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1 Introduction

Wormholes (WHs) are regular smooth solutions of Einstein-like theories of gravity connecting
two different regions of spacetime, generally asymptotically-flat (AF) or (Anti) de Sitter
[(A)dS], through an intermediate throat region [1, 2]. In particular, traversable Lorentzian
WHs allow timelike (null) signals emitted from one asymptotic region to reach the other
one in finite proper (affine) time.

Initially proposed by Einstein and Rosen as an attempt to provide a geometrical descrip-
tion of elementary particles within general relativity (GR) [3], WHs were later employed as
an educational tool for teaching GR [1]. Since then, Lorentzian traversable WHs have quickly
evolved into intriguing objects of study in both fundamental theoretical physics and popular
science. Their unique ability to connect two distinct regions of spacetime has made them
relevant in various areas of gravitational physics. Specifically, WHs have been explored as a
means to investigate fundamental aspects of spacetime, including causality [4], rapid interstel-
lar travel [1], the existence of closed timelike curves [5, 6], superluminal propagation [2], and
the physical interpretation of energy conditions [2, 7–19]. More recently, they have gained
attention for their potential role in addressing the black-hole information puzzle [20–23].
Furthermore, WHs have been proposed as black-hole mimickers (see, e.g., refs. [24–30] and
references therein), offering alternative models for astrophysical observations. They also
appear in some approaches to quantum gravity [13, 31–38].

Despite their theoretical appeal, most known WH solutions suffer from two major
drawbacks. First, they are typically derived using a reverse-engineering approach. In this
method, one first postulates the spacetime geometry and then determines the stress-energy
tensor of the (exotic) matter required to support the solution using Einstein’s equations. Only
a few examples are known where the construction starts from a given form of the stress-energy
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tensor (see, for instance, refs. [39–43]). Even in these cases, however, formulating an action for
the coupled gravity-matter system remains highly challenging.1 This limitation is particularly
significant in the context of quantum gravity and other fundamental applications, where
an explicit action would be highly desiderable. Second, GR WHs are typically unstable
due to their exotic matter source [46, 47].

A framework that is largely unexplored but might be very promising for finding WH
solutions is conformal gravity. This class of theories employ a well-defined action and is char-
acterized by invariance under coordinate-dependent Weyl rescalings of the spacetime metric2

gµν → g′
µν = Ω2(x)gµν , (1.1)

where gµν is a generic spacetime metric tensor and g′
µν is the Weyl rescaling of gµν with

conformal factor Ω(x). A peculiarity of this framework is that the theory’s broad symmetry
allows for a wide range of possible solutions. Moreover, such a broad symmetry might also
play a crucial role in stabilizing WH solutions.

Additionally, numerous indications suggest that gravity may exhibit a conformal phase
in the deep ultraviolet regime [48–57], which might play an important role in the ultraviolet
completions of gravity. On the other hand, the conformal symmetry must be (spontaneously)
broken at low energies. The existence of WH solutions in the broken conformal phase
would be particularly intriguing, especially in the context of quantum gravity and the black-
hole information puzzle. A first attempt to construct WH solution in the conformal gravity
framework was made in [58], where it was shown that WH can exist without the need of exotic
matter sources. However, this construction method employed conformal transformations of
the Schwarzschild-(A)dS solution, which are not suitable to generate AF WHs.

The goal of this paper is to explore the existence of AF WH solutions within conformal
theories of gravity. In section 2, we explicitly construct an entire class of Lorentzian traversable
WHs via a Weyl rescaling of Minkowski spacetime. A key implication of this result is that any
gravity theory invariant under the Weyl rescaling (1.1) and admitting Minkowski spacetime
as a solution must also inherently support this class of WHs. However, the Weyl-conformal
symmetry raises conceptual issues regarding the physical interpretation of WH solutions
within this theory. This is discussed in section 3. Next, in section 4, we analyze in detail
a well-known case: a conformally invariant scalar-tensor theory of gravity. Specifically, we
focus on an example from our general class of WH solutions, where the shape function
follows the Morris-Thorne form. We then examine key properties of these WHs, including
their traversability (section 4.1), geodesic completeness of the spacetime (section 4.2), the
associated energy conditions (section 4.3) and stability under linear perturbation (section 4.4).
We conclude the paper with some final considerations in section 5.

