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Abstract. The cross-section of the thermal neutron capture *' Ar(n,y)*?Ar(t,/,=32.9 y) reaction was measured
by irradiating a *° Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The sig-
nature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6
keV y-lines of the shorter-lived “*K(12.4 h) 5~ daughter of *Ar. Our preliminary value of the *' Ar(n,y)**Ar
thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of **Ar was performed
using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne

National Laboratory, USA.

1 Introduction

Neutron capture reactions and their cross section are es-
sential for basic and applied nuclear physics. It was recog-
nized by Cameron [1] and Burbidge, Burbidge, Fowler and
Hoyle [2] that they play a crucial role in stellar production
of heavy elements. The quest for experimental determina-
tion of neutron capture cross sections has been intensely
pursued for the study of the slow (s) process [3]. How-
ever, no experimental pathway exists to determine neutron
capture rates on nuclei far from stability [4, 5] which are
relevant to the rapid (r) process [6]. Various techniques
have been proposed for providing indirect measurements
of neutron-capture cross sections far from stability [7, 8].
Obtaining reliable data on neutron capture cross section
for unstable isotopes remains a challenge and an essential
task in contemporary research [9, 10].

Production of *?Ar and its properties are not exten-
sively studied. In the 1950’s and 1960’s, the half-life of
42 Ar was measured as 32.9+1.1 y and the cross section
of the *' Ar(n,y)**Ar reaction at thermal energy was deter-
mined as 0.5(1) b [11, 12]. **Ar(32.9 y) is thus known
to undergo 100% B~ decay to shorter-lived *K(12.36 h),
itself further 8~ decaying to stable **Ca (Fig. 1). In an ex-
periment approved at the National Ignition Facility (NIF)
of Lawrence Livermore National Laboratory [13], we are
considering “?Ar as a candidate for the experimental ob-
servation of a rapid two-neutron capture reaction on *°Ar.
The extreme high-density plasma and high-density neu-
tron environment of a laser-induced Inertial Confinement
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Figure 1. Simplified decay scheme of **Ar and K.

Fusion shot at NIF is the closest terrestrial analog of stellar
explosive nucleosynthesis. The experiment will consist of
a high-power laser shot on a DT filled capsule seeded with
4OAr atoms, where *Ar could be produced by the two-
neutron “°Ar(n, y)*' Ar(n, y)*> Ar reaction within ~ 100 ps.

The objectives of the present preparatory study, per-
formed before the approved experiment at NIF, were
twofold: (i) production of “>Ar in a long irradiation of *°Ar
in a high flux of thermal neutrons and a new measurement
of the *' Ar(n, y)42Ar reaction cross, and (ii) first demon-
stration of direct detection of “*Ar at ultra-high sensitivity,
as required for the NIF experiment.

2 “0Ar sample preparation and irradiation

A 0.768 cc high-purity quartz ampoule was filled with
99.992 % enriched “°Ar gas [14] at 314(1) Torr and
shipped to the high-flux reactor of Institut Laue-Langevin



EPJ Web of Conferences 284, 01037 (2023)

https://doi.org/10.1051/epjconf/202328401037

(ILL), Grenoble for irradiation. After a 8.17 days irradi-
ation in the V4 beam tube with a thermal neutron fluence
of 6.0(9)x10% cm~2 [15] and following decay of *! Ar and
short-lived activities co-produced in the quartz, the am-
poule was shipped to Hebrew University. The ampoule
was broken in vacuo in an ad hoc gas manifold (Fig. 2),
quantitatively diluted with " Ar (N9 = 1.92(15)x10%!) to
reach an atom ratio “>Ar/*°Ar in the 107'? range (see Sec-
tion 4), and cryogenically transferred to a 11.2 cc stainless
cylinder (sample ILL1) at a final pressure of 6.96(35) bar
(25 °C). The measured Ar dilution factor between the orig-
inal ampoule and sample ILL1 is 246(20).

