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Abstract. Shear flows are ubiquitously present in space and astrophysical plasmas, and are
known to be conducive to the acceleration of energetic charged particles. In particular, for
relativistic flow speeds, efficient Fermi-type particle acceleration can be achieved, capable of
producing momentum power-law particle distributions and sustaining energetic particles all
along the shear. This paper reviews some of the key results concerning the stochastic acceleration
of energetic particles in gradual shear flows and reports on some recent developments in the field.

1. Introduction
Shear flows are naturally expected in astrophysical environments; prominent examples include
the rotating accretion flows around compact objects and the relativistic outflows (jets) in gamma-
ray bursts (GRBs) or Active Galactic Nuclei (AGN) [1]. From a phenomenological point of view
the latter have turned out to be particularly interesting. Spatially, the fast jets of powerful AGN
can extend over several hundred kilo-parsecs (kpc). Bright hot spots are formed and significant
back flows induced when these jets eventually interact with the ambient medium. Often these
large-scale jets appear laminar despite large fluid Reynolds numbers (Re = pulL/pu > 10%0),
see Ref. [2] for orientation. The Chandra detection of extended non-thermal X-ray emission
in several of these AGN jets points to the presence of energetic charged particles that have
experienced continuous acceleration within them [3-5]. The favoured electron synchrotron origin
of the X-ray emission in fact implies the presence of relativistic electrons with Lorentz factors
up toy ~ 108, e.g. [6]. Since their synchrotron cooling timescale t.oo1 < 1/ and length, ctcool,
are very short (< 1 kpc), some efficient and distributed (re-)acceleration mechanism is required
to keep electrons energized throughout these jets [7]. It seems in principle conceivable that the
same mechanism could also facilitate the acceleration of cosmic rays (CRs) to extreme energies,
making large-scale AGN jets to possible ultra-high-energy (UHE)CR acceleration sites [8; 9.
These and other observational findings have given fresh impetus to a variety of shear particle
acceleration and emission scenarios. In general, the acceleration and transport of charged
particles in shearing flows can be explored on multiple scales, from the plasma skin depth
(electron inertial-scale) [10] via the relativistic gyro-scale [4; 11; 12] to large turbulent length
scales [13]. The present paper focuses on the second one which exhibits a history dating back
to the 1980s [1; 4; 7; 11; 12; 14-26]. We will review some of the key results concerning the
stochastic acceleration of energetic particles in gradual shear flows, highlight expected spectral
characteristics, and report on some recent developments.
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2. Basic Concept

Shear particle acceleration can be understood as a stochastic, Fermi-type [27] acceleration
mechanism in which particle energization occurs as a results of elastically scattering off moving
magnetic inhomogeneities [4; 28]. The energy change in an elastic scattering event is simply
given by Ae = e — €1 = 272(equ?/c® — py - i0), where 4 is the characteristic scattering center
speed (u its magnitude, 7, the Lorentz factor), and €; and p; denote the initial particle energy
and momentum, respectively. Accordingly, a particle will gain energy in head-on (p) - @ < 1)
collisions, and lose energy in following (p; - @ < 1) collisions. Stochastic acceleration (i.e.,
an average energy gain) results from the fact the interaction probability for head-on collisions
is higher than the one for following collisions, retaining a second-order dependence in u, i.e.,
< Ae > o< (u/c)?e. Similarly, shear acceleration can be understood as a stochastic acceleration
process, yet with the conventional scattering center speed replaced by an effective velocity ue,
given by the gradient in the flow speed multiplied by the particle free path, A = ¢7. Hence, for
a non-relativistic gradual shear flow with, e.g., @ = u.(z)€, u. = (Qu,/0z) A, and the fractional
energy changes becomes

< Ae> ue)2 (auz)2 )
- — A% 1
€ x ( c x ox (1)
This suggests a characteristic acceleration timescale
€ € A 1
t — ~ X — < 2
e = (de/dt)  <hAe> ¢ A )

which, in contrast to classical 1st and 2nd order Fermi acceleration, is inversely depending on
the particle mean free path. In the case of e.g. a gyro-dependence with A\ ~ ry o< vy, tace would
reveal the same scaling as the synchrotron loss timescale t.q0, with interesting implications [22].
The principal reason for this unusual behaviour is related to the fact that as a particle increases
its energy (e ~ ymc?) and thereby its mean free path (A oc v, a > 0), a higher effective velocity
ue is experienced. For shear to start operating efficiently within a system, one thus usually
requires injection of some pre-accelerated seed particles, either from acceleration at shocks or
via classical 2nd order Fermi processes [7]. The situation is typically more favourable, though,
for the case of protons or ions.

