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Abstract

A pulsed electron lens produces a betatron tune shift along
a hadron bunch as a function of the longitudinal coordinates,
which is a longitudinal detuning. An example of transverse
detuning is the tune shifts due to octupole magnets. This
paper considers a pulsed electron lens as a measure to mit-
igate the head-tail instabilities. The analytical predictions
are compared with the results of the particle tracking sim-
ulations. A pulsed electron lens is demonstrated to be a
source of tune spread with two components: a static one,
leading to Landau damping; and a dynamic one, leading to
an effective impedance modification, which we demonstrate
analytically and in our particle tracking simulations. The
effective impedance modification can be important for beam
stability due to devices causing longitudinal detuning, espe-
cially for nonzero head-tail modes. We explore two types of
pulsed electron lenses: one with a homogeneous transverse
distribution and another with a Gaussian distribution.

INTRODUCTION

Landau damping is [1] one of the mitigation measures
against coherent beam instabilities [2, 3]. Recently, several
works [4-8] studied mitigation of transverse instabilities by
Landau damping with longitudinal detuning. Longitudinal
detuning is detuning with longitudinal coordinates. One
common type of longitudinal detuning is chromaticity. It
depends on energy offset §. Other examples of detuning with
longitudinal coordinate z are a radio frequency quadrupole
cavity (RFQ) or a pulsed electron lens (PEL).

Longitudinal detuning can be written as AQ(z,8) =
AQ(J,, ¢), where J,, ¢ are the longitudinal action-angle
variables. In contrast, transverse detuning, AQ(JX,Jy) de-
pends only on the transverse amplitudes J,, J,. This differ-
ence is because instability typically develops at the timescale
of synchrotron motion. Transverse oscillations are much
faster than longitudinal oscillations. Therefore only the am-
plitudes can be accounted for.

Figure 1 illustrates the layout of a PEL developed for the
SIS100 heavy-ion synchrotron. An electron lens, in general,
is a special device with its own low-energy electron beam.
The electron lens acts as a nonlinear lens, where the elec-
tromagnetic field of the electron beam transversely focuses
ion beam. A PEL was initially proposed for space-charge
compensation [9] and investigated further in [10] for appli-
cation in SIS100 heavy-ion synchrotron [11]. A prototype
PEL is being developed [12, 13] to be installed in SIS18
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Figure 1: Schematic layout of a pulses electron lens. A
transverse cross-section of ion and electron beams is shown
above it in black and red, respectively.

heavy-ion synchrotron [14]. The authors of [4] showed that
a PEL could also be a source of Landau damping.

Authors of Ref. [4, 5] demonstrated that longitudinal de-
tuning can be split into two components. One is static de-
tuning; it does not change during a synchrotron oscillation.
Static longitudinal detuning was shown to be a source of Lan-
dau damping. This is similar to the transverse detuning (for
example, from octupole magnets). Longitudinal detuning
has another effect on the beam. It modifies the spectrum of
head-tail modes. This leads to a modification of the effective
impedance. Therefore, the dynamic detuning changes the
instability growth rate and coherent frequency shift. This
change is particularly large for nonzero head-tail modes.

PEL longitudinal detuning (with transversely homoge-
neous distribution) is described as
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where ¢, is the longitudinal rms emittance, o, is the rms
bunch length, O 18 the rms length of the electron beam
pulse, I,(f> (x) = e™*I,(x) are exponentially scaled modified
Bessel functions of the first kind.

In Ref. [4], authors discussed transverse detuning
AQ(J,, Jy) and longitudinal detuning AQ(J,, ¢) and their
linear combination AQ(JX,Jy) + AQ(J,, ¢). This corre-
sponds to having, for example, both octupole magnets and a
PEL in a single accelerator.

The dispersion relation for this case was given in Ref. [4]
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Figure 2: Kicks received by ion beam particles in the simu-
lations from four different electron lens configurations. On
the top row, DC EL with homogeneous transverse distribu-
tion (left) and Gaussian transverse distribution (right). On
the bottom row, PEL with homogeneous transverse distribu-
tion (left) and Gaussian transverse distribution (right). The
colour bar indicates the magnitude of the longitudinal posi-
tion of a particle in the bunch.

where N; is the normalisation; ¥, is the particle distribu-
tion; Hf % is a special function that depends on the dynamic
component of longitudinal detuning; Q.. is the coherent
tune shift in the absence of Landau damping; Q,, is the
bare tune; (AQ&)(/) is the static component of longitudinal
detuning; AQ; is the transverse detuning; [ is the head-tail
mode number; QO is the synchrotron tune.