Figure 2. Manifold used for the dilution of the irradiated Ar-gas
with " Ar. The ILL1 sample cylinder is at the right-hand end of
the vacuum line.

3 “2Ar detection using y-ray spectrometry

Sample ILL1 was placed in contact with an efficiency-
calibrated HPGe detector (Fig. 3) to follow the growth
curve of shorter-lived 8~ daughter *’K via the 1524.6 keV
y-ray (18.1% intensity per decay) (Fig. 1). The y spectra

Figure 3. The ILL1 sample cylinder in contact with the end-cap
of the HPGe detector at Hebrew University for the **K in-growth
measurement.

of the cylinder were measured every 12.5 hours; Figure 4
shows the mean decay rate for each measurement interval,
reaching ~ 38 counts per hour at secular equilibrium in
the given configuration. The cylinder was then placed
at a 5 cm distance (Fig. 5) for the activity measurement.
The y-spectrum, accumulated for 196.9 hours, is shown in
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Figure 4. In-growth of K (12.36 h) activity from de-

cay of “Ar(32.9 y) produced by slow two-neutron capture
40 Ar(n,y)* Ar(n,y)*? Ar. The solid line represents a fit to the data
points with the expression A(7) = A4 (1 — e k! ) where Aug is
the K decay constant, confirming production of “?Ar.

Figure 5. The ILL1 sample cylinder was placed at a 5 cm dis-
tance from the end-cap of the HPGe detector for activity mea-
surement.

Fig. 6. A correction due to the extended geometry of sam-
ple ILL1 and attenuation in the cylinder walls, calculated
by a Monte Carlo simulation, was applied. The measured
42K activity at secular equilibrium (equal to that of *>Ar)
is A42 = 40(3) Bq
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Figure 6. y spectrum of sample ILL1 at secular equilibium (8.21
days counting at 5 cm distance from the HPGe detector). The K
(**Ar) activity is 4.0(3) Bq. Room background lines are identi-
fied.
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4 Determination of the thermal
I Ar(n,y)**Ar cross-section

The number of **Ar atoms in sample ILL1 calculated from
the #? Ar activity is Nuoy, = Agr/Aay, = 6.0(5)x 10°, where
Ay, is 2Ar(32.9 y) decay constant. We extract now an
atom ratio “>Ar/*°Ar=3.12(35) x 10~'2 using the number
Ny of “°Ar atoms in sample ILL1 (see Section 2). The
atom ratio in the original irradiated ampoule is obtained
using the measured dilution ratio (246(5), see Section 2)
as 2 Ar/*Ar= 7.7(9) x 10710,

The expression for the ratio R =**Ar/*’Ar produced
by the slow two-neutron capture *’Ar(n,y)*' Ar(n,y)**Ar
is given by:

R(;) =

2 _ .
D, T40Ar(ny) T4 Ar(n,y) (t' _ 1 — e Auti ) )
Az l Aq ’

where @, and #; represent the mean thermal neutron flux
and irradiation time, respectively, w4,(,,) and o414,
the cross section of the respective reactions at thermal neu-
tron energy, and A4, the decay constant of *'Ar(t;, =

109.61(4) min).The o-fff(‘)f(n ) Cross section (25.3 meV) is

taken as 0.673(65) b [16]; decay of 42Ar(t1/2 =329y)is
neglected.
Substitution of all values results in a preliminary value

of 0'31229(”’7) = 240(80) mb for the thermal neutron capture

4 Ar(n, y)** Ar reaction cross section, significantly smaller
than the value of 0.5(1) b reported in [12]. A second *°Ar
irradiation is planned at ILL for improved neutron fluence
monitoring.