3. Microscopic Picture - Fokker-Planck type diffusion for non-relativistic flows

A more detailed picture of the particle evolution becomes apparent in a microscopic approach
via an explicit calculation of the average rate of momentum change and dispersion (i.e., the
corresponding Fokker Planck coefficients). Consider for simplicity a non-relativistic shear flow
with @ = u,(x)€,. While travelling across the flow, the momentum of a particle relative to the
flow will change by po = pi + m du, where du = (Qu,/0x)dx €, with dx = v, 7, and where the
timescale for collisions (scattering time) might be a function of momentum, i.e., 7 = 7(p) = 1 p~.
Expanding (p2 — p1) to second order in du and averaging over an isotropic particle distribution,
the Fokker Planck coefficients then become [16; 22]

(50 < »(5)
At Ploz) ™
(Ap)z 2 (8’11,2 > 2
< AL < g, ) T (3)
The Fokker Planck coefficients can be shown to be related by the equation
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i.e., to satisfy the principle of detailed balance (scattering being reversible). Here T' in
eq. (4) denotes the shear flow coefficient, and for the employed flow profile is given by
[' = (1/15)(0u./0x)%. Under the condition of detailed balance, the associated Fokker-Planck
equation reduces to a diffusion equation in momentum space. Hence in the absence of radiative
losses, the particle phase-space distribution function f(p,t) undergoing shear acceleration might
be cast in a simple Fokker-Planck type diffusion equation

of(p,t) 10 (5 0Of
“or —pzap(pDap>’ 5)

where D denotes the momentum space diffusion coefficient, and for the considered application

is given by ,
1 2
DZFPQT=<%U ) poT, (6)
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where 7 = 79 p®. Figure 1 shows an exemplary solution of eq. (5) for the case 7 x p [22]. At
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Figure 1. Time-dependent solution f(p,t) of the Fokker-Planck diffusion equation for non-
relativistic shear assuming (impulsive) mono-energetic injection with pg at tp = 0. A momentum-
dependence a@ = 1 has been used. The distribution broadens with time due to momentum
dispersion. The inlet illustrates the formation of a power law like distribution n(p) oc pf(p) o
p~2 above pg for t' > 0.3.

sufficiently large times, the particle distribution above the injection momentum py approaches
a power law shape

n(p) o p*f(p) oc p~1F) (7)

for a > 0, with power law index depending on the scaling of the particle mean free path
(A =~ e o< p®) [11; 14; 22]. In particular, for a gyro-dependence, a = 1, one has n(p) x p~2,
similar to first-order Fermi acceleration at non-relativistic shocks. The quasi steady-state (time-
integrated) distribution f(p) for continuous injection then becomes constant below pg, and takes
on the noted power-law shape (o< p*(?’*o‘)) above it.
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4. Non-relativistic particle transport equation

In order to take spatial transport into account, an extended particle transport equation needs
to be derived. In the non-relativistic limit this has been done by Earl et al. [12], starting from
the non-relativistic Boltzmann equation for the phase-space distribution f(Z,p,t) and assuming
a simple BKG-type collision term, (0f/0t)s = (f — (f))/7. The approach relies on a mixed
system of phase-space coordinates such that quantities which are operated upon the scattering
operator, i.e. the momentum, are evaluated in the comoving flow frame (allowing to treat the
scattering physics in simple ways), while time and space coordinates are still measured in the
laboratory frame. Given non-relativistic flow speeds the particle momentum components are
then related by a Galilean transformation p; = p} + mu,; (background flow speed u;, comoving
p;). Scattering is assumed to be strong enough to guarantee the diffusion approximation, i.e.,
to ensure that the departure from isotropy is small, f = fo + f1, with < f; >=0 and f; < fo.
The full non-relativistic particle transport equation for fo(Z,p’,t) then becomes [12]

ofo ,  Ofo P OuiOfo O <K3f0>
ot ' Ox; 3 Ox; OpY  Oux; ox;
279", Pfo 1 9(p?) , 9fo
3 oxiop  3p?  Op ' Oz
I o /4‘%) v O(rAi) 0fo _
2 oy (Tp )3 0w oy

(8)

(i = 1,2,3), where x denotes the isotropic spatial diffusion coefficient, x(p) = 7(p)c?/3, and

ot tu oxy 9)

A;

is the viscous shear flow coefficient given by
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(10)
The second, third and fourth term in eq. (8) relate to the well-known effects of convection,
adiabatic energy change and spatial diffusion, while the terms involving A; describe the effects
of inertial drifts (cf. also [29] for incorporation of a mean magnetic field). The additional term
involving I' characterizes the energy changes due to flow shear and divergence. For a steady
(non-relativistic) shear flow of the form @ = wu,(z)e,, the adiabatic and inertial terms vanishes
(Ou;/0z; = 0 and A; = 0), T reduces to I' = (1/15)(du,/dz)?, and the space-independent part

of eq. (8) becomes
O T 0 (100
ot p/2 ap/ p ap/ ’

(11)

thus coinciding with eq. (5).

