

## The $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$ reaction

*R. N. Sahoo<sup>1</sup>, M. Paul<sup>1,\*</sup>, U. Köster<sup>2</sup>, R. Scott<sup>3</sup>, M. Tessler<sup>4</sup>, A. Zylstra<sup>5</sup>, M. L. Avila<sup>3</sup>, C. Dickerson<sup>3</sup>, H. Jayatissa<sup>3</sup>, M.S. Kohen<sup>1</sup>, J. McLain<sup>3</sup>, R.C. Pardo<sup>3</sup>, K. E. Rehm<sup>3</sup>, I. Tolstukhin<sup>3</sup>, R. Vondrasek<sup>3</sup>, T. Bailey<sup>6</sup>, L. Callahan<sup>6</sup>, A. Clark<sup>6</sup>, P. Collon<sup>6</sup>, Y. Kashiv<sup>6</sup>, and A. Nelson<sup>6</sup>*

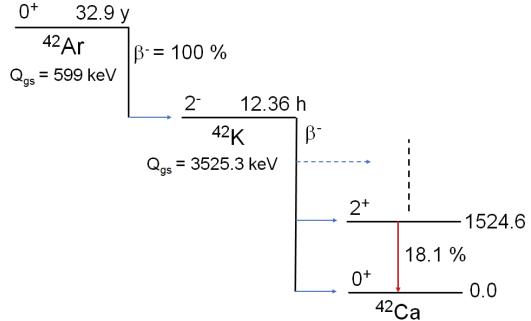
<sup>1</sup>The Hebrew University of Jerusalem, Jerusalem, Israel 91904

<sup>2</sup>Institut Laue-Langevin, Grenoble, France

<sup>3</sup>Argonne National Laboratory, Argonne, IL 60439, USA

<sup>4</sup>Soreq Nuclear Research Center, Yavne, Israel

<sup>5</sup>Lawrence Livermore National Laboratory, Livermore, CA, USA


<sup>6</sup>University of Notre Dame, Notre Dame, IN 46556, USA

**Abstract.** The cross-section of the thermal neutron capture  $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  ( $t_{1/2}=32.9$  y) reaction was measured by irradiating a  $^{40}\text{Ar}$  sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV  $\gamma$ -lines of the shorter-lived  $^{42}\text{K}$  (12.4 h)  $\beta^-$  daughter of  $^{42}\text{Ar}$ . Our preliminary value of the  $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of  $^{42}\text{Ar}$  was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA.

### 1 Introduction

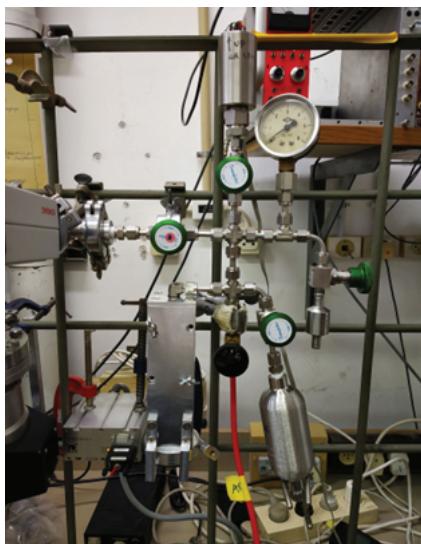
Neutron capture reactions and their cross section are essential for basic and applied nuclear physics. It was recognized by Cameron [1] and Burbidge, Burbidge, Fowler and Hoyle [2] that they play a crucial role in stellar production of heavy elements. The quest for experimental determination of neutron capture cross sections has been intensely pursued for the study of the slow (*s*) process [3]. However, no experimental pathway exists to determine neutron capture rates on nuclei far from stability [4, 5] which are relevant to the rapid (*r*) process [6]. Various techniques have been proposed for providing indirect measurements of neutron-capture cross sections far from stability [7, 8]. Obtaining reliable data on neutron capture cross section for unstable isotopes remains a challenge and an essential task in contemporary research [9, 10].

