Final-state interactions in heavy-meson decays

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der

Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
Johanna Niecknig

aus

Fulda

Bonn, Mai 2018



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultat
der Rheinischen Friedrich-Wilhelms-Universitat Bonn

1. Gutachter: Professor Dr. Bastian Kubis

2. Gutachter: Professor Dr. Christoph Hanhart

Tag der Promotion: 10.07.2018

Erscheinungsjahr: 2018



Abstract

In the last decade the investigation of the heavy-meson sector has gained in importance, in par-
ticular for precision tests of the Standard Model and exploration of the physics beyond, such
as C'P violation. Experimentally, with the launch of the Large Hadron Collider (among several
other experiments) great promise for high-precision analyses has been shown. At the same time
a precise understanding and rigorous treatment of the theoretical aspects of the interactions is
mandatory. In particular the strong final-state interactions, described by Quantum Chromo-
dynamics, pose a challenge: at low energies, where the hadrons are the interacting degrees of
freedom, the strong coupling becomes large and the standard perturbative solution methods fail.
One non-perturbative approach is to apply dispersion relations, providing a model-independent
framework that fulfills unitarity and analyticity constraints by construction. In this thesis we
employ such dispersive techniques that allow one to either deduce the universal final-state in-
teractions of light meson pairs from the accurately known 77w, 7K, and KK phase shifts, or
likewise deduce crucial information on meson—meson scattering from the respective final-state
interactions. The thesis is subdivided into two projects.

The first project is concerned with the decays BY . — J/v (7w, 7, K K), where the J/1 is
treated as an spectator and the pairwise final-state interactions of the light mesons are well
described by the scalar and the vector form factors. In the scalar sector a coupled-channel
treatment between the 77 and K K systems in the isoscalar sector and the 71 and K K systems
in the isovector one is required. The B, — J/¢mm channels are studied as to demonstrate
the benefits of our formalism. We find {/ery good agreement with the data up to 1.05 GeV
in the 77 invariant mass, with a number of parameters reduced significantly compared to a
phenomenological analysis. In addition, the phases of the amplitudes are correct by construc-
tion, a crucial feature for many CP violation measurements in heavy-meson decays. By means
of certain symmetry and coupled-channel relations we give predictions for the other channels,
providing information on 77 scattering.

In the second project an analysis of the semileptonic D — wKlv decay is presented. A
deliberate and accurate treatment of the hadronic final-state interaction can deliver information
on pion—kaon scattering. The analysis is based on a modified Omnes formalism where left-hand-
cut structures are approximated by pole terms derived in Heavy-Meson Chiral Perturbation
Theory. For a precision determination of the amplitudes as it is required for an extraction of
mK phases further constraints, both experimental and theoretical, are highly desired.

Parts of this thesis have been published in the following articles:

e J. T. Daub, C. Hanhart and B. Kubis, A model-independent analysis of final-state inter-
actions in Bg/s — J/yrr, JHEP 1602 (2016) 009 [arXiv:1508.06841 [hep-ph]].

e M. Albaladejo, J. T. Daub, C. Hanhart, B. Kubis and B. Moussallam, How to employ
BY — J/y (mn, KK) decays to extract information on mn scattering, JHEP 1704 (2017)
010 [arXiv:1611.03502 [hep-ph]].

Furthermore, similar techniques are employed in the following publications:

e Y. H. Chen, J. T. Daub, F.-K. Guo, B. Kubis, U.-G. Meifiner and B. S. Zou, Effect of Z;
states on T(3S) — Y(1S)nm decays, Phys. Rev. D 93 (2016) 034030 [arXiv:1512.03583
[hep-ph]].

e Y. H. Chen, M. Cleven, J. T. Daub, F. K. Guo, C. Hanhart, B. Kubis, U.-G. Meifiner
and B. S. Zou, Effects of Z, states and bottom meson loops on Y(4S) — Y(15,28)nt 7~
transitions, Phys. Rev. D 95 (2017) 034022 [arXiv:1611.00913 [hep-ph]].
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Chapter 1
Introduction

Having the itch to better understand nature, dealing with questions like what is our world
made of, what are the fundamental constituents of matter and the interactions that glue these
constituents together, and of what else besides the ordinary matter the universe is made up, this
is what motivates to study particle physics. The Standard Model of Particle Physics, developed
in the 1960s and 1970s [1-4], serves as the theoretical foundation to describe the matter particles
(fermions), called quarks and leptons, and their interactions. There are four fundamental forces,
the strong force, the weak force, the electromagnetic force, and the gravitational force. The
first three of those are governed by the Standard Model, mediated by the exchange of vector
gauge bosons, namely the gluons, the W+ and Z bosons, and the photon for the strong,
weak, and electromagnetic interactions, respectively. A further (scalar) boson, the Higgs boson
is introduced, explaining the fermion masses, as well as those of the W* and Z bosons. The
mathematical framework of the Standard Model is a quantum field theory, in which the particles
are described by dynamical fields. It is driven by a Lagrangian that is invariant under the
global Poincaré symmetry group as well as the local internal SU(3) x SU(2) x U(1) gauge
symmetry group. Although it is an extremely well tested and therefore the established theory
of elementary particles, not least by the discovery of the Higgs boson in 2012 [5,6], there are still
phenomena the Standard Model cannot describe properly and open questions to be answered,
from both an experimental and a theoretical point of view. Some of these deficiencies are
the unification of all four forces, i.e. including gravity in consistency with general relativity,
or the nature of dark matter and energy, dominating over the ordinary matter content in the
universe (due to the “Standard Model of cosmology”). Also the matter-antimatter asymmetry,
the hierarchy problem, and the strong C'P problem (the violation of the combination of charge
conjugation C' and parity P, being equivalent to a violation of time-reversal invariance T due
to the C'PT theorem, stating that the theory remains invariant under the combination of these
three symmetries) are some famous examples requiring further contemplations of physics beyond
the Standard Model.

A successful tool for quantum field theory calculations is perturbation theory, i.e. the theory
is expanded in a parameter. Provided that it is small in order to ensure convergence, quantities
are calculated to a certain order in that parameter. This splendidly works for processes in Quan-
tum Electrodynamics (QED), the gauge theory that describes the electromagnetic interaction.
For strong-interaction processes, however, which are described by Quantum Chromodynamics
(QCD), the coupling constant and accordingly the expansion parameter strongly depend on
the considered energy region. While at high energies perturbative QCD proves suitable, at low
energies the strong coupling grows such that a perturbative treatment breaks down. At low
energies, the QCD degrees of freedom are hadrons that are (essentially) classified into mesons
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(quark-antiquark states) and baryons (three-quark states). It is hence the theoretical hadron
physicist who is confronted with the problem of employing (or even developing) alternative
non-perturbative methods to treat the strong-interaction processes at these low energies. Well
established frameworks are Lattice QCD, Effective Field Theories such as Chiral Perturbation
Theory, as well as dispersion relations.

Decays of heavy mesons (in particular those containing a b or b quark) are of special interest
for Standard Model tests and beyond, there are for instance several experiments intended
to measure C'P violation, which is required to explain the matter-antimatter imbalance in
the universe. In this context also the precise extraction of the Cabibbo-Kobayashi-Maskawa
(CKM) [7,8] matrix elements describing the quark flavor mixing is of particular importance. The
idea to explore neutral B decays in order to search for C'P violation has grown up in 1980 [9-11],
and in 2001 C'P violation in B decays has been experimentally confirmed in the B® — J/¢y K g
decay (long considered a “golden mode”) in the BaBar and the Belle experiments [12,13]. Ever
since, the C'P asymmetry sin 23 measured e.g. in the B — J/1 K or likewise in the B — ¢ K3
or B — fo(980)K2 decay modes has been determined with increasing accuracy, for instance
the LHCb collaboration at the Large Hadron Collider (LHC) pursues precise measurements of
the B? and the BY meson systems to determine sin 20, e.g. by employing the decay modes
B(OS) — J/p{rta~ , KTK~}, or B(OS) — {J/,9(2S)} KO [14-18], as well as the C'P parameter
~ using e.g. the B — DK decays [19-21].

A further concern is the field of hadron spectroscopy—due to the heavy mass of the decaying
meson a large energy range, i.e. phase space, is covered, entailing quite a number of final and
intermediate states that can emerge. Amongst others so-called exotic states are observed that
are not explained by the convenient quark model description as a quark-antiquark state. There
are several charmonium- and bottomiumlike candidates observed close to or above the strong
decay thresholds, referred to as the XY Z states, for instance in the charmonium spectrum the
X (3872), discovered in the Belle detector [22] in the decay processes B¥ — K*7tn~.J/¢ (and
confirmed by CDF [23], DO [24], and BaBar [25]), or the Y (4260), discovered in initial state
radiation ete™ — yygprmTm~ J/1) [26-28]. In the bottomium spectrum the Belle collaboration
observed e.g. two charged resonances Z;,(10610) and Z,(10650) in the Y (5S) — Y (ns)rt7™,
(n =1,2,3) and Y (55) — hy(mP)rt7~, (m = 1,2) [29,30]. Due to the increasing number
of such exotic candidates it is a highly charged issue for both experimentalists and theoretical
physicists how to model and interpret these states—as new forms of hadronic matter such as
e.g. quark-gluon hybrids, meson molecules, tetraquarks or pentaquarks, or can these observed
phenomena be explained by (anomalous) threshold effects. For details see Ref. [31,32] and
references therein.

This thesis deals with such heavy-meson decays, decaying weakly into hadrons that underlie
strong final-state interactions. In order to learn about the above specified phenomena that
prospectively provide an insight in New Physics beyond the SM, it is mandatory to tightly
control the non-perturbative strong final-state interaction part in these decays. We apply the
method of dispersion theory. Its advantage is that it provides a model-independent framework
that fulfills the fundamental concepts of unitarity and analyticity by construction. The decays
under investigation are discussed in Chapters 2 and 3.

In Chapter 2 the decays of the neutral B and B mesons into .J/1 and a light pseudoscalar
meson pair, 777, 7%, KT K~ or KK are analyzed, with attention to the strong rescattering
effects in the isoscalar and isovector light meson system. It can be described by the respective
scalar and vector form factors, treated in a two-channel Muskhelishvili-Omnes formalism. In
particular in the pion and kaon sectors the use of dispersion relations, employed with a phase
input that is accurately determined from Roy and Roy—Steiner analyses [33-37] and experimen-
tal input, allows for a very precise understanding of the rescattering. The various final states
are linked to each other by coupled-channel and flavor relations. Once the 77 channel is ex-
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ploited to adjust unknown normalization parameters and to demonstrate that the experimental
data are successfully described by the formalism, the other decay channels can be predicted. In
particular this may reveal crucial information on the more scarcely known 77 scattering.

In Chapter 3 we explore the semileptonic decay of a charmed meson, D* — 7+ K ~lv, where
the strong final-state interaction in the 7K system is rigorously treated using dispersion theory
as well—the lepton-neutrino (Iv) pair is not affected by the strong interaction such that the
leptonic part of the matrix element factorizes from the hadronic part. The hadronic partial-
wave amplitudes are calculated in Omnes representations, in which the crossed-channel effects
are approximated by simple pole terms treated in Heavy-Meson Chiral Perturbation Theory.
This approach however covers only a small phase space, caused by the restriction of a fixed
dilepton energy to a rather large value. A generalization of the formalism by extrapolating to
arbitrary dilepton energies is proposed, constrained by certain low-energy theorems.

The relevant physics background is prepended to the above-mentioned analyses, hence in
this chapter certain aspects of the Standard Model, Effective Field Theories, and scattering
theory are reviewed.

1.1 A survey of the Standard Model

In the Standard Model (SM) of Particle Physics three of the four fundamental forces, the
electromagnetic, the weak, and the strong force, are unified. Gravitation, that is very weak
compared to those, is not part of the SM. It describes the elementary particles and their
interactions, where we distinguish between spin-1/2 fermions and spin-0 and spin-1 bosons.
The fermions are separated into quarks and leptons, that each occur in three generations [8]:
there are three SU(2) doublets of quarks, built of an up and a down, a charm and a strange,
and a top and a bottom quark, respectively, as well as three lepton doublets, for the electron,
the muon, and the 7 lepton, accompanied by the respective electron, muon, or 7 neutrinos.
The interactions between these particles are mediated by exchange particles, spin-1 bosons:
the gluons carry the strong interactions, the photon the electromagnetic, and the W+ and Z°
bosons the weak interaction. In addition the SM contains a scalar particle, the Higgs boson,
that was postulated in order to explain the breaking of the electroweak symmetry and to give
masses to the W+ and Z° bosons. The observation of the Higgs boson in the ATLAS and
CMS experiments at the LHC at CERN in 2012 [5,6] (and confirmation in 2013 [40,41]) was a
strengthening event for confirming the SM that caused lots of excitement in the particle physics
community. The theoretical framework the SM is based on is a gauge quantum field theory.
Particles are associated with fields and created or annihilated by field operators. Associated
with these fields are the generators t, of the corresponding gauge group, which obey specific
commutator relations,

[ta,t] = if%t,, (1.1)

where the f2%¢ are the structure constants of the gauge group. In general fo*¢ #£ 0, i.e. it
is a non-abelian theory. The internal gauge symmetry group contained is the local SU(3)¢c x
SU(2)r, xU(1)y, accompanied by the global Poincaré symmetry, which is characteristic of every
relativistic quantum field theory. The label C' denotes the color charge, Y the hypercharge
(related to the electromagnetic charge @ and the third component of the isospin ¢35 by ¥ =
2(Q —t3)), and L indicates the chiral nature of the weak interaction—only left-handed fermions
are grouped in SU(2) doublets. Such non-abelian gauge theories that combine these symmetry
properties are called Yang-Mills theories.
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1.1.1 The strong sector

The strong interaction affects the quarks and the gluons, the gauge bosons of the SU(3)¢ gauge
symmetry group. The interaction is defined by the QCD Lagrange density,’

1 v a =
Lqcp = *ZGZL G, +q(il) — M)q, (1.2)
with the mass matrix M = diag(m.,, mg4, ms, ...), the quark fields represented by ¢ = (u, d, s, ...)T,
and the covariant derivative N
Dy = 0, — ig AL (1.3)

The latter contains the gluon fields A#, the coupling constant g (related to as = g2/(47)), and
the SU(3) generators, the Gell-Mann matrices \,, where a is the color index (the quarks occur
in N, = 3 colors).

Gl = AL — 0" Al + gfanc AL AL, a=1,...,N2-1=38, (1.4)

denotes the (non-abelian) field strength tensor, where the structure constants are defined via
the SU(3) Lie algebra Eq. (1.1) with ¢, = Ag/2. The last term in Eq. (1.4), whose appearance
results from the non-abelian nature of the strong interaction, causes the existence of the gluonic
self-interaction. Such a phenomenon is not present in abelian theories like QED: there is no
corresponding self-interaction between photons. This induces some peculiar differences to the
extremely well known QED sector that makes the strong interaction such a challenging theory:
due to an anti-screening of the color charge the strong coupling becomes weak at high energies
(known as asymptotic freedom in the weak-QCD sector, cf. Refs. [42,43]) and large at low
energies (leading to the so-called confinement in the strong-QCD sector). As a consequence of
confinement there are no free quarks and gluons at low energies, but they are bound to color-
neutral hadrons. Furthermore, because the strong coupling increases, perturbation theory is
not applicable at low energies, necessitating alternative approaches, discussed in Section 1.2. A
mathematical understanding of these phenomena requires a closer look at the Sqcp-function of
the renormalization group equation of QCD that describes how the strong coupling depends on
the energy scale. Perturbatively expanding it to one-loop order yields the following differential
equation with the solution a,(Q?),

facn(a) = @250 = - (1= ) 22D 4 o)
= a,(Q%) = (1) (1.5)

14 8200, (‘3—2)

with @ being the momentum transfer and p a reference scale the Sqcp function depends on
implicitly only (a popular choice is it = mzo). Ny is the number of the considered quark flavors.
Aslong as Ny < 16 Bqcp is negative, which straightforwardly implies the alluded decrease of the
coupling parameter o at high-momentum transfer and vice versa. This is shown in Figure 1.1,
together with the extraction of the world average value of as(M%), provided by the particle
data group [44].

1.1.2 The weak sector

The weak interaction is mediated via a charged W+ or a neutral Z° which couple to both
quarks and leptons. The term “weak” applies to a strength several orders of magnitude weaker

IFor simplicity, we here ignore terms like the ©-term or possible gauge fixing and ghost terms.
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Figure 1.1: Energy scale dependence of the strong coupling as(Q?) as determined from several
measurements and extracted in perturbative QCD to the specified order (NLO: next-to-leading
order; NNLO: next-to-NLO; res. NNLO: NNLO matched with resummed NLO logs; N3LO:
next-to-NNLO). The world average value for as(M2%) as provided by the particle data group is
cited. The graph is taken from Ref. [44].

than the strong force. This is combined with a short-range character of the weak force due to
the large masses of the gauge bosons (due to the uncertainty principle). In the SM the weak and
the electromagnetic interaction are unified to the electroweak interaction, which is described
by the Glashow-Weinberg-Salam (GWS) theory and accomplished under the SU(2) x U(1)y
part of the SM gauge symmetry group. Four initially massless gauge bosons (W;, Wy, W3, B)
are linearly combined to the physical gauge bosons: the charged bosons W# are given by the
combinations

Wi+ iWy
V2

and the W3 boson mixes with the B, producing the physical neutral Z° boson and photon 7,

¥ _ cosby  sinfy B (1.7)
7% ) 7\ —sinfwy cosOw Ws )’ '

where the weak mixing angle 0y is determined in terms of the weak isospin g and hypercharge
g by cosOw = g/+/g>+ ¢’>. While the photon, mediating the electromagnetic interaction,
remains massless, the three gauge bosons corresponding to the weak interaction become massive.
This results from the spontaneous breaking of the SU(2)r x U(1)y symmetry down to U(1)em

w* , (1.6)
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(at energies below the electroweak breaking scale A = 246 GeV) through the Higgs mechanism.?

The number of mass-acquiring bosons is in accordance with the number of broken generators:
three SU(2)r generators t; = 0;/2 (with the Pauli matrices o;), which are the components of
the weak isospin and obey Eq. (1.1) with £ — ¢%%¢. According to the Higgs mechanism the
(large) masses of the W+ or Z° are generated by the interaction with the Higgs field, a complex
SU(2) doublet with two scalar components,

o= (% ). (18)

V(g) = —1*6To + M¢T0)?, (1.9)

where A > 0 assures vacuum stability. For y? > 0 a nonzero vacuum expectation value emerges

that may be written as
0 2
<¢>><L>, v = “7 (1.10)
V2

In the unitary gauge, where the Higgs doublet is chosen as

o= ( & ) (1.11)
V2

and in which the appearance of any Goldstone boson fields in the Lagrange density is removed,
but only the Higgs boson h is introduced after the spontaneous symmetry breaking (SSB), the
Lagrangian offers the desired expressions of the gauge boson mass terms. The mass generated
in this way effectively transforms as an SU(2);, doublet rather than as a scalar (naively adding
a mass term for these gauge bosons would spoil the gauge invariance of the theory).

A special feature of the weak interaction is that it allows for a flavor change between quarks
or leptons, such that for instance a d quark can be converted into a u quark or an electron
into an electron neutrino. The strength of the flavor mixing is driven by the unitary CKM
matrix in the case of quarks, determined by the Yukawa couplings of the Higgs boson to the
fermions. The magnitudes of the diagonal matrix elements significantly dominate the off-
diagonal elements, i.e. a transition within the same generation of quarks (“Cabibbo-favored”)
is much more probable than between quarks of different generations (“Cabibbo-suppressed”).
The Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix is the corresponding lepton flavor
mixing matrix.

The V — A (vector minus axial-vector or left-handed) nature of the weak interaction (it acts
on left-handed SU(2)r doublets only) corresponds to maximal violation of parity P (which
turns the left-handed into a right-handed fermion) or likewise of charge conjugation C; only
the product of these two, C' P symmetry, is a rather good symmetry. However, even a violation
of the combined C'P transformation is possible, first discovered in 1964 in neutral K decays
by Cronin and Fitch [45]. The investigation of C'P violating phenomena, and accordingly the
precise determination of the CKM matrix elements, is still of major interest in the current
state of research, both theoretically and experimentally. Its importance becomes apparent in
the explanation of the huge preference of matter over primordial antimatter in the universe,
as the existence of C' and C'P violation in the early universe is one of the so-called “Sakharov
conditions” that were proposed to explain that imbalance. A remarkable success of the theory

The scalar Higgs potential reads

2The specific value of the breaking scale is taken to be the vacuum expectation value of the Higgs field,
v = (Gpv/2)~! with the Fermi constant G p.
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was the prediction [8] of a third particle generation in order to explain the non-conservation of
CP symmetry, and the succeeding experimental confirmation by the discoveries of the charm
quark in 1974 [46,47], the 7 lepton in 1976 [48], and finally the bottom and top quarks in 1977
and 1995 [49-51]. Three generations allow for an irreducible phase ¢ in the CKM matrix, in
which the C'P violation in the quark sector manifests itself. A (not unique though commonly
used) parametrization of the CKM matrix with four significant parameters, e.g. three rotation
angles 612, 613, and o3, and the phase 4, reads

Vud Vus Vub
Vokm = Vea Ves Ve
Via Vis Vi
C12€13 512€13 s13e”%
= —S12C23 — C12823513€"0  C12C23 — S12823513¢%°  Sa3cis . (L12)
512523 — 0120235136M —C12523 — S120235136M C23C13

with s;; = sinf;; and ¢;; = cos#;;. Unitarity of the CKM matrix yields the constraints
> ViVji =0, and Y ViViy =4y, (1.13)
k k

of which the six orthogonality relations (i # j) form unitarity triangles in the complex plane,
whose surface areas are half of the magnitude of the Jarlskog invariant

J = +Im (‘/Zk‘/jl‘/;lk‘/ﬁc) = 6126?3023812513823 sin 5, (’L 7é j, l 7é k), |J| == (305 + 018) . 1075,

(1.14)
which is a measure of C'P violation. Most attention is paid to the triangle determined by CKM
matrix elements with large phases,

ViV + VeaVey, + ViV, = 0, (1.15)

giving a promising experimental access to C'P violation and SM tests via measurements of the
angles of the unitarity triangle defined by

VidVy, VeV, VuaVy
_ _ — e’ = ——u 1.16
a arg( VeV ) B =arg Vv ) T (1.16)
and the sides Vv Voy VoV
Ry = |dtb| g o—|ludlub) L= A | g (1.17)
VeaVy VeaVey VeaVey

The convenient representation of experimental constraints is given in the (g, ) plane, with
p+ i = Rue", (1.18)

where the coordinates (p,7) determine the only non-trivial apex of the normalized triangle,
the others fixed to (0,0) and (1,0). The latest status of experimental constraints provided
by the CKMfitter group in their global fit is shown in Figure 1.2. A detailed review on the
experimental and theoretical input and the methodology is given in Ref. [52].

Three types of C'P violation (C'PV) have been investigated, direct CPV, indirect CPV,
and C'PV due to the interference between the direct decay and mixing amplitudes.
Direct (time-independent) C' P violation can arise e.g. in kaon [53-56], and B-meson decays [12,
13], if the decay amplitude Ay = (M|H|f) of a meson M into a final state f is different from the
amplitude A 7 describing the C'P conjugate decay M — f. H is the Hamiltonian that describes
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Figure 1.2: Constraints for the CKM unitarity triangle are shown in the (p,7) plane, for
which experimental and theoretical results for all CKM parameters enter the global fit of the
CKMfitter group. The red contoured area that combines all constraints corresponds to 68%
confidence limit. In the left panel the region of interest is magnified. The figures are taken from
Ref. [52].

the decay. Contrary to the other types of C PV it can occur in both neutral and charged meson
decays as it does not rely on mixing. Its observation requires the contribution of weak C'P-odd
phases ¢; and at the same time strong C'P-even phases ¢;, demanding for a tight control of the
strong-interaction effects as well. A nonzero asymmetry, defined by

B f)-TB=])

Acp = —__ . with T(B — f)=|As? d T(B— f)=|477
=S TTE S M TB =l and TB ) =4
(1.19)
can emerge if the transition B — f involves at least two amplitudes
Aj = |Aj|€i(¢j+5j), Af = ZAj’ n>2. (1_20)
j=1
Consider a process with n = 2. The transition amplitude and its C' P conjugate read
Ap = | A0 |4y eflnten),
A= |Ay|e®1=91) 4 | Ay|ei(02=02) (1.21)
such that the C'P asymmetry is evaluated to
2|A1||As| sin(AJ) sin(A
ACP | 1|| 2| Sln( )Sln( ¢) (122)

- [A1]2 + |Az2|? + 2|A1||Az] cos(Ad) cos(Ag)

Consequently, direct C PV is only observable for nonzero phase differences Ad = §; — § # 0
aDdA¢:¢1—¢27é0.

Indirect (time-dependent) C'P violation relies on oscillations in neutral meson systems, e.g.
K% K% and B°-B° mixing, observable if a neutral meson state converts to its CP conjugate
with a probability different from the one for the reverse process. The transition to a CP
conjugate state can proceed via a second order weak current box diagram, as depicted at the
example of a B~ BY oscillation in Figure 1.3. The time-dependent C'P asymmetry is given by

D(B° — f)(t) —T(B° = f)(t)

Acp(t) = (B9 — f)(t) + (B — f)(t)’

with T(B° = f)(t) = | {f|H|B°(t))|*. (1.23)
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Figure 1.3: The figure shows the AB = 2 box diagram, transferring a B® meson into
its CP conjugate B?. This gives rise to B°~B oscillations.

The time-dependent amplitudes for the respective transition to a final C'P eigenstate f that

enter this asymmetry read
Ampt - Amt
[Afcos( T;B ) +i%Afsin (Tm)] ,

(fIH|B(t)) = emimte= [il—;Af sin (#) + Ay cos (An;Bt)] , (1.24)

wf2

(HIB(0) = emmte

|

where the coefficients p and ¢ occur in the transformation of the B and B states into eigen-
states of the weak Hamiltonian H, a light (L) and a heavy (H) one,

|BY.1i) =p|B%) £4|B%); (1.25)

m is the average mass, and Am is the difference of the masses of the weak eigenstates (we take
the difference of the widths of BY and BY, to be negligibly small). The box diagram, which is
dominated by the contribution from intermediate top quarks, yields

g _ Vit (1.26)
p VuVj
Using Eq. (1.24) the decay rates are evaluated to
2Im \ 1|\
I'(B° = f)(t) oc 1+ Lf2sin (Amt) — |7f|2cos (Amt),
14 |Af] 14 |Af]
_ 2Im \ 1|\ A
D(B% = f)(t) o1 - Lfgsin (Amt) + |7f|2cos (Amt), Af= g—f, (1.27)
14 |Af] 14 |Af] p Ay
such that ,
2Im A 1—|A
cpP = LJCQ sin (Amt) — |7f|2 cos (Amt), (1.28)
14+ |Af] 14 |Af]
mixing irec

where the prefactors represent either CPV in the direct decay or due to the mixing.

Finally, C'P violation can occur if a particle M and its CP conjugate M decay into the same
final state f, such that M can decay directly or via mixing, M — M — f. It is thus based on
the interference between the decay amplitude with and without mixing.

Originally, C'P violation was investigated in kaon decays; today, major efforts in the matter
are made, adducting the field of B-physics where large C'P asymmetries are expected and an
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appreciable sensitivity to New Physics beyond the SM is present. Such research was and still
is a main purpose of B-physics experiments, rendering plenty experimental evidence, e.g. at
the first generation asymmetric B factories like the Belle experiment at the KEKB collider
(upgraded to Belle IT at the SuperKEKB accelerator) and the BaBar experiment at the PEP-II
collider at SLAC, likewise at the Fermilab Tevatron by the CDF and DO collaborations, and
now continued by LHCb at the LHC, where e.g. the golden mode B® — J/¢ K" is investigated,
as well as the C'P violation in the strange sector, B — J/v¢.

1.2 Effective field theories

The non-applicability of perturbation theory for strong-interaction processes in the low-energy
regime, where quarks and gluons are confined within color-neutral bound states, the hadrons,
requires alternative approaches to hadron physics. Established methods are Effective Field
Theories (EFTs), Lattice QCD, and Dispersion Theory. This section introduces the concept
of EFTs, illustrated at the examples of Chiral Perturbation Theory (ChPT) and Heavy-Meson
Chiral Perturbation Theory (HMChPT), both being of central importance in this thesis.

The main idea in constructing an EFT is to focus on the energy/mass region of interest,
i.e. a theory that is supposed to describe strong-interaction processes at low energies is driven
by a Lagrangian where the hadrons are the relevant degrees of freedom rather than the quarks
and gluons that are the degrees of freedom of the underlying theory. This prerequires a clear
scale separation in order to identify and reliably suppress the irrelevant degrees of freedom: if
we for instance intend to describe the dynamics of the lightest hadrons (with a mass my) in
the particle spectrum, a theory in which the particles above a given energy scale (e.g. hadrons
that contain a ¢ or b quark) are integrated out proves beneficial, given that the heavy masses
are my > my,. The effective theory can then be expanded in a controlled way according to the
power-counting argument: given that the expansion parameter «, defined by the ratio between
the low and the high energy scale, is a sufficiently small parameter, operators O, ~ f(¢;)a”
that are of low order in o dominate over higher-dimension operators, allowing for a systematic
ordering of the operators. The prefactor f(¢;) is a function of an a priori unknown so-called
low-energy constant (LEC) ¢; that contains information about high-energy effects, to be fixed
phenomenologically from experiment or derived from the fundamental theory, e.g. by using
lattice simulations; furthermore, f(¢;) ~ O(1) (naturalness argument). At a given order both
tree-level and loop diagrams must be considered preserving (perturbative) unitarity.

The effective theory is constrained by the underlying symmetries of the fundamental theory
(the Lagrangians discussed in this section are required to be invariant under the QCD symmetry
transformations).

Note that the knowledge of the fundamental theory is not mandatory for the construction of
the effective theory that just relies on symmetry principles. This was heuristically conjectured
by Weinberg [57] and reformulated in the folk theorem (referred to as such by himself) [58]:

“if one writes down the most general possible Lagrangian, including all terms
consistent with assumed symmetry principles, and then calculates S-matrix elements
with this Lagrangian to any order of perturbation theory, the result will simply be
the most general S-matrix consistent with analyticity, perturbative unitarity, cluster
decomposition, and the assumed symmetry principles.”

Unitarity and analyticity constraints ensure that the theory conserves probability and causality,
respectively, while cluster decomposition is linked to locality.

The established EFT of QCD at low energies (in the meson sector), where the 8 Goldstone
bosons 7, 70, K*, K% K° 7, the lightest hadrons in the particle spectrum, become the relevant
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effective degrees of freedom, is ChPT [59,60]. It exploits chiral symmetry, being an exact QCD
symmetry in the limit of vanishing quark masses m, — 0. This symmetry is spontaneously
broken, which entails the generation of the Goldstone bosons. The theory is systematically
expanded in powers of the Goldstone boson momenta/energies p or masses M over the chiral
symmetry breaking scale, p/A, or M/A,, A, ~ 1 GeV.? Accordingly, the range of applicability
is restricted to momenta or masses well below the chiral breaking scale.

On the contrary, for processes where mesons containing one heavy (c or b) quark are involved
Heavy-Quark Effective Theory (HQET) is an appropriate approach. There the mgq — oo limit
is studied in which the heavy quark depends on its four-velocity v, only but not on its spin
or mass, i.e. if Ny heavy quarks are considered the theory is invariant under an SU(2Ny) spin
flavor symmetry.? An effective theory that exploits both chiral and spin flavor symmetry is
HMChPT, discussed in Section 1.2.2, after a brief review of ChPT given in Section 1.2.1.

1.2.1 Chiral Perturbation Theory
Projecting the quark fields on left- and right-handed fields,

1
ar,r = Pr/RrY, PR/L=§(1i75), Pr,+Pr=1, Pp-Pr=0 (1.29)

exhibits a decoupling of the left- and right-handed fields in the kinetic part of the QCD La-
grangian Eq. (1.2) (contrary to the mass term Lyass), such that Ly, is invariant under inde-
pendent global rotations in flavor space,

1 e _ _ _
Liin = _ZGZWGZV +i(qLPar + GrPar) .  Limass = (—qrMaqr — g Mqr), (1.30)

with £ocp = Lkin + Lmass- This results in exact chiral symmetry of the QCD Lagrangian in
the chiral limit, mq — 0,

U(Nf)L X U(Nf)R = UL(l) X UR(l) XSU(Nf)L X SU(Nf)R, (1.31)
= Uv(1) x Uatt)

where Ny massless quarks are considered (a convenient choice is Ny = 2 or Ny = 3, while
the heavy quarks are integrated out). Right- and left-handed symmetry transformations are
combined to vector, V = R+ L, and axial-vector, A = R — L, ones. While the Noether current
of the U(1)y symmetry, associated with the baryon number, is conserved, the U(1) 4 symmetry
is anomalously broken due to quantum effects and hence not a symmetry of QCD.

A continuous exact global symmetry of a Lagrangian can be realized in two different ways
(Goldstone alternative): either the symmetry remains unbroken in both the equations of mo-
tion and the ground state (Wigner-Weyl realization of the symmetry) or the symmetry is
spontaneously broken (Nambu-Goldstone mode), such that the vacuum is not invariant un-
der the symmetry transformation. The annihilation of the vacuum that characterizes the
Wigner-Weyl mode implies the existence of degenerate particle multiplets. In the case of the
SU(Ny)r x SU(Ny)r symmetry the occurrence of parity doublets is expected. However, these

3The size of Ay can be estimated in studying 77 scattering: a dimensional analysis approach, where up to
O(p*) contributions (loop vs. tree-level) are compared, yields Ay ~ 47Fy ~ 1.2 GeV (Fr =~ 92 MeV being the
pion decay constant), which is of the same order of magnitude as the estimation based on a phenomenological
model of resonance exchange (the lightest being the p meson) indicating Ay & Mres 2 M, = 770 MeV.

4Note that these symmetries are exact only in the considered limit, i.e. if for instance the charm quark
(me = 1.5 GeV) is involved rather large corrections of order O(Aqcp/me) (Aqep ~ 200 MeV being the QCD
reference scale) may spoil the predictiveness of the effective theory.
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are not observed in the hadronic spectrum, being one of several existing arguments why the
Wigner-Weyl realization is excluded. Instead, the chiral symmetry is spontaneously broken to
the vectorial subgroup,

SU(Nf)L XSU(Nf)R%SU(Nf)V. (1.32)

The SU(Ny)y subgroup is preserved from a further SSB according to the Vafa-Witten theo-
rem [61],% and can only be broken explicitly due to nonzero quark masses. Due to the Goldstone
theorem for every broken generator a new minimum-energy vacuum state appears, such that
the N2 — 1 broken axial generators due to the spontaneous breaking of the chiral symmetry,
Eq. (1.32), yield the same number of massless particles, the Goldstone bosons. Depending on
the number of flavors that are taken into account, i.e. whether the strange quark is considered
to be massless (chiral SU(3) symmetry) or only the m,,mg — 0 limit is considered (chiral
SU(2) symmetry), the theory involves eight Goldstone bosons (three pions, four kaons, and the
eta meson) or the pion triplet, respectively. These mesons are the lightest though not mass-
less pseudoscalar mesons in the particle spectrum. This is explained by the non-zero quark
masses: chiral symmetry is an approximate symmetry, broken explicitly by the light quark
masses, mq 7 0. Since m, < A, a rather small effect is expected. In a similar way, the vector
symmetries SU(2)y and SU(3)y are approximate ones, broken by quark mass differences. In
particular the SU(2)y symmetry, whose breaking yields isospin-violating effects (ascribed to
My # Mmg) that are manifest e.g. in the kaon mass differences or in n — 3, still proves to be a
very good symmetry; SU(3)y symmetry shows larger corrections on a 30% level, driven by the
strange quark mass that is still an order of magnitude larger than m,, 4.

Having clarified the relevant degrees of freedom, the Goldstone bosons, the underlying QCD
symmetries and the discussed pattern of spontaneous chiral-symmetry breaking are built into
an effective Lagrangian. One ingredient is the unitary matrix

U =exp <M};¢a) , (1.33)

which transforms as U — U’ = RUL', R,L € SU(Ny)g 1, under the chiral rotation. The
Goldstone bosons are encoded in an Ny x Ny real matrix; we focus on the three-flavor case in
the following (the reduction to the SU(2)y symmetry is performed straightforwardly) with

+ K+

E
1 NI T .
— — - _ T U/
ﬁAaqba = n Ltk K , (1.34)
K- KO —2Zy
V6

and neglecting %7 mixing. In the chiral limit the constant F' equals the pion decay constant
F ~ F; = (92.1 £1.2) MeV [62], which is e.g. measured in the pion decay 7t — [Ty;.

In order to ensure the theory to be invariant under Lorentz transformations, odd powers
in the Goldstone boson momenta or the derivatives, respectively, are forbidden, such that the
effective Lagrangian has the schematic representation

Log=LD 4+ 4 (1.35)

£ is a constant contribution without physically meaningful impact and is therefore ignored.
Hence the leading order (LO) Lagrangian comprises terms that are of quadratic order in the
derivatives and meson masses, the latter being consistent with linear order in the quark masses

5The Vafa-Witten theorem states that vector gauge theories (as QCD without ©-term) have an unbroken
vector symmetry, such that only the axial symmetry can be broken spontaneously.



1.2 Effective field theories 13

due to the Gell-Mann-Oakes-Renner relation (discussed later in this section). A general expres-
sion of the LO Lagrangian supplemented by the coupling to external fields reads

F2
£ = e (D,UDFUT +xUT +Ux') , (1.36)

(...) denotes the trace in flavor space. The coupling to vector (v,) and axial-vector (a,)
external sources enters via the covariant derivative,

DU =0,U —ir,U+iUl,, ryo=v,+au, l,=v,—a, (1.37)
and scalar (s) and pseudoscalar (p) sources are introduced by
X = 2B(s + ip). (1.38)

The (symmetry breaking) mass term is recovered by s = diag(m,, mg4, ms), thus it enters the
effective Lagrangian together with a constant B, called the order parameter of SSB, which is
not fixed by chiral symmetry. A comparison of the derivatives of the QCD and the effective
ground state (U = Uy = 1) energies with respect to the quark masses yields a relation between
B and the chiral quark condensate,

(0]qq|0)
3F2

B’ with %(0|¢7q|0>:<O|ﬁu|0>:<O|Jd|O>:<0|§s|0>7é0. (1.39)

‘mu,md,ms—w

Considering next the mass term expanded to second order in the pseudoscalar meson fields one
can read off a proportionality of the squared pion, kaon, and eta masses to the (linear) quark
masses (Gell-Mann-Oakes-Renner relation),

M2, = B, Mpi. = B(my,+ms), Mpo= B(mg+ms),

B
M2, = Brin 4 O((my — mq)?), M} = §(m +4my) + O((my — mag)?),

M = My, + My, (1.40)

where electromagnetic effects are neglected that induce isospin breaking.

