncated at a low order kmax. A common choice of kmax is
kmax = 1 or 2.

We take the results of a BES III analysis [227], where a conformal three-parameter parametri-
zation is used, i.e. kmax = 2. There the coefficients of the series expansion are determined by
fitting to the data, yielding the form factor shown in Figure B.2 (solid red curve with error
band). Note that in the experimental analysis the decay D0 → π−lν is explored, while we
discuss the isospin-related D+ → π0lν decay amplitude, differing by a factor

√
2, however,

this is taken into consideration in the definition of the form factors f± in the hadronic matrix
element, cf. Eq. (3.58), such that the BES III and our form factors are in accordance.2 Matching
the HMChPT expression, Eq. (B.2), onto the BES III form factor at an appropriate matching
point/region enables us to fix the constants β1 and β2. As HMChPT works best for large t a good
choice might be the upper end of the physical region, t . t−, although, the closer this region is
constrained the stronger a mismatch for lower t shows up, i.e. matching for instance pointwise at
tmax = t− yields large discrepancies between the obtained HMChPT form-factor normalization
and that of the z parametrization. Therefore we consider two scenarios, choosing the region
2 GeV2 ≤ t ≤ t− (FIT I) and the whole physical region 0 GeV2 ≤ t ≤ t− (FIT II), in which we
fit to the conformal parametrization. Of course, the latter choice is a stretch beyond the range
where HMChPT is thought to be well applicable, but it allows for a phenomenology-compatible

2For the direct comparison of our form factor parametrization to the one used in the BES III analysis we

take into consideration a relative sign due to different conventions concerning an overall phase factor.
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Figure B.2: Dl3 form factor f+(t): the solid red curve with error band shows a conformal

parametrization as determined by the BES III collaboration. The other curves correspond

to HMChPT expressions with different βi correction terms as determined in the fit scenarios

described in the main text: FIT I (green dotted curve) and FIT II (black dash-dotted), and the

HMChPT pole term contributing at LO (blue dashed curve).

representation of the form factor, such that for instance the deviation in the normalization is
not too large.

For FIT I we find β1 = (0.31 ± 0.03) GeV and β2 = (−0.15± 0.05) GeV−1, corresponding
to the dotted green curve of Figure B.2, and for FIT II we obtain β1 = (0.25 ± 0.02) GeV
and β2 = (−0.05± 0.02) GeV−1, depicted by the black dash-dotted curve. The FIT II results
in particular reflect the purpose of the fit constellation: by construction the βi account for
a finetuning of the NLO corrections in the form factor normalization. Considering the βi fit
polynomial (in t), 2β1 + β2(m

2
D − t) ≡ β̃ + tβ̃′, the constant term β̃ is determined to cancel

with the fixed NLO terms, such that for FIT II fNLO
+ ≈ fLO

+ . Exactly this constant part hence
differs in the various fit configurations.

Both fit results are of the same order of magnitude, but the results for the parameter β1
differ on a 20% level, and those for β2 even more (though this can actually be partly traced back
to the correlation between both parameters—the correlation coefficient ρβ1β2 is ρβ1β2 > 0.9).
Unfortunately, even small deviations in the βi coefficients that enter the Dl4 amplitudes cause a
significant impact on the latter as we show in Appendix B.1.2. This originates from the rather
slow convergence of the HMChPT expansion where the chiral symmetry is broken by the kaon
mass and the heavy-quark symmetry by the D-meson mass, both inducing large corrections,
see the discussion in Section 3.5.

It is therefore expedient to further constrain the determination of the βi by considering
other decay channels as well. The same HMChPT Lagrangian from which the D → πlν vector
form factor f+(t), Eq. (B.2), is obtained yields the D → Klν vector form factor, being of the
same form as for D → πlν, with the replacements (pπ,Mπ) → (pK ,MK) and (Fπ, fD,mD∗) →
(FK , fDs ,mD∗

s
). Compared to the D → πlν decay now the light meson in the final state is the

much heavier kaon such that HMChPT is less justified. We therefore refrain from fitting the
complete physical region but restrict ourselves to the region of small kaon momentum transfer,
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Figure B.3: D → Klν form factor f+(t): the solid red curve with error band shows a conformal

parametrization as determined by the BES III collaboration. The black, dash-dotted curve

corresponds to the HMChPT expression with the FIT III βi fit results.