1This is not entirely true for Euclidean WH solutions, where, in some specific cases, an action can indeed
be formulated (see, e.g., refs. [44, 45].

2Examples of theories invariant under such a transformation will be provided in section 3.
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2 Generating wormhole solutions using a Weyl rescaling of Minkowski
spacetime

An AF traversable WH is a solution of a metric theory of gravity, which is characterized by
a throat connecting two AF regions. The metric is usually assumed to be both spherically-
symmetric and static.3 These symmetries imply that the WH spacetime metric must have
the form [1]4

ds2 = −e2Ψ(r)dt2 + dr2

1 − b(r)
r

+ r2dΩ2
2 , (2.1)

where b(r) and Ψ(r) depend on the radial coordinate r only and are called the shape and
redshift functions, respectively. We can also express the metric in terms of the proper radial
distance from the WH throat l, defined as

l = ±
∫ dr√

1 − b(r)
r

, (2.2)

where the ± sign refers to the upper and lower universe, respectively. In this coordinate
system the metric reads

ds2 = −A(l2)dt2 + dl2 + B(l2)dΩ2
2 , (2.3)

where A(l2) and B(l2) are metric functions.
Regularity and traversability of the WH impose constraints on the form of b(r) and

Ψ(r), expressed by the following requirements:

(a) The redshift function Ψ has to be always finite to prevent horizons or singularities.
Additionally, the existence of two AF regions requires Ψ → 0 as l → ±∞;

(b) The spatial geometry must exhibit a WH shape. Thus, equation b(r) = r must have
the solution r = b0, which identifies the position of the throat. The latter, in turn,
corresponds to the minimum of the proper distance l(r);

(c) The proper distance must be strictly increasing on both sides of the throat. This
requirement is satisfied if the flaring out condition b′(r = b0) < 0 holds;

(d) A timelike/null signal originating from one of the AF regions should reach the throat
at r = b0 in finite proper (affine) time;

(e) Curvature singularities must be absent and the spacetime must be geodesically complete.

To demonstrate how traversable WHs can be generated from flat Minkowski spacetime
through the conformal transformation (1.1), we begin by expressing Minkowski spacetime
in spherical coordinates

ds2 = −dt2 + dx2 + x2dΩ2
2 . (2.4)

3This latter condition is not strictly necessary as the WH could be unstable, but we will adopt it for
simplicity. For stationary WH models, see, e.g., refs. [59–66].

4In this paper, we adopt natural units, in which c = ℏ = 1.
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Then we perform a Weyl rescaling of the Minkowski metric, along with a reparametrization
of the radial coordinate x = x(r) as follows

gµν → g′
µν = Q2(r)gµν , x = r

Q(r) . (2.5)

According to eq. (1.1), if gµν is an exact solution of the conformal gravity theory, then
g′

µν is also solution [67–69]. It is straightforward to verify that the transformation (1.1)
brings the Minkowski metric into the WH form (2.1), with the redshift and shape function
determined completely in terms of Q(r)

(
1 − r

Q′

Q

)2
=
[
1 − b(r)

r

]−1
, e2Ψ = Q2 , (2.6)

where the prime denotes the derivation with respect to r. Instead of fixing the form of Q

and computing the corresponding expressions of b and Ψ, one can take the reverse approach.
Specifically, by selecting a shape function b(r) that defines a particular WH solution, one
can use eq. (2.6) to determine the rescaling function Q and, ultimately, the redshift Ψ.
Since the WH profile is given, conditions (b) and (c) are automatically satisfied. Meanwhile,
Q (and consequently Ψ) is determined by solving the first-order ODE in eq. (2.6). If the
integration constant can be determined to satisfy conditions (a), (d) and (e), a well-defined
traversable WH solution is generated. This procedure defines a broad class of traversable WH
solutions that can be derived through a conformal rescaling of the Minkowski spacetime. In
the following sections, we will present an explicit example of this procedure and thoroughly
examine its features.

3 Wormhole solutions in conformal theories of gravity

An important consequence of the results of the previous section is that any conformal theory
of gravity that admits flat Minkowski spacetime as a solution must also inherently allow
for the class of WH solutions presented above.

