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Chapter 7

Summary and outlook

”I may not have gone where I intended to go, but I think I have ended up where I needed to

be.”..................Douglas Adams (1952-2001).

7.1 Summary

In this thesis, a theoretical study of multifragmentation and related phenomenas like el-

liptical flow and nuclear stopping in intermediate energy heavy-ion collisions was presented.

The quantum molecular dynamics (QMD) and isospin-dependent quantum molecular dy-

namics (IQMD) model was used to generate the phase-space of nucleons. The phase space

was, then, analyzed using the different clusterization algorithms to get the useful informa-

tion about different phenomena’s mentioned above.

After an introduction to the field of heavy-ion physics and various phenomena’s like

multifragmentation, elliptical flow, nuclear stopping and isospin physics, we discussed in

chapter 1, the various experimental and theoretical attempts to study these phenomena’s.

The detail of various theoretical models was discussed in chapter 2. We discussed, in par-

ticular, the QMD and IQMD model, which were used for the present study.

In chapter 3, Using quantum molecular dynamics (QMD) model, we studied the role

of momentum dependent interactions in fragmentation by systematically analyzing various

reactions at incident energies between 50 and 1000 MeV/nucleon and over full collision ge-

ometry. The lighter colliding nuclei generates less density whereas higher density is achieved

by heavier nuclei. Moreover, momentum dependent interactions create more repulsion in-
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side the compressed nuclear matter. This gives ample space for compression-decompression

as well as radial expansion. We have found that the inclusion of momentum dependent in-

teractions leads to less freeze-out density and number of collisions in all colliding systems as

well as at all colliding geometries. Moreover, it is also observed that at higher incident ener-

gies momentum dependent interactions are able to break-up the initial correlations among

nucleons, which was earlier not possible with static equation of state. This is leading to the

decrease in the production of heaviest fragment Amax and enhancement in the production of

medium mass fragments in the presence of momentum dependent interactions. The system

size effects are found to vary with reaction parameters, incident energies and momentum

dependent interactions. The multiplicity of medium mass fragments is parametrized in term

of a power law. This is true for a wide range of impact parameters and incident energies

considered here. However, the parameter τ does not have unique value. At low incident

energies, the parameter τ is close to 2/3 suggesting the dominance of mean field that scales

as A2/3. On the other hand, no physical correlation is observed at higher incident energies

for central collisions. This dependence of the parameter τ at higher incident energies can

be improved by varying the model ingredients such as equations of state, method of clus-

terization etc., provided the power law dependence of the system size effect should exhibit.

In chapter 4, We have performed the comparative study of nucleon-nucleon cross

sections and technical parameters, known as model ingredients, in multifragmentation by

studying the symmetric and asymmetric reactions in the presence of momentum dependent

interactions in Quantum Molecular Dynamical model. Our analysis, at the first instance,

clearly indicates the importance of momentum dependent interactions and large cross sec-

tions for free nucleons and LCP’s at semi-central as well as semi-peripheral geometries, while

for MMF’s and IMF’s only at semi-peripheral geometries. Moreover, once the momentum

dependent interactions are implemented, they tries to reduce the effect of nucleon-nucleon

cross sections at higher energies as compared to static equation of state, where the effect of

nucleon-nucleon cross section is large. In a comparative study with experimental findings of

ALADIN and NSCL collaborations, better agreement is again obtained in the presence of

momentum dependent interactions and large cross section for symmetric as well as asym-
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metric systems. Interestingly when this study is extended with technical parameters, known

as model ingredients, (like Gaussian width, Clusterization algorithm, clusterization distance

as well as equations of state) at constant nucleon-nucleon cross section, the results are found

to vary in the same fashion as were with different nucleon-nucleon cross sections. We found

that the effect of different cross sections is of the order of the one obtained from the model

ingredients. All model ingredients affect the fragmentation pattern in a similar fashion.

Lastly, one can conclude that it may not possible to pin down the magnitude of cross sec-

tion from the multifragmentation until and unless the model ingredients are handled very

carefully.

In chapter 5, we have presented the isospin dependence (in term of symmetry energy)

and the disappearance of elliptical flow in the presence of isospin-dependent quantum molec-

ular dynamics (IQMD) model at intermediate energies for the several systems. The isospin

dependence of the elliptical flow is studied in term of the transverse momentum dependence

for different kind of fragments (free nucleons, LCP’s and IMF’s). The free nucleons and

IMF’s are found to be system mass dependent for the incident energies under consideration,

while LCP’s are found to be isospin dependent at relative high incident energy, where role of

mean field and NN collisions is equal(say E = 100 MeV/nucleon). Moreover, these isospin

effects due to symmetry energy are originating from the mid-rapidity region. In other words,

one can say that LCP’s acts as a probe to symmetry energy.

The disappearance of elliptical flow is observed at mid-rapidity region, while no transition

is observed, when integrated over entire rapidity region. This is indicating the origin of

squeeze-out or out-of-plane emission is from the participant zone and not from the specta-

tor zone. The energy at which elliptical flow disappears is, dubbed as, transition energy.

This transition energy is found to be strongly dependent on the size of the system as well as

size of the fragment. When comparison of excitation function of elliptical flow is made with

experimental findings of INDRA, FOPI and PLASTIC BALL collaborations, the charged

particles (Z ≤ 2) are well explained by the static equation of state, while for the protons,

good agreement with the inclusion of momentum dependent interactions is observed. This

comparison can be explored to more accuracy by studying the effect of isospin-dependent

cross sections on the excitation function of elliptical flow. Finally, the transition energy for
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free nucleons and LCP’s is parametrized in term of mass power law and is found to decrease

with the composite mass of the system as well as with the size of the fragment.

In chapter 6, using the isospin-dependent quantum molecular dynamics (IQMD)model,

we investigated the emission of free particles, LCP’s, and degree of stopping reached in a

heavy-ion collisions in the presence of symmetry energy and isospin dependent cross-section.

In addition, impact of momentum dependent interactions in the presence of symmetry energy

is also studied on the nuclear stopping. We observed that impact parameter dependence,

equations of state dependence as well as system size and isospin asymmetry dependence have

similar behavior for the light charged particles and nuclear stopping parameters. Nuclear

stopping in term of anisotropy ratio and quadrupole moment depends weakly on the sym-

metry energy and strongly on the isospin-dependent cross-section. However, the symmetry

energy and isospin-dependent cross-section has an effect of 10% on the LCP’s production.

This means nuclear stopping and LCP’s production can be used as a tool to investigate

the isospin-dependent cross-section. One can say that LCP’s production is found to be

highly correlated with the global stopping. On the other hand, the role of symmetry energy

and momentum dependent interactions on the nuclear stopping is observed at low incident

energies. These effects are found to vanish at higher incident energies. The role of sym-

metry energy at low incident energy get enhanced in the presence of momentum dependent

interactions. Further, we can conclude that maximum stopping is obtained for the heavier

systems at low incident energies in central collisions in the absence of momentum dependent

interactions implying that momentum dependent interaction suppresses the nuclear stop-

ping.

Summarizing, we have attempted to understand the phenomena of multifragmentation,

elliptical flow, nuclear stopping and symmetry energy in intermediate energy heavy-ion

collisions. The influence of momentum dependent interactions and nucleon-nucleon cross

sections have been investigated in detail. An attempt has been made to understand the

effect of isospin degree of freedom in term of symmetry energy on the elliptical flow, nuclear

stopping and light charged particles. At last, the disappearance of elliptical flow is studied
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in detail. The comparison with experimental findings is performed, where the data was

available in literature.

7.2 Outlook

The fragments production is found to be influenced by the asymmetry of the reaction

((N − Z)/A) to a great extent at all incident energies. This asymmetry dependence can

be better understood by using the more sophisticated models like IQMD in which neutron

and proton can be separated on the basis of charges, which is not possible in QMD model.

One can have another possibility to study the effect of momentum dependent interactions

on the multifragmentation in the presence of stimulated annealing clusterization algorithm

(SACA), which is performed in the presence of minimum spanning tree (MST) in this thesis.

The elliptical flow, which is discussed in chapter 5, has showed a transition from in-plane

to out-of-plane at certain incident energy, known as transition energy. In this chapter, the

dependence of transition energy on the system mass and size of the fragment is investi-

gated. One can elaborate the dependence of transition energy on the impact parameter,

isospin-dependent cross sections, model ingredients, method of analysis, different rapidity

cuts as well as different transverse momentum cuts. This can provide a challenge to the

experimentalist to prove the theoretical findings. Moreover, various other higher order flows

such as hexadecupole v4 etc. can be of further interest in the future.

The thermalization of the reaction i.e. nuclear stopping can be explored by studying the

average kinetic energy of the fragments in the transverse direction (ERAT ) or by the ratio

of the longitudinal (z) and transverse (y) variances of the rapidity distributions(vartl).
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ABSTRACT

The aim of the present work is to study the fragmentation, collective flow and nuclear

stopping in heavy-ion collisions using the dynamical microscopic theory and compare the

results with experimental data. The theoretical investigations are carried out using mi-

croscopic quantum molecular dynamical (QMD) and isospin-dependent quantum molecular

(IQMD) model. We aim to discuss the role of model ingredients, momentum dependent in-

teractions, different nucleon-nucleon cross sections, in fragments distribution for symmetric

and asymmetric colliding nuclei. An attempt to understand the role of symmetry energy

and momentum dependent interactions on elliptical flow, nuclear stopping and thermaliza-

tion reached in heavy-ion collisions, will also be discussed.

The present thesis is divided into following seven chapters.

Chapter 1 presents the general introduction of the present work. The importance of

heavy-ion collisions at intermediate energies is discussed. It outlines the status of the avail-

able experimental attempts for multifragmentation and collective flow by different collabo-

rations, at MSU (USA), GANIL(France), BNL(USA), University of Arizona (USA), Texas

(USA), INFN (Italy) and GSI(Germany). The attempts of different theoretical models like

Statistical Multifragmentation Model (SMM), Percolation, Lattice Gas Model, Expanding

Emitting Source (ESS), Time Dependent Hartree Fock (TDHF) , Vlasov-Uehling-Uhlenbeck

(VUU) , QMD and IQMD for multifragmentation and collective flow are also presented.

Chapter 2 gives the detail of various theoretical models used in literature to study the

phase space of nucleons in heavy-ion reactions and clusterization algorithms. This chapter

is divided mainly in three parts. In the first part, the different theoretical models used to

study heavy-ion reactions without isospin effect, are discussed. On the other hand, second

part consists of different theoretical models used to study heavy-ion collisions with isospin

effects. These models are the primary models which gives the phase space of the nucleons.

The third part presents the different secondary models used to analyze the phase space of
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nucleons generated by the primary models. We shall discuss the QMD, IQMD model in

detail, while, MST, MSTM and SACA are discussed in brief. The detail of MST, MSTP

and SACA is given where they are used.

In chapter 3, we discuss the importance of momentum dependent interactions in ex-

plaining the multifragmentation in symmetric reactions of 20Ca
40 + 20Ca

40, 28Ni
58 + 28Ni

58,

41Nb
93 + 41Nb

93, 54Xe
131 + 54Xe

131, 68Er
167 + 68Er

167, 79Au
197 + 79Au

197 and

92U
238 + 92U

238 by comparing our results with static equation of state in QMD model.

We find that the inclusion of momentum dependent interactions leads to less freeze-out

density and number of collisions in all colliding systems as well as at all colliding geome-

tries. This is due to the repulsive nature of the momentum dependent interactions, which

further leads to the radial expansion of the matter. Moreover, it is also observed that at

higher incident energies momentum dependent interactions are able to break-up the initial

correlations among nucleons, which was earlier not possible with static equation of state.

This leads to the decrease in the production of heaviest fragment Amax and enhancement in

the production of medium mass fragments in the presence of momentum dependent inter-

actions.

The system size effects are found to vary with reaction parameters, incident energies and

momentum dependent interactions. The multiplicity of medium mass fragments can be pa-

rameterized in term of a power law. This is true for a wide range of impact parameters and

incident energies considered here. However, the parameter τ does not have unique value.

At low incident energies, the parameter τ is close to 2/3 suggesting the dominance of mean

field that scales as A2/3. On the other hand, no physical correlation is observed at higher

incident energies for central collisions.

In chapter 4, we discuss the importance of different nucleon-nucleon cross sections

in multifragmentation by comparing our theoretical results of QMD model with the ex-

perimental findings of ALADIN (for 79Au
197 + 79Au

197 at incident energies of 100, 400,

600 and 1000 MeV/nucleon) and NSCL collaborations (for 10Ne
20 + 13Al

27, 18Ar
40 + 21Sc

45,

36Kr
84 + 41Nb

93 and 54Xe
131 + 57La

139 at incident energies between 20 and 150 MeV/nucleon)
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in the presence of MDI. We also employ different technical model ingredients such as Gaus-

sian width (L), Clusterization distance (RClus), equations of state (soft [S] and hard [H ]) and

different clusterization algorithms etc. We find that both the MDI and the large nucleon-

nucleon cross-sections help to improve the agreement with experimental data. Interestingly,

the same conclusion is also observed when one consider the different model ingredients like

Gaussian width (L), Clusterization distance (RClus), clusterization method as well as differ-

ent equations of state. It means that the effect of different NN cross sections is of the order

of one obtained with different model ingredients. All model ingredients are found to affect

the fragmentation process in a similar pattern.

In chapter 5, we study the isospin effect in term of symmetry energy on the ellipti-

cal flow and in-plane to out-of-plane emission of elliptical flow in mid-rapidity region by

using IQMD model. For this, in the first instance, we analyzed the transverse momentum

dependence of elliptical flow for different fragments for the reactions of 20Ca
40 + 20Ca

40,

54Xe
131 + 54Xe

131 and 79Au
197 + 79Au

197. To see the isospin effect due to symmetry

energy, we discussed the detailed transverse momentum dependence of elliptical flow for

the reactions of 40Zr
96 + 40Zr

96 and 44Ru
96 + 44Ru

96 (having same mass number and

different proton number) in the presence of Coulomb interactions and symmetry energy.

Moreover, to observe the transition from in-plane to out-of-plane emission, excitation func-

tion of the elliptical flow is elaborated for the reactions mentioned above and the results are

also compared with the experimental findings of the INDRA, FOPI and PLASTIC BALL

collaborations. Our results shows that LCP’s exhibit isospin effects in the mid-rapidity

region. The elliptical flow is found to show a transition from in-plane to out-of-plane at

a certain beam energy in mid-rapidity region, while no such transition is observed when

integrated over entire rapidity region. The results are found in better agreement with the

experimental findings of INDRA, FOPI and PLASTIC BALL collaborations in the presence

of static hard equation of state for Z ≤ 2 particles. The need of momentum dependent

interactions is discussed for the protons. This transition energy is found to decrease with

the composite mass as well as with the size of the fragment. The transition energy is further

parameterized in term of mass power law.
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The nuclear stopping as well as multifragmentation are studied in the literature sep-

arately as two processes, many times. A very few attempts were made to correlate the

nuclear stopping and fragmentation process. In chapter 6, we try to correlate the pro-

duction of fragments with nuclear stopping in the presence of symmetry energy and study

the effect of MDI in the presence of symmetry energy on nuclear stopping by using IQMD

model. We observe that the degree of stopping depends weakly on the symmetry energy

and strongly on the isospin-dependent cross section. On the other hand, the symmetry

energy and isospin-dependent cross section has an effect of the order of more than 10% on

the emission of LCP’s. It means that nuclear stopping and LCP’s can be used as a tool to

get the information of isospin-dependent cross section. Interestingly, the LCP’s emission in

the presence of symmetry energy is found to be highly correlated with the global stopping.

It is also observed that the maximum stopping is obtained for heavier systems in central

collisions in the presence of symmetry energy and isospin dependent cross section, without

momentum dependent interactions. This is due to the suppression in binary collisions in

the presence of momentum dependent interactions.

Finally, we will summarize our results along with an outlook in chapter 7.
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Chapter 1

Introduction

” When you see something that is technically sweet, you go ahead and do it and you argue

about what to do about it only after you have had your technical success. That is the way it

was with the atomic bomb.”......................Julius Robert Oppenheimer (1904-1967).

1.1 Importance of the heavy-ion collisions at interme-

diate energies

The science of nuclear physics deals with the properties of ”nuclear matter” which makes

up the massive centers of the atoms accounting 99.95 percent of the matter. The main

interest revolves around the structure of nucleus. One is also interested to understand the

interactions among nucleons (protons and neutrons). The understanding of various nuclear

phenomena is also vital for the understanding of the mechanism behind the nuclear reac-

tions that fuel the stars, including our sun.

Another domain of the interest in nuclear physics is the properties of nuclear matter at

high densities, that is of magnitude higher than the ordinary matter we encounter everyday.

The typical baryon density of nuclear matter is of the order of ρ = 0.17 fm−3, which, when

converted into mass density, is about 1027 g/cm3. For comparison, the density of water is

ρ(water) = 1 g/cm3, and even the density of the most dense metal is ρ(Os) = 22.5 g/cm3

only. When high density is generated in reactions, the temperature of the matter is also

often quite high. The temperature often reaches the level of hundreds of MeV. Again this is

not the ordinary temperature. For example, if we convert the scale of MeV to regular tem-

perature scale, 1 MeV is equivalent to about 10 billion degree Kelvin. Room temperature

oftenly is about 300 K and even the surface of the sun is only 6000 K.
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Fig.1.1 shows schematic phase diagram of hot dense nuclear matter. The X-axis represents

the normal density, whereas temperature is shown on Y-axis. The normal nuclear matter (

at ρ = ρ0, T = 0) represents a liquid phase. The liquid-gas phase (LGP) transition region

at the lower left corner of the figure is characterized by the temperature below ≈ 15 MeV

and densities ( ρ
ρ0
< 1)[1]. The region of very high density and temperature corresponds to

the Quark-Gluon Plasma phase (QGP)[2, 3, 4]. The hadron gas (HG) phase exists at in-

termediate temperatures and densities. The neutron star (NS) density region extends from

the low density upto more than 10 times the normal nuclear matter density. The typical

temperatures are less than 10 MeV for newly born neutron stars and less than 0.01 MeV

for cold neutron stars. The two lines that separates the QGP phase from the HG phase is

the phase co-existence and/or transition region[5]. One of the theories predicts a cross-over

phase transition at lower densities, a first order phase transition at higher density and a

critical point (the solid square symbol) that separates the two phase transitions [5]. The

chemical freeze out points reached at SPS and RHIC experiments[5] are plotted here as open

symbols. The head-on collisions are likely to follow the arrows on the solid line, starting at

cold normal nuclear matter (ρ = ρ0, T = 0 MeV)[6]. The maximum density and tempera-

ture achieved are determined by the incident energy. After the maximum compression, the

compressed matter expands and cools down as indicated by the dashed lines. Some of the

low energy reactions will dive into the liquid-gas phase transition. The high energy systems,

on the other hand, could enter the phase of QGP.

In the study of hot dense matter, heavy-ion reactions offer excellent opportunities com-

pared to other methods. Though, the dense matter exists in the neutron stars, unfortunately,

only indirect information can be extracted from the astrophysical observations. The QGP

and dense hadron gas phases existed in the early stage of the evolution of universe (about 15

billion years ago) are inaccessible today. The nuclear structure studies have provided vital

information about the nuclear interactions[8, 9], fusion-fission[8, 10], cluster radioactivity[11]

as well as halo nuclei [12]. These studies take place around normal densities and at low tem-

peratures. The heavy-ion reaction, during which the matter undergoes through compression

and expansion stages, are true testing grounds for the hot and dense nuclear matter. The

maximum compression in a heavy-ion reaction could be few times the normal nuclear matter
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Figure 1.1: Schematic phase diagram for the hot dense matter. The theoretical predictions
are also displayed at all temperatures. The only experimentally known point is ρ = ρ0, T
= 0. The head-on heavy-ion collisions will likely follow the arrows on the solid line. The
maximum density and temperature achieved are determined by the incident energy. After
the compression to maximum density, the reaction system expands and cools as indicated
by dashed lines. This figure is taken from Ref. [7].

density in head-on collision, and could possibly produce QGP at higher incident energies.

The expansion of nuclear matter (after compression stage) usually leads to freeze out for

the interactions at sub-normal densities (ρ < ρ0). The freeze-out temperature and density

could be in the phase transition region (QGP to HG phase transition, or LGP), or in HG

phase.

The specific region of the phase-diagram and corresponding physics depends crucially on

the incident energy. Thus, the highest energy reaction experiments at Relativistic heavy-ion

collider (RHIC) and Large Hadron Collider (LHC) explore the most dense matter, where

quarks and gluon’s become the elementary degree of freedom and quantum chromodynam-

ics (QCD) is the basic theory. The reactions at intermediate energies are violent enough

to excite the system to a very high temperature leading to the break-up of the initial cor-

relations among nucleons, but not enough to break the internal structure of nucleons or

hadrons. The description of the interactions with only hadrons and mesons is sufficient for
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the intermediate energy reactions. The work in this thesis is concentrated on the heavy-ion

reactions at intermediate energies.

The reactions at intermediate energies involve many topics of interest including nuclear

equation of state (NEOS), multifragmentation, collective flow and lately, the isospin physics.

The nuclear equation of state describes the energy-density relation in nuclear matter. The

prediction of nuclear equation of state is an important question. The multifragmentation,

collective flow and the isospin physics are the primary tools for studying the EOS. Here, I

will discuss briefly each of these phenomena, which are the primary phenomena at interme-

diate energies.

1.2 Nuclear Equation Of State(NEOS)

An equation of state (EOS) is a nontrivial relation between thermodynamic variables

characterizing a medium. While the term is used in its singular form in nuclear physics,

actually different relations are of interest, such as between pressure P and baryon density ρ

and temperature T, P(ρ,T), or chemical potential and T, P(µ,T), between energy density

e and ρ and T, e(ρ,T), etc. Some of the relations are fundamental under certain conditions,

i.e. all other relations may be derived from them (such as from e(ρ) at T =0).

The nuclear EOS is of interest because it affects the fate of the Universe at times t ≥ 1µs

from the Big Bang and because its features are behind the supernova explosions. Moreover,

its features ensure the stability of neutron stars[13]. Through its effects on the evolution

of the Universe, on supernovae explosions, and on neutron-star collisions, the EOS affects

nucleosynthesis. Moreover, the EOS impacts central reactions of heavy nuclei. Finally, the

form of the EOS constraints hadronic interactions and the non-perturbative quantum chro-

modynamics (QCD).

The advances in the determination of the nuclear EOS have been, generally, difficult. The

elementary information comes from the Weizsäcker binding-energy formula and from the

systematics of nuclear density profiles. The Weizsäcker formula separates out the contribu-

tions to the energy associated with nuclear interactions, the interior and surface of nuclei,

the contributions associated with isospin asymmetry and with Coulomb interactions, and
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the shell correction, given as:

−B(A,Z) = −16MeV/nucleon + asA
2/3 + aa

(A− 2Z)2

A
+ ac

Z(Z − 1)

A1/3
− Bp,s.(1.1)

Nuclear densities, obtained from charge densities multiplied by mass to charge number ratio,

are seen to reach the same value, ρ0 = 0.17 fm3 ≃ 1/(6fm3), for a wide range of nuclear

masses[14]. We conclude that the energy per nucleon in a uniform symmetric nuclear matter

at T = 0, in the absence of Coulomb interactions, has a minimum at the normal density ρ0

with the energy value, relative to nucleon mass, of -16 MeV, from the volume term in the

binding energy formula, see Fig.2.2.

The next nontrivial feature of the energy per nucleon is its curvature in the dependence

on ρ, around ρ0. This curvature is commonly quantified in terms of the so-called nuclear

incompressibility, with an unusual numerical factor[14]:

κ = 9ρ2
o

d2

dρ2

(

E

A

)

. (1.2)

The factor stems from the fact that the nuclei were first considered as sharp-edged spheres

with the energy changing as a function of the radius. To get an idea of what might be

expected for the incompressibility, one might just run a parabola through the two known

points on the curve of E
A
(ρ). Then the resulting incompressibility has a value of κ ≈ 290

MeV. If the actual incompressibility turns out to be below this benchmark value, we may

consider the nuclear EOS to be soft, and stiff if the opposite is the case.

Features of EOS in intermediate energy heavy-ion collisions can be inferred from multifrag-

mentation, collective flow and isospin physics processes. On the other hand, NEOS at higher

incident energies is characterized by the production of sub-threshold particles[15] and their

isospin dependence[16].

1.3 Different phenomena affecting NEOS at interme-

diate energies

1.3.1 Multifragmentation

The multifragmentation process refers to the process where large number of particles are

produced in a energetic heavy-ion reaction. The produced particles include the free particles,
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light charged particles as well as very heavy clusters. The pictorial view of multifragmen-

tation process is shown in Fig.1.2. This production of particles is linked with the incident

energy and collision geometry. A increase in the incident energy leads to more compressed

zone and hence as a result gives insight into the nuclear equation of state (EOS). Simi-

larly, the variation in the collision geometry is also observed to vary the compressed zone.

Moreover, the momentum dependence of the equation of state in multifragmentation have

also attracted a lot of considerations[17, 18, 19]. These momentum dependent interactions

(MDI) are found to affect transverse momentum drastically. The importance of MDI is

clear from the Refs. [20, 21] where static equation of state is badly failed to reproduce the

experimental findings. The nucleon-nucleon cross sections which are found to affect the col-

lisions and mean field are also an important candidate for the study of the nuclear equation

of state. In Ref.[17, 22] requirement of large cross section is also indicated. The detailed

analysis of multifragmentation in the presence of momentum dependent interactions and

nucleon-nucleon cross sections is performed in chapter 3 and 4, respectively.

Figure 1.2: Schematic view of the multifragmentation process, clearly indicating the pro-
duction of lighter and heavier fragments
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1.3.2 Collective flow

The Collective flow is a measure of the transverse motion imparted to particles and frag-

ments during the collision of two nuclei. The development of collective flow is closely related

to the pressure build-up during the compression stage of the reaction, and gives us informa-

tion about the pressure and particle density relation (that is, the EOS). Generally, there are

three types of flows, namely, radial, directed, and elliptical flows. The radial flow arises in

central collisions and is characterized by the increased yields in the kinetic energy spectra of

the particles emitted near θc.m. = 900 relative to the beam axis. On the other hand, directed

flow, also called ”in-plane” or ”sidewards” flow in the literature, refers to the preferential

emission of particles within, and to a particular side of, the reaction plane (reaction plane

is defined as the plane which contains the beam axis and a line joining the centers of two

nuclei). When the experimental data of different collaborations is compared with the the-

oretical calculations[23], the simulations with EOS characterized by the incompressibility

κ = 167 MeV yield adequate directed flow at lower beam energies, but too low at higher

energies. On the other hand, with the EOS characterized by κ = 380 MeV, the directed

flow appears to be too high at virtually all energies.

Whereas, directed flow is anti-symmetric with respect to the φ distribution for forward

rapidity (yc.m > 0) and backward rapidity (yc.m. < 0), elliptical flow has the same distri-

bution in both rapidity regions, at least for symmetric reactions. The elliptical flow refers

to the anisotropy of the φ distribution at mid-rapidity and its value indicates whether the

particle emission is in-plane or out-of-plane. Azimuthal distribution which are peaked at

00 and 1800 exhibit predominantly in-plane emission, while φ distribution peaked at ±900

signify out-of-plane emission. The term elliptical flow has replaced old naming such as

”squeeze out”, ”rotational motion”, or ”anisotropic flow” because the shape of φ distribu-

tion at mid-rapidity resembles ellipse with a major axis along the x-axis (in-plane emission)

or y-axis (out-of-plane emission). Fig.1.3 illustrate the formation of compressed region in a

non-central nuclear collision and the subsequent emission of particles from the mid-rapidity

participant region. Again in Ref.[23], we see that without interaction contributions to pres-

sure, simulations cannot reproduce the measurements. The simulations with κ = 167 MeV

give too little pressure at high energies, and those with κ = 380 MeV generally too much. A
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label of discrepancy is seen between data from different experiments. The extensive study is

reported on the radial and directed flows in the literature. The systematic study of elliptical

flow is carried out in chapter 5 to explain the data i.e. to know th nature of equation of

state.

Figure 1.3: Schematic illustration of the collision of two Au nuclei and the resulting elliptical
flow of the participant zone. Time shots are shown for an instant before the collision (a),
early in the collision (b), and late in the collision (c), taken from Ref. [24].

1.3.3 Isospin physics

The recent progress in rare isotopes facilities has also raised interest in the isospin degree

of freedom at high densities. The term isospin refers to the pair of similar particles, the

protons and neutrons, which are almost identical in the nuclear matter when electric charge

difference is ignored. In many transport simulations, the nuclear interactions difference

between protons and neutrons are simply ignored. In other words, these simulations explore

the reactions in symmetric nuclear matter limit only. Such simplification is used because of

the limited beam and target combinations, but needs to be refined in view of the rare isotopes

beam reactions offer by many facilities. The isospin dependence of the nuclear equation of

state is often expressed in terms of symmetry energy. An elementary illustration of concept

of symmetry energy is shown in Fig.1.4. the symmetric matter is represented by the lower

line, while pure neutron matter is represented by the upper line. The difference between the

two lines is the symmetry energy, which express the effect of the isospin on nuclear matter

12



energy density. These isospin effects comes into picture in term of symmetry energy and

cross section, which are supposed to affect the multifragmentation as well as collective flow

and related phenomena to great extent[26]. We have tried to study the isospin effects on

elliptical flow, nuclear stopping as well as on fragmentation in chapter 5 and 6 in term of

symmetry energy, cross section and momentum dependent interactions..

The extensive experimental and theoretical efforts have been made during last 20 years

Figure 1.4: The concept of symmetry energy: The top line is the energy density for pure
neutron matter and lower line is that for symmetric nuclear matter. The difference of two
lines is the symmetry energy.(from[25]).

to understand the mechanism of multifragmentation, collective flow; while isospin physics

is a newly burning topic in the community of nuclear physics. These efforts are discussed

in the next sections.

1.4 Review of the experimental attempts for multi-

fragmentation

Nuclear fragmentation was discovered nearly seventy three years ago[27] in cosmic ray

studies as a puzzling phenomena accompanying the collision of relativistic protons with a

heavy target and consisted of the emission of slow nuclear fragments. These fragments were

in the range of 3 ≤ Z ≤ 30, dubbed as intermediate mass fragments. Using the radiochem-
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ical methods, total cross-section of the fragmentation could not be determined and process

was considered as very rare and exotic. In 1980’s, Jakobsson et.al.[28], observed the multiple

emission of IMF’s in the emulsion irradiated by the carbon beam of 250 MeV/nucleon. This

result created the interest of the nuclear community toward multifragmentation. Warwick

et.al.[29] found that multifragmentation is a dominant reaction channel at beam energies

higher than 35 MeV/nucleon. Further, the Purdue group [30] conjectured that multifrag-

mentation is a clear signature for the phase transition between a gaseous and liquid phase

of nuclear matter, which occurs around a density of 0.4ρ0; ρ0 is the normal nuclear matter

density. Since then, the study of multifragmentation has been considered of great interest.

Lots of detectors included the forward and 4π designed to understand the each and every

aspect in detail.

First accelerator in this series was the BEVALAC accelerator at Lawrence Berkeley

Figure 1.5: The pictorial view of different accelerators used by ALADIN, NSCL, SIS and
NA49 collaborations to generate the beam in intermediate energy range.

