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Abstract                                                                                                                                                                

In this paper, an exposition has been provided on the structure and evolution of stars based on the major 

functionality on their initial mass. First, we deal with the role of the radiation pressure and its 

contribution in the overall equilibrium of the stellar stability, then we discuss about the formation of 

white dwarfs and Newtonian polytropes, then to Neutron stars and pulsars and finally we touch about 

the black-hole singularity. 

Key Words: Radiative transfer; Newtonian Polytropes; White Dwarf; Neutron Star; Black-holes. 

 

1. Introduction 

As to a known fact, like humans, stars have a 

similar life cycle except for the fact that their life 

time is in the scale of millions and their end is 

majestically spectacular. Now, skipping the basic 

notion like how a star forms i.e. proto-star, the 

Jean’s instability we will directly jump to their 

evolution and stability-structure much of which 

is controlled by their initial mass. The spectral 

and mass-based classification can be elaborately 

studied on the basis of Hertzsprung-Russell (H-

R) diagram (annot.) given below: 
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Fig-1 

So, based on the classification; a star can be 

broadly grouped as dwarf, main sequence, giant 

and super-giant (annot.). Most of our equation of 

states will be dwindling around main-sequence 

stars and can also be applied to dwarf and we 

will eventually be considering the fate of a giant 

to super-giant which is much more interesting. 
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However, to understand the final stages of a 

giant star we need to consider general relativity. 

Now, of the current theories of stellar evolution 

derive its success largely from the fact the 

following combination of dimensions of a mass 

provides a correct measure of stellar masses:                  

(
ℎ𝑐

𝐺
)

3

2
(

1

𝐻2) ≈ 29.2 ⊙                                                         (1) 

 where ⊙ is the Solar Mass.     

 

2. The Role of Radiation Pressure 

The central fact concerning about a normal star 

is the radiation pressure which plays an 

important role in the hydrostatic equilibrium of a 

star (annot.). The equation governing this 

equilibrium can be written as                                                                                                                                               

  
𝑑𝑝

𝑑𝑟
=

𝐺𝑀(𝑟)

𝑟2 𝜌                                                                (2)                                                                                             

Where P stands for total pressure, ρ is the 

density, and M(r) is the mass interior to a sphere 

of radius r. There are two factors contributing to 

P. First is due to the material and the other is 

due to radiation because of thermo-nuclear 

radiation deep inside stellar core (annot.). On the 

assumption the matter at such high temp. acts 

perfectly as Maxwellian , the material or the gas 

pressure is given as                                                                                                   

𝑝𝑔𝑎𝑠 =
𝑘

𝜇𝐻
𝜌𝑇,                                                               (3)                                                                        

The radiation pressure is given according to the 

equation   

  𝑃𝑟𝑎𝑑 =
1

3
𝛼𝑇4                                                                (4)                                                                                                          

Where α is the Stephen’s constant. If radiation 

contribution by a fraction of (1 − 𝛽) then the 

total pressure is given by        

  𝑃 =
1

𝛽

𝐾

𝜇𝐻
𝜌𝑇.                                                                       (5)                                                                                                                                     

The importance of (1 − 𝛽) fraction on stellar 

pressure was first indicated by Eddington 

(annot.). We may now express the absolute 

temperature T in terms of P ,ρ and β as            

    𝑇 = (
𝐾

𝜇𝐻

3

𝛼

1−𝛽

𝛽
 )

1

3
𝜌

1

3 and pressure can be given as  

  𝑃 = [(
𝐾

𝜇𝐻
)

4
(

3

𝛼
)

1−𝛽

𝛽
]

1

3

𝜌
4

3 ≡ 𝐶(𝛽)𝜌
4

3   (say)                   (6)                                                                     

A more rational version of Eddington’s argument 

can in the following sense: There is a general 

theorem (annot.). which states that the pressure 

𝑃𝐶 at the centre of the star of mass M is 

hydrostatic equilibrium in which the density 𝜌(𝑟) 

at a point of radial distance r from the centre 

does not exceed the mean density 𝜌 ̅(𝑟),interior to 

the same point r must satisfy the following 

inequality :            

1

2
𝐺 (

4

3
𝜋)

1

3
𝜌 ̅

4

3𝑀
2

3 ≤ 𝜌𝐶 ≤
1

2
𝐺 (

4

3
𝜋)

