5532 %5 4 (N G S T A S <} Vol. 32, No. 4

2020 4 4 HIGH POWER LASER AND PARTICLE BEAMS Apr., 2020

SR FIESNEARD R LR ARTH

F,iﬁt‘?jg, ‘,5:%'¥, /—é/fﬂ(
Cr TR A B 9 e A0 AR BT 5 7, U )1 4 BH 621999)
W OE: AR FINERNERER 100 F 058 . AW TR 7 In k48 38 2388 5y B oy R 36, ok +
Jin S A e FR ak A v A S ARE A TE AR RN RS B OR B K R Y AR B, AR TR T i A 1 B AR R | B AR TR R
B OFH N 09 HE R S0 IR 8 LA B A% 2 s 1 B TR 1Y) R RRAIE
XEEIWE: RTINS, TG, AR, AwnE;  BEUn#E
FESES: TLS XEiRES: A doi: 10.11884/HPLPB202032.190424

Basic types and technological implementation of
charged particle accelerators
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Abstract: The modern particle accelerators have developed greatly over the last 100 years. This article provides
an overview of all main types of particle accelerators. Simple charts are given to exhibit conceptual and technological
evolutions of major particle accelerators. It also briefly introduces the basic types, fundamental principles,
technological approaches, and typical technical features of various types of particle accelerators.
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Fig. 1 Simple classification of charged particle accelerators(modified from Ref.[10])
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Fig. 2 Principle of the high-voltage DC accelerators
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Fig. 3 Difficulties in accelerating repeatedly by electrostatic fields
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Fig.4 Repeated acceleration with time-varying electromagnetic fields
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Fig. 13 Standing wave coupled cavity structures
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Fig. 17 Principle of laser wake field acceleration (LWFA) and the capillary discharge waveguide of Berleeley Lab Laser Accelerator (BELLA)!*!
P17 WOG R i R 5 R K 58 [ OGN g 4% BELLA #4915 47 36 40487 il v i

OGNS $E T 522 0 | OGN AR AN TR AL o b s R 2 B T O e ) B O A B A n B A
CLAPAM T 2 f B, W25 50 B 17 DA 25 K sl Ji R M AT 5% 381 46 8 0K o it ™ A s P 5

BB TR S R BAR IR TR R M HE D, (BTG G — L R 35 P d . X T i s &, HEr s R
P RE T O 200 2 A0 A F F OO S R 9 R R (L H SR A LAt 5 T, AR REAI R AR R SR A, IR TR R B X 2
ALK, R BELAS: T 45 B8 AR e A SE PR o TR T L B AT R e AR TR AR IR T SR N
LR, BT I A RETT e — 2L B 7 B 1 W5 SR AR B, Euan A= . b4 A HR 45

SR UK, 7ETE & RN ER U, WO R I i T R O EOR € B R R, A e R Tl A5 4
SRS T (8 JE R R 2SR N LT T &t — 1 SR8 IO 2 D 3 o sk 4 T Bsf 7= A= HL A AN [) i 14 ke
P, SR8 AR T TR [ g A 3807 D ) R vy 8 50 3 A o e 8%, DA 75 S T 9 B I A R N 5
3.3.2 MENEE Y LR AR G 3 i 2
3321 ZMCHEFL) [T fin 2 4% ( Classical cyclotron)

22 ML (R R 81758 i 3 2% J2 E. O. Lawrence A Widerde 4
LN A5 A AR B R A B B — o s A, an &l 18 i
IR0 LT T i ) SRS R A B T A R R IO
MUE WS, 22 W R S M G SN B, 3K R R DR R B4R
LR A R R N ORI Y IR AR R v A, 7R R
FHXTISAEIE T, A 2 —Fh B 2 A7 R, 76 3450 9 18 8 G

fixed magnetic field
increased radius

35 S, LI 9 0B A A TR, a ;
FE R T g 38 5 WA 1 126 A T N E A4S DR AR I i :
AT DL [ i 2R A5 DL S B, R 78 4 37 Be % 24 o 19 115 Fig. 18 Schematic drawing of a classical cyclotron
PN 5 38 ok ) — o ) R i AR A BB AN, o T R iR AL 4 P18 2 gl Il ikt 25 TR