Production of  $^{42}\text{Ar}$  and its properties are not extensively studied. In the 1950's and 1960's, the half-life of  $^{42}\text{Ar}$  was measured as  $32.9 \pm 1.1$  y and the cross section of the  $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  reaction at thermal energy was determined as  $0.5(1)$  b [11, 12].  $^{42}\text{Ar}$  (32.9 y) is thus known to undergo 100%  $\beta^-$  decay to shorter-lived  $^{42}\text{K}$  (12.36 h), itself further  $\beta^-$  decaying to stable  $^{42}\text{Ca}$  (Fig. 1). In an experiment approved at the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory [13], we are considering  $^{42}\text{Ar}$  as a candidate for the experimental observation of a rapid two-neutron capture reaction on  $^{40}\text{Ar}$ . The extreme high-density plasma and high-density neutron environment of a laser-induced Inertial Confinement



**Figure 1.** Simplified decay scheme of  $^{42}\text{Ar}$  and  $^{42}\text{K}$ .

Fusion shot at NIF is the closest terrestrial analog of stellar explosive nucleosynthesis. The experiment will consist of a high-power laser shot on a DT filled capsule seeded with  $^{40}\text{Ar}$  atoms, where  $^{42}\text{Ar}$  could be produced by the two-neutron  $^{40}\text{Ar}(\text{n},\gamma)^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  reaction within  $\approx 100$  ps.


The objectives of the present preparatory study, performed before the approved experiment at NIF, were twofold: (*i*) production of  $^{42}\text{Ar}$  in a long irradiation of  $^{40}\text{Ar}$  in a high flux of thermal neutrons and a new measurement of the  $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  reaction cross, and (*ii*) first demonstration of direct detection of  $^{42}\text{Ar}$  at ultra-high sensitivity, as required for the NIF experiment.

### 2 $^{40}\text{Ar}$ sample preparation and irradiation

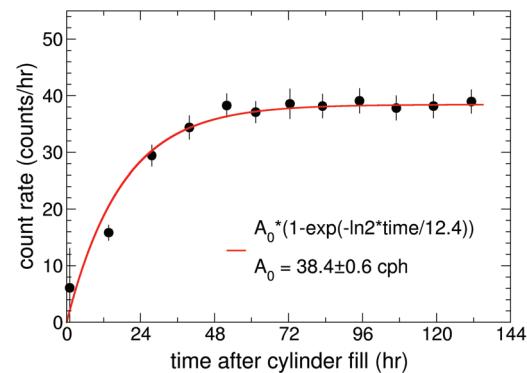
A 0.768 cc high-purity quartz ampoule was filled with 99.992 % enriched  $^{40}\text{Ar}$  gas [14] at 314(1) Torr and shipped to the high-flux reactor of Institut Laue-Langevin

\*e-mail: paul@vms.huji.ac.il

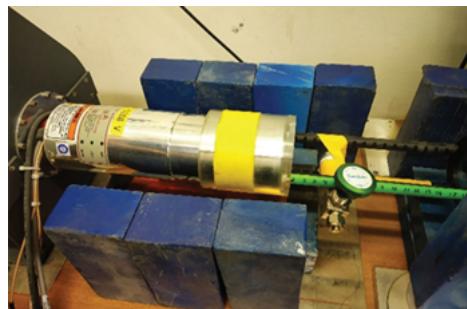
(ILL), Grenoble for irradiation. After a 8.17 days irradiation in the V4 beam tube with a thermal neutron fluence of  $6.0(9) \times 10^{20} \text{ cm}^{-2}$  [15] and following decay of  $^{41}\text{Ar}$  and short-lived activities co-produced in the quartz, the ampoule was shipped to Hebrew University. The ampoule was broken *in vacuo* in an *ad hoc* gas manifold (Fig. 2), quantitatively diluted with  $^{nat}\text{Ar}$  ( $N_{40} = 1.92(15) \times 10^{21}$ ) to reach an atom ratio  $^{42}\text{Ar}/^{40}\text{Ar}$  in the  $10^{-12}$  range (see Section 4), and cryogenically transferred to a 11.2 cc stainless cylinder (sample ILL1) at a final pressure of 6.96(35) bar (25 °C). The measured Ar dilution factor between the original ampoule and sample ILL1 is 246(20).



**Figure 2.** Manifold used for the dilution of the irradiated Ar-gas with  $^{nat}\text{Ar}$ . The ILL1 sample cylinder is at the right-hand end of the vacuum line.