Laboratory that led way to high energy accelerators built at the Michigan state university

(MSU)(USA). With the passage of time, the Grand Accelerateur National D’ions Lourds

(GANIL)(France), Relativistic Heavy-Ion Collider (RHIC) (USA), Superconducting Super-

Collider (SSC) at BNL (USA), NSF-Arizon accelerator at the university of Arizona (USA),

Vivitron Accelerator in Strasbourg (France), Superconducting Cyclotron (SC) at Texas
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(USA), Superconducting Cyclotron (SC) and CHIMARA detector at Laboratori Nazion-

ali del Sud in INFN, Catania (Italy) and Heavy-ion Synchrotron SIS accelerator at GSI

(Germany) etc. has contributed lot in the field of multifragmentation. Recently many of

them are upgraded to study the isospin physics. For the better understanding, the pictures

of different accelerators used by the respective collaborations is shown in Fig.1.5.

In actual heavy-ion experiment, the crucial part of the analysis is sorting of ”well mea-

sured” events as a function of the violence of the collision (i.e. impact parameter). This

analysis is meant for comparing the results with experimental findings. The INDRA group

at GANIL used total transverse energy ETOT
tr [31] and transverse energy of light charged

particles (LCP’s, Z = 1,2) i.e. Etrans12[32]. The multiplicity of charged particles denoted

by PM has often been used by the FOPI group at GSI to characterize the events [33]. This

group also used a new quantity called ERAT for sorting which is discussed in Ref.[33]. The

correlation of the charged particle multiplicity (Mcp) and neutron multiplicity (Mn) was

used by the NIMROD group [34] at Texas A & M University. The Superconducting Cy-

clotron group (SC) at INFN (Italy) sorted data according to the kinematic variable- total

kinetic energy loss (TKEL) [35]. All the above methods are employed by various experi-

mental groups to sort out the data are based on the cuts in global variables distributions.

It mean that all experimental results are subjected to various filters and in order to make

comparison with the findings, theoretical results must also be subjected to the same filters.

The Emulsion experiment [28, 36] was among the first attempts to study the multifrag-

mentation. They provided an unique possibility to study the fusion, multifragmentation as

well as vaporization at intermediate energies.

The Berkeley group focus mainly on the asymmetric reactions between the incident en-

ergy 50 to 110 MeV/nucleon [37-41], with an aim to investigate the role of entrance-channel

mass asymmetry reaction dynamics. The emphasis was on the different parameters like

excitation energy, angular distribution, cross-section as well as velocity distribution. The

aim of the EOS collaboration at BEVALAC was to study phase transition in nuclear matter.

Through the process of multifragmentation, critical exponents like surface energy, volume

energy, symmetry energy, entropy etc. [42] are extracted for the asymmetric reactions in

the energy region of 1 GeV/nucleon. In the earlier studies, similar exponents were extracted
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for symmetric Au197 + Au197 collisions[43].

Like Berkeley group, National Superconducting Cyclotron Laboratory (NSCL) of Michi-

gan State University (MSU) focus on the asymmetric reactions like Xe129 + C12, Al27,

V 51, Cu64, Y 89 (50 MeV/nucleon), Ar36 + Au197, Xe129 + Au197 (50-110 MeV/nucleon),

Ar40 + Cu64, Ag108, Au197 (at 17-115 MeV/nucleon) [44, 45]. The average multiplicity as

well as mass of the heaviest fragments are investigated. Apart from asymmetric reactions,

nearly symmetric channels Ne20 + Al27, Ar40 + Sc45, Kr84 + Nb93, Xe129 + La139

(15-135 MeV/nucleon) are also investigated [46]. In the experiment of Cd114 ion with Mo92

at E = 50 MeV/nucleon, the charge correlations, average relative velocities for mid-velocity

fragments emission [47] and the size, density, N/Z, E∗/A , Eflow/A of the emitted source

on the measured isotope ratio was explored [48]. The work on the isospin dependence of

nuclear matter is carried out by colliding Sn112 + Sn112 and Sn124 + Sn124 nuclei at

50 MeV/nucleon [49-53]. The isospin effects are studied by neutron-proton spectra double

ratio [50], cross-section and binding energy [51], rapidity distribution, transverse momen-

tum and impact parameter dependence of isospin diffusion [52]. In a recent communication,

constraints on the density dependence of symmetry energy are also put forward [53].

The symmetric collisions are studied by the Superconducting Cyclotron of the Laboratori

Nationali del Sud of INFN (Italy). They considered the reactions of Nb93 + Nb93 (at 17,

23, 30 and 38 MeV/nucleon) and Sn116 + Sn116 (at 29.6, 38 MeV/nucleon) [35]. The

multiplicity of LCP’s and IMF’s in peripheral and semi-peripheral collisions as a function

of excitation energy of emitting source, mass of the system and beam energy have been

presented[35]. The difference in isotropic composition of fragments emitted from statistical

and dynamical production process [54, 55] has also been observed. Recently Isospin col-

laboration at INFN (Italy) studied the isospin effects for neutron-rich Sn124 + Ni64 and

neutron-deficient Sn112 + Ni68 systems for non-central collisions at 35 MeV/nucleon [56].

The FOPI and ALADIN groups at GSI studied the multifragmentation process over a

wide range of masses from C12 to Pb208 with incident energies ranging from 100 to 1000

MeV/nucleon [57-59]. These groups studied the particle evaporation to multi fragment

emission and at last total disassembly of the nuclear matter. A rise and fall in the multi-

fragmentation is also reported by ALADIN collaboration for the reaction of Au197 + Au197
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[57]. Moreover, the fragment multiplicities and correlations are found to obey the universal

behavior [57]. With the passage of time, secondary beams has also been generated extending

the domain of the study to isospin plane[60, 61].

The NIMROD collaboration at TAMU focuses on the reaction dynamics in Fermi energy

domain of the heavy-ion collisions [62-66]. An extensive study on the critical behavior in

the disassembly of nuclei with A ≈ 36 produced in reactions of Ar20 + Al27, T i48 and Ni58

at 47 MeV/nucleon has been carried out [62]. The multiplicity and charge distribution,

energy and velocity spectra has been observed for Zn64 + Ni58 (26 MeV/nucleon), Au197

(at 47 MeV/nucleon), Mo92 (at 35 and 47 MeV/nucleon), Ar40 + Sn112 (40 MeV/nucleon)

and Al27 + Sn124 (at 55 MeV/nucleon) collisions [63]. The hot topic of recent years, the

study of equation of state of isospin asymmetric nuclear matter [64] has also been studied

by this collaboration. A number of observables such as symmetry energy, isotropic and

isobaric yield ratio, average N/P ratio for the reactions of Sn124 + Sn124, Xe124 + Sn124,

Sn112 + Sn112 at 28 MeV/nucleon has been explored [64, 65]. These properties are also

studied by using different beams of Ar40, Ca40, F e58 and Ni58 on Fe58 and Ni58 targets at

25, 30, 33, 40, 45, 47 and 53 MeV/nucleon [64, 65]. These findings showed that the isotopic

distribution of the hot primary fragments are found to vary wide and extended towards the

neutron drip line. Moreover, the form of symmetry energy for the heavy-ion studies favour

a dependence of the form ESym = 31.6(ρ/ρ0)
γ , where γ = 0.6-1.05. Recently, this group

has studied the mass dependence of the nuclear caloric curve [66].

The last, but not least, INDRA group at GANIL (France) is also one of the leading group

in this field. They analyze a variety of parameters in multifragmentation. The system size

effects, the role of system size in entrance channel as well as Coulomb instabilities, kinetic

energy spectra and fragment velocity correlation are studied in nearly asymmetric reactions

of Ar36 + Ni58, Gd155 + U238 and Xe129 + Snnat (at 30-95 MeV/nucleon), Ni58 + Ni58

(32-90 MeV/nucleon), Pb208 + Au197 (at 29 MeV/nucleon) and Ar36 + KCl [67]. The

entrance channel effects are also studied for different asymmetric reactions in the mass range

58 to 181 and beam energy between 24 to 90 MeV/nucleon [68]. The symmetric reaction

of Au197 + Au197 was also studied between 40 and 150 MeV/nucleon [69]. It is also ob-

served that mutifragmentation is responsible for fragment production around the excitation
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energy of 3 MeV/nucleon [70]. In the collaborative work of ALADIN-INDRA collabora-

tion, bimodal behavior of heaviest fragment distribution in projectile fragmentation has

been studied [71]. Recently, isospin effects are observed in semi-peripheral Ni58 + Au197

collisions at intermediate energies [72].

1.5 Review of the experimental attempts for collective

flow

The collective flow has attracted a wide attention in in recent times. As discussed earlier,

collective flow can be classified as: radial, directed and elliptical flows. Lots of findings are

presented in the literature on the radial and directed flows [73-79], while elliptical flow is

yet to be fully explored in the nuclear science community at intermediate as well as high

energies. The elliptical flow term was introduced in 1997 by H. Sorge [80]. The review of

experimental findings on elliptical flow by different collaborations (discussed in the review

of multifragmentation) is presented as follow:

Experimentally out-of-plane emission, termed as squeeze-out was first observed in 1989 at

nearly the same time by two competing collaborators. The Diogene collaboration at Sat-

urne Synchrotron in Saclay (France) observed few peaks in the azimuthal distribution of

the particles at mid-rapidity in 800 MeV/nucleon Ne-induced reactions [81]. At BEVALAC

in Berkeley, the Plastic Ball/Wall group observed out-of-plane emission in Au197 + Au197

collisions at 400 MeV/nucleon [82]. The BEVALAC group also characterize the squeeze-

out as a function of projectile energy, mass as well as the rapidity dependence by using

a novel ratio of out-of-plane/in-plane emission [83]. The transition from the in-plane to

out-of-plane emission was first observed using the Zn64 + Ni58 reaction at GANIL facility

by the NAUTILUS collaboration in 1994 [84]. The energy of transition increases with im-

pact parameter. Moreover, the MINIBALL/ALADIN collaboration observed the onset of

out-of-plane emission (GSI) in Au197 + Au197 collisions at 100 MeV/nucleon [85], where

out-of-plane emission is seen for central collisions, while peripheral collisions clearly show

in-plane emission.

The NSCL at MSU (USA) focused on the disappearance of elliptical flow for symmetric

Au197 + Au197 reactions (at 500 MeV/nucleon to 11 GeV/nucleon) [86, 87]. The excitation
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function shows a transition from negative to positive elliptical flow at a beam energy, E ≈ 4

GeV/nucleon. Later on, NSCL in collaboration with STAR, investigated the elliptical flow

at
√
SNN = 130 and 200 GeV [88]. They presented the pseudo rapidity, transverse momen-

tum dependence and centrality dependence of elliptical flow. Recently, the elliptical flow

and nuclear stopping is used as a tool to determine NN cross-section in heavy-ion collisions

at intermediate energies [89].

Other collaborations: FOPI, ALADIN at GSI, and INDRA at GANIL emphasis on the

transition of elliptical flow for different kind of fragments from in-plane to out-of-plane in

intermediate energy heavy-ion collisions [74, 75, 76, 90]. The Au197 + Au197 reaction is

studied for incident energies ranging from 40 to 800 MeV/nucleon. The transition from

in-plane to out-of-plane is observed around 100 MeV/nucleon. The FOPI collaboration

also got success in correlating the global stopping with flow [91] as well as with cluster

formation during expansion [92]. A total of 25 system-energies are analyzed for this work:

Ca40 + Ca40 (at 0.4, 0.6, 0.8, 1.0, 1.5, 1.93 GeV/nucleon), Ni58 + Ni58 (at 0.09, 0.15,

0.25, 0.4 GeV/nucleon), Ru96 + Ru96 (at 0.4, 1.5 GeV/nucelon), Xe129 + Cs133I127 (at

0.15, 0.25, 0.4 GeV/nucleon) and Au197 + Au197 (at 0.09, 0.12, 0.15, 0.25, 0.4, 0.6, 0.8,

1.0, 1.2, 1.5 GeV/nucleon). The findings related to the stopping-flow relation are also ob-

tained by the INDRA and ALADIN groups [93]. The FOPI collaboration reported new

method to study the analysis of anisotropic flow with different methods like the event plane

reconstruction, on Lee-Jang Zeros and on multi-particle cumulants [94]. On the other hand,

INDRA and ALADIN collaborations presented new results of flow analysis for the set of

reactions Xe124,129 and Sn112,124 (at 100 and 150 MeV/nucleon) [95]. The dependence on the

centrality and pt of the directed and elliptical flow are determined for isotropically selected

reaction products with Z ≤ 3.

The recent study in the field of elliptical flow in intermediate energy heavy-ion collisions

is by J.Y. Ollitrault and co-workers [96]. They discussed how the different estimates of

elliptical flow are influenced by the flow fluctuations and non-flow effects. It is argued that

non-flow effects and fluctuations can not be disentangled without any assumptions. In the

presence of reasonable assumptions, the all measured values of elliptical flow are converges

to a unique mean value in respective plane.
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1.6 Review of the theoretical models used to study

various phenomena at intermediate energies in heavy-

ion collisions

Before looking for the different theoretical models and algorithms suitable at interme-

diate (and relativistic) energies, we have to keep in the mind the dynamics involved at

these incident energies. The key point to remember is that the heavy-ion collisions involve

very complicated non-equilibrium physics, therefore, its numerical modeling is not straight

forward. Due to the lack of free phase space at low incident energy, about 98 % of the

attempted collisions are blocked. The whole dynamics at low energies is governed by the

mean field or by the mutual two and three body interactions. On the contrary, the availabil-

ity of large phase space at relativistic energies (≥ GeV/nucleon) makes the Pauli-blocking

[97] quite small (roughly 4% collisions are blocked) and hence the dynamics of a reaction

is governed by cascade picture. On the other hand, both cascade and mean field pictures

emerges at intermediate energies. Beside cascade and mean field picture, isospin picture

(to extract the information of the EOS of neutron rich matter, especially the density de-

pendence of the nuclear symmetry energy) also comes into existence in this energy range.

Isospin is a factor which differentiate between the neutron and proton inside the nucleus

on the basis of the charges and make possible interactions between the n-n, p-p and n-p.

This isospin degree of freedom enters in term of isospin-dependent physical quantities such

as the iso-vector (symmetry) potential, and isospin-dependent in-medium nucleon-nucleon

(NN) cross-sections and Pauli blocking.

A native picture of nuclear reactions at intermediate energies undergoes three important

steps: Initial stage where the target and projectile are boosted toward each other with

proper center of mass energy: compression and expansion stage, after which a pre-fragment

source is formed and reaches equilibrium; a secondary decay process of various emitted frag-

ments.

The theoretical models for the processes at intermediate energies can be divided into two

categories: Statistical and Dynamical model. Example of statistical models include multi-
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particle phase space models, such as the Statistical Multifragmentation Model (SMM) [98, 99]

and the Berlin Multifragmentation Model [100], which can incorporate specific nuclear prop-

erties directly. Accordingly, a semi- micro canonical version of SMM [99] that incorporates

detailed nuclear structure information relevant to the population and secondary decay of

the excited fragments was developed [101]. Additional static models include Percolation

[102], Lattice Gas Approach [103] and Expanding Emitting Source (EES) model [104]. These

approaches have the virtue of providing relatively simple schematic algorithms suitable for

the exploration of critical phenomena in finite systems. The limitation of the statistical

models are: (i) The situation at the start of reaction is based on some assumption for the

degree of thermalization [99] and (ii) The statistical models give a better description only

of the later/final stage of the reaction. Our aim is to study all the stages discussed earlier:

initialization, compression and expansion. Hence the statistical models are neglected in this

study. This study is possible by the dynamical models only.

The dynamical approaches such as the Time Dependent Hartree Fock (TDHF) [105, 106]

or its semi-classical version called Vlasov equation (in phase space) [107, 108] are suitable

at low incident energies where nucleon-nucleon collisions are negligible. However, a suitable

and reasonable approach for the intermediate energy heavy-ion physics should treat the

nucleon-nucleon scattering and mean field on equal footing. Some attempts were made in

the literature to extend the TDHF theory to take care of the residual n-n interactions, which

are responsible for the two-body collisions. This was dubbed as Extended Time dependent

Hartree-Fock (ETDHF) theory [109]. However its numerical implementation prohibited its

use for large scale investigations of heavy-ion collisions.

In the first attempt, semi-classical version of ETDHF theory i.e. Vlasov equation [107] was

coupled with nucleon-nucleon collisions and thus, a new realization, named as Boltzmann

-Uehling - Uhlenback equation (BUU), was developed to study the large deviation problems

of low, intermediate and relativistic heavy-ion collisions. The BUU equation was solved by

test particle method. The one body distribution function is described as a collection of NA

test particles, where A is the mass number and N is event number. All possible collisions

between the test particles are considered, i.e., there is no division of test particles. In other

words, N parallel runs communicate with each other, therefore, event by event correlation
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can not be analyzed. However, Bonasara et.al. [110], solved the collision integral using the

concept of mean free path. In this method, N parallel events are performed and the average

physical values of various quantities are calculated over large number of events. Since N

parallel runs do not communicate with each other, event by event correlations are preserved.

Keeping in mind the requirement of intermediate energy region, one would like to have

those methods where correlations and fluctuations among nucleon can be preserved. The

Classical Molecular Dynamics (CMD) [111] approach (or the equation of motion), in princi-

ple, is capable of predicting the fragments production. It also incorporate the complete clas-

sical N-body dynamics which is necessary to describe the formation of the fragments. The

simple Classical Molecular Dynamics, however, needs major refinements (including quantum

features). The quantum features play a very important role at low incident energies. The

above approach was later extended to incorporate the quantum features by Aichelin and

Stocker [105, 112]. This new approach, which explicitly incorporates the N-body correlations

as well as nuclear matter equation of state and important quantum features (like the Pauli

principle, Stochastic scattering and particle production), was dubbed as Quantum Molecular

Dynamics (QMD) model [14, 105, 112, 113].

To extract the information of the EOS of neutron-rich matter, especially the density de-

pendence of the nuclear symmetry energy, from heavy-ion reactions induced by neutron rich

(stable and/or radioactive) beams, one needs reliable theoretical tools. For this purpose, one

must have transport models that include explicitly the isospin degree of freedom and thus

the isospin-dependent physical quantities such as the iso-vector (symmetry) potential and

isospin-dependent in-medium nucleon-nucleon (NN) cross -sections and Pauli-blocking. As

discussed above, the semi-classical models include mainly the two types: the BUU and the

QMD model. With the development of radioactive ion-beam physics, several rather com-

prehensive isospin-dependent, but mostly semi-classical transport model such as IBUU[114],

SMF[116] and IQMD[117] have been successfully developed in recent years to describe nu-

clear reactions induced by neutron-rich nuclei at intermediate energies.

The isospin- dependent Boltzmann-Uehling-Uhlenback (IBUU) transport model has suc-

cessfully explained several isospin dependent phenomena in heavy-ion collisions at inter-

mediate energies [114]. In this model, the isospin dependence was included in the dynam-
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ics through nucleon-nucleon collisions by using isospin-dependent cross-sections and Pauli

blocking factors, the symmetry potential Vsym(ρ, δ), and the coulomb potential. This model

was used to calculate the ratio of yield of neutron and protons in pre-equilibrium emis-

sion [115]. The BUU equation provides an accurate description of the time dependence of

the one body distribution function. Accurate solution of the BUU equation average away

fluctuations in the density that might lead to the formation of fragments in an individual

collision. This is usually achieved by solving the BUU equation with a large number of test

particles per nucleon Ntest. The density fluctuations that lead to the fragment production

are suppressed in the BUU equation, so the calculation of fragment yield directly via BUU

model is not feasible. Therefore, alternate model such as, Stochastic Mean Field (SMF)

model [116] and Isospin Quantum Molecular Dynamics (IQMD) model [117] has been de-

veloped to address the density fluctuations.

The SMF, like IBUU, describes the time evolution of the collision using self-consistent

mean field. The application of the SMF model to the unstable situations relies on the

knowledge of the most important unstable modes, which may be difficult to identify in case

where the modes are not known a priori.

The IQMD model [117] treats different charged states of nucleons, deltas and pions explic-

itly [118], as inherited from the VUU model[108]. The isospin degree of freedom enters into

the calculations via symmetry potential and cross-sections[108, 119]. This model is proven

successful to study the isospin effects in intermediate energy heavy-ion collisions. The model

incorporate the N-body correlations, reduces the fluctuations to minimum extent, explains

the nuclear equation of state and includes the many quantum features like Pauli blocking,

Stochastic scattering, particle production and isospin.

All these dynamical models can follow the time evolution of nucleons only. These models

are termed as ”primary model” which generate the phase-space of nucleons. One needs a

procedure to define clusters. These algorithms are termed as ” secondary models”. In a very

simple picture, nucleons are connected to a cluster using space correlation method. This

method identifies the two nucleons in the same fragment if their centroids are less than some

distance [120]. This method is known as Minimum Spanning Tree (MST) method.. Till to-

day, it is one of the most extensively used methods. Several refinements to this method have
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been proposed including momentum cut and binding energy cut [121]. One more and newly

developed secondary model is ”Simulated Annealing Clusterization Algorithm, developed by

Puri, Hartnack and Aichelin [122], which is based on the minimization of energy of the

system.

As discussed in the above paragraphs, we have several theoretical models that are available

to study the heavy-ion collisions at intermediate energies. We shall study the phenomena

of multifragmentation and elliptical flow using primary models QMD and IQMD and then

analyze by secondary models MST, MSTP and SACA.
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1.7 Organization of thesis

The thesis is organized as follows:

In chapter 2, we will describe various theoretical models in brief. The primary models,

Quantum Molecular Dynamics (QMD) and Isospin-dependent Quantum Molecular Dynam-

ics (IQMD) will be discussed in detail.

In chapter 3, we shall study the influence of momentum dependent interactions (MDI)

on the production of different kind of fragments like free particles, light charged particles

(LCP’s) and medium mass fragments (MMF’s) by taking into account the composite sys-

tem mass (Atot = AT +AP ) from 80 to 394, using QMD model. The reactions are analyzed

with MST method. We shall show that the decrease is observed in the the density profile,

number of allowed collisions as well as heaviest fragment (Amax) in the presence of MDI.

We shall also show that enhanced production of MMF’s will take place in the presence of

momentum dependent interactions at semi-peripheral geometries. It will also be shown that

multiplicity of MMF’s can be parameterized in term of power law[21].

The experimental attempts of ALADIN and NSCL collaborations exists in the litera-

ture to study the rise and fall of intermediate mass fragments (IMF’s) with impact param-

eter and incident energies[46, 123]. The results of ALADIN collaboration is available for

79Au
197 + 79Au

197 at different incident energies and impact parameters. On the other hand,

the asymmetric systems data is available from NSCL collaborations at different energies.

In the chapter 4, we shall try to compare the results with our theoretical results in the

presence of momentum dependent interactions by varying the N-N cross-sections. Moreover,

we shall also observe the effect of technical model ingredients such as Gaussian width (L),

Clusterization distance (RClus), equations of state (Soft[S], Hard[H] and S with momentum

dependence [SM]) and different clusterization algorithms on the production of IMF’s. We

shall show, first time, that the effect of different NN cross-sections and model ingredients

on the process of multifragmentation is of same order. [22]
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Recently, the elliptical flow has attracted the nuclear community a lot due to its nature

of in-plane to out-of-plane emission. In chapter 5, we shall study the elliptical flow in

detail by using the IQMD model. The transverse momentum, excitation function, impact

parameter and composite mass of the system, dependence will be studied in detail for dif-

ferent kind of fragments. We shall show the excitation function of elliptical flow for the

reactions of 20Ca
40 + 20Ca

40, 54Xe
131 + 54Xe

131 and 79Au
197 + 79Au

197 at entire rapidity

as well as mid-rapidity range. We shall also show the comparison of excitation function of

elliptical flow with the findings of INDRA, FOPI and PLASTIC BALL collaborations for

79Au
197 + 79Au

197 nuclei in mid-rapidity region. Moreover, we shall made an attempt to

parametrized the system mass dependence of elliptical flow in term of power law for different

kind of fragments.[124]

The nuclear stopping as well as multifragmentation are studied in the literature sepa-

rately as two processes, many times. A very few attempts were made to correlate the nuclear

stopping and fragmentation process. In chapter 6, we shall also correlate the production of

fragments with nuclear stopping in the presence of symmetry energy by using IQMD model.

We shall study all the possible variations like impact parameter, system size, cross-section,

symmetry energy and equations of state. We shall show that the light charged particles

(LCP’s) production in the presence of symmetry energy can acts as a better indicator for

the nuclear stopping (R and Qzz). Moreover, we shall also show that maximum stopping is

obtained for heavier systems in central collisions in the presence of symmetry energy and

isospin dependent cross-section, without momentum dependent interactions. This is due to

the destabilizing nature of momentum dependent interactions.[125]

Our results are summarized in chapter 7, which also contains an outlook of the work.
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Chapter 2

Methodology

2.1 Introduction

As discussed in chapter 1, the conventional mean field theory [1] like the Hartree-Fock

and Schröedinger equation are suitable for the low energy reactions. On the other hand,

contrary to the TDHF approach, the cascade model [2] describes very high energy heavy-ion

collisions. It neglects mean field completely and take only nucleon-nucleon collisions with-

out Pauli-blocking into account. The dynamics at intermediate energies, however, requires

the equal weightage to nucleon-nucleon binary and mean field. This demands exact infor-

mation about the real (trajectory of nucleons) and imaginary (nucleon-nucleon collisions)

parts of the potential. Furthermore, to extract the information of the equation of state

(EOS) of neutron-rich matter at intermediate energies from heavy-ion reactions induced

by neutron-rich (stable and/or radioactive) beams, one must include explicitly the isospin

degree of freedom. This isospin degree of freedom enter into real and imaginary part in

term of iso-vector (symmetry) potential, and isospin-dependent in-medium nucleon-nucleon

cross-sections, Pauli-blocking, respectively. In addition, one also has to deal from the start

(where matter is non-equilibrated) to the final state (where matter is cold and fragmented).

The dynamical transport models employed at intermediate energies are supposed to be in-

cluding the essential collision physics. These dynamical models at intermediate energies can

be subdivided into two classes: Those which follow the time evolution of the one-body phase

space distribution i.e. VUU type, IBUU and SMF and those which are based on N-body

molecular dynamics or cascade schemes i.e QMD and IQMD. In the present chapter, we

shall study QMD and IQMD models in detail.
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2.2 Various models used to study the heavy-ion colli-

sions without isospin effects

2.2.1 VUU-type Models

The microscopic transport models for the one-body Wigner phase space density distribu-

tion obtained different names although they solve the same equation. They differ in the tech-

nical realization, i.e. the computer program, and are known as Vlasov Uehling-Uhlenbeck

(VUU) model [3] (or BUU[4], LV [5]). They solve the following transport equation for the

one-body Wigner density f(r, p, t) in the limit h̄→ 0:

∂f

∂t
+ v · ∇rf −∇rU · ∇pf = −4π3(h̄c)4

h̄(mc2)2

∫

d3ṕ1

(2πh̄)3

d3ṕ2

(2πh̄)3
d3p2

dσ

dΩ

×
[

f f2(1 − f́1)(1 − f́2) − f́1f́2(1 − f)(1 − f2)
]

×δ4(p + p2 − ṕ1 − ṕ2). (2.1)

The l.h.s. of this equation is the total differential of f with respect to the time assuming

a momentum independent potential U. This potential is calculated self consistently and

corresponds to the real part of the Brückner G-matrix. Usually a Skyrme-parametrization

U = α

(

ρ

ρ0

)

+ β

(

ρ

ρ0

)γ

(2.2)

of the real part of the G-matrix is employed, where ρ is the nuclear density which is frequently

measured in units of the saturation density ρ0 of cold nuclear matter.

The r.h.s. of eqn. 2.1 contains a Boltzmann collision integral, which is identified with

the imaginary part of the G-matrix. This part describes the influence of binary hardcore

collisions, where the term with ff2 describes the loss of particles (in a phase space region)

and the terms with f1 f2 the gain term due to collisions feeding the considered phase space

region. It is supplemented with the Nordheim-Uehling-Uhlenbeck modifications in order

to obey the Pauli-principle in the final state of the collisions[6]. The δ-functions assure

the conservation of the four momentum. The cross section σ is normally adjusted to the

free nucleon-nucleon scattering. The differences from cross sections calculated from the

imaginary part of the Brückner G-matrix are minor [7] and influence little the observables

of a heavy ion collision. For a derivation of this eqn. see [8].

The equation is solved by the use of the test particle method. Here the continuous one-

body distribution function f at t = 0 is represented by an ensemble of n ·(Ap +At) point like
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particles. The recent calculations, however, use Gaussian wave packets for test particles[9].

This is often viewed as an ensemble of n parallel events with Ap + At physical particles

each, where Ap and At denote the number of nucleons in projectile and target, respectively.

The l.h.s. of eqn.2.1 can be regarded as the transport equation (Vlasov-equation) for a

distribution of classical particles whose time evolution is governed by Hamilton’s equations

of motion.

ṗi = − δ〈 H 〉
δri

; ṙi =
δ〈 H 〉
δpi

, (2.3)

The test particles move due to their own, self consistently generated mean field. The r.h.s.

is taken into account by additional stochastic scattering similar to the collisions in cascade

models [10].

More explicitly the test particle method corresponds to the replacement of the expectation

value of a single particle observable

〈O(t)〉 =
∫

f(r, p, t) O(r, p) d3r d3p, (2.4)

by a Monte Carlo integration

〈O(t)〉 =
1

n(AT + AP )

n(AT +AP )
∑

i=1

O(ri(t), pi(t)), (2.5)

Where the ri(t) and pi(t) are point in phase space which are distributed according to

f(r, p, t), i.e.,

f(r, p, t) = limn→∞
1

n(AT + AP )

n(AT + AP )
∑

i=1

δ(r − ri(t))δ(p − pi(t)). (2.6)

It is evident that a large number n is necessary to avoid numerical noise. Predictions beyond

the one-body level are not feasible although several attempts have been made to relate the

(unphysical) numerical noise to physical fluctuations. In practice the number n lies in the

range between 15 and 500 and one employs a grid to obtain a smooth phase space density

distribution.

The numerical realization can be achieved in various ways. VUU uses a phase space sphere

around each particle in order to determine f and a coordinate space sphere to determine ρ

and thus U(ρ). This corresponds to a Lagrangian method. On the contrary, BUU uses a

fixed grid corresponding to an Eulerian method in hydrodynamics. In both models collisions
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are treated in a parallel event method, only test particles of the same events, i.e. the Ap+At

test particles with the same index n, can collide. The Landau-Vlasov model determines f

by the overlap of several Gaussians. The collisions are performed in a crossed event (or full

ensemble) method where all n(Ap + At) may collide with each other particle with a scaled

cross section.

For a solution of (eqn. 2.1) proper boundary conditions have to be specified. In the case of

heavy ion reactions, the test particles are distributed according to the density- and Fermi-

momentum distribution of ground state nuclei. The latter are then boosted onto every other

with the proper relative momentum. Initially the test particles are randomly distributed in

a coordinate space sphere of the radius R = 1.12A1/3 fm (where A is the atomic number

of the nucleus) and in a momentum space sphere of the radius of the corresponding Fermi

momentum.