The simplest and most commonly used conformal theories of gravity are Weyl gravity
and conformally invariant scalar-tensor gravity. The former is described by the action

SW = α

∫
d4x

√
−g CαβγνCαβγν , (3.1)

where Cαβγν is the Weyl tensor and α is a dimensionless constant. This action is equivalent,
up to boundary terms, to the quadratic action [70]

SQ = αq

∫
d4x

√
−g

(
RαβRαβ − 1

3R2
)

. (3.2)

Both actions are invariant under the Weyl rescaling of the metric (1.1) and admit the
Minkowski solution. Consequently, they must also include the class of WH solutions con-
structed in section 2 among their possible solutions. However, the conformal gravity the-
ories (3.1) and (3.2) exhibit an undesirable feature in the context of WHs. Although they
allow for the Minkowski and Schwarzschild solutions [71], there is no simple way to reduce

– 4 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
6

their field equations to the usual Einstein ones of GR (see however ref. [72]). As a result, it
is difficult to identify a well-defined stress-energy tensor that serves as the source for the WH
solution, making the discussion of energy conditions particularly problematic.

In contrast, the conformal scalar-tensor theory of gravity is free from this difficulty. The
action is formulated in terms of the metric and a non-minimally coupled scalar field Φ

S =
∫

d4x
√

g
(
Φ2R + 6gµν∂µΦ∂νΦ

)
. (3.3)

Originally, in Weyl’s theory, Φ was introduced as a field providing an arbitrary local unit
of mass. However, we can also treat Φ as a coupling, more precisely we can express it in
terms of a coordinate-dependent Newton constant

Φ2 = 1
16πG

. (3.4)

In the following, we will adopt this interpretation.
The action is invariant under the Weyl rescaling of the metric and the scalar field5

gµν → g′
µν = Ω2gµν , Φ → Φ′ = Ω−1Φ. (3.5)

The scalar field is a pure gauge degree of freedom. Indeed, choosing Ω = λΦ (with λ a
dimensionful constant) any solution of the theory can be mapped to an equivalent solution
with a constant scalar field Φ = 1/λ. The field equations stemming from the action (3.3) are

Φ2Gµν = ∇µ∇νΦ2 − gµν□Φ2 − 6
(

∂µΦ∂νΦ − 1
2gµν(∂Φ)2

)
; (3.6a)

□Φ = 1
6ΦR . (3.6b)

These equations allow for the Minkowski vacuum solution endowed with a constant scalar
field Φ = Φ0 = 1/

√
16πGN.6 Following the method outlined in section 2, we can construct

the WH solution (2.1) through eq. (2.6). A crucial difference is that, now, the conformal
transformation (3.5) produces a non-trivial scalar field, i.e., a WH dressed with the scalar-
field configuration

Φ = Q−1Φ0 . (3.7)

Furthermore, the field equations can be written in the Einstein form Gµν = 8πGNTµν , with
the effective stress-energy tensor of the scalar field given by

Tµν = 1
8πGNΦ2

[
∇µ∇νΦ2 − gµν□Φ2 − 6

(
∂µΦ∂νΦ − 1

2gµν(∂Φ)2
)]

. (3.8)

This can be effectively considered as the source of the WH solution. Notably, eq. (3.8) is the
covariantization of the new improved stress-energy tensor for a conformal scalar field in flat

5One can also add to the action a self-interaction, Weyl symmetry preserving potential term λΦ4. However,
for λ ̸= 0, the Minkowski solution is not allowed.

6For clarity, we use different notations for the coordinate dependent Newton coupling G, as in eq. (3.4),
and the usual Newton constant GN.
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space, proposed in ref. [73] to ensure finiteness at all orders in renormalized perturbation
theory. On shell its trace is

T µ
µ = − 6

8πGNΦ□Φ , (3.9)

making it traceless whenever the spacetime satisfies R = 0 (see eq. (3.6b)).
Physically, identifying eq. (3.8) as the WH source connects directly to interpreting Φ

as a coordinate-dependent Newton constant, a point we now discuss.