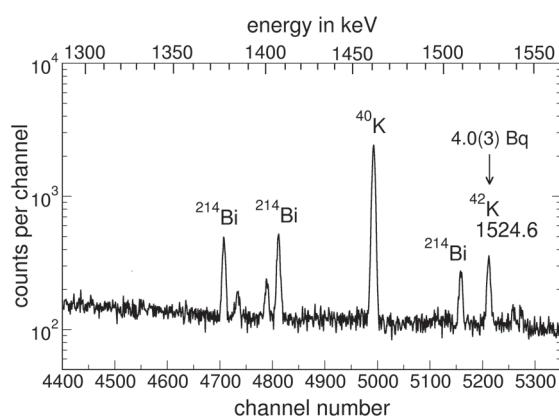

### 3 $^{42}\text{Ar}$ detection using $\gamma$ -ray spectrometry

Sample ILL1 was placed in contact with an efficiency-calibrated HPGe detector (Fig. 3) to follow the growth curve of shorter-lived  $\beta^-$  daughter  $^{42}\text{K}$  via the 1524.6 keV  $\gamma$ -ray (18.1% intensity per decay) (Fig. 1). The  $\gamma$  spectra




**Figure 3.** The ILL1 sample cylinder in contact with the end-cap of the HPGe detector at Hebrew University for the  $^{42}\text{K}$  in-growth measurement.

of the cylinder were measured every 12.5 hours; Figure 4 shows the mean decay rate for each measurement interval, reaching  $\approx 38$  counts per hour at secular equilibrium in the given configuration. The cylinder was then placed at a 5 cm distance (Fig. 5) for the activity measurement. The  $\gamma$ -spectrum, accumulated for 196.9 hours, is shown in




**Figure 4.** In-growth of  $^{42}\text{K}$  (12.36 h) activity from decay of  $^{42}\text{Ar}$  (32.9 y) produced by slow two-neutron capture  $^{40}\text{Ar}(n,\gamma)^{41}\text{Ar}(n,\gamma)^{42}\text{Ar}$ . The solid line represents a fit to the data points with the expression  $A(t) = A_{42}(1 - e^{-\lambda_{42K}t})$  where  $\lambda_{42K}$  is the  $^{42}\text{K}$  decay constant, confirming production of  $^{42}\text{Ar}$ .



**Figure 5.** The ILL1 sample cylinder was placed at a 5 cm distance from the end-cap of the HPGe detector for activity measurement.

Fig. 6. A correction due to the extended geometry of sample ILL1 and attenuation in the cylinder walls, calculated by a Monte Carlo simulation, was applied. The measured  $^{42}\text{K}$  activity at secular equilibrium (equal to that of  $^{42}\text{Ar}$ ) is  $A_{42} = 4.0(3)$  Bq.



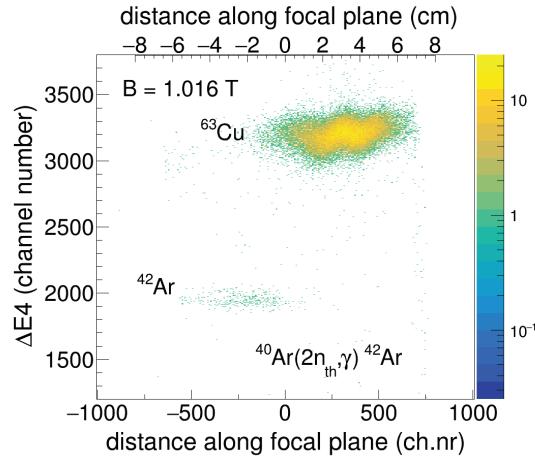
**Figure 6.**  $\gamma$  spectrum of sample ILL1 at secular equilibrium (8.21 days counting at 5 cm distance from the HPGe detector). The  $^{42}\text{K}$  ( $^{42}\text{Ar}$ ) activity is  $4.0(3)$  Bq. Room background lines are identified.