1

3
𝜌𝐶

4

3 𝑀
2

3                      (7)                                                                                                 

The right-hand side of (7) along with P from (6) 

yields for the stable existence of stars, the 

condition is                                          

[
(

𝑘

𝜇𝐻
)

4
(

3

𝛼
)(1−𝛽𝐶)

𝛽𝐶
 ]

1

3

≤ (
𝜋

6
)

1

3
𝐺𝑀

2

3                                  

More evidently                        

𝑀 ≥ (
6

𝜋
)

1

2
[(

𝑘

𝜇𝐻
)

4
(

3

𝛼
)

1−𝛽𝐶

𝛽𝐶
4 ]

1

2

(
1

𝐺
3
2

)                                    (8)                                                                                                                

Where in the foregoing equations 𝛽𝐶 → 𝛽 at the 

centre of the star. The Stephen’s constant can be 

given accord. To Plank’s law   

𝛼 =
8𝜋5𝑘4

15ℎ3𝑐3.                                                                          (9).                                                                                                                                                       

Inserting this value of α in equation (8) we obtain 

𝜇2𝑀 (
𝛽𝐶

4

1−𝛽𝐶
)

1

2
≥

(135)
1
2

2𝜋3 (
ℎ𝑐

𝐺
)

3

2
(

1

𝐻2) = 

                             0.1873 (
ℎ𝑐

𝐺
)

(
3

2
)

(
1

𝐻2)                     (10).                                                                         

We observe that the inequality (10) has isolated 

the combination (1) of natural const. of the 

dimensions of a mass; by inserting it’s numerical 

values in equation (1) we obtain the inequality                               

𝜇2𝑀 (
𝛽𝐶

4

1−𝛽𝐶
)

1

2
≥ 5.48 ⊙.                                                 (11).                                                                                                                          

This inequality (11) provides an upper limit to 

(1 − 𝛽𝐶) ≤ 1 − 𝛽∗ .                                                          (12)                                                                                                                        
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Where (1 − 𝛽∗) is uniquely determined by the 

stellar mass M and the mean molecular weight 

µ, by the quadratic equation  

𝜇2𝑀 = 5.48 (
𝛽𝐶

4

1−𝛽𝐶
)

(−
1

2
)

×⊙.                                        (13).                                                                                                    

Table-1 has been listed for several values of (1 −

𝛽∗) and corresponding 𝜇2𝑀 (annot.). From this 

table we find that for a star of solar masses with 

mean molecular weight to 1, the radiation 

pressure at the centre cannot exceed 3 percent of 

the total pressure.                                                      

TABLE-1. 

 
1 − 𝛽∗ 

 
𝜇2𝑀/⊙ 

 
1 − 𝛽∗ 

 
𝜇2𝑀/⊙ 

0.01 0.56 0.50 15.49 

.03 1.01 .60 26.52 

.10 2.14 .70 50.92 

.20 3.84 .80 122.5 

.03 6.12 .85 224.4 

        

So, from the above discussed details we conclude 

that the equation (13) is the base equilibrium of 

an actual stars, to that extent the combination of 

natural constants (1), providing a mass of proper 

magnitude for the measurements of stellar 

masses, is at base of a physical theory of stellar 

structure.  

3. Cooling of Stars 

The same combination of natural const.(1) 

emerged soon afterward in a much more 

fundamental context of resolving a paradox 

raised by Eddington in the following aphorism: 

“a star needs energy to cool”.(annot.). The 

paradox arose while considering the ultimate of a 

star in the light of then new knowledge of white-

dwarfs stars, such as Sirius-B, which have a 

mean densities in the range 105 − 107𝑔𝑚 𝑐𝑚−3. 