The violation of isospin symmetry is manifest in the 7% mixing, lowering the neutral pion
mass compared to the charged one, and increasing the eta mass of order (m, —mgq)? < m?. Both
the parameter B and the quark masses depend on the QCD renormalization scale. However,
the scale dependence cancels in the product such that the mass relations are invariant under
the QCD renormalization group.

Next-to-leading (NLO) (and higher) order calculations include a considerably larger variety
of contributing operators: the NLO Lagrangian £*) contains operator structures with four
derivatives, two derivatives and Y, or x?. An explicit form reads [60]

L% = LD, UD"UY? + Ly(D, UD,UND*UD"UT)
+ L3(D,UD*UTD,UD"U"Y + Ly(D, UD*U ) (XU + xUT)
+ Ls(D, UDMUT (XU + xU")) + Le(x'U + xU)?
+ Lr(xX'U —xU")? + Ls(x'UX'U + xUTxU")
— iLo(FRD*UD U + FL, D*UTD"U) + Lio(UT FLUF™), (1.41)

with LECs L; (note that in the SU(2) version the LECs are denoted by ¢;). The field strength
tensors F;® that contribute in Eq. (1.41) are defined via

Fl = 0ury — Oyry —ilru, o], Fh,=Fi(ry —1,). (1.42)
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Considering diagrams at NLO there can be an insertion from £, or one-loop graphs based on
L contribute. The latter generate divergences, which are canceled by appropriately renor-
malized LECs,®

i a4 2

—— — (In(4m) +T"(1) + 1) |, (1.43)

Li=1L"
(vl

This explicit form holds for dimensional regularization, with real coefficients I'; and dimension
d. This alludes to the importance of the subject of renormalizability in the NLO domain—for
an elaborated understanding see Refs. [63-67].

1.2.2 Heavy-Meson Chiral Perturbation Theory

An EFT that combines the approximate chiral symmetry of the QCD Lagrangian (mg, — 0
for the light quarks ¢ = u,d, s) and the heavy quark symmetry in the limit of infinite masses
(mg — oo for heavy quarks Q) = ¢, b) is Heavy-Meson Chiral Perturbation Theory (HMChPT).
The latter limit manifests itself in three aspects:

o an SU(ny) flavor symmetry: the heavy quark flavor becomes irrelevant in the mg — oo
limit,

e an SU(2) spin symmetry: the gluon decouples from the quark spin, implying e.g. a
degenerate multiplet of ground-state pseudoscalar (P,) and vector (P,,) states,

e the velocity superselection rule: the velocity v is only affected by the weak and the elec-
tromagnetic interaction but not by the strong interaction such that one cannot distinguish
between the heavy meson and the heavy quark velocity.

The spin and flavor symmetry are combined to the larger SU(2ny) spin-flavor symmetry for
each velocity. It is broken by finite quark masses, corrections of order O(Aqcp/mq) are sys-
tematically incorporated order by order.

Both chiral and heavy quark symmetry are implemented in a Lagrangian that describes the
dynamics between a light pseudoscalar and a heavy meson (containing a single heavy quark
and having Q¢* flavor quantum numbers, a = 1,2,3).” The light antiquark can be a %, d or 5
quark such that the field operators P, and P;, that annihilate the heavy mesons with velocity
v form SU(3)y antitriplets that consist of D and D* mesons for Q = ¢, or B and B* mesons
for QQ = b, respectively,

(PlaPQaP3):(D07D+aD:) and (P1*7P2*7P§):(D*OvD*JraD:Jr)?
(Py, Py, Ps) = (B~,B° BY) and (Pf, Py, Py) = (B*,B*, B:Y). (1.44)

These fields are of mass dimension 3/2 as factors of VD, B and \/MD~ B~ are absorbed in
P, and P}, respectively. The physical polarization of vector particles constrains the fields by

€-v =0, hence P*-v = 0. The operators P, and P;, are combined in a single object and can
be represented by the composite field

144

H, = — (PoA" = Pavs), Ha= YoH 0, (1.45)

6The scale dependence of the L7 is compensated by the finite part of the loop graph, such that the physical
quantities are scale invariant.

THMChPT is also applicable for processes in which light mesons interact with heavy quarkonia, charmonia
or bottomia. Though in this case the heavy flavor symmetry SU(ny) is broken, there are many parallels in
constructing the effective Lagrangian that is introduced in Section 2.7.3.
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that transforms under a Lorentz transformation A as
H, — D(AMH,D(A)™', v — Av, z — Ax, (1.46)
where D(A) is the 4 x 4 representation of the Lorentz group, and as
H, — SH,, H,— H\V}, (1.47)

under a heavy-quark spin transformation S that belongs to SU(2) with [¢,.S] = 0, and with a
unitary matrix V in flavor space.
At leading-order the Lagrangian reads [68,69]

L= —iTrI_{avua“Ha + %Tr[—_IaHbv”(uTauu + UaMUT)ba + %Trf[an”%(uT@Mu — u@HuT)ba.
(1.48)
The Goldstone bosons are collected in u = U'/?; the unitary matrix U is defined in Eq. (1.33).
The normalized coupling g occurring in Eq. (1.48), which is flavor-independent in the limit
of exact chiral, spin and heavy-flavor symmetry, is related to the strong couplings gp+p, and
gp=pr. Since the decay B* — B is kinematically forbidden it can be determined from the
partial decay width for D** — D", g = gp« pr Frr/v/2mpmp~ = 0.57040.00440.005, where
the more precisely measured width of the BaBar collaboration [70,71] (compared to the older
CLEO measurements [72,73]) is taken.
To determine the propagators we take into account the higher-order Lagrangian terms

Ly= AlTrHaHb(umunruquuT)ba Jr)\/lTrHaHa(querqUT)bbJr)\gTrHaUWHao‘w, (1.49)

that are responsible for the leading chiral-symmetry and heavy-quark-spin breaking effects, i.e.
for the mass splitting between the strange and the non-strange D/B mesons and between the

pseudoscalar and the vector triplets. After a redefinition of the heavy meson fields Pé*) —
exp(i3/aAv - ac)P,g*) the effective P, and P propagators can be written as
igab —ié“b(gw — UuUy)

_ d
Q(k'v—ﬂ5as) an 2(k'U_A_N6as),

(1.50)

respectively, where k£ denotes the small residual momentum of the propagating meson and
782;, w=mp, —mp = 2 1(ms — 1) [68], m = (my + mgq)/2; dus indicates
a contribution in the case of a strange propagating heavy meson (while a # s yields d,5 = 0).

The purpose of the remaining section is to provide an example for an application. Processes
for which HMChPT is a readily feasible approach are for instance semileptonic decays of heavy
mesons. In the following we restrict ourselves to semileptonic decays of the D meson in order
to simplify the notation (the B decay can be treated in analogy). In particular we calculate
D — wKlv (abbreviated by Dj4) tree-level processes, which are shown in Figure 1.4; the
diagrams (B) and (C') contain ¢t-channel D*-pole terms. The coupling to the left-handed leptonic
current, involving a light meson ¢ and a heavy meson @,

Ll/a = qa’Yu(l - 75)@) (151)

has to be determined. In HMChPT this current can be rewritten as [68]

A:mp*fmp:f

va

Lo = Yoymp émDTr [%(1 — s Hyul | + ..., (1.52)

where the ellipsis denotes terms of higher order in the heavy-mass or chiral power counting.
The D-meson decay constant fp = (209.2 + 3.3) MeV is taken from Ref. [74], where lattice
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Figure 1.4: Tree-level diagrams for D — wK + leptonic current. D-mesons are represented by
solid lines, pseudoscalars by dashed lines and the insertion of the leptonic current is denoted
by the shaded square.

calculations with 2 + 1 dynamical quark flavors are averaged. So far we have only considered
terms at leading chiral order. Following Ref. [75] we take into account also terms coming from
the heavy-meson Lagrangian at chiral order O(EL), as well as the next-to-leading (NLO) effects
arising artefactually already from the leading-order expression. We translate the Lagrangian
given in Ref. [75] into an expression similar to Eq. (1.52), using the conventions of Ref. [69],

2

L(l):—LTr (1 — Hoau(0rUT —M’H (1 — H pyrt )

va NG [ (1 = v5) v Hetien (0" UT)pa] NG [ (1 = v5) v Hetey (0" U)o |
(1.53)

The unknown couplings 5; and P2 need to be constrained either phenomenologically or by
considerations involving the underlying symmetry. In this thesis we propose a method to
determine the couplings by means of a low-energy theorem for px — 0: it relates the Dyy decay
matrix elements to the Dt — 7%, ones, exploiting the simpler structure of the latter, cf.
Appendix B.1.

To the considered next-to-leading order also SU(3) breaking effects occur in the interaction
vertices, where in the case of Dy the only contribution of the symmetry-violating Lagrangian
Eq. (1.49) comes from the terms o A; and A}. In addition there is an NLO contribution to the
four-vertex (diagram D) coming from [76]

Ly, = UlTrHaHb(u”uu)ba + UQT‘I‘E[(IH[)UMUV({UM, uu})ba- (154)

However, this Lagrangian only becomes important for a massive final-state lepton—if the limit
of vanishing electron mass is considered these corrections can be omitted. Other possible
terms at the NLO level [77] can be incorporated into redefinitions of the coupling constants, for
example we explicitly take into account the fp— f D) splitting, using the averaged lattice results
fp. = (249.8 £ 2.3) MeV [74] and from sum-rule calculations fp« = (252.2 +22.3 £ 4) MeV
and fp- = (305.5 £26.8+5) MeV [78]. Also the SU(3) splitting between the decay constants
F, and Fk is considered explicitly, with Fx = (110.0 £ 0.3) MeV [62].

The NLO-corrected tree-level amplitudes, supplemented by subleading effects in the chiral
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expansion as well as in the 1/mp expansion, read

fp—2p8 fo —4mpBav - px

AXNLO _; ) D Lo T
Pr R e T AF, Fy ’

BXNLO _jou_ 9 fpomp+« +201v-pk + 2Bompmp-v-pk ik 9fp-  v-px
ProF Fre vopr+ A PROE Frcv-pn + A
wih— 9 [+ (P2 — mpv-pr) — 2B1pK - Pr — 2BamHV - PRV - PK

2F Fxmp- vepr+ A
1
_ GMVPULprppKOﬂ

Fﬂ—FK UV Pr + A7
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(1.55)

Note that A and p corrections are of the order of the pion mass and thus their importance in
the power counting is comparable to the chiral next-to-leading order [68]. Due to Eq. (1.49)
1 is related to the quark-mass difference mg — m, which conventionally is counted as chiral
order O(p?). We have thus only taken into account such quark-mass driven SU(3)-breaking
contributions to the Lagrangian which affect the D-mass (and not for instance in the case of the
coupling to the current, which is therefore corrected by hand by replacing fp by the appropriate
couplings f 1()*()5)). Finally, chiral NLO momentum corrections are included into the numerators
of the vector propagators, e.g.

2 H 1% v v
- (gMV _ ’UMUV) g (guu _ TnQD (’U“ _ dK +qﬂ') (’UV _ 9k + qﬂ')) ) (156)

mp mp

1.3 Scattering theory

The methodology we mainly pursue in this thesis is dispersion theory. For physical quantities
such as scattering amplitudes or form factors dispersion relations allow to recover the full am-
plitude from the discontinuity across branch cuts and single poles. These singularities as the
complete analytic structure stem from the unitarity and analyticity requirements the ampli-
tude exhibits, which are developed in S-matrix theory, see Ref. [79]. In this section we first
introduce the principles of unitarity, crossing symmetry, and analyticity and then show how
to exploit them together with Cauchy’s integral formula to derive a dispersive representation
of an amplitude. We then focus on a specific dispersive setting, in which the amplitudes are
represented in terms of Omnes functions that are analytic solutions of the dispersion integrals
for elastic scattering processes [80,81]. The onset of inelastic contributions requires to derive
coupled-channel Muskhelishvili-Omnes representations that may be solved numerically.

1.3.1 The S-matrix

The scattering of particles in quantum field theories is commonly expressed via the S-matrix,
which is separated into an interaction part, driven by the T-matrix, and a free non-interacting
part given by the identity operator, i.e. S = 1 ++T". The transition probability of an initial
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(incoming) asymptotic state vector |i) scattering into a final (outgoing) asymptotic state vector
|f) is given by

[(fISID)? (1.57)
where S is the S-matrix operator on the respective Hilbert space that specifies the underlying
interaction. The states i), |f) are demanded to be asymptotically free states, which requires
short-range interactions, ensuring the above squared S-matrix element to be meaningful, unique,
and experimentally observable. Moreover, there are certain physically mandatory prerequisites
that constrain the S-matrix further: causality has profound impact on the analytic structure
of the S-matrix, the superposition principle resulting in a linear S-matrix, and probability
conservation linked to unitarity and crossing symmetry. In the remaining section we discuss
the consequences of these essential constraints, with a focus on the principles of unitarity and
analyticity (we restrict ourselves to the scattering of scalar, isoscalar particles). As a pedagogical
example we will consider a two-particle scattering process, with two incoming particles A and
B, and two outgoing particles C and D,

A(pa)B(ps) — C(pc)D(pp), (1.58)
where p; are the respective four-momenta. The scattering amplitude F(s,¢,u) is defined by
(27r)454(pz4 +pB —DC 7pD)‘F(Sa tvu) = <pA7pB|T|pCapD>7 (159)

being a Lorentz scalar function of the Mandelstam variables s, ¢, u, given by

s =(pa +pB)° = (pc +pp)*,
t =(pa —pc)® = (pp — pB)*,
u=(pa —pp)* = (pc —pB)*,
and s+t+u= M3+ Mg+ MZ&+ M3 =: 3s. (1.60)

F(s,t,u) is an analytic function in the complex plane, except for the non-analytic structures
demanded by unitarity and crossing symmetry.
Unitarity of the S-matrix, SST = 1, implies T—TT = 47T, and in terms of matrix elements

T, = (§|T|k) the unitarity relation reads

T — Tip = i27)* S 60 (o — p) T T =" 2iTm Ty, (1.61)

where the J-function ensures energy and momentum conservation, and the sum runs over all
possible intermediate states m. The second equality holds for symmetric matrix elements
T;y = Ty, i.e. for processes that are invariant under time reversal symmetry T (or likely
under CP symmetry due to the CPT theorem) like strong-interaction processes. However,
even without specifying to symmetric processes, Ty; and T} are related to each other due to
hermitian analyticity: considering e.g. an s-channel two-particle scattering process Eq. (1.58),
both matrix elements are described by the same analytic function F(s,t,u) in the complex
s-plane, but the physical amplitude corresponding to T'; is the limit on the real axis from the
upper-half s-plane,

F(s,t,u) = lim F(s+ i€ t,u) (1.62)

e—0t
while for 17 the real s axis is approached from below, s —ie. The left-hand side of the unitarity
relation Eq. (1.61) thus can be rewritten by the discontinuity of that analytic function,

disc F(s,t,u) = lir% (F(s+ie,t,u) — F(s —ie t,u))
e—

=i(2m)* > 6D (pm — pp) Tpm T (1.63)



1.3 Scattering theory 19

This equation dictates the singularity structure the (otherwise analytic) amplitude F(s,t,u)
exhibits. If we exclude bound states and consider an elastic scattering process (AB = CD),
i.e. we consider energies below the onset of inelastic channels, there occurs only one single
intermediate state, and the sum in Eq. (1.63) reduces to a sole contribution for energies above
the elastic energy threshold si,, = (Mo + Mp)?,

i AY2(s, M2, M3)

disc F(s,t,u) = 1625 5%

O(s— sthr)/dQ T;foi , (1.64)

where f d€) denotes angular integration, S is the symmetry factor, S = 1 in the case of distin-
guishable and S = 2 for identical particles, and

Nz, y,2) =2 +y* + 2° — 22y — 2yz — 222 (1.65)

defines the Kéllén triangle function. At the two-particle threshold s, a branch cut opens,
by convention running along the real s axis to infinity, connecting two copies of the complex
s-plane (two Riemann sheets). For higher energies, inelastic scattering effects (like multiparticle
or higher-mass intermediate states) give rise to additional terms in the unitarity relation, which
induce further cuts, each inelastic threshold corresponding to a new branch point, and further
Riemann sheets, accordingly. In addition to these so-called right-hand cuts there may exist other
non-analytic structures: poles (pointlike singularities) below the elastic threshold associated
with intermediate bound states, as well as left-hand cuts due to crossing symmetry. We discuss
the latter in the following.

Due to the property of crossing symmetry different kinematical regions can be related to each
other: the scattering amplitude that is known in a certain channel, e.g. in the s-channel, can be
analytically continued over the unphysical region to describe the dynamics in another region of
the Mandelstam plane,® as shown in Figure 1.5, i.e. the (crossed) t- or u-channel scattering or
the decay in the case of unstable particles. Hence, all these processes are described by the same
analytic function, exploiting that it depends on kinematical invariants, such that it is invariant
under a sign flip in the energy p{. It even describes further processes, related to each other by
CPT and PT symmetry.

For the two-particle s-channel scattering example Eq. (1.58) the following processes are
obtained by crossing, i.e. by intertwining incoming and outgoing particles,

A(pa) +C(-pc) — B(—pg)+ D(pp), t—channel,
A(pa) + D(—pp) — B(-pp)+C(pc), u—channel,
A(pa) — B(-ps)+C(pc)+ D(pp)  decay.
The decay reaction requires particle A to be unstable. The bar indicates the crossed negative-
energy states to be interpreted as antiparticles.
In order to learn about the effect of crossing symmetry on the analyticity structure we eval-

uate the Mandelstam variables in a specific reference frame and demonstrate their dependencies
on each other. We choose the s-channel center-of-mass frame, with three-momenta and energies

pa=-Ps=p, Pc=-pPp=p, E =(M?+|pi*)"?, (1.66)

in which the scattering angle is defined by 6, = Z(pa,pc) and the center-of-mass momenta
read

bl | = A ME M)
p - 2\/5 ) p - 2\/5 *

8The Mandelstam plane, spanned by combinations of the Mandelstam variables, e.g. t — u versus s, is used
to illustrate kinematically allowed regions for the diverse scattering and decay processes.

(1.67)
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u=(Mp+ Mc)2 \

S:(MA+MB)2

s [GeV?]

s = (Mc+ Mp)® |

t= (MB+MD)2 4

S:(MA—MB)2

3
2 s = (Mc + Mp)?
wn

t = ( MB + MD)Q ;' | w— ( MB _|_ MC)2

t= (MA 7Mc)2 U = (MA _MD)2
t —u [GeV?]
Figure 1.5: The Mandelstam plane with Mandelstam variables ¢ — u versus s is depicted.
The shaded areas show the physical regions for s-, ¢-, and u-channel scattering processes with
unequal masses, M4 > Mp + M¢c + Mp, as well as the decay region, which is enlarged in the
bottom panel.
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For states with equal masses (M4 = Mp = m or Mo = Mp = m) commonly also the function
o is used, o(s) = A/2(s,m?,m?)/s. In the chosen frame the Mandelstam variables are given
by

s = (Ea+ Ep)* = (Ec + Ep)?,

t= M3+ ME& —2EAEc + 2|p||p’| cos b5,

u= M3+ M} —2E,Ep — 2|p||p’| cos b, (1.68)

allowing to rewrite ¢ and u as functions of s and 6, and to express the scattering angle in terms
of s, t, and w,

3s0 — ALY2(s M2 M2IAY2(s. M2 M2 A A
t(s,cos ;) = S0 58 (s, M3, MB)N'/(s, M&, M) cosf, — 212831
2 2s 2
3s0 — ALY2(s M2 M2IAY2(s. M2 M2 AA
u(s,cos ) = S0 ” 58 _ (s, M3, MB)N'/ (s, M&, M) cosf, — 212831
2 2s 2
t— A A
= cosfs = R Ay =M =M. (169)

- M2(s, ME, Mp)AY2 (s, Mg, MB)’

Similar expressions are obtained for s(t,cos6;), s(u,cosb,), t(u,cosb,), and u(t,cosby).

Eq. (1.68) implies that the minimal energy for s-channel scattering is the threshold energy
Sthr = max((Ma + Mp)?%, (Mc + Mp)?), and s > sy, covers the physical region, corresponding
to a branch cut as discussed above. Similarly, at the threshold energies for the other channels,
tonr = max((Ma + M¢c)?, (Mg + Mp)?), and ug, = max((Ma + Mp)?, (Mp + Mc)?), the
physical regions for ¢- and u-channel scattering start, generating right-hand cuts for ¢ > ¢, on
the real axis in the complex ¢-plane, and for u > wgy, in the complex u-plane. According to
Eq. (1.69) these cuts are transferred onto the complex s-plane (and similarly vice versa), where
they occur as left-hand cuts.

Once calculations of scattering amplitudes or form factors become explicit, it is expedi-
ent to deal with partial-wave unitarity relations, obtained by expanding the full amplitudes
T (s, cosfs) in terms of Legendre polynomials, with attention to a particular isospin I,

TfIi(s, cosfs) = 167S Z(% + 1) Py(cos 0,) FL (s),
=0

T]{f(s, cosfy) = 167S 2(26 + 1) Py(cos 0,)T] (). (1.70)
=0

On the one hand, angular integration that arises e.g. in Eq. (1.64) can be avoided. On the other
hand an important theorem, the Watson theorem [82], is known to hold for elastic partial-wave
scattering. It states that below the lowest inelastic threshold the phase shift 67 (s) of a partial-
wave amplitude F/(s) = |F/(s)| exp (id7(s)) is given by the phase shift 55{’61(5) (modulo 7) of
the elastic final-state scattering amplitude T/ (s) = |T}/(s)|exp (i&l{’d(s)). Eq. (1.64) simplifies
for a process with |i) = |f), as e.g. for 7w — 7w or 7K — 7K scattering, which yields the
partial-wave unitarity relation

A2 (s, M2, Mp) 2lp

tt (s) = 2l ) A 2 (1.7)

The matrix elements T/ (s) are related to partial-wave decomposed S-matrix elements S/ (s) by

4i|p|
NE

Si(s)=1+ T/ (s), 1Si(s)l <1, (1.72)
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Figure 1.6: Diagrammatic representation of the vector form factor, depicted by the orange circle
(left), driving the coupling of two pions (solid lines) to the electromagnetic current (curly line).
The blue circle at the right side denotes the elastic 77 scattering amplitude.

where in the elastic, single-channel treatment |S7(s)| = 1 (elastic unitarity), which yields the
parametrizations
. I.e 621‘65{,01(5) —1 \/g oIl
Si(s) = 20N o Tl(s) = Vs ————— = Y2 0 G gin §1°(s). 1.73
é( Z( ) 4z|p| 2|p| 14 ( ( )

A quantity for which the assumption of elastic unitarity works very well (at low energies s <
1 GeV?) is the pion vector form factor (Fr)i=] = FY (s), defined by the coupling of a pion-pion
system to an electromagnetic current jom,

(055, 0) |7 (p1)7~ (p2)) = (P2 = P1)" Fy (), b = %m”u - %dv“d- (1.74)
It can be directly measured via the processes e~e™ — w7~ [83-88] or, via an isospin rotation,
using 7= — 7~ 7%, [89]. The diagram that contributes to the discontinuity of the vector form
factor is shown in Figure 1.6. A further discussion can be found in Section 2.4.1.

At energies above the onset of inelasticities and the breakdown of elastic unitarity, Eq. (1.73)
must be extended to a coupled-channel version, involving the so-called inelasticity parameters
0 < nf(s) < 1. As an example the two-channel scattering amplitude T3(s) will be given in
Section 1.3.4. We employ next the example of an elastic two-particle scattering process with
|i) # |f) to demonstrate Watson’s final-state theorem. Unitarity together with the parametriza-
tion Eq. (1.73) implies

2|p|r
Im Fj (s) = %TZI (s) F{ (s)
& Im Fl(s) = FL(s)e=" ) sin 67 (5)0(s — semr), (1.75)
such that o i
sin 67(s) = e’ (% ()=07() gin §1:°1(5)O (5 — Sy). (1.76)

This equation demands the right-hand side to be real (the left-hand side obviously is), which
yields the constraint
8, (s) = 6} (s)mod(r) (1.77)

in the elastic scattering regime.

1.3.2 Dispersion theory

One of the pillars of non-perturbative approaches to strong-interaction processes is dispersion
theory. With the powerful tools of complex analysis, dispersion theory exploits the fundamental
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physical principles of micro causality, probability conservation, and crossing symmetry. In the
previous section we have discussed the analytic structure of physical amplitudes, illustrating
that amplitudes are analytic functions in the complex plane except for non-analytic structures
such as branch cuts and poles, that are dictated by the above fundamental physical principles.
These fundamental physical principles constrain the amplitude under consideration such that
ideally the amplitudes can be reconstructed with little further input via Cauchy’s integral
theorem.

Let © be a simply connected open subset of the complex plane C and let f : U — C be a
holomorphic function, which is continuous on 9). Then Cauchy’s integral theorem states that
for y € Q,

f dy f(y) =0, (1.78)
onN

and Cauchy’s integral formula reads

f(z) = ng dy 1) (1.79)

0 y—=z

In order to illustrate how dispersion relations are constructed we will first discuss the ex-
ample of a physical amplitude F(s) that depends only on a single kinematic variable s and
exhibits only a branch cut on the positive real axis. Such a physical scenario is provided by
form factors like the pion vector form factor. We will then turn on the more general case of
elastic two-particle scattering processes, which we already focused on in Section 1.3.1.

The analytic structure of our form factor example in the complex s-plane is depicted in
Figure 1.7, where the branch cut on the real axis starts at the squared threshold energy sip;.
Thus F(s) can be reconstructed at a point s in the complex plane via Cauchy’s integral theorem
provided that the amplitude is holomorphic in the encircled area £2,

ds’

1 F(s)
F(s) = omi ), —s , (1.80)
where v denotes the closed integration contour 9f2.

This integration contour can be deformed exploiting Cauchy’s integral theorem again, with
the condition that no non-analytic regions are crossed, which yields the contour depicted in the
right panel of Figure 1.7. Provided that F(s) vanishes sufficiently fast at complex infinity we
can enlarge the contour to complex infinity such that Eq. (1.80) reduces to a contour integral
above minus below the branch cut, i.e. to an integral over the discontinuity,

F(s) ! / N Fs) ds' = L/Oo disc F(s') ds’. (1.81)

271 s’ —s 271 s’ — s —ie
thr

For time-invariant processes Schwarz’s reflection principle F(s*) = F(s)* holds, see Eq. (1.61),
which allows us to replace the discontinuity by the imaginary part,

disc F(s) = 2iIm F(s). (1.82)

Eq. (1.81) is the desired s-channel dispersion relation representing single-variable functions like
the form factors.

If a sufficient decrease of F(s) for large s, required to ensure the convergence of the dispersion
integral, is not guaranteed, the unsubtracted representation Eq. (1.81) must be modified. For
example for a function that behaves like F(s) oc s"~1 for |s| — oo with n € N the dispersion
integral must be subtracted n-times, according to the following considerations. We define the
auxiliary function G(s) = F(s)/p™(s) with p™(s) being a polynomial of order n and tune n such



24 Chapter 1: Introduction

Im s Ims

|s| = o0

Res e > Re s

Sthr Sthr ~

Figure 1.7: Integration path. In the left panel the closed circular integration contour v around
a point s in the complex s-plane according to Eq. (1.80) is depicted. How this contour is
enlarged to an arc with radius |s| — oo, encircling (thus not crossing) the branch cut (gray
shaded) that starts at the threshold sy, is illustrated in the right panel. For sufficiently fast
decreasing integrands the integral over the arc vanishes and the integral above minus below the
cut remains, vy + v—.

that G(s) falls off fast enough at complex infinity to obtain a convergent dispersion integral.
Dividing by such a polynomial entails a suppression of the unknown high-energy behavior,
however, n additional poles are introduced to the function G(s). These result in unknown
constants (called subtraction constants) in the dispersion relation for F(s), which have to be
determined by other means (e.g. experimental data or supplemental theory input). We can
choose the polynomial p™(s) to be given by p™(s) = (s — sg)™, where s is called the subtraction
point. With the above established procedure and taking into account the additional poles, we
obtain the following dispersion relation for G(s)

G(s) = — 9(5) 4 4 l/m RGO R (1.83)

- ; r_ I e _ g
211 SO S T Jsue S S — 1€

where 75, denotes the closed contour encircling the subtraction point sg. The first integral
evaluates to a rational function of order —1 in s according to the residue theorem and we thus
obtain an n-times subtracted representation of the function F(s),

F(s) = Puoi(s) + (5 = 50)" /OO ( Im 7 (<) ds’, (1.84)

T s’ — s0)™(s" — s —i€)

where P,,_1(s) is called the subtraction polynomial of order n — 1, involving n unknown sub-
traction constants that require further constraints from experiment or further theory input.
The single-variable dispersion relation Eq. (1.84), however, is not valid in the more general?
case for scattering amplitudes F(s,t,u) that depend on several variables. Considering the
two-body scattering process Eq. (1.58), the presence of an additional left-hand-cut structure
caused by crossed-channel effects necessitates to consider the integration over these cuts as
well. In order to construct a dispersion relation for processes depending on multiple kinematical

9Remember that throughout this section we specify to the case of scattering of spinless particles.
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variables that exhibit right- and left-hand-cut structures, we apply the so-called reconstruction
theorem [90-95]. The main idea of this procedure is to fix kinematical variables to an arbitrary
constant without loss of generality, allowing us to write down fixed-variable dispersion relations,
which are employed to reconstruct the amplitude in question via symmetrisation. For simplicity,
we consider elastic two-body scattering of identical particles and fix one of the Mandelstam
variables, e.g. t = ty < 0. The constraint s + ¢t + u = 3sp allows then to write the fixed-¢
amplitude as a function composed of terms depending on one single variable only. With the
analytic structure in the s-plane given by the right-hand cut (s > s¢,) and the left-hand cut
due to the u-channel contribution (u > utn,) one obtains the following fixed-¢ dispersion relation
(or similarly a fixed-u dispersion relation by keeping u at a fixed value),

n o0 I / t / n o0 I / t /
F(s,to,u) :Pnfl(s,to,u)JrS—/ m F(s', O’U(,S ) ds/Jru—/ m F(s(w), 0,'u) du/.
s s (s! — s — ie) wn W —u — de)

thr thr

(1.85)

If we further decompose this amplitude into partial waves

F(s,to,u(s)) = ng(s)Pg(cos 0s), F(s(u),to,u) = ng(u)Pg(cos 0u), (1.86)
¢ ¢

where Py(cosf,) denotes the Legendre-Polynomials with the a-channel scattering angle cos 6,
and f, the partial waves of angular momenta ¢, we obtain
n oo P 95/ I /
J_'.(S,to,u) _ Pnfl(S,to,U) + s Eé l;(COIS ) m f@(s ) ds’
Senr s (s' — s — ie)
u™ [ Y0, Pi(cos By ) Im fo(u')

T Juen w'm™(u' — u — ie)

+

du’. (1.87)

Note that considering elastic two-particle scattering implies that all crossed-channels yield the
same scattering process and partial-wave decomposition, such that the amplitude is highly
symmetrical in the kinematical variables. Due to Eq. (1.69) we can express the s-channel
scattering in terms of Mandelstam variables, cosfs = (t — u)/(s — stny) (and likewise for cos 6
and cos 6,,), which yields

s™ o Im s’
]:(S,to,u) :Pn—l(sathu)+_/ S/’I’l¢
Sthr

(s — s —ie€)

+(to—u>£/oo o WAL +...

™ s — Sthy) (8" — s — i€)

u" [ Im fo(u')
+— m( i
T S, W0 —u — ie)
u™ [ Im fy(u')
to —s)— .. 1.88
MR ey B e e R

where the dots denote higher partial-wave contributions. Similarly, we obtain fixed-s and fixed-u
dispersion relations. Symmetrization of the three representations yields

F(s,t,u) = Fo(s) + Fo(t) + Folu) + (t —w)Fi(s) + (t — s)Fi(u) + (s —w)Fi(t) + ..., (1.89)

where the single-variable amplitudes F; incorporate the corresponding dispersion integrals of
angular momenta ¢ as well as parts of the polynomials P,_1(s,t,u), which can be absorbed in
the subtraction polynomials PZ"_1 of order n — 1:

.mwzw*@+ﬁ/m Im /o(«’) (1.90)

T S T7(@ — Tene) (27 — 2 — i€)’
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Furthermore, one straightforwardly observes that the fixed-variable dispersion relations can be
retained from this representation by fixing the corresponding variable.

1.3.3 Omnes solution

A classical method to solve the unitarity relation in a dispersive framework refers to the
Omnes problem [80]. Mathematically known as homogeneous Hilbert-type problem described
in Ref. [81] its application to hadron physics and explicitly to form factors has been noted
in Ref. [80,96-99]. For an elastic two-particle scattering scenario it exhibits the feature that
it provides an analytic solution of the unitarity relation Eq. (1.64). The vector form factor
FY(s), defined in Eq. (1.74), is an ideal showcase example due to the absence of left-hand cuts
on the one hand, and a (phenomenologically) well justified elastic approximation up to energies
/s = 1 GeV on the other hand. We demonstrate the solution of the Omneés problem in an
elementary matter assuming these two prerequisites, i.e. for a form factor F/(s) that obeys
the elastic partial-wave unitarity relation Eq. (1.75). The concrete determination of the pion
vector form factor is sketched in Section 2.4.1. A generalized treatment that takes into account
inelastic channels or crossed-channel effects complicates the problem and is discussed in some
aspects afterwards.

The unitarity condition Eq. (1.75) is solely driven by the elastic scattering phase shift 55’61
(coinciding with the phase 67 (s) of the form factor regarding Watson’s final-state theorem).
Hence, all the physics that enters the Omnes problem is incorporated in that phase that will
determine the dispersion integral in the representation of the Omnes function. The Omnes
function is introduced via the ansatz

Fi(s) = P () (), (1.91)

where P/(s) is an arbitrary polynomial and Q(s), constrained by

Q5(0) =1 and Qf(s) 0V s, (1.92)
solves the dispersion integral
1 e o] I I (!
Fl(s) = —/ m ds’, (1.93)
T Joy, S — 58— i€

with Im F/(s) given by the unitarity relation Eq. (1.75). It is appropriate to consider the
logarithm of the Omnes function In ©/(s), for which the discontinuity takes a simple form,

disc (InQ(s)) =1In (Qf(s +ie)) — (U (s — ic)) = 26/ (s), (1.94)

with Qf (s £ ie) = [Qf(s)| exp(£id}). This yields the dispersive representation

—s0)" [ disc(InQ(s"))
In QL =P, (S 50) / {4 ds’
n Y (s) i(s) + 2mi s (87— 80)" (8" — 5 — ie) §

Y (ARAFRLES: oy . TR

i (8" — s —ie
s [ o(s

where in the last step one subtraction enforces the demanded normalization, as well as ensures
a converging dispersion integral (assuming that the phase is bounded).
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We need to pay special attention to the high-energy region: demanding the asymptotic
behavior of the form factor and correspondingly of the Omnes function to be at least o< 1/s (as
known from perturbative QCD [100]) yields a constraint for the asymptotic value of the input
phase. In the typical scope of application for the Omnes formalism like processes that involve
pions or kaons, the scattering phase shifts are known very precisely at low energies, e.g. from
Roy and Roy—Steiner analyses [33-39], but not for large s, where we can however employ the
relation between the phase and the fall-off of the Omnes function,

0l(s) ¥ = Ql(s) = s n>1. (1.96)

Above a certain cutoff energy we therefore guide the phases smoothly to a multiple of 7 to
ensure the required high-energy behavior.