#### 4 Determination of the thermal $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$ cross-section

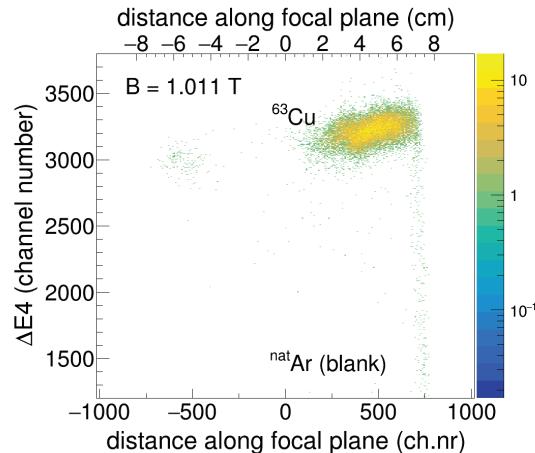
The number of  $^{42}\text{Ar}$  atoms in sample ILL1 calculated from the  $^{42}\text{Ar}$  activity is  $N_{^{42}\text{Ar}} = A_{42}/\lambda_{^{42}\text{Ar}} = 6.0(5) \times 10^9$ , where  $\lambda_{^{42}\text{Ar}}$  is  $^{42}\text{Ar}$ (32.9 y) decay constant. We extract now an atom ratio  $^{42}\text{Ar}/^{40}\text{Ar} = 3.12(35) \times 10^{-12}$  using the number  $N_{^{40}\text{Ar}}$  of  $^{40}\text{Ar}$  atoms in sample ILL1 (see Section 2). The atom ratio in the original irradiated ampoule is obtained using the measured dilution ratio (246(5), see Section 2) as  $^{42}\text{Ar}/^{40}\text{Ar} = 7.7(9) \times 10^{-10}$ .

The expression for the ratio  $R = ^{42}\text{Ar}/^{40}\text{Ar}$  produced by the slow two-neutron capture  $^{40}\text{Ar}(\text{n},\gamma)^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  is given by:

$$R(t_i) = \frac{\Phi_n^2 \sigma_{^{40}\text{Ar}(\text{n},\gamma)} \sigma_{^{41}\text{Ar}(\text{n},\gamma)}}{\lambda_{41}} \left( t_i - \frac{1 - e^{-\lambda_{41} t_i}}{\lambda_{41}} \right), \quad (1)$$


where  $\Phi_n$  and  $t_i$  represent the mean thermal neutron flux and irradiation time, respectively,  $\sigma_{^{40}\text{Ar}(\text{n},\gamma)}$  and  $\sigma_{^{41}\text{Ar}(\text{n},\gamma)}$  the cross section of the respective reactions at thermal neutron energy, and  $\lambda_{41}$ , the decay constant of  $^{41}\text{Ar}$ ( $t_{1/2} = 109.61(4)$  min). The  $\sigma_{^{40}\text{Ar}(\text{n},\gamma)}^{2200}$  cross section (25.3 meV) is taken as 0.673(65) b [16]; decay of  $^{42}\text{Ar}$ ( $t_{1/2} = 32.9$  y) is neglected.

Substitution of all values results in a preliminary value of  $\sigma_{^{41}\text{Ar}(\text{n},\gamma)}^{2200} = 240(80)$  mb for the thermal neutron capture  $^{41}\text{Ar}(\text{n},\gamma)^{42}\text{Ar}$  reaction cross section, significantly smaller than the value of 0.5(1) b reported in [12]. A second  $^{40}\text{Ar}$  irradiation is planned at ILL for improved neutron fluence monitoring.


#### 5 Detection of $^{42}\text{Ar}$ by Noble-Gas Accelerator Mass Spectrometry

Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for detection of rare long-lived radionuclides. Single ions are counted after acceleration and a succession of magnetic and electrostatic analyses and identification, usually by nuclear detection methods; see recent reviews in [17, 18]. While conventional AMS facilities are based on negative-ion production and injection, AMS analysis of noble gases must resort to positive-ion production due to the instability of their negative ions. The positive-ion Noble-Gas Accelerator Mass Spectrometry (NOGAMS) technique, developed at Argonne National Laboratory (ANL) is described in detail in [19]. It was used to detect long-lived  $^{39}\text{Ar}$ (268 y) [20, 21] at isotopic abundance sensitivity,  $^{39}\text{Ar}/\text{Ar}$ , in the range  $10^{-12}$  to below  $10^{-16}$ . In this work, we developed the NOGAMS method for detection of  $^{42}\text{Ar}$  to be used in the analysis of Ar samples from a NIF shot (see Section 1).

The electron cyclotron resonance ion source ECR-III [22] was fed (at a partial pressure in the low  $10^{-7}$  Torr range) with the  $^{42}\text{Ar}$  gas sample ILL1 (Section 2). Highly-charged  $^{42}\text{Ar}^{8+}$  ions were accelerated to 5.5 MeV/u in the ATLAS superconducting linear accelerator at ANL. The ions were then analyzed in a split-pole Enge spectrograph in gas-filled mode [23] to separate isobaric  $^{42}\text{Ca}$



**Figure 7.** First NOGAMS identification spectrum of  $^{42}\text{Ar}$  from sample ILL1: energy loss in anode  $\Delta E4$  of the Monica detector vs focal plane position. See text.



