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Abstract

In this paper, an exposition has been provided on the structure and evolution of stars based on the major
functionality on their initial mass. First, we deal with the role of the radiation pressure and its
contribution in the overall equilibrium of the stellar stability, then we discuss about the formation of
white dwarfs and Newtonian polytropes, then to Neutron stars and pulsars and finally we touch about

the black-hole singularity.
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1. Introduction

As to a known fact, like humans, stars have a
similar life cycle except for the fact that their life
time is in the scale of millions and their end is
majestically spectacular. Now, skipping the basic
notion like how a star forms i.e. proto-star, the
Jean’s instability we will directly jump to their
evolution and stability-structure much of which
is controlled by their initial mass. The spectral
and mass-based classification can be elaborately
studied on the basis of Hertzsprung-Russell (H-
R) diagram (annot.) given below:
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So, based on the classification; a star can be
broadly grouped as dwarf, main sequence, giant
and super-giant (annot.). Most of our equation of
states will be dwindling around main-sequence
stars and can also be applied to dwarf and we
will eventually be considering the fate of a giant
to super-giant which is much more interesting.
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However, to understand the final stages of a
giant star we need to consider general relativity.
Now, of the current theories of stellar evolution
derive its success largely from the fact the
following combination of dimensions of a mass
provides a correct measure of stellar masses:

(9 (2) ~2920 )

G H?

where © 1s the Solar Mass.

2. The Role of Radiation Pressure

The central fact concerning about a normal star
1s the radiation pressure which plays an
important role in the hydrostatic equilibrium of a
star (annot.). The equation governing this
equilibrium can be written as

a GM(r
= @)
Where P stands for total pressure, p is the
density, and M(r) is the mass interior to a sphere
of radius r. There are two factors contributing to
P. First is due to the material and the other is
due to radiation because of thermo-nuclear
radiation deep inside stellar core (annot.). On the
assumption the matter at such high temp. acts
perfectly as Maxwellian , the material or the gas
pressure is given as

k
Pgas = #_H.DT' (3)

The radiation pressure is given according to the
equation

1
Praa = 3 aT* (4)

Where a is the Stephen’s constant. If radiation
contribution by a fraction of (1 — ) then the
total pressure is given by

1K

pP==
B uH

(5)
The importance of (1 — B) fraction on stellar
pressure was first indicated by Eddington
(annot.). We may now express the absolute
temperature T in terms of P ,p and S as

_ (K318 3 '
T = (”Ha 3 ) p3 and pressure can be given as
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P=|(%) O)5E pi=cwrw: o 8
A more rational version of Eddington’s argument
can in the following sense: There is a general
theorem (annot.). which states that the pressure
P. at the centre of the star of mass M is
hydrostatic equilibrium in which the density p(r)
at a point of radial distance r from the centre
does not exceed the mean density p (r),interior to
the same point r must satisfy the following
inequality :

1 1

lG(in)§ﬁ§M§<p <26(3n) M
2 \3 =FC=5"\3 Pz (7)

The right-hand side of (7) along with P from (6)
yields for the stable existence of stars, the

condition is
1

(@) Qa-po [P _ w3 2
[”B—c <(5) om
More evidently

s (O [(&) @55 () o

3
G2

Where in the foregoing equations B = f at the
centre of the star. The Stephen’s constant can be
given accord. To Plank’s law

8mok*

a=ss (9).

Inserting this value of a in equation (8) we obtain
1 1 3

e () = S (5 (7) -

0.1873 (%)G) ( ! ) (10).

HZ

We observe that the inequality (10) has isolated
the combination (1) of natural const. of the
dimensions of a mass; by inserting it’s numerical
values in equation (1) we obtain the inequality

1

2 B¢ )2
12M (1_BC) > 548 0. (11).
This inequality (11) provides an upper limit to
(1=Bc)=1-p.. (12)
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Where (1 — B,) is uniquely determined by the
stellar mass M and the mean molecular weight
U, by the quadratic equation

)(_%) 0. (13).