A more general combination of transverse and longitu-
dinal detuning is AQ(J,Jy,J;, ¢). This corresponds to,
for example, PEL with a transversely Gaussian distribution.
In this contribution, we consider the case of transversely
Gaussian PEL in the particle tracking simulations follow-
ing Ref. [15]. We compare it to previous results of Ref. [4]
for a transversely homogeneous PEL, a DC electron lens
DC EL [16] (DC EL), Landau octupoles (LO) and a radio-
frequency quadrupole cavity (RFQ) [8].

SIMULATION SETUP

In this contribution, we employ particle tracking code
PyHEADTAIL [17]. For example, this code has been used
for Landau damping studies and instabilities in [4—7]. It
offers the flexibility to select a transverse electron distribu-
tion for the electron lens, such as homogeneous, Gaussian,
or parabolic. The electron lens current can be constant or
follow a Gaussian distribution that matches the ion beam
longitudinal profile.

Figure 2 demonstrates kicks received by an ion beam from
four different versions of an electron lens. In all four plots,
each dot represents a different macroparticle. The colour
map indicates their longitudinal position in the bunch. The
top left plot shows a transversely homogeneous DC EL. In
this case, all particles receive a linear kick depending on
their transverse position. A transversely nonlinear kick from
transversely Gaussian DC EL is shown in the top right.
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Table 1: Instability Properties for Detuner Model Simula-
tions

g mode 1 E.RAQinst/ Qs 3AQinst/ Qs
0.1 -1 -0.052 0.017
05 -2 -0.017 0.009
0, 174x1073 g 3.45x 1074

We focus on two cases of head-tail instability, mode —1
and mode -2, and keep the chromaticities linear while us-
ing a wakefield to drive the instability. Table 1 summarizes
the instability properties without detuning. Head-tail mode
zero case is not considered here because Landau damping
is the only significant effect for this mode. In Ref. [4], the
authors showed that for head-tail mode zero Landau damp-
ing strength is roughly equal to the root-mean-squared (rms)
AQ,,s detuning. This holds for both transverse and longitu-
dinal detuning.

Head-tail mode/ = -1
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Figure 3: Instability growth rate (in simulations) dependency
on the strength of Landau damping AQ,,,s/ Qs for head-tail
mode / = —1 (top) and [ = -2 (bottom). A PEL with a
homogeneous transverse distribution of electron beam (dark
blue), LO (yellow), a DC EL (red), an RFQ (light blue), a
PEL with Gaussian transverse distribution of electron beam.
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RESULTS

Figure 3 shows the results of simulations with transversely
Gaussian PEL (dark green). The figure shows how the
growth rate of the instability changes with the strength of the
Landau damping. The former is normalised to the growth
rate without Landau damping. The latter is normalised to
the synchrotron tuning Q.

These results are compared with the transverse detuning
(octupoles in yellow, DC EL in red) and the longitudinal de-
tuning (PEL in blue, RFQ in light blue). The approximation
of Eq. (2) is shown in dashed lines with respective colours.
Purely transverse detuning agrees with Eq. (2). In contrast,
purely longitudinal detuning demonstrates instability am-
plification for small Landau damping strength. In Ref. [4,
5], this was attributed to the modification of the effective
impedance by longitudinal detuning.

For the transversely Gaussian PEL, the initial amplifica-
tion of the instability is absent. Instead, as in the case of
transverse detuning, the instability growth rate decreases lin-
early with increasing Landau damping strength. The Landau
damping strength required to suppress the instability closely
matches that of a DC EL.

CONCLUSION

In summary, we considered a case of a transversely Gaus-
sian PEL. This PEL configuration represents a combination
of transverse and longitudinal detuning into a single device.
We showed that in this configuration, PEL does not modify
the effective impedance of the instability. The only effect
observed in simulations is Landau damping. Combining
transverse and longitudinal detuning in a single device will
mitigate the effective impedance modification.
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