One should keep in the mind that the forces acting on the test particles are calculated

from the entire distribution including test particles from all events, hence the n parallel

events are not independent and event-by-event correlations cannot be analyzed within this

one-body transport models. In the limit n → ∞ the distribution of these propagated test

particles at the time t represents the one-body distribution function at this time.

Another method to solve the collision integral of eqn. 2.1 was developed by Bonasera et

al. [11]. In this method, concept of mean free path was used to solve the collision integral

where mean free path was defined as:

λ =
1

σNNρtest/N
(2.7)

Where σNN is the free nucleon-nucleon cross-section and N is the number of test particles

per nucleon. The test particle density is represented by ρtest. One can have (i) Parallel

ensembles approximation in which N = 1 and ρtest = ρ0 (normal nuclear matter density).

Since single ensemble is not enough to avoid numerical noise, one needs to perform n parallel

events and (ii) Full phase-space evaluation of the collision integral which is similar to the

method described above in the BUU model. In this case N >> 1 and ρtest = Nρ0. Only one

ensemble is necessary to calculate the average physical quantities. Note that in both cases,

mean free path remains the same, i.e., if one increase the test particle density, accordingly

one reduces the nucleon-nucleon cross section.
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Any one-body observable can be calculated by averaging the values weighted with the

distribution function. In brief, the VUU − type model is able to explain the one-body ob-

servables like the collective flow, stopping as well as particle spectra [9], but, fluctuations

and correlations, such as the formation of fragments or the description of two-particle corre-

lations in relativistic heavy ion collisions, are beyond the scope of a transport model based

on a one-body distribution function [12]. In the following, we describe in detail the Quantum

Molecular Dynamics (QMD) model [13, 14], which is an N-body model. The recent develop-

ments in the VUU − type i .e BUU model incorporate the momentum dependent potential

[15], isospin dependent potential as well as isospin dependent nucleon-nucleon scattering

cross section [16]. In order to study, isospin effects in neutron-rich systems, for one-body

distribution function, the BUU model with isospin effects and Stochastic Mean Field (SMF)

[17] is used in literature. Additionally, for N-body distribution, isospin dependent quantum

molecular model (IQMD) [18] is used. These models are discussed later in the coming sec-

tions.

2.2.2 Quantum Molecular Dynamics (QMD) Model

The classical molecular dynamics (CMD) approach, which is a true N-body theory, is

capable of treating both the compression and fragments formation, but on a completely

classical level: the Hamilton’s equation of motion are integrated for N classical point parti-

cles, with finite range nucleon-nucleon potential. Based on the CMD approach, Aichelin and

Stocker[19], designed a novel method that incorporates N-body correlations, an equation of

state and most important quantum features, namely, the Pauli-principle, Stochastic scat-

tering as well as particle production. It is based on an event by event method. Here each

event is simulated independent of other events. In contrast to BUU model, no averaging is

done over various events and hence, the correlations among nucleons can be preserved. The

simulation models like BUU, QMD [13, 14] etc. need three steps. First, one has to generate

the nuclei. This procedure is called as initialization. It becomes very important to make

sure that our initialization do not destabilize the cold nuclei. For this, we will discuss some

initial checks for stability of nuclei. Then propagate under the influence of surrounding

mean field. This is termed as propagation. Finally, nucleons are bound to collide if they
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come too close to each other. This part is dubbed as nucleon-nucleon collisions. These

nucleon-nucleon collisions and mean field effects make uni-important to check the role of

Pauli blocking. In the following, we shall discuss all of these parts in detail.

Initialization

The fact that the TDHF (Slater determinant is used for initialization) and classical Vlasov

(Point-like nucleons used in initialization) yield nearly the same results, depicts [20] that

different initialization does not influence the nuclear dynamics. Therefore, detailed form of

the wave function has only minor influence on the time evolution of the bulk properties of

the system, provided it fulfills the minimal requirements, like approximate constant density

over the proper region in coordinate space. In QMD model, the nucleons are represented

by Gaussian wave packets which interact by mutual two- and three-body forces. The model

simulates the heavy ion collisions on an event by event basis and as a consequences, preserve

the correlations and fluctuations. Each nucleon is represented by a coherent state of the

form

ψi(r, pi(t), ri(t)) =
1

(2πL)3/4
exp

[

i

h̄
pi(t) · r − (r − ri(t))

2

4L

]

. (2.8)

The parameter L, which is related to the extension of the wave packet in phase-space. For

more details related to L value, reader is refered to Ref.[18]. The total N-body function is

assumed to be the direct product of coherent states (eqn. 2.8)

Φ =
∏

i
ψi(r, ri, pi, t). (2.9)

As discussed earlier, we do not use a Slater determinant (with (AP + AT )! summation

terms) and thus, neglect the anti-symmetrization. First successful attempts to simulate the

heavy ion reactions with anti-symmetrized states have been performed for smaller systems

[21, 22]. As the model is semi-classical, so, in order to transit from quantum mechanical

wave function to classical distribution function in phase space, the Wigner distribution

function is used. The Wigner transforms of the coherent states are Gaussian in momentum

and coordinate space. The Wigner density reads as

fi(r, p, ri(t), pi(t)) =
1

(2πh̄)3

∫

e−
i
h̄

p·r12ψi(r +
r12
2
, t) ψ∗

i (r −
r12
2
, t)d3r12
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=
1

(πh̄)3
e−(r −ri(t))2/2L e−(p −pi(t))22L/h̄2

, (2.10)

where ri(t), pi(t) define the classical orbit or the center of the Gaussian wave packet in

phase-space, whereas the squared width L is assumed to be independent of the time. The

density of ith particle is

ρi(r) =
∫

fi(r, p, ri(t), pi(t)) d
3p

=
1

(2πL)3/2
e−[r − ri(t)]

2/2L. (2.11)

To initialize a nucleus, we have to assign the coordinates and momenta to all nucleons.

In three dimensional space [inside a sphere of radius R = 1.14 A1/3, where A is the mass

number of the nucleus under consideration], the centers of Gaussian wave packet ri are

uniformly distributed in polar coordinate by:

r = R x
1/3
1 ,

cosθ = 1 − 2x2,

φ = 2π x3,

(2.12)

where x1, x2, x3 are the random numbers. The coordinates of nucleons are rejected if the

distance between them is less than 1.5 fm. The local Fermi momentum is determined by

the relation

pF (ri) =
√

−2mU(ri), (2.13)

where U(ri) is the local potential. The center of each Gaussian wave packet pi are uniformly

distributed in polar coordinate

pi = pF (ri)x
1/3
4 ,

cosθ = 1 − 2x5,

φ = 2πx6.

(2.14)

where x4, x5 and x6 are again random numbers. We reject those distributions where two

particles are closer than some distance dmin. In other words, we demand

(ri − rj)
2 (pi − pj)

2 ≥ dmin. (2.15)
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Typically 1 out of 50,000 initializations is accepted under the present criteria. As noted

from Ref.[23], the initial phase-space distribution for the colliding nuclei in QMD agrees

fairly well with the experiments as well as with PPW+RPA approach.

Numerical tests for the stability of nuclei

The nuclei prepared within transport model may start emitting nucleons after the lapse

of hundred fm/c. Therefore, it is very important to make sure that our initialization does

not destabilize the cold nuclei. The stable fragments formation take place if the interaction

among the nucleons ceases to exist. Extensive tests were conducted by Heidelberg-Nantes-

Frankfurt-Tubingen groups to study the properties of different single nuclei. The nucleons

inside a nucleus move under the influence of the mean field of their neighbors. During the

motion whenever a nucleon come close to the surface of the nucleus, it is pulled back by

other nucleons. Thus every nucleon remains confined in a sphere as shown in Ref. [13, 24].

Due to the local density approximation used here, the light nuclei are unstable compared to

heavier one. Frankfurt group [25] showed that inclusion of Pauli-potential in the mean field

keeps the nucleon stable for several thousand fm/c. Nantes Group[13] checked the stability

in term of root mean square (r.m.s) radius as well as binding energy. We have also carried

out various checks by calculating the binding energy and r.m.s radius of different nuclei as

well as propagation of heaviest fragment. Most of the nuclei were found to be stable for

couple of hundred fm/c, which is long enough for the present purpose.

Once the target and projectile are generated with proper initialization, we boost them

with proper center of mass velocity. In the following, we shall first discuss the propagation

and then shall discuss the nucleon-nucleon scattering/collision with Pauli-blocking effects.

Propagation

The successfully initialized nuclei are then boosted towards each other with proper center

of mass velocity using relativistic kinematics. The center of each distribution moves along

the Coulomb trajectories. This distribution is kept fixed until the distance between surfaces

of the nuclei is 2 fm. The equation of motion of many-body system is, then, calculated by
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means of a generalized variational principle: we start from the action

S =
∫ t2

t1
L[Φ,Φ∗]dτ, (2.16)

with the Lagrange functional

L = 〈Φ|ih̄ d
dt

−H|Φ〉, (2.17)

Where the total time derivative includes the derivation with respect to the parameters. The

time evolution is obtained by the requirement that the action is stationary under the allowed

variation of the wave function

δS = δ
∫ t2

t1
L[Φ,Φ∗]dt = 0. (2.18)

The Hamiltonian H contains a kinetic term and mutual interactions Vij, which can be inter-

preted as the real part of the Brückner G-matrix supplemented by the Coulomb interaction.

The time evolution of the parameters is obtained by the requirement that the action is

stationary under allowed variation of the wave function. This yields an Euler-Lagrange

equation for each parameter. We obtain for each parameter λ an Euler-Lagrange equation:

d

dt

∂L
∂λ̇

− ∂L
∂λ

= 0. (2.19)

If the true solution of the Schrödinger equation is contained in the restricted set of wave func-

tion ψi(r, pi(t), ri(t)), this variation of the action gives the exact solution of the Schrödinger

equation. If the parameter space is too restricted, we obtain that wave function in the re-

stricted parameter space which comes closest to the solution of the Schrödinger equation.

Note that the set of wave functions which can be covered with special parameterizations is

not necessarily a subspace of Hilbert-space, thus the superposition principle does not hold.

For the coherent states and a Hamiltonian of the form H =
∑

i Ti + 1
2

∑

ij Vij (Ti =

kinetic energy, Vij = potential energy, the Lagrangian and the variation can easily be

calculated and we obtain:

L =
∑

i

ṙipi −
∑

j 6=i

< Vij > − 3

2Lm
, (2.20)

ṙi =
pi

m
+ ∇pi

∑

j

< Vij > = ∇pi
< H >, (2.21)
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ṗi = −∇ri

∑

j 6=i

< Vij >= −∇ri
< H >, (2.22)

with ri = ri + pi

m
t and 〈Vij〉 =

∫

d3r1d
3p2〈ψ∗

iψ
∗
j |V (r1, r2)|ψiψj〉.

These equations represent the time evolution and can be solved numerically. Thus, the

variational principle reduces the time evolution of the n-body Schrödinger equation to the

time evolution equations 6 · (AP + AT ). The equations of motion now show a similar

structure like classical Hamiltonian equations.

ṗi = − ∂〈H〉
∂ri

; ṙi =
∂〈H〉
∂pi

. (2.23)

The numerical solution can be achieved in the spirit of the classical molecular dynamics

[26]. The expectation value of total Hamiltonian reads as:

〈H〉 = 〈T 〉 + 〈V 〉

=
∑

i

p2
i

2mi
+ VSkyrme + VY uk + VCoul + VMDI . (2.24)

where VSkyrme, VY uk, VCoul and VMDI are, respectively, the local (two and three body)

Skyrme, Yukawa, Coulomb and momentum dependent potentials. The momentum depen-

dent interactions will be discussed in chapters 3 and 4. The local Skyrme interaction is

written as:

VSkyrme =
1

2!

∑

j;i6=j

V
(2)
ij +

1

3!

∑

j,k;i6=j 6=k

V
(3)
ijk , (2.25)

Here, V
(2)
ij and V

(3)
ijk are the two and three-body interactions. The two-body interactions

V
(2)
ij is obtained by folding the two-body interactions with the densities of both particles.

∑

j;i6=j

V
(2)
ij =

∑

j;i6=j

∫

fi(ri, pi, t) fj(rj , pj, t) V (ri, rj) (2.26)

× d3ri d
3rj d

3pi d
3pj ,

=
∑

j;i6=j

∫

fi(ri, pi, t) fj(rj , pj, t) t1

×δ(ri − rj)d
3ri d

3rj d
3pi d

3pj ,

=
∑

j;i6=j

t1

∫

fi(ri, pi, t) fj(rj, pj , t)

× d3ri d
3pi d

3pj ,

=
∑

j;i6=j

t1

∫

1

(πh̄)3
e−(r−ri(t))2/2Le−(p−pi(t))22L/h̄2
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× 1

(πh̄)3
e−(r−rj(t))2/2L e−(p−pj(t))22L/h̄2

d3ri d
3pi d

3pj ,

=
∑

j

t1
1

(4πL)3/2
e−(ri−rj)2/4L,

= t1
∑

j;i6=j

ρij . (2.27)

where

ρij =
∫

d3r ρi(r) ρj(r) =
1

(4πL)3/4
e−(ri−rj)2/4L. (2.28)

The three-body interaction can be calculated as follows

∑

j,k;i6=j 6=k

V
(3)
ijk =

∑

j,k;i6=j 6=k

∫

fi(ri, pi, t) fj(rj, pj, t) fk(rk, pk, t) V (ri, rj , rk)

× d3ri d
3rj d

3rk d
3pi d

3pj d
3pk,

=
∑

j,k;i6=j 6=k

∫

fi(ri, pi, t) fj(rj, pj, t) fk(rk, pk, t) t2

×δ(ri − rj) δ(ri − rk)d
3ri d

3rj d
3rk d

3pi d
3pj d

3pk,

=
t2

(2πL)3 · 33/2

∑

j,k;i6=j 6=k

e−[(ri−rj)2+(ri−rk)2+(rk−rj)2]/6L,

=
t2

(2πL)333/2

∑

j,k;i6=j 6=k

e−[(ri−rj)2+(ri−rk)2]/6L× 3

2 ,

=
t2 (4πL)3/2×2

(2πL)3 · 33/2





∑

j 6=i

1

(4πL)3/2
e−(ri−rj)

2/4L





2

,

=
t2 23

33/2





∑

j 6=i

ρij





2

. (2.29)

From above derivation, we see that the three-body term reduces to two body term. The

finite range Yukawa term VY uk and an effective Coulomb interaction VCoul are also included

to account for various effects, can be, read as:

VY uk = t3
exp{−|ri − rj |}/µ

|ri − rj |/µ
. (2.30)

VCoul =
Z2

eff e
2

|ri − rj|
. (2.31)

The Yukawa term (with t3= -6.66 MeV and µ=1.5 fm) has been added to improve the

surface properties of the interaction which are very important for multi-fragmentation. In

nuclear matter where the density is constant, the interaction density coincides with the

single particle density, and V
(2)
loc , as well as V

(2)
Y uk, are directly proportional to (ρ

ρo
). The

three-body part V
(3)
loc of the interaction is proportional to (ρ

ρo
)2. In nuclear matter, the local
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Table 2.1: Parameters of static potentials [13]

K(MeV) α(MeV ) β(MeV ) γ EOS
200 -356 303 1.17 Soft(S)
380 -124 70.5 2 Hard(H)
200 -390 320 1.14 SMD
380 -130 59 2.09 HMD

potential energy has the form

Vloc =
α

2

(

ρ

ρo

)

+
β

γ + 1

(

ρ

ρ o

)2

. (2.32)

The above potential has two free (α and β) parameters, which can be fixed by the require-

ment that at normal nuclear matter density the average binding energy should be -16 MeV

and total energy should have a minimum at ρo. In order to investigate the influence of

different compressibilities, one can generalize the above potential energy (eqn.2.32) to

Vloc =
α

2

(

ρ

ρo

)

+
β

γ + 1

(

ρ

ρo

)γ

. (2.33)

This equation leads to the nuclear matter equation of state which connect the pressure

and energy[13]. In the study of heavy-ion collisions one usually uses the so-called the

Skyrme parameterization of nuclear equation of state (EOS), which contains two sets of

parameter giving the same correct binding energy and saturation density, but, two different

incompressibility K(one corresponds to soft EOS with K = 200 MeV(at smaller value of γ),

another corresponds to hard EOS with K = 380 MeV(at larger value of γ)). The density

dependence of the compressional energy per nucleon is shown in Fig.2.1 for the soft and

hard interactions.

When the momentum dependent is introduced, we have to readjust the parameters

of Skyrme force to have correct saturation properties for normal nuclear matter and the

same incompressibilities as those of the soft and hard EOS. The new parameter sets with

the momentum dependence are called SMD and HMD, respectively. These four sets of

parameters are listed in table 2.1 together with the incompressibilities.
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Figure 2.1: The density dependence of compression energy per nucleon. The soft and Hard
interactions are shown by dash-dot-dash and solid lines, respectively. The other two lines
are with momentum dependent interactions, will be discussed in detail in chapter 3. The
figure is taken from Ref.[13].

The Nucleon-Nucleon(NN) Collisions

During the propagation, two nucleons can collide if they come close to each other. The

effect of N-body collision is found to be rather small, therefore, we neglect the N-body col-

lisions [27]. The collisions in QMD are treated in the same way as in BUU model. Two

particles undergo scattering if they are closer than a distance
√

σtot(
√

s)
π

. This scattering is

further subjected to the fulfillment of Pauli-principle. If the final state of scattered nucleons

violate the Pauli-principle, the collision is neglected. Here the σtot(
√
s) represents the total

NN cross section and ’
√

s ’ is the center-of-mass energy. The detailed form of various NN

cross-sections shall be discussed in chapter 4.
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Pauli-blocking

The Pauli-blocking is very important quantum feature of any dynamical model, to, under-

stand the exact reaction mechanism. Whenever a collision occurs, the phase space around

the scattering partners is checked. For simplicity, we assume that each nucleon occupies a

sphere in coordinate and momentum space. This trick yields the same Pauli blocking ratio

as an exact calculation of the overlap of the Gaussians, will yield. We calculate the frac-

tions P1 and P2 of final phase spaces for each of the two scattering partners that is already

occupied by other nucleons. The collision is blocked with a probability

Pblock = 1 − [1 −min(P1, 1)] [1 − min(P2, 1)] , (2.34)

and, correspondingly, is allowed with probability 1 − Pblock. For a nucleus in its ground

state, we obtain an averaged blocking probability < Pblock > of 0.96. For absolute blocking,

this factor should be one. From above description, it is clear that the Pauli factor will be

Figure 2.2: Pictorial view of Pauli-blocking at low and high incident energies.

zero or one depending whether the final phase-space is occupied or not. This sharp occu-

pancy is valid for the cold nuclear matter only. With the passage of time, Faessler et al. [28]

first time included the temperature by smearing the Fermi spheres for Pauli-operator. The

impact of in-medium corrections is drastic at low energies. With an increase in the incident
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energy, these effects start washing out and thus, the in-medium cross section approaches

the free nucleon-nucleon cross section. The pictorial view of Pauli- blocking is shown in

Fig.2.2, indicating the more Pauli-blocking effect at low incident energies as compared to

high incident energies. On the other hand, with an increase in the bombarding energy, the

velocity of particles becomes comparable to the velocity of light, therefore, the relativistic

effects become very important. The relativistic versions of QMD/BUU models (RQMD and

RBUU) are also available in recent years [24, 29, 30, 31]. Frankfurt group reported a new

version (named UrQMD) [32], which is designed specifically for ultra-relativistic collisions,

is further improved by Ref.[33] by incorporating momentum dependent Pauli potential, in-

medium NN → N∆ angular distribution and clusterization procedure.

As our present interest is to look for the various phenomena at intermediate energies(below

1 GeV/nucleon), the intensity of relativistic effect is assumed to be small [34]. If one wants

to go beyond 1 GeV/nucleon, one needs to take care of the proper relativistic tools. We

discuss here briefly the relativistic version of the QMD model.

2.2.3 Relativistic Quantum Molecular Dynamics (RQMD) Model

The Relativistic Quantum Molecular Dynamics [RQMD] [24, 29, 30, 31] model describes

the propagation of all kinds of baryons and mesons in a Lorentz-invariant fashion. The

Hamiltonian for an N-particle system is expressed in terms of 8N variables ( 4N position

coordinates qiµ and 4N momentum coordinates piµ). This means that here each particle

carries its own energy and time. Since the physical events are described as world lines in

a 6N dimensional phase-space, extra 2N-1 degrees of freedom have to be eliminated and

a global evolution parameter τ has to be defined. This can be achieved with the help of

2N constraints. In our approach, the first N constraints are chosen as Poincaré invariant

mass-on shell constraints [24].

ξi = pµ
i piµ −m2

i − Ṽi = 0 ; i = 1, ..., N. (2.35)

This choice of Poincaré invariant constraints requires that the potential part Ṽi should be

a Lorentz the scalar and therefore, function of the Lorentz scalars only. Since in RQMD, a

system with mutual two- and three-body interactions (like in QMD) has to be defined, Ṽi
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should be given by the sum of these two-body interactions. Further, as we want to look for

the relativistic effects in the dynamics, we have to generalize the non-relativistic Skyrme

force in such a way that the force is covariant and reduces also to the usual Skyrme force

in non-relativistic limit. This can be done as [24]

Ṽi =
N
∑

j 6=i

Ṽij(q
2
T ij). (2.36)

This shows that the two-body interactions depend only on the Lorentz invariant squared

transverse distance

q2
T ij = q2

ij −
(qµ

ijpijµ)
2

p 2
ij

, (2.37)

with qµ
ij = qµ

i − qµ
j being the simple four dimensional distance and pµ

ij = pµ
i + pµ

j the sum of

the momenta of the two interacting particles i and j.

The next set of the constraints ( which fix the relative times of all particles) should be

chosen in such a way that these constraints must respect the principle of causality and N-1

of these constraints should be Poincaré invariant so that the world line invariance can also

be fulfilled. Another feature which these constraints has to fulfill is the cluster separability.

This means that the system can be divided into single particles or clusters as soon as their

Minkowski distances are space-like. Furthermore, a global evolution parameter should also

be defined. These features can be fulfilled by choosing the following set of time constraints:

χi =
∑

j(6=i)

1

q2
ij/LC

exp(q2
ij/LC) pµ

ijqijµ = 0 ; i = 1, ..., N − 1, (2.38)

χ2N = P̂ µQµ − τ = 0. (2.39)

with P̂ µ = P µ/
√
P 2, P µ =

∑

i p
µ
i , Q

µ = 1
N

∑

i q
µ
i .

These time fixations take care that the time coordinates of the interacting particles should

not be much dispersed in the center-of-mass system of two particles. The Hamiltonian is a

linear combination of the Poincaré invariant constraints:

H =
2N−1
∑

i=1

λiΨi, (2.40)

with

Ψi =

{

ξi ; i ≤ N
χi−N ; N < i ≤ 2N − 1.

(2.41)
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This Hamiltonian then generates the equations of motion

dqµ
i

dτ
= [H, qµ

i ], (2.42)

dpµ
i

dτ
= [H, pµ

i ]. (2.43)

Here square brackets represent the Poisson brackets. The unknown Lagrange multipliers λi

in eqn. 2.40 are determined by the condition that all constraints must be fulfilled for all

times during the simulations. These equations of motion are used to propagate the baryon

during the reaction.

The propagation and the ”soft interaction” between baryons is combined with the quan-

tum effects like stochastic scattering and the Pauli-blocking etc.. In RQMD, the collision

part is treated in a covariant fashion. Therefore, all quantities which determine the col-

lision must be Lorentz invariant. In RQMD, two baryons are allowed to collide if their

distance
√

−q2
T ij ≤

√

σ(
√
s)/π where q2

T ij is the Lorentz-invariant squared transversal dis-

tance (eq.2.48) and σ(
√
s) is the cross section depending on the available invariant mass

√
s.

In recent years, several refinement and improvements were made over original QMD

model. The new versions were named as MQMD[35], HQMD[18], PQMD[25], BQMD[18],

Urqmd[32], IQMD[18], G-Matrix QMD[36], Glauber plus QMD(DQMD)[37] etc. We will

discuss IQMD in the coming section. Apart from QMD and its modified versions, there are

other dynamical models, which can also used for the study of heavy-ion collisions at interme-

diate energies. The crucial quantum features like the antisymmetrisation were implemented

in approaches like FMD [21] and AMD [22], which is further modified by including the

stochastic incorporation of the diffusion and the deformation of wave packet [38]. Recently

the improved version of AMD [39] was used to show the cluster-shell competition of these

nuclei. However the use of AMD and FMD models are restricted, due to serious numerical

problems, to light systems only. To study the fermionic nature of N-body system, new

microscopic mode, dubbed as Constrained molecular dynamics (CoMD), was also proposed

in Ref.[40]. To study hadrons and quarks, new formalism quark molecular dynamics (qMD)

was put forward by Hoffmann et al.[41].

In between the two approaches described above, namely, the statistical and dynamical,
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there is a possibility for statistical-dynamical phenomenology, known as ”Hybrid Models”.

In these models, the internal dynamics is described by dynamical models and the later stage

by a statistical model. The heavy-ion phase space exploration (HIPSE) account for hybrid

models[42].

2.3 Various models used to study the heavy-ion colli-

sions including isospin effects

2.3.1 Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU)
Model

In IBUU model[16], just like, BUU model[4], the Boltzmann-Uehling-Uhlenbeck equation

describes the time evolution of the single particle phase-space distribution function and

reads as follow:

∂f1

∂t
+ v · ∇rf1 −∇rU · ∇pf1 =

∫ d3ṕ1d
3p2d

3ṕ2

(2π)9
σ12v12(2π)3δ3(p1 + p2 − ṕ1 − ṕ2)

×
[

f́1f́2(1 − f1)(1 − f2) − f1f2(1 − f́1)(1 − f́2)
]

.

(2.44)

Here σ12 is the differential cross-section for a certain change of momentum (p1, p2) → (ṕ1, ṕ2)

and v12 is the relative velocity for the colliding nucleons.

The isospin dependence comes into the model by both the elementary nucleon-nucleon

cross-section σ12 and the nuclear mean field U . In this model, experimental nucleon-nucleon

cross-sections with the explicit isospin dependence are taken into account [43]. The isospin

dependence is due to the fact that the cross-section of neutron-proton is about tree times

that of the neutron-neutron or proton-proton collisions. In this model, U is the mean field,

which will be a function of the local density. It can be parametrized as an arbitrary function

of density, making possible to model a variety of equations of state. Typically, it can be

written as, the sum of three terms:

U = VCoul + Vn + VAsy, (2.45)

where VCoul, Vn and VAsy represents the Coulomb, iso-scaler nucleon potential and the

symmetry energy, respectively. The nuclear mean field U including the isospin symmetry
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term is parametrized as:

U(ρ, τz) = α

(

ρ

ρ0

)

+ β

(

ρ

ρ0

)γ

+ (1 − ρz)VCoul + C
ρn − ρp

ρ0
τz . (2.46)

Here ρ0 is the normal nuclear matter density, ρ, ρn and ρp are the nucleons, neutron and

proton densities, respectively. τz equals to +1 or -1 for neutrons or protons, respectively.

The VCoul as discussed above is the Coulomb potential. Other forms of the parametrization

for mean fields which corresponds to probably more complete form of Skyrme forces are also

possible [44]. The Skyrme term comes from averaging over the constituent two-body forces

with Heisenberg component proportional to (τi, τj) [45]. Its strength C can be deduced

from experiments (e.g. nuclear symmetry energies, optical potentials for nucleon scatter-

ings, excitation of analog states in (p,n) reactions). However, the strength deduced vary

significantly from reaction to reaction and also depends on the energy of nucleon[45]

This model provides an accurate description of the time dependence of the one-body dis-

tribution function. Accurate solution of the BUU equation average away fluctuations in

the density that might lead to the formation of fragments in an individual collision. This

is usually achieved by solving the BUU equation with a large number of test particles per

nucleon Ntest. The density fluctuations that lead to the fragment production are suppressed

in the BUU equation, so the calculation of fragment yield directly via IBUU model is not

feasible. Therefore, alternate model such as, Stochastic Mean Field (SMF) model [17] and

Isospin Quantum Molecular Dynamics (IQMD) model [18] has been developed to address

the density fluctuations.

2.3.2 Stochastic Mean Field (SMF)Model

SMF[17], like, IBUU[16] describes the time evolution of the collision using a self-consistent

mean field. In this model, fluctuations and asymmetry effects [46] are included. A density-

dependent symmetry term is also used in the ground state construction of the initial con-

dition i.e. isospin effects on the nucleon-nucleon cross-section and Pauli-blocking are con-

sistently evaluated. The nucleon-nucleon mean field including the isospin asymmetry is

parametrized as:

U(ρ) = α

(

ρ

ρ0

)

+ β

(

ρ

ρ0

)γ

+ C(ρ)

(

ρn − ρp

ρ0

)

τz, (2.47)
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Here, α, β and γ have their usual meanings as in QMD model. In this model, two different

choices for the density dependence of symmetry term is used:

C = 32 MeV ; ASY-STIFF choice,

C/ρ0 = a + bρ with a = 481.7 MeV fm3, b = − 1638.2 MeV fm6: ASY-SOFT choice.

These two parameterization give close values for the symmetry at normal nuclear matter

density ρ0 = 0.17 fm−3. In the lower density region, they are quite similar, while, at

higher densities, the difference is observed. The asy-soft symmetry energy shows a decrease

and it changes sign at density ρ ≈ 2ρ0. Moreover, the difference between the asy-stiff and

asy-soft increases for large asymmetries [17].

For the reaction mechanisms like fragmentation and deep inelastic scattering, it is quite

important to have a dynamical approach which includes fluctuations in a consistent way.

In this SMF approach, fluctuations are introduced in two different approaches just start-

ing from a local equilibrium assumption in a phase space cell[46]. In the first approach, a

fluctuation term is added to the standard Boltzmann-Nordeim-Vlasov (BNV) equation to

account for the stochastic force, the strength of which is adjusted to reproduce the growth

of the most important unstable mode in the system. In practical term, the stochastic force

is a type of stochastic noise. The second approach uses this fact by approximating it with

numerical noise caused by solving BUU with a small number of test particles (i.e. Ntest =

50 ) per nucleon.

Keeping in mind the requirement of intermediate energy region, one would like to have

method where correlations and fluctuations among nucleon can be preserved. SMF, like,

IBUU model is stable to explain one-body observables like collective flow etc. indicating

correlation is not preserved among the nucleons. Moreover, SMF model have the advantage

to account for the fluctuations among the nucleons. In order to include both correlations

and fluctuations with isospin effects, one must have some other dynamical model. This

dynamical model, which explicitly incorporates the N-body correlations as well as nuclear

mater equations of state and important quantum features(like Pauli Blocking, Stochastic

scattering, particle production and isospin effects) is dubbed as Isospin-dependent quantum

molecular dynamics (IQMD) model[18]. This model is developed by Ch. Hartnack and

co-workers in 1998. In the following section, we will explained this model in detail.
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2.3.3 Isospin-dependent Quantum Molecular Dynamics (IQMD)

Model

The most widely used microscopic models for the description of heavy-ion collisions were

based on the Vlasov- Uehling-Uhlenbeck (VUU) theory [3, 20], which explicitly treats non-

equilibrium and (stochastic) quantum effects in the framework of one particle quantities, as

well as nuclear potential (nuclear equation of state). However, certain fluctuations and cor-

relations, such as the formation of fragments in heavy-ion collisions, can not be studied with

a transport model based on a single particles distribution function. This was one of the mo-

tivations for the development of the Quantum Molecular Dynamics (QMD) model[13, 14].