2y — B¢
1M = 5.48 (1_—56
Table-1 has been listed for several values of (1 —
B.) and corresponding u?M (annot.). From this
table we find that for a star of solar masses with
mean molecular weight to 1, the radiation
pressure at the centre cannot exceed 3 percent of
the total pressure.

TABLE-1.

1-5. WM/O 1-5. wM/O

0.01 0.56 0.50 15.49
.03 1.01 .60 26.52
.10 2.14 .70 50.92
.20 3.84 .80 122.5
.03 6.12 .85 224.4

So, from the above discussed details we conclude
that the equation (13) is the base equilibrium of
an actual stars, to that extent the combination of
natural constants (1), providing a mass of proper
magnitude for the measurements of stellar
masses, is at base of a physical theory of stellar
structure.

3. Cooling of Stars

The same combination of natural const.(1)
emerged soon afterward in a much more
fundamental context of resolving a paradox
raised by Eddington in the following aphorism:
“a star needs energy to cool”.(annot.). The
paradox arose while considering the ultimate of a
star in the light of then new knowledge of white-
dwarfs stars, such as Sirius-B, which have a
mean densities in the range 10° — 10’ gm cm™3.
R.H Fowler restated the paradox in the following
statement: An estimate of the electrostatic
energy, Ev ,per unit volume of an assembly of
atoms of atomic no. Z ionized down to bare
nuclei, is given by

4
E, = 1.32 % 101122p3 (14)
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While the kinetic energy of the thermal
motions, Ey;, per unit volume of free particles
in the form of a perfect gas of density p and
temperature T, is given by

Eyin = (2) (&) o = 2225 pr. (15)

Now, if such matter were released of the
pressure to which it is subjected, it can
resume a state of ordinary normal atoms only
if

Ekin > E‘U ’ (16)

Or, according to equations (14) and (15) only
if

3
p< (0.94 +1073 %) (17)

This inequality will be clearly be violated if
the density is sufficiently high. This is the
essence of Eddington’s paradox as formulated
by R.H Fowler. And the resolution of this
paradox also given by Fowler himself in a
landmark paper “On Dense Matter” in 1926;
where for the first time in stellar structure
Fermi-Dirac statistics was used.

. Fowler’s Resolution of Eddington’s

Paradox

In a completely degenerate electron gas all
available parts of the phase-space, with
momenta less than a certain ‘threshold’ value
P,y- the Fermi ‘threshold’ are occupied
consistently with the Pauli exclusion
principle i.e. with two electrons per ‘cell’ of
volume h3 of six-dimensional phase-space. So,
if n(p)dp denotes the no. of electrons per unit
volume between p and p+dp, then the
assumption of complete degeneracy is
equivalent to the assertion

81 2
—=p° (0 < Do)

n(p) = {fﬁ P (18)
0 (» > po)

The threshold momentum p,, is determined by
the normalization condition

n=[7"n(p)dp = 5 (19)
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Where n denotes the total no. of electrons per
unit volume. For the dist. given by (18) and the
pressure p and the kinetic energy Ey;, of the
electrons are given by

8
P =% pPuydp (20)
And

kin = 55 Jo " P*Tpdp (21)

Where v, and Tp are the velocity and

temperature of the electrons having momentum
2

p. If we set v, = % and Tp = ;—m ; appropriate for

non-relativistic mechanics in equations (20) and

(21) ,we find that

- = (3)() (©)n 2
And
Exiy = ﬁl—zml’s 430 ( )3 :i ng. (23).

Fowler’s resolution of Eddington’s paradox in
this : at the temperatures and densities that may
be expected to prevail in the interiors of white-
dwarf stars, the electrons will be highly
degenerate and kinetic energy must be
calculated accord. to equation (23) not accord.(15)
and equation (23) gives

5
Egin = 1.39 % 1013 (5)3 (24)

Now comparing equation (24) and (14) we see
that for a matter of the density of white-dwarfs
namely p~ 10°gm cm™3, the total kinetic energy
is about two to four times the negative potential-
energy ;and Eddington’s paradox does not arise
(annot.).