R.H Fowler restated the paradox in the following 

statement: An estimate of the electrostatic 

energy, Ev ,per unit volume of an assembly of 

atoms of atomic no. Z ionized down to bare 

nuclei, is given by                          

𝐸𝑉 = 1.32 ∗ 1011𝑍2𝜌
4

3                                             (14)                                                                                                                         

While the kinetic energy of the thermal 

motions, 𝐸𝑘𝑖𝑛 per unit volume of free particles 

in the form of a perfect gas of density ρ and 

temperature T, is given by  

      𝐸𝑘𝑖𝑛 = (
3

2
) (

𝑘

𝜇𝐻
) 𝜌𝑇 =

1.24∗108

𝜇
𝜌𝑇.                        (15)                                                     

Now, if such matter were released of the 

pressure to which it is subjected, it can 

resume a state of ordinary normal atoms only 

if        

𝐸𝑘𝑖𝑛 > 𝐸𝑣  ,                                                                  (16)                                                                                                                                   

Or, according to equations (14) and (15) only 

if 

𝜌 < (0.94 ∗ 10−3 𝑇

𝜇𝑍2)
3

                                           (17)                                                                                                               

This inequality will be clearly be violated if 

the density is sufficiently high. This is the 

essence of Eddington’s paradox as formulated 

by R.H Fowler. And the resolution of this 

paradox also given by Fowler himself in a 

landmark paper “On Dense Matter” in 1926; 

where for the first time in stellar structure 

Fermi-Dirac statistics was used. 

a. Fowler’s Resolution of Eddington’s 

Paradox  

In a completely degenerate electron gas all 

available parts of the phase-space, with 

momenta less than a certain ‘threshold’ value 

𝑃0- the Fermi ‘threshold’ are occupied 

consistently with the Pauli exclusion 

principle i.e. with two electrons per ‘cell’ of 

volume ℎ3 of six-dimensional phase-space. So, 

if 𝑛(𝑝)𝑑𝑝 denotes the no. of electrons per unit 

volume between p and p+dp, then the 

assumption of complete degeneracy is 

equivalent to the assertion        

      𝑛(𝑝) = {
8𝜋

ℎ3 𝑝2  (𝑝 ≤ 𝑝0) 

0         (𝑝 > 𝑝0)
                                         (18)                                                                                                                    

The threshold momentum 𝑝0, is determined by 

the normalization condition  

 𝑛 = ∫ 𝑛(𝑝)𝑑𝑝 =
8𝜋

3ℎ3 𝑝0
3𝑝0

0
                                               (19)                                                                      
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Where n denotes the total no. of electrons per 

unit volume. For the dist. given by (18) and the 

pressure p and the kinetic energy 𝐸𝑘𝑖𝑛 of the 

electrons are given by  

𝑃 =
8𝜋

3ℎ3 ∫ 𝑝3𝑣𝑝𝑑𝑝
𝑝0

0
                                                         (20)       

And                                     

𝐸𝑘𝑖𝑛 =
8𝜋

3ℎ3 ∫ 𝑝2𝑇𝑃𝑑𝑝
𝑝0

0
                                                    (21)                                                                                

Where 𝑣𝑝 and 𝑇𝑃 are the velocity and 

temperature of the electrons having momentum 

p. If we set  𝑣𝑝 =
𝑝

𝑚
 and 𝑇𝑃 =

𝑃2

2𝑚
  ; appropriate for 

non-relativistic mechanics in equations (20) and 

(21) ,we find that             

𝑃 =
8𝜋

15ℎ3𝑚
𝑝0

5 = (
3

40
) (

3

𝜋
)

2

3
(

ℎ2

𝑚
) 𝑛

5

3.                               (22)                                                                                                             

And                                             

 𝐸𝐾𝐼𝑁 =
8𝜋

10ℎ3𝑚
𝑝0

5 =
3

40
(

3

𝜋
)

2

3 ℎ2

𝑚
𝑛

5

3.                                (23).                                                      

Fowler’s resolution of Eddington’s paradox in 

this : at the temperatures and densities that may 

be expected to prevail in the interiors of white-

dwarf stars, the electrons will be highly 

degenerate and kinetic energy must be 

calculated accord. to equation (23) not accord.(15) 

and equation (23) gives                   

𝐸𝑘𝑖𝑛 = 1.39 ∗ 1013 (
𝜌

𝜇
)

5

3
.                                                 (24)                                                                                                                            

Now comparing equation (24) and (14) we see 

that for a matter of the density of white-dwarfs 

namely ρ≈ 105gm cm−3, the total kinetic energy 

is about two to four times the negative potential-

energy ;and Eddington’s paradox does not arise 

(annot.).    