I, AL I HC I B S AR TR R BB IS Bl o [RDE A S 25 A e A0S BT S R A S — PR, RIS 4 B R] 25 4
S CW BYGEZLYE ) o MIBEMH &8 th 5] ARG 55030 T Im e 4%, AEmside iy & e st F HA EEE X,

TE 25 B (0] g fin o 5 1) A St R by, R BE SRR L M SR AR S TR AR S AR B TR SY . bR T2 B[R] i R
FHE S 34 53 18 47 (SEBR 2R 1 il 1) 2R £E 07 2 B 00 T > A28 00 385 o v A e sl /0N ) 70 i 7 0 23 %) 3 0 P R, D A R
rhv, R P [ S0 B A 0 A B e A X Ve M R R I TE 37 1 T A T B S b A 3 v A U JE P —
B, 3 B A AL RS 2 (BRI W AR ), AT BRI 1 RE & pyk — 2048 . [l e i B 4 5 T 0 H - LA AT A b 28
BT, BRI e R T 20 MeV, iR 2 1 mA.
3.3.2.2  [M)25 [l fin # #5% ( Synchrocyclotron)

P H SRR DR B R B, R R TSR FH R A 1 A 2 2 S [ S S DR 0 A T A T e P G 4K T
AL PR AN (] 26 [ S50 1 o0 S 25, Pk Ay () 200 [0 o 2%, AR Ay ] 000 [ g o i 4 s AR IR #5870 X g 5 e i
[0 i ot B A AEABL, HUJR A I AR T AY D OJE R AR B R (] 6 o i T A H R A AR AR AR iR 7E B R
o o R 3 808 A B R 1 [0 @ A 3 [ 26 T R T R A VS AR N A A, AT 5 0 T 225 Ml [ g 3 45 v R X e
JoT FE 3G Ok B = e e A BR A o FR T I 2D [ A R e A 3 ) S I AR A, R R R R — EDRL
SFNG] Y, PR O A A 2 — R R o, P g e R IR BE N B AR Y T4 2L, AU 0.1~1 pA. 3 4b, fg i R

045101-10



iR e 55 7 RRL T I % A AR S Y T L BOR ST

S R AR K, A R Y 22 B PR R B A PR o g e M T o — A, (] 2D TR o g R T s
T, IE TR T IA 1 GeVe [FID URE N B 2% 0 H 3 8 — B2 T H TR E 8 BoR 19 & R, B TR AR &
WG, 625 e in o 25 7] 52 30/ N R, O HL i T 0450 17 50, DALkt 88 S () 20 [0 e fon 2 2 A BB A 0T 1R 97 7 T 4%
Bz N
3.3.2.3 AR [R1iE i £ (Isochronous cyclotron ) 235053

SR T g LR T I SR SO A X e P 3 K R 7 T A ) B U8 T | A A N AR 37 F% B TR R A
TSP R 0 A8 O 58 T R B 1 Ry iR R AN T [ A AR ALV 2 AR T A T 1) R R 2B 4 s A
- B [ i ] 3 DR A AR, T 37 T AR 1o 334 0 3 o 1% Bt v S T 800 00 P 0% 32 T O S 7 1 A8 e 7 A 1 3R AR R i
e s 19 BraR, AT & T T R R AR b BN 22 e (Z 0 = He) B T BBk (L3 B TR B R i B R ) 5k R A
53 T T B AR A A [ g 0 A Ry — o A R R I A

valley (V)  steel shim

v

Thomas angle Circle equilibrium extraction system

hill (H)

magnet
pole

-
injection system bending magnet
(a) radial sector™” (b) spiral sector®”) (c) separated sectort’)