Beyond the elastic case the coupling between various channels that we will discuss in the
next section affects the above relation: the asymptotic behavior of the Omnes solution depends
on the sum of eigen phase shifts Y &/ (s) [101],

Z 6L(s) =3 mn Ql(s) =X

®w | =

(1.97)

We briefly want to discuss how scattering and decay processes, which exhibit left-hand cut
structures, can be treated in the Omnes representation framework. In the previous section we
have constructed dispersion relations for these processes employing the so-called reconstruction
theorem. However, it has been shown that simple dispersion relations for the single-variable
amplitudes are not necessarily unique [102]. This drawback can be cured by extending the
above Omnes solution to the Khuri-Treiman framework [103]. The starting point is once again
the unitarity relation and the decomposition of the amplitude in question into single-variable
amplitudes Eq. (1.89). For simplicity we resort to the case of elastic scattering of a specific
isospin, such that the unitarity relation is given by Eq. (1.64). Projecting the unitarity rela-
tion on the corresponding angular moments provides unitarity relations for the single-variable
amplitudes analogously to Eq. (1.75),

discFy(s) = 2i (.7:5(5) + ]:'g(s)) =17 () sin 55Y(s) ©(s — Spnr), (1.98)

where ]:'g(s) denotes the projection of the full amplitude on the fth angular moment neglecting
the corresponding single-variable amplitude Fy(s),

. 20+1 [t
Feo(s) = —5 1

dcosfs F (s,t(s,cos0s),u(s,cosbs)) Pp(cosls) — Fe(s). (1.99)
Thus the crossed channels and therefore the left-hand cuts contribute through the function
Fy to the single-variable amplitude of angular moment ¢, F,. In the case of decays it gives
rise to crossed-channel rescattering contributions and three-particle rescattering. The unitarity
relation (1.98) is an inhomogeneous Hilbert problem, which reduces to the homogeneous Hilbert
problem Eq. (1.75) in the special case of F = 0. The latter problem is solved by the Omneés
solution. It is therefore natural to solve the unitarity relation for the single-variable amplitudes
by the following product ansatz,

Fe(s) = Qu(s)p(s), (1.100)
where (s) is the Omnes solution and ¢(s) is to be determined. The product ansatz results in
the following dispersion relation, which is known as Khuri-Treiman dispersion relation,

Fuls) = Qu(s) {Pn_l(s) 45 /Oo d M} , (1.101)

7 Jon 1@ (s — )

where P,,_; again denotes the subtraction polynomial of order n — 1.
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1.3.4 Coupled-channel Omnes formalism

A strong coupling between various hadronic systems necessitates a combined treatment of these
channels in the determination of quantities like e.g. form factors. Such a dependency of two
systems occurs for instance in the scalar isoscalar sector between the S-wave pions and kaons,
and in the scalar isovector channel between the S-wave 7°n and the two-kaon systems. Con-
sequently the derivation of these scalar form factors requires a coupled-channel approach, and
it is thus mandatory to generalize the single-channel Omnes problem presented in the previ-
ous section to the two-channel Muskhelishvili-Omnes problem. We demonstrate this on the
example of the pion and kaon scalar form factors. These form factors are defined by the matrix
elements

(01(gq) 1=l MMy ) = BET{; 77, (5), (1.102)

with the isoscalar scalar currents (gq);—o = (@u+dd)/2 for the light non-strange quarks (¢ = n),
or (Gq)r—o = §s for the strange quarks (¢ = s). Furthermore,
M2

_2Mp - M2
mqumd’ B '

2my

n

0 =

S

s (1.103)

More details concerning these definitions can be found in Section 2.4.2. Parts of this section
are taken from Ref. [104], where further details are provided.
The two-channel unitarity relation reads

disc T'(s) = 2iTy*(s)2(s)T'(s), (1.104)

where the components of the two-dimensional vector I'(s) are the pion and kaon scalar isoscalar
form factors, and T3)(s) and X(s) are two-dimensional matrices,

ng(5)e? ) — 1
2i0,(s)

|93 (s) ™60

|93 (s)|e o

0 —
Ty (s) = 70 (s)e2i (=) =38(s) _ 1

, (1.105)

2iok ()

and X(s) = diag (0 (s)O(s — 4M2), 0k (s)O(s — 4M}%)), with o(s) = (1 — 4MZ-2/5)1/2 and ©(.)
denoting the Heaviside function. Three functions serve as input for the T-matrix, the 77 S-wave
isoscalar phase shift §9(s) and the 7m — K K S-wave amplitude g(s) = |g9(s)|exp (i1 (s)) with
modulus and phase. The modulus |g)(s)] is related to the inelasticity parameter nJ(s) by

18(s) = /1 — doa(8)% (5) 98 (5) 2O (s — 4ME). (1.106)

In the limit of a single channel 5 — 1 the (73),, matrix element reduces to the elastic
scattering case Eq. (1.73). Writing down the two-dimensional dispersion integral over the
discontinuity (1.104) leads to a system of coupled Muskhelishvili-Omnes equations,

1 /oo T () S(TS)  , (1.107)

[(s) =

AM?2 s'—s—ie

A solution can be constructed introducing a two-dimensional Omnes matrix, which is connected
to the form factors by means of a multiplication with a vector containing the normalizations
I4{=°(0) and T (0) [105],

reI=0(s) ) _ o Qu(s) Qa(s) ( re1=0(0) ) 1.108
2 g, I= - 2 g, I= ) : )
(TJKK%) (on an) ) 2 T0(0) (
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Figure 1.8: Modulus of the scalar pion (top) and kaon (bottom) non-strange (left panels) and
strange (right panels) form factors Ffr’ij?K(s), g = n, s, depicted for three different normaliza-
tions inside the allowed range, illustrated by the uncertainty band.

where Ffr’i,:I?K(s) represents both strange (¢ = s) and non-strange (¢ = n) form factors, which
differ merely in their respective normalizations. Thus the problem reduces to finding a matrix
Q(s) that fulfills

Im Q(s) = T (s)2(s)(s), Q(s):l/w T (U g o QO)=1. (1.109)

; B
™ 4M72r S — S — 1€

While the single-channel Omnes problem can be solved analytically this is not the case in the
coupled-channel approach, where one has to resort to numerical methods [101,104-107]. An
adequate asymptotic behavior of the two-channel Omnes solution is ensured by guiding the
sum of the eigen phase shifts to 2w, cf. Eq. (1.97). Figure 1.8 shows the results obtained for
the moduli of the pion and kaon form factors (see also Ref. [112]). The sensitivity due to the
uncertainty in the kaon form factor normalization is illustrated by the uncertainty bands. The
strange form factor exhibits a peak around 1 GeV, which is produced by the f,(980) resonance.
On the contrary in the pion non-strange form factor the ¢ meson appears as a broad bump
(notice the non-Breit—Wigner shape) around 500 MeV.

According to the Feynman—Hellmann theorem [108,109], the form factors for zero momen-
tum are related to the corresponding Goldstone boson masses, which at next-to-leading order in
the chiral expansion in terms of quark masses depend on certain low-energy constants. These
are determined in lattice simulations with Ny = 2 + 1 dynamical flavors at a running scale
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p =770 MeV [110], limiting the form factor normalizations to the ranges!?

I™1=0(0) = 0.984 + 0.006, 51=0(0) = (—0.001...0.006) ~ 0,
I ’(0) = (0.4...0.6), r32=00) = (0.95...1.15). (1.110)

10Similar ranges, with slightly increased values in the case of the kaon form factor normalizations, are found
in simulations with Ny =2+ 1 4 1 dynamical flavors [111], cf. Eq. (2.50).



Chapter 2

Final-state interactions in
B?i/s — J/p{nm,7n, KK}

2.1 Introduction

B-meson decays can be exploited for Standard Model tests and beyond, in particular to de-
termine the Cabibbo-Kobayashi-Maskawa (CKM) couplings and to study C'P violation. For
a theoretical description of many of these decays, it is mandatory to understand the strong
final-state interactions in terms of amplitude analysis techniques [115], with tight control over
the magnitudes and phase motions of the various partial waves involved. For example, the
decays B — fo(980)Ks and B — ¢(1020)Kg are explored for an experimental determination
of the CP asymmetry sin 28 [116-119], 8 being one of the angles of the unitarity triangle. An
analysis of decays into scalar final states such that the former of those decay channels requires
precise knowledge of the strange and non-strange scalar form factors that we discuss in this
chapter.

We focus on the decays 3275 — J/t M1 Ms, with My M being a pair of light pseudoscalar
hadrons, 7+7~, 7%, KT K~ or K°K°. The tree-level process of the weak decay into .J/1 and a
qq pair is depicted in Figure 2.1 (exemplarily for the BY decay). The interactions of the lightest
hadrons, the pions, with themselves as well as with kaons, the next-lightest strongly-interacting
particles within the pseudoscalar ground-state octet, are known to excellent precision. The
combination of dispersion relations in the form of Roy or Roy—Steiner equations, constrained
by chiral perturbation theory at lowest energies and using experimental data as input, has
increased our knowledge of the leading partial waves of pion—pion [33-36] and pion—kaon [37-39]
scattering enormously. This has a large impact on a wide range of scattering or decay processes
in which pions and kaons are produced: dispersion relations allow to relate the final-state
interactions to the scattering phase shifts in a model-independent way [113,120-131]. The
hadronizations into pions and kaons and the rescattering in the 77 and K K systems for S- and
P-waves can be described by the pion and kaon scalar and vector form factors, a consequence
of the universality of the final-state interactions.

Contrary to the vector form factor, where a single-channel (elastic) treatment as it is ex-
plained in Section 1.3.3 works well below 1 GeV, the elastic approximation breaks down in the
scalar sector: both reactions—nm and wK scattering—are closely intertwined in the isospin-0

Ipublished in Refs. [113,114]
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Figure 2.1: The B? — J/+vr "7~ diagram to leading order via W~ exchange. The hadronization
into pions (S-wave dominated) proceeds through the pion strange scalar form factor I'$:?=0(s).
In the case of the Bg — J/yYrTr~ decay, with s <> d, the pions are generated out of a
non-strange scalar source, i.e. I'$=(s) is replaced by the pion non-strange scalar form factor
1=9(s) for S-wave and by the vector form factor for P-wave pions. For the (S-wave dom-
inated) BY — J/17% final state the isoscalar scalar form factor is replaced by the isovector
scalar form factor 1"2;7[ =1, Considering K K final states, the kaons emerge from both isoscalar
and isovector form factors, 1"7;(’%:0 and 1"7;(’%:1, in the Bg decay, while it is purely isoscalar,

F;IK:O, in the BY decay.

S-wave system. There the reaction mm — KK, the crossed process of TK scattering, domi-
nates the inelasticity in pion—pion scattering near the K K threshold, the region of the f;(980)
resonance; for these (scalar) quantum numbers, therefore a coupled-channel treatment is manda-
tory [101,105]. A two-channel approach breaks down at energies where inelasticities caused by
47 states become important, we are thus not able to cover the complete phase space, but restrict
ourselves to the low-energy range /s < 1.05 GeV. Information on the scattering of pions off the
71, which would complete our understanding of pion reactions off the pseudoscalar ground-state
octet, is much scarcer. Two important resonances are known in the I(J) = 1(0%) sector,
namely the a(980) and ag(1450) [44]. Several models for the 7n S-wave scattering amplitude
have been proposed in the literature [132-136], some of them constrained by the results from
chiral perturbation theory at threshold [137]. Very recently, first information about this ampli-
tude has also come from lattice QCD simulations [138,139]. There is one remarkable similarity
of mn S-wave scattering to the 7w I = 0 S-wave: for 7, the first important inelastic channel
is given by KK, whose threshold also there coincides with the presence of a scalar resonance,
the isospin-1 a(980) resonance. Therefore in this case, a coupled-channel treatment of 77 and
KK (in I = 1) is required as well in order to describe the energy region around 1GeV. A
corresponding unitary T-matrix has recently been constructed in Ref. [140], to which chiral
constraints [60] have been imposed as well as experimental information available on the ao(980)
and ao(1450) resonances. However, the result still has considerable uncertainties due to the
limited accuracy of the experimental input.

To demonstrate that the description in terms of form factors, constructed in Muskhelishvili—
Omnes representations, works very well, we consider the decays BY — J/¢yntn~ and B? —
J/Yrt 7™, measured by the LHCD collaboration [141,142]. These analyses complement former
related studies of B} and B? decays by the BaBar [143], Belle [144], CDF [145], and DO [146]
Collaborations as well as older LHCb results [147,148]. In the LHCb analyses no obvious
structures in the J/¢7r™ invariant mass distribution are found, suggesting that left-hand-cut
contributions in the 77~ system due to the crossed-channel J/17T interaction are small and
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can be neglected.

In Ref. [141] the BY decay is described by six resonances in the 7F7~ channel, fo(500),
p(770), w(782), p(1450), p(1700), and f2(1270), which are modeled by Breit—~Wigner functions.
This parametrization of especially the fy(500) meson is somewhat precarious, as the broad
bump structure of this scalar resonance is not well described by a Breit—Wigner shape. As
demonstrated for the first time in the context of B decays in Ref. [149], it should be replaced by
the corresponding scalar form factor. In the present work this idea is extended and rigorously
applied using form factors derived from dispersion theory. The advantage of the dispersive
framework is that all constraints imposed by analyticity (i.e., causality) and unitarity (proba-
bility conservation) are fulfilled by construction. Further, it is a model-independent approach,
so we do not have to specify any contributing resonances or conceivable non-resonant back-
grounds. In particular, there is no need to parametrize any resonance, since the input required
to describe the final-state interactions is taken from known phase shifts, and therefore the
fo(500) appears naturally in the non-strange scalar form factor. The B? decay, described in the
experimental analysis by five resonances, fo(980), fo(1500), fo(1790), f2(1270), and f5(1525)
(Solution I) or with an additional non-resonant contribution (Solution II), dominantly occurs
in an S-wave state [142], while the P-wave is shown to be negligible. Given the almost pure 5s
source the pions are generated from, this decay shows great promise to provide insight into the
strange scalar form factor.

The idea of such a “scalar-source model”, where an S-wave pion pair is generated out of a
quark—antiquark pair and the final-state interactions are described by the scalar form factor, is
also used in Ref. [150] for the description of the BY and BY decays into the scalar resonances
f0(980) and f((500), respectively. It was employed earlier e.g. in analyses of the decay of the
J/v into a vector meson (w or ¢) and a pair of pseudoscalars (77 or KK) [151,152]. In
these references the strong-interaction part is described by a chiral unitary theory including
coupled channels, which yields a dynamical generation of the scalar mesons. In contrast to
the present study, the very precise information available on pion—pion [35, 36,153, 154] and
pion—kaon [37-39] phase shifts is not strictly implemented there. Related studies using the
chiral unitary approach are performed in Ref. [155], where the .J/¢—vector-meson final state is
analyzed, and in Ref. [156], which includes resonances beyond 1 GeV. In contrast to models of
dynamical resonance generation, the scalar resonances are considered as qq or tetraquark states
in Ref. [157]. Other theoretical approaches employ light-cone QCD sum rules to describe the
form factors [158]. Progress on the short-distance level is made in Ref. [159], where factorization
formulae are improved in a perturbative QCD framework.

While our main interest in studying the Bg . — J/ymtr™ is to show whether the dispersive
formalism works and to adjust the amplitude normalizations using available data, we can give
predictions also for the other final state, namely for the B — J/¥ K+ K~ S-wave as well as the
S-wave dominated decays BY — J/¢Y{K+K~, K°K°} and B — J/¢7%n . Because the strange
source 3s has an isoscalar component only, the B — J/¥K* K~ S-wave, where the kaon pair
emerges from a strange source §s, can be predicted straightforwardly based on the mn- KK
coupled-channel relations solely. Considering the non-strange mode Bg — J/PKK the source
term is given dominantly in terms of dd quark bilinears; it produces isoscalar and isovector
meson pairs with known relative sign and strengths. With the strength of the dimeson source
fixed from experimental data on Bg — J/¢mt 7™, and given the analogous isovector scalar form
factors for m and KK [140], we can thus give an absolute prediction for the BY — J/¢n%n
channel. The combination of isoscalar and isovector scalar form factors for the kaons then
allows one to fully analyse the physical KT K~ and K°K? final states.

The outline of this chapter is as follows. In Section 2.2, we review the construction of the
transversity amplitudes and partial waves, after sketching elementary kinematics, exemplified on
the Bg — J /471 channel. We provide explicit expressions that relate the theoretical quantities
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Figure 2.2: Definition of the kinematical variables for B — J/¢nn.

to the angular moments determined in experiment. We introduce the required dimeson scalar
and vector form factors in Section 2.4, and construct the amplitudes for the respective decay
modes in terms of these form factors. The fits to the LHCb data, using the BS . — J/¢mtn~
angular moment distributions, are discussed in Section 2.5, where we use several configurations
with and without D-wave corrections to study the impact of certain corrections to our fits.
Results for Bg — J /47 n predictions are presented in Section 2.6. Section 2.7 provides further
arguments for our treatment of the S-wave in terms of scalar form factors and the suppression of
higher partial waves in the BS — J /971 decay. Potential contributions due to ¢- and u-channel
exchange of the ¢(25) and B* mesons are studied, the latter also for the Bg,s — J/yrtre
decay. The predictions for the KK final states are treated in Section 2.8. We conclude in
Section 2.9.

2.2 Kinematics, decay rate, and angular moments

In this section we introduce the elementary decay kinematics and derive the decay rates in terms
of partial-wave amplitudes up to D-waves, employing the transversity formalism of Ref. [160].
This is exemplified on the B} — J/¢7'n decay mode, where final-state hadrons of unequal
masses are involved, exhibiting the most general structure of the decays under investigation.
We therefore do not spell out the formulae for the 77 and KK final states explicitly—they can
be obtained from the following in a straightforward manner.

The kinematics of the decay BY(pg) — J/v(py)m°(p1)n(p2) (J/p — utp~) can be de-
scribed by four variables: the invariant dimeson mass squared, s = (p; + p2)?, and three
helicity angles, see Figure 2.2, namely

e the angle 6/, between the T in the J/¢ rest frame (/) and the J/¢ in the BY rest
frame (Xp);

e the angle 0, between the 7 in the 77 center-of-mass frame X, and the 77 line-of-flight
n EB;

o the angle ¢ between the 799 and the dimuon planes, where the latter originate from the
decay of the J/4.

The three-momenta of the pion or the 7 in the 7' center-of-mass system (pr,) and that of the
J/v in the BY rest frame (py) are given by

N2 (s, MZ,M7) _ Y/s NP2(s,mi,mE) X

|Prn| = NG =— Ipyl= G o

, (2.1)
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with the Killén function A(a, b, c) = a? + b2 + ¢2 — 2(ab + ac + be). The function Y reduces to
op = (1—4M3/s)'/2 in the case of equal-mass final-states. We define two further Mandelstam
variables as

t=(pp—p)® and u=(pp—p2)’ (2.2)

where the difference of these two determines the scattering angle 0,
Am 2 2 2 2
tfu:f2YXcost9n+T, Ay = (mp —my,) (Mg — M7). (2.3)

We decompose the matrix element for the decay in the following way:
Gr
Mypi=——
"
M = fomy et (PuAL + QuAs + (py)pAs + ieuupgpﬁ/’JPpQ"V)

* eff
‘/cb cd M )

1 " b -
\ Py my Po) Qu D) g
= fumye, (g, A) <_m¢ft +—5 St NG Fy - NG Fo| =t fymye ™ M, (2.4)

where fy ~ 405MeV is the J/¢ decay constant, Gp = 1.166365 x 107> GeV~2 is the Fermi
constant, Ve, and V.4 are the CKM matrix elements for ¢ — b and ¢ — d, and €}, (py, A) is the
corresponding polarization vector of helicity A. The matrix element containing the 77 system
is given on the one hand in the standard basis of momentum vectors (p’lz, pPro= pi' + ph,
Q" = p' — pb) associated with three axial form factors A; and one vector form factor V; on the
other hand it is represented by the transversity form factors Fy, Fo, F|, and F, reflecting the
polarization states of the J/v¢. The unphysical time component F; does actually not contribute.
In the ongoing study we will use the set of transversity form factors F,. They correspond to
the orthogonal basis of momentum vectors [160)

P-py ~ ehaBy
PM =Pl — puv pN :—(p )aPQ )
(0) pi b (L) X b By

3(P-Q) = (P-py)(Q-py) P2(Q py) — (P-py)(P-Q) ,
Py XQW Pe) pu, 2@ py) ;2 py)( Q)pwv

thus generalizing the formulae discussed previously [160] to unequal masses. Again, the relations
for the 7m and KK final states simplify accordingly. We employ €,q3, With the convention
o123 = —€"12 = +1. The associated orthonormal basis of polarization vectors of the .J/1
meson reads [160]

1L
e (t) = Py

o (0) = —Mipn gy = L (Q“ ¥ ip )em. (2.6)

X (0 T V2 sing, \ o TP

The transversity (or helicity) form factors are then defined via the contractions of the hadronic
matrix element M7 with the respective polarization vectors,

Hy = MJTeMT(N). (2.7)
Both transversity and helicity form factors are related via

Y

Hi=Fi, Ho=Fo, Hi=(F| i]'l)ﬁ

sin 6, e*%. (2.8)
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Although dealing with three sets of form factors may cause confusion, it still helps to establish
understanding of the remaining section. In particular the partial-wave expansions are well-
known for helicity amplitudes,

= > V2 THY ()50 (0)€M, (2.9)
V4

where the dﬁ v are the small Wigner-d functions. Using

sin 6
dio(0y) = Pu(cosy), dio(0,) = —d"1o(0,) = —Tfl)Pé(cos 0,), (2.10)

we see that the zero-component Ho(s) is expanded in terms of Legendre polynomials Pp(cos 6;,)

and thus contains all S-, P-, and D-wave contributions, while the 4 (s) partial-wave expan-

sions, proceeding in derivatives of the Legendre polynomials Pj(cos#,), start with the P-wave
amplitudes, i.e.

5

Ho(s) = /H,és)(s) + V3 cos GnHép)(s) + g (3cos? 0, — 1) /H,éD)(s) +..,

3 _
Ho(s) = :F\/;sin&? (H(P>( ) + /5 cos 97,71;[’)(5)) e 4 (2.11)

2 Equivalently, due to Eq. (2.8) and using

where the ellipses denote F-waves and larger.
/H,(e)( ) = %(]—"(‘e)(s) + .7-](_2)(5)), we arrive at the partial-wave expansion of the transver-

sity form factors,

Fols,0n) = > V201 1F (s)Pe(cos 0,)
4

5)
O(S)(s)—i—\/gcosenfép)(s)—i— \é_ (3cos® 6, — 1) f(D)( )+,

Fi,1(s,0n) Z \/% ﬁ_( )P, (cos b,) = \/7<}-|(Ij_)( ) + V5 cos b, ‘Fﬁj_)( )) +....

(2.12)

The partial waves defined in this way still contain kinematical zeros that have to be removed
for a dispersive treatment, such that the transversity partial waves are represented by functions
whose only non-analytic behavior is related to unitarity. We relate the transversity amplitudes
to the standard set {A;, V},

B B X Ycos,(P-py) X MZ2—M?
7\/EXV7 ]:H*\/EA% meAlJr(Terf AQ,

1

P- M2
Fi = P pd}AlJr— (XYCOS@ + (P -py)(

S

M2)
TRy >&+m&, (2.13)

in order to make the reader aware of the kinematical factors v/s, X and Y introduced into
the transversity form factors. These factors give rise to artificial branch cuts in the unphysical

2Though we expect the D- and higher waves to be small and therefore describe only S- and P-waves in the
Omnes formalism, we present the formulae including the D-wave contribution, as we will study their impact at
a later stage.
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region. Given that the form factors A; and V are regular, we can read off from Eq. (2.13) how
to construct partial waves fT(e) that are free of such kinematical singularities,

CF(s) = X £§7(s), CF(s) =Y £7(5),
CF(s) = V51" (s), cFP(s) = VaX £17(s), (2.14)

where C is defined in Eq. (2.21). The partial waves fT(é) are treated in the Omnes formalism as
presented in Sections 1.3.3 and 2.4.

The structure of the matrix element in Eq. (2.4), its decomposition in terms of transver-
sity form factors, as well as the partial-wave expansion of the latter is independent of any
factorization assumption, and entirely general. Factorization of the form

M = a T (METMH o MR = (7 (p1)n(p2)|dy (1 — 75)b| B (pB)),
M = (J[1h(py, €)|ey*c|0), (2.15)

which leads to the same decomposition as in Eq. (2.4), is only required if we want to identify
the transversity form factors explicitly with those that, after an isospin rotation, describe the
semileptonic decays Bg — 7t~ v,; no such attempt is made in the following study. The
effective coupling a®® (1) is related to Wilson coefficients of the effective weak Hamiltonian that
governs the b — c¢d transition [161]; in terms of the usual set of 14 operators it reads

Gr

Hegg =
NG

S M(CIQI+CQE+ Y CiQi+ CryQry + CisyQsy) +hec,  (216)

p=u,c i=3,...,10

using the same notation as in Ref. [162] except for the obvious replacement of s by d in the
case of the BY decay, in particular the \, are products of the CKM matrix elements for ¢ — b
and ¢ — d,

)‘C = VYCb cti’ )‘U = Vub Jd’ (217)

and the local current—current operators Q¥ read

Qi = 45L7ubL JL’}/#CL = 451'[")/“6‘2 Ji’y#biL, 1{ = 4’ELL’}/HbL JL’}/#UL,
Q5 =4 EiLv”b% CZ%VMCE =4decpyter JLvubL, QY = 4@27“1)% cz%vuuiL, (2.18)

where g1, r = %(1 F v5)q and 4, j are color indices. In the second step the quark operators are
regrouped by means of a Fierz rearrangement. For the processes under consideration it is clear,
at first, that the electromagnetic penguin operators QQ7_19 as well as ()7, can be neglected
compared to Qf, Q5. We make the further assumption that the two operators Q%, Q% can also
be neglected, such that the set of 14 operators is reduced to seven operators. The latter neglect
is justified by the Okubo—Zweig—Tizuka (OZI) rule: in order to produce a J/v in the final state
from the operators @Y, Q4 one must proceed via quark-disconnected diagrams involving three
gluons. The OZI rule is known to be quite effective for heavy-quarkonium production or decays.
The effective coupling a*® (1) in Eq. (2.15) is thus given by a*(u) = Ca () + C1(1)/N,, with
the ellipses in Eq. (2.15) denoting higher-order corrections to factorization that compensate for
the scale dependence of a®f(y) [163] .
In order to calculate the differential decay rate for the Bg — J/¢7mn decay we sum over
the squared helicity amplitudes,
2 G%
5 |

(M| = =L Vi P [Veg P £2M3 ([ Hol? + [H[? + [H-*)  (q={d,s}), (2.19)
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and integrate over the invariant three-particle phase space, which is given by

XY

do® = —2-
4(47)?m%

dsdcos 8, de. (2.20)

Neglecting waves higher than D-waves and integrating over ¢ we arrive at

d’r
dy/sdcosb,
 GRVa [ Veal fomi, XY /5
4(4m)3m%

XY 5)
~ 7\/§|C|2 {‘]—'O(S)(s) + V3 cos (97,]:0(1))(8) + % (3cos® 0, — 1) .FO(D)(S)‘
B

{1Fo(s.0)7 + 2 sin? 0, (17 (s, 0,) 2 + | F (5,0,)) }

2
4m

3 2
-l—51/2511r126’,7(‘.7-'|(1D +V5cos6 .7-'” ‘ }.7: P 4 V5 cos 0,F ) (s )‘ )},

_ GrVaVoafemy

T my (2.21)

where in the second step partial waves up to and including D-waves are considered.
By weighting this decay rate by spherical harmonic functions Y,(cos#6,), we define the
angular moments
. 1 d42r
Y9 (s) = / m Y (cos 0,))d cos 0., (2.22)
commonly used by the LHCb collaboration, as well as later in this text. With the orthogonality
property

/ Y (cos 6,,) (cos@ )dcos @, = %, (2.23)
we obtain
VIRE) = et P ]f<P> )
(-l el o))
Var(y) = X0 \cf{Re (FORPY Lo (i)
+ \/gY2 {Re (fip)fim*) +Re (J-‘ﬁ”f'(m*)] }
Vir(Yy) = M \C\Q{Re (FOFP) + L’;éP)‘Q N é’fémf
L ()« B 0 ).
(2.24)

where (YY) corresponds to the differential decay rate dI'/d+/s, (Y}?) describes the interference
between S- and P-wave as well as P- and D-wave amplitudes, and (Y3) contains P-wave,
D-wave, and S—D-wave interference contributions.
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When comparing the angular moments to the experimental data—available for the w+7~
and KTK~ final states—we have to deal with flavor-averaged expressions due to the B B°
mixing and take into account the C' P-conjugated amplitudes (the BY decay mode) as well. For
the BY — J/¢ntn~ decay mode the interfering term between the amplitudes is found to be
negligibly small [141], hence the decay rate can be written as the sum of the decay rates for the
direct B} and the mixed C'P-conjugated B) mode,

4T (B§ — J/¢m*7~) _ d°T (divect) = d°T'(By — J/vmtn)
dy/sdcosf, ~ dy/sdcosf, dy/sdcos b,

(2.25)

This neglect is less justified when applying the formulae to the B? — J/¢7 "7~ decay rate. In
the analysis of Ref. [142] an interference term is added to Eq. (2.25). However, in Section 2.5.2
we find that it is sufficient to take into account S-waves. In that case the interference term
does not affect the fit procedure and merely generates a tiny shift of the resulting fit parameter
(the normalization ¢). The same argument applies to the 77 final state: we prove the S-wave
dominance compared to P-waves in Section 2.7: as we discuss in Section 2.7.1, the production
vertex for a mn P-wave is chirally suppressed; it is generically smaller relative to the S-wave
by a factor of Y M2 /(4wF;)?, which around 1GeV amounts to one order of magnitude. In
Sections 2.7.2 and 2.7.3, we calculate the P-wave contributions generated by ¢- and u-channel
resonance exchanges, and find them to be even more suppressed than this generic estimate.
Furthermore, the 7n P-wave has exotic quantum numbers; final-state-interaction effects should
thus be small below 1 GeV. We therefore find it safe to assume it to be negligible in the energy
range considered in this study, and well within the uncertainty of the S-wave contribution. We
will briefly discuss the impact of D-waves in Section 2.7, mainly to demonstrate that they also
only become important for dimeson energies well above 1 GeV.

The expressions we have provided in this section refer to one particular mode. The corre-
sponding expressions for the C' P-conjugated modes are related straightforwardly to the above
equations by certain sign changes due to the C'P eigenvalues ncp = %1 in the definitions of
the transversity partial-wave amplitudes. We declare the amplitudes .7:7(2) to describe the Bg
decay, then the corresponding Bg decay amplitudes are given by

FO = pepF®, (2.26)

with nop = +1 for the 7 = 0,|| P-waves and the 7 =1 D-wave, and ncp = —1 otherwise.
Consequently the angular moments (Y) and (Y3') are unchanged under C' P conjugation, while
the conjugated moment (Y}") has opposite sign, such that when considering flavor-averaged
quantities and summing over the B} and BY contributions, (Y;?) vanishes. In the following we
thus consider (Yy) and (Y3) only.

2.3 Chiral-symmetry based relations

In this section we demonstrate how the Bg — J/¢mn S-wave can be predicted by means of
a flavor relation to the Bg — J/yrTr™ S-wave. To begin with we briefly discuss how this
relation can be derived based on chiral symmetry. For this purpose we consider the effective
weak Hamiltonian, Eq. (2.16). In Section 2.2 we explained that seven of the usual 14 oper-
ators can be neglected. The remaining seven operators all transform simply as d;, under the
SU(3)r, x SU(3)R chiral group. We can then construct a chiral Lagrangian that encodes this
transformation property and describes the dynamics in the region where the light pseudoscalar
meson pair has a very small energy; this is detailed in the subsequent subsection. At lead-
ing order in the chiral expansion, the following relation can be derived between the Bg—decay
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amplitudes and the vacuum matrix elements of dd operators:

/U)ol Ogl BY __(xnldd0) )
I9(*n) im0l OFBY ~ (- 1ddl0) |

This relation will be used at energy s = 0.

We emphasize that it is important to use chiral symmetry to derive this result rather than
flavor symmetry alone. Indeed, under the flavor symmetry group SU(3)r, the state (77)r—¢
appears both in the singlet and in the octet representations, while (77) belongs to the octet.
Therefore, no relation can be derived between the corresponding Bg decay amplitudes based
on flavor symmetry alone. For simplicity, we will however still refer to these as flavor relations
in the following.

2.3.1 Flavor relations from a chiral Lagrangian for BY — J/yM;M,

In the following we construct a chiral Lagrangian that provides the above derived relation
between the Bj-decay amplitudes and the dd matrix elements, Eq. (2.27), that we use in Sec-
tion 2.4.4 for predicting the BY — J/4m%n S-wave. We consider the decays BY — J/1M; Mo,
where M; is a light pseudoscalar meson (7, K, ). We assume that there exists a kinematical
regime where the light mesons are soft, and that we can describe the dynamics in this situation
via a chiral expansion. We can write a chiral Lagrangian that reflects the chiral transforma-
tion properties of the weak transition operator following the method described e.g. in [165] for
K — 7mrm and K — 37 decays, where the K was assumed to be heavy. The two dominant
operators have the following structure:

Oq ~ eLyudr bry*er, (2.28)

such that, under the chiral symmetry group SU(3)r x SU(3)g, they transform simply as df..
In order to construct a chiral Lagrangian we introduce a three-vector spurion field ¢y, which
transforms as

tr = grtr, gr ESU(3)L, (2.29)

such that tTL(Ou, Oy, Os) is a chiral invariant. t;, will ultimately be set to ¢, = (0,1,0)%. The
heavy vector field W# is left invariant by chiral symmetry, while the BY can be considered as
part of a three-vector B = (BT, Bg, Bt which transforms as

B — hB, (2.30)

where h is the non-linear realization of the chiral group. That is, if U is the chiral field matrix
and U = u?,

U%gRUgl, u%gRuhT:hugl, gr € SU(3)R. (2.31)

At leading chiral order the Lagrangian that describes the decays B — J/1 + light mesons has
two independent terms:

L1 = giath ufu, BU* +igyt! ulV,BU* + hec., (2.32)
with

u,, = i(u'du — ud,ul), V.B=(0,+T,)B, r,= %(uTaﬂu + udyut), (2.33)
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using the same notation as e.g. in Ref. [166]. We are interested in the production of meson pairs:
expanding the Lagrangian (2.32) to quadratic order in the light fields and using integration by
parts, we find

6 _ ¢ ofleoe, + - 1 o 15 070
£1,B$ = —@\Il“{aqub(ﬂ 4T — 7571‘ n+ " + K°K }
+ By [t 0ur — 7 Ourt + K°9,K° — K°0,K] } the,  (2.34)

with g1 = 2914 + g15- The second line in Eq. (2.34) contributes to amplitudes where the M; Ms
pair is in a P-wave (note that there is no contribution to 77 at this order). The first line in
Eq. (2.34) contributes to amplitudes where the pair is in a relative S-wave. This gives a set of
definite relations among 77, 7, and KK S-wave amplitudes. These are exactly the same as
for the dd scalar form factors at chiral order p?. Indeed, the dd form factors at leading order
are obtained by expanding the O(p?) chiral Lagrangian piece

F2
La =5 X+, (2.35)

with x4+ = ufxu' +uxtu, x = 2By diag(0, 1,0). Similar arguments to derive such relations have
also been formulated in Ref. [167].
In addition we can write the contributions to the decays of the BT meson, BT — J /v MM,

¢ g 2 0
£, 4_F3qm{a#3+[\/gﬁ 0+ KK }

+ Bt [\/i(woaﬂ— — 7 0,m°) + K9, KO — KO@HK—} } +he.  (2.36)

as

The above derivation is rather general: it does not rely on factorization, the large-N. ex-
pansion, or other hypotheses. The relations obtained are, however, valid only at leading order.
Indeed, at next-to-leading order, the one-loop divergences of the dd form factors are absorbed
into the standard chiral coupling constants L; [60], while the one-loop divergences of the Bg
amplitudes are absorbed into coupling constants gs., gss, ..., pertaining to the higher-order
generalization of the Lagrangian (2.32). These are obviously unrelated to the couplings L;. It
is also likely that the chiral logarithms of the B} amplitudes will be different from those of the
dd form factors.

2.4 Partial waves and Omnes formalism

We describe the S- and P-wave amplitudes that contribute to the angular moments, Eq. (2.24),
using dispersion theory. This approach allows us to treat the rescattering effects in the nm, 7n
or KK systems in a model-independent way, based on the fundamental principles of unitarity
and analyticity, see Section 1.3.1: the partial waves are analytic functions in the whole s-
plane except for a branch-cut structure dictated by unitarity. In the following we deal with the
functions f%1(s) (veferring to isospin I, transversity 7 and angular momentum ¢ and introduced
in Eq. (2.14)) that possess a right-hand cut starting at the respective two-meson threshold: the
pion-pion threshold sy, = 4M2 in the isoscalar or the pion—eta threshold sgn, = (My + M,)?
in the isovector sector. They are analytic elsewhere, i.e. we do not consider any left-hand-cut or
pole structure related to crossing symmetry. In the case of the m7 system this is justified from
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the observation that there are practically no structures observed for the (exotic) crossed J/¢m™
channel in the region of interest [141]. This phenomenology-inspired assumption of negligible
crossed-channel processes is adopted in the study of the related decays into J/{K+tK~, K°K°}
and J/1yn%n. There, however, the justification is not quite so clear: e.g. the ¥(2S5) decays into
J/1n, and therefore will show up as a resonance in the corresponding distribution.® However,
due to the anomalous nature of the (25) — J/¢n vertex, this ¢(25)-exchange mechanism only
contributes to the transversity form factor F, , whose partial-wave expansion begins with a P-
wave, see Eq. (2.12), and hence cannot contribute to the 797 S-wave that we will concentrate
on below. In addition, the coupling ¥(25) — J/vn violates the OZI rule and is still rather
weak: compare

B(BY — ¢(28)7°) = (1.17 4 0.19) x 1075 [164],
B((2S) — J/¢n) = (3.36 +0.05) x 1072 [44] (2.37)

to B(BY — J/¢ynt ™) = (4.034£0.18) x 1075 [44]; we will see in Section 2.6 that the branching
ratio B(BY — J/yn'n) is predicted to be of a comparable size. Further, in Section 2.7.2,
we calculate the ¥(25)-exchange contribution explicitly and show that below /s & 1.34 GeV,
where the 1(25) cannot go on-shell, its effect is even more suppressed. We assume that other
charmonium resonances whose exchange in the - (or even u-)channel can contribute to the 7%
S-wave (such as axialvector ones of negative C-parity) couple similarly weakly. Furthermore, in
Section 2.7.3 we study the effect of ¢- and u-channel B*-exchange diagrams in the Bg — J /O
decay, whose cut contributions lie well outside the physical decay region; however even then,
the pole terms are suppressed in the S-wave due to chiral and heavy-quark symmetry. We
therefore neglect the influence of left-hand cuts altogether. Such B*-exchange diagrams may
contribute to the Bg — J/pnt 7w~ decay as well. We claim that in that channel the neglect of
left-hand-cut structures is well-founded on the phenomenological observations, where, however,
crossed-channel effects in the strong final-state interaction are excluded. To also exclude that
our formalism is spoiled by effects occurring already in the weak decay mechanism we provide an
(a-posteriori) confirmation in Section 2.7.4 by considering the t-channel B* exchange process.

Considering the lowest (i.e. 77 or 77, respectively) intermediate states only, Watson’s the-
orem holds: the phase of the partial wave is given by the elastic pion—pion or pion—eta phase
shift [82], and the discontinuity across the cut can be written as

disc f21(s) = fE1(s +ie) — f27 (s —ie) = 20Y f21(s) [t{ (s)] = ff’l(s)e_i‘sl{ sind;.  (2.38)
A solution of this unitarity relation can be constructed analytically, setting (compare Ref. [168])
Fo1(s) = Pr(s)24(s), (2.39)

where P, (s) is a polynomial not fixed by unitarity, and the Omnes function Qf(s) is entirely
determined by the phase shift §/ (s) [80],

Ql(s) = exp {f /OO !S/L‘Sl))ds’} , (2.40)

v (s —s—ie

with
Q5(0)=1 and Q(s)#0 Vs. (2.41)

3 Actually, the same problem arises already for J/¢m°, another observed decay channel of the +(2S5), which
however breaks isospin symmetry and hence is very weak.
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2.4.1 P-waves and vector form factor

The pion—pion* P-wave amplitudes can be well described in the elastic approximation up to
energies of roughly 1GeV. The simplest possible application is the pion vector form factor
FY(s), defined in Eq. (1.74), which obeys a representation like (2.39) with a linear polynomial
Prv(s) = 1+ as, a = 0.1GeV~? [169] up to /s ~ 1GeV, with the exception of a small
energy region around the w resonance that couples to the two-pion channel via isospin-violating
interactions. In this context it is important to note that the electromagnetic current j% ,
introduced in Eq. (1.74), can be decomposed as

= 5 (@ u— ) + G i+ ). 242

Thus it contains with the first term an isovector and with the second term an isoscalar com-
ponent. The latter couples directly to the w, whose decay into 777~ is suppressed by isospin,
but enhanced by a small energy denominator (i.e., the small width of the w), hence leading
to a clearly observable effect in the pion form factor [87,88,170]. Theoretically, this effect is
correctly taken into account by the replacement [99,171,172]

Kem S

Pry (s)Q1(s) — Prv (s)(s) <1 + Mz Z,RZFW — S) (2.43)
Note that in case of the w the use of a Breit—Wigner parametrization is appropriate since
the w pole is located far above the relevant decay thresholds and since I',, = 8.5MeV is very
small. A fit of the form factor parametrization introduced in Eq. (2.43) to the KLOE data [88]
yields Kem ~ 1.8 x 1073 [173]. This fixes the strength of the so-called p-w mixing amplitude
phenomenologically. The isospin-violating coupling ke, is of the usual size, however, near the
w peak its smallness is balanced by the factor M, /T, ~ 90 from the w propagator, giving
rise to an isospin-violating correction as large as 15% on the amplitude level, corresponding to
30% in observables due to interference with the leading term. Note also that the p—w mixing
amplitude has been pointed out to significantly enhance certain C'P-violating asymmetries in
hadronic B-meson decays [174].