**Figure 8.** Spectrum taken under the same conditions of ATLAS as in Fig-7 for a nonirradiated (blank)  $^{nat}\text{Ar}$  sample for the background subtraction.

and other beam contaminants resulting from ion source impurities. The position-sensitive focal-plane ionization chamber, nicknamed Monica [24], was used to identify and count incoming ions by measuring their energy loss and positions. Fig. 7 shows the identified  $^{42}\text{Ar}$  group. A  $^{63}\text{Cu}$  group, well separated from  $^{42}\text{Ar}$ , is observed originating from  $^{63}\text{Cu}^{12+}$  ions, which are degenerate in their mass-to-charge ratio with  $^{42}\text{Ar}^{8+}$  ions, and transported identically through ATLAS. The  $^{63}\text{Cu}$  ions were likely produced from materials present in the microwave injection system. Isobaric  $^{42}\text{Ca}^{8+}$  contaminant ions were observed but are totally deflected out of the detector acceptance by the gas-filled spectrograph at the magnetic field setting used. The  $^{42}\text{Ar}$  count rate for the gas sample used ( $^{42}\text{Ar}/^{40}\text{Ar} = 3.1 \times 10^{-12}$ ) was 6.8 counts per hour (cph). For comparison, Fig. 8 shows a spectrum obtained for a  $^{nat}\text{Ar}$  gas sample under similar conditions as ILL1. No counts are observed in the  $^{42}\text{Ar}$  region (< 0.02 cph) demonstrating an abundance sensitivity in the  $10^{-15}$  range. Further quantitative analysis of the isotopic ratio  $^{42}\text{Ar}/\text{Ar}$  obtained from the NOGAMS data will allow us to confirm or cor-

rect the  $^{41}\text{Ar}(n,\gamma)^{42}\text{Ar}$  cross-section value and the  $^{42}\text{Ar}$  half-life value.

## 6 Summary

A  $^{40}\text{Ar}$  sample was irradiated at the high-flux nuclear reactor at ILL, Grenoble. Two successive neutron captures by  $^{40}\text{Ar}$  produced  $^{42}\text{Ar}$  through the  $^{40}\text{Ar}(n, \gamma)^{41}\text{Ar}(n, \gamma)^{42}\text{Ar}$  reactions.  $^{42}\text{Ar}$  was identified by observation of the growth curve of its  $\beta^-$  daughter  $^{42}\text{K}$  and of the subsequent 1524.6 keV  $\gamma$ -transition. The  $^{42}\text{Ar}$  sample activity was measured as 4.0(3) Bq. From the corresponding  $^{42}\text{Ar}/^{40}\text{Ar}$  atom ratio in the irradiated sample, a preliminary value of 240(80) mb is determined for the cross-section of the  $^{41}\text{Ar}(n, \gamma)^{42}\text{Ar}$  reaction at thermal energy. In addition, for the first time  $^{42}\text{Ar}$ , with an isotopic abundance in the  $10^{-12}$  range, was directly identified and counted by noble-gas accelerator mass spectrometry. An abundance sensitivity in the  $10^{-15}$  range is demonstrated. We plan to apply the technique to a search for  $^{42}\text{Ar}$  produced by a rapid two-neutron capture in a high-power laser shot on a DT filled capsule seeded with  $^{40}\text{Ar}$  atoms at NIF.

## Acknowledgements

The authors gratefully acknowledge the ATLAS operation team for the operation of the accelerator under the special conditions of AMS experiments. Support of Pazy Foundation (Israel) and USA-Israel Binational Science Foundation (BSF Grant Nr. 2020136) and support of Israel Science Foundation (ISF Grant Nr.876/19) for the building of the Monica detector are acknowledged. This work was supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility. A.Z. acknowledges support from U.S. DOE Early Career Research Program (Fusion Energy Sciences) under Grant No. FWP SCW1658. The U. of Notre Dame co-Authors are supported by National Science Foundation, Grant No. NSF PHY-2011890 and the Nuclear Regulatory Commission, Award No. 31310019M0037.