1 GeV2 ≤ t ≤ t− = (mD −MK)2. We employ a parametrization similar to Eq. (B.4), but take
into account a below-threshold resonant pole and remove the related dynamical singularity by
dividing by the Blaschke factor z(t,mD∗

s
),

f+(t) =
1

z(t,mD∗
s
)

∞∑

k=0

ak(t0)z
k(t, t0). (B.5)

A fit to the BES III parametrization [227], shown in Figure B.3 yields β1 = (0.14± 0.05) GeV
and β2 = (0.02 ± 0.05) GeV−1 (FIT III). Consequently, including the D → Klν channel does
not allow to further constrain the βi values but rather increases the uncertainty.

As a last fit configuration (FIT IV) we examine the B → πlν decay. The benefit of this decay
is that due to mB ≫ mD and Mπ ≪MK the application of HMChPT symmetry is much more
reliable than it is the case for the D → {π,K}lν decay channel, such that a good convergence
can be expected. Note that there is a dependencey on the heavy mass [75], βP1 ∼ √

mP ,

βP2 ∼ 1/
√
mP

3 (we neglect here logarithmic corrections), such that βD1 =
√

mD/mBβ
B
1 , βD2 =

√

mB/mD
3
βB2 . This has to be taken into account in a direct comparison of the fit result to the

former fits. Similar to the D → Klν parametrization the appearance of a subthreshold-pole is
taken into account by dividing out the pole term or z(t,mB∗), respectively, see Eq. (B.5). We
hence rewrite the B → πlν vector form factor (obtained from Eq. (B.2) with the replacements
(fD, fD∗ ,mD,mD∗) → (fB, fB∗ ,mB,mB∗)) into such a parametrization, which we then fit to
the results of a Belle analysis [228], where a two-parameter BCL parametrization [237] is fitted
to tagged B− → π0l−ν and B̄0 → π+l−ν data combined with lattice-QCD results in the
high-t region (obtained by the FNAL/MILC collaboration [242]) and with light-cone sum-rule
calculations for t = 0 [243]. The phase space for the Bl3 decay, 0 < t < t− = (mB −Mπ)

2, is
much larger than the Dl3 phase space and it is a matter of discretion which energy region we
include in our fit. Instead of stating a criterion that determines the specific energy regions in
which we assume HMChPT to work reliably well, we consider different energy intervals in order
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Figure B.4: B → πlν form factor f+(t): the solid red curve with error band shows a conformal

parametrization as determined by the Belle collaboration. The other curves correspond to

the HMChPT expressions with the βi fit results as determined in the fits FIT IVa (black,

dot-dashed), FIT IVb (green, dotted), and FIT IVc (blue, dashed).

to investigate whether this choice has a significant influence on the fit results. We perform fits
in the intervals tstart < t < t− with tstart = {14 GeV2, 18 GeV2, 22 GeV2} (FIT IVa-c), and
find the following sets of coefficients βi,

βB1 =(0.84± 0.06) GeV, βB2 = (−0.09± 0.01) GeV−1 (FIT IVa),

βB1 =(0.96± 0.06) GeV, βB2 = (−0.15± 0.02) GeV−1 (FIT IVb),

βB1 =(1.14± 0.07) GeV, βB2 = (−0.26± 0.04) GeV−1 (FIT IVc). (B.6)

Hence the specific choice of tstart has indeed a considerable impact on the fit results, reveal-
ing discrepancies between the different values. The fit is shown in Figure B.4. There is a
significant difference between the HMChPT pole term, fHMChPT

+,pole · (1 − t/m2
B∗) = 1.12, and

the BCL parametrization, for which we determine the pole residue 0.75±. Evidently, the pole
strength predicted by HMChPT does not feature a good agreement with the BCL one, neces-
sitating large correction terms. This causes the huge discrepancies in the slopes of the various
parametrizations that we observe in Figure B.4.

We compare the determined values with the fit results of FIT I-III and take into consideration
the respective scaling with the heavy mass mentioned above. The range of the β1 obtained in
the B-decay thus translates to the range 0.46 GeV < βD1 < 0.72 GeV, which differs to the
values obtained in FIT I and II roughly by a factor 2.

We do not discuss a combined fit for the following reasons: in such a combined fit the B-
decay would dominate over the D-decay modes, due to the larger phase space, and in particular,
we would enforce this dominance by assigning a weighting factor on the Bl3 distribution, given
its better control over the heavy quark flavor and chiral symmetry violations. We hence assume
the Bl3 fit results to be the most promising ones, and state at least bounds on the βi coefficients
respecting the range quoted in Eq. (B.6), βB1 ≥ 0.78 GeV, βB2 ≤ −0.08 GeV−1, but we cannot
provide a more accurate determination. These bounds are actually to be regarded as rather
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suggestive than strict bounds, respecting the strong correlation between the βPi that hence
cannot be disentangled properly.