The effect of the w on the Bg — J/¢pn T~ decay can be related straightforwardly to that on
the pion vector form factor. To see this observe that the source term for the pion—pion system
is dd at tree level, see Figure 2.1, such that the isospin decomposition of the corresponding
vector current reads

dytd = f% (ﬂfy“u — J’y“d) + %(ﬂ’y“u + J’y“d). (2.44)

Comparison to Eq. (2.42) shows that the relative strength of the isoscalar component differs from
the electromagnetic current by a factor of —3, such that we will fix the p—w mixing contribution
in analogy to Eq. (2.43), but with the replacement Kepy — £ = —3kem ~ —5.4 X 1073, Notice
that this is in contrast with the experimental analysis [141], where the w contribution is fitted
with free coupling constants.

2.4.2 S-waves and scalar form factors

The (elastic) single-channel treatment, introduced in the beginning of this section, cannot be
used in the S-wave case: there are strong inelastic effects in the region around 1GeV due to

40ut of the considered final-state meson pairs only for the two-pion system P-waves are considered in the
dispersive representation, the other channels are either dominated by the S-wave that is treated below or at
least the S-wave background is of particular interest. The P-wave in the K K final-state is dominated by the ¢-
resonance, which has a sufficiently small width such that it is well described by a Breit-Wigner parametrization.
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the opening of the KK channel, coinciding with the I = 0 f,(980) resonance or the [ = 1
ao(980) resonance, respectively. This affects the phase of the scalar isoscalar pion or isovector
pion-eta form factors (see e.g. the discussion in Ref. [175]). Thus the Omnes formalism has to
be generalized to a coupled-channel problem, with the Watson theorem fulfilled in the elastic
region and inelastic effects included above the KK threshold. This leads to the two-channel
Muskhelishvili-Omnes equations that intertwine the scalar isoscalar pion and kaon form factors
on the one hand, defined as

(7t (p1)m™ (p2) [(@q) 1=0] 0) = BATLI="(s),
(K* (1)K~ (p2) [(Gq)1=0] 0) = BIT%L="(s), (2.45)

and on the other hand the scalar isovector 71 and K K form factors

(7°(p1)n(p2) (qq) 1=110) = BFTE (s),
(K™ (p1)K ™ (p2) |(@q)1=1]0) = BET 2 (s). (2.46)

The quark flavors in the isovector sector are (§q);=1 = (@u — dd)/2 and the isoscalar scalar
currents may be either (§q)r—o = (@u + dd)/2 for the light quarks, with the superscript ¢ =
n denoting the corresponding scalar form factor, or (gq);—o = §s for strange quarks (with
superscript ¢ = s). The strange scalar current is purely isoscalar, therefore there are two
isoscalar but only one isovector form factor. Furthermore, BOA is related to the QCD mass
difference Mf(+ — Mf(o, BOA = (MIQ(+ — M?(O)/Aud, Ayqg = my — mg; for the definitions of
the B, see Eq. (1.103). Note that the form factors F‘Jz\’fle (s) are invariant under the QCD
renormalization group, while the hadronic matrix elements are not due to the scale dependence
inherent in the factors Bg’A. This in turn allows for the cancellation of the scale dependence
in the Wilson coefficients introduced in the effective Hamiltonian of Section 2.2. Some details
concerning the isospin and physical states involved in the definitions of the form factors can be
found in Appendix A.1.

Appealing to the tree-level diagram of Figure 2.1, we expect the non-strange scalar form
factors to contribute dominantly in the By decay, while the strange ones should feature mainly
in the corresponding decay of the BY. As discussed in detail in Section 2.5, these expectations
are confirmed by the data analysis of Bg’s — J/pn T,

The two-channel Muskhelishvili-Omnes formalism was briefly reviewed for the isospin-0 pion
and kaon form factors in Section 1.3.4. The isoscalar T-matrix parametrization requires three
input functions: in addition to the w7 phase shift already necessary in the elastic case, modulus
and phase of the 7 — KK S-wave amplitude also need to be known. Our main solution is
based on the Roy equation analysis by the Bern group [153,154] for the w7 phase shift, the
modulus of the 7m — KK S-wave as obtained from the solution of Roy-Steiner equations
for 7K scattering performed in Orsay [37], and its phase from partial-wave analyses [176,
177].  Alternatively, we employ the T-matrix constructed by Dai and Pennington (DP) in
Ref. [127]: here, a coupled-channel K-matrix parametrization is fitted to w7 data [178-182],
and the Madrid-Krakéw Roy-equation analysis [36] is used as input; furthermore, the KK
threshold region is improved by fitting also to Dalitz plot analyses of D} — 777~ 7™ [183] and
D — KT K7t [184] by the BaBar Collaboration.

For the isovector sector, we use the result of Ref. [140]. In that work, a coupled-channel
T-matrix is constructed that fulfills unitarity, and the amplitudes are approximately matched
with the perturbative ones derived from O(p*) chiral perturbation theory. With this method
six phenomenological parameters are introduced, to be determined by experimental information
about the a¢(980) and ap(1450) resonances. Specifically, five experimental constraints are
imposed, and hence there is still a one-parameter freedom in the model that can be associated
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with the sum of the phase shifts of the 7 (§1;) and KK (J22) channels at the mass of the
ao(1450), d12 = (611 + G22) (s = M (1450))-
The scalar coupled-channel form factors in the Omnes formalism read

Fﬁ?o(s) - 9{1:0(5) 9{2:0(5) . Fﬁo(O)
( %F%{:Ig(s) ) B ( QLT0(s) QI59(s) ) ( %F%ZI?(O) ) (2.47)

for the isoscalar meson pairs, and

(ZEO Yo (U sy (O Y
ﬁFKI%(S) Q' (s) Q53 (s) ﬂFKI%(O)

for the isovector mn-K K system. The resulting form factors depend on two normalization
constants F{wl M, (0), i.e. even in the simplest case, corresponding to the polynomial of Eq. (2.39)
reducing to a constant, the channel coupling manifests itself through the fact that the scalar
form factors depend on two such constants. In contrast to the single-channel case, here the
shape of the resulting form factors depends on the relative size of these two normalization
constants; on the other hand, once this relative strength is fixed, it relates the final states nm
and K K in the isospin-0 case or 7 and K K in the isospin-1 case to each other unambiguously.
We will make use of this additional predictiveness in Section 2.8.1.

We constrain the form factor normalizations from their chiral one-loop (or next-to-leading-
order) representations. The 7 and KK matrix elements at s = 0 are related to quark-
mass derivatives of the corresponding Goldstone boson masses via the Feynman—Hellmann
theorem, while the 77 one obeys a Ward identity relating it to a similar vector-current matrix
element [140]. At leading order in the chiral expansion we find the normalizations

- 1 — 1 1
n,l= n,I=0 s, 1= _ s,I1=0 _ = _ = _
Fw’rrl O(O)ZLFKK (0)25’1—‘#7{ O(O)_Oa Ik (0)_1,1—‘7[”71(0)_%’1—%(}%(0)_5-
(2.49)

The next-to-leading order results depend on certain low-energy constants. We emphasize
that for these, the universality of the relative couplings to different mesons, comparing the scalar
form factors and the S-waves appearing in the Bg decays, see Eq. (2.27), is not guaranteed,
and one might argue in favor of simply using the leading-order relations of Eq. (2.49); see
the discussion in Section 2.3. However, in order to obtain at least a realistic estimate of
the uncertainties induced by next-to-leading-order corrections, we take those from the scalar
form factor matrix elements. The corresponding low-energy constants are determined in lattice
simulations with Ny = 2+1+1 dynamical flavors at a running scale p = 770 MeV [111], limiting
the form factor normalizations to the ranges®

r2:I=0(0) = 0.984 + 0.006, T:1=0(0) = (0.44....0.68),
s1=9(0) = (0.001...0.013) =~ 0, r51=00) = (1.0...1.2),
21 0) = (0.56...0.87), T1=1(0) = (0.38...0.56). (2.50)

Since the form factor shape depends on the relative size of the two pairs of normalization
constants, there is some uncertainty in the shape of the isoscalar scalar form factors. The
variations in the isovector form factor normalizations are strongly correlated, i.e. their ratio for
small and large values of the low-energy constants varies at the 5% level only.

5Note that in Ref. [113] the form factor normalizations are based on lattice simulations with Ny = 2 +1
dynamical flavors [110], which yields similar ranges. In particular, for the fits performed in Ref. [113] and
presented in Section 2.5 the normalization of the isoscalar kaon form factor was set to the leading-order result
F?(’;(:O(O) = 0.5, which is compatible with both normalization ranges (according to either the Ny =2 +1+1

or the Ny = 24 1 lattice simulation).
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2.4.3 = partial waves in the Omnes formalism

We start with the discussion of the representation of the partial waves in the system. As this
channel is measured it provides a test how well the data are described by our ansatz. In order to
apply the Omnes formalism to the transversity partial waves we have to deal with the partial
waves fT(e)(s) that we have constructed in Eq. (2.14), being free of kinematical singularities.
The S- and P-waves read

167 7(s) = BP0 () + BT ()0 0s), ST (s) = PO ()01 (s). (2.51)

For the S-wave, we a priori allow for contributions of both non-strange (n) and strange (s)
scalar form factors. The coeflicients of the polynomials PT(Z)(S) are to be determined from a fit
to the efficiency-corrected and background-subtracted LHCb data, in particular to the angular
moments (Yy) and (Yy).

Basically we assume the various polynomials to be well approximated by constants. However,
to study the impact of a linear correction at a later stage, we also consider linear polynomials
PO(S’") = by(1 + bf's) and rH) = a-(1 + als) for the non-strange S-wave and the P-wave
amplitudes, respectively. The strange S-wave contribution is expected to be very small (in the
LHCD analysis of BY — J/¢m 7~ the f3(980) meson is not seen), but tested in the fits. On the
contrary, the BY — J/¢nt7~ distribution is dominated by the f3(980) resonance, described
by a constant polynomial times Omnes function, PO(S’S) = ¢, while there is no structure in
the fu(500) region reported by LHCb. Thus in that case the non-strange S-wave amplitude is
assumed to be negligible, to be confirmed in the fits.

Although the first D-wave resonance seen is the f2(1270), it may affect also the region
below /s ~ 1 GeV due to its finite width, I'y, = 185.173 MeV [62]. Therefore we also test its
influence on the fit. The D-waves could be treated in the same dispersive way as S- and P-
waves, but this would increase the number of free parameters in our fits to the LHCb data. As
the effect of D-wave corrections is rather small, we avoid introducing additional fit parameters
and take over the amplitudes (with fixed couplings) used in the LHCb analysis, where the
f2(1270) resonance is modeled by a Breit—-Wigner shape.

Combining Egs. (2.24), (2.14) and (2.51) in order to write (¥,?) in terms of Omnes functions
for S- and P-waves, supplemented by the D-wave resonance contribution, yields

XY
Var(YY) = N2 Vs {Xﬂbg(l + b s)TI=0(s) + e5TE1=0(s) ’2

T mB

+Y? ’Q%(s)’Q ([ao(l + a’os)]2 + s[ay (14 aﬁs)f +5X?[ar(1+ als)f)

2
+ Z ‘afemi A(fZ)(S)‘ }N,‘Z\/47r<YOO>LHCb,

7=0,L1,]|
XY _ _ . f2 *
V() = N5 fome (X 150+ (s + qrat =) [ofr e AL )] )

+ \};_5 ‘Q%(S)‘Q (2[(10(1 + a{)s)]Q —sla)(1 +a1ls):|2 B SX2[(1J_(1 n aj_s)f)

5 e 2 . . 2
+\/7_<2’04£261¢£ AV + Y |ake o AD(s) )} = NIV s
T=||,L
(2.52)

For details concerning the definition of the Breit—Wigner amplitudes Ag)(s), 7=0,],L, see
Ref. [141].
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Since the experimental data for the BY — J/¢rT 7~ spectrum [141], used for the determi-
nation of the unknown parameters in Section 2.5, are given in arbitrary units, we introduce the
normalization constants A%, ¢ = {n, s}, that relate the LHCb angular moments to properly
normalized ones. This will allow us to adapt the fit results of the 777~ distribution to the 7
and K K predictions. For this purpose we use the absolute branching fractions [44]

B(BY — J/¢ntn~) = (4.03£0.18) x 1077,
B(B® — J/prtr) = (214 +0.18) x 1074, (2.53)

and define the strengths b = \/N2by and ¢ = /N2cy with the normalization constants

B(Bg/s — J/pntrT) Fmt(Bg/s)

NS = = 2.54
T N(By,, — J/¢mtn™) (2:54)

For the respective total numbers of signal events in Refs. [141,142], defined by
N(BY, — Jjymtn) = \/47r/ (Y (BY) = Jfumtn) ) avs, (2.55)

we find N(B] — J/¢mtn~) = 24080.5 + 148 and N (B? — J/¢mn™) = 34878 + 182; fur-
ther, T**(BY,,) = 1/7(By,,), with 7(BY) = (1.519 + 0.005)-10—1Qf and 7(B?) = (1.505 &
0.005) - 107125 [44], such that I'*°*(BY) = 4.333 10713 GeV and I'***(B?) = 4.373 10713 GeV.

2.4.4 7n partial waves

We employ the flavor relation between the Bg S-wave amplitudes to the J/ynT7~ and the
J/7On final states that we have derived in Section 2.3, see Eq. (2.27). Given that the BJ —
J/ymrtr™ S-wave is indeed proportional to the scalar form factor (in particular, in Section 2.5.1
we will show that not even a linear polynomial is required at the present accuracy of the
data [141]), the BY — J/¢7% S-wave amplitude will by analogy be proportional to the scalar
71 isovector form factor Eq. (2.46). Both the isoscalar and the isovector meson pairs are
generated from a pure dd source. The isospin decomposition of the scalar current reads

dd = — (i — dd) + (i + dd), (2.56)

from which we read off the relative strength of the isoscalar to the isovector component,
no/m = —1. Thus given a known isoscalar S-wave C.FO(S’I:O)(S) = Xb2I™I=9(s) (where the
subtraction/normalization constant b7 = \/Nbl is related to the fit constant b7 introduced in
Eq. (2.52)), we can predict the isovector S-wave

CFSI=N(s) = —XBET L (s), (2.57)

such that the resulting angular moment (Y) or differential decay rate, respectively, is given by

dlgo s /gm0y X3Y /5 - 2
Var (Y9 5 = d LA prri=1 . 2.58
7T< 0>BS—>J/’¢)7TUT] d\/g 2mp | 0+ 7 (S)‘ ( )

The constant 1_78 is the same as for the 777~ final state precisely due to the symmetry
relation (2.27). Similarly, potential linear terms in s multiplying the scalar form factors would
also be symmetry-related for both meson pairs under consideration: as long as the data do not
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suggest the necessity to include such a term in the description of the Bg — J/pntr~ S-wave,
it will be negligible also in BY — J/1m%n.

By means of an isospin rotation the 7 form factor Eq. (2.46) likewise describes the transition
to a charged 77 pair via a @d source,

(7t (p1)n(p2) |ud| 0) = V2BETL (s). (2.59)

This straightforwardly allows for a prediction of the charged B* — J/i7rFn mode as well,
whose differential decay rate dI'/dy/s differs from the BY one, Eq. (2.58) by a factor 2 (except
for negligible kinematical replacements due to isospin-violating mass differences).

2.4.5 KK partial waves

The prediction of the Bg — J/¢7 n spectrum in Section 2.6 relies on the connection to the
isoscalar 7t7~ mode due to chiral symmetry. For the final states involving a KK pair we
employ in addition the channel coupling between the S-wave pions and kaons to predict the
Bg /s J/YKT K~ S-waves. Given that the kaons emerge from a clean isoscalar 8s source,

the BY — J/YK*+K~ S-wave is purely isoscalar. Aside from the appropriate kinematical
replacements it is straightforwardly related to the B — J/yntn~ S-wave and reads

CGL 9 (s) = XegT3hc(s), (2.60)

where the kaon form factor is defined in Eq. (2.45). Though the B? — J/¥K* K~ decay
is P-wave dominated, this prediction allows us to calculate the S-wave background to the
prominent ¢(1020) resonance. To approximate the P-wave we adopt the LHCb Breit—Wigner
parametrization, valid in the mass window +12MeV around the ¢(1020) [185], and find for the
angular moment

Vir (v7)

IVs—mg|S12MeV XY, /s X2
BY—J/yKTK~ - 2mp

2 2
G’ +> af.A((;)(s)‘ ) (2.61)

On the contrary the BY — J/9{K+tK~, KK’} decays are dominated by the S-wave. In
the KK P-wave there are contributions from the p and w resonances, which, in principle, can be
related to the 7w P-wave. These resonances peak below the KK threshold, however, and their
contributions are expected to be rather small above. The contribution from the ¢ resonance
that dominates the KK P-wave above threshold is now suppressed by the OZI rule, as we
are effectively dealing with a dd source. The suppression of the P-wave (and the dominance
of the S-wave) in this decay has indeed been confirmed experimentally in Ref. [186]. Hence,
we here include only the S-wave component, and make no attempt to consider KK P-wave
amplitudes. Deriving the S-wave amplitudes requires both the flavor relation that links the
isospin-0 to the isospin-1 meson pairs, and the coupled-channel relations between the kaons and
the respective light pseudoscalars. According to Eq. (2.56) now both the isoscalar and isovector
S-wave components contribute, with known relative strengths 19/n1 = —1 or +1 for charged or
neutral kaon systems, respectively, i.e. the S-wave amplitude reads

Cgim(s) = Xbg (g (5) =TI (5)).
CG 9 (s) = Xb (D1 (s) + Thit (), (262)

with the kaon form factors defined in Eqs. (2.45) and (2.46). The resulting angular moments
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(YY) or differential decay rates, respectively, read

X?’Y\/E m n,1= = 2
% 47T<YOO>BgﬂJ/wK+K* = m’bo (FK,ﬁ( 0(5) - Fﬁ&%(s))‘ ;
X?’Y\/E m n,1= = 2
\4 47T<Y00>Bg—>J/wK0K0 = m’bo (FK’}T( 0(5) + I‘f{é(s))‘ . (2.63)

Similarly to the Bg/s — J/yrTr~ distributions the Bg/s — J/YKT K~ angular moments
provided by LHCDb are not properly normalized, which we have to be aware of when we compare
to these data or extract the strength of the ¢(1020) Breit—Wigner amplitude in Section 2.8.2.
We therefore define the normalization constants

B(BY, — J/YKTK~)T%*t(BY
N;’s: ( d/s ~ / ) ( d/s)7 (264)
N(BS,, = JVK¥K")
such that
<YOO>BS/S—>J/1/;K+K* = N215<YOO>LBI§/CS:J/¢K+K*‘ (2.65)

The absolute branching fractions are given by B (BS, — J/wK"’K_) = (79+£0.7) x 107
and B (B} — J/YKTK™) = (2.6 £0.4) x 107° [44]. The total number of events N(B? —
J/ K+ K ™) is however not determined as in Eq. (2.55) since no data for the efficiency-corrected
angular moments in Ref. [185] are available. We therefore calculate the normalization constant
N3 by taking the published expected signal yield Nexp(BY — J/YK+TK~) = 19195 4 150; in
analogy we use Nexp(B) — J/YKTK™) = 228 4 27.

2.5 Final-state interactions in Bg/s — J/Yrr

2.5.1 Fits to the LHCb data I: BS — J/¢ntn—

We fit the angular moments (V) and (Y5), Eq. (2.52), simultaneously. Taking up the discussion
of Section 2.4, our basic fit, FIT I, includes three fit parameters (to be compared to 14 free
parameters in the Breit—Wigner parametrization used in the LHCb analysis, see below): the
normalization factors for the S-wave (bf)) and for two P-waves O(P) and fﬁp) (ao,ay). (We

find that including the 7 =1 P-wave amplitude practically does not change the x?, i.e. a  is a
redundant parameter.) In the basic fit only S- and P-waves are considered. Beyond that, we
study the relevance of certain corrections: in FIT II we use again the same three parameters
as in FIT I, but in addition we include the D-wave contributions, fixed to their strengths as
determined by LHCb. To further improve FIT II, supplemental linear terms (b{),a{),ail—cf.
Eq. (2.52)) are allowed in FIT III. Performing FIT III we find that two of the slope parameters,
the linear non-strange S-wave term (by) and the 7 =[| P-wave slope (a), yield no significant
improvement of the fits; their values are compatible with zero within uncertainties. We thus fix
them to zero, and in FIT III only the four parameters by, ao, a), and ag are varied. Furthermore,
the effect of an inclusion of a strange S-wave component is tested. Its strength is found to be
compatible with zero, justifying its omission.

Note that the scalar pion form factors depend on the normalizations of both the pion and
kaon form factors. While the normalizations in the case of the pion form factor are known quite
precisely, there are considerable uncertainties for the kaon form factor normalizations, having
an impact on the shapes of both pion form factors, see Section 1.3.4. The non-strange kaon

normalization F?{’ﬁfo(O) is limited to the range (0.4...0.6) if results for Ny = 2 + 1 lattice
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simulations are used. In our fits we fix the value to F?{’ﬁfo(O) = 0.5, which is compatible with

the current algebra result (and also with the Ny = 2 + 1 4 1 lattice simulation results). The
effect from a variation of 1"7}(’?0(0) in the allowed interval shows up only in the second decimal
place of the x?/ndf.

The fitted coefficients and the resulting x? /ndf, referring to Eq. (2.52), are listed in Table 2.1
(these parameters still ought to be multiplied by the factor v/, in particular when adopting
these results for the prediction of other final states, see the discussion at the end of Section 2.4.3).
The large uncertainties can be traced back to the correlations between the fit parameters,
especially present in FIT III. For a comparison to the LHCD fit, we insert their fit results (best
model) into our definition of the x2. In more specific terms this means that we do not compare
to the x? published in Ref. [141], for which the full energy range up to /s = 2.1 GeV is fitted
with 34 parameters and the data of all angular moments (Y,°) for i = 0,...,5 are included, but
we calculate the x? in the region we use in our fits, i.e. including data up to /s = 1.02 GeV
and the angular moments (Y) and (YY) only. We obtain x7 cp,/ndf = 2.08. In this limited
energy range the Breit—Wigner description, including the f,(500), p(770) and w(782), requires
14 fit constants, while we have three (FIT I, II) or four (FIT III) free parameters and find
x?/ndf = 2.0 (FIT I), x?/ndf = 1.5 (FIT II) and x2?/ndf = 1.3 (FIT III). The calculated
angular moments for the three fit models in comparison to the data are shown in Figure 2.3.

Probably the most striking feature of our solution is the pronounced effect of the w that
leads to the higher peak in Figure 2.3. As mentioned above, this isospin-violating contribution
is fixed completely from an analysis of the pion vector form factor, however, its appearance
here is utterly different, since the coupling strength is multiplied by a factor of —3. This not
only enhances the impact of the w on the amplitude level to about 50%, but also implies that
the change in phase of the signal is visible a lot more clearly: while in case of the vector form
factor the w amplitude leads to an enhancement on the p-peak and some depletion on the right
wing, forming a moderate distortion of the line shape, here we obtain a depletion on the p-peak
accompanied by an enhancement on the right wing. The origin of this effect is illustrated in
Figure 2.4, taken from Ref. [188]. The thick, red solid line shows the pion vector form factor,
related to the electromagnetic current, from which the strength of the p—w mixing is fixed in a
fit to the data. Inverting the sign of the mixing amplitude yields the dashed, magenta line. The
narrow, sharp w-type peak that is already visible in the that curve is enhanced by a factor of 3
in the black solid line, leading to a similar signal as the one depicted in Figure 2.3. While the
current data do not show the w peak clearly, a small shape variation due to the p—w interference
is better seen in Ref. [187], where a finer binning is used. The p—w mixing strength obtained
from a fit in that reference is consistent with the strength we obtain in a parameter-free manner.
Nonetheless, improved experimental data are called for, since an experimental confirmation of
the w effect on B — J/¢nt 7~ would allow one to establish that the BY decay indeed provides
a rather clean dd source.

A key feature of the formalism employed here is its correct description of the S-wave.
Figure 2.5 shows the comparison of the S-wave amplitude strength of the LHCb Breit—Wigner
parametrization with the ones obtained in FIT I-III, and in Figure 2.6 the corresponding phases
are compared. In the elastic region, the phase of the non-strange scalar form factor dp» =
arg(I'™1=0) coincides with the 77 phase shift 47 that we use as input for the Omnes matrix, in
accordance with Watson’s theorem. Right above the K K threshold, ér» drops quickly, which
causes the dip in the region of the f,(980), visible in the modulus of the amplitudes as well
as the non-Breit—-Wigner bump structure in the f5(500) region. We find that the phase due
to a Breit—Wigner parametrization largely differs from the dispersive solution, indicating that
parametrizations of such kind are not well suited for studies of C'P violation in heavy-meson
decays.

Note that in the analysis of Ref. [187] the fp(500) is modeled not by a Breit—-Wigner func-
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Figure 2.3: (YY) (top) simultaneously fitted with (Yy) (bottom), using three parameters with-

out D-wave contribution (FIT I, red, solid), and improving step by step by adding a Breit—

Wigner-parametrized D-wave contribution (FIT II, blue, dashed) and by allowing for four free
parameters, also supplemented by the D-wave contribution (FIT III, green, dotted).
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XP/mdf - [bp| [GeV™2]  ag| [GeV™2]  ay|[GeV—3]  ap [GeV ™3]

FITT 197 10.3%7°3 46.578-9 51.8797, -
FITII 154 10.377°3 476758 49.5T91 -
FITII  1.32 10.6%1% 37.7730% 18.2798, 0.4724

Table 2.1: Resulting fit parameters and x?/ndf for the various fit configurations FIT I-1II for
the B — J/¢mtr™ decay.

< (V5)

F

Vs [GeV]

Figure 2.4: Tllustration of the p-w mixing strength in B® — J/¢7t7~, emerging from the
mixing in the pion vector form factor FY (1/s). The figure shows a fit to data of the pion vector
form factor [87,88] including mixing (red, thick solid), with the sign flip in the mixing amplitude

(magenta, dashed), and with the mixing amplitude times —3 (black, thin solid). The figure is
taken from Ref. [188].
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Figure 2.5: Comparison of the S-wave amplitude strength obtained in the LHCb and in our fits,

respectively: the S-wave contribution to the decay rate for the three fit configurations FIT I-IIT
is depicted together with the LHCb outcome.
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shift 4] below the KK threshold) are compared to the S-wave phase dy, extracted from the
LHCDb analysis.
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tion, but by the theoretically better motivated parametrization of Ref. [189]. In this work,
higher resonances are included by multiplying S-matrix elements. While this procedure pre-
serves unitarity, it produces terms at odds with any microscopic description of the coupled
nn-K K system. As such also this approach introduces uncontrolled theoretical uncertainties
into the analysis. The only stringently model-independent way to include hadronic final-state
interactions is via dispersion theory.

2.5.2 Fits to the LHCb data II: B® — J/¢ntn™

The B? — J/vmTn~ distribution in the region up to roughly 1GeV is clearly dominated by
the f5(980). We therefore describe the data with the strange S-wave component only, using
a constant subtraction polynomial (¢§). The only non-zero contribution to the fit thus comes
from (Yy). Fitting the data up to /s = 1.05 (1.02) GeV yields x?/ndf = 2.2 (1.8) and for
both fit scenarios ¢§ = (16.8 4 0.4) GeV~z. In analogy to the BY decay we also perform the
fit including the D-wave parametrization of the LHCb analysis [142]. This yields an additional
non-zero contribution to (Yy) due to the S—D-wave interference, which is fitted simultaneously
with (Yy). Further, the influence of a linear subtraction polynomial for the strange S-wave is
tested. However, none of these corrections exhibits a considerable improvement.

In the LHCb analysis the full energy range, /s < 2.1 GeV, is fitted with 22 (24) param-
eters for Solution I (IT). Confining to the region we examine in our fit and considering the
f0(980) resonance only, the number of fit parameters reduces to four (six), and we calculate
X3 gen/ndf = 0.76 (0.82), when using our definition of the x?.

The strange scalar form factor, or the fy(980) peak in the dispersive formalism, depends
crucially on the 77 — KK S-wave transition amplitude, which is not as accurately known as
elastic 7w scattering (and even contains subtleties as non-negligible isospin breaking effects due
to the different thresholds of charged and neutral kaons, see e.g. Ref. [190]). As there are no
error bands available for the Omneés matrix (or the various input quantities), to estimate the
theoretical uncertainty we use and compare the fits resulting from the two different coupled-
channel T-matrices described in Section 2.4. A minimization of the x? using the modified
Omnes solution based on Ref. [127] yields x2/ndf = 3.4 and ¢ = (18.3 & 0.5) GeV~% or
X2/ndf = 2.4 and ¢ = (18.2 & 0.5) GeV~% when fitting the data up to /s = 1.05GeV or
V/s = 1.02GeV, respectively.® The resulting (Y) curves for both fits, using the phase input
from the Bern [153,154] and Orsay [37] groups (B+0), as well the one of Ref. [127] (DP),
are presented in Figure 2.7. Furthermore we show the phase shifts and the phases of the
strange form factor for both phase inputs in Figure 2.8 and compare to the LHCb phase due to
Solution IT (with fp(980) and a non-resonant S-wave contribution) as well as Solution I (f,(980)
parametrization only). While the latter phase has a negative slope for s < 1GeV?2, which does
not agree with the known phase shift, the phase extracted in Solution II is remarkably close to
both the Bern and Madrid phase motions.

2.6 Bg — J/v¢7mn: a flavor related prediction

The relative strength between the production amplitudes of different isospin is known. Since we
have shown in Section 2.5.1 that the dispersive formalism fits the data for the Bg — J/prnta—
mode very well and the fit parameters were determined, we can make predictions for the Bg —
J/¢7%n (and the B* — J/v7n*n) distribution. The maximal range of this assumed dominance

6 A similar procedure for the Bg decay has a rather small effect since the S-wave is not dominant in that case,
and the difference of the P-wave phase of Refs. [36,153,154] is quite small (the S- or P-wave phase modification
yields, in the most perceptible cases, a 4% correction of the X2)~



2.6 Bg — J/¢¥7mn: a flavor related prediction 55

2000 T T T
1800 | —_ LHOCb data i i

— (Y9)B+0 i
1600

"""" (Y)op
1400

1200
—~ 1000

0

~ 800
600
400 r
200

Figure 2.7: (YY) fitted using the strange S-wave with constant subtraction polynomial for two
different phase inputs (red, solid: B+O input [37,153,154], green, dotted: DP input [127], based
on the Madrid-Krakéw analysis [36]).
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Figure 2.8: Comparison of the phase of the strange scalar pion form factor for the B+O (blue,

dashed) and DP (red, solid) input, respectively, with the S-wave phase extracted from the
LHCb analysis (Solution I and II, shown with error bands).
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is estimated by predicting the 7% D-wave as well. Note that the m P-wave has exotic quantum
numbers, such that final-state-interaction effects are supposed to be negligible. Therefore we
expect the S-wave to dominate the spectrum up to the onset of the D-wave, with a significant
contribution in the region of the as(1320) resonance.

Two different values are obtained for bjf, namely (a) b = 10.3 GeV~7/2 corresponding to a
fit with only constant subtraction polynomials for S- and P-waves, and (b) b = 10.6 GeV~"/2,
corresponding to a fit with a linear (in s) contribution to the P-wave polynomial as well as
a D-wave contribution, which has an effect on the mm S-wave [141]. We therefore obtain
bp = 2.77-10719GeV~3 and by = 2.85-10710 GeV 3, respectively, using Eq. (2.54).

In Figure 2.9 (top panel) the predicted differential decay rate dI"/dy/s for BS — J/7%n
is depicted. The distribution is shown for three different input phases d12 = 90°, 110°, 125°,
limited to an interval compatible with constraints discussed in Ref. [140]. We see that the
dependence on 412, and hence on details of the 77 interaction, is strong, and completely over-
whelms the uncertainty due to the production strength as fixed from the corresponding 77~
channel. In order to provide a clearer representation, we refrain from showing uncertainty
bands due to the I = 1 7 and KK form factor normalizations calculated at next-to-leading
order according to Eq. (2.50). We choose the isovector form factor normalizations in the upper
allowed range. This corresponds to similar low-energy constants as we used for the isoscalar
form factor normalizations, though not exactly the same, as we use updated lattice results any-
way. Furthermore, the isovector form factor normalizations depend on additional low-energy
constants.

Our conclusion is that a measurement of this decay channel will provide important infor-
mation on the final-state interactions of the 77 S-wave system, and in particular the ao(980)
resonance, which dominates this partial wave in the energy range around 1 GeV.

To further substantiate the assumed S-wave dominance, we estimate the w1 D-wave back-
ground, which should become significant in the region of the a3(1320) resonance. We model
the as by a simple Breit—Wigner shape; its coupling strength is related to that of the fo(1270)
by SU(3) symmetry, which decays to 777~ and hence is determined in the B} — J/¢ymtn—
analysis of Ref. [141]. In the determination of the ay strength we employ two ratios: the ratio
between the isovector and the isoscalar contributions, Eq. (2.56), that yields a relative minus
sign between the BY — J/1 fa and the BY — J/1as couplings, as well as the relative strength
between the fo — 7t7~ and the a — 7% couplings. The coupling of a tensor meson to a
pseudoscalar pair is obtained from the interaction Lagrangian [129,191]

£TPP = gT(TW{u“,u”}>, (266)

where (.) is the trace in flavor space, T, contains the as and fo mesons and u, = i(uTauu —
u@HuT) the pseudoscalars. As we are interested in the non-strange part of the Lagrangian only,
we use for simplicity the SU(2) representations

a | + : 0, n +
.- |Vt ® Cu—exp (L) 4= (T 1A vart )
Iz - a9 2F, V27~ —7r0+%

o AT
(2.67)
where F; = 92.2 MeV denotes the pion decay constant. The coupling constant gr = 28 MeV can
be obtained consistently from both the fo — 77 [191] and the as — 7 decay [129], confirming
SU(3) symmetry. From the Lagrangian we can finally read off the relative strength of the
coupling to 7w and 77 and find ggﬂn = gj%zm /3.
The right panel of Figure 2.9 shows the predicted D-wave. Compared to the S-wave contri-
bution shown in the left panel the D-wave is negligible in the energy region we consider here,
justifying the assumed S-wave dominance.

Nz
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Figure 2.9: Top panel: dT'/d/s for BY — J/¢m%. The distribution is plotted for three different
input phases d12 = 90°, 110°, 125° and two normalization constants b7 due to the fits (a) and
(b). The bottom panel shows the predicted D-wave contribution to dI'/d+/s (note the different
ranges of the axes).
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Finally we quote the branching fraction for BY — J/¢7%n from the a¢(980) region. We
integrate the spectrum in the region of the a(980) and find

1 1.1 GeV FBO 0

B (BS — J/1/J7r077)

V5<1.1GeV N I'tot (Bg) My +M, d\/g
(60 .. 64) x 1076 for 012 = 90°,
={ (11...1.2)x 1075 for &1, =110°,  (2.68)

(1.6...1.7) x 107 for 615 = 125°,

where the lower and upper values of the given ranges correspond to the 58 fit results (a) and
(b), respectively. We can compare our results with those of Ref. [192]. Even if this latter
work predicts the Bg — J/yn% differential decay width without absolute normalization, our
distribution can be seen to be narrower. We further note that the numbers in Eq. (2.68) are
around 3 to 8 times larger than the value (2.2 + 0.2) x 107% estimated in Ref. [192], which
however only refers to the ag(980) contribution. To compute it, the authors remove a smooth
but large background from the differential decay. Hence, it is quite natural to obtain a larger
value for this branching ratio than the one quoted in Ref. [192].

The corresponding numbers for B(B* — J/wﬂ'in)’\/g< 1 1 Gey are obtained from Eq. (2.68)

by multiplying the Bg branching fractions with a factor of 2.15, taking into account the relative
isospin factor of 2 and a small correction due to the different lifetimes of B* and BY [44].

2.7 Estimates for the mn P-waves and left-hand cuts

Developing the formalism for the Bg — J/y7r%n prediction in the previous sections involves
two assumptions: the absence of considerable crossed-channel effects on the one hand and the
suppression of P- and higher waves (up to the energy region around 1 GeV) on the other hand.
We now aim for a quantification of our arguments for the treatment of the S-wave in terms of
scalar form factors and its dominance. For this purpose we demonstrate in Section 2.7.1 the
generic chiral suppression of the mn P-wave production vertex, and provide explicit calculations
of P- and D-wave contributions that are generated by potential ¢- and u-channel resonances in
Sections 2.7.2 and 2.7.3. Besides justifying the neglect of P- and higher waves these calculations
are supposed to theoretically assure the absence of crossed-channel effects.

Although in the Bg — J/¢mt ™ case the absence of left-hand-cut structures is confirmed by
the experimental analysis, in Section 2.7.4 we rerun the calculation of the B* t- and u-channel
exchange in that mode as well, in analogy to what we do for the 7%y final state.

2.7.1 Chiral Lagrangians

In order to generate a non-vanishing 7n P-wave contribution, the chiral Lagrangian that was
constructed in Section 2.3 needs to involve an explicit symmetry-breaking mass term o x4+ =
ufxu® £ uxTu, where x = 2B, diag(m.,, ma, ms) is proportional to the quark mass matrix. The
lowest-order chiral Lagrangian that can produce a 7 pair in a P-wave is

!
L3 = %tTL“TBQ/’M(X—F uy) + i]_(BStJrLUT“uB P (x-) +he. (2.69)

An expansion of L3 to quadratic order in the light fields yields
i(M% — M2)

Ly = W [(95 + 93)0u(7°n) + (=95 + 95) (@u"n — Dunn®)| Bayp +.. +h.c., (2.70)
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where the ellipsis denotes terms involving other meson pairs than 77. The last term contributes
to a P-wave amplitude, which we can compare to the S-wave:

(93 — g5) (Mz — M?)