3.1 Physical meaning of conformal frames

The Weyl rescaling (2.5), which relates our WH solution to Minkowski spacetime, represents a
local gauge transformation, implying that these two spacetimes provide different yet equivalent
descriptions of the same solution. Physically, these descriptions correspond to two observers
adopting different “gauges” to measure distances and times.7 In the scalar-tensor theory (3.3),
a solution consists of both the metric tensor gµν and a scalar field Φ, the latter acting as a
pure gauge degree of freedom. Since the scalar field is non-minimally coupled, the theory falls
within the Brans-Dicke framework, allowing Φ to be interpreted as a coordinate-dependent
Newton constant (see eq. (3.4)). This leads to an alternative interpretation of our WH
solution: Minkowski spacetime with a constant Newton coupling Φ0 is equivalent, in another
conformal frame, to a curved spacetime — the WH solution — with a coordinate-dependent
gravitational coupling.

These considerations hold as long as conformal symmetry remains unbroken. However,
conformal Weyl symmetry may only be a fundamental symmetry of gravity at energy scales
near the Planck mass and must be broken somehow at lower energies. The precise mechanism
of this symmetry breaking remains unclear, though a compelling scenario is spontaneous
symmetry breaking, which would determine both the background metric g

(0)
µν and the value

of Φ0. The simplest symmetry-breaking background is the Minkowski vacuum (2.4) with
a constant Φ0, which sets the Newton constant GN. However, the WH solution (4.5) may
represent an alternative phase of spontaneous conformal symmetry breaking, where a curved
background geometry emerges alongside a coordinate-dependent Newton coupling. In this
“WH phase”, the scalar field itself acts as the source of the WH.

4 A Morris-Thorne-like wormhole solution of conformal scalar-tensor
gravity

To be more concrete, in the remainder of the paper, we will focus on a simple yet particularly
insightful case within the broader class of WH models. Specifically, we consider solutions in
which the spatial sections of the WH geometry correspond to the well-known Morris-Thorne
model [1]. The shape function is

b(r) = b2
0
r

. (4.1)

7Historically, Weyl was the first to use the term “gauge” in reference to local symmetries in the context of
conformal gravity.
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Following the procedure outlined at the end of section 2, determining the redshift function
requires first solving the ODE that relates b(r) to the conformal factor Q(r) (left equation in
eq. (2.6)). Choosing the negative root when solving for Q′ and fixing the integration constant
such that Q → 1 for r → ±∞ (ensuring asymptotic flatness), one easily finds

Q(r) = 2

1 +
√

1 − b2
0

r2

. (4.2)

The traversable WH solution, then, reads as

ds2 = −4

1 +

√
1 − b2

0
r2

−2

dt2 + 1
1 − b2

0
r2

dr2 + r2dΩ2
2 , Φ = Φ0

2

1 +

√
1 − b2

0
r2

 . (4.3)

We can also write the metric using the proper radial distance from the throat l. From
eq. (2.2), we get

l =
∫ dr r√

r2 − b2
0

=
√

r2 − b2
0 . (4.4)

Eq. (4.3) is, then, recast as in eq. (2.3), with

A(l2) = −4
(

1 + b2
0

l2

)1 +

√
1 + b2

0
l2

−2

, B(l2) = l2 + b2
0 , (4.5)

together with the scalar field reading as

Φ = Φ0
2

1 + 1√
1 + b2

0
l2

 . (4.6)

To confirm that this truly represents a traversable wormhole, we must verify the validity
of conditions (a) to (e) outlined in section 2.

Regarding condition (a), the redshift function Ψ in eq. (4.3) is finite and nonzero
everywhere. It is monotonically decreasing with r, ranging from ln 2 at the throat (r = b0 or,
equivalently, l → 0), to 0 in the two AF regions at r → ±∞ (l → ±∞).

On the one hand, conditions (b) and (c) are satisfied by construction, as the shape
function is chosen to be equivalent to the Morris-Thorne model (see ref. [1]).

On the other hand, conditions (d) and (e) require explicit verification. This is not only
due to the different redshift function compared to the Morris-Thorne WH, but also to the
fact that we are working within the framework of conformally invariant scalar-tensor gravity.
In this setting, timelike particles can couple to the scalar field Φ. Thus, conditions (d) and
(e) will be examined in detail in the next two subsections.