We do not use these results to state bounds on the βDi couplings as proposed above—severe
symmetry violating effects in the D-meson decays need to be taken into account, causing a
lowering of these bounds, as seen in fitting the βDi directly.

Recently the βB,Di coefficients were determined in Ref. [235], where the respective scalar Bl3
andDl3 form factors were fitted to data, combined with theory input. When comparing to our fit
results, we notice a sign difference in the definition of the βPi coefficients, βP1 |lit = −βP1 |thiswork.
Facing the same challenge of correlated variables they show various possible (β1, β2) pairs that
yield a similar fit quality. However, for the most data sets they find positive βB1 values which
hence translate to negative coefficients using our definition. Consequently instead of further
constraining or imposing stronger bounds on the βB,Di this comparison yet enlarges the range

of possible βB,Di values and hence the uncertainty on the fits (and in particular the choice of
the best fit configuration).

We conclude that it seems very difficult to fix the NLO coefficients to a sufficient precision,
given the inherent complication of symmetry breaking effects, the significant dependency on
tstart, and the strong correlation between βP1 and βP2 that entangles both parameters.

For the calculations performed in this thesis we will use the FIT II results. We resort to
the Dl3 decay in order to avoid estimating the symmetry breaking effects in translating the
results from the Bl3 decay. The Dl3 amplitudes are furthermore related to the Dl4 amplitudes,
into which the βi enter, via the soft-kaon theorem. As a consequence the Dl3-to-Dl4 relation
not only relies on heavy-meson and chiral symmetry—it is less afflicted by assumptions and
hence theoretically better justified. An adjustment of the low-energy behavior seems to be
reasonable here because we find a quite bad compatibility between the HMChPT and the
conformal parametrization for small t. At leading-order only the pole term contributes to the
HMChPT expression, shown by the blue dashed curve. The fixed part of next-to-leading order
expression (∝ fD) even worsens the deviation between the BES III and the HMChPT curves
gets larger. Therefore FIT II allows for a better adjustment of the βi correction terms in order
to somewhat compensate this NLO effect.

Nevertheless, all numerical results that depend on this coefficient should be considered as
a demonstration of our method for a particular set of input parameters, but not as powerful
predictions, given the uncertainty on these parameters and, in particular, the (unfortunately
large) effect of that uncertainty in the Dl4 NLO amplitudes.

B.1.2 Impact of the β1,2 uncertainty on Dl4 partial waves

In this section we demonstrate the impact of the uncertainty of the couplings β1,2 on the
Dl4 partial waves. For this purpose we consider the two fit scenarios FIT I and FIT II, for
which we have found β1 = (0.31 ± 0.03) GeV and β2 = (−0.15 ± 0.05) GeV−1 (FIT I), and
β1 = (0.25 ± 0.02) GeV and β2 = (0.05 ± 0.02) GeV−1 (FIT II). The latter fit configuration
we have assessed to most likely show promise for determining a meaningful set of couplings
(see the discussion in the previous section). Even if we restrict ourselves to those two sets and
disregard a further spreading of the βi interval (as it is indicated by considerations of other fit
configurations), we face relative errors on a 10 to 40% level. Given such a large uncertainty it
is mandatory to study to what extend our dispersively constructed partial waves, Eq. (3.48),
are affected.

To begin with we investigate in which combinations the βi coefficients enter the pole and non-
pole terms in theDl4 amplitudes. The pole terms F pole

1 and F pole
2 , Eq. (3.38), have contributions

∝ β1+β2m
2
D∗ , evaluated to (−0.30±0.23) GeV in the FIT I configuration and (0.05±0.10) GeV

in the FIT II one. Exemplarily we consider the functions ζ0 and ζ1 that appear in the numerator
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Figure B.5: The figure shows the functions ai(s) and bi(s), defined by ζi(s) = (β1 +

β2m
2
D∗)ai(s) + bi(s), for i = 0, 1. The ζi(s) contribute to the numerator of the pole term

F pole
1 , Eq. (3.38). The blue curves depict the contributions to ζ0(s), Y s

2a0(s) (blue, dashed)

and Y s2b0(s) (blue, dot-dashed), and the red curves refer to ζ1(s), 2Xsa1(s) (red, dashed)

and 2Xs b1(s) (red, dot-dashed). A very rough approximation yields ai(s) ≈ 2bi(s) above the

πK threshold (indicated by the gray line). Kinematical singularities have been factored out to

achieve a clearer representation.

of F pole
1 , Eq. (3.38), and that have the structure ζi(s) = (β1 + β2m

2
D∗)ai(s) + bi(s); they are

depicted in Figure B.5, where we compare the terms ai(s) and bi(s). We observe that the
respective βi independent parts b(s) are of similar magnitudes as the terms ai(s), such that
the various values obtained for the βi combinations indeed cause significant variations. If we
approximate ai(s) ≈ 2bi(s) (this is motivated by Figure B.5), the two fit results yield the
functions 0.4bi(s) and 1.1bi(s). Hence the even relatively small variation in the βi values (at
least compared to the large variation if further decay modes are considered) propagates to
effects in the Dl4 pole terms that completely determine their structure.