5. Relativistic Generalization

To compete with diffusive particle escape, efficient shear particle acceleration typically requires
relativistic flow speeds (see also below). This then demands a generalization of the particle
transport to the relativistic regime as has been obtained by e.g. Webb et al. [15; 18]. Assuming
isotropic diffusion and denoting the (covariant) metric tensor by g, the zero component of
the (comoving) particle momentum four vector by p’® = E’/c, the fluid four velocity by u, and
the fluid four acceleration by 1, := ub Vguq, with Vgu, indicating covariant derivation, the full
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particle transport equation for the isotopic distribution function fo(x®,p’) with 2 = (ct, x,y, z, )
becomes [15]

012
Va lcuafo —K (gaﬁ + uauﬁ> (gxfg — ug (pp/) g{;)]
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(12)

where @) denotes the source term and Greek indices (o, ) run from 0 to 3. T' denotes the
(generalized) relativistic shear coefficient, which in the strong scattering limit is given by

2
= %aaﬁaaﬁ, (13)
where 0,3 is the (covariant) fluid shear tensor. For a cylindrical jet with a steady (relativistic)
shear flow profile @ = u(r)é,, the fluid four acceleration (i, = 0) and divergence (Vzu” = 0)
vanish, retaining only the shear term with T' = (v.}/15) (du/dr)? in the second line of eq. (12).
z-independent, steady-state solutions of eq. (12) for such a flow profile and a specific form of the
radial dependence of x(r, p) have been recently presented by Webb et al. [26].

6. Application
In the following some recent applications and results in the context of shear particle acceleration
are briefly reported.

6.1. Particle acceleration in expanding flows

Both, the jets in AGN and GRBs exhibit relativistic speeds, and are likely to be (quasi-
conically) expanding, motivating an analysis of particle acceleration in expanding, relativistic
shear flows [21; 24]. For the simplest case of a radial shear flow profile u® = =, (0)(1,v,(6) /¢, 0,0),
where 6 denotes the polar angle and r the radial coordinate, the impact of different functional
dependencies for 7,(0), i.e., a power-law-, Gaussian- or Fermi-Dirac-type can be explored, see
Fig. 2. The associated characteristic (comoving) acceleration timescales for a particle with mean
free path A [24],

2cr?

Y2 (v2 +0.75~2 [Ov,. /O0]2) N’

can then become a strong function of 6, allowing for the generation of some prominent non-axis
emission features (e.g., ‘ridge line’). To overcome adiabatic losses (x v,v,/r) and experience
efficient acceleration, relativistic flow speeds and sufficient energetic seed particles (X' /r > 1073
for the application presented in Fig. 2) are needed. It seems possible that such a process could
lead to a weak and long-duration leptonic emission component in GRBs, and facilitate cosmic-ray
acceleration to ultra high energies [21].

tace(r,0) ~ (14)

6.2. Generating multi-component particle distributions

As a two-stage process, stochastic shear acceleration could lead to the formation of multi-
component particle distributions. A basic example considering radiative-loss-limited acceleration
in a mildly relativistic shearing flow is shown in Fig. 3 [7]. The figure is based on a solution
of the Fokker-Planck equation for f(p,t) (or equivalently, f(7,t)) including classical 2nd order
Fermi and shear particle acceleration as well as radiative synchrotron losses. Employing a mean
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Figure 2. Left: Illustration of a simple radially expanding flow. Right: Ratio of viscous
shear gain versus adiabatic losses multiplied by (r/)'), illustrated for 6. = 0.03 rad and a flow
Lorentz factor «, = 30 on the axis [24]. A non-axis preference becomes particularly evident for
a Gaussian or Fermi-Dirac shaped flow profile.