## References

- [1] A.G.W. Cameron, Publ. Astron. Soc. of the Pacific **69**, 201 (1957)
- [2] E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. **29**, 547 (1957)
- [3] F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. **83**, 157 (2011)
- [4] M. Arnould, S. Goriely, K. Takahashi, Physics Reports **450**, 97 (2007)
- [5] S.N. Liddick, A. Spyrou, B.P. Crider, F. Naqvi, A.C. Larsen, M. Guttormsen, M. Mumpower, R. Surman, G. Perdikakis, D.L. Bleuel et al., Phys. Rev. Lett. **116**, 242502 (2016)
- [6] J.J. Cowan, C. Sneden, J.E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, F.K. Thielemann, Rev. Mod. Phys. **93**, 015002 (2021)
- [7] A. Spyrou, S.N. Liddick, A.C. Larsen, M. Guttormsen, K. Cooper, A.C. Dombos, D.J. Morrissey, F. Naqvi, G. Perdikakis, S.J. Quinn et al., Phys. Rev. Lett. **113**, 232502 (2014)
- [8] R. Reifarth, K. Schwarz, F. Käppeler, Astrophys. J. **528**, 573 (2000)
- [9] J.E. Escher, J.T. Harke, R.O. Hughes, N.D. Scielzo, R.J. Caspersion, S. Ota, H.I. Park, A. Saastamoinen, T.J. Ross, Phys. Rev. Lett. **121**, 052501 (2018)
- [10] A. Bhattacharyya, U. Datta, A. Rahaman, S. Chakraborty, T. Aumann, S. Beceiro-Novo, K. Boretzky, C. Caesar, B.V. Carlson, W.N. Catford et al., Phys. Rev. C **104**, 045801 (2021)
- [11] S. Katcoff, Phys. Rev. **87**, 886 (1952)
- [12] R.W. Stoener, O.A. Schaeffer, S. Katcoff, Science **148**, 1325 (1965)
- [13] M. Paul, A. Zylstra, D. Casey et al., *A noble-gas accelerator mass spectrometry platform at NIF for nuclear astrophysics*, <https://lasers.llnl.gov/for-users/call-for-proposals/2019-ds-awards>
- [14] Isoflex USA Ltd., San Francisco, USA (2021)
- [15] U. Köster, U. Calzavara, S. Fuard, M. Samuel, K. Zhernosekov et al., Radiother. Oncol. **102**, S169–70 (2012)
- [16] V. Fischer, L. Pagani, L. Pickard, A. Couture, S. Gardiner, C. Grant, J. He, T. Johnson, E. Pantic, C. Prokop et al. (ACED Collaboration), Phys. Rev. D **99**, 103021 (2019)
- [17] H.A. Synal, CHIMIA **76**, 45 (2022)
- [18] W. Kutschera, Advances in Physics: X **1**, 570 (2016)
- [19] M. Paul, R.C. Pardo, P. Collon, W. Kutschera, K.E. Rehm, R. Scott, R.C. Vondrasek, Nucl. Instrum. Methods Phys. Res. Sec. B **456**, 222 (2019)
- [20] P. Collon, W. Kutschera, Z.T. Lu, Annu. Rev. Nucl. Part. Sci. **54**, 39 (2004)
- [21] M. Tessler, M. Paul, S. Halfon, B.S. Meyer, R. Pardo, R. Purtschert, K.E. Rehm, R. Scott, M. Weigand, L. Weissman et al., Phys. Rev. Lett. **121**, 112701 (2018)
- [22] R.H. Scott, C.A. Dickerson, R.C. Pardo, R.C. Vondrasek, *A new ECRIS Installation at the Argonne Tandem Linac Accelerator System*, in *Proceedings of ECRIS 2016, The 22nd International Workshop on ECR Ion Sources* (Busan, S. Korea, 2016), p. WEPP14, ISBN 978-3-95450-186-1
- [23] M. Paul, B.G. Glagola, W. Henning, J.G. Keller, W. Kutschera, Z. Liu, K.E. Rehm, B. Schneck, R.H. Siemssen, Nucl. Instrum. Methods Phys. Res. A **277**, 418 (1989)
- [24] L.K. Callahan, P. Collon, M. Paul, M. Avila, B. Back, T. Bailey, A. Clark, C. Dickerson, J. Greene, H. Jayatissa et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms **532**, 7 (2022)