To the non-pole expressions at NLO, Eq. (3.43), employed for the matching of the sub-
traction polynomial in Section 3.3, only β1 contributes, in the combination fD − 2β1. For
simplicity we consider MHMChPT

1 and UHMChPT
1 (being proportional to fD− 2β1) and find that

the variation between the FIT I and FIT II β1 results cause a 30% relative error.
The full partial waves (their magnitudes) evaluated for the FIT I and the FIT II sets of β1,2

are displayed in Section 3.3, Figure 3.5, with the uncertainty bands induced by the βi error
ranges. For both fit results we find a strong effect as the partial waves exhibit large uncertainty
bands, most prominent in the K̄∗(892)0. Combining the FIT I and FIT II uncertainties we
observe e.g. a relative error of roughly 70% in the M1(s) peak region. Also the magnitude and
the shape of M0(s) are influenced sizably.

B.2 Low-energy theorems in HMChPT

In this appendix we apply low-energy theorems to the HMChPT tree-level amplitudes at NLO,
see Section 1.2.2, serving as a confirmation of the calculated Dl4 and Dl3 form factors. In par-
ticular the soft-pion and the soft-kaon theorems that entail certain relations of combinations
of these form factors in the kinematical limits pπ → 0 and pK → 0, as introduced in Sec-



118 App. B: Supplements to the Dl4 analysis

tion 3.4.1, have to be fulfilled. We evaluate the form factors F , G and R defined via Eq. (3.8)
from the tree-level amplitudes Eq. (1.55) and calculate the combinations in the respective limits
according to Eqs. (3.59) and (3.60). For pπ → 0 we find

F +G−R |pπ→0 = − 2mDλ1m̂fDs

FπFK (v · pK + µ)
= O(M2

π) , R |pπ→0 =
2mDλ1m̂fDs

FπFK (v · pK + µ)
= O(M2

π) ,

(B.7)
thus satisfying the soft-pion theorem. For pK → 0 the combination reads

F −G−R |pK→0

=
mD

2FπFK

(

− gfD∗mD

v · pπ +∆
− gfD∗ − fDs

2λ1(m̂+ms)

v · pπ + µ
+ 2β1 +O

(
Mπ

mD
,
∆

mD

))

,

R |pK→0 = − mD

2FπFK

(
gfD∗∆

v · pπ +∆
− fDs

2λ1(m̂+ms)

v · pπ + µ
+ fD − 2β2pD · pπ − gfD∗

)

.

(B.8)

This is compared to the sum and difference of the Dl3 form factors f±, defined via Eq. (3.58),

f+ + f− = − 1√
2Fπ

gfD∗∆

v · pπ +∆
− fD − gfD∗ − 2β2pD · pπ√

2Fπ
+O

(
Mπ

mD
,
∆

mD

)

,

f+ − f− = − 1√
2Fπ

gfD∗mD

v · pπ +∆
+

−gfD∗ + 2β1√
2Fπ

+O
(
Mπ

mD
,
∆

mD

)

, (B.9)

exhibiting that the Dl3 and Dl4 form factors differ by a correction

fDsmDsλ1(ms + m̂)

FπFK(v · pπ + µ)
∝M2

K ,

hence the soft-kaon theorem is fulfilled as well.

B.3 Analytic properties of kinematical functions

In this appendix we have a closer look at the analytic properties of some kinematical functions
defined in Section 3.2, with a particular interest in their behavior below the πK threshold. This
is mandatory to investigate e.g. whether the partial-wave expansion Eq. (3.13) in the unphysical
region converges.