4.1 Wormhole traversability

The WH traversability can be assessed by investigating the geodesic motion of both timelike
and null particles.

– 7 –
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Conformal transformations preserve the light-cone structure of spacetime, ensuring
that null geodesics in our WH spacetime follow the same trajectories as in Minkowski
spacetime. As a result, null particles traveling along geodesics can traverse the WH un-
obstructed.

This is not the case for timelike observers. Their motion can be characterized by the
radial velocity measured by static observers, vl = dl/ds, and the proper time ∆τ required to
reach the throat at r = b0 from an initial position at radial coordinate r0 in one of the two
spacetime regions. Moreover, in scalar-tensor conformal gravity, an additional complication
arises compared to standard GR WHs. A point-like particle does not only couple to the
metric tensor in the usual minimal covariant way, but also interacts with the scalar field
Φ. Such coupling can be generally described in terms of a coupling function F (Φ). The
particle action then reads

S = −
∫

dλ
√

−F 2(Φ) gµν ẋµẋν , (4.7)

where the dot denotes derivation with respect the affine parameter λ. To prevent singularities
in the coupling, we assume that F 2(Φ) remains finite and nonzero for all finite values of
Φ. For generic F 2(Φ), the action (4.7) is not conformally invariant. The coupling becomes
conformal, i.e., invariant under the Weyl rescaling (3.5), when F (Φ) = fΦ, with f a constant.

Next, we compute the radial velocity vl. Since our solutions are static, time-translation
invariance ensures the existence of a conserved quantity E. Applying the Euler-Lagrange
equations together with the timelike gauge condition ẋµẋµ = −1, we get

ṫ2 = E2

F 2(Φ)g2
00

, ṙ2 = grr

(
E2

F 2(Φ)|g00|
− 1

)
= grr

(
ϵ2(Φ) − 1

)
, (4.8)

where in the last step we used g00 = −Φ2
0/Φ2 and we have defined

ϵ(Φ) ≡ EΦ
F (Φ)Φ0

. (4.9)

From eq. (4.8), the motion of the particles is physical as long as ϵ(Φ)2 ≥ 1.
Using eq. (4.8) we can easily obtain v2

l

v2
l = ṙ2

ṫ2
grr

|g00|
= 1 − F 2(Φ)Φ2

0
Φ2E2 = 1 − ϵ−2(Φ). (4.10)

The observer’s speed during radial motion remains finite and always less than the speed
of light. For generic coupling, vl depends on the scalar field Φ, but it is solely a function
of l2 (see eq. (4.5)). As a result, geodesics can therefore be continued at negative values
of l, making the WH fully traversable.

As expected, when the coupling is conformal, i.e., F (Φ) = fΦ, the parameter ϵ becomes
constant ϵ = ϵ0 ≡ E/fΦ0, so that vl no longer depend on the scalar field but only on
its asymptotic value Φ0. By setting f = Φ0 = 1, the observer’s speed matches that of
Minkowski spacetime, consistently with the fact that our WH solution is conformally related
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Figure 1. Curvature invariants for the wormhole metric (4.5) as a function of l/b0 (solid lines),
compared with the same quantities evaluated with the Morris-Thorne metric (dotdashed lines) which
are characterized by a zero redshift function.

to the Minkowski spacetime. In this case, we can easily integrate eq. (4.10) to get the
geodesic equation

l(λ) =
√

1 − ϵ−2
0 λ + constant , (4.11)

which indeed describes a straight line.
The proper time along a radial geodesic needed to reach the throat at r = b0 from a

generic external point r0 is, inverting eq. (4.8),

∆τ(r0) =
∫ b0

r0

dr√(
1 − b2

0
r2

)
(ϵ2(Φ) − 1)

. (4.12)

For a general coupling function F (Φ), ∆τ cannot be computed analytically. However, the
regularity of F (Φ) ensures that ϵ2(Φ) remains well-behaved. Consequently, the only potentially
divergent contribution to the integral (4.12) may arise from the denominator evaluated near
r = b0. This contribution behaves as ∼

√
r2 − b2

0, which vanishes at r = b0. Therefore, ∆τ

remains finite, confirming that the WH is traversable within a finite proper time.
The integral in eq. (4.12) can be explicitly evaluated when the coupling is conformal

F = fΦ (ϵ = ϵ0 = constant), to yield

∆τ(r0) =
√

r2
0 − b2

0
ϵ2
0 − 1 , (4.13)

which again remains finite, confirming the WH traversability.