4. Theory of White Dwarf and Newtonian 

Polytropes 

 On this account, finite equilibrium 

configurations are predicted for all masses. And 

it came to be accepted that the white-dwarfs 

represents the end fate of all stars irrespective of 

their initial mass. But soon it was realized by 

Chandrasekhar that at such a high degenerate-

compressed core the electrons must have to 

travel close to the speed of light and special-

relativity become important to consider which 

was also bragged by Pauli’s exclusion principle. 

Inserting the relativistic transformation for 

velocity and temperature we have  

𝑉𝑃 = 𝑃/ [𝑚 (1 +
𝑝2

𝑚2𝑐2)

1

2
] and 

𝑇𝑃 = 𝑚𝑐2 [(1 +
𝑝2

𝑚2𝑐2)

1

2
− 1]                                         (25)                                         

Now based on the relativistic transformation one 

could easily predict the pressure as   
                                       

𝑃 =
8𝜋𝑐

3ℎ3 ∫ 𝑝3𝑑𝑝 =
2𝜋𝑐

3ℎ3 𝑝0
4.

𝑝0

0
                                            (26)                                                                                                                            

 

The relation between P and ρ corresponding to 

the limiting form (26) is  

𝑃 = 𝐾2𝜌
4

3   where    K2 =
1

8
(

𝜋

3
)

1

3 ℎ𝑐

(𝜇𝑒𝐻)
4
3

                       (27).                                                       

 

In this limit, the configuration is an Emden 

polytrope (annot.) of index 3. And it is well 

known that when the polytropic index is 3, the 

mass of the resulting equilibrium configuration 

is uniquely determined by the constant of 

proportionalityK2. We have accordingly : 

𝑀𝑙𝑚 = 4𝜋 (
𝐾2

𝜋𝐺
)

3
2

(2.018) = 0.197 (
ℎ𝑐

𝐺
)

3
2 1

(𝜇𝑒𝐻)2
 

                                       = 5.76𝜇𝑒
−2 ⊙                  (28)                                                        

 
In equation (28), 2.018 is a numerical constant 

derived from the explicit solution of the Lane-

Emden equation for n = 3.  

Thus ; The important conclusions which follow 

from the foregoing considerations are: first, there 

is an upper limit, to the mass of stars which can 

become degenerate configurations, as the last 

stage in their evolution; and second, that Stars 

with M >𝑀𝑙𝑚 must have end states which cannot 

be predicted from the considerations we have 

presented so far.  

 

b. Degenerate Stellar Core  

 

For our present purposes, the principal content is 

the criterion that for a star to develop 

degeneracy, it is necessary that the radiation 

pressure be less than 9.2 percent of total 

pressure. This last inference is so central to all 
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current schemes of stellar evolution that the 

directness and the simplicity of the early 

arguments are worth repeating. The two 

principal elements of the early arguments were 

these: first, that radiation pressure becomes 

increasingly dominant as the mass of the star 

increases; and second, that the degeneracy of 

electrons is possible only so long as the radiation 

pressure is not a significant fraction of the total 

pressure - indeed, as we have seen, it must not 

exceed 9.2 percent of total pressure. The second 

of these elements in the arguments is a direct 

and an elementary consequence of the physics of 

degeneracy. While the evolution of the massive 

stars was thus left uncertain, there was no such 

uncertainty regarding the final states of stars of 

sufficiently low mass.” The reason is that by 

virtue, again, of the inequality (7), the maximum 

central pressure attainable in a star must be less 

than that provided by the degenerate equation of 

state, so long as  

1

2
𝐺 (

4

3
𝜋)

1

3
𝑀

1

3 < 𝐾2 =
1

8
(

3

𝜋
)

1

3 ℎ𝑐

(𝜇𝑒𝐻)
4
3

                                                                                                    

(29) 
Or equivalently         

 𝑀 <
3

16𝜋
(

ℎ𝑐

𝐺
)

3

2 1

(𝜇𝑒𝐻)2 = 1.74𝜇𝑒
−2 ⊙                          (30)                                                            

 
We conclude that there can be no surprises in the 

evolution of stars of mass less than 1.44⊙ for  

𝜇𝑒 = 1.099 ; which is called the 

Chandrasekhar’s Limit. (annot.).    
                                         

 
 

Fig-2 (annot.) 
 