To begin with, we consider the analytic continuation of the square root of the Källén function
λ(s,M2

π ,M
2
K), from which we learn about the analytic structure of the πK center-of-mass

momentum Y (s). In Figure B.6 λ(s+ iǫ,M2
π,M

2
K) is plotted in the complex plane. Above the

πK threshold (blue curve) both its real and (tiny) imaginary part are positive. Approaching
the region below the threshold, s < (Mπ+MK)2, λ(s+ iǫ,M2

π,M
2
K) runs into the real negative

region, still in the upper half plane (red curve). Further decreasing s, a sign change in the
imaginary part happens at s = M2

π + M2
K , the real part still being negative (green curve),

until the energy is lowered to below the pseudo-threshold s = (MK −Mπ)
2, where the Källén

function runs into the fourth quadrant (orange curve). The square root of that function is
positive-real in the scattering region s > (Mπ+MK)2. The cut of the square root is commonly
taken on the negative real axis, such that the demonstrated encircling of the origin demands to
continue the square root function on the second Riemann sheet. Consequently Y (s) must be
negative-real for energies below the pseudo-threshold. An analogous encircling of the origin is
observed when considering the function λ(s,m2

D, sl), which yields the requirement to continue
the function X(s) on different Riemann sheets, resulting in the prescriptions Eq. (3.7).
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Figure B.6: The Källén function λ(s + iǫ,M2
π,M

2
K) (ǫ = 0.01) is plotted in the complex plane

for several s regions: s ≥ (MK +Mπ)
2 (blue curve), M2

π +M2
K ≤ s < (MK +Mπ)

2 (red curve),

(MK −Mπ)
2 ≤ s < M2

π +M2
K (green curve), and s ≤ (MK −Mπ)

2 (orange curve).

The product X(s)Y (s) enters the kinematical function y(s), Eq. (3.38), shown in Figure B.7.
Due to the zeros in the kinematical functions X and Y the function y(s) diverges for s =
(MK ±Mπ)

2 ≡ s±. Expanding y(s) around these points yields

y(s) =







(ζ+)
−1 · (s− s+)

−1/2 +O(s− s+)
1/2, near s = s+,

−i(ζ−)−1 · (s− s−)−1/2 +O(s− s−)1/2, near s = s−,

with

ζ± =
λ1/2

(
sl,m

2
D, s±

)√
MKMπ

(Mπ ±MK) {∓m2
DMK − slMπ + (MK ±Mπ)(m2

D∗ ±MKMπ)}
≶ 0. (B.10)

We consider next the scattering angle z(s, t, u) in dependency on the Mandelstam variables,
Eq. (3.6), with a particular interest on its motion in the unphysical region, supposed for study-
ing the convergence behavior of the partial-wave expansion, demanding |z(s, t, u)| < 1. In
Figure B.8 we show the regions in the Mandelstam plane (t − u versus s) that comply with
this requirement, by means of a density plot of the magnitude of the angle |z(s, t, u)| in the
vicinity of the physical decay region. Expectedly, there is an overlap with the decay region
(black encircled shaded area, compare also to Figure 1.5). In addition there are areas in the un-
physical part of the Mandelstam plane, complying with the required bound on z(s, t, u) (green
encircled). Once an amplitude is expanded into partial waves at unphysical energies hence a
careful consideration is mandatory whether the considered energies are located inside such a
shaded area in the Mandelstam plane.

B.3.1 Analytic properties of the inhomogeneities

In Section 3.3 we perform a partial-wave decomposition of the Dl4 pole terms to derive the
inhomogeneities, Eq. (3.47). These are expressed in terms of Legendre functions of second kind
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Figure B.7: The real (solid, red curves) and imaginary (blue, dashed) parts of the kinematic

functions X(s)Y (s) (left panel) and y(s) (right panel) are shown.

Ql(y), Eq. (3.46). The purpose of this appendix is to study of some analytic properties of the
inhomogeneities in order to understand the singular behavior at the pseudo-threshold. We also
discuss the difference to the equal-mass case, where both final-state pseudoscalars are pions,
see Ref. [126].

The lowest of the Legendre functions, Q0(y), involves the logarithm of (y(s) − 1)/(y(s) +
1) (and by means of the recursion relations those for higher l do as well). Taking up the
discussion of the previous section, where we considered the function y(s), we investigate the
analytic behavior of (y(s)− 1)/(y(s)+ 1) to obtain the proper analytical continuation of Q0(y)
into the unphysical region. Assigning a tiny imaginary part iǫ to the variable s, the function
(y(s + iǫ) − 1)/(y(s + iǫ) + 1) is plotted for several energy regions in Figure B.9 (left panel).
In the physical region above the πK threshold the function runs from the first into the fourth
quadrant. Lowering s to below the threshold the function approaches the third and at s0
(determined by Im y(s) = 0) the second quadrant. The encircling of the origin demands to
copy the complex plane when considering the logarithm of that function. Hence at s = s0,
Q0(y) moves onto the second Riemann sheet. This is illustrated in the right panel, where the
real and imaginary part and the argument of (y(s)− 1)/(y(s)+ 1) (twice the imaginary part of
Q0(y)) are depicted. In the physical region the argument is zero, while below the threshold it
falls to −2π. Consequently, at the pseudo-threshold the imaginary part of Q0(y) is nonzero.