4.2 Regularity of the spacetime and geodesic completeness

In GR, one way to probe the regularity of spacetime is by examining the behavior of curvature
invariants (i.e., quantities invariant under the Diff group). However, for theories invariant

– 9 –



J
C
A
P
0
6
(
2
0
2
5
)
0
1
6

under Weyl rescaling, the situation is more involved. The usual curvature invariants lack
gauge-invariant meaning since they are not invariant under the full Diff × Weyl group. As
long as Weyl symmetry remains unbroken, the regularity of spacetime should be characterized
using quantities that are invariant under both diffeomorphisms and Weyl transformations.
Conversely, since the Weyl symmetry must be broken to produce the observable universe,
the usual curvature invariants can be used to asses the regularity of the spacetime. Given
the conformal relation with Minkowski spacetime, the analysis of the regularity of the WH
geometry is straightforward. As for the Diff × Weyl invariants, they must necessarily involve
a combination of curvature tensors and derivatives of the scalar field. A notable example of
such invariants is the Lagrangian in eq. (3.3). These invariants can be easily computed in the
“Minkowskian” conformal frame, where they identically vanish. In broken conformal phase,
one can consider the usual curvature invariants: R, RµνRµν , RµνσρRµνσρ and CµνρσCµνρσ.
They are trivially zero in the “Minkowski phase”, whereas for the WH geometry (4.5), they
remain finite everywhere. In figure 1, we show the behavior of the first three curvature
invariants8 as a function of the proper distance l, evaluated for the solution (4.5). They are
also compared to the corresponding quantities for the Morris-Thorne WH. Notice that, unlike
the latter model, in our case, the curvature invariants are not symmetric under the l → −l

transformation. This is due to the presence of a non-constant redshift function.
Another way to assess the regularity of spacetime is by examining null and timelike

geodesics. Pathological points correspond to locations where geodesics either terminate
at a finite proper length or focus into caustic. As discussed in section 4.1, timelike radial
geodesics originating from one asymptotic region reach the throat b0 in finite proper time,
cross it, and emerge in the other asymptotic region, confirming the geodesic completeness of
the wormhole geometry (4.5). In principle, this argument does not rule out the possibility
of geodesic focusing and caustic formation. While geodesic focusing may occur in certain
spacetime regions, the formation of caustics is prevented by a de-focusing mechanism. As
we will show in section 4.3, this de-focusing arises due to the violation of the null energy
condition. Indeed, explicit computations of the geodesic expansion parameter Θ in the WH
geometry (4.5) confirm that caustics never form.

4.3 Energy conditions

Let us now investigate the energy conditions of our WH solution. In general, we expect a
violation of the null energy condition, as this is typically required for WH traversability. Energy
conditions can be investigated by computing the components of the effective stress-energy
tensor (3.8), which can be interpreted as a relativistic anisotropic fluid described by

Tµν = (ρ + p⊥) uµuν + p⊥gµν −
(
p⊥ − p∥

)
wµwν . (4.14)

ρ is the energy density, p∥ and p⊥ the two pressure components, while uµ and wµ are,
respectively, a time-like and space-like 4-vectors satisfying uµuµ = −wµwµ = −1 and
uµwµ = 0. Specifically, we have

T 0
0 = −ρ , T r

r = p∥ , T θ
θ = p⊥ . (4.15)

8The contraction of the Weyl tensor can be written as a linear combination of the other invariants and,
thus, it is not plotted in figure 1.
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In terms of these components, the energy conditions read as follows:

• Weak Energy Condition (WEC): ρ ≥ 0 ∧ ρ + p∥ ≥ 0 ∧ ρ + p⊥ ≥ 0;

• Strong Energy Condition (SEC): ρ + p∥ ≥ 0 ∧ ρ + p⊥ ≥ 0 ∧ ρ + p∥ + 2p⊥ ≥ 0;

• Null Energy Condition (NEC): ρ + p∥ ≥ 0 ∧ ρ + p⊥ ≥ 0.