Isospin is treated explicitly (in the so called QMD version), a symmetry potential (to

achieve corrected distributions of protons and neutrons in the nucleus) and explicit Coulomb

forces between the ZP and ZT protons are included. The isospin-dependent quantum molec-

ular dynamics (IQMD)[18] model treats different charge states of nucleons, deltas and pions

explicitly[47], as inherited from the VUU model [3, 20]. The IQMD model has been used

successfully for the analysis of large number of observables from low to relativistic energies

[18, 47, 48]. The isospin degree of freedom enters into the calculations via both cross-

sections and mean field[3, 49]. This model also includes three important steps: First, one

has to generate the nuclei. This procedure is called as initialization. Then propagate under

the influence of surrounding mean field. This is termed as propagation. Finally, nucleons

are bound to collide if they come too close to each other. This part is dubbed as colli-

sions. The elastic and inelastic cross-sections for proton-proton, neutron-neutron as well as

proton-neutron are supposed to be affected in the presence of isospin. The details for these

cross-sections will also be discussed in the last step. In the following, we shall discuss all of

these parts in detail.

Initialization

In this model, baryons are represented by Gaussian-shaped density distributions

fi(r, p, t) =
1

π2h̄2 e
−(r−ri(t))2

1

2L e−(p−pi(t))2
2L

h̄2 . (2.48)
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Here Gaussian width L is regarded as a description of the interaction range of particle. The

system dependence of L has been introduced in IQMD in order to obtain maximum stability

of the nucleonic density profiles. For the heavier system (e.g. Au + Au), its value is chosen

8.66 fm2, while for lighter one (i.e. Ca + Ca), the value is 4.33 fm2.

Nucleons are initialized in a sphere with radius R = 1.12A1/3 fm, in accordance with the

liquid drop model. Each nucleon occupies a volume of h3, so that phase space is uniformly

filled. The initial momenta are randomly chosen between 0 and Fermi momentum(pF ),

without any further local constraints.. The Fermi momentum pF depends on the ground

state density. For ρ0 = 0.17 fm−3, it has a value of about 268 MeV/c. This possibility,

however, gives a reduced binding energy per nucleon as compared to Weizsacker mass for-

mula. Hence the initialized nuclei are less stable. On the other hand, this situation makes

available the full Fermi-energy calculated from the Skyrme ansatz. The full Fermi pressure

yields a stronger (as compared to IBUU and SMF) stability of the density profile against

vibration modes. Moreover, the IQMD model performs a Lorentz contraction of the nucleus

coordinate distribution, which becomes important at the higher energies.

Propagation

The successfully initialized nuclei are then boosted towards each other with proper center

of mass velocity using relativistic kinematics. The nucleons of target and projectile inter-

act via two and three-body Skyrme forces, a Yukawa potential and momentum dependent

interactions. The isospin degree of freedom is treated explicitly by employing a symmetry

potential and explicit Coulomb forces between protons of colliding target and projectile.

This helps in achieving correct distribution of protons and neutrons within nucleus.

The hadrons propagate using Hamilton equations of motion:

dri

dt
=

d〈 H 〉
dpi

;
dpi

dt
= − d〈 H 〉

dri
, (2.49)

with

〈 H 〉 = 〈 T 〉 + 〈 V 〉

=
∑

i

p2
i

2mi
+
∑

i

∑

j>i

∫

fi(r, p, t)V
ij (~r′, r)

×fj(r
′, p′, t)drdr′dpdp′. (2.50)
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The baryon-baryon potential V ij , in the above relation, reads as:

V ij(r′ − r) = V ij
Skyrme + V ij

Y ukawa + V ij
Coul + V ij

mdi + V ij
sym

=

(

t1δ(r
′ − r) + t2δ(r

′ − r)ργ−1

(

r′ + r

2

))

+ t3
exp(|r′ − r|/µ)

(|r′ − r|/µ)
+

ZiZje
2

|r′ − r|
+t4 ln2[t5(pi

′ − p)2 + 1]δ(r′ − r)

+t6
1

̺0
T i

3T
j
3 δ(ri

′ − rj). (2.51)

Here Zi and Zj denote the charges of ith and jth baryon, and T i
3, T

j
3 are their respective

T3 components (i.e. 1/2 for protons and -1/2 for neutrons). Meson potential consists of

Coulomb interaction only. The parameters µ and t1, ....., t6 are adjusted to the real part of

the nucleonic optical potential. Other baryonic potentials like V ij
Skyrme and Vmdi are isospin-

independent. For the density dependence of nucleon optical potential, standard Skyrme-type

parameterization is employed as displayed in eqn.2.33.

Two different equation of states using this ansatz have been implemented (as discussed in

QMD also): A hard equation of state with a compressibility of 380 MeV and a soft equation

of state with a compressibility of 200 MeV[13]. The Yukawa potential in IQMD V ij
Y uk is very

short ranged (µ = 0.4 fm in contrast to µ = 1.5 fm in QMD) and weak. The modification of

the α term of the static potential is done in an particle independent way. This corresponds

to the interpretation that an additional term in the Skyrme ansatz which is proportional to

(∇ρ)2 can be expended in first order to a term linear in density (which reduces α effectively)

plus Yukawa potentials. Additional attractive Yukawa forces hence modify the EOS (and

therefore the α term has to be modified to obtain the same EOS). Yukawa forces stabilize

the nuclei because of the increase of the interaction range as compared to a δ-like Skyrme

potentials. This results in the reduction of fluctuations.

Collisions

The binary nucleon-nucleon collisions are included by employing the collision term of well

known VUU-BUU equation [3, 20]. The binary collisions are done stochastically, in a similar

way as are done in all CASCADE models[10]. During the propagation, two nucleons are
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supposed to suffer a binary collision if the distance between their centroids

|ri − rj | ≤
√

σtot

π
, σtot = σ(

√
s, type), (2.52)

”type” denotes the ingoing collision partners (N-N, N-∆, N-π,..). In addition, Pauli blocking

(of the final state) of baryons is taken into account by checking the phase space densities

in the final states. The final phase space fractions P1 and P2 which are already occupied

by other nucleons are determined for each of the scattering baryons. The collision is then

blocked with probability

Pblock = 1 − (1 − P1)(1 − P2). (2.53)

Furthermore, parametrized free pn and pp cross-sections are used instead of an averaged

nucleon-nucleon cross-sections. The respective strength of different cross-sections in shown

in Fig.2.3. The total cross-section is the sum of the elastic and all inelastic cross-sections.

Figure 2.3: The elastic and inelastic cross-sections for proton-proton (pp)and proton-neutron
(nn) used in IQMD. The neutron-neutron (nn) cross-section is assumed to be equal to pp.
The total cross-section is equal to sum of elastic and inelastic cross-section. This figure is
taken from Ref.[18].

σtot = σel + σinel = σel + Σchannelsσi (2.54)
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The following inelastic reactions might influence the dynamics of the collision and are ex-

plicitly taken into account:

N N → ∆ N (hard− delta production) (a),

∆ → N π (delta decay) (b),

∆ N → N N (delta absorption) (c),

N π → ∆ (soft− delta production) (d).

(2.55)

Elastic π − π, π − N , π − ∆, ∆ − ∆, ∆ − N scattering is not taken into account.

Experimental cross-sections are used for processes (a) and (d)[49], as well as for the elastic

N-N collisions. Inaccessible reactions like ∆N→ NN are calculated from their reverse

reactions(here NN → ∆N) using modified detailed balance formula[50]. The conventional

detailed balance formula is only correct for particles with infinite lifetimes (zero width).

The elastic nucleon-nucleon scattering angular distribution is taken to be [51]

dσel

dΩ
≈ exp [A(s)t] , (2.56)

where t is −q2, the transverse momentum transfer and

A(s) = 6
[3.65 (

√
s− 1.8766)]

6

1 + [3.65 (
√
s− 1.8766)]

6 . (2.57)

√
s is the c.m energy in GeV and A is given in (GeV/c)−2.

The isospin degree of freedom play an important role especially for the particle production.

The employed inelastic channels NN → NN∗, N∆ and ∆∆ are treated in an analogous

fashion. The parameterization is suggested by Huber and Aichelin[52] is used: fitted differ-

ential cross-sections are extracted from one-boson- exchange (OBE) calculations:

dσin

dΩ
≈ a(s)exp [b(s)cosθ] . (2.58)

The a(s) and b(s) are functions of
√
s and vary in their definition for different intervals of

√
s (see table 2.2). θ is the polar angle.

These isospin effects in the IQMD are found to vary the results, one obtained with QMD

model. In the following, the importance of IQMD over QMD model is discussed.
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Table 2.2: a(s) and b(s) as a function of the c.m. energy

x =
√
s (GeV ) a (fm) b

2.104 - 2.12 294.6(x− 2.014)2.578 19.71(x− 2.014)1.551

2.12 - 2.43 0.01224
(x−2.225)2 + 0.004112

19.71(x− 2.014)1.551

2.43 - 4.50
(

2.343
x

)43.17
33.14 arctan(0.5404(x− 2.146)0.9784)

Importance of IQMD over QMD

The importance of explicit isospin treatment can be seen in Fig.2.4[53]: The dotted

line depicts the results of a QMD calculations without explicit isospin treatment: Average

charges are distributed over all nucleons and the inelastic NN → N∆ channel is also isospin

averaged. Therefore, the neutron to proton ratio must remain constant at 1.5 for Au + Au

independent of transverse momentum and beam energy. The respective IQMD calculations,

however, yield a totally different results: The neutron to proton ratio decreases with in-

creasing transverse momentum due to Coulomb interactions. Apart from the pt dependence

also a strong dependence on the incident energy is observed: Due to the explicit inclusion

of isospin into the inelastic channels with energy dependent branching ratios, the n/p ratio

decreases with increasing beam energy.

The above mentioned models are ”primary models” that are used to generate the phase-

space of nucleons. As mentioned in chapter 1, we need to have ”secondary models” to

clusterize the nucleons into fragments. These clusterization methods are discussed briefly in

the following section, while, detail is given in the respective chapter, where they are used.

2.4 Secondary models: methods of clusterization

The Minimum Spanning Tree (MST) method is the most extensively used to clusterize

the nucleons[13, 54, 55]. In MST method, two nucleons share the same fragment if their

centroids are closer than a certain distance. The method is discussed in detail in chapter 3.

An improvement over the MST algorithm, is to put additional cut in momentum space [56].

This method is dubbed as MSTM. It will help to get rid of fragments that although close in

spatial space are far in momentum space. As mentioned in the above clusterization methods,
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Figure 2.4: Ratio of free neutron to free protons versus transverse momentum pt at mid-
rapidity for Au + Au collisions between 3 and 9 fm impact parameter at 400 and 1000
MeV/nucleon incident beam energy calculated with a hard equation of state (without mo-
mentum dependent interactions). This figure is taken from Ref.[53]

it is fairly straightforward to determine the cluster structure of a system, i.e. the particle

number and velocity of each product. In practice, however, the additional running time

required to reach this stage limits the practical utility of the model. It has been, therefore,

of interest to devise methods for recognizing the clusters as early as possible. It is worth

mentioning that it may also help to elucidate the mechanism of fragment production. A

novel algorithm, namely, Simulated Annealing Clusterization Algorithm (SACA), developed

by Puri et al. [57] was based on the fact that at any given moment of the reaction, the

configuration corresponding to largest binding energy is realized in nature. The detailed

description of MSTM and SACA is given in chapter 4.

In summary, we discussed the details of various models in this chapter. In the following

chapters, we shall present the detailed analysis of multifragmentation in the presence of

momentum dependent interactions using these secondary analysis methods in the presence

of QMD model. Apart from this, effect of symmetry energy, within IQMD model, on the

elliptical flow, fragmentation process as well as nuclear stopping will be discussed. Our
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results are also compared with experimental data of mutifragmentation and flow, whenever

needed.
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Chapter 3

Importance of the momentum
dependent interactions and system
size effects in multifragmentation

3.1 Introduction

The last gem in the field of heavy-ion collisions, namely, multifragmentation has always

attracted theoreticians as well as experimentalists [1-5]. Primarily due to the several hidden

phenomena that need deeper investigations and secondary due to its connection with nu-

clear equation of state - a question which always has captured a central place in the research

of nuclear physics. The knowledge of the nuclear compressibility is not only relevant for

the nuclear physics, it is also vital for other branches such as astrophysics. One should,

however, note that the compressibility depends not only on the density but also the entire

momentum plane. In other words, equation of state apart from the population of nucleons

also depends upon their relative velocities. This can also been seen from the optical poten-

tial where strong momentum dependence was reported in the literature[6].

It is argued by many authors that momentum dependent nature of equation of state

can have a significant effect in those situations where nuclear matter is mildly and weakly

excited. If matter is highly compressed, the nucleon-nucleon correlations are already bro-

ken due to violent nucleon-nucleon collisions. However, if matter is either weakly or mildly

excited, the momentum dependent interactions (MDI) can have sizable effects. The momen-

tum dependence of the nuclear equation of state has been reported to affect the collective

flow and particle production drastically [1, 6-16]. In Ref. [6], pion yield was found to sup-

pressed by 30% once momentum dependent interactions were included in the evolution of
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reaction. Moreover, the MDI’s also suppressed the nucleon-nucleon collisions by the same

amount. Similarly, if one goes from soft to hard equation of state, the decrease in pion yield

is ≈ 10 %. Interestingly, a soft equation of state with momentum dependent interactions

(SMD) yields the same transverse momentum as static hard equation of state[1, 6-8]. It

was also shown in Ref.[17] that SMD explains the data better than the hard equation of

state. Later on, in Ref. [13-16], the importance of MDI in the determination of symmetry

potential and balance energy is discussed. Some initial investigations also point toward its

important role in multifragmentation [9, 10, 18, 19]. These investigations reveal: (i) frag-

ments production is strongly influenced by the MDI’s at peripheral geometries (ii) universal

dependence of the effect of MDI on the asymmetry of the reaction and (iii) momentum

fluctuations are useful in determining the symmetry energy in neutron/proton rich systems.

From the above discussion, it is clear that the momentum dependence of the nuclear mean

field plays a major role in determining the nuclear dynamics and is an important feature for

the fundamental understanding of nuclear matter properties over a wide range of densities

and temperatures

One has to keep in mind that the response of MDI also depends on the system size. A

lot of efforts are available in the literature to pin down the importance of system size ef-

fects without momentum dependent interactions. These includes the temperature as well

as density, flow of nucleons/fragments, disappearance of nuclear flow, particle production

and multifragmentation etc. The study of the mass dependence in the evolution of the

density and temperature reveals that maximum temperature is insensitive towards the mass

of the system. However, the maximum density scales with the size of the interacting system

[11, 20-23]. The hot and dense matter formed in heavy ion collision lasts longer in heavier

colliding nuclei compared to lighter colliding nuclei [20, 21]. Interestingly, equation of state

also depends on the size of the system. Due to less compression in lighter colliding nuclei,

the different equations of state do not yield different results. On the other hand, a clear

difference can be seen with heavier colliding nuclei[11, 20].

Hartnack et al. [24] studied the system size dependence of kaon production, indicating,

the probability of kaon production can be parameterized in term of the power law. On

the other hand, the kaon production probability per participant was independent of the
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projectile-target combination[25]. In a experiment[25], the KAOS group reported the K+

production per nucleon which increases with the size of the system. Contrary, the pion pro-

duction per nucleon decreases in the same measurement. The unique observation was that

the multiplicity of the high energy pion was nearly independent of the size of the interacting

system and beam energy [25]. In an other experimental analysis, the entropy of the system

was found to depend weakly on the size of the system[26]. The system mass dependence of

collective flow has been investigated extensively during last few years[11, 22, 23, 27]. The

disappearance of collective flow at a certain energy, known as balance energy is found to

depend strongly on the size of the system. It is now clear that the balance energy scales as

A
−1/3
tot . Recently, the system size effects on the collective flow in the presence of momentum

dependent interactions is studied by Sood and Puri[11]. They observed that momentum

dependent interactions push energies of the vanishing flow to significant lower level for

C12 + C12 system, whereas for heavier systems, the trend is just opposite.

A very few attempts exist in the literature which deals with the systematic study of the

mass dependence of the multifragmentation [28-32]. Most of the reported studies are with-

out momentum dependent interactions and involve the asymmetric colliding nuclei at a fixed

velocity[30, 31]. The recent reports from the FOPI experiment [28] depict the dependence

of the multiplicity of heavy fragments on the size of the interacting system. This was car-

ried out for symmetric nuclei like Ni58 + Ni58, Ru96 + Ru96, Xe129 + Cs133I127 and

Au197 + Au197. The above study was based on the participant-spectator model where yields

are analyzed separately for the participant and spectator fragments [28]. The universality in

the production of the spectator fragments was achieved in the above study which confirms

the results of ALADIN experiments[31]. However, a strong mass dependence was seen for

the participant fragments[28]. The systematic theoretical attempt was made to study the

role of the masses of colliding nuclei in multifragmentation [12, 32], but, unfortunately, no

system mass dependence study for the multifragmentation process is done in the presence

of momentum dependent interactions[33].
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3.2 The Momentum Dependent Interactions (MDI)

In chapter 2, we have shown that the static interactions VSkyrme reduces to simple den-

sity dependent parts (∝ ρ)[eqn. 2.33. The parameter γ in eqn. 2.33 leads to different

incompressibility which represent different equations of state. It is widely accepted that the

static equation of state, which depends on the density only, can not describe the heavy-ion

reaction adequately. The contribution in the reaction is not only due to density, but due

to momentum also. In the framework of G-matrix, the momentum dependence comes in

a natural way [34]. However, the numerical utility of the G-matrix is limited due to its

time consuming mechanism. In this case, one uses the parametrized momentum dependent

potential which takes care of the momentum dependence.

The momentum dependent interactions can be obtained by parameterizing the momen-

tum dependent part of the optical potential which reads as [6]

V ij
MDI = t4 ln2[t5(pi

′ − p)2 + 1]δ(r′ − r). (3.1)

For the momentum dependent interactions, which may optionally be used in QMD/IQMD,

is fitted to experimental data [35] on the real part of the nucleon optical potential[1, 6],

which yields:

Umdi = δ · ln2
(

ǫ · (∆p)2 + 1
)

·
(

ρ

ρ0

)

(3.2)

These momentum dependent interactions, interestingly, give rise to two new equations of

state, namely, hard momentum dependent (HMD) and soft momentum dependent (SMD),

having same compressibility as static hard and soft equations of state (discussed in table

2.1). The equation of state (EOS) in its standard Skyrme-type parameterization including

momentum dependence then reads:

U = α

(

ρ

ρ0

)

+ β

(

ρ

ρ0

)γ

+ δ · ln2
(

ǫ · (∆~p)2 + 1
)

·
(

ρ

ρ0

)

(3.3)

The parameters t1....t5 are uniquely related to the corresponding values of α, β, γ, δ and ǫ.

The standard values of these parameters can be found in Ref. [1].

The momentum dependent interactions without isospin dependence in QMD/IQMD is

shown by eqn. 3.1 which comes from the optical potential. Liu et al. [36] considered

an isospin degree of freedom in MDI to obtain an isospin momentum dependent interac-
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Figure 3.1: Transverse momentum caused by momentum dependent forces. (a) The reaction
in the beam-impact parameter plane. (b) Graphical view of the potential produced in the
reaction. We see in the overlap region strong repulsive and outside it an attractive potential.
(c) The density dependence of the compression energy per nucleon. The hard, soft, HMD
and SMD interactions are shown by solid, dash-dot-dash, dashed double dotted and dashed
lines, respectively. The figure is taken from the Ref. [1].

tions (IMDI). In this case, an isospin degree of freedom is inserted into MDI to obtain IMDI

which includes a neutron’s IMDI

V IMDI
n (ρ, kn, p) = t4 ln2[t5(pn

′ − pn)2 + 1]Cnn
ρn

ρ0

+t4 ln2[t5(pn − pp)
2 + 1]Cnp

ρp

ρ0
. (3.4)

and the proton’s one

V IMDI
p (ρ, kp, n) = t4 ln2[t5(pp

′ − pp)
2 + 1]Cpp

ρp

ρ0

+t4 ln2[t5(pp − pn)
2 + 1]Cpn

ρn

ρ0

. (3.5)

In the above, pn
′ indicates the momentum of other neutrons besides pn of neutron n and pp

′

shows the momentum of other protons besides pp of proton p and ρ = ρn + ρp. Finally,

75



an isospin momentum dependent interaction is written as:

V IMDI
τ (ρ, kτ , τ

′) = t4 ln2[t5(pτ
′ − pτ )

2 + 1]Cττ
ρτ

ρ0

t4 ln2[t5(pτ − p′τ )
2 + 1]Cττ ′

ρρ′

ρ0
, (3.6)

where ρ = ρτ + ρτ ′. Here Cnn = Cpp = Cττ and Cnp = Cpn = Cττ ′. For the detailed

knoweldge of the parameters, reader is suggested to the Ref.[36].

As discussed earlier, the momentum dependence of mean field potential has a crucial role

to play in the description of heavy-ion collisions[1]. The individual momentum of the par-

ticle has a negligible role until the projectile and target nuclei overlap with each other.

As soon as the projectile and target begin to overlap (see Fig.3.1[a]), the interaction takes

place between the nucleons of projectile and target, which has a large relative momentum.

Due to such a large relative momentum, the projectile nucleons feel a strong repulsion due

to target nucleons in the overlap region and vice versa (see Fig.3.1[b]), while the nucleons

in the spectator zone are either from the target or projectile, and hence potential is still

attractive in that region(see Fig.3.1[b]). This deflects the nucleons in transverse direction

during early phase of the reaction, resulting in the transfer of the momentum in the radial

direction. This can result in decrease in density as well as number of collisions. The com-

pressional energy per particle for soft, SMD, hard and HMD as a function of the nucleonic

density is plotted in Fig. 3.1(c). We see that the no difference is observed in the soft,

hard, SMD and HMD equations of state at normal nuclear matter density. On the other

hand, the difference between different equations of state goes on increasing with increase in

density above normal nuclear matter density. This motivated us to perform the study with

momentum dependent interactions in intermediate energy heavy-ion collisions. In view of

the above facts, it is challenging to investigate the role of momentum dependent interactions

with respect to multifragmentation & see how system size affects the outcome. Our present

aim, therefore, is three fold at least:

(i) to understand the role of momentum dependent interactions in multifragmentation,

(ii) to study the system size effects in the presence of momentum dependent interactions

and (iii) to find a scaling to these system size effects.
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3.3 Method of analysis

3.3.1 Minimum Spanning Tree (MST) Algorithm

The MST method is the most extensively used to clusterize the nucleons[1, 12, 33, 37].

In MST method, two nucleons share the same fragment if their centroids are closer than a

distance dmin,

|~ri − ~rj| ≤ dmin (3.7)

where ~ri and ~rj are the spatial positions of both nucleons. The value of dmin can vary between

2-4 fm. The fragments production with dmin = 4fm is shown in Fig.3.2. As reported,

it has small effect on multifragmentation [37]. However, this method cannot address the

question of time scale as it will give a big fragment during the early stage of the reaction

where the density is quite high and the interactions between the nucleons are still active. It

is worth mentioning that this method can only be used to analyze asymptotic configurations

in which the fragmenting system can be viewed as a very dilute mixture of free particles

and almost equilibrated fragments. To study the time of fragment formation, one needs to

device a method which should be able to detect the overlapping fragments.

Figure 3.2: This figure is representing the fragments production with MST method where
the distance between the nucleons is ≤ dmin, here, dmin = 4fm.
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3.4 Results and discussion

Here we simulate 100 events involving the symmetric reactions of 20Ca
40 + 20Ca

40,

28Ni
58 + 28Ni

58, 41Nb
93 + 41Nb

93, 54Xe
131 + 54Xe131, 68Er

167 + 68Er
167, 79Au

197 + 79Au
197

and 92U
238 + 92U

238 at incident energies between 50 and 1000 MeV/nucleon using different

collision geometries. For the present analysis, soft as well as soft momentum dependent

(SMD) equation of state with compressibility K = 200 MeV is used. The entire calcu-

lation is performed in the presence of a standard energy dependent nucleon-nucleon cross

section due to Cugnon[1]. By using the symmetric (colliding) nuclei, system size effects can

be analyzed without varying the asymmetry (and excitation energy) of the system. It is

worth mentioning that the experimental studies by the MSU mini ball and ALADIN [2, 30]

groups, varied the asymmetry of the reaction whereas FOPI experiments [28] are performed

for the symmetric colliding nuclei only. In the following, we first discuss the phase space

of nucleons followed by the time evolution of different reactions and then shall address the

question of momentum dependent interactions and system size effects.

3.4.1 Phase space of nucleons

We display in Figs.3.3 and 3.4, the phase space of nucleons for X-Z and Px − Pz plane

for the reaction of 79Au
197 + 79Au

197 at semi-peripheral geometry. The panels from top to

bottom are representing the position of nucleons of projectile and target at different times,

while right and left panels are with and without momentum dependent interactions, respec-

tively. The phase space remain unaffected by the momentum dependent interactions until

the projectile and target overlap with each other. During and after the overlapping (above

t = 30fm/c), more repulsion is observed in the projectile as well as target nucleons in x-z

as well as Px − Pz plane. Moreover, more radial expansion of the matter is observed in the

presence of momentum dependent interactions in the reaction plane. This is due to the fact

that more is the repulsion, more is the squeeze-out of the particles and more is the transfer

of the momentum in the radial direction. This picture is clear from the Fig.3.4, where the

phase space of the Px − Pz plane is displayed. This will increase the mean free path, which

will further lead to the decrease in the density as well as collisions in the presence of mo-
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Figure 3.3: Phase space distribution of the projectile and target nucleons without (left) and
with momentum dependent interactions (right) in X-Z plane. The reaction under study is

79Au
197 + 79Au

197 at incident energy E = 400 MeV/nucleon for semi-peripheral geometry.
The panels from top to bottom are representing the positions at different times.
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Figure 3.4: Same as in Fig.3.3, but for the Px − Pz Plane.
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mentum dependent interactions. To check this, in the following, time evolution of density

and number of collisions is displayed.

3.4.2 Time evolution of the density and nucleon-nucleon collisions

The density of the environment surrounding the nucleons of a fragment plays crucial role

in deciding the physical process behind their formation. In Fig.3.5, we display the average

density < ρ/ρ0 > reached in a typical reaction as a function of the time. The average

nucleonic density < ρ/ρ0 > is calculated as [1]

< ρ/ρ0 > = 〈 1

AT + AP

AT + AP
∑

i=1

AT + AP
∑

j=1

1

(2πL)3/2

·exp[−(~ri − ~rj)
2/2L]〉, (3.8)

with ~ri and ~rj being the position coordinates of ith and jth nucleons, respectively. We

here display the average density at incident energies of 50 and 400 MeV/nucleon. In addi-

tion, two colliding geometries corresponding to b̂ = 0 and b̂ = 0.6 are also taken. The

central as well as peripheral collisions (at low incident energy) preserves most of the initial

correlations and hence a small change in the density profile occurs. This trend turns to

a sharp decrease at higher incident energies. This is due to the fact that higher incident

energies destroy most of the initial correlations among nucleons, leading to highly unstable

compressed zone, which does not sustain for a longer time and as a result fast emission of

nucleons occur. It is also observed experimentally that a little change in fragmentation yield

takes place beyond 400 MeV/nucleon[28, 29, 31]. From the Figure, it is also observed that

heavier colliding nuclei are more compressed as compared to lighter one. This compression

stage also sustains for a longer time in heavier nuclei as compared to lighter one. In other

words, the heaviest fragment Amax will remain for a longer time. Moreover, the freeze-out

density is more for the heavier systems indicating the existence of heavier fragments at later

times for low energies, while, the universality is observed in freeze out density after 400

MeV/nucleon. This is supportive in nature with experimental findings [28, 29, 31]. The

major aspect of the study, momentum dependent interactions, are found to affect the den-

sity profile drastically. The density is found to decrease by 35% (at low incident energies

say E = 50 MeV/nucloen) and 25% (at higher incident energies say E = 400 MeV/nucleon)
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Figure 3.5: Average density 〈ρ/ρ0〉 as a function of the time. The top panel is at 50
MeV/nucleon, whereas bottom panel represents the reaction at 400 MeV/nucleon. The left
and right hand sides represent, respectively, the central collision b̂ = 0 and peripheral
collision b̂ = 0.6. All reactions represent symmetric colliding nuclei X + X, where X
represents the reacting elements.
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in the presence of MDI, when compared with the findings in Ref.[12]. To know this decrease

in density profile, we must have exact knowledge of the collision profile in the presence of

the MDI’s.

In Fig.3.6, the time evolution of the allowed collisions is displayed under the same con-

ditions as density profile was displayed in Fig.3.5. The collision profile is in one to one

ratio with the density profile. Generally, collision rate depends on the participant zone and

incident energy. At semi-peripheral geometries, the participant zone decreases and hence

decrease is observed in the number of collisions at low as well as high incident energies

compared to central geometries. This also supports the findings in the Fig.3.5, that den-

sity is less at semi-peripheral geometries as compared to central one. On the other hand,

with increase in incident energy, collision rate is found to increase with the probability of

break-up of initial correlations among the nucleons. For example, the maximum collision

rate for central U + U system at 400 MeV/nucleon is about 33, whereas it is 5.1 at 50

MeV/nucleon. Moreover, the momentum dependent interactions are found to suppress the

number of collisions at all incident energies as well as at all impact parameters. This is due

to the transfer of the momentum of the particles in the radial direction in the presence of

momentum dependent interactions, which makes the system dilute and hence less number

of collisions are observed. This decrease in number of collisions in the presence of MDI,

supports our finding of decrease in density in Fig.3.5. These findings motivated us to see

the effect of MDI on the fragments production.

3.4.3 Time evolution of various fragments and momentum depen-
dent interactions

It is clear from the above results that MDI’s are affecting the matter at semi-peripheral

geometries as compared to the central one. This is due to the transfer of energy from the

participant zone to spectator zone in the presence of MDI, which was not possible in the

presence of static equation of state[12]. In order to see the effect of MDI’s on the fragments

production, in Fig. 3.7, we have displayed the time evolution of light charged particles

(LCP’s) [2 ≤ A ≤ 4] and medium mass fragments (MMF’s) [5 ≤ A ≤ 9] with and

without momentum dependent interactions for different systems at semi-peripheral geom-
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etry and at incident energies 50 and 400 MeV/nucleon. From the figure it is clear that

enhanced production of LCP’s and MMF’s takes place in the presence of momentum de-

pendent interactions as compared to static one. This is due to the repulsive nature of the

MDI’s, which helps in breaking the heavier fragments into LCP’s and MMF’s. The universal

behavior of increase in multiplicity of fragments with the size of the system is observed in

the presence of static as well as momentum dependent interactions. Moreover, the effect

of MDI is more for the MMF’s as compared to LCP’s at semi-peripheral geometries. This

is clear from the relative percentage at t = 200 fm/c. The relative percentage at E = 50

MeV/nucleon for LCP’s and MMF’s is 83% and 105%, respectively, while it is 95% and

400% at E = 400 MeV/nucleon. This motivated us to study the time evolution of heaviest

fragment (Amax) and MMF’s at central as well as semi-peripheral geometries.