The inability of the massive stars to become 

white dwarfs must result in the development of 

much more extreme conditions in their interiors 

and, eventually, in the onset of gravitational 

collapse attended by the super-nova phenomenon 

(annot.). In the case of less massive stars the 

degenerate cores, which are initially formed, are 

not highly relativistic. But the mass of core 

increases with the further burning of the nuclear 

fuel at the interface of the core and the mantle; 

and when the core reaches the limiting mass, an 

explosion occurs following instability, and it is 

believed that this is the cause underlying super-

nova phenomenon of type-I.   
 

5. Neutron Stars 

The first theoretical predictions of neutron stars 

and their equation of states was carried out by 

Landau with the application of then modified 

neutron dynamics but violating Heisenberg’s 

uncertainty principle and letter developed in a 

fully-fledged quantum-mechanical concept by 

Baade & Zwicky . The equation of states were 

first established by Oppenheimer and Volkoff 

and the limiting mass for a star to become a 

neutron star is thus came to known as 

Oppenheimer - Volkoff limit which is close to 

2.17⊙.   

5.1 Interior and EOS for a neutron star 

 

Fig-3 

The outer crust:                                                                                                                          

(the outer envelope) extends from the 

atmosphere bottom to the layer of the density 

𝜌 = 𝜌𝑁𝐷 ≈ 4 ∗ 1011gm cm−3. Its thickness is some 

hundred meters. Its matter consists of ions Z and 

electrons e .A very thin surface layer (up to few 

meters in a hot star) contains a non-degenerate 

electron gas. In deeper layers the electrons 
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constitute a strongly degenerate, almost ideal 

gas, which becomes ultra-relativistic at 𝜌 ≫
106gm cm−3. The pressure is mainly provided by 

electrons. In the outer atmosphere layers the 

ions may constitute a Boltzmann gas, but in 

deeper layers they form a strongly coupled 

Coulomb system (liquid or solid). A larger 

fraction of the envelope is usually solidified; 

hence, the envelope is often called the crust. The 

electron Fermi energy grows with increasing ρ. 

This induces beta captures in atomic nuclei and 

enriches the nuclei with neutrons. At the base of 

the outer crust the neutrons start to drip out 

from the nuclei producing a free neutron gas.  

 

The inner crust (the inner envelope):                                                                                     

May be about one kilometre thick. The density ρ 

in the inner crust varies from 𝜌𝑁𝐷 at the upper 

boundary to ∼ 0.5𝜌0 at the base. Here, 𝜌0 is the 

saturation nuclear matter density .The matter of 

the inner crust consists of electrons, free 

neutrons n, and neutron-rich atomic nuclei. The 

fraction of free neutrons increases with growing 

ρ. The neutronization at ρ ≈ ρND greatly softens 

the EOS, but at the crust bottom the repulsive 

short-range component of the neutron-neutron 

interaction comes into play and introduces a 

considerable stiffness. In the bottom layers of the 

crust, the nuclei may become essentially 

nonspherical and form a “mantle”, but this result 

is model dependent. The nuclei disappear at the 

crust-core interface. Free neutrons in the inner 

crust and nucleons confined in the atomic nuclei 

can be in superfluid state.  

 

The outer core:                                                                                                                   

occupies the density range 0.5𝜌0 ≤ 𝜌 ≤ 2𝜌0 and is 

several kilometres thick . Its matter consists of 

neutrons with several per cent admixture of 

protons p, electrons, and possibly muons μ (the 

so called npeμ composition). The state of this 

matter is determined by the conditions of electric 

neutrality and beta equilibrium, supplemented 

by a microscopic model of many-body nucleon 

interaction. The beta equilibrium implies the 

equilibrium with respect to the beta (muon) 

decay of neutrons and inverse processes. All 

npeμ-plasma components are strongly 

degenerate. The electrons and muons form 

almost ideal Fermi gases. The neutrons and 

protons, which interact via nuclear forces, 

constitute a strongly interacting Fermi liquid 

and can be in superfluid state.   

The inner core:                                                                                                                          

where 𝜌 ≥ 2𝜌0,, occupies the central regions of 

massive neutron stars (and does not occur in low-

mass stars whose outer core extends to the very 

centre). Its radius can reach several kilometres, 

and its central density can be as high as 

(10−15) 𝜌0. Its composition and the EOS are very 

model dependent. Several hypotheses have been 

put forward, predicting the appearance of new 

fermions and/or boson condensates.(annot.).    