4. Theory of White Dwarf and Newtonian
Polytropes

On this account, finite equilibrium
configurations are predicted for all masses. And
it came to be accepted that the white-dwarfs
represents the end fate of all stars irrespective of
their initial mass. But soon it was realized by
Chandrasekhar that at such a high degenerate-
compressed core the electrons must have to
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travel close to the speed of light and special-
relativity become important to consider which
was also bragged by Pauli’s exclusion principle.
Inserting the relativistic transformation for
velocity and temperature we have

Vp =P/[ (1+-2 2)1 and

(1+ mpTZCZ)% _ 1] (25)

Now based on the relativistic transformation one
could easily predict the pressure as

Tp = mc?

8mc rp __2mc
3h3f ’ " 3h3 s Po- (26)

The relation between P and p corresponding to
the limiting form (26) is
1
4 1(m\3 hc
P =K,p3 where K, =-(= r (27).
sG)

In this limit, the configuration is an Emden
polytrope (annot.) of index 3. And it is well
known that when the polytropic index is 3, the
mass of the resulting equilibrium configuration
is uniquely determined by the constant of
proportionalitsz. We have accordingly :

= 47 (f ) (2.018) = 0.197 (hc) 7 2)2

= 576152 O (28)

In equation (28), 2.018 is a numerical constant
derived from the explicit solution of the Lane-
Emden equation for n = 3.

Thus ; The important conclusions which follow
from the foregoing considerations are: first, there
is an upper limit, to the mass of stars which can
become degenerate configurations, as the last
stage in their evolution; and second, that Stars
with M >M;,, must have end states which cannot
be predicted from the considerations we have
presented so far.

b. Degenerate Stellar Core

For our present purposes, the principal content is
the criterion that for a star to develop
degeneracy, it is necessary that the radiation
pressure be less than 9.2 percent of total
pressure. This last inference is so central to all
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current schemes of stellar evolution that the
directness and the simplicity of the early
arguments are worth repeating. The two
principal elements of the early arguments were
these: first, that radiation pressure becomes
increasingly dominant as the mass of the star
increases; and second, that the degeneracy of
electrons is possible only so long as the radiation
pressure is not a significant fraction of the total
pressure - indeed, as we have seen, it must not
exceed 9.2 percent of total pressure. The second
of these elements in the arguments is a direct
and an elementary consequence of the physics of
degeneracy. While the evolution of the massive
stars was thus left uncertain, there was no such
uncertainty regarding the final states of stars of
sufficiently low mass.” The reason is that by
virtue, again, of the inequality (7), the maximum
central pressure attainable in a star must be less
than that provided by the degenerate equation of
state, so long as

b6 (4wt < =32 2

4
8\ (ueH)3
(29)
Or equivalently
3
3 (heYe_1_ _ gy,
M<2 (%) o = L7452 O (30)

We conclude that there can be no surprises in the
evolution of stars of mass less than 1.440 for

Ue = 1.099 ; which is called the
Chandrasekhar’s Limit. (annot.).

e
Fig-2 (annot.)

The inability of the massive stars to become
white dwarfs must result in the development of
much more extreme conditions in their interiors
and, eventually, in the onset of gravitational
collapse attended by the super-nova phenomenon
(annot.). In the case of less massive stars the
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degenerate cores, which are initially formed, are
not highly relativistic. But the mass of core
increases with the further burning of the nuclear
fuel at the interface of the core and the mantle;
and when the core reaches the limiting mass, an
explosion occurs following instability, and it is
believed that this is the cause underlying super-
nova phenomenon of type-I.

5. Neutron Stars

The first theoretical predictions of neutron stars
and their equation of states was carried out by
Landau with the application of then modified
neutron dynamics but violating Heisenberg’s
uncertainty principle and letter developed in a
fully-fledged quantum-mechanical concept by
Baade & Zwicky . The equation of states were
first established by Oppenheimer and Volkoff
and the limiting mass for a star to become a
neutron star is thus came to known as
Oppenheimer - Volkoff limit which is close to
2.170.