5 Detection of “>Ar by Noble-Gas
Accelerator Mass Spectrometry

Accelerator mass spectrometry (AMS) is an ultra-sensitive
technique for detection of rare long-lived radionuclides.
Single ions are counted after acceleration and a succes-
sion of magnetic and electrostatic analyses and identifi-
cation, usually by nuclear detection methods; see recent
reviews in [17, 18]. While conventional AMS facilities
are based on negative-ion production and injection, AMS
analysis of noble gases must resort to positive-ion pro-
duction due to the instability of their negative ions. The
positive-ion Noble-Gas Accelerator Mass Spectrometry
(NOGAMS) technique, developed at Argonne National
Laboratory (ANL) is described in detail in [19]. It was
used to detect long-lived *Ar(268 y) [20, 21] at isotopic
abundance sensitivity, 3> Ar/Ar, in the range 10~'2 to below
10716, In this work, we developed the NOGAMS method
for detection of “>Ar to be used in the analysis of Ar sam-
ples from a NIF shot (see Section 1).

The electron cyclotron resonance ion source ECR-III
[22] was fed (at a partial pressure in the low 1077 Torr
range) with the > Ar gas sample ILL1 (Section 2). Highly-
charged “*Ar%* ions were accelerated to 5.5 MeV/u in
the ATLAS superconducting linear accelerator at ANL.
The ions were then analyzed in a split-pole Enge spec-
trograph in gas-filled mode [23] to separate isobaric **Ca
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Figure 7. First NOGAMS identification spectrum of “>Ar from
sample ILL1: energy loss in anode AE4 of the Monica detector
vs focal plane position. See text.
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Figure 8. Spectrum taken under the same conditions of ATLAS
as in Fig-7 for a nonirradiated (blank) " Ar sample for the back-
ground subtraction.

and other beam contaminants resulting from ion source
impurities. The position-sensitive focal-plane ionization
chamber, nicknamed Monica [24], was used to identify
and count incoming ions by measuring their energy loss
and positions. Fig. 7 shows the identified “>Ar group. A
%3 Cu group, well separated from *?Ar, is observed orig-
inating from ®Cu'?* ions, which are degenerate in their
mass-to-charge ratio with *?Ar®* ions, and transported
identically through ATLAS. The ®*Cu ions were likely
produced from materials present in the microwave injec-
tion system. Isobaric *Ca®* contaminant ions were ob-
served but are totally deflected out of the detector accep-
tance by the gas-filled spectrograph at the magnetic field
setting used. The *>Ar count rate for the gas sample used
(?Ar/* Ar=3.1x107'?) was 6.8 counts per hour (cph). For
comparison, Fig. 8 shows a spectrum obtained for a " Ar
gas sample under similar conditions as ILL1. No counts
are observed in the **Ar region (< 0.02 cph) demonstrat-
ing an abundance sensitivity in the 10~ range. Further
quantitative analysis of the isotopic ratio ** Ar/Ar obtained
from the NOGAMS data will allow us to confirm or cor-
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rect the *'Ar(n,y)*?Ar cross-section value and the **Ar
half-life value.

6 Summary

A *0Ar sample was irradiated at the high-flux nuclear reac-
tor at ILL, Grenoble. Two successive neutron captures by
40Ar produced *?Ar through the “°Ar(n, y)*' Ar(n, y)*Ar
reactions. *?Ar was identified by observation of the growth
curve of its 8~ daughter **K and of the subsequent 1524.6
keV y-transition. The *?Ar sample activity was measured
as 4.0(3) Bq. From the corresponding ** Ar/*° Ar atom ratio
in the irradiated sample, a preliminary value of 240(80) mb
is determined for the cross-section of the *' Ar(n, y)42Ar
reaction at thermal energy. In addition, for the first time
42 Ar, with an isotopic abundance in the 10~!? range, was
directly identified and counted by noble-gas accelerator
mass spectrometry. An abundance sensitivity in the 10~
range is demonstrated. We plan to apply the technique to
a search for “>Ar produced by a rapid two-neutron capture
in a high-power laser shot on a DT filled capsule seeded
with *°Ar atoms at NIF.
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