Fig. 19 Pole faces of the isochronous cyclotrons
Pl 19 6 et ] 0k 5 A 2 o 25 1

A 1] o S50 B T o 25 e, 7 A TG S 0l 1ol SR A T, — e in BT BB A 31 50 MeV ([ R AR Rl 2 B
T e AR 1) b i K 190y 50 R B 0 R - [ 5 o T 2% CY CTAE-100 H TR B3 f14 Bk 1) 588 8 1717 2R FH A% 1) B # 4k 4%
FAHE 57 N 2 T 100 Me V) 5 BBUE Fpf S5 1 [0 JE i 25 1) 25 il 484 7 A T 8000 1% Bl 1) SR A T, — BT LUK 51
JNEEE] 70 MeV; 4385 5 55 i [ e fin 3 #45 H 1132 IR B, A 0o Ay Bl o) SRR AVE Y, — PR 5T Jin i 21 100 MeV
(Fii -t PST A 43 B bl 5 T 35 I 7 [ 5 i i 2% i 1 15 590 MeV, o [#] J5L 1~ RE B 24 A 53 o 1E 76 W il 800 MeV 43 B3 i
o Ty 2 T 5 [ e in R 2 ), 22 TR BR A W BB Y B A A O R TR R B A . T R R BRI S
T PE BE DL 5, RE B 5 1m0 1 20 5 B N 28, 22 ok 8 3 -, (HL NP B RS 4055, Il a8 PR i K, AR . T Ak, oy
5 B O 8 — AN B

S5 B ] o S AN AT 46 T b R DX A SR, i LR AR AR DX 58 4 U T 2 LA ] i s g, R R A AR H .
R, SR = D | Ak L /N R A A R S e [ s A SR T ] B
3.3.2.4  [HE A AR B BE (FFAG) Il 52>

FFAG Jin 7 #5 76 3 B 76 38728 B0 B SR AR B0 (L5 50) 2R B 4 1 19— 2 1 e n s 28 45 [ 25 in sl 45 22 i)
PRI 2, HEA 43 B 1 FH 58 3R 5 [ 20 sl 2 R 559 288 8 T o okl 88 9 AR s B0 B SR FH O 7 R R AR 1) . R S Bl - 22
AR [ 5 WE Y, RESHAE 25 8] vh 2 R HE, Pl B JCRE SR, (Bl 8tk A i, B — X EEHEEN . Bx
T 3 e 38 76 s P SR A O N gt o Pl T 2 K 0% 8 7 R D o R v AR B s [ 72 Ak, o 3 o B2 000 %0 1L 52 8] o ke
i BRI 5 Pl T AR T ) A %) MR 290 R i ) B T 4 DR 1 R ) Ak S A R R I AR ) 2 A7 R B i
B2, DI AT LA 31 5 AR AR o T 3 58 785 o J3E o ok 28 4 ORI 2 25 W () AR T, S oA B ol A48 i) Bt 1, 2
120 FF7R o

R I 1 5 R 8 ) 1 A ) B HL AR 03 2 15 2 LU A1 R, FFAG X 4355 H FFAG A% H FFAG Bifh . e o2
9255 Lb FFAG, BRI BUR, BERBE A R 22 00 S R bk, B 1) 1 R 03 (A ) [ (BB AR R /N ), vl ke A
PR 2B, N AR AR, SRR BIIE L B 0 AR R R AR AR SR L FRAG, U 10 2 28 60 i Rt i BRI, 5 2
EPRZ, P O ARGE A PR B9 E O . dESE H FFAG UM 78 EMMA F15 3] 7 SC8 50k, FFAG BE & 42 AR R,
AR L. T FFAG A mEEIR, S, K 2= flE . @i IR AMREL AR S 08 a4, 3k
FFAG NI 5 76 I 28 3K Bh vk e P i e R 50 (ADS R4 . IRGHULSE B | IR 2436 9 S A S A2 30 8 AR

045101-11



weOoW s 5 Ol TR

edge-focusing reverse bend

(a) spiral accelerator (b) radial accelerator 1

Fig. 20 A spiral and a radial fixed-field alternating-gradient (FFAG) accelerator™!
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Fig. 22 Sketch of the synchrotrons
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