5.1 Interior and EOS for a neutron star

INSIDE A NEUTRON STAR

A NASA mission will use X-ray spectroscopy to gather clues about the
interior of neutron stars — the Universe’s densest forms of matter.

Quter crust
Atomic nuclei, free electrons

Inner crust
Heavier atomic nuclei, free
neutrons and electrons

Outer core

Quantum liquid where
neutrons, protons and
electrons exist in a soup

Inner core

Unknown ultra-dense
matter. Neutrons and
DV‘O?OI‘\S may remain as
particles, break down into
their constituent quarks,

or even become ‘hyperons’.

Atmosphere
Hydrogen, helium, carbon 4

Beam of X-rays coming from the
neutron star’s poles, which sweeps
around as the star rotates.

Fig-3

The outer crust:

(the outer envelope) extends from the
atmosphere bottom to the layer of the density

p = pyp = 4 =10 gm cm™3. Its thickness is some
hundred meters. Its matter consists of ions Z and
electrons e .A very thin surface layer (up to few
meters in a hot star) contains a non-degenerate
electron gas. In deeper layers the electrons
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constitute a strongly degenerate, almost ideal
gas, which becomes ultra-relativistic at p >
10°gm cm™3. The pressure is mainly provided by
electrons. In the outer atmosphere layers the
ions may constitute a Boltzmann gas, but in
deeper layers they form a strongly coupled
Coulomb system (liquid or solid). A larger
fraction of the envelope is usually solidified;
hence, the envelope is often called the crust. The
electron Fermi energy grows with increasing p.
This induces beta captures in atomic nuclei and
enriches the nuclei with neutrons. At the base of
the outer crust the neutrons start to drip out
from the nuclei producing a free neutron gas.

The inner crust (the inner envelope):

May be about one kilometre thick. The density p
in the inner crust varies from pyp at the upper
boundary to ~ 0.5p, at the base. Here, p, is the
saturation nuclear matter density .The matter of
the inner crust consists of electrons, free
neutrons n, and neutron-rich atomic nuclei. The
fraction of free neutrons increases with growing
p. The neutronization at p = pND greatly softens
the EOS, but at the crust bottom the repulsive
short-range component of the neutron-neutron
interaction comes into play and introduces a
considerable stiffness. In the bottom layers of the
crust, the nuclei may become essentially
nonspherical and form a “mantle”, but this result
is model dependent. The nuclei disappear at the
crust-core interface. Free neutrons in the inner
crust and nucleons confined in the atomic nuclei
can be in superfluid state.

The outer core:

occupies the density range 0.5p, < p < 2p, and is
several kilometres thick . Its matter consists of
neutrons with several per cent admixture of
protons p, electrons, and possibly muons u (the
so called npep composition). The state of this
matter is determined by the conditions of electric
neutrality and beta equilibrium, supplemented
by a microscopic model of many-body nucleon
interaction. The beta equilibrium implies the
equilibrium with respect to the beta (muon)
decay of neutrons and inverse processes. All
npep-plasma components are strongly
degenerate. The electrons and muons form
almost ideal Fermi gases. The neutrons and
protons, which interact via nuclear forces,
constitute a strongly interacting Fermi liquid
and can be in superfluid state.
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The inner core:

where p > 2p,,, occupies the central regions of
massive neutron stars (and does not occur in low-
mass stars whose outer core extends to the very
centre). Its radius can reach several kilometres,
and its central density can be as high as

(10—-15) py. Its composition and the EOS are very
model dependent. Several hypotheses have been
put forward, predicting the appearance of new
fermions and/or boson condensates.(annot.).