In Fig.3.8, we display the heaviest fragment Amax survived in a reaction. The medium

mass fragments (MMF’s) are displayed in Fig.3.9. The top panel in both figures is for 50

MeV/nucleon, whereas bottom panel is at 400 MeV/nucleon. The time evolution of the

fragments reveals many interesting points: The heaviest fragment Amax survived in the re-

action of heavier systems struggles for a longer time. The soft momentum dependent (SMD)

equation of state destroy most of the nucleon-nucleon correlations, therefore, Amax obtained

with SMD EOS is lighter than corresponding soft equation of state [12]. Consequently, there

is an enhanced emission of the free nucleons, LMF’s (light mass fragments) and MMF’s. We

also see an appreciable enhancement in the nucleonic emission (not shown here) at all inci-

dent energies and impact parameters. For heavier systems, emission of nucleons continues

till the end of the reaction. This is due to the finite collisions happening at the later stage

as well as due to the longer reaction time at these incident energies.

It takes longer time for Amax in heavy systems to be stabilized compared to lighter nuclei,

where saturation time for Amax is much less. The excited Amax in heavier system continues

to emit the nucleons till the end of the reaction. This time is, however, much shorter in

lighter nuclei.

The multiplicity of MMF’s has a different story to tell. We now see more fragments in

central collisions at 50 MeV/nucleon compared to peripheral collisions. As we increase the

energy, the MMF’s production decreases considerably. This is valid for the central colli-
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Figure 3.7: Time evolution of LCP’s and MMF’s for different symmetric systems at semi-
peripheral geometry with static soft and soft momentum dependent interaction (SMD).
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Figure 3.9: Same as in Fig.3.5, but for the time evolution of multiplicity of MMF’s.
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sions only. The peripheral collisions yield almost same MMF’s. As noted in Ref. [12], the

static soft EOS is not able to break the initial correlations among the nucleons in peripheral

collisions. As soon as momentum dependence is taken into account, the initial correlations

among the nucleons are destroyed, resulting in large number of MMF’s. The simple static

EOS fails to transfer the energy from the participant to spectator matter. In other words,

MDI suppresses the production of free nucleons and LMF’s while the production of MMF’s

is enhanced. This increase in MMF’s production in the presence of momentum dependent

interactions at semi-peripheral geometries is well justified by the decrease in the production

of Amax in Fig.3.8. Overall, we observe enhancement in the multiplicity of medium mass

fragments with MDI compared to static equation of state.

3.4.4 Final state medium mass fragments distribution

As we know, measurements are always done at the end of the reaction. The reaction time

is chosen to be t = 200 fm/c. It is based on the fact that directed flow saturates by this

time. Therefore, it will be of interest to see whether the final state fragment distribution

has momentum and system size dependence or not.

We display in Fig.3.10, the reduced multiplicity (multiplicity/nucleon) of medium mass

fragments (MMF’s) with the mass of the projectile. It must be clear that system mass

dependence of reduced multiplicity must have opposite trend in comparison to system mass

dependence of average multiplicity of MMF’s. In experimental observations (e.g. FOPI and

ALADIN), the nuclear matter is divided into spectator and participant parts [38]. In our

calculations, this division is made by splitting the reaction into different impact parameter

zones that can be related with the spectators/participant matter. The top panel in Fig.3.10

displays the multiplicity of MMF’s at 50 and 100 MeV/nucleon, whereas bottom panel is

at 600 and 1000 MeV/nucleon, respectively. The middle panel represents the outcomes at

200 and 400 MeV/nucleon. Each window of the panel contains four different curves that

correspond, respectively, to the scaled impact parameter values of b̂ = 0.0, 0.3, 0.6, 0.9. The

wide range of incident energy between 50 and 1000 MeV/nucleon and impact parameter

between zero and bmax gives opportunity to study the different dynamics emerging at low,

intermediate and higher energies.
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The energy received by the target in peripheral collisions in the presence of momentum

dependent interactions is not too enough to excite the matter above the Fermi level, result-

ing in fewer light fragments. As a result, the break-up of heaviest fragment into MMF’s

takes place (discussed in Fig. 3.8 and 3.9). Moreover, the projectile mass dependence of

MMF ′s/AProjectile is universal at all energies as well as at all impact parameters except

b̂ = 0. For the central geometry, the dynamics at E = 50 MeV/nucleon is different as com-

pared to all other incident energies under consideration. This is due to the reason that at

E = 50 MeV/nucleon the mean field is dominating, while above energies 100 MeV/nucleon,

the influence of nucleon-nucleon collisions goes on increasing. That’s why trend for the

MMF’s production at central geometry is different at E = 50 MeV/nucleon compared to

all higher incident energies. Irrespective of the incident energy and impact parameter, the

multiplicity of medium mass fragments (5 ≤ A ≤ 9) scales with the size of the projectile that

can be parameterized by a power law of the form C(AP )τ ; AP is the mass of the projectile.

The values of C and τ depends on the size of fragments as well as on the incident energy

and impact parameter of the reaction. Now, it also becomes equi-important to see the

comparative study of static and momentum dependent interactions over the whole periodic

table.

For this in Fig.3.11, we display the relative effects of the soft momentum dependent

(SMD) equation of state over the static equation of state. These relative effects are dis-

played with the parameter ∆Mc% (Relative multiplicity difference), which is defined as:

∆Mc% =
[(Multiplicity)SMD − (Multiplicity)Soft]

(Multiplicity)Soft
% (3.9)

Here we have displayed the ∆Mc% of MMF’s for Ca40 + Ca40, Ni58 + Ni58, Nb93 + Nb93,

Xe131 + Xe131, Er167 + Er167, Au197 + Au197 and U238+ U238 at b̂ = 0.6 and E = 50, 400

and 1000 MeV/nucleon. It is observed form the figure that effect of momentum dependent

interactions is constant throughout the periodic table upto 400 MeV/nucleon, while for the

higher incident energy (say 1000 MeV/nucleon), the relative yield is found to decrease for

the heavier systems. This is due to the fact that for the heavier systems at sufficient higher

energies, the population of nucleon-nucleon collisions increases to a such extent that even

static equation of state is able to break-up the initial correlations among nucleons, which

is not possible upto 400 MeV/nucleon. This indicates the need of momentum dependent
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interactions upto certain incident energy in intermediate energy heavy-ion collisions.

3.4.5 Energy and impact parameter dependence of the parameter

τ for MMF’s

As discussed earlier in Fig.3.10, the multiplicity of MMF’s can be parameterized with

mass of the projectile in term of power law Y = CAτ
p at all incident energies and impact

parameters. Now we are interested to observe the variation of parameter τ between incident

energies 50 and 1000 MeV/nucleon at all impact parameters. For this in Fig.3.12, we plot the

power law parameter τ as a function of incident energy and impact parameter. Although,

no unique dependence occurs for τ , we can correlate some of its values. For all the collision

geometries, the value of the parameter τ is close to −1/3 at 50 MeV/nucleon. The total

multiplicity of the fragments will be proportional to A × A−1/3 = A2/3 which is like a

surface of the colliding nuclei representing the mean field. Therefore, it is clear that the

mass dependence at low incident energy is like that of mean field. At higher incident energy

(say 1000 MeV/nucleon), the value of parameter τ tends to approach a unique value except

for central geometry. This is perhaps due to the complete destruction of initial correlations,

moreover, as a result, even no collective flow has been observed in central collisions [27]. It

has been stated by a number of authors that the repulsive nucleon-nucleon interactions at

high energies scale like A [39]. However, no physical correlation can be observed from the

parameter τ at high incident energies.

3.4.6 Energy and asymmetry dependence of MMF’s

Asymmetry of the reaction in term of excess number of neutron is also supposed to play

an important role in fragments production in intermediate energy heavy-ion collisions [40].

To observe this effect, incident energy dependence of medium mass fragments at different

asymmetry has been explored in Fig.3.13. Here we display the isotopic yield of MMF’s as a

function of incident energy of colliding partners. We define δ = (N −Z)/A as a parameter

[40], which is a measure of isotopic asymmetry of the colliding nuclei. δ = 0 means iso-

topically symmetric colliding partner and δ 6= 0 means isotopically asymmetric colliding
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partners. One can see that while we move from symmetry to asymmetry, the production of

medium mass fragments increases. Interestingly, the production of MMF’s is almost con-

stant for δ = 0 throughout the incident energy range, while, the fall and rise is observed

in multiplicity of MMF’s with increase in asymmetry δ 6= 0 and incident energy. This

rise and fall is due to the strong mean field at low energies and increase in the frequency

of the violent nucleon-nucleon collisions at high incident energies. This shows that isotopic

asymmetry also play a significant role in the production of medium mass fragments. This

phenomena can be understood in detail by taking the isospin degree of freedom into account.

3.5 Summary

Using quantum molecular dynamics (QMD) model, we have studied the role of momen-

tum dependent interactions in fragmentation by systematically analyzing various reactions

at incident energies between 50 and 1000 MeV/nucleon and over full collision geometry.

The phase space obtained with in the framework of QMD model is analyzed with minimum

spanning tree (MST) method. The lighter colliding nuclei generates less density whereas

higher density is achieved by heavier nuclei. Moreover, momentum dependent interactions

create more repulsion inside the compressed nuclear matter. This gives ample space for

compression-decompression as well as radial expansion. For this, we have performed the

detailed analysis of density evolution, number of collisions, multiplicity of fragments as well

as system size dependence of fragments.

We find that the inclusion of momentum dependent interactions leads to less freeze-out

density and number of collisions in all colliding systems as well as at all colliding geome-

tries. This is due to the repulsive nature of the momentum dependent interactions, which

further leads to the radial expansion of the matter. Moreover, it is also observed that at

higher incident energies momentum dependent interactions are able to break-up the initial

correlations among nucleons, which was earlier not possible with static equation of state.

This is leading to the decrease in the production of heaviest fragment Amax and enhance-

ment in the production of medium mass fragments in the presence of momentum dependent

interactions.
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The system size effects are found to vary with reaction parameters, incident energies and

momentum dependent interactions. The multiplicity of medium mass fragments can be pa-

rameterized in term of a power law. This is true for a wide range of impact parameters and

incident energies considered here. However, the parameter τ does not have unique value.

At low incident energies, the parameter τ is close to 2/3 suggesting the dominance of mean

field that scales as A2/3. On the other hand, no physical correlation is observed at higher

incident energies for central collisions. This dependence of the parameter τ at higher inci-

dent energies can be improved by varying the model ingredients such as equations of state,

method of clusterization etc., provided the power law dependence of the system size effect

should exhibit.

Interestingly, the fragments production is found to be influenced by the asymmetry of the

reaction ((N−Z)/A) to a great extent at all incident energies. This asymmetry dependence

can be better understood by using the more sophisticated models like IQMD [22] in which

neutron and proton can be separated on the basis of charges, which is not possible in QMD

model [1].
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151 (2006).

[6] J. Aichelin, A. Rosenhaur, G. Peilert, H. Stöcker, and W. Greiner, Phys. Rev. Lett.
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Chapter 4

A comparative study of different
nucleon-nucleon cross sections and
model ingredients in
multifragmentation

4.1 Introduction

The study of heavy-ion collisions at intermediate energies (50 ≤ E ≤ 1000 MeV/nucleon)

provides a rich source of information for many rare phenomena such as multifragmentation,

collective flow as well as particle production[1, 2]. It can also shed light on the mechanism

behind the fragmentation in highly excited nuclear systems. In this energy region, mul-

tifragmentation appears to be a dominant de-excitation channel apart from the other less

populated channels of manifestation of liquid gas phase transition in finite nuclear systems

[1, 3, 4]. In the literature, multifragmentation has also been considered as a gateway to

nuclear equation of state [5, 6]. Numerous investigations are cited in the literature which

handle the de-excitation of nuclear system in multifragmentation [7-13]. In chapter 3, the

importance of momentum dependent interactions in multifragmentation in the presence of

energy dependent cross section is studied in detail. In this chapter, we shall focus on the

importance of nucleon-nucleon cross sections and model ingredients in multifragmentation

in the presence of momentum dependent interactions (MDI) in intermediate energy heavy-

ion collisions.

Experimentally, multifragmentation can be studied in term of intermediate mass fragments

(IMF’s). The experimental analysis of the emission of intermediate mass fragments (IMF’s),

(5 ≤ A ≤ Atot/6), has yielded several interesting observations: De Souza et al.[10] observed
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a linear increase in the multiplicity of IMF’s with incident energies for central collisions.

In this study, incident energy was varied between 35 and 110 MeV/nucleon. On the other

hand, Tsang et al. [11] reported a rise and fall in the production of IMF’s. The maximal

value of the IMF’s shifts from nearly central to peripheral collisions with the increase in the

incident energy. More refined results were reported by Peaslee et al. [12] for the reaction

of 36Kr
84 + 79Au

197 for incident energy between 35 and 400 MeV/nucleon. Their analysis

revealed that IMF’s multiplicity first increases till 100 MeV/nucleon and then decreases

slowly. These findings pose a stringent test for any theoretical model designed for the study

of multifragmentation.

Theoretically, multifragmentation can be studied by statistical [2] as well as semi-classical

[5] models, respectively. The relation between multifragmentation process and nuclear equa-

tion of state was extensively studied by several authors within the statistical approach for

intermediate energy heavy-ion collisions [2, 4, 6]. On the other hand, semi-classical dy-

namical models [5] are very useful for studying the reaction from the start to final state

where matter is fragmented and cold. In addition, these models also give possibility to

extract the information about the nuclear equation of state [13] and nucleon-nucleon cross

section[1, 5, 14]. The interaction among nucleons (in a heavy-ion reaction) can be studied

within the G-matrix, with its real part representing the mean field and complex part de-

notes the nucleon-nucleon cross section [1, 5, 14]. Note that the contribution of imaginary

part of the interaction is nearly absent in the low energy process such as fusion, fission and

radioactivity[15]. One often uses a parameterized form for the real and imaginary parts of

the G-matrix. It is well accepted to use a density dependent Skyrme type interactions for

the real part of the G-matrix. However, heavy-ion dynamics depends not only on the density

but also on the entire momentum plane [7]. Therefore, it is advisable to use momentum

dependent interactions additionally.

The exact nature of nucleon-nucleon cross section, on the other hand, is still an open

question [7, 14]. A large number of calculations exist in the literature suggesting different

strength and forms of the nucleon-nucleon cross sections [14, 16]. In a simple assumption of

hard core radius of nucleon-nucleon potential, one has often used a constant and isotropic

cross section of 40 mb. In other calculations, a constant and isotropic cross section with
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magnitude between 20 and 55 mb is also used [14]. The most sensitive observable to pin

down the nucleon-nucleon cross section is collective flow. Recent calculations advocated

its strength between 35-40 mb[14]. We shall concentrate here on multifragmentation. Our

present study will be based on the semi-classical model, namely, quantum molecular dynam-

ics (QMD). In semi-classical model, one has to face the problem of the stability of nuclei.

Several model ingredients such as width of the Gaussian (L), has been used as free parame-

ter. It varies between 4.33 fm2 to 8.66 fm2[5]. At the same time, one needs to identify the

clusters with the help of clusterization algorithm. Different cluster recognization algorithms

can also influence the fragmentation. Our present interest is to perform a comparative study

of different model ingredients along with different nucleon-nucleon cross sections and to see

whether it is possible to pin down the strength of nucleon-nucleon cross sections by QMD

model or not [17]. In the following section, we will discuss different type of nucleon-nucleon

cross sections and clusterization algorithms.

4.2 Different nucleon-nucleon cross sections

During the propagation, two nucleons can collide if they come closer than a certain

distance. The scattering of these nucleons is decided by a Monte Carlo procedure which is

a stochastic scattering and hence is different from the Rutherford scattering. For nucleon-

nucleon cross section σ, one can use a simple parameterization which depends on the center

of mass energy of nucleons [18]. In most of parameterizations of nucleon-nucleon cross

section, the following processes are always there:

N + N → N + N (a),
N + N → N + ∆ (b),
N + N → ∆ + ∆ (c),
N + ∆ → N + N (d),

∆ → N + π,
N + ∆ → N + ∆ (e),
∆ + ∆ → ∆ + ∆ (f).

(4.1)

The phase space of scattered nucleons is checked with so called classical Pauli-blocking

method. If the phase space of scattered nucleons is already occupied, the scattering is

forbidden. The pictorial view of effect of cross sections on the trajectory of projectile and

target nucleons is shown in Fig.4.1. In the literature, three type of cross sections, namely,
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energy dependent[19], in-medium [20] and constant cross sections [14] are discussed. Since

we are interested in energy dependent and constant cross sections, so, in the following

subsections, they are discussed in detail.

Figure 4.1: A pictorial view of effect of different cross sections on the trajectory of projectile
and target nucleons in intermediate energy heavy-ion collisions. At sufficiently small cross
sections, nuclei will pass each other without doing the reaction, while at large cross sections,
hydro-dynamical behavior is obtained and nuclei will repel each other.

4.2.1 Energy dependent nucleon-nucleon cross section

The energy dependent cross section is a parametric fit on the experimental data, which

is derived by Cugnon et al.[19]. Here cross section is divided into elastic and inelastic parts

which depend on the center-of-mass energy available to the colliding pair of nucleons. For

elastic channels, we use the total and differential cross section as [19]:

σ(el)
nn (

√
s) =

{

55(mb) if
√
s < 1.8993

35
1+100(

√
s−1.8993)

+ 20 if
√
s ≥ 1.8993,

(4.2)

with
√
s, the nucleon-nucleon center of mass energy given by:

√
s =

√

(E1 + E2)2 − (P1 + P2)2. (4.3)

Here Ei and Pi (i, j = 1, 2) are, respectively, the energy and momentum of a nucleon. The

angular distribution for these channels is given by

dσ

dt
= aebt ; t = −2p2(1 − cosθ). (4.4)
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Figure 4.2: The Cugnon parameterization for the elastic (solid line) and inelastic (dashed
line) cross sections of nucleon-nucleon scattering as a function of the incident energy Elab.
Figure is taken from Ref.[21]

.

For inelastic channels, the total cross section is parameterized as

σ
(in)
nn→n∆(

√
s) =

{

0 if
√
s < 2.015

20(
√

s−2.015)2

0.015+(
√

s−2.015)2
if
√
s ≥ 2.015.

(4.5)

The angular distribution for in-elastic channels is assumed to be isotropic. The cross section

for ∆ absorption, i.e. channel (d) can be obtained from eqn. (4.5) using detailed balance

principle.

σn∆→nn =
1

8
(p2

f/p
2
i )σnn→n∆, (4.6)

These parameterized forms of the cross sections are in fact a fit to the experimental

measurements. The limit of
√
s=1.8993 GeV (in eqn. 4.2) is based on the fact that the

mass of two nucleons is roughly equal to 1.876 GeV. Therefore, for two colliding nucleons

with very small velocity, a constant cross section (= 55 mb) is used. The mass limit of

the inelastic channel ( i.e. ∆ formation in eqn. 4.5) is based on the fact that mass of

∆(= N + π), is 1.076 GeV. Therefore, for NN → N∆ channel, the outgoing mass should

be at least 1.076+0.938 GeV.
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The graphical representation of the elastic and in-elastic parts of the cross section is

displayed in Fig.4.2. One sees clearly that the elastic cross section falls sharply in its initial

stage and then saturate around 20 mb. Whereas, the in-elastic cross section starts increasing

with increase in the bombarding energies. At very high energies, the nucleon-nucleon cross

section is fully dominated by the in-elastic channel.

It is well known that the scattering cross section between two nucleons depends on their

isospin. Fig.2.3 compares the free-space cross sections for neutron-proton and proton-proton

or neutron-neutron scattering as a function of bombarding energy. The data in the energy

range of 10 MeV ≤ Elab ≤ 1000 MeV can be parameterized by[22]

σfree
np = − 70.67 − 18.18β−1 + 25.26β−2 + 113.85β (mb), (4.7)

σfree
pp = 13.73 − 15.04β−1 + 8.76β−2 + 68.67β4 (mb), (4.8)

where β = v/c is the velocity of the projectile nucleon.

Because of the differences in the transition matrices of the isospin T = 1 and T = 0 chan-

nels, and the fact that both the iso-singlet and iso-triplet channels contribute to neutron-

proton (np) scattering, their cross sections (σfree
np ) in free space are higher in free space are

higher that those for protons-proton (pp) or neutron-neutron (nn) scatterings (σfree
pp ) where

only iso-triplet channels are involved. It is seen from the figure that neutron-proton cross

section is about a factor of 2 to 3 larger that the proton-proton or neutron-neutron cross

section.

4.2.2 The in-medium nucleon-nucleon cross section

The first attempt to derive the in-medium nucleon-nucleon cross section was made by

Faessler and collaborator [20]. At low incident energies (E≤ 400 MeV/nucleon), the Pauli-

blocking of intermediate states is quite important. This effect is reduced at higher incident

energies. The Pauli-principle blocks about 4% collisions at 2 GeV/nucleon. Therefore, at

low incident energies it is very important to take care of the in-medium effects. The nucleon-

nucleon cross section in nuclear medium can be calculated from the G-matrix [20, 23, 24, 25]

which is a solution of the Bethe-Goldstone equation [20]:

〈ḱ1, ḱ2|G(W )|k1, k2〉 = 〈ḱ|G(W,K)|k〉
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= 〈ḱ|V |k〉 +
∫

d3k”

(2π)3
〈ḱ|V |k”〉

× QF (k”, K)

W − E(k”, K) + iη
〈k”|G(W,K)|k〉, (4.9)

where K = 1
2
(k1 + k2), k = 1

2
(k1 − k2), and

E(k,K) = ǫ(k1, ρ1) + ǫ(k2, ρ2),

ǫ(k, ρ) =
h̄2 k2

2m
+ReU(k, ρ). (4.10)

The QF in eqn. 4.9 is the Pauli operator for two (colliding) nuclear matters whose momen-

tum distribution F is given by two overlapping Fermi spheres. The mean field potential U

of the single-particle energy ǫ is calculated from the G-matrix in a self-consistent way:

U(k, ρ) =
1

4

∑

spin,isospin

∫

F

d3ḱ

(2π)3
〈k, ḱ|G|k, ḱ〉. (4.11)

The mean field potential derived from the G-matrix is a momentum dependent. This de-

pendence is usually approximated by an effective nucleon mass.

By using the standard angle averaging procedure for the Pauli operator and for the single

particle energy, one can obtain the decoupled partial wave Bethe-Goldstone equation [20]:

〈ḱ, ĹSJ |G|k, LSJ〉 = 〈ḱ, ĹSJ |V |k, LSJ〉

+
2

π

∑

L”

∫

dk” k”2〈ḱ, ĹSJ |V |k”, L”SJ〉

× Q̄F (k”, K)

W − Ē(k”, K) + iη
〈k”, L”SJ |G|k, LSJ〉, (4.12)

where Q̄F and Ē are the angle-averaged quantities. The Bethe-Goldstone equation has

the same structure as the Lippmann-Schwinger equation for the free two-body scattering.

In this sense, the G-matrix (which is a solution of the Bethe-Goldstone equation) can be

regarded as the two-body scattering amplitude in the presence of a nuclear medium. The

differential scattering cross section can then be calculated in a straight forward way:

dσ

dω
=

1

4

∑

ms,ḿs

|T S=1
ḿs,ms

(θ)|2 − |T S=0(θ)|2, (4.13)

with

T S
ḿs,ms

(θ) =
∑

LĹJ

√

2L+ 1

4π
Y Ĺ

ms, ´−ms
(θ, 0)〈L0Sms|Jms〉

×〈Ĺ ms − ḿsSḿs|Jms〉〈k, ĹSJ |G|k, LSJ〉. (4.14)
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Figure 4.3: The in-medium nuceon-nucleon cross section based on the G-matrix for different
incident energies (represented by the relative momentum Kr) and densities. The dashed,
dash-dot-dashed and dash-double-dotted lines represents, respectively, the total density ρ

ρo

= 1, 1/2 and 1/4. Figure is taken from the Ref. [25].

The in-medium nucleon-nucleon cross section obtained from the G-matrix is shown in the

Fig. 4.3 as a function of the nucleon energy (in the laboratory frame) for two different

bombarding energies represented by the relative momentum Kr. We here display the re-

sults at three different densities ρ/ρo [25]. The solid line shows the free nucleon-nucleon

cross section calculated using Reid soft core potential. The dashed, dash-dotted and dash-

double-dotted lines represents, respectively, the total density ρ/ρo=1, 1/2 and 1/4. Puri

and co-workers studied the importance of in-medium nucleon-nucleon cross sections many

time in the literature[26].

As discussed above, in microscopic models medium effects appear in the Bethe- Goldstone
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equation mainly through the Pauli blocking factor for intermediate states and the self en-

ergies of two the two nucleons in the denominator of the propagator. However, results from

these studies differ significantly, with some models predicting a decrease of the in-medium

NN cross sections compared to their free space values while others predict an increase. For

instance, in the Dirac- Brueckner approach of Refs[16], in which the model parameters are

fixed by fitting free space NN scattering data and deuteron properties, the NN cross sections

in nuclear medium at zero temperature have been predicted to decrease with increasing den-

sity. For example, at the normal nuclear matter density and a bombarding energy of 50

MeV, both σnp and σpp are reduced by a factor of two. The results of the calculations in

Ref.[16] has been parameterized by

σmedium
np =

[

31.5 + 0.092abs(20.2 − E0.53
lab )2.9

]

· 1.0 + 0.0034E1.51
lab ρ

2

1.0 + 21.55ρ1.34
(mb), (4.15)

σmedium
pp =

[

23.5 + 0.0256(18.2 − E0.5
lab)

4
]

· 1.0 + 0.1667E1.05
lab ρ

3

1.0 + 9.704ρ1.2
(mb). (4.16)

In this study, respective effects of Pauli blocking and the self-energy corrections on the in-

medium NN cross sections have not been carried out[16]. Opposite results have been found

by Bohnet et al.[25] in studying the in-medium NN cross sections during the collisions of

two slabs of nuclear matter at zero temperature. The Pauli blocking factor has been esti-

mated using two Fermi spheres separated by the beam momentum, and it is found that the

in-medium cross sections generally increases with density.

Experimentally, strong evidences supporting reduced in-medium NN cross sections at in-

termediate energies[27]. An empirical density-dependent expression for reduced in medium

NN cross sections is given as[27]:

σmed
NN =

(

1 + α
ρ

ρ0

)

σfree
NN (4.17)

with the parameter α ≈ − 0.2 has been found to better reproduce the data compared

to transport model calculations using the free space NN cross sections. By using eqn. 4.17

one can obtain the medium effects in the nucleon-nucleon collisions. Very recently, in the

study of stopping power and collective flow in heavy-ion collisions at SIS/GSI energy, there

were indications that the in-medium NN cross sections were reduced at low energies but

enhanced at high energies[16]. Furthermore, no information about the isospin dependence
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of the in-medium NN cross sections has been extracted from these experiments.

The basic physical picture of this approach is that the heavy-ion collision at any point in

space and time can be represented by the collision of two Fermi sphere nuclear matter (with

relative momentum between two Fermi spheres kR) whose densities are the local densities

of the target and projectile as a result of which the equation of state depends on the mo-

mentum configuration of the heavy-ion system, hence leads to the difference between the

equation of state for the nuclear matter formed in heavy-ion collisions and that for nuclear

matter which one has , for example, in a supernova explosion.

4.2.3 A constant nucleon-nucleon cross section

During early attempts, one has used a constant nucleon-nucleon cross section to study

heavy-ion collisions through transport models. Several calculations based on a constant

cross section were applied to study the disappearance of flow and multifragmentation[14].

One has used isotropic and energy independent nucleon- nucleon cross sections with magni-

tude between 20 and 55 mb. It has also been shown by Zheng et al.[16] that a stiff equation

of state with free nucleon-nucleon cross section and a soft equation of state with reduced

cross section yield nearly the same results. Following these Ref.[14], we also use a constant

energy independent cross section. For comparison, we shall also use an energy dependent

cross section as fitted by Cugnon[19].

On the other hand, the choice of the method of clusterization is also quite important

in multifragmentation (specially for IMF’s or at Peripheral geometries). The method of

clusterization, MST, is discussed in chapter 3 in detail. This methods have one or more

shortcomings: e.g. (1) the simple spatial correlation method can not address the question

of the time scale of formation of fragments. This leads to a single cluster at the time of high

density. (2) Less transfer of energy from the participant to spectator zone and hence the

spectator nucleus does not break into fragments as shown experimentally in Ref.[28]. To

overcome these shortcomings, MST with momentum cut (MSTM) [26] and Stimulated An-

nealing Clusterization Algorithm (SACA)[1] are developed to identify the fragments. These

methods are discussed in detail in the following section. In this chapter, we will perform a

comparative study with MST and SACA algorithm.
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4.3 Methods of clusterization

4.3.1 Minimum Spanning Tree with Momentum cut (MSTM)

An improvement over the MST algorithm, is to put additional cut in momentum space [26].

It will help to get rid of fragments that although close in spatial space are far in momentum

space. The MSTM method also takes care of the relative momentum of nucleons. Along with

the restriction in the spatial space of nucleons, another restriction is put in the momentum

space of nucleons i.e.

|~pi − ~pj| ≤ pmin (4.18)

|~ri − ~rj| ≤ dmin (4.19)

where pmin = 150 MeV/c in QMD, while, 268 MeV/c in IQMD. The value of cut (in the

relative momentum of two nucleons) is about the average Fermi momentum of nucleons (i.e

≈ 150 MeV/c in QMD and 268 MeV/c in IQMD, respectively) as reported in [5].

4.3.2 Stimulated Annealing Clusterization Algorithm (SACA)

It was a first ever novel algorithm to detect the fragments at early stage of the reaction.

To find a realistic fragment configuration, Puri et al. [1], assumed that a configuration is

realized in the nature (at any time) which gives the largest binding energy. To find the most

bound configuration one confronts with two problems:

a) The huge number of possible configurations.

b) The fact that the number of entities changes. The number of nucleons is constant,

whereas the number of free nucleons and fragments are variable.

One may approach this problem by simple iterative methods. They, however, do not

guaranty that a global minimum is obtained but may arrive at a local minimum [29]. First

attempt to overcome this problem has been advanced in Ref. [30].

In new approach, the pattern can be summarized as follows.

It is assumed that:
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1 The nucleons from target and projectile are grouped into fragments (of any size) and

into free nucleons.

2 Though the nucleons inside a fragment can interact with each other, they do not

interact with the nucleons from other fragments or free nucleons.

3 That pattern of nucleons and fragments is realized in nature which gives the highest

binding energy.

To avoid the creation of too many fragments at intermediate times, an additional

binding energy check has been employed. In the approach [1], a group of nucleons can form

a fragment if the total fragment energy/nucleon ζ is below a minimum binding energy:

ζ =
Nf
∑

i=1





√

(pi − Pcm
Nf )2 +m2

i −mi +
1

2

Nf
∑

j 6=i

V ij(ri, rj)





< Lbe ×Nf , (4.20)

with Lbe = -4.0 MeV if Nf ≥ 3 and Lbe = 0 otherwise. In this equation, Nf is the num-

ber of nucleons in a fragment, Pcm
Nf is the center-of-mass momentum of the fragment. The

requirement of a minimum binding energy excludes the loosely bound fragments which will

decay after a while.