free path scaling A = £ 1ry (rg/Amax)' ™9 o ¥279, with ¢ = 5/3 (Kolmogorov) and ¢ = 0.1, and
choosing parameters applicable to the large-scale jets in AGN, electron acceleration up to Lorentz
factors 7 ~ 10° seems feasible. Stochastic 2nd order Fermi acceleration dominates particle
energization up to v ~ 10* above which efficient shear acceleration becomes operative leading
to a somewhat flatter spectral slope (changing by 2/3 for the noted application). Synchrotron
radiation eventually introduces a spectral cut-off at high energies. As shearing conditions are
likely to prevail along astrophysical jets, these findings illustrate that the considered processes
could be of relevance for understanding the extended X-ray emission in the large-scale jet of
AGN (cf. Sec 1). Moreover, by the same means relativistic large-scale AGN jets could also
facilitate the acceleration of cosmic rays to ultra-high energies [7; 26].

6.3. Spatial transport and diffusive escape
The above considerations did not account for details of the spatial transport, and possible
modifications introduced by the diffusive escape of particles from the system. Implications
of these could in principle be analyzed with resort to the relativistic particle transport
equation (12). Deriving analytical, steady-state solutions fo(r, p') for a cylindrical jet, assuming
z-independence and a special form for the radial dependence of the scattering time, 7(r,p) =
70 (p/po)®/[r d&(r)/dr] where &(r) = 0.5In(1 + B(r)/[1 — B(r)]), with B(r) = u(r)/c the flow
speed, Webb et al. [26] showed that diffusive escape could counter-act efficient acceleration.
While the local particle distribution still follows a power law f(p’) o< p~#, its momentum index
1 becomes dependent on the maximum flow speed [y on axis, and significantly steepens with
decreasing [y (with 4 — oo for By — 0). Though possible limitations due to the chosen 7-
dependence may deserve some further studies, these results imply that efficient shear particle
acceleration requires relativistic flow speeds. This becomes also apparent when comparing the
corresponding timescale for acceleration, ... ~ 1/[y2(du/dr)?r'], with the one for cross-field
escape t, ~ r2/[c21'].

The analytical solutions [26] can be used to gain insights into the radial evolution of the
particle transport. Below an example is given for the particle transport in the presence of a
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Figure 3. Time-evolution of the electron spectrum 2 n(7) in the presence of stochastic-shear
particle acceleration, where n(y) oc ¥2f(y) represents a solution of the corresponding Fokker
Planck equation given a linearly decreasing shear flow profile of width Ar ~ r;/10 and an Alfven
speed B4 ~ 0.007 [7]. Above particle Lorentz factors of a few times 10% the spectrum is shaped
by shear acceleration, with a high-energy spectral cut-off around v ~ 10° being introduced by
synchrotron losses.

hyperbolic, relativistic shear flow as shown in Fig. 4.
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Figure 4. Relativistic flow profile 3(r) €, chosen for evaluating the particle distribution function
in Fig. 5. A maximum flow Lorentz factor v3 = 20 on the axis has been assumed.

Figure 5 provides an illustration that away from injection the ’classical’ power-law momentum
dependence, eq. (7), is recovered at high flow speeds (5y — 1). Clearly, advancing our
understanding of the (radial) diffusion properties in astrophysical jets will be important to
better characterize the efficiency of shear particle acceleration.
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Figure 5. Steady-state solution f(r,p’) as a function of momentum p’/p; for the flow profile in
Fig. 4 and three different spatial locations, r = 0.06 (blue), r = 0.50 (orange), r = 1.20 (green).
Mono-energetic particle injection with pj, at r; = 0.02 and an outer (escape) boundary at ro = 2
have been assumed. A momentum-dependence of @ = 1 has been employed for the scattering
time. The red curve (top) designates the classical power-law dependence, with f(p') o p'=4
above p(, as inferred from the Fokker-Planck approach in Sec. 3.

7. Conclusions

Particle acceleration in fast shearing flows could represent a promising mechanism for
the continued acceleration of charged particles, capable of producing (local) power-laws in
momentum. As such it can provide a plausible explanation for, e.g., the origin of the extended
high-energy emission seen in the large-scale jets of AGN, and contribute to the energization of
extreme cosmic rays.

In many circumstances, injection of energetic seed particles (in the case of electrons) and
relativistic flow speeds will be required for the mechanism to operate efficiently. In the case of
AGN and GRBs the former condition are likely to be met by first-order shock and/or stochastic
second-order Fermi processes. In this regard, shear acceleration thus resembles a two-stage
process for facilitating particle acceleration beyond the common limit.

To further improve our understanding, high-resolution studies of astrophysical jets and a
quantitative analysis of the stability and radial transport properties of fast shearing flows are of
particular interest.
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