5.2 Equation of Structure

Since neutron stars are the remnants of massive-
super massive stars; the space-time structure
around the neutron star is sufficiently deformed
so as to apply G.T.R; i.e. the for a locally
symmetric field there exist an unique curvature
tensor R{}V,C which can be constructed form the
metric tensor g,, and it’s first and second
derivative. So, for that case the locally inertial
gravitational field can be described by Toloman-
Oppenhimer-Volkoff (TOV) equation which also
tends to give the maximum mass for a neutron
star.

Now for a slowly rotating neutron star the metric
is given by Hartle-Throne metric (annot.). As
Considering a spherically symmetric fluid the
metric components are given as

cdt® = gy dxtdx’ =
eVc?dt? — erdr? —r2d6? — r?sin? 6 d¢?. (32)

now by the perfect-fluid assumption the diagonal
of the stress-energy tensor is given as
T = pc? for energy-density eigenvalue and

T} = —P§/ (32)
for eigenvalue for pressure. To proceed further,
we solve Einstein's field equations

G

1 8
w = Ruwg =5 9uwR = = G,y (annot) (33).

Now considering the first G,, component (33) is
modified to

8T eV d _
FGpczev=r—2(1—;re ’1) (34)

where the value of T, is derived from (32); then
integrating equation (34) from O to r we have



eh=1-20 (35)

rc?

where m(r) satisfies the 0;—7: = 4mr?p condition.

Now, considering the G;; component we have

8nG , 5 _ —rv'+et-1
—a Pet =——F—

= (36).
Now using the value of e? from equation (35),
equation (36) simplified to

@1 (y_zomy7 (2m y on6 ) @,

dr r c?r c?r

We obtain a second equation by continuity of the
stress-energy tensor: V, T = 0. Putting d.p =
9.P = 0 (static/slowly rotating) and dgP = 94P =
0 (for isotropy) we obtain a particular solution as
dp %(P+pc2)dv

0=V,TY =- = = ; rearranging the
terms we have

dP _  (pc*+P\ (dv

o= (@) (39

Thus, from equations (38) and (37) eliminating

dv

— , we obtain

ar

dP _ 1 pc?+P, (26m | 817G , _26m\~1

dar r( 2 )(c2r+ C4T'P)(1 czr) (39)

Finally, simplifying equation (39) we have the
TOV equation written as

G P P 26m\~1
=-—S(p+3)m+4mr’ (1 — m) (40)

dr c?r

5.3 Equation of States:

16 -

14 .
121
w1
Moo |-

Stable
white dwarfs

neutron stars _l

el I | | | |
10° 107 10° 10" 10" 10" 10" 10"
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Beta-Equilibrium between Relativistic
Electrons and Nuclei:

The Harrison-Wheeler (HW) Equation of
State-

For a quantitative treatment, we start by writing
the energy density of a mixture of nuclei, free
electrons, and free neutrons in the form

e=nyM(A,Z) + €,(n,) + ,(ny,) (41).

The baryon density n and electron density n, are then
given by

n=nyA+ny ,n,=nzyZ; 1=AYy+Y,,
Yo=Yy Z. (42).

They used the semi-empirical mass formula of

Green

M(A Z) = [(Z = Aymuc® + Z(my, + m)c? — AE,|
= myc?[b A+

2 1 Z\%2  p.z2
b,A3 — b Z + b,A(=+Z%) +=2% 43
245 = bsZ + by (5+5) + 1] (43)

by, = 0.991749, b;, = 0.000840, bs = 0.000763,
b,,=0.01911, b,=0.10175.

This expression is based on the “liquid-drop”
nuclear model, and the terms have the following
interpretation: The dominant contribution to E,
is proportional to the volume of the nucleus, as in
the case of a liquid drop. The difference of b,,
from unity is due largely to this volume binding
energy. Now from equations (41) and (43) we
have
e=n(1-Y,) (M(j’z)

) + l(ne) + en(ny) (44)

n(1-Yp)Z

Where, n, =

Next; by Wheeler-Harrison approximation we
have

andn, =nY, .

oM
a9z = _(EFe - mecz) (45).

the continuum limit of the P-stability condition
in equilibrium with the free electron being at the
Fermi sea,

we have
0 (M . )
42 94 (Z) = Z(Epe —mec®) which gives
oM oM
ZogtAGz—M=0 (46).
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Taking 6678 =0 , we have

oM "
% = Ere (4.