A NEC violation is sufficient to violate the other energy conditions, as it is contained in
both the WEC and SEC.

Using eq. (3.8) and the field equation (3.6b), we now compute the effective energy density
and pressure components sourcing the WH solution. We have for the energy density

−ρ = T 0
0 = 1

8πGNΦ2

[
grrΦ′2 − 2Φ□Φ − 2g00Γr

00ΦΦ′
]

, (4.16)

which simplifies to, upon using eq. (4.3)

8πGNρ = − b2
0

r4 . (4.17)

As expected from WH traversability, the energy density is always negative so that the WEC
is violated everywhere in the WH spacetime. We also notice that the r−4 scaling of the
density profile is typical of conformal field theories in four dimensions, a direct consequence
of the conformal symmetry. We will comment further on this below.

The radial pressure component, instead, is given by

p∥ = T r
r = 1

8πGNΦ2

[
2grrΦ Φ′′ − 3grrΦ′2 − 2grrΓr

rr Φ Φ′ − 2Φ□Φ
]

, (4.18)

leading to (for simplicity, we rescale the radial coordinate by defining y ≡ r/b0)

8πGNp∥ =
−4
(√

1 − 1
y2 + 1

)
y2 + 3

√
1 − 1

y2 + 4

b2
0

(√
1 − 1

y2 + 1
)2√

1 − 1
y2 y6

. (4.19)

At the throat r = b0 (y = 1), 8πGNp∥ = −1/b2
0, so, as expected, the NEC (and, thus, the other

energy conditions) is violated at this point. Actually, ρ + p∥ < 0 everywhere at finite r (solid
blue line in figure 2). At r → ∞ (y → ∞), 8πGNp∥ ∼ −2b2

0/r4, so 8πGN(ρ + p∥) → −3/b2
0r4

(orange dashed line in figure 2), and it goes to zero at infinity, where ρ + p∥ = 0. This is
sufficient to conclude that the NEC is violated everywhere, except at r → ∞.

Finally, the tangential pressure reads

p⊥ = T θ
θ = 1

8πGNΦ2

[
−2gθθΓr

θθΦ Φ′ + grrΦ′2 − 2Φ□Φ
]

, (4.20)

leading to (using, as before, y ≡ r/b0)

8πGNp⊥ =

(
4
√

1 − 1
y2 + 4

)
y2 −

√
1 − 1

y2 − 4

b2
0

(√
1 − 1

y2 + 1
)2√

1 − 1
y2 y6

. (4.21)

At the throat, 8πGNp⊥ = 3/b2
0 > 0, while at spatial infinity, 8πGNp⊥ = 2b2

0/r4, again
positive.
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Figure 2. Behavior of 8πGNb2
0
(
ρ + p∥

)
as a function of y ≡ r/b0 (solid blue line), showing the

violation of the NEC. The orange dashed line represents the −3/y4 asymptotic behavior. The x-axis
has been cut at the throat r = b0.

Thus, the energy conditions are satisfied only asymptotically, as it should be expected
from AF traversable WHs.

All the stress-energy tensor components feature a 1/r4 fall at infinity, typical of conformal
fields in four dimensions. However, the stress-energy tensor (3.8) is not compatible with a
conformal field theory, as its trace is not identically zero, but given by eq. (3.9).9 As discussed
in section 3, using the field equation (3.6b), T µ

µ = 0 only for R = 0. In the WH spacetime,
this condition is fulfilled only at r → ±∞, where the action (3.3) describes a conformal scalar
field theory in Minkowski spacetime. As expected, in the WH interior, the non-zero curvature
of the spacetime breaks the conformal invariance of the asymptotic theory.

4.4 Stability

In the GR framework, traversable WH are typically unstable. This instability arises from the
necessity of exotic matter sources that violate the NEC in certain regions of spacetime to
prevent the collapse of the WH throat. However, in our conformal gravity framework, this
fate can be avoided due to the conformal symmetry of the theory. Although spontaneously
broken, this symmetry can provide a protection mechanism that stabilizes the solution against
instabilities at the linear perturbation level.

