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Abstract Data-driven methods of background estimations
are often used to obtain more reliable descriptions of back-
grounds. In hadron collider experiments, data-driven tech-
niques are used to estimate backgrounds due to multi-jet
events, which are difficult to model accurately. In this arti-
cle, we propose an improvement on one of the most widely
used data-driven methods in the hadron collision environ-
ment, the “ABCD” method of extrapolation. We describe the
mathematical background behind the data-driven methods
and extend the idea to propose improved general methods.

1 Introduction

The Standard Model (SM) of particle physics is compatible
with almost all of the measurements from particle exper-
iments. In contrast to the successes on Earth, astrophysical
measurements seem to imply existence of energy component
that cannot be explained by SM, and pose a serious challenge.

Despite theoretical and experimental efforts, there is no
direct evidence that any of the solutions proposed is correct.
Moreover, it is not clear what direction should be taken in
order to resolve the problem. Particles predicted by viable
extensions of the SM are already excluded beyond many
TeV’s at the LHC [1]. It may turn out that these new states
are massive enough to be beyond the reach of the LHC for
direct production. However, it does not exclude the possibil-
ity that interesting physics are waiting to be found in rarer
and more complicated final states. For example, we may have
to entertain the possibility of exotic final states [2,3], where
new states appear as a continuum rather than as a resonance,
above backgrounds. In either case, better accuracy of back-
ground estimation is necessary.

For many processes of interest, automatic calculations to
next-to-leading order (NLO) in strong interactions are acces-
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sible in modern Monte Carlo event generators [4]. However,
even at the NLO, theoretical uncertainties are larger than sta-
tistical uncertainty for many processes at the LHC. And as the
number of final-state hadronic jets increase, even the accu-
racy of NLO calculations decreases [5]. Parton showering,
hadronization, and underlying events have smaller effect on
the theoretical uncertainty, but nevertheless are not negligi-
ble.

To reduce the uncertainties related to background esti-
mation, various data-driven estimation methods could be
employed. Data-driven methods make use of the data in
the “background” dominated control region (CR) to estimate
background contributions in the “signal” region (SR), where
interesting events may be found. The method of interpolating
using side-bands is a canonical method. In analyses involving
hadron collision data, we often employ a method of extrapo-
lation, called “ABCD,” a data-driven background estimation
method. It should be noted that data-driven methods do not
entirely exclude the use of simulated data. In this article,
we review the main idea behind data-driven methods and
then extend it to find an improvement for the extrapolation
method.

2 Data-driven methods of background estimation

The concept of estimating backgrounds from the data itself is
nothing new. Important discoveries in the history of particle
physics would not have been possible without such estima-
tions, given that the underlying theory of particle interactions
were not very well known or had large uncertainties [6–10].

While there are many ways that data-driven methods can
be divided, in this article, we will group them into two cate-
gories. In the first category, there are data-driven methods that
use interpolations from the measurements performed on the
side-bands. These methods are used when we look for a new
particle state in a restricted range of kinematic phase space
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(usually mass). In the second category, there are methods
we use when straight interpolations are difficult to employ.
The methods that use extrapolations based on information
in signal-depleted regions, fall in this group. An extrapola-
tion method, called the “ABCD” method, is often used in
hadron collider experiments, where predictions of multijet
production processes have large uncertainties [11–13]. For
more complicated analyses, it could involve combinations of
the two categories.

2.1 Interpolation methods

We briefly review the interpolation methods, which will give
us ideas on how to extend and improve extrapolation meth-
ods. In an interpolation method, measurements are performed
in the side-bands or CRs that surround the SR and the infor-
mation is combined to estimate the backgrounds in the sig-
nal region. In the absence of other information, the minimal
assumption is that the background would have a smooth dis-
tribution.

Let us take a one-dimensional example. We may assume
that the signal region is in x0 ∼ x0 + Δ, Without loss of
generality. The number of backgrounds in this region for
a distribution of backgrounds described by f (x) may be
expressed as F(x0) ≡ ∫ x0+Δ

x0
f (x)dx . Let us take a simple

side-band of equal width to either side of the signal region.
The backgrounds on the left(right) side-band are F(x0 − Δ)

(F(x0+Δ)), respectively. If we assume that the series expan-
sion is valid, we can then express the entries in the side-bands
as

F(x0 − Δ) = F(x0) − ΔF ′(x0) + Δ2 1

2
F ′′(x0)

−Δ3 1

3! F
′′′(x0) + O(Δ4) (1)

F(x0 + Δ) = F(x0) + ΔF ′(x0) + Δ2 1

2
F ′′(x0)

+Δ3 1

3! F
′′′(x0) + O(Δ4). (2)

From the two side-bands, the best estimate of F(x0) is
obtained by taking the average of the two:

F(x0) = 1

2
[F(x0 − Δ) + F(x0 + Δ)] + O(Δ2), (3)

which is a well-known result.
For a background whose distribution is of the f (x) =

ax+b form, the answer is exact. However, for a shape that has
higher-order terms, this approximation may not be enough. If
we allow two side-bands on each side, the terms proportional
to Δ2 can be eliminated.