Thus, for a continuum version of the condition
for M to be in equilibrium with M(Z,A — 1), and
free electrons we have from (45) as

b3+b4(1—272)—2b5é= [(1+x§)§—1]2—z (48)

Where x, = %. Thus equation (46) gives
_(by\z 1 1
Z= (E) Az = 3.54 43 (49).

And from equation (47) we have

1
2b,A”3 1 Zz? bsZ? oNs My
b1+ 3 +b4(Z_E)_ Z —(1+Xn)2m— (50),
343 u
PE
where x, = —/—.
myc

Thus, under the restricted conditions of ‘neutron
drip’ we have
&

p===mM(A2IZ+ e, +¢e,)/c?

cz

P=PFP,+P, and n=ne§+ne (51).

Thus equation (51) is the ESO for a normal neutron
star with P = P(p) (annot. GW170817).

6. Pulsars

/ Light cylinder \
3

= 130 stoliar radil A
Rotation axis

- ~ Magnetic
/ field
Polar )
£ cap
region
\ Neutron [
n

star |

’ Siot gap \
- region )
| ¥ Closed
\ > field lines
A

Open
field lines

N Bi—

Fig-5
a. Gold’s Model of Pulsars ( key features )

1. In the intense magnetic field of a pulsar, any
charged particle that may escape from it’s
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surface will be constrained to move only
along the magnetic field lines as in the fig.

2. The tangential velocity of these whirling
particles gradually increases as they move
further from the stellar surface.(velocity of
light circle as in the fig-5.).

3. The relativistic beam near this circle will
radiate radio-waves perpendicular to the
beam but the velocity of the light circle where
the particles moves at nearly the speed of
light gradually separates and spreads into

the surrounding region creating periodic
flashes.

According to this model, any asymmetry in the
emission region may be responsible for the
observed fine structure in the pulsar.

7. Black-Holes

black hole partitions the four-dimensional space
into two regions: an inner region which is
bounded by a smooth two-dimensional surface
called the event horizon,; and an outer region,
external to the event horizon, which is
asymptotically flat; and it is required (as a part
of the definition) that no point. A in the inner
region can communicate with any point of the
outer region. This incommunicability is
guaranteed by the impossibility of any light
signal, originating in the inner region, crossing
the event horizon. The requirement of asymptotic
flatness of the outer region is equivalent to the
requirement that the black hole is isolated in
space and that far from the event horizon the
space-time approaches the customary space-time
of terrestrial physics. To the extent they may be
considered as stationary and isolated, to that
extent, they are all, every single one of them,
described exactly by the Kerr solution. This is the
only instance we have of an exact description of a
macroscopic object. (annot.).

Result and Discussion

While considering the structure and evolution of
stars, the initial mass of the stellar object plays a
very major faction in determining the final state
of the star. After reaching the Jean’s stability in
proto stellar gas, consisting enough mass
contracting into itself, igniting sufficient thermo-
nuclear reaction to counter balance inward
gravitational contraction, the star reaches its
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hydrostatic equilibrium. Where, the pressure
plays a very major role in the balancing the
overall geometrical structure of the star. This
pressure consist of both from radiation and the
matter itself. Exceeding the middle ages, the star
exhaust all it’s fuel to expand itself into a red-
giant, from where, depending on its initial mass,
will either shed its outer atmosphere in a
planetary nebulae (Chandrasekhar limit) to
become a white dwarf, if it exceeds that mass to
then within the Oppenheimer-Volkoff limit it
converts into a neutron star or pulsar. If it
exceeds that mass limit, the inward gravitational
contraction become so strong, that the star
collapses into itself causing a space-time
singularity in the local geometry of the space-
time.
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