MB,P = 4\/§F2 (pﬁb _pg)GZa
91 — (g3 + g8) (Mf — M?) .
Mg = 4\/3§F2 K (P +Ph)e,. (2.71)

We express the matrix elements in the basis of the momentum vectors Eq. (2.5), using

P-p
Pl = (pY +ph) = mgwpi;+P(“o>,
v

Q- py Y (P-py) M2 — M2
B (P ) — 7 _ i W
Q' =y —ry) = 2 P+ ~ costy - Pl + Q). (2.72)

A natural order of magnitude estimate for the ratio of the chiral coupling constants is

g3—95 1
g1 A2’

A ~4nF; ~ 1GeV. (2.73)

Putting pieces together, we estimate the P-wave-to-S-wave ratio in the amplitude Fy

Fe(s) _ (MR — M2)Y (P py)
FO(s) V3AZX

o, (2.74)

and replacing the kinematic functions X, Y, and P-py, = (m% — s —m3)/2, we arrive at

Fs)  (ME — M2) N2 (s, M, M) -
(S) - \/§A2 S + ..., (2.75)
]:0 (5)

where we have neglected terms of higher order in the chiral expansion.

While this is derived from a chiral Lagrangian, it is plausible that the chiral estimate for
the P-wave should be valid up to /s ~ 1GeV due to the absence of final-state interactions.
Since the final-state interactions for the S-wave increase its value significantly, we can derive
an upper bound for the ratio from (2.75),

(P (s)/F§(5)] < 0.05, (2.76)

which should be valid in the region /s < 1GeV.

It is obvious from Egs. (2.71) and (2.72) that the Lagrangian L3 also produces a P-wave in
the transversity form factor F|. Just for completeness, we in addition show a Lagrangian term
that generates a P-wave in the remaining form factor F, :

Ly = g%t} ul P u, Vo B g (xyuy). (2.77)

This also involves an explicit symmetry-breaking mass term, however, as indicated by the
notation, it is of higher chiral order than the terms in Eq. (2.69).
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T n 7T/”7 77/7r
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— NN H\VAVAV:
B P(28) J /1 B B* J/

Figure 2.10: We depict the t-channel 1(2S5) exchange diagram (left panel) and the t/u-channel
diagrams for a B* exchange (right panel). The weak decay vertex is marked by a gray square in
both cases. Note that the u-channel 1(25) exchange is negligible due to the isospin suppression
of the decay ¥(28) — J/ynr°.

2.7.2 (2S)-exchange

We calculate the contribution of {-channel exchange of the ¥(28) = 9’ resonance to the decay
amplitude By (pp) — J/1¥(py)7°(p1)n(p2) as depicted in Figure 2.10 (left panel). We write the
vertex for BY(pg) — ¢/(q)7°(p1) in terms of an effective coupling constant ¢ as

Gr
V2

where €,(¢,) denotes the polarization vector of the ¥ with helicity v, which yields a partial
width

— VeoVeafwmy C(pB + p1)ue (g, v), (2.78)

GolVa* Veal* F3m3, |¢2 N/? (b, mi,, M)

F(Bg - wlﬂo) - 2 167 m3,m>2
BNy

(2.79)

From the branching fraction B(BY — ¢'7%) = (1.17 £ 0.19) x 107 [164] and the life time
75y = (1519 £ 0.005) x 10125 [44], we find

I¢| ~ 0.14. (2.80)
The subsequent decay ¢'(¢) — J/¢(py)n(p2) is parametrized in terms of an amplitude
i Eepvap € (py, N Pl € (q,v) ¢°, (2.81)
leading to a partial width

52 A\3/2 (mw,, mw, M2)

3 (2.82)
967 my,

T(y" — J/ym) =

From the branching fraction B(v)' — J/v¢n) = (3.36 £ 0.05)% and the total width I'(¢)') =
(296 4 8) keV [44], we deduce the coupling |¢| ~ 0.218 GeV~!. Altogether, 1/'-exchange leads

to a contribution to the BY — J/17% transversity form factor ]-'(Lw ) of the form

’ X
Fs,t) = % (2.83)

The leading P-wave can be obtained from the partial-wave expansion (2.12), we find

FEP) (g \[Cé— <w 1logzi), (2.84)
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with the kinematical variables X, Y as defined in the main text, and

1

YT oxy

A
[Ezmi,s+7, S =mp+mi + M;+ M. (2.85)

Note that w > 1 except for the interval s € [s1, sa],

_ g, o (mp - MO(mg - M)+ A2 (m2, m2,, M2)AY2 (m2,,m?, M2)
81/2 — 2 mw/ m2
w/
~ {(1.34GeV)?, (1.83GeV)?}. (2.86)

The 9(25)-exchange mechanism contributes by far most of its strength in this interval, where
the resonance can go on-shell, and the partial-wave approximation (2.84) is insufficient; however,
the integrated partial width due to this mechanism, see Eq. (2.37), is two orders of magnitude
smaller compared to the one integrated in the ao(980) region, Eq. (2.68). In addition, at energies
around 1 GeV, in contrast, the P-wave fully dominates the ¢(25) exchange, and contributes to
the differential decay rate according to

ar _ GEIVep|* [Veal* f7m3, XY /5
dy's »(29) 2(47)3m3,
We find this to be smaller than the a¢(980) signal by about five orders of magnitude: this

particular contribution to the P-wave as well as to the left-hand cut of the process is entirely
negligible.

, 2
YQIS" )(P)(S) )

(2.87)

2.7.3 B*-exchange in BY — J/¢nn

An alternative mechanism generating a left-hand-cut structure is given by the exchange of a
B* meson in either the ¢- or u-channel, see Figure 2.10 (right panel). In contrast to the 1(25)-
exchange discussed in the previous section, the B* cannot go on-shell in the decay, therefore the
associated left-hand cut is outside the physical decay region. On the other hand, the exchange
of a B* is not suppressed in any obvious manner (such as by the OZI mechanism), hence it is
potentially much more sizable. The coupling of a B/B* to a light pseudoscalar is given by the
Lagrangian term [68]

gTr [Hy Hyvoys) b, (2.88)

where Tr[...] denotes the Dirac trace, a, b are flavor indices, and H = 1(1 + DB;A* — Bs)

is the covariant field combining the pseudoscalar and vector B mesons (B_(*), B, BS") of
velocity v, taken to be mass-degenerate in the heavy-quark limit.” These fields are of mass
dimension 3/2 as factors of vmp and \/mp- are absorbed in the B; and B fields. Heavy-flavor
symmetry dictates that the same coupling g also determines the couplings of charmed D/D*
mesons to light pseudoscalars [with mp — mp in (2.88)]; the resulting partial width

2m2 N2 (m2.,m2, M2)

I(D* — Dta%) = LD Do D) x 2.89
( ™) 1927 F2 m. (289)
allows one to pin down the coupling g ~ 0.58. For the weak vertex B* — J/¢ Mo, My = 7, 1,
we use a Lagrangian with four different trace structures obeying the desired transformation

7Some more details on the Heavy-Meson Chiral Perturbation Theory formalism are given in Section 1.2.2.
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behavior under heavy-quark spin symmetry [198],
G thu{Tr [(a1 + s ¢/ (1 = 7°) Iy (1 = 57 H]

T [y (1= 97)J] T (B + B2 ) (1 = 7))

. G .

Gr = TSVbVCdfqpmw. (2.90)
The structure of this Lagrangian is motivated in Appendix A.2. J = (1 + ¢)[¥ 7" — neys)
combines the lightest pseudoscalar (7.) and vector (J/1) charmonium fields that carry velocity
v'. Similarly to the B-meson fields they are of mass dimension 3/2 and taken to be mass-
degenerate in the heavy-quark limit. We therefore can relate the required B* — J/4Ms vertex
to decays BY — J/¢ My and B® — n.Mos,

G N2y m3, M2) (m — m3)?

I'(B° = J/yn) = |1 [* ~ 31 (B — J/vn),

4F2 16mm? dmpmy

50 \1/2(m2 2 Af2 2 2 2
F(BO N TICWO) _ G% A / (mBamncva)mnc o + mp + my,

4F?2 16mm% 2mpmy,

[Veal?

~
~

2|‘/;s|2F(BO —)UCKO), 0~41 :4(a1+ﬂl), 6[2 :4(042+ﬂg), (291)

for which the branching fractions are measured [44],
B(B® — J/yr%) = (1.76 £ 0.16) x 107°,

B(B® — J/¢m) = (1.08 4 0.24) x 1075,

B(B? = n.K% = (8.0 4+ 1.2) x 10™*. (2.92)
We therefore can fix the (combinations of) couplings |a1| & 0.055 GeV, which is the average
of the values determined from the branching fractions into J/¢7° and J/vyn, as well as |d +
(m% +m3)/(2mpmy) - @] ~ 0.028 GeV. To satisfy the latter relation, we have two choices for
|G2|,® |aa] ~ 0.035 GeV or |az| ~ 0.091 GeV, with the constraint as/d; < 0.

The B*-exchange graphs for B(pg) — J/v¥(py)7°(p1)n(p2) then lead to an amplitude con-
tribution of the form

o 2 2
Ml — GEIV T W?’a%{ﬁ[(dﬁmwmm) 1 1< mpg ﬂ

+ iy + —a
2\/§F,$ pp— 5 > | a1 - Qo

t—mp. mp.
2 2
_ my+my . 1 1 ~ mp .
+pl {<041 + = wOf?) 7 T3 <0‘1 + —BOZQ)]
2mpmy, U—Mp. Mha My

s & 1 .
e pw”mo‘plﬁmme (t —m%.  u-—m3%. €u(Py; )

:_C:'Fg\/m%mw{Qu[(dl_’_mQBwLmidQ)( 1 1 )]

4\/§F3 2mpmyy t— mQB* Cu— m2B*

2 2
. mp+mg 1 1 2 (. mp.
pPH |:<041 + B9 ¢a2) ( 3 + 3 ) + 3 (O&l + -5 042):|
2mpmy t—mp.  u—mp. M. My

e & 1 1 .
+ et ﬂpw,,PaQ,@ 2 ( - 2 ) }eu(pw, )‘)a (293)

MyMmp tfm2B* U — My«

8As a simple estimation of the error due to the unknown sign of &; we focus on the linear combination of
couplings |&1 + (m% + mi)/(ZmBmw) - &iz| entering the B* — J/¢ Mo amplitude, which is affected by this
uncertainty on a 30% level; therefore we prove the P-wave suppression for both values.
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2
where terms of order M? /n

this expression onto the transversity form factors Fo, F|, we need to replace Q" by Q?H) =

/m% or (mp+ — mp)/mp have been neglected. In order to project

Q" + ~vP* + ..., where v can be read off from Eq. (2.5). We find that we can approximate -y
according to

2(t —m? 2(u —m?
v=1 4 2ETmB) o a2 a2y = <1 - 2UTB) L o 2 ), (2.94)
mB—mw mB—mw

such that

* Jmpmy X 1 m% +m?
féB)(S,t,U)Zg Z 2w > > (d2+ B “’dl),
\/ng my —ms, 2mpmy,

. 3 m% +m? 1 1
]:(B )(s,t,u) — _w a1 + MO’Q 5 — ) ,
I 4\/§F7% 2mBm¢ t— My« U — My«
* \/ X 1 1
FE) (s, t,u) = IVIB 5 5 d2|: — — 5 ] (2.95)
4. /3my F2 t—mp. u—mp.

The partial-wave expansion of }“éB*) contains an S-wave only. We find that the S-wave expres-
sion induced by B*-exchange does not actually include a left-hand cut: the ¢- and u-channel
pole contributions cancel, leaving behind an effectively point-like source for an S-wave 77 pair.
In this way, B*-exchange provides a model for the coupling constant that was obtained purely
phenomenologically by fitting to data in the main text. In order to compare the strength of
the B*-exchange-induced S-wave to the phenomenological one, we calculate the analogue of
the (fitted and afterwards properly normalized) constant b} ~ 2.8-1071° GeV~— by means of
Eq. (2.57). We find a strength [bf" | = 1.6-107'° GeV—3: the combination of the two couplings
1 /9 is exactly the one fixed from BY — 5.K° above, hence the ambiguity in é&; just translates
into a sign ambiguity once more. The effective coupling strength therefore indeed produces an
S-wave rate of the correct order of magnitude, pointing towards an essential role of the B* in
the explanation of the production mechanism; a more systematic investigation of this strength
is beyond the scope of the present article.

Our main focus here is rather on the P-waves in ]-'|(‘B*) and .FJ(_B*), which are given by

N 3 m% +m? 1 2-1 1
FE@) () w@ﬁMd) <v+ e PN S

4v/2F2 2m pmy XY 2 vy — 1
Jrv%*ll v_ +1
U= 2 B _1)

* v/ A v —1 vy +1 v —1 v_+1
FBEIP) (o _IVMBS Q2 _ % loo 2t o+ = loo = ,
L s ey \ T Ty e T e T

1 Ap

and the pairs of terms depending on vy, coming from the t- and u-channel pole terms, almost
cancel each other. The D-waves, given by

FiP PN s) = L X (d1 LTty d2) L( e
4\/2F2 2mpmy, XY vy — 1
5 71),(1)3—1) v_ +1 4>

vl 5

1 _
2 13
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3 2 & 1

FEID) 5y = _\/gngBSd2 2,2 4 (i -1) wy+1
iR (S) - UJ’_ +vZ — - lo
4./2myF2 Y
v_(v2 -1 w41
- 1 2.
2 08 v_ — 1)7 ( 97)

are actually as large as the P-waves around /s &~ 1 GeV. Both 7 =|| and 7 =1 P- and D-waves

yield contributions to dI"/d+/s suppressed relative to ]-'éB*) by two orders of magnitude, proving
yet again the strong dominance of the S-wave in this decay. This is illustrated in Figure 2.11 for
the two sets of coupling strengths; there the respective P- and D-wave contributions to dI"/d+/s
are divided by the predicted differential decay rate as determined in equation (2.58), where only
the S-wave is included and the 77 final-state interaction is considered. In Section 2.7.4 in the
context of the 7T 7~ final state we argue that there is a preference in choosing the smaller
value for the coupling |@z2| & 0.035 GeV; for that choice the P-wave contribution to dI'/d+/s
is suppressed relative to the S-wave contribution by even three orders of magnitude (see top
panel of Figure 2.11).

2.7.4 B*-exchange in BY — J/¢yntn™

In the BY(pg) — J/¢(py)m " (p1)7~ (p2) case the absence of left-hand-cut structures is confirmed
by the experimental analysis that shows that there are no considerable structures in the J/¢¥m
channel within the Dalitz plot. However, this phenomenological argument does not exclude the
possibility of crossed-channel effects occurring already in the weak decay mechanism, i.e. the
B* exchange. We rerun the calculation of the B* t-channel exchange in that mode as well, in
analogy to what we do for the 7% final state, to theoretically substantiate the neglect of any
crossed-channel structures. There is no crossing symmetry for the 777~ final state, such that
there is no contribution from the u-channel exchange to the effective matrix element, which
reads

Grg/mEm ~ m% +m?2 1 _ mg . 1

Meﬁ _ Urg B w{pﬁb<a1+ B wa2>t . +(p;11+p;21)<a1+ Ba2>2 _
—m, My m3.

Qg 1

3 }GZ(PwJ)

mymp t —mip.

Grav/m3 m% +m? 1 1
_ Srgympiy mBW{P“KdNL 5 %@)t 5 +(d1+@d2) 2]
- * m¢

+ i€ Py paapig

& 2mpmy myg mi.
2 2 -
- mp +my _ 1 . 09 1
o wobpy, P —— teh (py, A).
+Q (041 + 2mBm¢ a2)thB* e pwy aQﬂmﬂ,th*ﬂ”LQB* }Gu(pd” )
(2.98)
Performing the same steps as in Section 2.7.3 yields the transversity amplitudes
. gy X 1 m% + m?
FE (s, tyu) = VB S D <a2+ B wal),
F? mp —my, 2mpmy,
x 3 m% +m? 1
FIP (st u) = TV BT m32m¢5<d1+ z wd> —,
2Fﬂ_ 2m3mw t— mp«
* vmpsX O
.FJ(_B )(s,t,u) = VB a2 (2.99)

2 /M2 t—m%.’

where in ]-'(EB*) the pole contribution cancels, such that it contains a point-like S-wave only,
similarly to the result of Section 2.7.3.
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Figure 2.11: Relative size of the higher-wave contributions to the differential decay rate dI'/d+/s:
the ratios of the 7 =L P-to-S-wave (solid, red), 7 =|| P-to-S-wave (dashed, blue), 7 =L D-to-S-
wave (dash-dotted, orange) and 7 =|| D-to-S-wave (dotted, green) contributions are depicted
for the two sets of couplings strengths |da| ~ 0.035GeV (top panel) or |&s2| &~ 0.091 GeV
(bottom panel). For the S-wave our predicted differential decay rate is used, including final-
state-interaction effects and S-wave dominance, see Section 2.6.
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We extract the B*-exchange-induced S-wave strength b | ~ 2.5- 10710 GeV =3 that nearly
saturates the phenomenological parameter |l38| ~ 2.8-107'°GeV 3, revealing that the pro-
duction mechanism may be approximately modeled by the B* exchange. A comparison of
Egs. (2.95) and (2.99) reveals that the S-wave amplitudes differ by a factor —v/3. The same
relative factor appears when transferring the Bg — J/ymm amplitude to the 7y channel for a
prediction using the fitted w7 amplitude strength, such that one might expect comparable state-
ments concerning the saturation between both the B*-exchange-induced and phenomenological
strengths. This is indeed the case when retaining leading symmetry relations and inserting the
LO form factor normalizations Eq. (2.49). The worse saturation seen in Section 2.7.3 for the
71 scenario hence is caused by NLO chiral corrections.

The P-wave amplitudes .F ) and f(B )®) pead

. /m3 m% +m 1 21 1
]:I(\B )(P)(S):g mBmwS\/7< b 1/’oz)—<v+v+ logv++ ),

2F? 2mpmy, XY 2 vy — 1
FEOE ) - TS 3o, v Ly, et (2.100)
L 2 g F2 T Ty s 1) '

Contrary to the exotic P-wave in the 7°n system the 77~ P-wave is not suppressed. We
compare the B*-exchange-induced P-waves with the full P-waves that we have fitted to the
data, see Section 2.5.1,

CF(s) = VNzsayQi(s),  CFL7(s) = VNzsXarQi( (2.101)

For simplicity we neglect here the correction due to p—w mixing. Therefore we calculate the

strengths a(TB*) (7 =||, L) that correspond to the fitted coupling strengths a.. For the two sets
of couplings |asg| these strengths are shown in Figure 2.12. Note that for aP) s dependent
curves are shown due to the t-pole dynamics. The only non-analytic behavior (that might

cause an effect from the left-hand cut) shows up at s = 0 due to square-root singularities

in a(TB*)(s), i.e. below the 77~ threshold. Further, the P-wave is kinematically suppressed

near the threshold: the a, contributions to dI'/d/s are multiplied by sY? = s02 = s — 4M?2.

In the region where the P-wave becomes more important the strengths a(TB*)(s) can be well

approximated by an analytic (almost constant) function, such that there is no conflict with
describing the partial waves by a polynomial multiplied with the Omnes function, even if the
B* has considerable influence in the unphysical region. Focusing on that region above threshold,
where P-waves are not suppressed, we even find that for one set of couplings |G| the strength
aI(IB*) (s) converges to the fitted aj, the latter shown by a band regarding the uncertainty due to
different fit scenarios. This is a remarkable outcome as it supports our suggestion we made in
the context of the BY — J/yn'n S-wave that the B* plays an essential role in the production
mechanism, see Section 2.7.3. The coupling aﬁB*)(s) that results from the other choice of || is
more than twice as large as the fitted coupling. As the non-analyticity in the physical region is
still small this does not contradict our Omnes-times-polynomial ansatz. However, this scenario
appears to be less plausible: if the impact of the B* to the production mechanism is that large,
contributions from other mechanisms of similar size will be required that cancel each other. We
therefore argue for a preference of using the former value of the coupling, i.e. 2| & 0.035 GeV.
Finally we see that the couplings aS_B*) (s) are small compared to the (fitted or B*-induced) a
values, with a constant ratio

(B*) ]:(P) 2
a; 1 2

— = =1{0.14,0.11 2.102
I(\B*) X]-'ﬁp) 2mpmyda + (mp +m3)as {014,011, ( )
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Figure 2.12: For the normalized coupling strength a) a band (red) is shown, spanned by the re-
sults of different fit scenarios, see Section 2.5.1. The al(‘B*) curves (blue, solid for dgl), dashed for

6452)) differ considerably for the two sets of couplings &: while the dashed curve is considerably

larger than the strength obtained in the fits, the solid curve nearly saturates the strength of the

fitted P-wave and converges to the band, at least aside from the region around the threshold

(indicated by the vertical line) and below. Both a(LB*) (green, dotted) are small compared to
(B™)

a

where the two results again correspond to the ambiguity in |Gz|. There are no fitted a  results
we can compare to, as we found it to be a redundant parameter in our fits. Instead in our
fits we figured out a considerable contribution due to the Fy P-wave corresponding to the fit
parameter ap—there was no considerable preference for the choice of the transversity P-wave in
our formalism.? Actually the transversity-0 P-wave is not explained by the B* exchange, given
that Eq. (2.99) rules out a P-wave. We test whether this discrepancy can be compensated by
the a”” contribution, which is indeed the case. This is demonstrated in Figure 2.13, where the
(YY) distribution calculated with the B*-exchange induced coupling strengths instead of the
fitted subtraction polynomials is compared to the LHCb data (we confine ourselves to using

9Formally, in the combination (Y{) + (Y)?) the parameter ao is actually uncoupled from the a and ay
parameters, which becomes obvious when considering the terms in the brackets in Eq. (2.52), written as

(YQ) ~ad + (aﬁ + Boa? )s + Bra? s + ...

(YY) ~ Qag — (aﬁ + Boai)s — ﬁlaiSQ + .y
where we denote X2 = Bg+15+.... However, we found that fitting the full set of parameters a- did not improve
the data description compared to a two-parameter fit. Given the limited amount of data as well as the closeness
to s = 1 GeV? we even could perform fits of similar fit quality by either using the ap parameter, entering as a

constant term in the above relation, or the ar parameter that determines the strenght of a quadratic term. A
quantitatively considerable decoupling of these terms requires more statistics.
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Figure 2.13: The (YY) distribution with the coupling strengths constrained by the B*-exchange

model (blue solid line) is compared to the LHCb data. For completeness the fitted distribution
(FIT 1, see Section 2.5.1) (red, dashed) is depicted as well.

the preferred solution of |Gz]). The data are remarkably well described by our theoretical
curve. Consequently, there is evidence that describing the energy distribution in terms of
the parameter a  is more expedient than using ag. Constrained by heavy-meson and chiral
symmetry, analyticity and unitarity, we achieve a 100% predictive capability, superseding any
fit procedures and providing yet a test of heavy-meson symmetries. Of course this noticeable
grade of quality may to some extent be accidental (actually, the equivalent estimation for the
B*-exchange induced strength for the (YY) distribution is by far not that close to the fitted
result, but still of the same order of magnitude) but this certainly demonstrates that modelling
the short-distance physics by B* exchange works really well; it just induces some restrictions
upon which transversity P-waves contribute.

We next study whether these observations are corroborated by some chiral considerations,
similar to those made in Section 2.7.1. There a chiral Lagrangian was constructed to demon-
strate the neglect of the mn P-wave. The mm P-wave is already present at leading chiral order,
cf. Eq. (2.34), from which we calculate the P-to-S-wave ratio. There are contributions to the
form factors Fo and F). We find

Py y(p. YaX m% — s —m2
fo(s) _ Y opy) D popy=—L ‘, (2.103)
75| T Ax X 2
and compare the ratio
X P.
90— 2P _ (5.0..5.28) GeV? (2.104)

B V3

(the small value is obtained for s = 0, the large value for s = 1, we hence find a rather stable
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ratio under a varying energy) to the corresponding ratio of fit parameters (see Table 2.1)

Z_g = 4517988 Gov2, (2.105)
0

In analogy the ratio

FO VEsmy Ve

= 2.106
79| VBx  Xby (2:106)
implies
aﬂ‘ 2
= = A/ 3my = 2.53 GeV, (2.107)
b, 3
which has at least the same order of magnitude as the ratio of the fitted strengths
a _
pr = 5:03 GeV. (2.108)
0

In contrast to the above calculation of the B* exchange modelling the short-distance physics
this chiral estimation and comparison to the phenomenological fits results in a contribution from
the transversity-0 P-wave that is of comparable size, and there is no evidence at all to prefer
the transversity form factor F, which emerges from a Lagrange density at higher order.

Let us summarize what we have learned from these considerations. We have discussed two
distinct approaches to estimate the P-waves, on the one hand by explicitly calculating the B*
exchange diagrams, and on the other hand we have employed the chiral Lagrangian introduced
in Section 2.7.1, from which we have calculated ratios between the S-wave and the various
transversity P-waves. We have then extracted coupling strengths that are comparable to the
fit parameters. The B* exchange model rules out a transversity-0 P-wave, but a contribution
from the other transversity P-waves proves quite satisfactory to describe the (YY) distribu-
tion. However, the comparison of the (Y)) prediction shows larger discrepancies to the data
and hence to our fit results; in particular the exclusion of a transversity-0 P-wave results in
a negative (Y3') distribution, while all LHCb data points are positive (however, with a signifi-
cant uncertainty). Contrary, our chiral consideration entails a transversity-0 P-wave, and the
P7=%_wave-to-S-wave ratio is sufficiently comparable to the one obtained using the fit results.
However, for the transversity-|| P-wave-to-S-wave ratio the comparison of the chiral vs. fit-
ted ratios is less convincing, but yields at least the same order of magnitude. This imprecise
matching, together with the discrepancy in the (Y7') distribution casts doubts on the mentioned
100% predictiveness employing the B* exchange to model the short-disctance physics. Both
anséatze yield suitable constraints for rough estimations, e.g. to decide whether one can expect a
noticeable contribution from the P-wave or whether it is mandatory to take into account effects
from left-hand cuts, but they do not provide strict constraints from which one can calculate
accurate, precise numerical results.

2.8 Bg /s J/Y K K: coupled-channel related predictions
As explained in Sections 1.3.4 and 2.4, in the coupled-channel treatment the relative strengths
between the w7 or 7 and the isoscalar or isovector KK scalar form factors are fixed, thus
the respective final states are related to each other unambiguously. We therefore are able to
make predictions for the BY — J/Y KT K~ as well as the B — J/yKTK~/K°K°® S-wave
amplitudes. The latter we assume to dominate the differential decay rates in the energy region
considered such that we make a prediction for the differential decay rates. In contrast, in the
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R0/ 10 =90° 815 =100° &5 =110°  §yp = 125°

VSp =1.05GeV  0.35...046 0.25...0.35 0.16...0.23 0.11...0.15
Ve =120 GeV 0.33...043 022...0.31 0.15...0.22 0.11...0.15

Table 2.2: Theoretical determination of the ratio Rf0/%  Eq. (2.109), for different values of the
phase d15 entering in the determination of the I = 1 KK form factor, 15, and the upper
integration limit s,. The given range for the respective values is due to the uncertainty in the
form factor normalizations.

case of the B? decay the P-wave dominates the spectrum. There we calculate the S-wave
background to the prominent ¢(1020) resonance.

2.8.1 BY — J/¢¥ KK spectral distributions

We discuss our results for the Bg — J/YKK decays, where KK can be either a neutral or
a charged kaon pair. Note that a few data points are available for the latter channel [186].
In Ref. [147] properties of the f3(980) are deduced based on an amplitude analysis including
both resonant and non-resonant terms performed in the same paper. However, on the phys-
ical axis a decomposition into resonant and non-resonant contributions is not possible in a
model-independent way. Accordingly the only well-defined quantity that compares the f(980)
contribution to the a¢(980) contribution is

i [ XY VETIGR s

Sp
M2

Rfo/ao — (2.109)

X2Y /sTi5t P ds’

which is dominated by the two scalar resonances for values of s, that are not too large. Our
determinations for this quantity are shown in Table 2.2 for different values of the input phase
012 and of the upper integration limit s,. There is some weak dependence on s,, however,
as the table clearly shows, R0/ is very sensitive to the input phase 61o. This sensitivity is
even stronger than the uncertainty on the form factor normalizations, which are not accurately
determined, cf. Table 2.2. A measurement of Rf0/% would thus be very valuable to further
constrain the so far badly determined phase d15.

Next we turn to our predictions for the physical final states, K+ K~ and K°K°.10 In a very
naive picture, we would expect a dd source term to produce a pair of neutral kaons only, and no
charged ones. Equation (2.50) in combination with Eq. (2.62) suggests that at (the unphysical
point) s = 0, this naive view is indeed close to reality. If this behavior persisted in the energy
region around 1GeV, we would expect a destructive interference of f,(980) and ay(980) for
charged kaons, but a constructive one for the neutral pairs.

In Figure 2.14 we present our results for (Y) for physical K K states, namely KK~ (top
panel) and K°K? (bottom panel), which differ by the sign of the interference term between
the isoscalar and the isovector component, according to Eq. (2.62). A simple inspection of the
figure shows that the interference pattern anticipated in the previous paragraph does not hold
at all. To understand the origin of this, we show the two (I = 0,1) kaon form factors in the
Figures 2.15 (magnitude) and 2.16 (phases): we see that the I = 1 one completely dominates

10For simplicity, we discuss the neutral kaon channel in terms of the strong eigenstates. For even partial waves,
the relation to the weak eigenstates, neglecting effects of CP-violation, is given by dF(Bg — J/YKgKg) =
dI'(BY — J/WKK) = dIN(BY — J/pKOKO)/2.
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Figure 2.14: (Y{)(s) for B} — J/Y KK~ (top) and B — J/¢YpK°K® (bottom). The curves
are calculated for different values of the phase 12 (see text for further details). The error bands
reflect the uncertainties in the normalizations of the form factors. The experimental points are

taken from Ref. [186].

over the I = 0 form factor, or in other words, the ag(980) signal is much stronger than the
f0(980) one; hence, both the Kt K~ and K°K" angular moments are dominated by the I =1
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Figure 2.15: Moduli of the scalar form factors I'l ;. for I = 0,1. The two bands for the
I = 0 form factor refer to the T-matrix solutions of Ref. [127] (DP) and Refs. [37,153] (B+O0),

respectively.

form factor, which explains why the interference pattern is not the one naively expected. The
small value theoretically obtained for R/0/% is a direct consequence of the I = 1 dominance
found here, as can be seen from its definition, Eq. (2.109). The difference in strengths of the two
resonances is somewhat remarkable. It is not due to significant differences in the pole positions,
as the I = 1 T-matrix of Ref. [140] uses an a(980) pole position (on the second sheet) of

\/ S (os0) = (994 £ 2 —i(25.4 £ 5.0)) MeV (2.110)

as a constraint [193,194], while the second-sheet pole of the f;(980) corresponding to our (main)
I = 0 T-matrix parametrization is given by [195]

V5 asoy = (99671, —i(24731) ) eV, (2.111)

determined from pion—pion Roy equations. It seems, therefore, that rather the residues of the
resonance couplings to the respective currents are very different, which might be in conflict with
at least a simple interpretation of both scalar resonances as K K molecules: in such a picture,
similar binding energies would imply similar coupling strengths to the K K channel according
to the Weinberg criterion [196,197], at least as long as the coupling to the second channel (77
and 77) is weak enough to be perturbative.!! More detailed investigations of the couplings
of the scalars to gq operators, completing Ref. [195] also in the I = 1 sector, would be very
interesting to clarify this issue.

1 Note that the central values for the pole positions quoted in Egs. (2.110), (2.111) also slightly discourage
such a simple picture, as they lie somewhat above the KK threshold.
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Figure 2.16: Phases of the scalar form factors I'k, for I = 0,1. The two bands for the
I = 0 form factor refer to the T-matrix solutions of Ref. [127] (DP) and Refs. [37,153] (B+O),
respectively.

It is remarkable to note that the phases of the two form factors, see bottom right panel
of Figure 2.15, change almost perfectly in parallel, starting from the 77 threshold—the only
difference is the low-energy phase growth in the isospin-0 channel, associated with the fo(500).
In a single-channel phase-dispersive Omneés representation, the isospin-0 will then roughly equal
the isospin-1 form factor, multiplied with a second Omnes function that contains the low-energy
phase rise between 77 and 77 thresholds only. It is easily seen that this factor, leading to the
famous fy(500) enhancement, simultaneously depletes the resonance signal of the f;(980) quite
significantly: while it is (broadly) peaked around /s = 500 MeV, it falls well below 1 around
1 GeV, the region of the second resonance.

Figure 2.17 depicts the described phase rise at low energies due to the f,(500) resonance
(red, solid curve), given roughly by the difference of the isoscalar (green, dotted curve) and the
isovector (orange, dash-dotted) K K form factor phases, as well as the corresponding Omnes
functions. Our main interest here is to qualitatively illustrate the emergence of the f,(500)
enhancement; we therefore refrain from including error bands due to the uncertainties in the
form factor normalizations or different possible input phases 41,2 (such as those presented in
Figure 2.16)—we rather pick one configuration set (612 = 90° and the lower edge of the uncer-
tainty bands) and approximate the phase difference by an exactly constant term above the 7
threshold. In the left panel of Figure 2.17 the Omnes solutions are shown. The green, dotted
and the orange, dash-dotted curves are calculated as single-channel approximations based on
the phases extracted from the coupled-channel form factor solutions shown in the right panel.
Both solutions exhibit a prominent peak in the f,(980)/ao(980) region. We observe the f(500)
enhancement in the I = 0 Omnes solution that is attended by the congruent bump in the
Omnes solution constructed out of the phase difference (red, solid curve). Further, the figure
shows the discussed depletion near 1 GeV in the I = 0 Omnes solution.
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isoscalar and isovector KK form factor phases. The left panel shows the Omnes solutions
constructed as single-channel approximations for the I = 0 and I = 1 KK Omnes solutions, as
well as the Omnes function constructed using the phase difference arg'i52(s) — arg 15 (s).
The right panel shows this phase difference (approximated by a constant term above the 7
threshold) as well as the phases extracted from the coupled-channel KK I =0 and I = 1 form
factors.

Finally, it can be seen in Figure 2.15 that the peak in the K™K~ angular moment is located
around /5 >~ 990 MeV and is quite narrow, whereas the K°K? threshold lies at 1/5s >~ 995 MeV.
Accordingly the peak in the KK distribution is phase-space suppressed.

There are three experimental points available in the charged kaon spectrum in the region
we investigate, providing a test of our prediction, which is solely based on coupled-channel and
isospin relations.'? Each of the two data points that are located above threshold agrees with one
of our different determinations of (Y), depending on the value of the input phase d12. Tempting
as it would be, we refrain from fitting these data points by modifying our theoretical input. We
content ourselves with illustrating that new and improved data would help in constraining the
nn-K K form factors, and thus our theoretical understanding of their final-state interactions
and the properties of the a¢(980) and (indirectly) the f;(980) resonances.

2.8.2 B? - J/¢YKTK~ S-wave prediction

Having obtained the B — J /v 7~ fit parameters, we can straightforwardly make a prediction
for the BY — J/v K+ K~ S-wave amplitudes. The 5s source that produces the kaons is purely
isoscalar, such that we do not have to consider an I =1 S-wave contribution (with an a((980)
resonance). Hence we can use in a direct way the relation between the 77 and the K K final
states provided by the coupled-channel formalism, cf. Sections 1.3.4 and 2.4.5.

In particular an understanding of the S-wave background to the prominent ¢(1020) is of
interest. In the LHCb analysis [185], the f;(980) as well as a non-resonant S-wave content
is reported within a mass window of £12MeV around the ¢(1020), which contribute an S-
wave fraction of (1.1 4+ 0.1793)% —consistent with former measurements from LHCb, CDF,
and ATLAS [199-201], with the newest LHCb analysis for the B — J/t%KTK~ decay [202],
as well as theoretical estimates [203]. We calculate the S-wave fraction in the same mass

I2Note that the data we compare to is binned; to compare the spectrum with charged to the one with neutral
kaon pairs in the final states we rescale the latter.
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interval £12MeV around the ¢(1020) mass adopting the LHCb Breit—-Wigner parametrization
for the ¢(1020), but using the predicted S-wave for the J/¢) K™K~ final state. As discussed in
Section 2.4.5, this S-wave can be obtained by replacing the pion scalar form factor and all pion
masses and momenta by the respective kaon quantities and taking the resulting fit parameters
from the pion case, after properly normalizing both 77 and K K experimental spectra.

The S-wave contribution to the ¢(1020) peak region is given by

me+12 MeV ots 2
R . fm¢¢—12MeeV X3Y\/§|COFK(\/§)| dy/s
S/¢ = me+12 MeV
fm;712 Mev V 47T<Y00>BgﬂJ/wK+K* dv/s

: (2.112)

where we can approximate the (normalized) angular moment in the region of interest by the S-
wave and the ¢(1020) contribution, cf. Egs. (2.61) and (2.65). Using the B+0O input, we obtain
Rs/p = 1.1%, in agreement with the LHCb results. However, there is a notable uncertainty due
to the estimated ambiguity in the phase input in the region of the f,(980) resonance discussed
in Section 2.5.2. Using the DP phase instead of the B+0O phase input yields a fraction of 1.95%.

2.9 Summary and outlook

In this chapter, we have described the strong-interaction part of the Bg /s J/p My My de-
cays, M, My being a light meson pair 7+7~, 7%, K*K~ or K°K°, by means of dispersively
constructed scalar and vector pion form factors. This formalism respects all constraints from
analyticity and unitarity. The non-strange and strange scalar form factors are calculated from a
two-channel Muskhelishvili-Omnes formalism that in the isoscalar case requires the pion—pion
elastic S-wave phase shift as well as modulus and phase of the corresponding 77 — KK am-
plitude as input. For the vector form factor, an elastic Omnes representation based solely on
the pion—pion P-wave phase shift is sufficient, supplemented by an enhanced isospin-breaking
contribution of p—w mixing, which can be fixed from data on ete™ — 7T7~. The isovector
scalar form factors are calculated using the approach of Ref. [140], where chiral constraints and
unitarity have been imposed.

We employed the 7r spectra to determine the fit parameters and to demonstrate that for
energies /s < 1.02GeV, a minimal description of all S- and P-waves (constructed in a form
free of kinematical singularities) as the corresponding form factors, multiplied by real constants,
is sufficient. Allowing for subtraction polynomials with linear s-dependence leads to a slightly
improved fit quality solely in the case of one P-wave component, with a slope still compatible
with zero within uncertainties. In particular considering the S-wave slope as a free fit parameter
(as opposed to fixing it to zero) only yields a minimal improvement of the x2. In accordance
with expectations from the underlying tree-level decay mechanism, below the onset of D-wave
contributions that become important with the f2(1270), only the non-strange scalar and the
vector form factors feature in the Bg decay, while the strange scalar form factor determines the
BY S-wave.