 

5.2 Equation of Structure 

                                                                                                                                                           

Since neutron stars are the remnants of massive-

super massive stars; the space-time structure 

around the neutron star is sufficiently deformed 

so as to apply G.T.R; i.e. the for a locally 

symmetric field there exist an unique curvature 

tensor  𝑅𝜇𝜈𝜅
𝜆  which can be constructed form the 

metric tensor 𝑔𝜈𝜇 and it’s first and second 

derivative. So, for that case the locally inertial 

gravitational field can be described by Toloman-

Oppenhimer-Volkoff (TOV) equation which also 

tends to give the maximum mass for a neutron 

star. 

 

Now for a slowly rotating neutron star the metric 

is given by Hartle-Throne metric (annot.). As  

Considering a spherically symmetric fluid the 

metric components are given as  
            

𝑐 𝑑𝜏2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = 

𝑒𝜈𝑐2𝑑𝑡2 − 𝑒𝜆𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃 𝑑𝜙2.           (31)                                             

 

now by the perfect-fluid assumption the diagonal 

of the stress-energy tensor is given as   

 𝑇0
0 = 𝜌𝑐2 for energy-density eigenvalue and 

 

 𝑇𝑗
𝑖 = −𝑃𝛿𝑗

𝑖                                                          (32)                                          

for eigenvalue for pressure. To proceed further, 

we solve Einstein's field equations  
 

 𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈𝑔 −
1

2
𝑔𝜇𝜈𝑅 =

8𝜋

𝑐4 𝐺𝑇𝜇𝜈  (annot)               (33).                                            

 

Now considering the first 𝐺00 component (33) is 

modified to                                        

 
8𝜋

𝑐4 𝐺 𝜌𝑐2𝑒𝜈 =
𝑒𝜈

𝑟2 (1 −
𝑑

𝑑𝑟
𝑟𝑒−𝜆)                              (34)                                                                                            

 

where the value of 𝑇𝜇𝜈 is derived from (32); then 

integrating equation (34) from 0 to r we have 
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𝑒−𝜆 = 1 −
2𝐺𝑚

𝑟𝑐2                                                      (35)                                                                                                                                                                                                                         

 

where m(r) satisfies the 
𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 condition. 

Now, considering the 𝐺11 component we have             

  

−
8𝜋𝐺

𝑐4 𝑃𝑒𝜆 =
−𝑟𝜈′+𝑒𝜆−1

𝑟2                                          (36).                                                                                                                                                                        

Now using the value of 𝑒𝜆 from equation (35), 

equation (36) simplified to                                               

 
𝑑𝜈

𝑑𝑟
=

1

𝑟
 (1 −

2𝐺𝑚

𝑐2𝑟
)

−1
(

2𝐺𝑚

𝑐2𝑟
+

8𝜋𝐺

𝑐4 𝑟2𝑃)                   (37).                                                                                   

 

We obtain a second equation by continuity of the 

stress-energy tensor: ∇𝜇𝑇𝜇
𝜈 = 0. Putting   𝜕𝑡𝜌 =

𝜕𝑡𝑃 = 0 (static/slowly rotating) and 𝜕𝜃𝑃 = 𝜕𝜙𝑃 =

0 (for isotropy) we obtain a particular solution as        

0 = ∇𝜇𝑇1
𝜈 = −

𝑑𝑝

𝑑𝑟
−

1

2
(𝑃+𝜌𝑐2)𝑑𝜈

𝑑𝑟
   ; rearranging the 

terms we have  

                                              
𝑑𝑃

𝑑𝑟
= − (

𝜌𝑐2+𝑃

2
) (

𝑑𝜈

𝑑𝑟
)                                             (38)                                                                                                        

 

Thus, from equations (38) and (37) eliminating  
𝑑𝜈

𝑑𝑟
 , we obtain   

 

 
𝑑𝑃

𝑑𝑟
= −

1

𝑟
 (

𝜌𝑐2+𝑃

2
) (

2𝐺𝑚

𝑐2𝑟
+

8𝜋𝐺

𝑐4 𝑟2𝑃) (1 −
2𝐺𝑚

𝑐2𝑟
)