The real part of Q0(y) diverges for s = 0 and if y = −1, the latter corresponding to two
solutions

s1,2 =
1

2

(

3s0 −m2
D∗ − (m2

D −M2
π)(sl −M2

K)

m2
D∗

±
√

λ (sl,M2
K ,m

2
D∗)
√

λ (m2
D,M

2
π ,m

2
D∗)

m2
D∗

)

.

(B.11)
As the higher Legendre functions Q1(y) and Q2(y) emanate from Q0(y) by multiplication with
y, which diverges for s = (MK ±Mπ)

2 ≡ s± due to the zeros in the kinematical functions X
and Y , there might in addition be singular behavior for Q1(y) and Q2(y) at the pseudo- and
the normal threshold. Expanding around s = s± yields

Q1(s) = O(s− s+),

Q2(s) = O(s− s+)
1/2,






near s = s+;

Q1(s) = −π(ζ−)−1 · (s− s−)−1/2 +O(s− s−)1/2,

Q2(s) =
3iπ
2 (ζ−)−2 · (s− s−)−1 +O(1),






near s = s−, (B.12)
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Figure B.8: We show the magnitude of the scattering angle z(s, t, u) depending on the Mandel-

stam variables in a density plot with t−u versus s. The regions for |z(s, t, u)| > 1 are excluded.

There is an overlap with the physical decay region, shown by the shaded, black encircled area.

The regions that obey z(s, t, u) ≤ 1 and lie in the unphysical region are encircled by a green

curve.

where ζ− is defined in Eq. (B.10). We find that the singularities cancel at s = s+, but due to
the non-vanishing imaginary part of Q0(y) at s−, they survive at the pseudo-threshold. From
Eq. (3.47), by counting every power of y and inverse power of Y as O(s− s±)1/2, we find that
the inhomogeneities are regular at threshold, but behave according to

M̂0 =O(s − s−)
−1/2,

M̂1 =O(s − s−)
−3/2,

Û1 =O(s − s−)
−3/2,

V̂1 =O(s − s−)
−3/2. (B.13)

at the pseudo-threshold.

B.3.2 Comparison to the equal-mass case

In Ref. [126], where the two final-state Goldstone bosons have equal mass (two pions), it is
found that at the pseudo-threshold (i.e. at s = 0) the inhomogeneities M̂0, Û1, V̂1 display
singular behavior of O(s)1/2, while M̂1 has a singularity of O(s)3/2. We consider briefly the
equal-mass case (denoted by the superscript “eq”) in order to understand these discrepancies.
The main point to remark is that in the equal-mass case, the kinematic function Y (s) reduces
to σπ(s) =

√

1− 4M2
π/s. Consequently, near the pseudo-threshold y

eq(s) behaves like O(s)1/2,
whereas in the non-equal-mass case y(s) diverges as O(s − s−)−1/2. Expanding the Qeq

i (s)
around s = 0, we find Qeq

i (s) = const + O(s)1/2. Further, by means of Eq. (3.47) and the
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Figure B.9: Left panel: the function (y(s+ iǫ) + 1)/(y(s+ iǫ)− 1) (ǫ = 0.01) is plotted in the

complex plane for several s regions: s ≥ s0 (blue curve), 0 ≤ s < s0 (red curve), and s ≤ 0

(orange curve on the real negative axis); s0 solves Im y(s) = 0. Right panel: the same function

is plotted as a function of s; we show the real part (solid, red), the imaginary part (dashed,

blue), and the argument (dot-dashed, green). The latter is zero in the physical region (above

the πK threshold), and is analytically continued to the unphysical region, where it reaches a

constant value −2π below the pseudo-threshold. The (pseudo-)thresholds are indicated by the

dashed gray lines.

appropriate behavior of yeq(s) and Y eq(s), we recover the above mentioned square-root behavior
of the equal-mass inhomogeneities.

There is also a discrepancy in the way the inhomogeneities modify when going from the
equal-mass to the non-equal-mass case, as they do not change “synchronously”. That is, in the
equal-mass case, the inhomogeneities M̂ eq

0 , Û eq
1 , V̂ eq

1 all have the same square-root behavior

at pseudo-threshold, while in the non-equal-mass case M̂0 is of a different order compared to
Û1, V̂1, while the latter now show the same behavior as M̂1. However, this becomes plausible
when comparing the behavior of the Legendre functions—all Qeq

i (s) behave the same way in
the case of equal-mass particles, but this is not the case for the non-equal-mass functions Qi(s)
(e.g. due to a cancellation of constant terms etc.). That is, Û1 and V̂1 show a different pseudo-
threshold behavior due to a contribution from Q2(s). On the other hand M̂1 behaves like Û1

and V̂1, because the lower order in (s− s−) in the “non-Legendre” part of M̂1 (compared to Û1

and V̂1) is compensated by a higher order in Q1(s).