F(x0 − 2Δ) = F(x0) − 2ΔF ′(x0) + 2Δ2F ′′(x0)

−Δ3 8

3! F
′′′(x0) + O(Δ4) (4)

F(x0 + 2Δ) = F(x0) + 2ΔF ′(x0) + 2Δ2F ′′(x0)

+Δ3 8

3! F
′′′(x0) + O(Δ4). (5)

The best estimate from two equal width side-bands on each
side is

F(x0) = 4

6
[F(x0 − Δ) + F(x0 + Δ)]

−1

6
[F(x0 − 2Δ) + F(x0 + 2Δ)] + O(Δ4), (6)

which is accurate for background distribution f (x) that is
locally a cubic function. One can easily understand this, since
with one side-band on each side, we can fit a line through
the two measurement points for interpolation, and thus find
the linear function exactly. And with two side-bands on each
side, we have four measurements, therefore, we can fit a cubic
function for interpolation.

A similar idea can be adapted to a case with more than
one dimension. Let us consider a rectangular signal region
in x, y space between x0 ∼ x0 + Δx and y0 ∼ y0 + Δy .
Altogether, we can use 8 side-bands, four on the sides of the
rectangle and four regions on the corners. Without any prior
knowledge of the background distributions, and using similar
arguments as before, the best estimate for interpolation is

F(x0, y0) = 1

4
[2F(x0 − Δx , y0) + 2F(x0 + Δx , y0)

+2F(x0, y0 − Δy) + 2F(x0, y0 + Δy)

−F(x0 − Δx , y0 − Δy)

−F(x0 + Δx , y0 − Δy)

−F(x0 − Δx , y0 + Δy)

−F(x0 + Δx , y0 + Δy)] + O(Δ4). (7)

2.2 “ABCD” extrapolation methods

In background estimation using interpolation methods, the
signal is completely surrounded by CRs that provide strong
constraints. They would be useful if the signal is localized.
However, in searches for new physics signatures at large ener-
gies, the signal of interest is expected to populate higher
energy, mass, or jet multiplicity regions. In these cases, mea-
surements based on the signal-depleted CRs must be extrap-
olated to the SR.

We introduce the notation to be used for the extrapola-
tion methods. We can use the extrapolation methods of back-
ground estimation if the dependence of an observable on x
and y is mostly independent, as:

P(x, y) = Px (x)Py(y) [1 + ε(x, y)] , (8)

where the non-independent component is in ε. We assume
that the non-independent part is small |ε| << 1. Then the
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integral in a rectangular region would be mostly factorizable
as well.

F(x0, x1, y0, y1)

=
∫ y1

y0

∫ x1

x0

Px (x)Py(y) [1 + ε(x, y)] dxdy

=
∫ x1

x0

Px (x)dx
∫ y1

y0

Py(y)dy

×
[

1 +
∫ y1
y0

∫ x1
x0

Px (x)Py(y)ε(x, y)dxdy
∫ x1
x0

Px (x)dx
∫ y1
y0

Py(y)dy

]

= Sx (x0, x1)Sy(y0, y1) [1 + Σ(x0, x1, y0, y1)] , (9)

where Σ is the average value of ε over this range and depends
on the amount of dependence between the two variables, x
and y. Sx (Sy) is the integral of Px (Py) in the range x0 ∼ x1

(y0 ∼ y1), respectively. For a fixed-width window, x1 =
x0 + Δx and y1 = y0 + Δy , F is a function of x0 and y0, so
we can omit the arguments x1 and y1 as

F(x, y) = Sx (x)Sy(y) [1 + Σ(x, y)] . (10)

An estimate of F(x, y) is obtained by taking suitable prod-
ucts of the Fs in the neighboring regions as:

F(x − Δx , y)F(x, y − Δy)

F(x − Δx , y − Δy)

= Sx (x)Sy(y)

[

1 + Σ +
(

1

1 + Σ

∂Σ

∂x

∂Σ

∂y
− ∂2Σ

∂x∂y

)

ΔxΔy

]

+O(Δ3)

= F(x, y) + O(Δ2), (11)

where the Δ’s stand for either Δx or Δy . The ΔxΔy term
would vanish if ε(x, y) → 0. Therefore, the error of the
estimation depends on the degree of non-independence of x
and y. In this derivation, we do not assume that Sx (Sy) vary
slowly as a function of x (y), respectively, but that Σ varies
slowly enough that the series expansion is valid.

The method is often referred to as the “ABCD” method
(Eq. 11) or matrix method. In an ABCD method, two-
dimensional phase space is divided into four regions, one
of which is the SR and the neighboring three regions are the
CRs. The choice of the two control variables used for this
purpose depends on the physics case of interest, but should
be as independent as possible. In hadron collision experi-
ments, such extrapolation methods are used to estimate the
backgrounds in a variety of settings. Usually, the signature of
interest is expected at high energies or large particle multi-
plicities, therefore, the interpolation methods cannot be used.
It is in this regime where the need for these methods arises
because of large theoretical or experimental uncertainties in
prediction using simulations or calculations. The data-driven
approach can bypass many of these difficulties.