The overall fit quality in the energy range considered is at least as good as in the phe-
nomenological fits by the LHCb collaboration [141,142], where Breit—Wigner resonances and
non-resonant background terms were used. However, since the dispersive analysis allows one
to use input from other sources, our analysis calls for a much smaller number of parameters to
be determined from the data. In addition, a comparison of the Bg S-wave obtained from the
dispersive analysis with the one deduced from the LHCb analysis shows drastic differences in
both modulus and phase: it is well-known that the f(500) does not have a Breit—Wigner shape,
and therefore such parametrizations should be avoided—especially when it comes to studies of
CP violation that need a reliable treatment of the phases induced by the hadronic final-state
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interactions [149]. The LHCb analysis of the B? S-wave uses a Flatté parametrization of the
f0(980), solely (corresponding to their Solution I) or combined with a non-resonant background
(Solution IT). Only Solution II yields a phase that is close to the phase of the strange scalar
form factor, and approximately compatible with Watson’s final-state interaction theorem in the
elastic region.

Having shown that our formalism works, we have made predictions for the S-waves in
BS/S — J/Y{rn, KT K—, K°K°}, which are related to the corresponding 7+7~ final states

through channel coupling and chiral symmetry. For the BY — J/¢K+K~ S-wave only the
results of the fit to the 777~ final state are required to predict an S-wave fraction below the
¢(1020) resonance of about 1.1%, in agreement with the findings by the LHCb collaboration.
Describing the BY modes involves the isovector scalar form factors that are constrained except
for a free parameter d12. We demonstrated that experimental data for B} — J/v(mn, KK)
can be used to further constrain this parameter, that is crucial to pin down the 77 scattering
amplitude. Around 1 GeV, the latter is dominated by the pole of the scalar meson a((980). A
high-accuracy determination of §12 would, however, need further theoretical development.

In addition, in the scalar sector enhanced isospin-violating effects can occur around the
two-kaon thresholds, driven by both the proximity of resonances in the isoscalar (fo(980))
as well as isovector (ao(980)) channels, and the 8 MeV gap between the K+ K~ and K°K°
thresholds [204]. This phenomenon is usually referred to as ap—fo mixing in the literature, and
has been argued to be significant for, e.g., n(1405) — 37 [205,206], weak decays of D,/B;
mesons [207], and J/v — ¢7%n [190,208]. The predictions of the last mentioned theoretical
calculations were confirmed experimentally at BES III [209,210].

First steps towards a rigorous dispersive treatment of ap—fo mixing are reported in Ref. [211,
212]. An adaption of this formalism to the reactions at hand will be pursued elsewhere. Here it
would in particular be important to perform a detailed study of B? — .J/¢7%, since the weak
decay that drives the transition leads to a purely isoscalar source.

To extend our description of the form factors to higher energies, eventually covering most
of the energy range accessible in Bg s J/YrT ™, inelastic channels with corresponding
higher resonances have to be taken into account. Here, a formalism developed for the vector
form factor [99] that correctly implements the analytic structure and unitarity, reduces to the
Omnes representation in the elastic regime, but maps smoothly onto an isobar-model picture
at higher energies should be extended to the scalar sector. There is an ongoing study that
adopts this formalism to the considered B/, decays [213]. Even an extraction of the scalar
form factors from these high-precision LHCb data sets seems feasible, and should be pursued
in the future.



Chapter 3

Analysis of the decay
DT — K_ﬂ'—l_l_l_l/l

3.1 Introduction

The pion—kaon system is one of the most prominent two-particle systems in hadronic reactions.
Extracting information on pion—kaon phase shifts with high accuracy is therefore essential for
precision studies of any process involving pions and kaons in the final state. We investigate
the semileptonic decay D¥ — K~nTI%y, (abbreviated by Dyy), in particular we consider D4,
where the final-state lepton is an electron. The Dy4 decay is supposed to be the most suitable
one for the purpose of such a phase-shift analysis [214]. This assumption relies on its analogy
to the K — 7rlv (Kj4) decays, from which the phase differences §J — 61 for the isoscalar S-
and isotriplet P-wave 77 scattering phase shifts were extracted [215-218]. Similar techniques
applied to the D4 decay seem to be feasible in order to gain information about the I = 1/2 7K
phases. In particular an analysis of the full angular decay distribution including interference
terms provides information about the 7K S- and P-wave difference 51/ - (53/ ®. Alternative
D-meson decays involving pion—kaon systems may also shed light on the pion—kaon phase shifts.
For example the D* — Kzt Dalitz plot is dominated by I = 1/2 7K partial waves. How-
ever, three-particle interactions considerably shape the phases of the involved amplitudes and
therefore complicate the extraction of two-particle phase-shift information [130,131].

In contrast to the Kj4 decays, the D4 decay gives access to dynamics also at higher energies
with a clear resonant structure visible in the Djy P-wave due to the K*(892). Achieving a high-
precision phase-shift determination hence requires to accurately describe the hadron-physics
aspects, taking into account the final-state interactions of the hadrons. We will treat this within
a dispersive approach, being model-independent, and using wK phase shifts obtained from
Roy—Steiner analyses [37]. This treatment is very closely related to the analysis of the decay
B — 7mlv (Ba) [126], suggested to extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element |V,,5|. We use and develop further the method used there: Omnes representations, in
which the crossed-channel effects are approximated by simple pole terms calculated in Heavy-
Meson Chiral Perturbation Theory (HMChPT), are employed to describe the hadronic partial-
wave amplitudes. By transferring this method to the D;4 decay, we are confronted with several
challenging aspects: for example we have to scrutinize the application of HMChPT in the Dy
case, where the convergence of the heavy-mass and chiral expansions is much slower than for
the Bjy amplitudes, and hence have to carefully consider the limitations of that description.
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Further, we have to generalize the formalism of Ref. [126] to unequal-mass pseudoscalars in the
final state.

Such a modified Omnes formalism, in which left-hand-cut structures are approximated by
resonance exchange, is also utilized in the analyses of vy — #w [122], n — 7wy [129], and
the T(35) — YT(19)nm and YT(4S) — Y(15,2S)rm decays [219,220]. A limiting factor of the
approach, discussed in Ref. [126], is the restricted kinematic range: the dispersive formalism
as applied there requires to fix the dilepton energy at a rather large value, forcing the pion
momenta to be small, i.e. only a small part of the phase space can be described. We therefore
propose a generalization of this formalism that allows for a reliable description of a much larger
kinematic range, by extrapolating the dispersive representations to arbitrary dilepton energies.
For this purpose we employ certain low-energy theorems that yield constraints for the dilepton
energy dependency of the S-wave representation.

The organization of this chapter is as follows. In Section 3.2 the kinematics of the Dy
decay is reviewed and the definitions of the form factors constituting the matrix element as well
as their partial-wave expansions are introduced. The dispersive representation of the partial
waves using the modified Omnes formalism is presented in Section 3.3. Employing HMChPT
expressions for the pole terms, their partial-wave projections (called inhomogeneities) and the
reconstructed partial waves in the dispersive representation are explicitly derived. We discuss
matching conditions, e.g. from high-energy constraints. A digression to D;3 form factors is
performed in Section 3.4, introducing the soft-pion and soft-kaon theorems. These provide a
cross-check for the calculated Dy4 pole terms, as well as a tool for the extrapolation to smaller
dilepton energies as mentioned above. We propose a parametrization in conformal variables for
the subtraction polynomials and give a prediction for the S-wave. We summarize and discuss our
results in Section 3.5 with a critical view on the presented formalism, working out the limitations
and exposing certain weak points of our approach. Certain technical issues like investigating
the analytic behavior of several kinematic functions and supplementary calculations, e.g. the
determination and error analysis of coupling constants that contribute at NLO to the HMChPT
Lagrangian, are relegated to the Appendices B.1-B.5.

3.2 Kinematics and decay rate

The kinematics of the decay DT (pp) — K~ (pr )7t (px)IT(pi1)vi(p,) can be described by five
variables, defined in three different reference frames, see Figure 3.1 [215,221,222]:

e the invariant dimeson mass squared, s = (pr + px)?;
2.

e the invariant dilepton mass squared, s; = (p; + pu)?;

e the angle Ok between the kaon in the mK center-of-mass frame X,k and the dimeson
line-of-flight in the DT rest frame ¥ p;

e the angle 0; between the charged lepton [ in the [v center-of-mass frame ¥;, and the
dilepton line-of-flight in X p;

e the angle ¢ between ¥,k and ¥,.

We define the two remaining Mandelstam variables as

t=(pp—pr)? and u=(pp—pK)* (3.1)



3.2 Kinematics and decay rate 79

Figure 3.1: Definition of the kinematical variables for D4.

and introduce four additional vectors as combinations of the above four-momenta,
P=pk+pr, Q=pk—Dpn,
L=p+py,, N=p —py,

m2 —s—s

P.L=-2 5 (3.2)
For later purposes we give the Mandelstam variable ¢ in terms of s and cos g,
t(s,cos0k) = 350 — 5 —XYCOSHK+A2—;n, (3.3)
where 3sg = m% + M2 + Mz + s;, Ay, = (m% — s) (M2 — M?2), and
X =[(P-L)? - ss]"/? = —)‘1/2(”12%’5“ )y o Al/Q(S’Ajg’MIQf), (3.4)
with the Kéallén function
Ma, b, c) = a® + b* 4 ¢ — 2ab — 2ac — 2be. (3.5)
A similar relation for u(s, cos k) yields
t—UZ—QXYCOS(gK-i-%. (3.6)

Since the functions X and Y are only well-defined in the physical region (M, + Mg)? < s <
(mp — /51 )2, they have to be analytically continued outside this region according to

|X|7 SS (mD*\/S_l)Q |}/|7 SZ (Mw+MK)2
X={ “IX|, s> (mp+ya? . Y={ -Vl s<(Mx—MJ)? . (37)
i| X, else ilY|], else

Note that this assumes values for s; as physically accessible in the decay.

The D4 matrix element can be written in terms of four dimensionless form factors F, G, R,
and H,

G _ ~
My = TSV‘” (m(pr ) K (pxc)[57u(1 — 75)c| D(pp)) X w(py )y (1 — v5)v(p1),
Mhad Mﬁpt
had { 1 v o
M = —m—D(PuF+ Q.G+ L,R) — m—%eng PPQ°H, (3.8)
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where G = 1.166365 x 107® GeV 2 is the Fermi constant, V., denotes the CKM matrix element

for a ¢ — s quark transition, and we define €,,,, With the convention €p123 = —e0123 — 41,
Considering the D.4 decay, with m, < 1, the contribution from the form factor R can be
neglected.

In order to calculate the differential decay distribution we take the absolute square of the
matrix element Eq. (3.8) and sum over the lepton polarizations,

N IMpf? = 4G Vea 2 H L,

spins
had had *
H#V - MH (MV ) 9
1 « 1
LM = e Ml (Mitg)" = 5 (LY = NPN — sigh” — e L, Ny) (3.9)
We obtain
d°r _ GRlVe|?

- XY - Z(s, 51,01, 0 3.10
dsds;dcos Oxcd cosOrde  (4m)om (5,50, 01,01, ), (3.10)

with

T =Ty + 15 cos20; + I3 sin? 6; cos 2¢ + I sin 20; cos ¢ + L5 sin 0; cos ¢ + Zg cos 0,
+ T sin 0; sin ¢ + Zg sin 26; sin ¢ + Zy sin® 6; sin 2,

1 2 3 . 2 2 2 |F3|2X2
i :M [|F1| +§sm OxY*ss; | |Fo| +T‘}3 ,
1 2 L. 2 2 2 |F3|2X2
Ty =— y {|F1| — 5 sin OxY“ss; | |Fo| +T‘11) ,
Y2ss |F32X?
I3 = — —— [ |F)* — ——— | sin?0
3 4m% (| 2| m% sim” Vg,
Y .\ /ss; " .
I4 = 2m2D Re(Fl FQ)SIH@K,
Y X .\/55
T; ==V Re (F} F) sin O,
Mmp
Y2X
T =——"'Re (F} F3) sin? 0,
mp
Y /550
Ty ==Y I (Fy Fy) sin O,
mp
Y X.\/55
Ty ==Y 1y (P F}) sin O,
2m7,
Y2X
Ty = — 2745511111 (FyFy)sin? 0, (3.11)
mp

where we use an alternative set of form factors F;, i = {1...3} (Fy is only relevant for m; # 0),

M2z — M?
F1 =XF+ —Y(P-L)COS@K—F (M) X:| G, F2 :G, F3 = H, (312)
S

which allows to express the Z;, i = 1...9, in such a compact form.! The partial-wave expansions

IThese new form factors are introduced when rewriting the matrix element Eq. (3.8) instead of the standard
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for the form factors F;(s, s;,cosfk) in the helicity formalism read

Fi(s, s, cos0k) :Z 11 (s, 81) Py(cos Ok ) = XZfl(s,sl)Pl(COSHK),
1=0 =0

Fy(s, s, cos0k) :Z Fgl s,81) P/ (cosbk) = Zgl(s,sl)Pl'(COSHK),

=1V l + =1

Fs(s, s1,co80K) :Z Fgl s,81) P/ (cos k) = Z s,81) P/ (cos Ok). (3.13)

=1 V =1

In the following we will consider S- and P-waves only, assuming that higher partial waves
are negligible in the here considered energy region. This assumption is based on several ex-
perimental observations by the FOCUS, BaBar and BES III collaborations [223-225], that the
K system is P-wave dominated by the K*(892)° component; also S-wave contributions were
found, while the D-wave sets in at a higher energy with a K3 (1430)° resonance. Hence the
form factors are expressed as

Fl(sa S1, COS GK) = X(|f0(s, Sl)lei6$/2(8751) + cos 9K|f1 (Sa sl)|ei61/2(8751))3

_ Mi/z(s,sl)
Fy(s,s1,c080K) = |g1(s,s1)le

3

F5(s,s1,co80k) = |h1(s, sl)|ei5}/2(s’sl). (3.14)

Integrating Eq. (3.10) over the angles 6; and ¢ in the limits 0 < §; < 7 and 0 < ¢ < 27
yields

d’r G%|Ves|? |F3)2 X2
= CXY || B O Y? B*+ : 3.15
dsds;dcosfx  3(4m)5m3, [' 1 s OxcY P (' "+ S mh (8:15)

If we insert the partial-wave expanded form factors, neglect waves higher than P-waves, and
integrate over the angle cosfk in the limits 0 < 0 < w, we obtain

d*r Ves|? 9 B 12X2
= Sl ey [ (1 + 1) + 32 (P + ) )
The differential decay rates thus obtained depend on the magnitudes of the partial wave
form factors only, while the information on the S- and P-wave phases is integrated out—
the above relations hence are unsuitable for the target extraction of the phase-shift difference
56/ *(s) — 61/ *(s). For the purpose of such an extraction, however, it is expedient to integrate
Eq. (3.10) over the angle 0 and the dilepton energy s; (in the limit 0 ~ m?2 < s; < (mp—+/5)?)

basis of momenta Py, Qu, L, in a different basis of momentum vectors that correspond to the orthonormal
basis of polarization vectors of the leptonic current, which directly links to the helicity basis, for details see
Refs. [113,160]. The partial-wave expansions of the F;(s) are then easily obtained, as they are well-known for
helicity amplitudes Hy(s),

Ha(s) = > V2l + THD (s)dh o (0 )™,
l

where the dlA s are the small Wigner-d functions, with

sin O

dlo(05) = Pi(cosOr), dio(Ox) = —d' 1o(05) = — ——2—
00(0K) 1 (cos Okc) 10(0K) 10(0K) (=)

P/(cosO).
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instead. We define
//X S, 81 dsldcosﬁKf2/X s, s1)dsy,
X(Zi(s //X s, 81)Z;i (s, 81, cos Ok )d cos O dsy, (3.17)

such that
[ [ X(s,81)Zi(s, s1,cos 0 )d cos O ds;

Z; , 3.18

(Zi(s)) = 2fX s, 81)ds; ( )
which allows to write the differential decay rate as
d3F G2 ‘/cs 2

el y X (T (s.00.0). (319)

dsded cos 6, (471')6mD

where (Z(s,6;,¢)) is decomposed in analogy to Eq. (3.11), with averages (Z;(s)) that are ac-
cessible independently via variation in 6, and ¢. The following (Z;) (the S—P-wave interference

terms) depend on the desired phase shift difference (50/ (s) — (51/ “(s),

wY\/s

— 2 (12
(Za) = Sz (X1 ollgal) cos (35" = 8,"),
Y 1/o 1/o
(To) = 71 \4/_<X2|f0||h1|>cos (a7 — a1,
Y . 1/2 1/2
(17) = Zmﬂxmnglwsm (o~ a1,
D
Y 1/9 1/o
(Zs) = Qm\fuﬂfonhlwsm (65" —8,). (3.20)
D
with
Xn d
<X"|fo||g |> f\/_ |f0||gl| Si (3-21)

fXdSl

and similarly for |g1] <> |h1]. The last equality can be read off when inserting the Z;, Eq. (3.11),
explicitly into Eq. (3.18) and performing the angular integration. Hence in order to attain
information on 5(1)/2 - 51/2, it is appropriate to determine either (I;) and (I7), or (I5) and (Ig),
since (assuming the absence of D- and higher partial waves)

2 g2 _ o) 2 g2} _ ods)
tan (577 — 677 = Sy ot (57 - a; )72< % (3.22)

3.3 Partial waves in the modified Omnes formalism

We study the partial-wave amplitudes fo, f1, g1, and hy defined in the expansion Eq. (3.13)
within dispersion theory, very closely related to the recent analysis of the By decay [126].
The formalism, introduced in Ref. [102], is based on Omnes representations and was also used
for an analysis of the related K4 decays [128]. We do not apply dispersion theory to treat
the s; dependence of the amplitudes, so we consider them at fixed s; and will suppress the
s; dependence for the moment. The range of s we consider here (confined by the physical
decay region for a dilepton energy fixed at a rather large s;) can be well described in the
elastic approximation, where Watson’s theorem [82] is valid, i.e. the phases of the partial-wave
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amplitudes coincide with the pion—kaon scattering phase shifts (the elastic approximation works
well up to the Kp “threshold” in the case of the P-wave and up to the K7’ threshold for the
S-wave). Due to the principle of maximal analyticity they are analytic in the whole complex
s-plane except for singularities dictated by unitarity and crossing symmetry. That is, there is a
right-hand cut starting at the pion—kaon threshold s = (M, + Mx)?, as well as a left-hand cut
due to the crossed process of mD scattering for s < (Mg — M;)?, which follows from Eq. (3.3),

t(cosOx = —1,s < (Mg — Mr)*) > (mp + Mz)% (3.23)

Due to the lack of experimental information on 7D scattering we will approximate the crossed
process by D*-pole terms. The form factors are split into pole and non-pole contributions,
F, = FipOle + Finonfpm. Instead of Eq. (3.13) we can perform a partial-wave expansion for the
pole-term-subtracted amplitudes,

Fy(s,2) =Ff"°(s,2) + X > Mi(s)Pi(2) = FF”*(s,2) + X Mo(s) + 2 X M{”(s)
=0

ZFPU(s,2) + X (Mo(s) - %Mﬂs)) - M) = MO (s),
Fy(s,z) =F3*(s,2) + ) Ui(s)F/(2) = F§*"(s,2) + Us(s),
=1
Fy(s,z) =F}°(s,2) + ) Vi(s)F{ (2) = F{™"(s,2) + Vi(s), (3.24)
=1

with z = cosfg. D- and higher partial waves are suppressed. We have rescaled Ml(o)(s) —
M;i(s) in order to avoid singular behavior at the pseudo-threshold s = (mp — \/5_1)2, where
X = 0. Note that the amplitudes Mo(s), Mi(s), Ui(s), and V;i(s) have no poles by definition
and are analytic except for a right-hand cut. Comparing Eq. (3.24) with Eq. (3.13) we directly
infer that over the right-hand cut we have

Im fo(s) = Im My(s), Im f1(s) =Im (%Ml(s)) ,
Im g1 (s) = Im Uy (s), Im hq(s) = Im Vi (s). (3.25)

Therefore we can rewrite the partial waves by

ols) = Mo(s) + No(s), fu(s) = 2 (Mi(s) + 311(s)
01(5) = Us(s) + O1(s), ha(s) = Va(s) + Vi (s). (3.26)

where we have introduced the inhomogeneities Mo (s), M (s), U1 (s), and Vi (s) that are real on
the the right-hand cut by construction and are given by the respective partial-wave projections
of the pole terms, e.g.
R 2] 1 1 Fpole
M(s) = ;/ dz&PI(z). (3.27)
2 -1 X

It is evident from Eq. (3.24) that the partial-wave expansions of Fy and F3 proceed in derivatives
of Legendre functions; to project onto their partial waves we therefore use

| PGB - Praas =25, (3.29
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Figure 3.2: The wK phase shifts for I = 1/2 S- (left panel) and P-waves (right panel) are
shown.

and find )
09) =5 [ 4= FE™(s,2) [es (2) = P (2. (3.29)

and similarly for V.

In order to construct the full partial-wave amplitudes we employ dispersion relations in
terms of the Omnes formalism. In the following we will work in the elastic approximation and
therefore start out with the elastic unitarity relation for the partial waves fi, ¢;, h;. E.g. for fo
the unitarity relation reads

Im fo(s) = fo(s)e %) sin dy(s). (3.30)

In Eq. (3.26) the partial waves are given as the sum of the inhomogeneities Mo(s), Mi(s),
Ul(s), and Vl(s), being the partial-wave projections of the pole terms, and of the functions
Mo(s), M1(s), U1(s), and V4(s), which possess no left-hand cuts or poles.

Together with Eq. (3.25) we can rewrite the partial-wave unitarity relations in favor of the
pole-term-subtracted partial-wave amplitudes and their inhomogeneities,

Im M;(s) = (Mi(s) + Ml(s)) e~ () sin §;(s). (3.31)

This type of unitarity relations yields the following dispersive representation, also known as
Khuri-Treiman type equation [103], see Section 1.3.3,

M;(s) :Qi(s){Pn_l(s)Jri/(m Mi(s") sin 8i(s/)ds } (3.32)

T J e mgey2 [€06(8)[(s" — s —ie) s

and similarly for U;(s) and Vi (s). The first part ;(s)P,—1(s) solves the homogeneous unitari-
ty relation, where all inhomogeneities are turned off and therefore no left-hand-cut structure
contributes.

The Omneés functions [80] for S- and P-waves, respectively, are constructed from a dispersion
integral starting from the pion—kaon threshold s = (M, + Mx)?, including 7K phase shifts

s [ 0i(s")ds’
0;(s) = - 5. .
i(s) = exp {W /(1\47r+MK)2 s'(s" — s — i) } (3.33)

_ ¢1/2
50,1 = 50,1 ’
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2.0 2.5 3.0
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Figure 3.3: The modulus (red solid), real (blue dashed), and imaginary (green dotted) parts
and of the 7K Omnes solutions for the I = 1/2 S- (top panel) and P-waves (bottom panel) are
shown.
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Beyond a certain cutoff point so the phase shifts are approximated by

do(s) = 2w + (do(s0) — 2m) s0 = (2.1 GeV)?,

2
2

51(s) =7+ (6o(s0) — ) 50 = (2.3 GeV)?, (3.34)

such that they approach a multiple of 7 for large s, which translates to the Omnes function
behaving like ~ s~ for §; — n in the asymptotic s limit,

So(s) = 21 : Qo(s) ~1/s2,
01(s) =>m: Q(s) ~1/s. (3.35)

The phase shifts and resulting Omnes solutions are shown in Figures 3.2 and 3.3. In the low-
energy region /s < 1 GeV the Omnes solution for the P-wave exhibits a prominent peak due
to the K*(892) resonance, while there is little structure in the S-wave—a rather rudimental
rise is visible, adumbrating the broad x resonance.

3.3.1 Inhomogeneities

We obtain explicit expressions of the inhomogeneities in the framework of HMChPT. The
main concepts are briefly introduced in Section 1.2.2, and exemplified on the derivation of the
contributing tree-level processes depicted in Figure 1.4; diagrams (B) and (C) contain the ¢-
channel D*-pole terms. The application of HMChPT in the case of D-mesons is quite precarious
due to the handling of the charm quark as heavy; also the symmetry breaking by the kaon mass
involves a large uncertainty. We will therefore consider next-to-leading order contributions as
well. Furthermore, it was pointed out in Ref. [160] in connection with Bj4 decays that HMChPT
is only applicable for large values of s; and small s. Due to a smaller phase space in Dj4 decays,
the range of s; is restricted, \/s; < mp — Mg — M, ~ 1.2 GeV. An in-depth discussion on the
reliability of HMChPT in our approach and the challenges and issues involved is presented in
Section 3.5.

The form factors at NLO are calculated from the O(p) tree-level amplitudes Eq. (1.55),
which implies for the form factors F, G, R and H, defined by Eq. (3.8), to be of the orders
O(%), O(°), O(p), and O(p~1), respectively. We find

R 1 (fDmD _ fp.mp, v-(px — px) + p+ 811 + 8pk - pro1 + 16V pro

D 2FFi \ 2 2 v-(px +pr) + 1
9fp- (03 —v-p=mp-)  g*fp.mp, (P2(v-PK) + v Pr (K -Pr))
A+v-pr (A+wv-pr) (v-pr +v pr+ 1)
9*fp, WK - px — (v px) (V-PK)) 2819k - Pr + 2B29Mmv - prv - P
(A+v-pr)(v-px +v-pr+ 1) A+v-pr ’
(fp —2B1)mp gmp  fp=v-Dx+ fp-mp+ + 2810 pr + 2Bam. v pi
AF, Fi AF, Fy A+ pr ’
1 ( 2m2, 19 g2fD;mD;m2D >
AFFx \A4v-pr  (A+v-pr)(A+v-prg+v-prtp))’
1
Fee —— _9
AF Fr ((fD B1)mp

_ 9fp<(mp=v-pr + mp~mp) +2mp (81 + Bamp~mp) v - pk
A+U'p7r '

+

- 252m2Dv ‘Pr

G =

H=

(3.36)
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By means of Eq. (3.12) the pole and non-pole contributions to the form factors Fy, Fs, and
F5 in HMChPT are obtained. In analogy to Ref. [226] we replace the effective P, and P*
propagators by the full relativistic propagators to keep manifest Lorentz covariance and ensure
the correct analytic behavior,

1 B 2mp- k=pg 2mp-
E-v+ A (pp—k)2—m2. t—m%.’
1 _ 2mp, k;:pL—’—)pK B 2mp,
k-v+pu (pp — k)2 —m3, s1—mp,
1 2mp; k=p~{pK 2mp:
- : potprc DI 3.37
k-v+A+p (pp — k)? —m3,. s1 — M. (8:37)
and express the t-channel poles in terms of s and z, according to Eq. (3.3),
1 A, g
t(s,2) —mb. = XY (y —2) with y= Yo% <35052m2D* + T) = % (3.38)

Note that the numerators of the FP°'® and FP°' amplitudes also have an angular dependence
due to Eq. (3.3). It is therefore expedient to express the pole terms in the form

Flpole :CO +C1Z + C2Z27 Fonle €0 +§1Z7 Fpole _ '7
y—2 y—=2 —2)’
gmpx 2
o m[(@JrﬂzmQD*)[S — (Mg - } D—S1+8)
2As
+ 2sm% fp- <s—MK+M2+ —ﬂ
gmp-
=m0+ By ) [(4k M2 ) 4 -
+2X2(ME — M2~ )} +2m%fD*(P.L)s],
gmp- 2
= — P-L)Y *
G2 2F7TFK( )Y (B1 + BamD-),
mp- A,
6o =~ iy | O+ Bamb) (s Mk = 222 — sy oy + 22 ) 2w
¢ = gmp= (ﬂ ny 2 ) . ngDmD* ngDng; 3 (3 39)
CTaR e TR T R \smmy, ) '

The non-pole contributions read
- Xgmp fp- M2 — M2 —s mp
pron-pole 570D/ D™ _Y(P-L KO ) -9
L 45’5% YDz s iF, Fr P 2P

Fnon—pole _ _9 Fnon-pole —-0. A

The s; dependency of these form factors is of polynomial nature except for a pole (s; — m%z )~t

in the function v entering F?f’()le.
The partial-wave projections of the non-pole parts of the amplitudes, M;(s), Ui(s), and
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Vi(s), are obtained in analogy to Egs. (3.27) and (3.29). We identify

2 2
MHMORPT () :4;:??K{MK - M (fo—2B1) + (9fp — fo + 251)},

MFMChPT(S)_ mp {l(s+sl—m%)(fp—251)},

AF, Fr | 4
m
UYMT (s) = (o = 281).
VHMCRPT gy —(), (3.41)

These functions are labeled by HMChPT in order to distinguish from the dispersively recon-
structed amplitudes M;(s), U;(s), and V;(s) derived below, including a controlled final-state
interaction. These dispersive representations involve subtraction polynomials that have to be
determined. An approved ansatz to constrain these polynomials is to match them onto the
respective HMChPT non-pole expressions, see e.g. Ref. [126].

We observe that due to the non-vanishing difference in the pseudoscalar masses, the pure
pole-term-subtracted S-wave amplitude Mé{MChPT(s) has a contribution, which diverges for
s — 0,

M2z — M?

M§°(s) o< % (3.42)
while the full amplitude FJ**"P°(s) is a polynomial in the Mandelstam variables. This poses
a challenge for the matching approach. However, similarly to Ref. [219] we can get rid of that
singularity in the partial wave by rewriting the singular expression in terms of the scattering
angle cos 0k and the Mandelstam variables t and u according to Eq. (3.6). This entails on the
one hand a redefinition of the S- and P-wave,

MEMOPPT (5) = b [QfD* —fo+ 251},

4F F
5 1 X2
HMChPT .\ _ _ ™MD |1 —m2 - -9 3.43
My (s) IF Fr 4(3 + s —mp) + P (fp—2B1), (3.43)

and on the other hand additional contributions §My(s) and §Mj (s) to the inhomogeneities are
introduced, stemming from polynomial S-wave amplitudes in the ¢- and u-channels that are
projected onto the s-channel,

mp Mz — M2 - mp X2
- T (fp —2 SN (s) = —D 2
e s Up=28), 9Mis) = qpree o m2

§Mo(s) (fp —2B1). (3.44)

Hence, the singularity is shifted to the inhomogeneities, away from the non-pole amplitudes,
such that the subtraction polynomials can be matched to those. This procedure introduces poles
~ (s —m%)~! in the P-wave projections of the non-pole and pole contributions, MMChPT
and 6M; (cancelling in the sum M; + MIMCRPT)  The only nontrivial analytic structure in s
that resides in the final representation is due to these poles in MlHMChPT, 6M1, and 7.

Our next step is to derive the inhomogeneities, given by the partial-wave projected pole
terms, and supplemented by the contributions 5]\2011, Eq. (3.44). We notice that the integrals

in Egs. (3.27) and (3.29) have the form of Legendre functions of second kind,

Quy) = 1/ a4, 2 (3.45)

2) ., y—=z
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The lowest of those functions (I < 2) explicitly read

3y2 — 1 3

5 Qo(y) — Y- (3.46)

) = 3108 (1), @) =1Ql) -1 Qulo) =

Finally, the inhomogeneities can be written as

Wio(s) = [€o Qoly) + (G +2) Q1 ()] + 6E(s).

M (s) :%}Ey) [Co+y(¢ + )] — QC_Y + My (s),
U1 (s) =(& + &9)(Qo(y) — Q2(y)) — &1,
Vi(s) =+ (Qo(y) — Q2(v)). (3.47)

They are depicted in Figure 3.4 for a fixed dilepton energy s; = 0.8 GeV? =~ (mp — 1 GeV)2.
The coefficients /3, 2 that enter the amplitudes at NLO are determined in Appendix B.1, via
matching the NLO HMChPT expression of the D3 (D — wlv or D — Klv) or Bjs (B — 7lv)
form factors f4(t) that depend on the same parameters 1 2 onto a conformal parametrization.
Such parametrizations are provided by a BES III analysis from a fit to data [227] in the case
of the D;3 decays, and in the case of the B3 decay we refer to an analysis performed by the
Belle collaboration [228]. Whenever we perform explicit calculations or show figures we will
use the results as determined in FIT II. We evade propagating the errors on the LO couplings
and decay constants as the errors J3; on the couplings ;o are expected to dominate the
uncertainties. There is a considerable impact on the D4 partial waves induced by the errors
on the By 2. Therefore, the presented figures and the following numerical results have to be
understood exemplarily as a demonstration of our formalism rather than accurate predictions.
To improve the predictive power one would need to control the symmetry breaking effects and
the convergence of the NLO terms better.

It is visible that the inhomogeneities are real above the pseudo-threshold s = (M — M, )? =
s_ and that there is a singular behavior at s = s_. As discussed in Appendix B.3.1, where we
study the analytic properties of the inhomogeneities in more detail, the S-wave Mo(s) diverges
as Mo(s) ~ (s —s_)~ /2, whereas the P-waves M (s), Uy(s), and Vi(s) grow like (s — s_)~3/2.

3.3.2 Subtraction polynomials

For energies above the threshold, where the inhomogeneities contribute to the dispersion in-
tegral in the representation of the pole-term-subtracted amplitude Eq. (3.32), we assume the
inhomogeneities to be nearly constant in the physical region s < 1 GeV?2, see Appendix B.4 and
Figure B.11. Consequently, we need three subtractions in the case of the S-wave and two for
the P-wave amplitudes. Remember that in the dispersive representation we deal with functions
that are analytic except for the cut; following the discussion in Section 3.3 where a singularity
at s = 0 was revealed in MHMCPPT () we rename the amplitudes M;(s) — M;(s) (in analogy
to the regular amplitude ]\%{MChPT that is used for the matching in the following),
83 o MQ(
!/

A
Mo(s) =Q0(s) {ao +ays + ags® + — ) sin do(s)ds' }

s
T J M aai)2 [Qo(8)|(s" — s —ie)s™

. 2 o M (") sin 6y (s")ds’
M ol / / S_/ 1
1(s) =(s) {ao +ays + — ey (5 s —i)s? [
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Figure 3.4: The real (top panel) and imaginary (bottom panel) parts of the inhomogeneities
Moy(s) (green), M;(s) (purple), Uy(s) (red), and Vi(s) (blue), are shown with error bands due
to the uncertainties on ;2. The black line denotes the pseudo-threshold.
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We develop two approaches to constrain the subtraction polynomials. On the one hand
we demonstrate a direct determination in analogy to Ref. [126], which relies on matching the
subtraction polynomials to the non-pole HMChPT tree-level amplitudes. On the other hand
we aim for a representation of subtraction “functions” that depend on the squared dilepton
energy s; employing certain low-energy theorems. In every respect parts of the subtraction
polynomials are adjusted in order to ensure a proper high-energy behavior. The discussion of
the latter method is relegated to Section 3.4.1 and we focus here on the direct method.

At low energies the subtraction constants of low orders are those that dominate the sub-
traction polynomials. In particular ag, aj, af, bo, and ¢y can be determined via matching to
the HMChPT non-pole contributions, Eq. (3.43), most reliable at very low energies. While in
the context of the By decay [126], s = 0 was assumed to be a good matching point because
of the good convergence of the chiral expansion, the Dy, left-hand-cut structure extends to the
pseudo-threshold and it seems to be more plausible to match the amplitudes above that point.
In analogy to the subthreshold point in 7K scattering, s = M + M2 might be a better choice.?
As we match our amplitudes to tree-level amplitudes, where no rescattering is taken into ac-
count, we set Q;(s) = 1 (i.e. all scattering phases are set to zero), and only the subtraction
polynomial is considered. We find the following set of subtraction constants,

ap =MEMCEPT (A2 4 M2) =20.24 1.8,
afy =MPMCEPT (A2 4 Af2) = (—18.0 + 2.5) GeV?,

iMHMChPT

4 () smprz g arz = 134 £ 18,

al =
bo =UPMCRPT(Af2 1 M%) = 1344 1.8,
co =ViM™MOPT(ME + M7) =0, (3.49)

where the §; coefficients due to FIT II are taken, 57 = (0.25 + 0.02) GeV, £y = (0.05 £
0.02) GeV~L. The errors on the subtraction constants are propagated from the uncertainties of
the couplings 1 2, which are expected to dominate other uncertainties.

The remaining subtraction constants a1, as, b1, and ¢; become relevant at higher energies s,
such that it is appropriate to fix them in a sense that they enforce the requested fall-off of the
amplitudes at large s. According to Ref. [126], whose argumentation concerning the dispersive
representation of constant inhomogeneities is summarized in Appendix B.5, we choose the
subtraction constants as

a; =AQ0), ay=A <%Q(0) - 02(0)) : (3.50)

where A is the constant the corresponding inhomogeneity approaches. The first and second

2The choice of the matching point only affects the subtraction constants a}, as the P-wave J\;IPMCI‘PT is linear
in s. We observe that there is no significant discrepancy in the subtraction constants evaluated by matching at
s= M2+ MIQ( and s = 0. Note that in the case of nonzero matching points sg the subtraction polynomial is
expanded in powers of (s — sg)™; the numbers a/ presented here are then transferred to the polynomial af, +a} s
as given in Eq. (3.48).
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Figure 3.5: We depict the magnitudes of the partial waves fo(s) = Mo(s) + Mo(s),
X/(2Y)fi(s) = Ni(s) + My(s), g1(s) = Ua(s) + Us(s) and hu(s)/m = (Vi(s) + Vi(s))/m¥,
(the latter being rescaled due to a clearer representation, as well as the S-wave |fo(s)| in the
top panel). In the top panel the partial waves are derived with the FIT II results for the 3;
couplings (according to the numerical results shown in the main text), in the bottom panel the
FIT I results are used. The dilepton energy is fixed at s; = 0.8 GeV2.
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derivative of the Omnes function at the origin read

: Q 1 [ '

a0y = 22| _ —/ %) 4y,
ds f—o T J(MetMi)2 S

. d*Q : 2 > 5(s’

Q(0) = §S> :9(0)2+—/ %)ds’. (3.51)
ds* |, T J(Mz+Mg)? S

As the inhomogeneities are not exactly constant at tree level due to the perturbation of the
singularities from the left-hand-cut structure at the pseudo-threshold, a matching point s,, has
to be chosen, at which the inhomogeneities are evaluated to give the constant A; we choose the
mass of the K* resonance, s, = Mz.. With Q(0) = 1.12 GeV~2, Q;(0) = 1.22 GeV~2, and
Q0(0) = 2.43 GeV—* we find

a1 =My(sm) Q(0) = (—23.7+ 4.3) GeV™2,
ag =Moy(sm) (%QO(O) - 03(0)> =(0.840.1) GeV™1,

by =U1 (sm) 91(0) = (39.3 4+ 9.0) GeV~2,
c1 =Vi(sm) Q1(0) = (154.5 £ 6.6) GeV 2. (3.52)

Due to the linear nature of the HMChPT non-pole amplitude MAMCIPT the subtraction
constant af has been fixed by the low-energy matching. Hence the full M, subtraction poly-
nomial is determined, and no high-energy constraint has been implemented so far. To build in
the requested fall-off at large energies we calculate the constant a} in the sense of Eq. (3.50),
al = My(smm) 1 (0) = —14.6 & 3.3. We observe that this number is not compatible with the
value determined in Eq. (3.49). Consequently, the question arises whether the low-energy or
the high-energy constraint has higher priority, or whether it is suitable to combine both re-
sults and use their sum as proposed in Ref. [126]. To answer this question we employ a naive
unitarisation approach: we ignore any left-hand cuts, such that the terms in the bracket in
Eq. (3.48) reduce to a pure polynomial, given by the partial-wave projection of the HMChPT
non-pole term. The partial wave is then constructed by multiplying the complete partial-wave
projection of the HMChPT expression My + M, by the respective Omnes function in order
to build in the final-state interaction. This poses a criterion: the naively unitarised partial
wave should approximately match the dispersively constructed one. We observe that indeed
the implementation of both (low-energy and high-energy) constraints to fix af, i.e. taking the
sum of the above quoted values, yields the best agreement, hence we fix this constant to

ah = My (sm) 0 (0) = —1.2+1.4. (3.53)

The full partial waves are depicted in Figure 3.5. In order to illustrate the uncertainty
induced by the NLO couplings 3; we show the partial waves evaluated with the FIT I results as
well; a further discussion of the impact of the §; uncertainty on the partial waves is relegated
to Appendix B.1.2. Figures 3.6 and 3.6 illustrate the impact of the low-energy and high-
energy constraints that are used to fix the subtraction constants, and employed in particular
in the determination of aj. We show the partial waves with the full subtraction polynomials as
determined above (red, solid curves), without implementing the high-energy constraints (blue,
dashed), and without matching in the low-energy region (green, dotted). In the case of fi(s)
we additionally depict a curve (green, dot-dashed) where only the constant af, is determined by
means of the low-energy matching, but not the linear term. We finally compare these curves
to the naively unitarised partial waves (black, dot-dot-dashed). We observe that the set of
subtraction constants we developed above, including both low- and high-energy constraints,
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Figure 3.6: We depict the magnitudes of the various S- and P-waves (for fixed s; = 0.8 GeV?
and corresponding to to the FIT II results for the §; couplings) with modified subtraction poly-
nomials. They are compared to the respective partial waves obtained using a naive unitarisation
approach (black, dot-dot-dashed). The red, solid curves correspond to the waves and subtrac-
tion polynomials as discussed in the main text, the other curves show dispersively constructed
partial waves without implementing high-energy (blue, dashed) and low-energy (green, dotted)
constraints. We disregard the propagation on the ;2 errors for this illustration.

provides the best accordance. The agreement between the naively and rigorously unitarized
solutions is of astonishing quality—the neglect of left-hand-cut structures hence entails a rather
moderate effect, at least in regard to the considerable uncertainty due to NLO corrections in
the HMChPT amplitudes. We will come back to this comparison in Section 3.5.