B.3.3 Analyticity aspects when applying low-energy theorems

In Section 3.4.1 we apply certain low-energy theorems that constrain the Dl4 amplitudes at
specific (unphysical) points in the Mandelstam plane. We aim for constraints on the partial
waves and therefore investigate in this appendix whether a partial-wave expansion is appropriate
at these points. As an example we examine the soft-kaon relation, where the Dl3 form factor
f+ is matched to a Dl4 form factor combination, and consider the original soft-kaon point
sSKP =M2

π < s−, tSKP = sl, uSKP = m2
D. Naively evaluating the Dl4 expressions for s = sSKP

yields an imaginary part, while f+ is real.
The origin of the described inconsistency can be understood by studying the analytic struc-

ture of the partial waves themselves. Consider e.g. the Legendre function of second kind Q0(y),
depending on the kinematical function y(s), Eq. (3.38). The unphysical region is reached via
an analytic continuation, where Im Q0(y) = arg((y + 1)/(y − 1))/2 is continued to the second
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Figure B.10: We show the magnitude of the scattering angle z(aπ,K1 , aπ,K2 − aπ,K3 ) evaluated

at the soft-kaon (left panel) and soft-pion (right panel) points Eq. (3.62), which shifted by

aπ,Ki M2
π,K (supposed to retain the on-shell condition s+t+u = 3s0). We depict the dependency

of |z(aπ,K1 , aπ,K2 − aπ,K3 )| on the shift parameters aπ,K1 and aπ,K2 − aπ,K3 in a density plot,

excluding the regions for |z| > 1. The black curve contains those soft-kaon and soft-pion points,

respectively, that are allowed by the on-shell constraint (transferred to the shift-parameters)

aπ,K1 + aπ,K2 + aπ,K3 = 1, where we fix aπ,K2 = 0.

Riemann sheet and approaches −π below the pseudo-threshold, see Figure B.9 (right panel).
Hence, this implies an imaginary part for the Dl4 partial waves below the threshold, in particu-
lar at the considered soft-kaon point. However, the soft-kaon theorem states a relation between
the Dl3 and Dl4 amplitudes if the kaon dynamics in the Dl4 decay is switched off, pK → 0. If
we take MK → 0 the energy interval between the πK threshold and pseudo-threshold shrinks
to one point (implying a jump by π in Im Q0(y)) and the function (y + 1)/(y − 1) does not
encircle the origin as shown in the left panel of Figure B.9. We propose to consider the Dl4

partial waves in the physical region (where they are real) and then apply the limit pK → 0
directly, such that the analytic continuation to the second Riemann sheet is avoided.

We take up the discussion of Appendix B.3 and observe that the exact soft-kaon point
(s = M2

π , t = sl, u = m2
D) lies outside the shaded areas (not shown in Figure B.8), such that

an expansion in powers of z(s, t, u) is not meaningful. Nevertheless, this issue is fixed as there
is freedom to shift the Mandelstam variables by orders O(M2

K). We introduce in Section 3.4.1
the shifted soft-kaon points s = M2

π + aK1 M
2
K , t = sl + aK2 M

2
K , u = m2

D + aK3 M
2
K supposed to

retain the on-shell condition s+ t+u = 3s0, which implies aK1 +aK2 +aK3 = 1, used to eliminate
one parameter. At the same time these shifts exhibit two yet undetermined degrees of freedom.
The provided flexibility enables us to impose criteria to constrain the remaining parameters
as well, such as demanding the soft-kaon point to match an energy region where |z| ≤ 1. To
investigate the implications on the aKi we evaluate |z(s, t, u)| at the shifted soft-kaon point and
show |z(ak1 , aK2 −aK3 )| as a function of the aKi in Figure B.10 (left panel). We furthermore depict
those points that are allowed by the on-shell constraint, where we restrict ourselves to solutions
where t remains unshifted, such that aK2 = 0, as motivated in Section 3.4.1, hence aK1 = 1−aK3 .
In the right panel we depict the analogous dependency of the cosine of the scattering angle
on the shifted soft-pion point |z(aπ1 , aπ2 − aπ3 )|. We observe that particularly the soft-kaon and

soft-pion points that are proposed in Eq. (3.66) (aπ,K1 = −1, aπ,K2 = 0, aπ,K3 = 2) coincide with
regions where the requirement |z(s, t, u)| ≤ 1 is fulfilled.
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Figure B.11: Inhomogeneities M̂0(s) (red), M̂1(s) (blue), Û1(s) (green) and V̂1(s) (black) de-

picted in the scattering region (Mπ +MK)2 ≤ s . 1.2 GeV2.