−1
    (39)                                         

 

Finally, simplifying equation (39) we have the 

TOV equation written as   
 
𝑑𝑃

𝑑𝑟
= −

𝐺

𝑟2 (𝜌 +
𝑃

𝑐2)(𝑚 + 4𝜋𝑟3 𝑃

𝑐2) (1 −
2𝐺𝑚

𝑐2𝑟
)

−1
        (40)  

 

  5.3 Equation of States:  

 
Fig-4 

 

Beta-Equilibrium between Relativistic 

Electrons and Nuclei: 

The Harrison-Wheeler (HW) Equation of 

State- 

For a quantitative treatment, we start by writing 

the energy density of a mixture of nuclei, free 

electrons, and free neutrons in the form   
 

 𝜀 = 𝑛𝑁𝑀(𝐴, 𝑍) + 𝜀𝑒
′ (𝑛𝑒) + 𝜀𝑛(𝑛𝑛)                         (41).                                                                                                             

 

The baryon density n and electron density 𝑛𝑒 are then 

given by    

  

 𝑛 = 𝑛𝑁𝐴 + 𝑛𝐴    , 𝑛𝑒 = 𝑛𝑍 𝑍 ;   1 = 𝐴 𝑌𝑁 + 𝑌𝑛  ,  
  𝑌𝑒 = 𝑌𝑁  𝑍.                                                         (42).    

 

They used the semi-empirical mass formula of 

Green 

𝑀(𝐴, 𝑍) = [(𝑍 − 𝐴)𝑚𝑛𝑐2 + 𝑍(𝑚𝑝 + 𝑚𝑒)𝑐2 − 𝐴𝐸̅𝑏] 

                                                     = 𝑚𝑢𝑐2[𝑏1𝐴 +

𝑏2𝐴
2

3 − 𝑏3𝑍 + 𝑏4𝐴 (
1

2
+

𝑍

𝐴
)

2
+

𝑏5𝑍2

𝐴
1
3

]                       (43)  

 

𝑏1, = 0.991749, 𝑏3, = 0.000840,  𝑏5 = 0.000763, 

𝑏2, = 0.01911,         𝑏4= 0.10175. 

This expression is based on the “liquid-drop” 

nuclear model, and the terms have the following 

interpretation: The dominant contribution to 𝐸̅𝑏 

is proportional to the volume of the nucleus, as in 

the case of a liquid drop. The difference of 𝑏1, 

from unity is due largely to this volume binding 

energy. Now from equations (41) and (43) we 

have  

𝜀 = 𝑛(1 − 𝑌𝑛) (
𝑀(𝐴,𝑍)

𝐴
) + 𝜀𝑒

′ (𝑛𝑒) + 𝜀𝑛(𝑛𝑛)            (44)                                                                       

 

Where, 𝑛𝑒 =
𝑛(1−𝑌𝑛)𝑍

𝐴
 and 𝑛𝑛 = 𝑛𝑌𝑛 .     

Next; by Wheeler-Harrison approximation we  

have            

 

 
𝜕𝑀

𝜕𝑍
= −(𝐸𝐹𝑒 − 𝑚𝑒𝑐2)                                         (45).                                                                                    

 

the continuum limit of the P-stability condition 

in equilibrium with the free electron being at the 

Fermi sea,  

 we have 

 

 𝐴2 𝜕

𝜕𝐴
(

𝑀

𝐴
) = 𝑍(𝐸𝐹𝑒 − 𝑚𝑒𝑐2)    which gives   

                                                  

 𝑍
𝜕𝑀

𝜕𝑍
+ 𝐴

𝜕𝑀

𝜕𝐴
− 𝑀 = 0                                         (46).                                                                                                         
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Taking  
𝜕𝜀

𝜕𝑟𝑛
= 0  , we have                      

 
𝜕𝑀

𝜕𝐴
= 𝐸𝐹𝑒                                                           (47).                                                                                                                        

 

Thus, for a continuum version of the condition 

for M to be in equilibrium with 𝑀(𝑍, 𝐴 − 1), and 

free electrons we have from (45) as  

 

𝑏3 + 𝑏4 (1 −
2𝑍

𝐴
) − 2𝑏5

𝑍

𝐴
1
3

= [(1 + 𝑥𝑒
2)