We can further calculate the partial decay rate, Eq. (3.16), for a fixed s; = 0.8 GeV?2, shown
in Figure 3.8. The S-wave is formidably suppressed: integrating the full decay rate and the
S-wave contribution over s yields the S-wave ratio (for the specific s; we consider here)

R—wave < 0.5%, (3.54)

where the range is due to the uncertainty on the couplings ;. This ratio is an order of magnitude
smaller than the one obtained from the branching fractions published in the BES III analysis,
Ref. [225], Rg™® ... ~ 6%. The observed difference however is plausible due to the variability
of and integration over the dilepton energy, considered in the experimental analysis; there is no
evidence for assuming a stable S-wave fraction for different s;. Furthermore, there is a large
discrepancy between the ratio determined with the FIT I and the FIT II sets. For the FIT I

scenario we find REL T < 10%, hence in this case the S-wave has a considerable contribution
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Figure 3.7: In analogy to Figure 3.6 we compare the magnitudes of the various S- and P-waves
using the FIT I results of 31 2 to the respective partial waves obtained in a naive unitarisation
approach (black, dot-dot-dashed). The red, solid curves correspond to the waves as discussed
in the main text, the other curves show dispersively constructed partial waves without imple-
menting high-energy (blue, dashed) and low-energy (green, dotted) constraints. We disregard
the propagation on the 3 2 errors for this illustration.

to the decay rate. This is also evident in Figure 3.8, where in the FIT I decay rate a smooth
increase in the region of the « is visible.

We notice that the S-wave suppression in the FIT II constellation is even amplified compared
to the FIT I results (note the rescaling in the top panel of Figure 3.5). This is traced back
to the strong dependency of the inhomogeneities (and accordingly the dispersive integrals and
subtraction polynomials) on the S 5 coefficients. The dispersive representations Eq. (3.48)
before multiplying by the S- and P-wave Omnes functions, MZ(S)Q: 1(s), differ drastically for
the various fit configurations: for FIT I the considered sum is considerably larger for the S-
wave than for the P-wave, which has a compensating effect on the strong dominance of the
P-wave Omnes function over the S-wave one due to the K*(872) resonance. Considering the

peak region, where a difference in the M;(s)Q; ' (s) has the most significant impact, we find

‘Mg(s)Qal(s)

—21.9, ‘Ml(s)Qfl(s)

=78 forFITI,

— 2 — 2
S=M e (872) S=M e (872)

[¥10()25*(s)

~6.9, ‘Ml(s)Qfl(s)

=15.1 forFITII (3.55)

— a2 — a2
S=Mex (872) S=Mex (872)
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Figure 3.8: Differential decay width dQF/dsdsl, evaluated for s; = 0.8 GeV? and for the sets of
NLO couplings ; determined in FIT I and FIT II. The uncertainty band refers to the error on
the ﬂl

(this calculation is just of an illustrating nature such that we disregard the error propagation
here).

We finally investigate the stability of the partial waves determined in the dispersive for-
malism for varying s; in the vicinity of the considered energy. We rerun the calculations for
different s; with 0.7 GeV? < s; < 0.9 GeV2. The magnitudes of the partial waves for dilepton
energies 0.7 GeV? < s; < 0.9 GeV? (illustrated by the bands) are displayed in Figure 3.9, where
we have turned off the uncertainty on the couplings §; to visualize the effect of varying s;. The
effect of a variation in s; on the partial waves is rather small, in particular in view of the amount
of uncertainty induced by NLO corrections. Hence the existence of poles in s; — m?

()
not play a significant role in the s; region considered here. On the one hand, the poles are
well separated from the physically allowed region. There is a pole in s; — m2,. entering the

h1 partial wave via the f/l(s) inhomogeneity; for the largest value s; = 0.9 GeV? of the above
considered energies there is a gap of about 3.6 GeV2. On the other hand, h; enters the decay
rate Eq. (3.16) in a term oc X?|hq|?, we therefore investigate

X2 1 S m%* —m%
— = +O< . — . (3.56)

(51— m3 2 4 —mb, s -
S mD; S mD; S mD;

The closer the dilepton energy approaches the pole position, the smaller the s energy range
becomes, manifestly suppressing the contribution of the terms oc (s; — m%.)~!. Another pole

has been artificially introduced in the inhomogeneity M 1, which is closer to the physical region
(81 —m%|s=0.0 ceve ~ 2.6 GeV?), but still sufficiently separated. Furthermore, we expect little
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Figure 3.9: We show the magnitudes of the partial waves fo(s) = Mo(s)+Mo(s), X/(2Y) fi(s) =
M, (s)+Mi(s), g1(s) = Ur(s)+Ui(s) and hy(s)/m% = (Vi(s)+Vi(s))/m3, for dilepton energies
0.7 GeV? < 5, < 0.9 GeV? (illustrated by the bands). The error on (12 is set off. Note that
|fo| and |hq]| are rescaled due to a clearer representation.

impact from this term as the pole cancels in the combination M + M; such that it can only
contribute to the correction due to the left-hand-cut structure, being of moderate significance,
see the discussion above.

3.4 Connection to D;3 form factors

A digression to the semileptonic D — wlv (D;3) decay, connected to the Dyy decay by means of
low-energy theorems, not only provides a tool to confirm the form factor expressions, Eq. (3.36),
but rather allows us to extrapolate our analysis to the region of lower dilepton energies. So far
we assume s; to be fixed to a rather large value (we choose s; = 0.8 GeV? ~ (mp — 1 GeV)?),
as demanded in the modified Omnes formalism, used to obtain the dispersive representations
of the partial waves, Eq. (3.48), consisting of a dispersive integral and a subtraction polynomial
multiplied by the respective Omnes function. We develop a method to generalize the repre-
sentations Eq. (3.48) for non-fixed s;. The basic idea is that the subtraction constants are
strictly speaking subtraction functions, depending on s;, for which we propose a parametriza-
tion. For this purpose we exploit that the D;3 decay, having a simpler structure compared to
Dy4, can be well described in conformal variables with very low polynomials [229], employed
in certain experimental analyses, see e.g. Refs. [227,228,230-232]. Theoretical studies using
the light-cone sum-rule approach, lattice QCD, or dispersion theory yield useful and promising
constraints [233-235].

In the case of the S-wave we can even make a prediction how such a parametrized s;
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dependency explicitly looks like, combining the soft-pion and soft-kaon theorems, introduced
in this section.

3.4.1 Low-energy theorems

In analogy to the Callan—Treiman theorem for Kj3 decays, the D;4 hadronic decay matrix
elements, Eq. (3.8) fulfill two low-energy theorems, which connect the D4 with the D3 matrix
elements,

iFg (K™ [57,(1 = 75)e| DF) = (7% |[dyu(1 = 75)c| D) for pr — 0,

iFe (T K™ |37,(1 —v5)c| DT) =0 for p. — 0, (3.57)
where in the first expression an isospin rotation has been performed. This allows to express the
D4 form factors in terms of the D;3 form factors fy and f_, defined via

1

(n dyu(1 = 95)e| D¥) = == (b0 + pr)ufs + (D = pr)f-]- (3.58)

For px — 0 the relations read

V2E (F-G—R)=fy — f-+O(M}) and V2F

mp mp

R=fy+f-+0OME), (3.59)
while for p, — 0 we find
Fr 2 Fr 2
— (F+G—-R)=0(M2) and —R=0(M?). (3.60)
mp mp

For further investigations we take the sum of the respective two soft-pion or soft-kaon
relations, being independent of the form factors R and f_ (the information about those is
contained in the difference that is hence suppressed by the squared lepton mass),

V2Fy
D

m

Fr
—(F + G)|p, 0 = O(M2),
mp

(F = @lpeo = 2f+ +OME).  (3.61)
By taking the low-energy limits pr x — 0 naively, the Mandelstam variables reduce to
S|p7r:O = MIQ(’ t|p7r:O = m2D’ ulpw:O = 81,
8lpe—0 = M2, tlpr=0 = S, Ul pre—0 = M3, (3.62)

which in this form actually spoils the on-shell relation s + ¢ + u = 3s¢g. However, this relation
can still be satisfied: we can shift the Mandelstam variables by terms of orders O(M? ),
respectively, given that the low-energy relations are valid up to those orders. In that sense we
allow for the shifts s — s + af’KanK, t—t+ ag’KM;K and u — u + ag’KM£7K, with the
constraint a7™ + a3 + a3 = 1.

It is consequently not completely determined how to distribute the mass squares among the
Mandelstam variables. However, we establish three criteria that yield different, independent
constraints on the parameters ag’K. These are not necessarily compatible to each other, such
that we also need to investigate the impact of disregarding certain conditions in order to find
the best compromise.

First, the deviation from the exact soft-pion or soft-kaon point, given by Eq. (3.62), should
be minimal. From the explicit form of the HMChPT form factors at NLO, Egs. (3.36) and
(B.1), we read off the conditions

1

alf =0, afza?%alefaé(:i, ay =0, af =1-—a3, (3.63)
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which yield a cancelation among the various shifts and result in an exact reproduction of the
low-energy relations.

The following second and third criteria aim at the usability of the low-energy theorems:
the soft-pion and soft-kaon theorems are employed to find constraints on the yet undetermined
subtraction polynomials of our partial wave amplitudes; details and concrete calculations are
shown below. Transferring the low-energy theorems as given in Eq. (3.61) to relations that
contain the dispersively constructed partial-wave amplitudes My 1(s), Ui(s), and Vi (s) requires
to change the set of form factors (F, G) to (Fi, Fy), related by Eq. (3.12). For our second
criterion we demand that in performing this transition no artificial, significant corrections are
generated. Since the dispersive representation describes the pole-term-subtracted amplitudes,
there is actually no need to replace the complete F' and G form factors and we will apply the
following considerations for the pole-term-subtracted parts. In the soft-kaon limit the form
factor I} reduces to F} = X [F + f(a{(, aé()G}, such that

F—
¢ X

— (f(af,af) +1)Fy,  with  f(af,a5) = =1+ O(ME,). (3.64)
However, the neglect of O(M3-) corrections has to be examined carefully, since the kaon mass is
not distinctly small on the considered energy range (in particular compared to the pion mass)
and may yield quite considerable corrections. Indeed, expanding the function f(af,af)+1 in
the kaon and the pion masses reveals that the leading term is of order O(M2 /M?2),

2
faX afy = -1+ % (2af +2+O(M2)). (3.65)
™

The O(M?2) correction in the bracket contains a pole in s;, but it lies outside the physical
region, i.e. also when considering s; as a dynamic variable in the following this pole will not be
approached, ensuring the smallness of that correction. In order to achieve a minimal deviation
from the soft-kaon theorem in its original form, Eq. (3.61), we set af = —1, canceling the
otherwise large and therefore spoiling correction term. This value is not compatible with the
one given in Eq. (3.63) due to our first criterion. However, we decide to loosen the constraints
given there in favor of the second criterion in order to avoid the described large artificial
correction term; the O(M%) correction that enters via a deviation from the exact soft-kaon
point is at least theoretically well-founded. We have fixed aX = 0 as demanded by Eq. (3.63),
since we treat t-channel poles and the relations are therefore most sensitive to a shift in ¢t. This
implies af = 2, constrained by the on-shell relation. With these shifts the artificial terms that
enter the soft-kaon relation when changing the set of form factors are suppressed. At the same
time this choice of a€ yields an O(M2%) correction to Eq. (3.61) that is of a similar magnitude
as the correction term resulting from an evaluation at the soft-kaon point. In the soft-pion limit
the relation ¢|,.—o = m% holds such that the pole at ¢ = m3,. is approached very closely; the
denominator shrinks to O(mpA). Therefore any deviation from the original soft-pion relation,
Eq. (3.61), where the numerator cancels exactly, requires a careful treatment. We consider the
soft-pion analogon to Eq. (3.65), which is obtained by interchanging 7 <+ K and taking the sum
F + @ instead of the difference. Fixing a7 = —1 and aj = 2 in analogy to the soft-kaon case?
the term proportional to M2 /M3 cancels and the next correction is of order O(M2/(s; —m?%)),

which is sufficiently small (numerically confirmed).
As a third criterion we demand that the soft-pion and soft-kaon points should be chosen in
energy regions where a partial-wave expansion of the amplitudes is well-defined and an analytic
continuation of the partial waves into the unphysical region can be performed. A condition

3Concerning the first criterion, the sum F + G is s- and u-independent, such that this condition is met in
either case and the choice of a] and a3 remains unconstrained.
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precedent to the convergence of the expansion applies to the scattering angle: |z| = | cosOx| < 1.
For a detailed discussion concerning the function z(s, ¢, u) see Appendix B.3. We observe there
that the above choice of aT¥ is compatible with this criterion.

We end up with the modified soft-pion and soft-kaon points

— 2 2 _ 2 _ 2
SleZO - MK - Mﬂ" t|p7r:O =Mmp, u|p7r:O =S + 2M7l"

Slpre—o = M2 — M%, tlpe—0 =81, Ulpg—o=m% +2M}. (3.66)

Note, however, that we deal with certain criteria that yield conditions on the aiK’Tr that are
not directly compatible. We argue that the second criterion is the preferred one in order to
determine af* and af. This choice however implicates an error on a 50% level for the soft-kaon
relation compared to the exact relation, originating from the significance of O(M %) corrections,
which should be kept in mind.

The given set of shifted soft-pion and soft-kaon points allows to rewrite the low-energy
relations, Eq. (3.61), in a compact form: the pole-term-subtracted parts are given in terms of
the partial-wave expansion of Fi(s) according to Eq. (3.13),

O(M2) =FPole 4 Grole MP, __9mplpe sy g
(M) + Jr; () Ppx—0 2F, Fk oMot omnsz —ni2
Fx >
O M2 _ . [Fpole o Gpole 4 M P(z :H
(Mg) =f+ Tomo ;:0 1Pi(2) 0
F . N
—ppomrele — K [5No + Mo 3.67
* V2mp o+ Mo s=M2— M2, (3.67)

In the respective second steps the explicit expressions for the pole terms obtained in HMChPT,
Eq. (3.36), are inserted, which yields a cancellation between the D;3 and Dj4 pole terms in the
soft-kaon limit, and a constant term in the soft-pion case. Furthermore, the sum over partial
waves reduces to a contribution from the S-wave, the only surviving wave in the pr x — 0
limit. We assign two reasons for that. First, due to a chiral argument only S- and P-waves can
contribute at the considered chiral order; higher powers of the scattering angle are attributed
to terms o (¢ — u)™ that arise at higher chiral orders. Second, the scattering angle z =
cosOr, Eq. (3.6), evaluated at the soft pion/kaon points, Eq. (3.66), becomes z = O(M?2 ),
respectively; we evaluate z numerically at the specific points and find |z|,,—o < 0.03 and
|z|px—0 S 0.08. This implicates a suppression of all odd waves. The insertion of the partial-
wave expansion in the above relations is not trivial. If the low-energy theorems are evaluated
in the unphysical region it is mandatory to assure the convergence of the expansion, which is
restricted to certain regions in the Mandelstam plane, see the discussion in Appendix B.3.

Note that we aim for an expression of the subtraction functions of the redefined S-wave
amplitude Moy(s,s;), in order to have a direct cross check with the subtraction constants that
we have determined in Section 3.3 at a fixed s; = 0.8 GeV? ~ (mp — 1 GeV)?. We insert the
dispersive representation, Eq. (3.48), into Eq. (3.67) and solve the soft-pion relation for a(s;),
which allows to eliminate one of the subtraction functions,

ap(s
ai(s;) =— 10\521) — a(s))My — My T(My — M2, 1)
K
_ MO — M) — S e
Ou(ME — M) o
1 /°° Mo(s', s1) sin 6o (s")ds’
(

7 —— .
(S,Sl) T J ot i) |QO(S/)|(S/787’L'€)S/3

(3.68)
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The as(s;) function is already fixed in the sense of the constraints on the subtraction constants
presented in Ref. [126] and reviewed in Section 3.3 and Appendix B.5: as az(s;) is associated
with the highest power in s in the subtraction polynomial it is the dominant contribution at high
dimeson energies, and needs to be adjusted to ensure a proper high-energy behavior. The fixing
of as presented Appendix B.5 is based on the nearly constant behavior of Mo(s) at s <1 GeV?,
approximated by the constant A = MO(S), and is straightforwardly generalized to s; dependent
quantities. We find that a variation of s; yields a negligibly small distortion of the shape of the
inhomogeneities and mainly induces a constant shift, such that we remain at the assumption
of a nearly constant behavior in s, i.e.

as(s1) = Vo (sm, 51) (%QO(O) -~ 30)). (3.69)

Inserting Eqs. (3.68) and (3.69) into the S-wave My(s, s;), Eq. (3.48), yields
My(s, s;) Qo(s){ao(sl)<1 — %) — sMyx I(ME — M2, s;) + s I(s, 81)
K

2F, Fg

Qo(MF — MZ) - M

. . . SMo(M2 — M2) — 2nplp-
+ o550 (3690(0) — 93(0)) (5 — s — ok ) }
(3.70)

We can finally determine a parametrization for the unknown function ag(s;) from the matching
to the Dj3 form factor as given by the soft-kaon constraint in Eq. (3.67),

@ non—pOIE(sl) :QO(Mﬁ _ M?(){QGO(Sl) + MO(Sm, Sl)(QO(O) - Q(QJ(O))M;%

Fr °7F
+ MS (Z(M? — M%, s;) + T(MZ — M2, sl))} - %
—GMM@—M@—%%%})Q—%%%l%%)+wM@,
(3.71)
In the last equality we have made use of 6Mg(s) = —8My(—s). This formula is correct up

to orders O(M%, M?2) and smaller due to the validity of the low-energy theorems and the
NLO HMChPT expressions. So far we have kept also terms beyond that order, in order to
conceptually demonstrate the formalism. In the following we restrict ourselves to the specific
case and disregard terms of higher than quadratic order in the light meson masses.

The above expression is free of pole terms as they were canceled out due to the low-energy
relations, see Section 3.4.1. Therefore we choose a parametrization for fi(s;) of the following
form,

Frl(s) = —2 3 agz(s)", (3.72)
D* k

Sp—m
with the conformal variable z(t, tp) defined by

_ Vi -tV —to (3.73)
Vipg =T+ /T =t '

with tg =t, (1 —+/1 —t_/ty) and t4 = (mp % M,)?, for details see Appendix B.1. This repre-
sentation differs from the one presented there: only the non-pole part of fi (s;) is parametrized

Z(t, to)
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Figure 3.10: D;3 form factor f4(¢): the green band shows our proposed parametrization, where
the pole term is expressed in the HMChPT framework. The non-pole part is parametrized by
a polynomial in the conformal variable z, with the coefficients determined by matching to the
conformal parametrization as determined by the BES III collaboration (red error band).

by a conformal polynomial, while the pole-term contribution is added to the conformal poly-
nomial with the residue (cgy) fixed by the HMChPT expression.

The coefficients aj, are determined from matching the above proposed parametrization for
f+(s1) to the conformal parametrization determined in the BES IIT analysis [227]. Using a
two-parameter parametrization we obtain ap = 0.79 + 0.06 and oy = —2.1 £ 0.6 (performing
a three-parameter fit results in an as compatible with zero within the error margin and the
fit quality is not improved further). In Figure 3.10 the form factor f(¢) for both the BES III
conformal parametrization and our pole-term-separated conformal parametrization is depicted
with the respective error bands.

Putting pieces together we finally find a very simple conditional equation for the subtraction
function ag(s;),

ao(s)) = mp fD+251+29fD*< _QO(MT%MIQ())
T T VRE (M2 — M) 13F, Q0 (ME — M2)
9D+
+ 2\/§DFW + agp + alz(sl)} + O(M;K)
=0+ 712(s1) + O(M;K). (3.74)

With Qo(M2 — M%) ~ 0.80 and Qo(M3% — M2) ~ 1.34 we determine the coefficients ;
to v = 27.3 £09 and 73 = —31.7 £ 9.1. It is rather interesting to compare this result
to the one obtained in Section 3.3 where (at a dilepton energy fixed at s; = 0.8 GeV?, for
which 2(0.8 GeV?) ~ 0.1) the subtraction polynomials are matched in the low-energy regime
to the non-pole HMChPT expressions, resulting in ap = 20.2 + 1.8. We can even reproduce
the analytic expression for determining ag by means of matching if we set the phases to zero
(corresponding to Q;(s) = 1), and replace the conformal parametrization of fion‘pde by the
HMCHPT term. Evaluating Eq. (3.74) at the same dilepton energy s; = 0.8 GeV? we obtain
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a0(0.8 GeV?) = 23.7+1.9+0.5, where the first (second) error is due to the uncertainties on ag 1
(B12).* The comparison between both ansétze shows that they yield comparable results. This is
actually quite satisfactory, given the sources of uncertainty for our approach: on the one hand we
have made several rough estimations, such as neglecting corrections of orders O(M2, M3 ) while
employing HMChPT and the low-energy theorems, on the other hand some steps were though
well motivated not strictly constrained, e.g. choosing the fit region for the §; determination or
the evaluation points of the low-energy theorems.

In principle the aq(s;) subtraction function, Eq. (3.68), could be determined in a next
step by inserting the parametrization obtained for ag(s;), Eq. (3.74). However, regarding the
above mentioned concern of the validity of the HMChPT amplitudes up to corrections of or-
der O(M2, M?), we have a closer look at the rewritten low-energy theorems, Eq. (3.67). The
pole terms that enter these relations are only correct up to orders O(M2, M%). Evaluated
at the respective soft-pion or soft-kaon points, only the s-independent part of the subtraction
polynomial, ag(s;), contributes to the relations at the considered order. We therefore cannot
expect to obtain any reasonable numerical result for the a;(s;) function.

As a consequence the above determinations of the subtraction constants/functions should
not be regarded as high-precision predictions but we rather want to provide a method how one
can parametrize such functions. Further input is however highly demanded, in particular for a
more precise determination of the ; parameters.

3.5 Discussion and summary

The main area of concern in our analysis is of conceptual nature, originating from applying
HMChHPT in the case of Dyy decays, where the scale separation between the heavy decaying
meson and the light final-state mesons is not that stringent as it is e.g. in the case of the
By4 analysis from which we adapt the formalism. On the one hand mp < mpg, and on the
other hand the situation is even compounded by the kaon in the final state, with Mg > M.
For this reason it is up to debate whether the application of HMChPT in our analysis is
meaningful. Our attempt to increase its reliability by including NLO effects induces the problem
that such effects yield significant contributions, due to the slow convergence of the expansion
in 1/mp and the light meson masses/momenta. There is hence a considerable impact on the
D4 partial waves from tiny variations in the couplings induced by these subleading terms. We
discuss in Appendix B.1 the determination of the coefficients j3; 2, the coupling constants to
the semileptonic current in the NLO Lagrangian, as well as a detailed investigation how the
uncertainty in these couplings influences the dispersion integrals for the Dy partial waves. Two
issues thwart our attempts: first, the determination of the ;, for which we fit the HMChPT
D;3 and B3 form factors to data, using conformal parametrizations and theory input from
lattice QCD and light-cone sum-rules, exhibits a substantial uncertainty. We find e.g. a non-
controllable sensitivity to the chosen fit interval. Further, the fit parameters are strongly
correlated, inhibiting their disentanglement in the fits. Second, even if we could control the
uncertainty in these couplings better, we would have to deal with a considerable impact on the
D4 partial waves, where the uncertainty is even amplified, shown by the large error bands e.g.
in Figure 3.5.

A further point of criticism is that only a small phase space is covered (small s, large s;),

4There is a large uncertainty in the determination of the couplings f;, and the quoted error refers to the
uncertainty when using the 3; as determined in FIT II. We therefore quote the result in dependency on the
parameter 31 as well: ap(0.8 GeV?) = 17.841.94-23.631. For the less preferred set of 3; couplings corresponding
to FIT I we obtain ag(0.8 GeV?) = 25.1 & 1.9, and if the f3; corrections are set off, 8; = 0, the result is
a0 (0.8 GeV?) = 17.8 £ 1.9.
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such that it becomes less attractive for experimentalists to adopt our formalism. We therefore
tried to improve on this by extrapolating to smaller dilepton energies. We employed low-
energy theorems to find s; dependent subtraction polynomials. This turned out cautiously
satisfactory, as we were confronted with another major issue, which is generated by using low-
energy theorems. The soft-pion and soft-kaon theorems are valid up to orders O(M2) and
O(M2%), respectively. The same holds for the Mandelstam variables, i.e. the soft-kaon points
are given by s = M2 4+ O(M%), which is in particular problematic as My > M,. Hence it is
not fundamentally evident whether the soft-kaon theorem is evaluated at e.g. s = M2 (below
the 7K threshold) or s = M2+ 2M3% (well above the mK threshold). We have discussed several
constraints and criteria on how to choose the soft-pion and soft-kaon points: we demanded a
minimal deviation from the relations as evaluated at the exact soft-pion/soft-kaon points (which
are not used as we demand the on-shell relation to be fulfilled), as well as a reduction of induced
O(M} ) effects in the calculations performed in Section 3.4. However, these are no axiomatic
criteria and do not induce stringent and distinct conditions.

We are confronted with the issue that (similar to our concerns in the determination of the 3;
coefficients) even small fluctuations in the Mandelstam variables induce significant variations in
the D;4 amplitudes. These variations are even amplified when approaching the pseudo-threshold
s_ = (Mg — M,)?, where the Dy amplitudes become singular. For instance the original soft-
kaon point s = M2 is located in the unphysical region below the pseudo-threshold. If s is
(even marginally) shifted to larger values s > s_ the singularity is crossed, which completely
determines the behavior of the Dy, amplitudes.

As a consequence we refrain from our original proposition to rigorously control the final-
state interaction as presented in this thesis, supposed to deduce high-precision 7K phase-shift
information.

We conclude with three main statements: first, it is highly problematic to employ HMChPT
in high-precision analyses of decays of D-mesons due to the slow convergence, in particular in
the combination with kaons in the final states. Second, the extrapolation to lower s; by means
of low-energy theorems does not show great promise: on the one hand only constraints for the
(small) S-wave component can be derived, and on the other hand even for these constraints
the predicitveness is restricted by the validity of the low-energy theorems up to orders of the
squared light meson masses, such that there is freedom in choosing the evaluation point. Third,
a comparison between the fully dispersively constructed partial-wave amplitudes as presented
in this thesis and the partial waves obtained in a naive unitarization approach revealed a
good accordance, in particular in regard of the large uncertainties involved in the dispersive
treatment. In such an approach we have described the amplitudes by polynomials in s multiplied
by the respective Omnes functions. We have shown that linear polynomials in s should deliver a
sufficient amount of flexibility. Undisputably, our formalism has powerful merits like the model
independence and the inherent fulfillment of unitarity and analyticity. However, it involves a
degree of complexity that must not be overlooked. Therefore one might deliberate whether
a simplified version is more suitable. As long as the diverse uncertainties discussed above
inhibit an accurate treatment of the partial waves, we recommend the suggested simplified
approach of unitarizing the partial waves, which seems to attain a well-balanced compromise
of complexibility and benefit.



Thesis summary and outlook

In this thesis we have employed dispersion relations to analyze heavy-meson decays. The disper-
sive framework relies on a crucial correlation between scattering and decay processes: accurately
known scattering phase shifts serve as input to the dispersive construction of decay amplitudes,
exploiting the universality of strong final-state interactions and Watson’s theorem. This re-
dundantizes any modelling of resonant terms in the final-state interaction. Dispersion relations
hence provide a tight control of the strong final-state interactions in a model-independent way,
respecting the fundamental constraints from unitarity and analyticity. At the same time a thor-
ough understanding of the hadronic final-state interactions in decay processes delivers highly
valuable knowledge on scattering dynamics. This has been demonstrated very successfully in
the extraction of pion—pion scattering phase shifts and scattering lengths from K, decays,
measured with an impressive precision.

We have pursued both objectives, exploiting scattering data to constrain decay amplitudes,
as well as deducing scattering information from our decay analyses. We have exemplified this
concretely by the decays of heavy B- and D-mesons. In particular we have analyzed the
non-leptonic decays of a ngs-meson into J/1 and two light mesons, nt7x~, 7%, KTK~ or
K°K?Y and the semileptonic DT — 77 K~ITv decay. The pairwise rescattering of the final-
state hadrons as well as crossed-channel effects were described in an Omnes formalism. In the
considered B-meson decays the interaction of the light final-state meson pairs has been described
by scalar and vector form factors. The neglect of rescattering with the J/¢ is inspired by
phenomenological observations and symmetry-related arguments. For the scalar form factors
we pursued a coupled-channel approach, mandatory due to the strong coupling between the
S-wave mm and KK (7n and KK) in the isoscalar (isovector) case. We solved two-channel
Muskhelishvili-Omnes equations based on three input functions in the isoscalar case: the 7w
elastic S-wave phase shift, and modulus and phase of the 7w — KK amplitude. In the case
of the isovector scalar form factors we adopted the Muskhelishvili-Omneés equations as solved
in Ref. [140] that relies on unitarity and chiral constraints. For the pion vector form factor an
elastic approximation is well reliable. We used a single-channel Omnes representation for which
the elastic w7 phase shift serves as input. Isospin-violating effects due to the p—w mixing have
been taken into account without introducing further degrees of freedom as the strength could
be fixed from data of the pion vector form factor.

We established our framework on the decays Bgs — J/yntr~. Fitting the spectra to
LHCb data revealed fits of a similar fit quality as in the experimental analysis for energies
Vs < 1.02 GeV, yet with a significantly reduced number of fit parameters. A description
in terms of S- and P-waves, which are represented by the respective form factors multiplied
by real subtraction constants, is satisfactory. The benefit gathered by the regard for D-wave
corrections or linear subtraction polynomials is superfluous: D-waves become important at
energies near the f2(1270) resonance and higher, above the region considered here; allowing
for free linear slopes has an effect only for one P-wave component, and does not induce a
considerable improvement on the fit quality. Consequently, by studying the Bgs — J/prtr™



modes we assessed conspicuous benefits in our dispersive approach compared to the formalism
employed in former experimental analyses, where Breit—Wigner representations supplemented
by non-resonant background have been used. We achieved by construction unitarity, analyticity,
model-independency, and (in contrast to the Breit—Wigner parametrization) the correct phase
motion according to Watson’s theorem, without diminishing the quality of the fits. Quite on
the contrary the predictive power is enhanced given the reduced number of free fit parameters.

In a next step we employed these fit results in order to make predictions for the Bg —
J/p{nn, KTK~, K°K%} decay spectra and the B? — J/¢K+ K~ S-wave. The light meson
pairs in these channels are linked to the 777~ system by coupled-channel and chiral symmetry
relations, which can be transferred (as explicitly shown) to the full decay amplitudes. For B? —
J/YK*T K™, dominated by the P-wave ¢(1020) resonance, we obtained an S-wave contribution
of about 1.1%, which is compatible with the background determined in the LHCb analysis.
Since the kaons emerge from a purely isoscalar §s source, the non-strange decay modes Bg —
J/{nn, KT K~, K°K°} involve both the isoscalar and isovector scalar form factors, the latter
exhibiting a rather large uncertainty due to a yet undetermined parameter ;2. We recommend
an experimental exploration of these decays in order to constrain this parameter, mandatory
for an accurate determination of the 7nn scattering amplitude.

The second part of this thesis deals with the D;4 analysis. A motivation to study this decay
is its analogy to the K4 decay, which was employed for a highly accurate extraction of w7
phase shifts: the D4 decay might be used for a similar extraction of 7K phases. Also here
we employed the powerful tools of dispersion relations. In a modified Omnes formalism left-
hand cut structures have been approximated by pole terms. We have explicitly calculated the
corresponding exchange processes in HMChPT, which served as input simplifying the framework
of Khuri—-Treiman equations. According to the concern of the reliability of heavy-quark and
chiral symmetries in the case of D-meson decays and a final-state kaon NLO corrections in
the HMChPT amplitudes have been taken into account. A similar formalism was applied
in the study of B — wrlv [126], which we have generalized to unequal-mass mesons in the
final state. A delimiting factor of this approach is that it requires to fix the dilepton energy
s; to a large value, where HMChPT can be applied. We have developed a strategy how to
increase the covered phase space and to extrapolate the amplitudes to smaller s; by means of
parametrizing the s;-dependent subtraction polynomials in conformal variables. Certain low-
energy theorems supposed to constrain these functions have been applied in the case of the
S-wave. The predictive power however is impaired by several conceptual issues that have to
be faced when applying soft-pion and soft-kaon theorems in such a context, in particular on
account of the numerical significance of corrections of orders O(M%), evident in the choice
of the evaluation points of the respective low-energy theorems, as well as in the rather slow
convergence of the HMChPT expansion.

A promising project that is closely related to the B® analyses but not pursued in this thesis
is a study of the BY — J/¢7n decay in an analogous formalism. This process features a
purely isoscalar source providing an ideal basis to investigate isospin-violating effects, which
become evident in the phenomenon of ag—fy mixing. Furthermore, the extension to energies
above ~ 1 GeV has not been treated so far. This requires the consideration of further inelastic
channels in the scalar sector as well as higher partial waves. Data of a sufficient precision also
allows to accomplish an extraction of the scalar form factor in that energy range.



Appendix A

Supplements to the
B?i/s — J /19 M1 Mo analyses

A.1 Isospin basis and unitarity relations
Often the scalar form factors are defined as follows,

(01(@q)r| MiMa), = BYFiit 1, (s) (A1)

(further information on the scalar currents gg and the parameters BS’A are given in Sec-
tion 2.4.2), where the isospin basis is used. The isospin-0 pion and kaon states read

7Y g = ——= (I~ 1) + [} + [107%),  |[KE) g = —%uwm FIK°RY). (A2)

V3

A comparison with the form factors Bg’AFi’fl , (8) = (01(qq) 1| M{M3) , defined in Section 1.3.4
in the euclidean basis |[M{M3) (or using physical states, e.g. M; M, , respectively) yields
FaI=0(s) = \/31%41=9(s) and FLI=0(s) = v/2I'%"=%(s). The normalization constants we have
deduced by means of the Feynman—Hellmann theorem refer to those F']]\’fj?z (s).

The relation between the form factors in the isospin and the euclidean basis is meaningful for
the formulation of the unitarity relations. The partial waves (S-waves) that enter are defined
in the partial-wave expansions of the 77 — 7w amplitude 77 (s,2), the 7w — KK amplitude
G!(s,z) and the KK — KK amplitude R(s, z), given by

T!(s,2) =167 i(QJ +1)2th(s)Ps(2),
J=0

o0

G'(s,2) =167 Y (2] +1)V2g5(s)Ps(2),

J=0

R'(s,2) =167 Y (2] + 1) r}(s)Ps(2) (A.3)
J=0

(note the different symmetry factors v/2). From the above considerations one can deduce the
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unitarity relations
1
V3ImT, ~5 210 0, V3T + V293 ok V2T,
2
Im Fﬂ" Nt(o) UWﬂFW + % 98 UKKFKv

1
\/ﬁlmFK N§ \/598 O-7T7T\/§F7T + 7"8 O—KK\/§FK7

3
ImTk N% g(O) Onnln + 7‘8 oxkkl'K,

AV2(s,miy, miy,)

with OMi My = N (A4)
S

explaining the occurrence of the factor 2/v/3 in the isoscalar pion—kaon coupled-channel formu-
lation.

The corresponding relations in the isovector case follow analogously. The isospin-1 71 and
KK states read

ey = ), KRy, = f%uwm — |KOR®)), (A5)

from which F%/=0(s) = I'4,/=(s) and FLI=0(s) = \2r%L!=9(s) follows. The relevant partial

waves are defined in the expansions of the 71 — 71 and 7y — KK amplitudes

Ul(s,z) =167 Z(QJ + 1) ub(s)Py(2), V(s z)=16m Z(QJ—i— 1) vl (s)Py(2), (A.6)
J=0 J=0

and of the KK — KK amplitude R!(s, z). They are combined in the unitarity relations

ImI', Nu(l) Oy Ly + \/51)3 ok Ui,

V2ImT e ~V208 0y Ty + 76 06 T, (A7)

where the relative factor v/2 between the two channels appears.