One is tempted to start the search for the most bound cluster configuration by an iterative

minimization method (also known as neighborhood search or local search). In this method,

starting from a given configuration a new one is constructed. The new configuration is

accepted only if it lowers the binding energy. The drawback of this procedure is that it

may terminate at a local minimum. To improve this limitation, several modifications can

be imagined [31]:

1. To execute the algorithm for a large number of the initial configurations. This will

finally allow to reach the global minimum. This is very time consuming.

2. To use an algorithm which can jump over local minima and hence one can reach the

global minima. This clearly depends strongly on the problem. Therefore its applications

are limited.
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3: To generalize the iterative method so that the transitions which yields a higher bind-

ing energy are always accepted. In addition, the transitions which yield a lower binding

energy are also accepted with a certain probability. This algorithm is known as simulated

annealing method [31]. Its name is based on the fact that this algorithm is akin to the one

used for cooling the solids. The simulated annealing method is a sequence of metropolis

algorithms [32] with decreasing control parameter ϑ. The control parameter ϑ can be inter-

preted as a temperature. For each metropolicity at a given temperature, one has to perform

a sequence of steps until the binding energy does not change anymore. Each step is executed

as follows:

1: Given some initial configuration a with energy ζa, a new configuration b with energy

ζb is generated in the neighborhood of a using a Monte-Carlo procedure.

2: Let the energy difference between a and b is ∆ζ = ζb -ζa.

3.: If ∆ζ is negative, the new configuration is always accepted. If ∆ζ is positive, it is

accepted with a probability exp(−∆ζ/ϑ).

At the start, the control parameter ϑ is taken to be large enough so that almost all

attempted transitions are accepted. This is to overcome any kind of the local minima.

After the binding energy remains constant, a gradual decrease in the control parameter ϑ

is made and the Metropolis algorithm is repeated.

To start with, a random configuration a ( which consist of fragments and free nucleons)

is chosen. The total energy associated with configuration a is given by

ζa =
Nf

1
∑

i=1











√

(pi − Pcm
Nf

1

)2 +m2
i −mi +

1

2

Nf
1
∑

j 6=i

Vij(ri, rj)











1

+ · · ·
Nf

ν
∑

i=1







√

(pi − Pcm
Nf

ν

)2 +m2
i −mi +

1

2

Nf
ν
∑

j 6=i

Vij(ri, rj)







ν

+
Nf

µ
∑

i=1











√

(pi − Pcm
Nf

µ

)2 +m2
i −mi +

1

2

Nf
µ
∑

j 6=i

Vij(ri, rj)











µ

+ · · ·
Nf

n
∑

i=1







√

(pi − Pcm
Nf

n

)2 +m2
i −mi +

1

2

Nf
n
∑

j 6=i

Vij(ri, rj)







n

.
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Here Nf
µ is the number of nucleons in a fragment µ, Pcm

Nf
µ

is the center-of-mass momentum of

the fragment µ and Vij(ri, rj) is the interaction energy between nucleons i and j in a given

fragment µ. Note that the total energy is the sum of the energies of individual fragments

in their respective center-of-mass system. Therefore, ζa differs from the (conserved) total

energy of the system because (i) the kinetic energies of fragments calculated in their center-

of-masses and (ii) the interactions between fragments/free nucleons are neglected.

A new configuration is generated using Monte-Carlo procedure by either a) transferring a

nucleon from some randomly chosen fragment to another fragment or by b) setting a nucleon

of a fragment free or c) absorbing a free nucleon into a fragment. Let the new configuration

b be generated by transferring a nucleon from fragment ν to fragment µ. Then the energy

of new configuration b is given by:

ζb =
Nf

1
∑

i=1











√

(pi −Pcm
Nf

1

)2 +m2
i −mi +

1

2

Nf
1
∑

j 6=i

Vij(ri, rj)











1

+ · · ·
Nf

ν −1
∑

i=1







√

(pi −Pcm
Nf

ν −1
)2 +m2

i −mi +
1

2

Nf
ν −1
∑

j 6=i

Vij(ri, rj)







ν

+
Nf

µ+1
∑

i=1











√

(pi − Pcm
Nf

µ+1
)2 +m2

i −mi +
1

2

Nf
µ+1
∑

j 6=i

Vij(ri, rj)











µ

+ · · ·
Nf

n
∑

i=1







√

(pi − Pcm
Nf

n

)2 +m2
i −mi +

1

2

Nf
n
∑

j 6=i

Vij(ri, rj)







n

Note that in this procedure, the individual energies of all fragments except for the donor

fragment (ν) and the receptor fragment (µ) remain the same. The change in the energy

from a −→ b is given by

∆ζ = ζb − ζa. (4.21)

Between the Metropolis algorithms, the system is cooled by decreasing the control param-

eter ϑ. A decrease in the temperature means that we narrow the energy difference which is

accepted in a metropolis step. After many Metropolis steps, one would arrive at a minimum

i.e. the most bound configuration. The problem is, however, that one usually arrive at a

local minimum only. Between the local minimum, we find huge maxima. Let us give an
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example: assume we have two fragments, but the most bound configuration would be one

single fragment which combines both. Now each exchange of a single nucleons raises the

binding and only the exchange of all nucleons at the same time lowers the total binding

energy. This effect is well known in chemistry, where it is called Activation energy. In order

to avoid this, one add, therefore, a second simulated annealing algorithm in which not any-

more the nucleons are considered as the particles which are exchanged in each Metropolis

step (like in the first simulated annealing), but also the entities ( fragments or nucleons)

obtained after the first step. This second stage of minimization is called fragment exchange

procedure.

Note that even in this stage, the free nucleons can be exchanged as before. The total

energy associated with any configuration c during the second stage of iterations is given by

ζc =







NS1
∑

i=1





√

(pi − Pcm
NS1

)2 +m2
i −mi +

1

2

NS1
∑

j 6=i

Vij(ri, rj)











1

+ · · ·






NSν
∑

i=1





√

(pi −Pcm
NSν

)2 +m2
i −mi +

1

2

NSν
∑

j 6=i

Vij(ri, rj)











ν

+







NSµ
∑

i=1





√

(pi −Pcm
NSµ

)2 +m2
i −mi +

1

2

NSµ
∑

j 6=i

Vij(ri, rj)











µ

+ · · ·






NSn
∑

i=1





√

(pi −Pcm
NSn

)2 +m2
i −mi +

1

2

NSn
∑

j 6=i

Vij(ri, rj)











n

.

Here NSµ
is the number of nucleons in a super-fragment Sµ =

∑

Nf
Sµ

k=1 N
k
Sµ

, where Nk
Sµ

is the

number of nucleons in the k-th fragment contained in the super-fragment. Sµ and Nf
Sµ

is

the number of pre-fragments contained in the super-fragment Sµ. The Pcm
NSµ

is the center-of-

mass momentum of the super fragment Sµ and Vij(ri, rj) is the interaction energy between

nucleons i and j in a given super-fragment. Note that now the particle i interacts with its

fellow nucleons in the same pre-fragment and also with the nucleons of other pre-fragments

which are contained in a new given super fragment Sµ.

The new configuration is generated using Monte-Carlo procedure by either a) transferring

a pre-fragment from some randomly chosen super-fragment to another super-fragment or

by b) setting a pre-fragment free or c) absorbing a single isolated pre-fragment into a super-

fragment. Let us suppose that a new configuration d is generated by transferring a pre-
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fragment k (with mass Nk
Sν

) from super-fragment ν to super-fragment µ. The associated

energy of new configuration d reads as :

ζd =







NS1
∑

i=1





√

(pi −Pcm
NS1

)2 +m2
i −mi +

1

2

NS1
∑

j 6=i

Vij(ri, rj)











1

+ · · ·











NSν−Nk
Sν

∑

i=1







√

(pi −Pcm
NSν−Nk

Sν

)2 +m2
i −mi +

1

2

NSν−Nk
Sν

∑

i6=j

Vij(ri, rj)

















ν

+











NSµ+Nk
Sν

∑

i=1







√

(pi − Pcm
NSµ+Nk

Sν

)2 +m2
i −mi +

1

2

NSµ+Nk
Sν

∑

j 6=i

Vij(ri, rj)

















µ

+ · · ·






NSn
∑

α=1





√

(pi − Pcm
NSn

)2 +m2
i −mi +

1

2

NSn
∑

j 6=i

Vij(ri, rj)











n

.

The only difference between the particle and the fragment exchange procedure occurs for

the bound nucleons. Now the bound nucleons cannot change their identity neither by

being absorbed nor by becoming free. They will remain bound in a pre-fragment. The pre-

fragment itself can change its identity by either getting transferred to a new super-fragment,

or be set free. As in the first stage, one calculate the energy difference between the new and

the old configurations ∆ζ and the metropolis procedure is continued till the most favored

configuration is obtained.

The simulated annealing algorithm has several parameters to be determined : the initial

and the final value of the control parameter ϑ, the number of metropolis steps to be executed

at a given value of control parameter (i. e. length of Markov chain) , the decrease of the

control parameter and the termination of the algorithm. This set of the parameters is

also referred as cooling schedule in the literature [31]. One needs to choose the following

parameters explicitly:

1.: The initial value of the control parameter ϑl. This will be referred as temperature.

2.: The final value of the control parameter ϑf [ i.e. the termination procedure].

3.: The length of the Markov chain Mch.

4.: A rule to fix the decrement in the control parameter σ.

For the details of these parameters, we refer the reader to Ref. [1]. In Ref. [1], a detail

investigation of role of these parameters was made & after extensive analysis, the most

economical set of parameters was given.
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Using above discussed various nucleon-nucleon cross sections along with MDI (discussed

in chapter 3), we shall present a role of different type of cross sections and momentum de-

pendent interactions in multifragmentation for symmetric and asymmetric reactions using

minimum spanning tree method. Moreover, we shall see the role of different model ingredi-

ents like Gaussian width, clusterization distance, method of clusterization (MST and SACA)

and equations of state (Hard and Soft) on multifragmentation. At last, we will compare the

results of different nucleon-nucleon cross sections with experimental findings as well as with

different model ingredients.

4.4 Results and discussion

We here simulate the symmetric reactions of 79Au
197 + 79Au

197 at incident energies of 100,

400, 600 and 1000 MeV/nucleon and over complete range of the impact parameter using

QMD model. The system size and asymmetry effects will be analyzed by further studying

the reactions of 10Ne
20 + 13Al

27, 18Ar
40 + 21Sc

45, 36Kr
84 + 41Nb

93 and 54Xe
131 + 57La

139

at energies between 20 and 150 MeV/nucleon. The incident energy, colliding nuclei as well

as impact parameters are chosen on the basis of the available experimental data from the

ALADIN [33] and NSCL collaborations[34]. The comparison with experimental findings is

done by varying the nucleon-nucleon cross section from Cugnon to constant (say 40 and 55

mb)in the presence of soft momentum dependent (SMD) equation of state. The cross section

values are represented in the superscript. The clusterization at first instance is made using

the minimum spanning tree (MST) method, in which, nucleons are bound if RClus = |~r1− ~r2|

≤ 4 fm. On the other hand, to understand the relative effects of different cross sections

with model ingredients, the detailed analysis of model ingredients like Gaussian width,

clusterization distance, method of clusterization and equations of state is performed.

4.4.1 Phase space of nucleons

To understand the role of different nucleon-nucleon cross sections on the projectile and

target nucleons, in Fig.4.4, we have displayed the phase space for 79Au
197 + 79Au

197 reaction
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Figure 4.4: Phase space of projectile and target nucleons at t = 200 fm/c at different
nucleon-nucleon cross sections in the presence of momentum dependent interactions. The
left panel is at relatively low incident energy E = 100 MeV/nucleon, while, right panel is at
relatively high incident energy E = 1000 MeV/nucleon.
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in X-Z plane at semi-central geometry. The top, middle and bottom panels are at σCug, σ40

and σ55, respectively, while the left and right panels are at relatively low (say E = 100

MeV/nucleon) and high (say E = 1000 MeV/nucleon)incident energies. A heavy fragment

is observed at incident energy E = 100 MeV/nucleon which disappears at energy E = 1000

MeV/nucleon. This is true for all the cross sections under consideration. Moreover, with

increase in cross section, more expansion of the matter takes place at low incident energy,

while negligible effect is at higher incident energy. As the role of momentum dependent

interactions and cross sections is same: break up of the initial correlation among nucleons.

Due to this reason, at low incident energy where mean field is dominating, the cross section

is helping to break up the initial correlations among the nucleons and hence expansion of

the matter. However, more expansion of the matter is observed at E = 1000 MeV/nucleon

as compared at E = 50 MeV/nucleon. This expansion is further found to be affected by the

nucleon-nucleon cross sections. This feature of heavy-ion collisions further can be strengthen

by studying the time evolution of different kind of fragments.

4.4.2 Time evolution of free nucleons and fragments

The role of nucleon-nucleon cross sections on the fragments production is studied in the

literature many times. One or more shortcomings were observed in these studies. In some

studies, the static equation of state was used[7], while other studies were performed in the

presence of momentum dependent interactions, but upto 200 MeV/nucleon[7]. To overcome

these shortcomings, we have performed the present work in the presence of momentum de-

pendent interactions upto 1 GeV/nucleon.

From Figs.4.5-4.8, the time evolution of free nucleons (FN) [1 ≤ A ≤ 1], light charged par-

ticles (LCP’s)[2 ≤ A ≤ 4], medium mass fragments (MMF’s) [5 ≤ A ≤ 9] and intermediate

mass fragments (IMF’s)[5 ≤ A ≤ Atot/6 = 65 for Au + Au] is displayed for the collisions

of 79Au
197 + 79Au

197 at semi-central (left panel) and semi-peripheral (right panel) geome-

tries in each figure. The panels from top to bottom are at E = 100, 400, 600 and 1000

MeV/nucleon, respectively. The 200 fm/c is taken as freeze out time in view of the fact

the nuclei, generated in molecular dynamical model, are no longer stable after 200 fm/c. In

some cases, the multiplicity of fragments continues to change even at 200 fm/c. In these

cases, the reaction takes longer time. We in fact do not know whether the contribution
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after 200 fm/c is a real one or just spurious yield due to the de-stabilization of fragments.

Therefore, we stop the reaction at 200 fm/c.

Free nucleons as well as LCP’s have been the similar scenario at semi-central and semi-

peripheral geometries except E = 100 MeV/nucleon (shown in Figs.4.5 and 4.6). At semi-

central geometry, the production of free nucleons as well as LCP’s is found to increase with

increase in the nucleon-nucleon cross section. This is true at all incident energies under con-

sideration. The free nucleon and LCP’s generates from the participant zone. With increase

in the cross section value, the participant zone will get more compressed and hot and hence

more is the production of free and LCP’s. The scenario of the free nucleons and LCP’s

is different with increase in incident energy. The free particles are found to increase with

increase in incident energy, while, LCP’s are found to decrease after certain incident energy

(say E = 400 MeV/nucleon). This is due to the reason that after this energy LCP’s starts

breaking into free nucleons in the participant zone.

At semi-peripheral geometry, the different trend is observed for free as well as LCP’s

at E = 100 MeV/nucleon as compared to semi-central geometry. The production of free

and LCP’s at this energy is followed by SMD+σ40, SMD+σCugnon to SMD+σ55, while, the

trend was from SMD+σCugnon, SMD+σ40 to SMD+σ55 at semi-central geometry. It means

that tendency of break up of the initial correlation among nucleons, which is not possible

with SMD+σCugnon/σ40 is fulfilled by SMD+σ55. This is showing the importance of mo-

mentum dependent interactions as well as large cross section at low incident energy in the

semi-peripheral geometry. On the other hand, at all other incident energies the universal

behavior is followed by free and LCP’s as was followed at semi-central geometry.

Lets move towards the multiplicity of MMF’s and IMF’s (shown in Figs.4.7 and 4.8). The

MMF’s and IMF’s have different story to tell in comparison to free nucleons and LCP’s. At

semi-central geometry, with increase in incident energy, the role of different nucleon-nucleon

cross section on the multiplicity of MMF’s and IMF’s is found to decrease. This is more

pronounced for IMF’s as compared to MMF’s. It is also shown in chapter 3 that SMD

equation of state is able to break up the initial correlation among the nucleons. Moreover,

larger cross section has also ability to break up the initial correlations. In the presence of

MDI, with increase in the cross section value, more transfer of incident energy takes place

121



0

50

100

150

0

20

40

60

80

0
50
100
150
200

0

50

100

0

70

140

210

0

40

80

120

0 50 100 150 200
0

80

160

240

0 50 100 150 200
0

50

100

150

79Au197 + 79Au197

 
3.0b

E = 600 MeV/nucl.

E = 400 MeV/nucl.

E = 100 MeV/nucl.

 

 

  

(a)  
6.0b

 

 

 

Time (fm/c)

 

Fr
ee

 P
ar

tic
le

s

(b)

 

E = 1000 MeV/nucl.

 

(c)

SOFT
 40

 55

SMD
 Cugnon

 40

 55

 

 

(d)
 

Figure 4.5: The time evolution of multiplicity of free nucleons in the presence of nucleon-
nucleon cross sections and momentum dependent interactions. The panels from top to
bottom are at E = 100, 400, 600, 1000 MeV/nucleon, respectively, while left and right
panels are for semi-central and semi-peripheral geometries. In addition, the results with
static equation of state are also displayed at E = 600 MeV/nucleon with σ40 and σ55.
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Figure 4.6: Same as in Fig.4.5, but for the time evolution of LCP’s.
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from participant to spectator zone and hence break up of the heavy fragments into MMF’s.

MMF’s further will decay into LCP’s and free nucleons at sufficient high incident energy

(say E = 1000 MeV/nucleon). This will lead to decrease in the production of heavy frag-

ments (like MMF’s and IMF’s) with cross section.

Moreover, at semi-peripheral geometry (b̂ = 0.6), the production of MMF’s as well as

IMF’s found to increase with increase in cross section. The spectator zone at this geometry

(which is more than half part of the projectile and target nucleus) will need high incident

energy and larger cross section to break up the initial correlations as compared to semi-

central geometry (where spectator is very less than half part of the projectile and target

nucleus). As a result of this, the spectator matter at b̂ = 0.3, will break up into LCP’s

and free nucleons with increase in incident energy and cross section. On the other hand, the

spectator matter at b̂ = 0.6 will break up into IMF’s and MMF’s. Interestingly, it is also

observed that the chances of break up into IMF’s is more as compared to MMF’s. That’s

why the production of MMF’s and IMF’s at semi-peripheral geometry is found to increase

with increase in the cross section at all incident energies.

To make the study more interesting, in the 3rd panel from top to bottom the results are

also displayed with soft equation of state at σ40 and σ55 at E = 600 MeV/nucleon. At

semi-central geometry, increase is observed in the production of free and LCP’s at σ40 and

σ55 in the presence of momentum dependent interactions, while, decrease is observed in the

production MMF’s and IMF’s. On the other hand, at semi-peripheral geometry, increase is

observed in the production of free, LCP’s, MMF’s and IMF’s at σ40 and σ55. This study is

indicating the need of momentum dependent equation of state with large cross section for

free and LCP’s at semi-central geometry, while for the free, LCP’s, MMF’s and IMF’s at

semi-peripheral geometry.
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Figure 4.7: Same as in Fig.4.5, but for the time evolution of MMF’s.
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Figure 4.8: Same as in Fig.4.5, but for the time evolution of IMF’s.
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4.4.3 Effect of large nucleon-nucleon cross sections on fragments

production

To see the relative effect of large cross sections on the multiplicity of different kind of

fragments, we rather define a relative probability factor :

Relmult.
frag % =

(

(mult.)σ55 − (mult.)σCugnon

(mult.)σCugnon

)

× 100 (4.22)

Here mult. stands for the multiplicity of some kind of particles (free nucleons or fragments)

with Cugnon and with σ55 using the SMD equation of state. The beam energy dependence

of relative fragments probability is plotted in Fig.4.9 for free nucleons, LCP’s, MMF’s and

IMF’s, respectively. From the figure, many interesting points revealed out, which we were

not able to detect at the instant of time evolution study.

i The relative role of large cross section is more at semi-peripheral geometry as com-

pared to semi-central geometry. This is true for all kind of fragments as well as at all incident

energies.

ii The relative role at semi-peripheral geometry goes on increasing as one moves from

the free nucleons towards intermediate mass fragments. This is due to the reason that at

large cross section, possibility of transfer of energy from the participant to heavier spectator

matter increases, leading to production of more IMF’s at large cross sections.

iii At semi-central geometry, the relative role is in opposite sense for MMF’s and

IMF’s as compared to free nucleons and LCP’s. This further goes on decreasing for IMF’s.

It reveals that the role played due to Cugnon cross section leads to more MMF’s and IMF’s

as compared to constant cross section σ55. Further, it is also indicating that with increase

in incident energy, large cross section leads to formation of LCP’s and hence decrease in

MMF’s and IMF’s. The IMF’s are mostly affected by the influence of nucleon-nucleon cross

section as the relative % indicating which is 6%, 14%, −58% and −75% for free LCP’s,

MMF’s and IMF’s, respectively.

iv The almost constant production of free nucleons is observed at E = 400 MeV/nucleon

(semi-central) with Cugnon and large cross section σ55. This may be due to the other inter-

esting findings at E = 400 MeV/nucleon like the maximum stopping [35] as well as maximum

squeeze out for 79Au
197 + 79Au

197 [36]. Finding the importance of intermediate mass frag-
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ments in the presence of nucleon-nucleon cross section as well as with the availability of

experimental data for IMF’s, detailed analysis on the IMF’s is performed in the following

subsections.

4.4.4 Theory versus experiment

Impact parameter dependence of IMF’s for symmetric system

In Fig.4.10, we display the multiplicity of intermediate mass fragments (IMF’s) as a func-

tion of the impact parameter for the reaction of 79Au
197 + 79Au

197 at incident energies

100, 400, 600 and 1000 MeV/nucleon. Here soft momentum dependent interaction (SMD)

is used with different cross sections. From the figure, the multiplicity of IMF’s is maximal

at 100 MeV/nucleon for smaller impact parameters, which decreases with the increase in

the impact parameter. On the other hand, one sees a rise and fall in the multiplicity of the

IMF’s at higher incident energies. The dynamics at 100 MeV/nucleon, is mainly governed

by the mean field or by the density of the reaction as compared to other higher incident

beam energies under consideration (e.g. 400, 600 and 1000 MeV/nucleon). The incident

energy of 30 MeV/nucleon is the lowest limit for any semi-classical model, where the effect

of Pauli-blocking is ≈ 90%. Below this incident energy, quantum effects as well as Pauli-

blocking need to be redefined. There are very little effects of different cross sections at 100

MeV/nucleon. Due to the low excitation energy, central collisions generate better repulsion

and break the colliding nuclei into IMF’s, whereas for the peripheral collisions, the size of

the fragment is close to the size of the reacting nuclei, therefore, one sees a very few IMF’s.

In contrary, a rise and fall can be seen at other higher incident energies. For the central

collisions, the frequent nucleon-nucleon collisions occurring at these energies do not allow

any IMF’s production, whereas, at peripheral collisions the energy transfer is from the par-

ticipating matter to spectator matter is minimum, therefore, very few IMF’s are seen.

In all the cases, some effects of different nucleon-nucleon cross sections are visible at

higher incident energies. The use of the momentum dependent interaction yields better

comparison with ALADIN setup [33] for σ = 55 mb. These findings are in agreement with

the results reported in Ref.[1], where it was found that nucleon-nucleon cross section has

sizable effect on reaction dynamics. Note that in these studies, static equation of state was
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used.

Incident energy dependence of IMF’s for asymmetric systems

Let us now analyze the above facts in asymmetric reactions . In Fig. 4.11, asymmetric

reactions of 10Ne
20 + 13Al

27, 18Ar
40 + 21Sc

45, 36Kr
84 + 41Nb

93 and 54Xe
131 + 57La

139

are displayed as a function of beam energy at scaled impact parameter b̂ = 0.3 (semi central

collisions) using different cross sections. Final results are also compared with the NSCL

experimental data [34]. Due to no access to filters, no direct comparison with data could be

made. These comparisons are just indicating the trend within theoretical framework. From

the figure, it is clear that the trends of our calculations with soft momentum dependent

(SMD) interactions are in good agreement with experimental data. Again different nucleon-

nucleon cross sections fail to make any significant impact on the cluster dynamics.

One further see that the multiplicity of IMFs in 10Ne
20 +13 Al

27 decreases with increase

in the beam energies. For the reaction of 18Ar
40 +21 Sc

45, similar trends emerge above 55

MeV/nucleon, as in case of 10Ne
20 +13 Al

27. For energies below 55 MeV/nucleon, we see

dominated role of mean field and hence increase in the intermediate mass fragments. For

the rest of the reactions, namely, 36Kr
84 +41 Nb

93 and 54Xe
131 +57 La

139, the multiplicity of

IMF’s increases with the increase in the beam energy and cross section. One should note

that in the first two reactions, incident energy is much higher compared to the last two

reactions.

4.4.5 Effect of model ingredients on the production of IMF’s

As our aim is to see the influence of nucleon-nucleon cross sections as well as model in-

gredients on the multifragmentation. The effect of nucleon-nucleon cross sections is studied

in the above sections on the multifragmentation, here we will try to see the effect of model

ingredients. In Fig. 4.12, we display in the upper part, the effect of width of Gaussian

wave packet. In the above sections, where role of different nucleon-nucleon cross sections is

studied, a standard Gaussian width of nucleon L = 4.33 fm2 corresponding to root mean

square radius of a nucleon = 1.8 fm has been implemented. As noted in Ref.[5], this value
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of L determines the interaction range of particles and influences the density distribution of

a finite system. In a semi-classical theory, this parameter is chosen by keeping in mind the

stability of nuclei generated. A very small value of L is excluded because the nuclei would

become unstable after initialization. On the other hand, very large value of L increases

the effective range of interaction and thus lead to some smearing of fluctuations. Thus,

the value of L represents the limit for a semi-classical theory. Ideally, a time dependent

width of the Gaussian should be used. Some attempts (with limited success) have also been

made in this direction [37]. Some authors have even used a system dependent Gaussian

width[5]. The Gaussian width for a particular nucleon is chosen in a way so that maximum

stability of the nucleonic density profile can be achieved. Hartnack and collaborators[5]

used L = 8.66 fm2 for Au197 whereas it was 4.33 fm2 for the Ca40 system. We, there-

fore, display the results with narrow width (L = 4.33 fm2), labeled as Lnormal, and broad

one (L = 8.66 fm2), labeled as Lbroad. Naturally, a wider wave packet will connect large

number of nucleons in a fragment, therefore, will lead to different fragmentation patterns

depending upon energy and masses of the colliding nuclei. It is worth mentioning that the

equation of state for finite matter depends strongly on the value of the width chosen and

different Gaussian widths affect the fragmentation by 30-50%[5]. We see that the variation

of the width has sizable effect on clusterization. A broader Gaussian results in extended

interaction radius, therefore, binding more nucleons into a fragment. As a result, the frag-

ment turns much heavier than the upper limit of IMF’s (i.e 65 for (Au+Au) reaction) and

hence there is net reduction in the production of IMF’s. This result is in agreement with

the findings in Ref.[1]. One should also note that larger Gaussian width will also result

in more attractive nuclear flow and hence will push the energy of vanishing flow towards

higher incident energies. In the middle panel, we display the effect of cut off distance or

clusterization parameter RClus on fragmentation. If the system is dilute and nucleons are

quite far from each other, then different clusterization parameters should have a small role

to play. The problem, however, is that all transport models are semi-classical in nature

where, most of the time, nuclei do not have a true ground state. As a result, the nuclei may

emit nucleons and/or may disintegrate into clusters after some time. It has been reported

by several authors[38] that the nuclei (generated in semi-classical transport model) are sta-
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ble for a typical time of about 200 fm/c. This time is taken as the freeze-out time. The

distribution obtained at the freeze-out time may not represent the final distribution which

depends strongly on the incident energies. At low incident energies, it takes a very long time

whereas a relatively smaller time is needed at higher incident energies. In other words, one

can say that the nucleons and fragments at the freeze-out time may not be well separated

and may still have interactions among themselves. The problem which arose from here is

the choice of the value of the clusterization parameter representing the cutoff limit. This

range of clusterization parameter will be different in different physical situations depending

upon the excitation energy and density at freeze-out time. In a recent study, the longer in-

teraction range in the quantum molecular dynamical model is reported to give much fewer

fragments than detected in experiments [1, 7, 39]. Hence the range for the clusterization

can play a important role in the formation of fragments. The most acceptable range of the

clusterization parameter RClus is between 2 and 5 fm [1, 5, 7, 26, 38, 39]. In several earlier

publications, the author have claimed that the role of different clusterization parameters is

marginal whereas some others claim that the effect of doubling the range of the clusteriza-

tion is less than 25%[26, 38, 39]. We have also display the results with Rclus = 4 fm and a

narrower one 2.5 fm. We see that when we choose a narrow cut off distance, lesser number

of fragments are formed. This is due to the reason that the particles which were in the range

from 2.5 to 4 fm initial, were fragments, are now the free particles. In the bottom panel,

we display the role of different equations of state by simulating the reactions with hard and

soft equations of state. We see that different equations of state do not alter the results.

4.4.6 Nucleon-nucleon cross sections and model ingredients: A

comparative study

To put the nucleon-nucleon cross sections and model ingredients on the same platform, we

have displayed the variation due to cross sections and model ingredients in one figure. Two

figures (4.13 and 4.14) are representing the variation of cross sections and model ingredients

with different parameters. In Fig.4.13, the maximal number of intermediate mass fragments

(NIMF ) as well as corresponding impact parameter as a function of the incident energy for

the reaction of 79Au
197 + 79Au

197 is displayed, while, in Fig.4.14, the mass yield is displayed
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for the similar reaction at E = 600 MeV/nucleon and at semi-central geometry. Here apart

from the different Gaussian widths, clusterization distance and equations of state, we also

display the results with different clusterization algorithms (MST and SACA) and momen-

tum dependent interactions.

From the Fig.4.13, we see that different cross sections yield quite similar trend. The

maximum value of multiplicity of IMF’s is found to decrease with increase in incident en-

ergy, while opposite trend of multiplicity is obtained with nucleon-nucleon cross sections.

This type of findings were also obtained from the Fig.4.8. The lower panel of the figure is

representing the impact parameter corresponding to the value at which maximum produc-

tion of IMF’s takes place. This impact parameter value is found to shift from semi-central

to semi-peripheral values as the incident energy is increased, but not to extreme peripheral.

This is due to the reason that as one moves from semi-central to semi-peripheral geometries,

the spectator matter goes on increasing and needs more and more energy to even break up

into IMF’s.