1

2 − 1]
𝑚𝑒

𝑚𝑢
    (48)                                                               

 

Where 𝑥𝑒 =
𝑃𝐹

𝑒

𝑚𝑒𝑐
. Thus equation (46) gives 

 𝑍 = (
𝑏2

2𝑏5
)

1

2
𝐴

1

2 = 3.54 𝐴
1

2                                     (49).                                                                                                      

 

And from equation (47) we have  

 

𝑏1 +
2𝑏2𝐴

−
1
3

3
+ 𝑏4 (

1

4
−

𝑍2

𝐴2) −
𝑏5𝑍2

3𝐴
4
3

= (1 + 𝑥𝑛
2)

1

2
𝑚𝑛

𝑚𝑢
   (50),                                                                 

where  𝑥𝑛 =
𝑃𝐹

𝑛

𝑚𝑛𝑐
.   

Thus, under the restricted conditions of ‘neutron 

drip’ we have  

𝜌 =
𝜀

𝑐2 ≡ (𝑛𝑒𝑀(𝐴, 𝑍)/𝑍 + 𝜀𝑒
′ + 𝜀𝑛)/𝑐2  

𝑃 = 𝑃𝑒 + 𝑃𝑛     and       𝑛 = 𝑛𝑒
𝐴

𝑍
+ 𝑛𝑒                       (51).                                                                                               

 

Thus equation (51) is the ESO for a normal neutron 

star with 𝑃 = 𝑃(𝜌) (annot. GW170817). 

 

6. Pulsars 
 

 

 
Fig-5 

 

a. Gold’s Model of Pulsars ( key features ) 

 

1. In the intense magnetic field of a pulsar, any 

charged particle that may escape from it’s 

surface will be constrained to move only 

along the magnetic field lines as in the fig.  

2. The tangential velocity of these whirling 

particles gradually increases as they move 

further from the stellar surface.(velocity of 

light circle as in the fig-5.).   

3. The relativistic beam near this circle will 

radiate radio-waves perpendicular to the 

beam but the velocity of the light circle where 

the particles moves at nearly the speed of 

light gradually separates and spreads into 

the surrounding region creating periodic 

flashes.      

                                                                        

According to this model, any asymmetry in the 

emission region may be responsible for the 

observed fine structure in the pulsar.   

 

7. Black-Holes 
 

black hole partitions the four-dimensional space 

into two regions: an inner region which is 

bounded by a smooth two-dimensional surface 

called the event horizon; and an outer region, 

external to the event horizon, which is 

asymptotically flat; and it is required (as a part 

of the definition) that no point. A in the inner 

region can communicate with any point of the 

outer region. This incommunicability is 

guaranteed by the impossibility of any light 

signal, originating in the inner region, crossing 

the event horizon. The requirement of asymptotic 

flatness of the outer region is equivalent to the 

requirement that the black hole is isolated in 

space and that far from the event horizon the 

space-time approaches the customary space-time 

of terrestrial physics. To the extent they may be 

considered as stationary and isolated, to that 

extent, they are all, every single one of them, 

described exactly by the Kerr solution. This is the 

only instance we have of an exact description of a 

macroscopic object. (annot.).  

 

Result and Discussion 

 

While considering the structure and evolution of 

stars, the initial mass of the stellar object plays a 

very major faction in determining the final state 

of the star. After reaching the Jean’s stability in 

proto stellar gas, consisting enough mass 

contracting into itself, igniting sufficient thermo-

nuclear reaction to counter balance inward 

gravitational contraction, the star reaches its 
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hydrostatic equilibrium. Where, the pressure 

plays a very major role in the balancing the 

overall geometrical structure of the star. This 

pressure consist of both from radiation and the 

matter itself. Exceeding the middle ages, the star 

exhaust all it’s fuel to expand itself into a red-

giant, from where, depending on its initial mass, 

will either shed its outer atmosphere in a 

planetary nebulae (Chandrasekhar limit) to 

become a white dwarf, if it exceeds that mass to 

then within the Oppenheimer-Volkoff limit it 

converts into a neutron star or pulsar. If it 

exceeds that mass limit, the inward gravitational 

contraction become so strong, that the star 

collapses into itself causing a space-time 

singularity in the local geometry of the space-

time.          
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