A.2 Construction of an weak-interaction HMChPT La-
grangian

The concern of this appendix is to motivate the structure of the Lagrangian Eq. (2.90) in Sec-
tion 2.7.3, following Refs. [198,236]. It describes weak-interaction processes involving heavy
mesons, heavy quarkonia and light pseudoscalars. In order to properly implement the con-
straints from the heavy-quark (HQ) spin symmetry the operators Q1, Q2,' see Eq. (2.18) (we
suppress here the superscripts ¢ for the operators to avoid confusion with the HQ fields QZ’%,
that have velocities v, v and polarizations €, ¢), are written as Lorentz tensors (with two Lorentz
indices that will be contracted in the end),

Q1 =dvu(1 =)ty (1= — QY (v,v') =dy"(1—+°)Q% Q5" (1 —v°)Q5,

Q2 =7, (1 =)edy" (1=~  — Q5" (v,v') = Q5" (1 —~°)Q% dy (1 — 75)62(53- |
A8

IThe weak interactions are not invariant under HQ spin rotations, therefore the effective weak Hamiltonian
at the quark level (involving the operators @1 and Q2) is considered for studying the transformation properties.
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Under the velocity-dependent HQ spin rotations the fields Q% and Q¢, transform as

QY =" $¢ Qs
o= Qs (A9)
where v-e =" € =0, and the antiquark field Q¢, as
Q5 = Qu (=" ') . (A.10)

The resulting transformation properties of the operators Q{”(v,v") and Q4" (v,v’) must be
reproduced in the hadronic representation of the operator.

One can show that the operator @ is left invariant assuming that the matrices v*(1 — °)
and 7" (1 — 4°) transform as

YL =9%) = (A=) e,
V(AL =97) = =" L= (A11)
together with ¢* = — #¢" and e-e* = —1. It seems thus necessary that the matrices y*(1 —~°),

7" (1 —~°) appear in the effective hadronic Lagrangian. For the operator Q4" (v,v’) we consider
the spurion transformation of v*(1 —~%), v/(1 — 4°) under HQ spin symmetry to be

P =7") = =" A= Y

VA=9") 2(= )7 e (A.12)
The heavy-meson fields that enter the HMChPT Lagrangians, encoded in the two matrices?
1+ ¢ 1—y 1+
J = Tﬁ (v*ne— ) Tﬁ - Tﬁ (v°ne— ),
1+ *
m=21 ), (A.13)

exhibit the proper transformation properties under the spin rotations of the two heavy quarks,
Eq. (A.9),
H —~° ¢¢ H,
J =~y T, (A.14)
and under the spin rotation of the heavy charm antiquark, Eq. (A.10),
J = J(=5 '¢™). (A.15)

In addition to spin rotations the Lagrangian under consideration is required to behave prop-
erly under Lorentz transformations, which is achieved by implementing traces. The simplest
Lagrangian representation of the operator ()1 incorporates two independent terms,

LY = ATr (v(1—9°)Jy" (1 = +°)H)

+ ATy (ﬁ (1 — 75)[]71/(1 o 75)H) , (A.16)

and for the operator Q2 the Lagrangian has two independent terms as well, which have a double
trace form,
LY = BTr (7“(1 — 75)J) Tr ('y”(l — 75)H)

By Tr (y4(1 — 7°)J) Tr (# v*(1 — 4°)H) . (A.17)

2Note that the factor (1— 9’)/2 on the right of J is superfluous; due to v’ -% = 0 it can be moved to the left.
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Appendix B

Supplements to the D, analysis

B.1 Fixing the next-to-leading order couplings 3 >

B.1.1 Analysis of D;3 and B;3 decay form factors

The NLO correction terms induced by the Lagrangian Eq. (1.53) incorporate two new coupling
constants 7 and (2, which are unknown so far. For an estimation of those we employ that
from the same Lagrangian Eq. (1.53) we can calculate the HMChPT tree-level amplitudes for
the D3 decay, the form factors fi therefore depend on the same coeflicients (3 2,

Fo=— gfprmp- 1 fp—2p1 —2Bpp -px +O(% A)
* 2V2F, A+v-px 2V/2F, mp mp )’
. « —2A -2 «+201 —2 “Pr M, A
Fo= gfp- mp _ Jp—29fp- +201 —2Bopp - p +O<—,—). (B.1)
2V2F, A+v-px 2V2F;, mp’ mp

We consider the form factor f; and replace the effective propagator by the full relativistic one
according to Eq. (3.37). The considered correction appears in form of a linear polynomial,

1 ngD* m2 *
= — 28, — 2 ) - DT D ) B.2
f+ N (fD Br = Ba(mp — 1) e (B.2)
A parametrization of the D;3 form factor in terms of a series expansion in conformal variables,
which converges very quickly and which fulfills analyticity, is well reliable. The idea of such an
expansion is that the complex plane is mapped onto the unit circle, by mapping the variable ¢
onto the variable z by

I V) B3
Vi TtV o
with tg = t4(1 — /1 —t_/t;) and tx+ = (mp 4+ M;)%. This is illustrated in Figure B.1. The
physical region of the D;3 decay is mapped onto an interval z € [—0.167,0.167], shown by the
gray-shaded box.
An appropriate form factor expansion reads!

Z(t, ﬁo)

Fa(8) = ar(to)=*(t, to), (B.4)
k=0

1D decays are well described by such a simplified conformal parametrization, where a unitarity-entailing
function ®(t,to) that is often found in the literature is set to 1. Elaborated discussions concerning unitarity
bounds as well as effects arising from above-threshold poles can be found e.g. in Refs. [237-241].
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il
L

Figure B.1: We show the conformal mapping of the complex t-plane onto the unit circle. The
physical region for the D;3 decay is shown by the gray box on the real axis, with z(t_) < z <
z(t = 0) and |z(t-)| = |2(0)| = 0.167. The left-hand cut ¢ < 0 is mapped onto the positive
real axis (red). When increasing ¢, z(t) runs along the negative real axis until z(t4) = —1, and
moves along the unit circle for energies ¢ > t4 (blue).

as long as no sub-threshold poles exist, which is the case for the D;3 decay, where the lowest
pole appears just above the threshold (mp- — /Iy > 0) with a narrow width. Due to the
good convergence the series can be truncated at a low order kpax. A common choice of kpay is
kmax = 1 or 2.

We take the results of a BES III analysis [227], where a conformal three-parameter parametri-
zation is used, i.e. kmax = 2. There the coefficients of the series expansion are determined by
fitting to the data, yielding the form factor shown in Figure B.2 (solid red curve with error
band). Note that in the experimental analysis the decay D° — 7~ lv is explored, while we
discuss the isospin-related DT — 701y decay amplitude, differing by a factor v/2, however,
this is taken into consideration in the definition of the form factors fi in the hadronic matrix
element, cf. Eq. (3.58), such that the BES III and our form factors are in accordance.? Matching
the HMChPT expression, Eq. (B.2), onto the BES III form factor at an appropriate matching
point /region enables us to fix the constants 51 and f2. As HMChPT works best for large ¢ a good
choice might be the upper end of the physical region, ¢t < ¢_, although, the closer this region is
constrained the stronger a mismatch for lower ¢ shows up, i.e. matching for instance pointwise at
tmax = t— yields large discrepancies between the obtained HMChPT form-factor normalization
and that of the z parametrization. Therefore we consider two scenarios, choosing the region
2 GeV2 <t <t_ (FIT I) and the whole physical region 0 GeV? < t < ¢_ (FIT II), in which we
fit to the conformal parametrization. Of course, the latter choice is a stretch beyond the range
where HMChPT is thought to be well applicable, but it allows for a phenomenology-compatible

2For the direct comparison of our form factor parametrization to the one used in the BES III analysis we
take into consideration a relative sign due to different conventions concerning an overall phase factor.
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Figure B.2: D;3 form factor fi(t): the solid red curve with error band shows a conformal
parametrization as determined by the BES III collaboration. The other curves correspond
to HMChPT expressions with different 8; correction terms as determined in the fit scenarios
described in the main text: FIT I (green dotted curve) and FIT II (black dash-dotted), and the
HMCHPT pole term contributing at LO (blue dashed curve).

representation of the form factor, such that for instance the deviation in the normalization is
not too large.

For FIT I we find 31 = (0.31 £0.03) GeV and 32 = (—0.15 4 0.05) GeV~1, corresponding
to the dotted green curve of Figure B.2, and for FIT II we obtain §; = (0.25 £+ 0.02) GeV
and B2 = (—0.05 4 0.02) GeV~1, depicted by the black dash-dotted curve. The FIT II results
in particular reflect the purpose of the fit constellation: by construction the (; account for
a finetuning of the NLO corrections in the form factor normalization. Considering the §; fit
polynomial (in t), 281 + B2(m% —t) = B+ tf3', the constant term 3 is determined to cancel
with the fixed NLO terms, such that for FIT II ffLO ~ f%o. Exactly this constant part hence
differs in the various fit configurations.

Both fit results are of the same order of magnitude, but the results for the parameter 3y
differ on a 20% level, and those for 85 even more (though this can actually be partly traced back
to the correlation between both parameters—the correlation coefficient pg, s, is pg,3, > 0.9).
Unfortunately, even small deviations in the ; coefficients that enter the D;4 amplitudes cause a
significant impact on the latter as we show in Appendix B.1.2. This originates from the rather
slow convergence of the HMChPT expansion where the chiral symmetry is broken by the kaon
mass and the heavy-quark symmetry by the D-meson mass, both inducing large corrections,
see the discussion in Section 3.5.

It is therefore expedient to further constrain the determination of the S; by considering
other decay channels as well. The same HMChPT Lagrangian from which the D — wlv vector
form factor f(t), Eq. (B.2), is obtained yields the D — Klv vector form factor, being of the
same form as for D — wlv, with the replacements (pr, M=) = (px, Mk) and (Fx, fp,mp-) —
(Fr, fp.,mpx). Compared to the D — 7lv decay now the light meson in the final state is the
much heavier kaon such that HMChPT is less justified. We therefore refrain from fitting the
complete physical region but restrict ourselves to the region of small kaon momentum transfer,
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Figure B.3: D — Klv form factor fy(t¢): the solid red curve with error band shows a conformal
parametrization as determined by the BES III collaboration. The black, dash-dotted curve
corresponds to the HMChPT expression with the FIT III §; fit results.

1 GeV?2 <t <t_=(mp— Mg)% We employ a parametrization similar to Eq. (B.4), but take
into account a below-threshold resonant pole and remove the related dynamical singularity by
dividing by the Blaschke factor z(¢,mp-),

Folt) = " ax(to) 2t o). (B.5)
z(t,mp:) =

A fit to the BES III parametrization [227], shown in Figure B.3 yields 81 = (0.14 £ 0.05) GeV
and B2 = (0.02 £ 0.05) GeV~! (FIT III). Consequently, including the D — Klv channel does
not allow to further constrain the ; values but rather increases the uncertainty.

As alast fit configuration (FIT IV) we examine the B — 7lv decay. The benefit of this decay
is that due to mp > mp and M, < Mk the application of HMChPT symmetry is much more
reliable than it is the case for the D — {7, K }Hv decay channel, such that a good convergence
can be expected. Note that there is a dependencey on the heavy mass [75], B¥ ~ Vmp,

B~ 1/,/mp3 (we neglect here logarithmic corrections), such that 3P = \/mp/mpBP, 3P =

vmp/m D3 (. This has to be taken into account in a direct comparison of the fit result to the
former fits. Similar to the D — Klv parametrization the appearance of a subthreshold-pole is
taken into account by dividing out the pole term or z(t,mp~), respectively, see Eq. (B.5). We
hence rewrite the B — wlv vector form factor (obtained from Eq. (B.2) with the replacements
(fp, fpr,mp,mp~) = (fB, fB+,mp, mp~)) into such a parametrization, which we then fit to
the results of a Belle analysis [228], where a two-parameter BCL parametrization [237] is fitted
to tagged B~ — 7%~v and B — 7ti~v data combined with lattice-QCD results in the
high-t region (obtained by the FNAL/MILC collaboration [242]) and with light-cone sum-rule
calculations for ¢ = 0 [243]. The phase space for the Bj3 decay, 0 < t < t_ = (mp — M;)?, is
much larger than the D;3 phase space and it is a matter of discretion which energy region we
include in our fit. Instead of stating a criterion that determines the specific energy regions in
which we assume HMChPT to work reliably well, we consider different energy intervals in order
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Figure B.4: B — wlv form factor f4(¢): the solid red curve with error band shows a conformal
parametrization as determined by the Belle collaboration. The other curves correspond to
the HMChPT expressions with the §; fit results as determined in the fits FIT IVa (black,
dot-dashed), FIT IVb (green, dotted), and FIT IVc (blue, dashed).

to investigate whether this choice has a significant influence on the fit results. We perform fits
in the intervals tyary < t < t_ with tga = {14 GeVZ2, 18 GeV?, 22 GeV?} (FIT IVa-c), and
find the following sets of coefficients f;,

BY =(0.84 £ 0.06) GeV, B2 = (—0.09+0.01) GeV~! (FIT IVa),
BE =(0.96 £ 0.06) GeV, B2 =(-0.15+£0.02) GeV~' (FIT IVb),
BY =(1.14 £0.07) GeV, B5 =(—0.26+£0.04) GeV~' (FIT IVc). (B.6)

Hence the specific choice of tga,+ has indeed a considerable impact on the fit results, reveal-
ing discrepancies between the different values. The fit is shown in Figure B.4. There is a
significant difference between the HMChPT pole term, ff}\gSSPT (1 —t/m%.) = 1.12, and
the BCL parametrization, for which we determine the pole residue 0.75+. Evidently, the pole
strength predicted by HMChPT does not feature a good agreement with the BCL one, neces-
sitating large correction terms. This causes the huge discrepancies in the slopes of the various
parametrizations that we observe in Figure B.4.

We compare the determined values with the fit results of FIT I-III and take into consideration
the respective scaling with the heavy mass mentioned above. The range of the 51 obtained in
the B-decay thus translates to the range 0.46 GeV < BP < 0.72 GeV, which differs to the
values obtained in FIT I and II roughly by a factor 2.

We do not discuss a combined fit for the following reasons: in such a combined fit the B-
decay would dominate over the D-decay modes, due to the larger phase space, and in particular,
we would enforce this dominance by assigning a weighting factor on the B;3 distribution, given
its better control over the heavy quark flavor and chiral symmetry violations. We hence assume
the Bis fit results to be the most promising ones, and state at least bounds on the j; coefficients
respecting the range quoted in Eq. (B.6), BZ > 0.78 GeV, B < —0.08 GeV~!, but we cannot
provide a more accurate determination. These bounds are actually to be regarded as rather
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suggestive than strict bounds, respecting the strong correlation between the 3f that hence
cannot be disentangled properly.

We do not use these results to state bounds on the 8 couplings as proposed above—severe
symmetry violating effects in the D-meson decays need to be taken into account, causing a
lowering of these bounds, as seen in fitting the 32 directly.

Recently the BZB P coefficients were determined in Ref. [235], where the respective scalar B3
and D;3 form factors were fitted to data, combined with theory input. When comparing to our fit
results, we notice a sign difference in the definition of the ﬁip coefficients, ﬁfhit = —Bﬂthis work -
Facing the same challenge of correlated variables they show various possible (51, 32) pairs that
yield a similar fit quality. However, for the most data sets they find positive 3 values which
hence translate to negative coeflicients using our definition. Consequently instead of further
constraining or imposing stronger bounds on the BZB P this comparison yet enlarges the range
of possible BZB "D values and hence the uncertainty on the fits (and in particular the choice of
the best fit configuration).

We conclude that it seems very difficult to fix the NLO coeflicients to a sufficient precision,
given the inherent complication of symmetry breaking effects, the significant dependency on
tstars, and the strong correlation between 37 and 44 that entangles both parameters.

For the calculations performed in this thesis we will use the FIT II results. We resort to
the D;3 decay in order to avoid estimating the symmetry breaking effects in translating the
results from the B3 decay. The D;3 amplitudes are furthermore related to the D;4 amplitudes,
into which the (; enter, via the soft-kaon theorem. As a consequence the D;3-to-D;4 relation
not only relies on heavy-meson and chiral symmetry—it is less afflicted by assumptions and
hence theoretically better justified. An adjustment of the low-energy behavior seems to be
reasonable here because we find a quite bad compatibility between the HMChPT and the
conformal parametrization for small ¢t. At leading-order only the pole term contributes to the
HMChPT expression, shown by the blue dashed curve. The fixed part of next-to-leading order
expression (x fp) even worsens the deviation between the BES III and the HMChPT curves
gets larger. Therefore FIT II allows for a better adjustment of the §; correction terms in order
to somewhat compensate this NLO effect.

Nevertheless, all numerical results that depend on this coefficient should be considered as
a demonstration of our method for a particular set of input parameters, but not as powerful
predictions, given the uncertainty on these parameters and, in particular, the (unfortunately
large) effect of that uncertainty in the D;y NLO amplitudes.

B.1.2 Impact of the 3;; uncertainty on D4 partial waves

In this section we demonstrate the impact of the uncertainty of the couplings f; 2 on the
Dy, partial waves. For this purpose we consider the two fit scenarios FIT I and FIT II, for
which we have found 31 = (0.31 £ 0.03) GeV and B2 = (—0.15 £ 0.05) GeV~! (FIT I), and
B1 = (0.25 £ 0.02) GeV and 32 = (0.054 0.02) GeV~! (FIT II). The latter fit configuration
we have assessed to most likely show promise for determining a meaningful set of couplings
(see the discussion in the previous section). Even if we restrict ourselves to those two sets and
disregard a further spreading of the f3; interval (as it is indicated by considerations of other fit
configurations), we face relative errors on a 10 to 40% level. Given such a large uncertainty it
is mandatory to study to what extend our dispersively constructed partial waves, Eq. (3.48),
are affected.

To begin with we investigate in which combinations the §; coefficients enter the pole and non-
pole terms in the Dyy amplitudes. The pole terms FP°'° and FP°'°, Eq. (3.38), have contributions
o B1+Bam?., evaluated to (—0.30+0.23) GeV in the FIT I configuration and (0.0540.10) GeV
in the FIT II one. Exemplarily we consider the functions {y and {; that appear in the numerator
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Figure B.5: The figure shows the functions a;(s) and b;(s), defined by (i(s) = (81 +
Bam%.)ai(s) + bi(s), for i = 0,1. The (;(s) contribute to the numerator of the pole term
FP°' Eq. (3.38). The blue curves depict the contributions to ¢y(s), Ys2ag(s) (blue, dashed)
and Ys2bg(s) (blue, dot-dashed), and the red curves refer to ¢i(s), 2Xsai(s) (red, dashed)
and 2X sby(s) (red, dot-dashed). A very rough approximation yields a;(s) ~ 2b;(s) above the
7K threshold (indicated by the gray line). Kinematical singularities have been factored out to
achieve a clearer representation.

of FP°'® Eq. (3.38), and that have the structure ¢;i(s) = (81 + B2m3.)ai(s) + bi(s); they are
depicted in Figure B.5, where we compare the terms a;(s) and b;(s). We observe that the
respective (3; independent parts b(s) are of similar magnitudes as the terms a;(s), such that
the various values obtained for the /3; combinations indeed cause significant variations. If we
approximate a;(s) ~ 2b;(s) (this is motivated by Figure B.5), the two fit results yield the
functions 0.4b;(s) and 1.1b;(s). Hence the even relatively small variation in the §; values (at
least compared to the large variation if further decay modes are considered) propagates to
effects in the Dy, pole terms that completely determine their structure.

To the non-pole expressions at NLO, Eq. (3.43), employed for the matching of the sub-
traction polynomial in Section 3.3, only (; contributes, in the combination fp — 26;. For
simplicity we consider MAMCIPT and UAMCRPT (heing proportional to fp —2/3;) and find that
the variation between the FIT I and FIT II 3 results cause a 30% relative error.

The full partial waves (their magnitudes) evaluated for the FIT I and the FIT II sets of 31 2
are displayed in Section 3.3, Figure 3.5, with the uncertainty bands induced by the ; error
ranges. For both fit results we find a strong effect as the partial waves exhibit large uncertainty
bands, most prominent in the K*(892)°. Combining the FIT I and FIT II uncertainties we
observe e.g. a relative error of roughly 70% in the M;(s) peak region. Also the magnitude and
the shape of My(s) are influenced sizably.

B.2 Low-energy theorems in HMChPT

In this appendix we apply low-energy theorems to the HMChPT tree-level amplitudes at NLO,
see Section 1.2.2, serving as a confirmation of the calculated Dyy and D;3 form factors. In par-
ticular the soft-pion and the soft-kaon theorems that entail certain relations of combinations
of these form factors in the kinematical limits p, — 0 and px — 0, as introduced in Sec-
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tion 3.4.1, have to be fulfilled. We evaluate the form factors F', G and R defined via Eq. (3.8)
from the tree-level amplitudes Eq. (1.55) and calculate the combinations in the respective limits
according to Egs. (3.59) and (3.60). For p, — 0 we find

2mpMimfp,
FrFg (v-pk + )

2mpMmfp,
FWFK(U'pK+N)

F4+G—=Rlp. 0= =O(M3), Rlp,~0= =0(My),

(B.7)
thus satisfying the soft-pion theorem. For px — 0 the combination reads

F7G7R|p1<%0

mp gfp=mp 21 (4 mss) M, A
= _ e — f, 2T Rs) L g ol =2
2F7rFK ( U'p7r+A ng st V- pr A+ + 61+ ; )

mp Mmp
mp gfp+A 2A1( + my)
R __ _ pp, AR Ts) — 2Bpp pr — gfpe ) -
lpx—0 SF Fy (v-p,r—i—A fp. v pr i + fp — 2B2pp -px — 9fD

(B.8)

This is compared to the sum and difference of the D;3 form factors fi, defined via Eq. (3.58),

1 ng*A fD —ng* —QBQPD'pﬂ— (Mﬂ— A )
G f=— = ro(=—= =
Jr g V2F, v pr + A V2F, mp’ mp
1 gfp-mp  —gfp-+25 <M7r A )
= +o—= = B.9
fe =1 V2F, v-pr+ A V2F, mp’ mp (B.9)

exhibiting that the D;3 and D;, form factors differ by a correction

fo.mp, A (ms + M)
FWFK(U'pw+N)

hence the soft-kaon theorem is fulfilled as well.

o Mz,

B.3 Analytic properties of kinematical functions

In this appendix we have a closer look at the analytic properties of some kinematical functions
defined in Section 3.2, with a particular interest in their behavior below the wK threshold. This
is mandatory to investigate e.g. whether the partial-wave expansion Eq. (3.13) in the unphysical
region converges.

To begin with, we consider the analytic continuation of the square root of the Kéllén function
(s, M2, M%), from which we learn about the analytic structure of the K center-of-mass
momentum Y (s). In Figure B.6 \(s + ie, M2, M%) is plotted in the complex plane. Above the
7K threshold (blue curve) both its real and (tiny) imaginary part are positive. Approaching
the region below the threshold, s < (M, + Mg)?, A(s+1ie, M2, M%) runs into the real negative
region, still in the upper half plane (red curve). Further decreasing s, a sign change in the
imaginary part happens at s = M2 + M#, the real part still being negative (green curve),
until the energy is lowered to below the pseudo-threshold s = (M — M;)?, where the Kéllén
function runs into the fourth quadrant (orange curve). The square root of that function is
positive-real in the scattering region s > (M, + M )?. The cut of the square root is commonly
taken on the negative real axis, such that the demonstrated encircling of the origin demands to
continue the square root function on the second Riemann sheet. Consequently Y (s) must be
negative-real for energies below the pseudo-threshold. An analogous encircling of the origin is
observed when considering the function (s, m%, s;), which yields the requirement to continue
the function X (s) on different Riemann sheets, resulting in the prescriptions Eq. (3.7).
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Figure B.6: The Killén function A(s + ie, M2, Mz) (¢ = 0.01) is plotted in the complex plane
for several s regions: s > (Mg + M;)? (blue curve), M2 + Mz < s < (Mg + M;)? (red curve),
(Mg — My)? < s < M2+ Mz (green curve), and s < (Mg — M,)? (orange curve).

The product X (s)Y (s) enters the kinematical function y(s), Eq. (3.38), shown in Figure B.7.
Due to the zeros in the kinematical functions X and Y the function y(s) diverges for s =
(Mg + M,)? = 5. Expanding y(s) around these points yields

(s) (G (5= 50) 72+ O(s — 54)'2, near s = sy,
Yyis) =
—i(C ) (s —5)"Y2 4+ O(s —s_)Y/2, nears=s_,

with

A\L/2 (sl,m%,si) Mg M, <0
(My + M) {FmE My — s;My + (Mg £ M) (m%. £ MgM,)} —

C+ = (B.10)

We consider next the scattering angle z(s, ¢, u) in dependency on the Mandelstam variables,
Eq. (3.6), with a particular interest on its motion in the unphysical region, supposed for study-
ing the convergence behavior of the partial-wave expansion, demanding |z(s,t,u)] < 1. In
Figure B.8 we show the regions in the Mandelstam plane (¢t — u versus s) that comply with
this requirement, by means of a density plot of the magnitude of the angle |z(s,t,u)| in the
vicinity of the physical decay region. Expectedly, there is an overlap with the decay region
(black encircled shaded area, compare also to Figure 1.5). In addition there are areas in the un-
physical part of the Mandelstam plane, complying with the required bound on z(s,t,u) (green
encircled). Once an amplitude is expanded into partial waves at unphysical energies hence a
careful consideration is mandatory whether the considered energies are located inside such a
shaded area in the Mandelstam plane.

B.3.1 Analytic properties of the inhomogeneities

In Section 3.3 we perform a partial-wave decomposition of the Djy pole terms to derive the
inhomogeneities, Eq. (3.47). These are expressed in terms of Legendre functions of second kind
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Figure B.7: The real (solid, red curves) and imaginary (blue, dashed) parts of the kinematic
functions X (s)Y(s) (left panel) and y(s) (right panel) are shown.

Q1(y), Eq. (3.46). The purpose of this appendix is to study of some analytic properties of the
inhomogeneities in order to understand the singular behavior at the pseudo-threshold. We also
discuss the difference to the equal-mass case, where both final-state pseudoscalars are pions,
see Ref. [126].

The lowest of the Legendre functions, Qo(y), involves the logarithm of (y(s) — 1)/(y(s) +
1) (and by means of the recursion relations those for higher | do as well). Taking up the
discussion of the previous section, where we considered the function y(s), we investigate the
analytic behavior of (y(s) —1)/(y(s)+ 1) to obtain the proper analytical continuation of Qo (y)
into the unphysical region. Assigning a tiny imaginary part ie to the variable s, the function
(y(s +ie) — 1)/(y(s + ie) + 1) is plotted for several energy regions in Figure B.9 (left panel).
In the physical region above the mK threshold the function runs from the first into the fourth
quadrant. Lowering s to below the threshold the function approaches the third and at sg
(determined by Imy(s) = 0) the second quadrant. The encircling of the origin demands to
copy the complex plane when considering the logarithm of that function. Hence at s = sy,
Qo(y) moves onto the second Riemann sheet. This is illustrated in the right panel, where the
real and imaginary part and the argument of (y(s) —1)/(y(s) + 1) (twice the imaginary part of
Qo(y)) are depicted. In the physical region the argument is zero, while below the threshold it
falls to —27r. Consequently, at the pseudo-threshold the imaginary part of Qo(y) is nonzero.

The real part of Qo(y) diverges for s = 0 and if y = —1, the latter corresponding to two

solutions

1 9 (m2, — M2)(s; — M%) | /A(si;, ME,m2.)\/A(m%, M2,m2,.)
S12 == |3sg — m7H. — +
s 2 D 2 2
m., m,

(B.11)

As the higher Legendre functions @1 (y) and Q2(y) emanate from Qq(y) by multiplication with
y, which diverges for s = (M 4 M;)? = s1 due to the zeros in the kinematical functions X

and Y, there might in addition be singular behavior for Q;(y) and Q2(y) at the pseudo- and
the normal threshold. Expanding around s = s yields

nears = S4;

= () s =5 )2+ O(s — 5 )1,
= () (s - 50) 7+ O(1),

nears = s_, (B.12)
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Figure B.8: We show the magnitude of the scattering angle z(s, ¢, u) depending on the Mandel-
stam variables in a density plot with ¢ —u versus s. The regions for |z(s,t,u)| > 1 are excluded.
There is an overlap with the physical decay region, shown by the shaded, black encircled area.
The regions that obey z(s,t,u) < 1 and lie in the unphysical region are encircled by a green
curve.

where (_ is defined in Eq. (B.10). We find that the singularities cancel at s = s, but due to
the non-vanishing imaginary part of Qo(y) at s_, they survive at the pseudo-threshold. From
Eq. (3.47), by counting every power of y and inverse power of Y as O(s — s+)/2, we find that
the inhomogeneities are regular at threshold, but behave according to

Vi =0(s —s_)7%/2, (B.13)

at the pseudo-threshold.

B.3.2 Comparison to the equal-mass case

In Ref. [126], where the two final-state Goldstone bosons have equal mass (two pions), it is
found that at the pseudo-threshold (i.e. at s = 0) the inhomogeneities MO, U], Vi display
singular behavior of O(s)!/2, while M; has a singularity of O(s)3/2. We consider briefly the
equal-mass case (denoted by the superscript “eq”) in order to understand these discrepancies.
The main point to remark is that in the equal-mass case, the kinematic function Y'(s) reduces
to o (s) = \/1 — 4M2/s. Consequently, near the pseudo-threshold y°4(s) behaves like O(s)'/2,
whereas in the non-equal-mass case y(s) diverges as O(s — s_)~'/2. Expanding the Q$%(s)
around s = 0, we find Q5%(s) = const + O(s)/2. Further, by means of Eq. (3.47) and the
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Figure B.9: Left panel: the function (y(s + i€) +1)/(y(s +i€) — 1) (e = 0.01) is plotted in the
complex plane for several s regions: s > s¢ (blue curve), 0 < s < sg (red curve), and s < 0
(orange curve on the real negative axis); so solves Imy(s) = 0. Right panel: the same function
is plotted as a function of s; we show the real part (solid, red), the imaginary part (dashed,
blue), and the argument (dot-dashed, green). The latter is zero in the physical region (above
the wK threshold), and is analytically continued to the unphysical region, where it reaches a
constant value —27 below the pseudo-threshold. The (pseudo-)thresholds are indicated by the
dashed gray lines.

appropriate behavior of y°4(s) and Y°4(s), we recover the above mentioned square-root behavior
of the equal-mass inhomogeneities.

There is also a discrepancy in the way the inhomogeneities modify when going from the
equal-mass to the non-equal-mass case, as they do not change “synchronously”. That is, in the
equal-mass case, the inhomogeneities Moeq, U e Ve all have the same square-root behavior
at pseudo-threshold, while in the non-equal-mass case MO is of a different order compared to
U1, Vl, while the latter now show the same behavior as Mj. However, this becomes plausible
when comparing the behavior of the Legendre functions—all Q;%(s) behave the same way in
the case of equal-mass particles, but this is not the case for the non-equal-mass functions Q;(s)
(e.g. due to a cancellation of constant terms etc.). That is, U, and V; show a different pseudo-
threshold behavior due to a contribution from @2(s). On the other hand M1 behaves like U1
and V7, because the lower order in (s — s_) in the “non-Legendre” part of M, (compared to U
and Vl) is compensated by a higher order in Q1(s).

B.3.3 Analyticity aspects when applying low-energy theorems

In Section 3.4.1 we apply certain low-energy theorems that constrain the Dj4 amplitudes at
specific (unphysical) points in the Mandelstam plane. We aim for constraints on the partial
waves and therefore investigate in this appendix whether a partial-wave expansion is appropriate
at these points. As an example we examine the soft-kaon relation, where the D;3 form factor
f+ is matched to a Djy form factor combination, and consider the original soft-kaon point
SSKp = M,% < s_, tskp = Si, USKP = mQD. Naively evaluating the Dj4 expressions for s = sskp
yields an imaginary part, while fy is real.

The origin of the described inconsistency can be understood by studying the analytic struc-
ture of the partial waves themselves. Counsider e.g. the Legendre function of second kind Qo (y),
depending on the kinematical function y(s), Eq. (3.38). The unphysical region is reached via
an analytic continuation, where Im Qo(y) = arg((y + 1)/(y — 1))/2 is continued to the second



B.3 Analytic properties of kinematical functions 123

10
195 5 1.0
1.00 0.8
0.75 gos
0.50 0.4
0.25 0.2
0 0
—10 5 0 ) 10
ak — a¥f a3 —az
Figure B.10: We show the magnitude of the scattering angle z(a]'™,a3™ — aj’™) evaluated

at the soft-kaon (left panel) and soft-pion (right panel) points Eq. (3.62), which shifted by
af’KMﬁ,K (supposed to retain the on-shell condition s+t+wu = 3sg). We depict the dependency
of |2(aT™,al™ — aZ™)| on the shift parameters aT"™ and a3"™ — aj'® in a density plot,
excluding the regions for |z| > 1. The black curve contains those soft-kaon and soft-pion points,
respectively, that are allowed by the on-shell constraint (transferred to the shift-parameters)

K K K K
a;” +ay” 4+ a3 =1, where we fix a3’ = 0.

Riemann sheet and approaches —7 below the pseudo-threshold, see Figure B.9 (right panel).
Hence, this implies an imaginary part for the D4 partial waves below the threshold, in particu-
lar at the considered soft-kaon point. However, the soft-kaon theorem states a relation between
the D;3 and Dy, amplitudes if the kaon dynamics in the D;4 decay is switched off, px — 0. If
we take Mg — 0 the energy interval between the mK threshold and pseudo-threshold shrinks
to one point (implying a jump by 7 in Im Qo(y)) and the function (y + 1)/(y — 1) does not
encircle the origin as shown in the left panel of Figure B.9. We propose to consider the Dy
partial waves in the physical region (where they are real) and then apply the limit px — 0
directly, such that the analytic continuation to the second Riemann sheet is avoided.

We take up the discussion of Appendix B.3 and observe that the exact soft-kaon point
(s = M2, t = s;, u=m?%) lies outside the shaded areas (not shown in Figure B.8), such that
an expansion in powers of z(s,t,u) is not meaningful. Nevertheless, this issue is fixed as there
is freedom to shift the Mandelstam variables by orders O(M%). We introduce in Section 3.4.1
the shifted soft-kaon points s = M2 + af M2, t = s; + ak M2, u = m% + aff MZ supposed to
retain the on-shell condition s+t +u = 3sp, which implies af + af’ + af = 1, used to eliminate
one parameter. At the same time these shifts exhibit two yet undetermined degrees of freedom.
The provided flexibility enables us to impose criteria to constrain the remaining parameters
as well, such as demanding the soft-kaon point to match an energy region where |z| < 1. To
investigate the implications on the XX we evaluate |z(s,t,u)| at the shifted soft-kaon point and
show |z(a¥, aX —af)| as a function of the aX in Figure B.10 (left panel). We furthermore depict
those points that are allowed by the on-shell constraint, where we restrict ourselves to solutions
where ¢ remains unshifted, such that aX = 0, as motivated in Section 3.4.1, hence a¥ = 1—aff.
In the right panel we depict the analogous dependency of the cosine of the scattering angle
on the shifted soft-pion point |z(aT,a] — af)|. We observe that particularly the soft-kaon and
soft-pion points that are proposed in Eq. (3.66) (7" = —1, a3 =0, ag’K = 2) coincide with
regions where the requirement |z(s,t,u)| < 1 is fulfilled.
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Figure B.11: Inhomogeneities My (s) (red), Mi(s) (blue), Ui(s) (green) and Vi(s) (black) de-
picted in the scattering region (M, + Mf)? < s <1.2 GeV2.

We conclude that when applying low-energy theorems to partial waves in a first step one has
to assure that the partial-wave expansion is valid at the respective evaluation point. Further-
more, the analytic behavior must be treated carefully and reexamined to ensure e.g. a correct
continuation to Riemann sheets.

B.4 Order of subtractions

We examine the order of the subtraction polynomials, required for the dispersive integral to
converge. In addition to the large-s behavior of the Omnes function the asymptotic behavior
of the inhomogeneities has to be investigated, see Table B.1. In the top line the behavior of
the full inhomogeneities for large s is given, while in the middle only the leading order in the
heavy-meson approximation is considered, i.e. the inhomogeneities were first expanded in 1/mp
and subsequently in 1/s. When comparing this with Figure B.11, it appears that this large-s
behavior sets in at higher energies and that the inhomogeneities are nearly constant in the low-
energy regime s < 1 GeV? we are interested in. Thus assuming nearly constant inhomogeneities
we need three subtractions in the case of My(s) and two for the P-wave amplitudes. In order
to estimate the constant A, the inhomogeneities are evaluated at a specific matching point s,,,
A= Mi(sm), and are approximated by that result over the considered energy range.

However, one could raise concerns over that assumption, as it originates from a rough and
rather hand-wavy estimate. Once the proposed method is adopted to high-precision studies
with an anticipated predictive power, further criteria should be established to quantify the
assumption of constant behavior, or at least examine to what extent the results are affected
if either a linear behavior is assumed or the matching point s,, at which the amplitude is
evaluated is slightly shifted.
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Mo(s) Mi(s) Ui(s) Va(s)

s — 00 logs slogs 1/s 1/s
subtractions 3 3 1 1
5 — 00, mp — 00 1/+/s const 1/y/s 1/\/s
subtractions 2 2 1 1
s <1 GeV const const const const
subtractions 3 2 2 2

Table B.1: Large-s behavior of the inhomogeneities (top line), large-s behavior in the heavy-
meson approximation (middle line), and behavior for the region of interest, s < 1 GeV (bottom
line), together with the minimal order of subtractions required for convergence of the dispersive
integral.

B.5 Dispersive representation of constant inhomogeneities
A partial wave f(s), which is a constant A at tree level, is written as
F(s) = AQ(s). (B.14)

On the other hand the partial wave is given by an expression as in Eq. (3.32),

s [ Asind(s')ds’
f(8)=Q(s)ap+ars+ - +a, 15"+ — T () —— (B.15)
T J(Mp+Mg)? 1Q(s)|(s" — s — i€)s
which coincides with Eq. (B.14) when fixing the subtraction constants in an appropriate way.
Therefore the dispersive representation of the inverse of the Omnes function is used,

Q7 1(s) =1—Q0)s — s /(Oo __sind(s)ds’ (B.16)

My +Mpg)? 1Q(s")[s"2(s" — s)

in the case of an Omnes function falling off as ~ 1/s (as for the P-wave), and

) .. ) §3 [ sind(s’)ds’
Q~1(s) =1 Q0)s — BQ(O) - QQ(O)] 2o /(M s % (B.17)

if it behaves like ~ 1/s? for large s (as for the S-wave). To ensure the equality between
Egs. (B.14) and (B.15) (and thus a reasonable high-energy behavior) the subtraction constants
are chosen as

ap =0, a;=AQ0), ax=A4 (%Q(O) — 02(0)) : (B.18)
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