Lets study the other aspect of this figure. The absolute value of multiplicity varies with

nucleon-nucleon cross sections as well as with other model ingredients. For example, we see

that at 600 MeV/nucleon, the SACA method with 20 mb yields results close to the MST

method with 55 mb. In another example, results of MST method with 55 mb, in the pres-

ence of momentum dependent interactions are same with reduced clusterization distance

(RClus) = 2.5 fm in the presence of static equation of state. A broader Gaussian scales

down the number and so is the case with reduced cut off distance. In order to further

strengthen our point, in Fig.4.14, the mass distribution is displayed for different nucleon

-nucleon cross sections, different clusterization methods, different Gaussian width, different

clusterization distance as well as different equations of state. The results are in supportive

nature with the Fig. 4.14 that cross sections as well as different model ingredients have the

same effect on the fragmentation pattern. For example : mass distribution is decreasing

with increase in the nucleon cross section, which is due to the break up of the initial cor-

relations among the nucleons with cross section. Similar decrease in mass distribution is

observed when one moves from MST to SACA, Lnormal to Lbroad, RClus = 4 to 2.5 fm as

well as Soft equation of state to SMD equation of state at constant cross section σ55. From
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this discussion, it is clear that the effect of larger cross section (i.e. between 20 and 55 mb)

is as large as effect of other model ingredients. Even a change of the clusterization algorithm

affect the outcome sizeably. From this analysis, one conclude that it may not be possible

to pin down the magnitude of cross section from multifragmentation since other technical

parameters such as width of the Gaussian, clusterization range or even the change of the

clusterization algorithm alters the results in similar fashion when semi-classical model such

as quantum molecular dynamics is used.

4.5 Summary

We have performed the comparative study of nucleon-nucleon cross sections and technical

parameters, known as model ingredients, in multifragmentation by studying the symmetric

and asymmetric reactions [17] in the presence of momentum dependent interactions in Quan-

tum Molecular Dynamical model. Our analysis, at the first instance, clearly indicates the

importance of momentum dependent interactions and large cross sections for free nucleons

and LCP’s at semi-central as well as semi-peripheral geometries, while for MMF’s and IMF’s

only at semi-peripheral geometries. Moreover, once the momentum dependent interactions

are implemented, they tries to reduce the effect of nucleon-nucleon cross sections at higher

energies as compared to static equation of state, where the effect of nucleon-nucleon cross

section is large. In a comparative study with experimental findings of ALADIN and NSCL

collaborations, better agreement is again obtained in the presence of momentum dependent

interactions and large cross section for symmetric as well as asymmetric systems.

Interestingly when this study is extended with technical parameters, known as model in-

gredients, (like Gaussian width, clusterization algorithm, clusterization distance as well as

equations of state) at constant nucleon-nucleon cross section, the results are found to vary

in the same fashion as were with different nucleon-nucleon cross sections. We found that

the effect of different cross sections is of the order of the one obtained from the model ingre-

dients. All model ingredients affect the fragmentation pattern in a similar fashion. Lastly,

one can conclude that it may not possible to pin down the magnitude of cross section from

the multifragmentation until and unless the model ingredients are handled very carefully.
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Chapter 5

Disappearance of elliptical flow in
intermediate energy heavy-ion
collisions and isospin effects

5.1 Introduction

In the preceding chapters, the multifragmentation is studied in detail. It is the need of

the time to study the other aspects like collective flow and nuclear stopping parameters in

intermediate energy heavy-ion collisions. In the following chapter, we will deal with the

elliptical flow, while, the nuclear stopping is studied in the chapter 6.

The information about the nature of equation of state is still one of the burning topic

of present day nuclear physics research in general and heavy-ion collisions in particular. A

quite good progress has been made in the recent years in determining the nuclear equation

of state from heavy-ion reactions [1, 2]. Among different observables, collective flow enjoys

a special status. This is due to its sensitive response to the model ingredients that define

equation of state. A lot of theoretical and experimental efforts have been made in studying

the collective flow in heavy-ion collisions [3-9]. This collective motion of the particles in

heavy-ion collision can be studied via directed and elliptical flows. The directed flow, which

measures the collective motion of the particles in the reaction plane, has been studied

extensively at BEVALAC, SIS and AGS energies [10]. This flow is reported to diminish

at higher incident energies due to the large beam rapidity. Therefore, elliptical flow [11] is

much more suited at these incident energies. The elliptical flow describes the eccentricity of

an ellipse like distribution. Quantitatively, it is the difference between the major and minor

axis. The orientation of the major axis is confined to azimuthal angle φ or φ+π
2

for ellipse
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like distribution. The major axis lies within the reaction plane for φ; while φ+π
2

indicates

that the orientation of the ellipse is perpendicular to the reaction plane, which is the case

for squeeze out flow and may be expected at mid rapidity [12]. Therefore, the elliptical flow

is defined by the second order Fourier coefficient from the azimuthal distribution of detected

particles at mid rapidity. Mathematically,

dN

dφ
= p0(1 + 2v1Cosφ+ 2v2Cos2φ). (5.1)

Here φ is the azimuthal angle between the transverse momentum of the particle and reac-

tion plane. The positive value of the elliptical flow < Cos2φ > reflects an in-plane emis-

sion, whereas, out-of plane emission is reflected by its negative value. The reason for the

anisotropic flow is orthogonal asymmetry in the configuration space (non-central collisions)

and re-scattering. In the case of elliptical flow, the initial ” ellipticity” of the overlap zone

is usually characterized by a quantity ǫ = (<y2−x2>)
(<y2+x2>)

, assuming the reaction plane being xz.

As the system expands, spatial anisotropy decreases. From the above discussion, it is clear

that the second order flow (elliptical flow) is better candidate for determining the nuclear

equation of state compared to first order sideward flow (directed flow).

In recent years, several experimental groups have measured the elliptical flow. The FOPI,

INDRA and PLASTIC BALL collaborations [4, 5] are actively involved in measuring the

excitation function of elliptical flow from Fermi energies to relativistic energies. In most of

these studies, 79Au
197 + 79Au

197 reaction has been taken [4, 5]. Interestingly, a change in

the elliptical flow was reported from positive to negative values around 100 MeV/nucleon.

Both the mean field and two-body binary collisions play an important role in this energy

domain. The mean field is supposed to play a dominant role at low incident energies. The

binary collisions starts dominating the physics gradually. A detailed study of the excitation

function of elliptical flow in entire energy region can provide a useful information about the

nucleon-nucleon interactions related to the nuclear equation of state.

As discussed above, lots of attempts have already been made in the literature to explore

different aspects of directed sideward flow. In this chapter, we attempt to study the different

aspects of elliptical flow v2.

For the present study, Isospin-dependent Quantum Molecular Dynamics (IQMD) model [13]

is used to generate the phase space of nucleons and clusterization is done by minimum span-
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ning tree with spacial (MST) and momentum cut(MSTM).

5.2 Elliptical flow

5.2.1 Origin of the elliptical flow

Elliptical flow refers to the anisotropy of the φ distribution at mid rapidity and its

value indicates whether the particle emission is in-plane or out-of-plane. The pictorial view

of the in-plane emission and out-of-plane emission is shown in Figs. 5.1 and 5.2. In the,

Fig. 5.1 is collectively representing the in-plane as well as out-of-plane directions, while Fig.

5.2 is indicating separately the both of the emission (in-plane [right side] and out-of-plane

[left side]). Azimuthal distributions which are peaked at 0o and 180o exhibit predominantly

in-plane emission, while φ distributions peaked at +90o signify out-of-plane emission. The

term elliptical, initially, was known with the names like ”Squeeze-out”, ”rotational motion”,

or ”anisotropic flow”, because the shapes of φ distributions at mid rapidity resemble ellipse

with a major axis along the x-axis (in-plane emission) or y-axis (out-of-plane emission). The

term ”elliptical flow” was introduced in 1997 by H. Sorge[11], a theoretician at SUNY-Stony

Brook.

Figure 5.1: Pictorial view of the possible movement of the nucleons in the compressed zone.
The directions of in-plane and out-of-plane emission is shown in the figure.
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Figure 5.2: In-plane (right side) and out-of-plane (left side) emission of nucleons in the re-
action plane and perpendicular to reaction-plane, respectively, is represented. This concept
will give rise to transition energy at certain incident energy.

Out-of-plane elliptical flow, which can occur in non-central collisions, is an interesting

phenomena which has been observed at incident energies ranging from 100 MeV/nucleon to

≈ 4 GeV/nucleon. The two factors are responsible for out-of-plane emission at mid rapidity:

1 The pressure build up in the compression stage compared to the energy density, and

2 The passage time for removal of the projectile- and target-like spectator of the Fireball

model. If the participant zone emit particles at an early stage of the collision, the spectator

pieces may still be close enough to cause pressure gradients in the out-of-plane direction.

Theoretically, the elliptical flow concept was originated in 1982 in term of the mid rapidity

emission perpendicular to the ”reaction plane”. This concept was given by Stocker[14] by

calculating the angular distributions of the protons emitted from near central collisions show

out-of-plane jet structures at θ = 90o , φ = +90o in a Fluid dynamical model. The cause

for this out-of-plane emission was the hindering of the compressed matter perpendicularly

emitted in reaction plane by the spectator matter. On the other hand, a kinetic energy

tensor was also employed first time to analyze the flow patterns[10]. For this, a 3×3 tensor

is constructed from the emitted particles momentum components, weighted inversely by the

mass of the fragments. The eigenvectors of the tensor represent the principal axes of the
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flow ellipsoid. Its shape and orientation relative to the reaction plane and the beam axis

can be used to measure in-plane and out-of-plane emission.

Experimentally, the out-of-plane emission, termed as squeeze-out, was first observed in

1989 by the two competing groups, namely, Diogene Collaboration at Sature Synchrotron

in Saclay [15] and the Plastic Ball/Wall group at Bevalac in Berkeley [16]. They also

characterized the emission pattern in term of the kinetic energy flow ellipsoid, which could

account for directed as well as elliptical flow.

In fact, directed and elliptical flow can be treated as the first and second order harmonics

of a Fourier expansion of φ:

F (φ) = c0 + c1cos(φ) + c2cos(2φ), (5.2)

where coefficients c1 and c2 corresponds to the strength of the directed and elliptical flow

contributions, respectively. The Fourier expansion is discussed in the detail in the following

section.

5.2.2 Fourier expansion’s second harmonic as elliptical flow

The elliptical flow is expected to be symmetric about the reaction plane as well as the

perpendicular plane, fitting a φ distribution with a cos(2φ) term could characterize the

strength of the elliptical flow. To account for both the cos(φ) nature of directed flow and

the cos(2φ) nature of the elliptical flow in the azimuthal distributions, a Fourier expansion

of the form:

dN

dφ
= aexp

0 [1 + aexp
1 cos(φ) + aexp

2 cos(2φ)] , (5.3)

is used, where dN/dφ represents the azimuthal distribution of the emitted fragments at mid

rapidity. In the eqn. 5.3, aexp
0 is a normalization factor, aexp

1 is related to the in-plane directed

flow component and aexp
2 to the elliptical flow component. The superscript ”exp” on the

coefficients is to keep in mind that the coefficients extracted from fitting the φ distribution

and are not corrected for reaction plane dispersion. This correction for the directed and

elliptical flow depend on the azimuthal angle between the reaction plane and the particle

whose flow is being measured, the data must be corrected for the effects of reaction plane
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dispersion. The form of the correction is

F low =
Observed F low

〈cos(φm − φr)〉
, (5.4)

where φm and φr are the measured and true reaction plane angles, respectively, and the

brackets signify the mean over all events. The mean cosine values are less than one and

thus this correction always increases the measured flow. The correction term 〈cos(φm−φr)〉

in its current form contains the unknown φr. Therefore, this can be obtained by an indirect

method. One method is to recognize the angle, when flow is present, a correlation exists

between the azimuthal angles of the particles from a particular collisions. This method

relies on the fact that the reaction plane resolution is directly related to the flow.

On the basis of this correction formula, the correction is made for a2 by dividing the

experimental coefficient by the correction factor:

a2 =
aexp

2

〈cos(∆φrp)
. (5.5)

Therefore,

dN

dφ
= a0 [1 + a1cos(φ) + a2cos(2φ)] , (5.6)

after the dispersion corrections are made. As the dispersion correction to aexp
2 is made after

fitting the Fourier expansion to the φ distribution, the other coefficients can be ignored in

the rest of the analysis.

The elliptical flow is quantified in term of the a2 coefficient. The ratio of out-of-plane

to in-plane emission, called the number squeeze-out ratio by Gutbroad et al.[17], is defined

by the particles emitted perpendicular to the reaction plane divided by the number of the

particles emitted in the reaction plane at mid rapidity and is given by

RN =
N(90o) +N(−90o)

N(0o) +N(180o)
, (5.7)

where N(φ) represents the summed number of particles in a 90o wedge centered at φ. More

explicitly, it can be written as:

RN =

∫ 135o

45o
dN
dφ
dφ +

∫−45o

−135o
dN
dφ
dφ

∫ 45o

−45o
dN
dφ
dφ +

∫ 225o

135o
dN
dφ
dφ

(5.8)

According to this definition, RN < 1 and > 1 are related to a preferential emission of the

matter in the reaction plane and out-of-plane, respectively, while RN = 1 corresponds to
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a perfect azimuthally isotropic distribution.

Interestingly, RN can be expressed in term of a2 coefficient from the Fourier expansion tak-

ing into account that directed flow coefficient a1 should be zero at mid rapidity (yc.m. = 0).

Therefore, inserting eqn.5.6 into 5.8:

RN =

(

[1 + a2cos(180o)] + [1 + a2cos(−180o)]

[1 + a2cos(0o)] + [1 + a2cos(360o)]

)

yc.m.=0

, (5.9)

which further reduces to

RN =
1 − a2

1 + a2

(5.10)

Further for the elliptical flow, in term of particle momentum, it is determined from the

average difference between the square of the x and y components of particle transverse

momentum provided the beam direction along z axis and the reaction plane on the x-z

plane as usual:

v2 = 〈p
2
x − p2

y

p2
x + p2

y

〉, (5.11)

where px is in the reaction plane, while py is perpendicular to the reaction plane. This

v2 is a measure of the aspect ratio of the flow ellipsoid. A positive value of the elliptical

flow describes the in-plane enhancement of the particle emission i.e. a rotational behavior.

On the other hand, a negative value of v2 shows the squeeze-out effects perpendicular to

reaction plane.

v2 can be related to the Fourier coefficient a2 by recognizing that

〈p
2
x − p2

y

p2
x + p2

y

〉 = 〈cos(2φ)〉 (5.12)

and since 〈cos(2φ)〉 corresponds to a2/2 in the Fourier expansion of eqn. 5.6,

v2 =
a2

2
. (5.13)

On the basis of this, RN can be expressed in term of v2 as:

RN =
1 − 2v2

1 + 2v2
(5.14)

Eqns.5.10, 5.13 and 5.14 give the expressions for relating the Fourier coefficient a2 to other

methods for measuring anisotropy. In the present analysis, v2 is the chosen elliptical flow

representation.
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5.2.3 Disappearance of elliptical flow

A promising and useful feature of the elliptical flow is the existence of transitions between

two forms of the observable. These transitions amount to measuring ”zeros” in the flow

excitation functions, or the energy dependence of the flow variables.

Fig. 5.3 is a schematic representation of the elliptical flow excitation functions for nucleons

over a wide range of beam energies. Dashed area of the curve at higher energies represent

studies that are currently underway, and the dashed area in the NSCL energy regime rep-

resents the energy range studied in this chapter. The following transitions are believed to

be present in the excitation functions, indicated by stars(⋆):

Figure 5.3: Schematic behavior of the elliptical flow as a function of the beam energy. The
figure is taken from the Ref[18].

1. transition from in-plane to out-of-plane elliptical flow in the NSCL and near SIS

energy region;

2. transition from out-of-plane to in-plane elliptical flow at AGS beam energies.

The first one is the object of study in this thesis and will be explained in detail in results
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and discussion section.

Transition 2 in the Fig. 5.3 has been studied extensively in the past couple of years by

Figure 5.4: Schematic representation of φ distributions for (a) predominantly in-plane and
(b) predominantly out-of-plane emission. The figure is taken from the Ref[18].

experimental groups at the AGS energy. The most interesting results are from the E895

collaborations, which measured the proton elliptical flow in 79Au
197 + 79Au

197 collisions for

beam energies of 2-8 GeV/nucleon [19]. They observed the elliptical flow excitation exhibits

a cross-over at ≈ 4 GeV/nucleon.

Transition 1 in Fig. 5.3 corresponds to the change in the direction of preferred fragment

emission from the compressed participant region. The energy in this energy region at which

elliptical flow reduces to zero is known as transition energy. At energies below the transi-

tion energy, emission is primarily in the reaction plane (φ distribution is peaked at 0o, 180o).

Above the transition energy, a maximum emission in the direction perpendicular to the

reaction plane on both sides (known as squeeze-out) appears because of the compressed

matter in the interaction region can escape preferentially in directions unhindered by the

presence of the projectile and target spectators. In other words, one can say that the az-

imuthal emission pattern is primarily out-of-plane, signified by peaks at +90o. Fig. 5.4 is a

schematic representation of the φ distributions for both elliptical flow regions.

The transition energy for 79Au
197 + 79Au

197 is one of the topics in chapter 5[20]. The mass

dependence of transition energy is also measured for light charged particles. This energy is

further compared with the findings of INDRA, FOPI and PLASTIC BALL collaborations
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for 79Au
197 + 79Au

197 for protons and Z ≤ 2 particles.

5.3 Results and discussion

We, here, perform a complete systematic study for the mass range between 80 and 394

units and over full range of the impact parameters. We here simulate the reactions of

20Ca
40 + 20Ca

40, 28Ni
58 + 28Ni

58, 41Nb
93 + 41Nb

93, 54Xe
131 + 54Xe

131 and 79Au
197 + 79Au

197

at incident energies between 50 and 1000 MeV/nucleon. In addition, the reactions of

40Zr
96 + 40Zr

96 and 44Ru
96 + 44Ru

96 are also simulated to check the isospin effects

explicitly. The choice of equation of state (or compressibility) is still a controversial one.

Many studies advocate softer matter, whereas many more believe the matter to be harder in

nature[21]. Moreover, in Ref.[22], it is shown that elliptical flow is unaffected by the choice

of equation of state. For the present analysis, a hard (H) and hard momentum dependent

(HMD) equation of state has been employed along with the standard energy-dependent cross

section. As noted in Ref.[23], the relativistic effects do not play role at these incident ener-

gies and the intensity of sub-threshold particle production is very small. The phase space

generated by the IQMD model has been analyzed using the minimum spanning tree (MST)

[2, 24] method. The MST method binds two nucleons in a fragment if the distance between

them is less than 4 fm. In recent years, several improvements have also been suggested [25].

One of the improvements is to also imply momentum cut of the order of Fermi momentum.

This method is dubbed as MSTM method. The entire calculations are performed at t = 200

fm/c. This time is chosen by keeping in view the saturation of the collective flow [8].

The definition of elliptical flow used in the present analysis is the one displayed in eqn.5.11.

A positive value of the elliptical flow describes the eccentricity of an ellipse like distribu-

tion and indicates in-plane enhancement of the particle emission i.e. a rotational behavior.

On the other hand, a negative value of v2 shows the squeeze out effects perpendicular to

the reaction plane. Obviously, zero value corresponds to an isotropic distribution in the

transverse plane. The v2 is generally extracted from the mid rapidity region. The parti-

cles corresponding to (Yc.m./Ybeam > 0.1) has been defined as projectile like (PL), whereas,

(Yc.m./Ybeam < −0.1) constitutes the target like (TL) particles.
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5.3.1 Transverse momentum dependence of elliptical flow

In Fig. 5.5, the final state elliptical flow is displayed for the free particles (upper panel),

light charged particles (LCP’s) [2 ≤ A ≤ 4](middle), and intermediate mass fragments

(IMF’s) [5 ≤ A ≤ Atot/6](lower panel) as a function of transverse momentum (Pt). A Gaus-

sian type behavior is observed in all cases. Note that this elliptical flow is integrated over

entire rapidity range. This Gaussian type behavior is quite similar to the one obtained by

Colona and Toro et al.[26]. One sees that elliptical flow is positive in the whole range of Pt.

The collective rotation is one of the main mechanism to induce the positive elliptical flow

[27]. It is also evident from the figure that the peaks of the Gaussian shifts toward lower

values of Pt for heavier fragments. This is due to the fact that the free and light charged

particles feel the mean field directly, while heavy fragments have weaker sensitivity [28]. Fur-

thermore, the peak values of v2 for the free nucleons and LCP’s at 50 MeV/nucleon is 0.70,

0.411, 0.126 and 0.27, 0.20, 0.059 for the reactions of 79Au
197 + 79Au

197, 54Xe
131 + 54Xe

131

and 20Ca
40 + 20Ca

40, respectively and the corresponding ratios are ≈ 5.0, 3.3 and 1. The

mass ratio of these reactions is 4.93, 3.27 and 1, whereas, N/Z ratio is 1.49, 1.42 and 1.

The v2 ratios are in closer agreement with the system mass ratios. The results, however, are

different at E = 100 MeV/nucleon. Note that the peak values for the free nucleon are 0.48,

0.34, 0.134 and for LCP’s numbers, are 0.132, 0.125, 0.058. Their corresponding ratios are

≈ 2.92, 2.36 and 1, indicating a clear deviation from the mass ratio.

To further strengthen our interpretation of the estimated v2 ratios, we display in Fig. 5.6,

the reactions of 40Zr
96 + 40Zr

96 and 44Ru
96 + 44Ru

96 under the same conditions for LCP’s

in the presence of Coulomb interactions and symmetry energy. These reactions are analyzed

within MST method with momentum cut. Interestingly, the N/Z effect is more visible at

E = 100 MeV/nucleon, indicating that this difference is not due to the mass dependence

alone, but may be due to Coulomb interactions and isospin effects. To see the effect of

Coulomb interactions and symmetry energy (leading to isospin), in Fig. 5.7, we have dis-

played the effect of Coulomb interactions (top panel), symmetry energy (middle panel) and

no Coulomb + no symmetry on the transverse momentum dependence of elliptical flow.

The black solid line is for 44Ru
96 + 44Ru

96, while, shaded region is showing the effect on the
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40Zr
96 + 40Zr

96 reaction. It is clear from the figure that marginal difference is obtained on

transverse momentum dependence of the elliptical flow in the absence of symmetry energy

and Coulomb interactions (bottom panel). The same is true in the presence of Coulomb

interactions (top panel). The interesting results are in the middle panel (where Coulomb

is absent and symmetry is present), indicating the visible effect of symmetry energy on the

elliptical flow values for the systems having same mass number and different atomic num-

ber. This is further indicating that difference in Fig. 5.6(bottom panel) is supported by the

difference in the middle panel of the Fig. 5.7. Our findings in Fig. 5.6 are also supported by

Zhang et al. [29], where they showed that neutron-rich system exhibits weaker squeeze-out

flow. At low incident energy (say 50 MeV/nucleon), binary collisions are rare, therefore

isospin in the mean field does not play role. On the other hand, around 100 MeV/nucleon,

both isospin of the mean field and binary collisions contribute, making isospin maximum.

At higher incident energies, the role of mean field reduces. This situation is similar to the

intermediate mass fragments, where maximum value is obtained around 100 MeV/nucleon

[30]. It is clear now that symmetry energy is more responsible for the deviation in elliptical

flow value as compared to coulomb interactions.

To understand the origin of this isospin effect, the transverse momentum dependence of el-

liptical flow for target-like, mid-rapidity and projectile-like distributions is displayed in Fig.

5.8. As discussed earlier, the projectile like, target like and mid-rapidity regions are specified

according to the rapidity Yc.m./Ybeam distribution. We know that the maximum contribution

in projectile like and target like region comes from the spectator zone of the projectile and

target nucleus, respectively. It is well explained earlier that elliptical flow originates from

the compressed participant zone. That’s why, from the figure, one can see that isospin effect

originates from the mid-rapidity region or in other words from the participant zone. It is

also clear that the isospin effects are stronger for LCP’s compared to other fragments. This

is due to the fact that heavier fragments have weak sensitivity towards mean field [28]. This

weak sensitivity of the mean field is due to the indirect pairing between the nucleons of the

projectile and target in the compressed participant zone for heavier fragments compared

to LCP’s, where direct pairing takes place between the nucleons. This leads to the more

pronounced effect of the symmetry energy on the LCP’s as compared to free and IMF’s.
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One point which still striking the mind is what will be the effect of the symmetry energy

and Coulomb interactions on the individual system under the study. For this, in Fig.5.9, we

display the transverse momentum dependence of elliptical flow for LCP’s in the mid-rapidity

region (a) with and without symmetry energy (top panel), (b) with and without Coulomb

interactions (middle panel) (c) without symmetry energy and Coulomb interactions (bot-

tom panel) for 40Zr
96 + 40Zr

96 reaction. More squeeze-out is observed in the presence of

Coulomb interactions and symmetry energy. This is due to the repulsive nature of Coulomb

interactions and additional push to the participant zone in out-of-plane direction in the

presence of symmetry energy. Once again effect of symmetry energy is dominating as com-

pared to Coulomb interactions. The percentage effect of symmetry energy (displayed in

top panel) is 55%, while of the Coulomb interactions is 35 % (displayed in middle panel).

Similar findings were also observed when these effects were studied for different systems
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in Figs. 5.6 and 5.7. This is in agreement with the findings of Chen et al. [31], where it

was concluded that light clusters production acts as a probe for symmetry energy. This is

strengthening our agreement that elliptical flow depends on the N/Z ratio or alternatively

the isospin dependence rather than on the size of the interacting system.

5.3.2 Beam energy dependence of elliptical flow

In Fig. 5.10, we display the variation of the excitation function of elliptical flow v2 for free,

LCP’s and IMF’s over entire rapidity and mid-rapidity region. The elliptical flow is found

to become less positive (entire rapidity) or more negative (mid-rapidity) with the increase in

the beam energy, upto a certain energy, and then again becomes more positive or less nega-

tive. This is due to the fact that spectators move faster after the v2 has reached a minimum

value[5]. This energy, at which the behavior changes is found to decrease with the size of

the fragment. It means that the flow of heavier fragments is larger compared to LCP’s/free

nucleons at all beam energies. These type of findings are also reported by different authors

in Ref. [22]. This is true for entire rapidity region as well as for mid-rapidity region.

The interesting phenomena of transition from in-plane to out-of-plane is observed at mid-

rapidity region[4, 32], while no transition is observed when integrated over entire rapidity re-

gion. The energy at which this transition is observed is dubbed as transition energy(ETrans).

It means that participant zone is responsible for the transition from in-plane to out-of-plane.

That’s why free particles and LCP’s, which originate from the participant zone, are show-

ing a systematic behavior with the beam energy as well as with the composite mass of the

system. The elliptical flow for these particles is found to become more negative with the

increase in the composite mass of the system. Heavier is the system, more is the Coulomb

repulsion and more negative is the elliptical flow. This systematics of ETrans with composite

mass of the system is discussed later.

5.3.3 A comparison with experimental findings

In Fig. 5.11, we show v2@mid rapidity (|y| = | yc.m

ybeam
| ≤ 0.1) for Z ≤ 2 (left panel) and

for protons (right panel) as a function of the incident energy. The rapidity cut is in ac-
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cordance with the experimental findings. The theoretical results are compared with the

experimental data extracted by INDRA, FOPI and PLASTIC BALL collaborations[4, 5, 6].

With the increase in the incident energy, elliptical flow v2 changes from positive to negative

values exhibiting a transition from the in-plane to out-of-plane emission of nucleons. This

is because of the fact that the mean field, which contributes to the formation of a rotat-

ing compound system, becomes less important and the collective expansion process based

on the nucleon-nucleon scattering starts to be predominant. This competition between the

mean field and N-N collisions depends strongly on the effective interactions that leads to the

different transition energy due to different equations of state. Due to repulsive nature of

the momentum dependent interactions, which leads to the suppression of binary collisions,

less squeeze-out is observed in the presence of momentum dependent interactions (HMD)

compared to static one (H). The maximal negative value of v2 is obtained around E = 500

MeV/nucleon with hard (H) and hard momentum dependent (HMD) equations of state.
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This out-of-plane emission decreases again towards the higher incident energies. This hap-

pens due to faster movement of the spectator matter after v2 reaches the maximal negative

value [5]. This trend is in agreement with experimental findings. A close agreement with

data is obtained in the presence of hard equation of state for Z ≤ 2 particles, while, in the

presence of momentum dependent interactions for protons. Similar results and trends have

also been reported by Zhang et.al. in their recent communication [32].

5.3.4 Impact parameter dependence

The investigation of the elliptical flow with scaled impact parameter over entire rapidity

range is displayed in Fig. 5.12. Here the top, middle and bottom panels represent the free

nucleons, LCP’s and IMF’s. The value of the elliptical flow v2 becomes more positive with

the impact parameter and composite mass of the system at E = 50 MeV/nucleon, while at

higher energies (not shown here), it is found to become less positive (entire rapidity) or more

negative (mid-rapidity) with composite mass of the system. This is indicating the dominance

of the in-plane flow at low incident energies with increasing impact parameter and composite

mass of the system. Moreover, dominance of the out-of-plane flow at higher energies with

small impact parameter and composite mass of the system is observed. With the increase in

the beam energy, the expansion of the compressed zone becomes more vigorous, while, with

an increase in the impact parameter, participant zone decreases, resulting an increases in

the spectator region indicating dominance of azimuthal anisotropy with impact parameter.

On the other hand, it reduces with beam energy. These observations are consistent with

the experimental findings and with other theoretical works [22, 27, 33].

5.3.5 Power law dependence of transition energy

Finally, we carry out the system size dependence of the elliptical flow for free nucleons and

LCP’s. In Fig. 5.13, we show the transition energies ETrans as a function of the composite

mass of the system for free nucleons and LCP’s, which are extracted from the Fig. 5.10.

From the figure, we see that the transition energy decreases with the composite mass of the

system as well as with the size of the fragment. The reason for this is that the pressure
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produced by the Coulomb interactions increases with the system size. This dependence can

be fitted using a power law of the kind:

ETrans = C(A−τ
tot ) (5.15)

The exponent τ is found to be 2 times for free particles (0.67) compared to LCP’s (0.35).

This exponent is quite smaller compared the exponent of balance energy in directed flow

[32]. This is due to the different origin of the balance and transition energy. The balance

energy counter balances the mean field and N-N collisions, while transition energy is due to

the more complex effects such as expansion of the compressed zone and shadowing of the

cold spectator matter.

5.4 Summary

In this chapter, we have presented the isospin dependence (in term of symmetry energy)

and the disappearance of elliptical flow in the presence of isospin-dependent quantum molec-

ular dynamics (IQMD) model at intermediate energies for the several systems. The isospin

dependence of the elliptical flow is studied in term of the transverse momentum dependence

for different kind of fragments (free nucleons, LCP’s and IMF’s). The free nucleons and

IMF’s are found to be system mass dependent for the incident energies under consideration,

while LCP’s are found to be isospin dependent at relative high incident energy, where role of

mean field and NN collisions is equal(say E = 100 MeV/nucleon). Moreover, these isospin

effects due to symmetry energy are originating from the mid-rapidity region. In other words,

one can say that LCP’s acts as a probe to symmetry energy.

The disappearance of elliptical flow is observed at mid-rapidity region, while no transition

is observed, when integrated over entire rapidity region. This is indicating the origin of

squeeze-out or out-of-plane emission is from the participant zone and not from the specta-

tor zone. The energy at which elliptical flow disappears is, dubbed as, transition energy.

This transition energy is found to be strongly dependent on the size of the system as well

as size of the fragment.