Consider perturbations of the WH background (4.3)

gµν = g(WH)
µν + h(WH)

µν , Φ = Φ(WH) + ϕ(WH) , (4.22)

where (g(WH)
µν , Φ(WH)) is the background WH solution (4.3) and |h(WH)

µν | ≪ |g(WH)
µν |, ϕ(WH) ≪

Φ(WH) are the perturbations.
Similarly, we consider perturbations of the conformally related Minkowski solutions

gµν = g(M)
µν + h(M)

µν , Φ = Φ0 + ϕ(M). (4.23)
9One can also verify that eq. (3.9) is consistent with T µ

µ = −ρ + p∥ + 2p⊥ computed from eq. (4.14) and
evaluated using eqs. (4.17), (4.19) and (4.21).
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It has been shown by Percacci [74] that the Weyl conformal symmetry (3.5) of the scalar-
tensor gravity theory (3.3) remains preserved even at the level of linear perturbations. This
implies that when perturbing the Minkowski solution, we can always “gauge away” the scalar
field perturbation in eq. (4.23), setting ϕ(M) = 0. Since the perturbations ϕ(WH) and ϕ(M)

are related by the conformal Weyl rescaling (3.5), it follows that if ϕ(M) = 0, then ϕ(WH)

must also vanish. Furthermore, for the same reason, a small perturbation of the Minkowski
solution (4.23) is mapped by the conformal transformation into a small perturbation of the
WH background (4.22). Since we can “gauge away” the perturbation of the scalar Φ(WH),
the equation governing the metric perturbation h

(WH)
µν in eq. (4.22) at the linear perturbation

level coincides with that of Minkowski spacetime up to a rescaling. Consequently, the stability
of the WH solution follows directly from the linear stability of Minkowski spacetime.

5 Closing remarks

In this paper, we have demonstrated that gravity theories invariant under a Weyl rescaling of
the metric and admitting Minkowski spacetime as a solution always allow for a broad class of
traversable and stable WH solutions. This result was established in a simple and general
manner by constructing the WH through a Weyl rescaling of the Minkowski metric.

In particular, we analyzed in detail a specific case: a Morris-Thorne-like solution within
the Einstein conformally invariant scalar-tensor theory. This framework is particularly
intriguing because the scalar field can be interpreted both as a coordinate-dependent Newton
coupling or as a component of the stress-energy tensor sourcing the WH. As expected,
this stress-energy tensor violates the Null Energy Condition. However, this violation is
less problematic than in conventional WH solutions, since, in our scenario, the scalar field
is not an exotic matter source, but rather a pure gauge degree of freedom. Furthermore,
the Weyl rescaling symmetry ensures that the WH solution inherits linear stability from
the flat Minkowski background.

The existence of stable, traversable AF WH solutions in conformal gravity is a significant
result. It suggests that the major challenges faced by WH solutions in General Relativity —
such as the need for exotic matter and inherent instability — can be overcome by drastically
enhancing the symmetries of the gravitational theory.

Our framework becomes even more compelling in the presence of spontaneous breaking
of Weyl conformal symmetry. This could give rise to two distinct stable phases of broken
conformal symmetry: one corresponding to Minkowski spacetime with the standard Newton
constant GN, and another — a “WH phase” — in which the geometry is described by our
WH solution with a coordinate-dependent Newton coupling.

There are strong indications that conformal symmetry could play an important role in
the ultraviolet behavior of gravity. However, for consistency with observations, this symmetry
must be broken — most likely spontaneously — at low energies to recover Einstein’s equations
of motion. The possibility of a WH phase emerging from conformal symmetry breaking is an
exciting possibility with potential implications for various fundamental issues in gravitational
physics. These include the black-hole information problem (in particular in the context of
the ER = EPR conjecture [20]), AdS quantum gravity [21–23, 75] and other approaches
to quantum gravity [31, 32, 34–38].
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However, a major obstacle remains: we still lack a clear understanding of the dynamical
mechanism responsible for the spontaneous breaking of Weyl conformal symmetry. While
some proposals exist, a fully satisfactory explanation is yet to be found.
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