We conclude that when applying low-energy theorems to partial waves in a first step one has
to assure that the partial-wave expansion is valid at the respective evaluation point. Further-
more, the analytic behavior must be treated carefully and reexamined to ensure e.g. a correct
continuation to Riemann sheets.

B.4 Order of subtractions

We examine the order of the subtraction polynomials, required for the dispersive integral to
converge. In addition to the large-s behavior of the Omnès function the asymptotic behavior
of the inhomogeneities has to be investigated, see Table B.1. In the top line the behavior of
the full inhomogeneities for large s is given, while in the middle only the leading order in the
heavy-meson approximation is considered, i.e. the inhomogeneities were first expanded in 1/mD

and subsequently in 1/s. When comparing this with Figure B.11, it appears that this large-s
behavior sets in at higher energies and that the inhomogeneities are nearly constant in the low-
energy regime s . 1 GeV2 we are interested in. Thus assuming nearly constant inhomogeneities
we need three subtractions in the case of M0(s) and two for the P -wave amplitudes. In order
to estimate the constant A, the inhomogeneities are evaluated at a specific matching point sm,
A = M̂i(sm), and are approximated by that result over the considered energy range.

However, one could raise concerns over that assumption, as it originates from a rough and
rather hand-wavy estimate. Once the proposed method is adopted to high-precision studies
with an anticipated predictive power, further criteria should be established to quantify the
assumption of constant behavior, or at least examine to what extent the results are affected
if either a linear behavior is assumed or the matching point sm at which the amplitude is
evaluated is slightly shifted.
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M̂0(s) M̂1(s) Û1(s) V̂1(s)

s→ ∞ log s s log s 1/s 1/s

subtractions 3 3 1 1

s→ ∞, mD → ∞ 1/
√
s const 1/

√
s 1/

√
s

subtractions 2 2 1 1

s . 1 GeV const const const const

subtractions 3 2 2 2

Table B.1: Large-s behavior of the inhomogeneities (top line), large-s behavior in the heavy-

meson approximation (middle line), and behavior for the region of interest, s . 1 GeV (bottom

line), together with the minimal order of subtractions required for convergence of the dispersive

integral.

B.5 Dispersive representation of constant inhomogeneities

A partial wave f(s), which is a constant A at tree level, is written as

f(s) = AΩ(s). (B.14)

On the other hand the partial wave is given by an expression as in Eq. (3.32),

f(s) = Ω(s)

{

a0 + a1s+ · · ·+ an−1s
n−1 +

sn

π

∫ ∞

(Mπ+MK)2

A sin δ(s′)ds′

|Ω(s′)|(s′ − s− iǫ)s′n

}

, (B.15)

which coincides with Eq. (B.14) when fixing the subtraction constants in an appropriate way.
Therefore the dispersive representation of the inverse of the Omnès function is used,

Ω−1(s) = 1− Ω̇(0)s− s2

π

∫ ∞

(Mπ+MK)2

sin δ(s′)ds′

|Ω(s′)|s′2(s′ − s)
(B.16)

in the case of an Omnès function falling off as ∼ 1/s (as for the P -wave), and

Ω−1(s) = 1− Ω̇(0)s−
[
1

2
Ω̈(0)− Ω̇2(0)

]

s2 − s3

π

∫ ∞

(Mπ+MK)2

sin δ(s′)ds′

|Ω(s′)|s′3(s′ − s)
(B.17)

if it behaves like ∼ 1/s2 for large s (as for the S-wave). To ensure the equality between
Eqs. (B.14) and (B.15) (and thus a reasonable high-energy behavior) the subtraction constants
are chosen as

a0 = 0, a1 = AΩ̇(0), a2 = A

(
1

2
Ω̈(0)− Ω̇2(0)

)

. (B.18)
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Rev. D 83 (2011) 074004 [arXiv:1102.2183 [hep-ph]].
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[122] R. Garćıa-Mart́ın and B. Moussallam, Eur. Phys. J. C 70 (2010) 155 [arXiv:1006.5373
[hep-ph]].

[123] M. Hoferichter, D. R. Phillips and C. Schat, Eur. Phys. J. C 71 (2011) 1743
[arXiv:1106.4147 [hep-ph]].
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engen Terminplans konnte er immer Zeit erübrigen, um über Fortschritte meiner Projekte
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