When comparison of excitation function of elliptical flow is made with experimental find-

ings of INDRA, FOPI and PLASTIC BALL collaborations, the charged particles (Z ≤
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2) are well explained by the static equation of state, while for the protons, good agreement

with the inclusion of momentum dependent interactions is observed. This comparison can

be explored to more accuracy by studying the effect of isospin-dependent cross sections on

the excitation function of elliptical flow.

Finally, the transition energy for free nucleons and LCP’s is parametrized in term of mass

power law and is found to decrease with the composite mass of the system as well as with

the size of the fragment. Further, one can elaborate the dependence of transition energy

on the impact parameter, isospin-dependent cross sections, model ingredients, method of

analysis, different rapidity cuts as well as different transverse momentum cuts. This can

provide a challenge to the experimentalist to prove the theoretical findings.
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Chapter 6

Fragmentation process as a indicator
for nuclear stopping and momentum
dependent interactions

6.1 Introduction

Nuclear reactions from low to relativistic energies provide variety of phenomena. As

stated in chapter 1, Pauli principle blocks majority of scattering of nucleons at low incident

energies. Therefore, attractive mean field dominates the physics in this energy regime[1].

The phenomena of interest in this energy region are structure of nuclei, phenomena of fusion-

fission[2], cluster radioactivity[3] as well as halo nuclei [4]. At intermediate energies, however,

a mixture of attractive mean field and repulsive nucleon-nucleon scattering exists[5, 6]. Both

these regimes together, lead the matter from a fused state to total disassembly. One is also

interested to understand the mechanism behind this. This mechanism has motivated the

nuclear community to one of the goals of heavy-ion collisions (HIC) at intermediate energies,

which is to extend the knowledge of hot and dense nuclear matter to the extreme conditions.

In the past, these studies were focused on multifragmentation, that constitutes fragments

of all sizes[7]. The process of multifragmentation is also studied in this thesis in chapter 3

and 4, indicating the importance of momentum dependent interactions and nucleon-nucleon

cross-sections. Additional promising observable for the understanding of nuclear equation of

state is the anisotropy in the momentum distribution that includes the directed in-plane flow

(bounce off ) as well as out of plane flow (squeeze out) [5, 6]. The absolute values of the flow

results from the interplay between the attractive mean field and repulsive nucleon-nucleon

scattering. This interplay is also responsible for the transition from a fused state to total
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disassemble one. This transition between the in-plane and out-of-plane emission is studied

in chapter 5 of this thesis. The another phenomena linked with the above interplay is the

global stopping of nuclear matter. Recently, Puri and co-workers[8], tried to correlate the

multifragmentation with global nuclear stopping. Their findings revealed that light charged

particles (LCP’s) acts in a similar fashion like anisotropy ratio. They, however, did not take

isospin of the system into account. As discussed in chapter 5, the isospin degree of freedom

is found to affect the light charged particles to a great extent. This makes the study of

correlation between the nuclear stopping and LCP’s uni-important.

The recent advances in the radioactive nuclear beam (RNB) physics is providing scientific

community a unique opportunity to investigate the isospin effects in heavy-ion collisions

(HIC’s) [9] with respect to the above rare phenomena [10, 11]. Beside the many existing ra-

dioactive beam facilities, many more are being constructed or under planning, including the

Cooling Storage Ring (CSR) facility at HIRFL in China, the Radioactive Ion Beam (RNB)

factory at RIKEN in Japan, the FAIR/GSI in Germany, SPIRAL2/GANIL in France, and

Facility for Rare Isotope Beam (FRIB) in the USA [12]. These facilities offer possibility

to study the properties of nuclear matter or nuclei under the extreme conditions of large

isospin asymmetries. Though at low incident energies, where fusion and related phenomena

are dominant, systematic studies on isospin degree of freedom are available [13], such studies

at intermediate energies are rarely available[9]. One of the cause could be the much more

complex dynamics involved at intermediate incident energies. Among various above men-

tioned phenomena nuclear stopping of the colliding matter has gained a lot of interest since

it gives us possibility to examine the degree of thermalization or equilibration or stopping

of the nuclear matter.

Nuclear stopping in heavy-ion collisions has been studied by the means of rapidity distri-

bution [14] or by the asymmetry of nucleonic momentum distribution [15]. As pointed out

by Bauer [15], nuclear stopping at intermediate energies is determined by the mean field

as well as by the in-medium NN cross-sections. Unfortunately, his calculations were silent

about the symmetry potential. The recent work of many authors [9, 16, 17] suggest that the

degree of approaching isospin equilibration helps to probe the nuclear stopping in heavy-ion

collisions. In Ref.[16], isospin dependence of cross-section was investigated in nuclear stop-
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ping. In a recent communication [17], authors studied the behavior of excitation function

Qzz/nucleon and concluded that Qzz/nucleon can provide information about the isospin

dependence in term of cross-section. Several more studies have also focused in the recent

years on the isospin degree of freedom [18].

As is clear from the literature that the effect of isospin degree of freedom on the nuclear

stopping is studied many times, but, no one has tried to correlate the LCP’s production

with the nuclear stopping or thermalization in the presence of symmetry energy [19].

Interestingly, no systematical study is available in the literature on the effect of isospin

degree of freedom via symmetry energy on nuclear stopping. This becomes much more

important if one acknowledges that the effect of symmetry energy could be altered in the

presence of momentum dependent interactions [19], which has become essential part of the

interaction for any reasonable dynamical model [9, 14]. Thus, our aim is at least three folds:

• To focus on the relation between LCP’s and equilibration of the reaction i.e. nuclear

stopping in the presence of symmetry energy using isospin-dependent quantum molec-

ular dynamics (IQMD) model[20].

• We plan to understand the role of symmetry energy in the presence of momentum

dependent interactions in a systematic way.

and

• To further examine how mass dependence alter the above findings. It is worth men-

tioning that the study of the mass dependence is very essential for any meaningful

conclusion.

This study is done in the presence of Isospin-dependent Quantum Molecular Dynamics

(IQMD) Model. The isospin effects in the model are added in term of symmetry potential

and isospin dependent cross sections. The isospin dependent cross sections are discussed in

detail in chapter 2 and 4, while symmetry energy and symmetry potenial is discuused in

the following section.
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6.2 Symmetry energy and symmetry potential

A binding formula expresses the energy E of a nucleus in terms of nucleon numbers,

E = E(A,Z). Here, A and Z are the net nuclear nucleon and proton numbers, respectively,

and the neutron number is N = A−Z. The basic[21], termed Bethe- Weizsacker [22](BW),

formula represents the energy as a sum of five trms only:

E = −aVA + asA
2/3 +

acZ(Z − 1)

A1/3
+

aA(N − Z)2

A
+ δ. (6.1)

For the details of these terms reader is referred to the Ref.[22]. The term of interest is

the fourth term in formula, aA(N − Z)2/A, with aA ≈ 21 MeV, is commonly called a

symmetry term although asymmetry would be a more adjective. This term accounts for the

binding, under the sole influence of nuclear interactions, being stronger for more symmetric

nuclei, with N ≈ Z, than for more asymmetric nuclei with different N and Z. This term is,

in particular, related to a stronger attraction between neutrons and protons than between

like nucleons. In other words, it is the change in nuclear energy associated with changing

neutron-proton asymmetry (N − Z)/A. The symmetry with respect to the np interchange

in the symmetry term reflects the charge symmetry [21] of nuclear interactions.

This symmetry energy in term of symmetry potential VSym can be written in three different

forms[9].

V 1
Sym = cF1(u)δτz, (6.2)

V 2
Sym = cF2(u)δτz +

1

2
cF2(u)δ

2, (6.3)

V 3
Sym = cF3(u)

[

δτz − 1

4
δ2
]

, (6.4)

with τz = 1 for neutrons, and −1 for protons.

where F1(u) = u, F2(u) = u2 and F3(u) = u1/2 and, u = ρ
ρ0

; δ is the relative neutron

excess δ = ρn−ρp

ρn+ρp
= ρn−ρp

ρ
; ρ, ρ0, ρn and ρp are the total, normal, neutron and proton

densities respectively. The strength of c is of the order of 32 MeV to reproduce the 4th term

of the Bethe Weizsacker mass formula.

The IQMD code [5] developed at Subatech, France by C. Hartnack and collaborators reduces

the above symmetry potentials in the form as:

VSym = t6
1

̺0

T i
3T

j
3 δ(ri

′ − rj) (6.5)
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where, T i
3, T

j
3 are their respective T3 components (i.e. 1/2 for protons and -1/2 for neutrons)

and t6 = 100 MeV. Here again the strength of symmetry energy is found to be of the order

of 32 MeV.

It is clear from the Ref.[23] that the repulsive (attractive) mean field potential for neutrons

(protons) depends sensitively on the form of F (u), the neutron excess δ and the baryon

density ρ. In collision of neutron-rich nuclei at intermediate energies, both δ and ρ can be

appreciable in a large space-time volume where the isospin-dependent mean field potentials

are strong. Since the symmetry potentials have opposite signs for neutrons and protons,

they affect differently the reaction dynamics of neutrons and protons. For protons, the

nuclear mean field potential also includes a Coulomb term. The competition between the

Coulomb and the symmetry potential then leads to possible differences in the yield and

energy spectra of protons and neutrons as well as other isospin effects.

In the present chapter, we have studied the effect of the strength of the symmetry energy

of 32 MeV on the fragmentation and nuclear stopping, while the effect of coulomb and

symmetry potential was discussed in the previous chapter.

6.3 Origin of nuclear stopping and light charged par-

ticles

If two nuclei collide three different scenarios are possible. These different scenarios are

shown in Fig.6.1:

1 The nuclei are repelled by each other like in the collision of two hard spheres. (shown

in Fig. 6.1[a]).

2 The nuclei are compressed and mix-up like in the collisions of two (compressible)

droplets (shown in Fig. 6.1[b]).

3 The nuclei are passing each other without much interactions like two large crowds of

bees (shown in Fig.6.1[c]).

The different scenario would cause different longitudinal momentum distributions for

the projectile and target particles. The scenario shown in Fig. 6.1[b] is the one which

happens in intermediate energy heavy-ion collisions. The global stopping is defined as the
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Figure 6.1: Schematic movement of the projectile and target nucleons. The figure is repre-
senting (a)Full stopping (b) Stopping and mixing (c) Transparency

randomization of one-body momentum space or memory loss of the incoming momentum

or momentum transfer during the break up of the initial correlations among nucleons of

projectile and target nuclei. The colliding nuclei not only compress each other, they also

heat the matter[8, 14]. In addition, the destruction of initial correlations, makes the matter

homogeneous and one can have global stopping. More the initial memory of nucleons is

erased, better it is stopped and better one has average mixing of projectile and target

momentum (shown in Fig. 6.1[b]). The degree of stopping however, may vary drastically

with incident energies, mass of colliding nuclei and colliding geometry. The degree of global

stopping has also been linked with the thermalization (equilibrium) in heavy-ion collisions. A

complete knowledge about the degree of stopping is very important since it can be connected

to the properties of the system, equation of state and in medium properties of the nucleon-
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nucleon cross-section [24].

Theoretically, these happenings are followed by a variety of models. Some models assume a

priori equilibrium (at least at local level) whereas others hunt for the degree of thermalization

in a reaction. Several models which depend on the assumption of equilibrium, have been

applied successfully to study the physics at low and intermediate energies [25].

On the other hand, light charged particles are the particles having the range 2 ≤ A ≤ 4.

The detailed analysis of production of different kind of fragments is studied in literature by

taking into account different equations of state, different nucleon-nucleon cross sections as

well as different methods of analysis[7, 10]. Any type of the fragment can be considered for

the correlation with the nuclear stopping, provided both the quantities must have similar

properties. Out of the different kind of fragments, light charged particles are expected to be

an indicator for nuclear stopping because of their origin from the participant zone, pairing

nature of the particles in LCP’s, acts as a probe to symmetry energy. In the literature, the

light and medium mass fragments (produced and emitted in reactions), have also been used

to get information about the thermalization and stopping in heavy-ion collisions [8, 26, 27,

28]. This work was done without taking into account the effect of symmetry energy. The

origin of light and medium mass fragments is still under debate [6, 8].

The global stopping in heavy-ion collisions has been studied with the help of many different

variables. In earlier studies, one used to relate the rapidity distribution with global stopping.

The rapidity distribution can be defined as [8, 29]:

Y (i) =
1

2
ln
E(i) + pz(i)

E(i) − pz(i)
, (6.6)

where E(i) and pz(i) are, respectively, the total energy and longitudinal momentum of ith

particle. For a complete stopping, one expects a single Gaussian shape. Obviously, narrow

Gaussian indicate better thermalization compared to broader Gaussian.

The second possibility to probe the degree of stopping is the anisotropy ratio (R) [16]:

R =
2

π

(
∑

i |p⊥(i)|)
(

∑

i |p‖(i)|
) , (6.7)

where, summation runs over all nucleons. The transverse and longitudinal momenta are

p⊥(i) =
√

p2
x(i) + p2

y(i) and p‖(i) = pz(i), respectively. Naturally, for a complete stopping,

R should be close to unity.
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Another quantity, which is indicator of nuclear stopping and has been used recently, is the

quadrupole moment Qzz, defined as[16]:

Qzz =
∑

i

(

2p2
z(i) − p2

x(i) − p2
y(i)

)

. (6.8)

Naturally, for a complete stopping, Qzz should be close to 0.

In this chapter, we will show the similarities in the different properties of LCP’s and

equilibration of the reaction i.e. nuclear stopping in the presence of symmetry energy and

then understand the role of symmetry energy in the presence of momentum dependent

interactions in a systematic way. Further we will examine, how mass dependence is altering

the above findings.

6.4 Results and Discussion

In the present analysis, thousands of event were simulated for the neutron-rich reaction

of 54Xe
131 + 54Xe

131 at incident energies between 50 and 1000 MeV/nucleon using hard

equation of state along with isospin dependent free and constant nucleon-nucleon cross-

sections[30]. Moreover, to see the effect of compressibility on nuclear stopping and frag-

mentation, soft equation of state is also used in Fig.6.6. The geometry of the collision was

varied between the most-central to peripheral one. The role of symmetry energy is studied

by simulating the above reaction with and without this term. In addition, the reactions of

20Ca
40 +20Ca

40, 28Ni
58 +28Ni

58, 41Nb
93 +41Nb

93, 79Au
197 +79Au

197, 20Ca
34 + 20Ca

34 (N/Z

= 0.7), 20Ca
40 + 20Ca

40 (N/Z = 1), 20Ca
48 + 20Ca

48 (N/Z = 1.4) and 20Ca
57 + 20Ca

57

(N/Z = 1.85) are also simulated to see the system size and N/Z effects on the production of

fragments and nuclear stopping. As stated above, we plan to study the degree of stopping

and emission of fragments using symmetry energy and isospin-dependent cross-section. We

shall also correlate the degree of stopping with the emission of light charged particles as is

also done in Ref.[8]. The fragments are constructed within minimum spanning tree (MST)

method [7], which binds nucleons if they are with in a distance of 4 fm. Finally, the effect

of momentum dependent interactions on the nuclear stopping in the presence of symmetry

energy is also studied.

179



-150

-75

0

75

150

-150

-75

0

75

150

-150

-75

0

75

-150

-75

0

75

-150 -75 0 75
-150

-75

0

75

-150 -75 0 75 150
-150

-75

0

75

 Free
 LCP's
 IMF's

ESym = 0 MeV

 
0b

 

 

 
E = 400 MeV/nucleon

(a-i) (a-ii)
ESym = 32 MeV

 

 

 

(b-i)

 
3.0b

 

X 
(fm

)

(b-ii)
 

 
(c-i)

 
6.0b

 

 

(c-ii)
 

Z (fm) 

Figure 6.2: The final phase space of a single event for the reaction of 54Xe
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131

with(ii) and without symmetry energy(i). The top(a), middle(b) and bottom (c) panels are,
respectively, for scaled impact parameters b̂ = 0, 0.3, 0.6. Different symbols are for free
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6.4.1 The phase space of fragments

In Fig.6.2, we display the final phase space of a single event of 54Xe
131 + 54Xe

131 at inci-

dent energy of 400 MeV/nucleon, with and without symmetry energy. The top, middle and

bottom panels are at b̂ = 0, 0.3 and 0.6, respectively. Here phase space of free particles [A

=1], light charged particles (LCP’s) [2≤A≤4] and intermediate mass fragments(IMF’s)[5≤

A ≤ 44] is displayed. We note that irrespective of the symmetry energy, central collisions

lead to complete spherical distribution of particles, indicating, spreading of the nucleons in

all directions. It means that breaking of initial correlations among nucleons is maximal in

this region and, as a result, more randomization and stopping in the hot and compressed

nuclear matter occurs. This effect seems to decrease with impact parameter. Since free

particles as well as LCP’s originate from the mid-rapidity region, they are better suited for

studying the degree of stopping reached in a heavy-ion collision. On the other hand, IMF’s

seems to originate either from the target or from the projectile region, therefore, are the

remnant/residue of the spectator matter. This observation is in agreement with many other

studies [7, 8, 31].

6.4.2 The rapidity distribution

To further quantify this observation, we display in Fig.6.3, the rapidity distribution dN
dY

for the emission of free nucleons as well as LCP’s and IMF’s. We see that free particles and

LCP’s emitted in the central collisions form a single narrow Gaussian shape, whereas, IMF’s

have broader Gaussian, indicating less thermalization. As we increase impact parameter,

single Gaussian distribution splits into two Gaussian (at target and projectile rapidities),

indicating correlated matter. From the shape of the Gaussian, one sees that free particles

and LCP’s are better indicator of thermal source. Obviously, this condition is necessary,

but, not a sufficient one.

From the figure, it is also evident that the symmetry energy does not plays significant role

for the rapidity distribution. The peak value of the Gaussian for LCP’s is altered by about

10%, whereas, nearly no effect is seen in the case of intermediate mass fragments. The

reason is that LCP’s can feel the role of mean field directly, while, the heavy fragments have
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weak sensitivity [32]. From the figure, one sees a one to one relation between the degree of

stopping and emission of LCP’s. These conclusions match with the findings of Fig.6.2 and

Ref.[8].

6.4.3 Impact parameter dependence of fragments and nuclear
stopping

In Fig.6.4, we display impact parameter dependence of global variables (R andQzz/nucleon),

whereas, the multiplicity dependence of free nucleons and LCP’s is displayed in Fig.6.5. The

displayed results are at ESym= 0 and ESym = 32 MeV in each panel, while, in panel (b) the

results are also displayed with isospin-dependent cross-section. The value of cross-section

is denoted in the superscript. From Fig.6.4, We observe that R and Qzz/nucleon behave

in opposite fashion i.e. R and 1
Qzz/nucleon

will behave in a similar fashion. For R > 1 and

Qzz/nucleon < 0, it can be explained by the preponderance of momentum flow perpendicu-

lar to the beam direction[33]. The maximum stopping is observed around 400 MeV/nucleon,

which is in supportive nature with the findings of W. Reisdorf et al.[27]. In their work,

they measured the nuclear stopping from 0.090 to 1.93 GeV/nucleon and maximal stopping

was observed around 400 MeV/nucleon. It is clear that if the reaction reaches the maximal

stopping around certain energies, the matter formed in the reaction should reach minimum

transparency and thus most of the particles are preferentially out-of-plane. On the other

hand, no visible effect is seen for symmetry energy term. We see both quantities are nearly

independent of the symmetry energy, while, strongly depends on the isospin-dependent

cross-section.

As we know, major contribution for the stopping of nuclear matter is from the hot and

compressed region, where symmetry energy does not play any role. Some small spikes can

be seen at lower beam energies, however, outcome is independent of the symmetry energy

at higher incident energies. This is due to the fact that above the Fermi energy, incident

energy itself is sufficient to break the initial correlations among the nucleons. On the other

hand, isospin-dependent cross-section will lead to violent N-N collisions, which further cause

the transformation of the initial longitudinal motion in other directions and hence thermal-

ization of the system. This dominant role played by the isospin-dependent cross-section
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gradually disappears with increase in the impact parameter. As discussed earlier, stopping

is the phenomena which originates from the participant zone and this zone goes on decreas-

ing with increase in the impact parameter and hence the effect of cross-section on nuclear

stopping. These findings are also in supportive nature with the findings of Liu et al., [16].

To correlate the degree of stopping with the multiplicity of fragments, we display in Fig.6.5,

the impact parameter dependence of the multiplicity of free nucleons as well as of LCP’s.

The behavior of all curves is similar to that of nuclear stopping parameters R and 1
Qzz/nucleon

,

as discussed in Fig.6.4. In addition, LCP’s are more sensitive towards symmetry energy com-

pared to free particles. Due to pairing nature of LCP’s, symmetry energy term ∝ (N −Z)2

contributes considerably. The effect of isospin-dependent cross-section is more visible for

the LCP’s as compared to free particles. This also gives us clue that LCP’s production

can act as a indicator for the nuclear stopping. Moreover, free particles/nucleon are found

to increase monotonically with the incident energy, while LCP’s/nucleon behave in similar

fashion as that of nuclear stopping i.e. maximum around 400 MeV/nucleon and then de-

creases. It is also evident from Ref.[8], LCP’s production act as a barometer for nuclear

stopping compared to the free particles.

In Fig.6.6, we have checked the sensitivity of nuclear stopping as well as fragment pro-

duction with the nuclear equation of state (EOS). For this purpose, a hard (H) and soft

(S) equations of state with compressibility κ = 380, 200 MeV are employed, respectively.

The nuclear stopping is found to be weakly dependent on the equations of state, while, the

fragments production is sensitive to different equations of state. It means that the fragment

production with different equations of state can act as a global indicator for the nuclear

stopping as it is weakly dependent on equations of state.

6.4.4 System mass and isospin asymmetry dependence

It also becomes important to study the system size dependence and isospin asymmetry

of R, 1
Qzz/nucleon

, free particles and LCP’s. For this, in Fig.6.7, we have displayed the results

for the reactions of 20Ca
40 + 20Ca

40, 28Ni
58 + 28Ni

58, 41Nb
93 + 41Nb

93, 54Xe
131 + 54Xe

131

and 79Au
197 + 79Au

197, in which Z as well as A is varied. On the other hand, results are

displayed, in Fig.6.8, for the reactions of 20Ca
34 + 20Ca

34 (N/Z = 0.7), 20Ca
40 + 20Ca

40
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(N/Z = 1), 20Ca
48 + 20Ca

48 (N/Z = 1.4) and 20Ca
57 + 20Ca

57 (N/Z = 1.85), having same

Z and different A, in the presence of symmetry energy and isospin-dependent cross-section.

The curves in Figs.6.7 and 6.8 are parametrized with the power law Y = CXτ , where C

and τ are constants, while X and Y are the respective parameters on X and Y axis.

From the Fig.6.7, it is observed that the parameters R, 1
Qzz/nucleon

, free particles as well

as LCP’s are in similar trend with the composite mass of the system. All the parameters

are found to increase with the composite mass of the system. For a fixed geometry (semi-

central here), more heavier is the composite system, more hot is the compressed zone, which

further results in more thermalization or global stopping. Looking the parallel side, the free

particles and LCP’s will always originate from the participant zone. With an increase in the

composite mass of the system, the participant zone goes on increasing for a fixed geometry

(semi-central here) and hence the production of free particles and LCP’s. Similar findings

are also published in the Ref.[16, 28].

The dependence of these parameters on the isospin asymmetry (N/Z dependence ) dis-

played, in Fig.6.8, is also found to be supportive in nature with the findings in Fig.6.7. An

increase in the number of neutrons will increase the number of collisions and hence domi-

nance of R, 1
Qzz/nucleon

, free particles as well as LCP’s is observed with increase in N/Z ratio.

Nuclear stopping as well as LCP’s are observed to be strongly dependent on the isospin-

dependent cross-section. Similar results with isospin dependent cross-section are observed

in Figs.6.4 and 6.5. From here, one may conclude that the nuclear stopping and LCP’s can

also be used as a tool to investigate the isospin-dependent cross-section.

6.4.5 Normalization of fragments production with stopping pa-

rameters

To further elaborate this point, we display in Fig.6.9, Multiplicity/nucleon (free and

LCP’s) as well as R and 1
Qzz/nucleon

. Once free nucleons and LCP’s are normalized with

R at the starting point of impact parameter, we see that their behavior with respect to

impact parameter is similar to that of anisotropy ratio, whereas, visible difference occurs

with reference to quadrupole moment. As seen in Fig.6.2, the LCP’s are emitted from the

mid-rapidity where initial correlations and memory of nucleons is completely destroyed. In
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Figure 6.7: System size dependence of (a) R, (b) 1
Qzz/nucleon

, (c) free particles, (d) LCP’s,
in the presence of symmetry energy. All the curves are fitted with power law.
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the presence of symmetry energy, due to the pairing nature of LCP’s, breakup of the initial

correlations gets enhanced. The nuclear stopping (R and 1/Qzz) is also a direct indicator

of breaking of the initial correlations and erasing the memory of nucleons. As is seen, in

addition to impact parameter dependence, system mass and isospin asymmetry dependence

is quite similar in all the cases. This similarity in all three quantities in the presence of

symmetry energy makes LCP’s good indicator of global stopping in heavy-ion collisions.

Therefore all the three quantities in principle are general quantities to study the global

stopping.

6.4.6 Effect of symmetry energy and momentum dependent in-
teractions on nuclear stopping

For this particular study, simulations were carried out for the above mentioned reactions

of X + X (where X = Ca, Ni, Nb, Xe and Au) at different beam energies ranging between

30 and 1000 MeV/nucleon at central and semi-peripheral geometries. The incident energy

of 30 MeV/nucleon is the lowest limit for any semi-classical model. Below this incident

energy, quantum effects as well as Pauli blocking need to be redefined. A hard (H) and

hard momentum dependent (HM) equation of state (EOS) has been employed with sym-

metry energy Esym = 0 and 32 MeV. The corresponding values of the symmetry energy are

indicated as subscript. It is worth mentioning that global stopping is insensitive toward the

nature of static equation of state. Though MDI destabilizes the nuclei, a careful analysis

is made by Puri et al. [34] and found that upto 200 fm/c, emission of the nucleons with

momentum dependent interactions is quite small.

In Fig. 6.10, we display the time evolution of the anisotropy ratio R for the central

collisions of 20Ca
40 + 20Ca

40 (left panel) and 79Au
197 + 79Au

197 (right panel). The incident

energies of 30, 50, 400 and 1000 MeV/nucleon are employed using the four different equations

of state H0, H32, HM0 and HM32. Interestingly, the anisotropy ratio R, though, is insen-

sitive towards the symmetry energy, shows appreciable effect for the momentum dependent

interactions. As we go higher in the incident energy, both effects (of momentum dependent

interactions as well of symmetry energy) wash away. For further test, we simulated two

reactions (i) 20Ca
40 +20 Ca

40 and kept the same N/Z ratio by taking 100X
200 +100 X

200
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reaction. In other case (ii) we took neutron rich reaction 79Au
197 +79 Au

197 and simulated

the reactions of 16X
40 +16 X

40 by keeping N/Z ratio again same. In both the cases, the

above trend holds good. Therefore, indicating that the above behavior is universal. Even

rapidity cuts to mid-rapidity region do not yield different results. Below the beam energy of

50 MeV/nucleon, collision dynamics is governed by the mean field. Therefore, interactions

involving isospin particles like nn, np, pp dominate the outcome and hence symmetry effects

are visible. Above the Fermi energy, dynamics is dominated by the NN collisions and hence

these effects washes away.

As discussed earlier, R approaches to 1 at low incident energies, indicating the isotropic nu-

cleon momentum distribution of the whole composite system. The behavior at 30 MeV/nucleon

is little different due to the fact that binary collisions do not play any role and mean field

will take larger time to thermalize the colliding nuclei. As beam energy increases above

the certain energy, R starts decreasing from 1 towards the lower values, indicating partial

transparency. This value of the beam energy, above which R starts decreasing, depends on

the size of the system. In our observations for the reaction of 79Au
197 + 79Au

197, it is close

to 400 MeV/nucleon. This finding is similar to the one reported by W. Reisdorf et al. [28].

The value of R > 1, can be explained by the preponderance of momentum perpendicular

to beam direction [33]. This is true for all equations of state. It is also seen that relaxation

time decreases with the increase in the beam energy, while, increases with the increase in

the mass of the colliding system. It shows that high beam energy and lighter systems lead

to more violent NN collisions and faster dissipation. This is consistent with the isospin

equilibrium process as shown by Li et.al. [9].

It will be of further interest to see whether the above findings have mass dependence

or not. This is particularly important since the role of the momentum dependent inter-

actions and the symmetry energy depends on the size of the system. For this, we display

in Fig. 6.11, the anisotropy ratio R as a function of the composite mass of the system

(Atot = AT + AP ) at different beam energies ranging from 30 to 1000 MeV/nucleon. The

left panel represents the results at central geometry, while, right panel is at semi-peripheral

geometry.

Our findings are:
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• The anisotropy ratio R increases with the composite mass of the system. This is true

for all incident energies and impact parameters. This dependence weakens as one

moves from central to semi-peripheral geometry. It is due to the fact that nuclear

stopping is governed by the participant zone only. This is further supported by the

fact that at higher incident energies e.g. E = 1000 MeV/nucleon, stopping is almost

independent of the composite mass of the system at semi-peripheral geometry and

almost 50% decrease is observed in the nuclear stopping as compared to central ge-

ometry.

• The effect of the symmetry energy is visible below the Fermi energy. Same conclusion

was also reported in Fig. 6.10. The effect of the symmetry energy diminishes in the

absence of momentum dependent equation of state. Moreover, this effect weakens at

semi-peripheral geometries.

• The importance of momentum dependent interactions is also visible in the nuclear

stopping. This effect decreases as one moves from the low to higher incident energy

and from central to peripheral geometry. At the higher incident energies e.g. at E =

1000 MeV/nucleon, the anisotropy ratio is independent of the equation of state and

symmetry energy. It is worth mentioning that the inclusion of momentum dependent

interactions is found to suppress the binary collisions and as a result is found to affect

the sub threshold particle production as well as disappearance of collective flow [10, 14].

6.5 Summary

In summary, using the isospin-dependent quantum molecular dynamics (IQMD)model, we

investigate the emission of free particles, LCP’s, and degree of stopping reached in a heavy-

ion collisions in the presence of symmetry energy and isospin dependent cross-section. In

addition, impact of momentum dependent interactions in the presence of symmetry energy is

also studied on the nuclear stopping. We observe that impact parameter dependence, equa-
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tions of state dependence as well as system size and isospin asymmetry dependence have

similar behavior for the light charged particles and nuclear stopping parameters. Nuclear

stopping in term of anisotropy ratio and quadrupole moment depends weakly on the sym-

metry energy and strongly on the isospin-dependent cross-section. However, the symmetry

energy and isospin-dependent cross-section has an effect of 10% on the LCP’s production.

This means nuclear stopping and LCP’s production can be used as a tool to investigate the

isospin-dependent cross-section. One can say that LCP’s production is found to be highly

correlated with the global stopping.

On the other hand, the role of symmetry energy and momentum dependent interactions

on the nuclear stopping is observed at low incident energies. These effects are found to

vanish at higher incident energies. The role of symmetry energy at low incident energy get

enhanced in the presence of momentum dependent interactions. Further, we can conclude

that maximum stopping is obtained for the heavier systems at low incident energies in cen-

tral collisions in the absence of momentum dependent interactions implying that momentum

dependent interaction suppresses the nuclear stopping.
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