Fig. 1 The various control regions and the signal region (D) of the
ABCD method

The information from the three A, B, and C CRs, is used
to estimate the backgrounds in the signal region, D (Fig. 1).
Generally, we can express the estimate of FD as F̂D ,

F̂D = FC
FA

× FB

= Sx (x0, x1)Sy(y1, y2)[1 + Σ(x0, x1, y1, y2)]
Sx (x0, x1)Sy(y0, y1)[1 + Σ(x0, x1, y0, y1)]
×Sx (x1, x2)Sy(y0, y1)[1 + Σ(x1, x2, y0, y1)]

= Sx (x1, x2)Sy(y1, y2) [1 + Σ(x1, x2, y1, y2)]

+O(Δ2), (12)

where the Δ’s are either x1 − x0, x2 − x1, y1 − y0, or y2 − y1.
When x2 and/or y2 is taken to infinity, the expansion, in

general, is not valid unless Σ = 0 since Δ → ∞. However,
even if Σ �= 0, under certain conditions, the expansion could
still be valid. For the case x2 → ∞, if the distribution Px (x)
falls sharply as x increases, then Eq. (12) could be still valid.
Since Σ(x1, x2, y0, y1) ≈ Σ(x1, x1 + δx , y0, y1), remem-
bering that Σ is the average value of ε in the given region,
thus x2 is not as relevant since the data are distributed heavily
towards lower values of x . Under these conditions,

1 + Σ(x0, x1, y1, y2)

1 + Σ(x0, x1, y0, y1)
× [1 + Σ(x1, x2, y0, y1)]

= 1 + Σ(x1, x2, y0, y1) + Δy1Σ3(x0, x1, y1, y2)

+Δy2Σ4(x0, x1, y1, y2) + O(Δ2
y)

≈ 1 + Σ(x1, x2, y0, y1) + Δy1Σ3(x0, x0 + δ, y1, y2)

+Δy2Σ4(x0, x0 + δ, y1, y2) + O(Δ2
y)

≈ 1 + Σ(x1, x2, y0, y1) + Δy1Σ3(x1, x1 + δ, y1, y2)

+Δy2Σ4(x1, x1 + δ, y1, y2) − Δx1Δy1Σ31(x1, x1 + δ, y1, y2)

−Δx1Δy2Σ41(x1, x1 + δ, y1, y2) + O(Δ2
y)

≈ 1 + Σ(x1, x2, y1, y2) + O(Δ2), (13)

where Σi (Σi j ) is the partial derivative with respect to the i th
argument (i and j arguments), respectively, and Δs are either
Δx1, Δy1, or Δy2. In summary, with the ABCD method,
measurements in three regions neighboring the SR can be
used to give the accurate description to O(Δ2), given that the
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Fig. 2 Control regions used in the extended ABCD methods. The
upper right region is the signal region, while the rest are the control
regions. The hatched regions are the nominal regions used in an ABCD
method, while the other open regions (in addition to the hatched regions)
are incorporated in the extended ABCD methods

correlation between the x and y is weak and the distribution
falls sharply in x and y.

3 Improving the data-driven extrapolation method

As was the case with interpolation, it is possible to improve
the accuracy of extrapolation methods by including more
CRs. We derive several new analytic results and provide some
case studies to demonstrate their efficacy.

3.1 Extended ABCD methods

We assume that the SR is x > x0 and y > y0 (Fig. 2) and
that the joint distribution in x and y is mostly factorizable.
Then we can express the number of entries in the SR as
F(x0, y0) = Sx (x0)Sy(y0)[1 + Σ(x0, y0)]. By using more
information in the CRs [x0 −2Δx , x0 −Δx ] as well as [x0 −
Δx , x0] and similarly in y, the accuracy can be improved as

F(x0, y0)

=
[
F(x0 − 2Δx , y)F(x0, y0 − 2Δy)

F(x0 − 2Δx , y0 − 2Δy)

]− 1
3

·
[
F(x0 − Δx , y0)F(x0, y0 − Δy)

F(x0 − Δx , y0 − Δy)

] 4
3 + O(Δ3),

(14)

where Δ stands for either Δx or Δy . With fixed-width CRs,
terms up to Δ2 can be exactly canceled. Therefore, the effects
of correlations among variables on the prediction are miti-
gated as well. In the appendix, we give an explicit expression
for Eq. (14).

We can extend the idea further by using information in
eight CRs (Fig. 2), where it is possible to get accuracy of the
O(Δ4) order:

F(x0, y0)

= F(x0 − 2Δx , y0)F(x0, y0 − 2Δy)

F(x0 − 2Δx , y0 − 2Δy)

·
[
F(x0 − Δx , y0)F(x0, y0 − Δy)

F(x0 − Δx , y0 − Δy)

]4

·
[
F(x0 − 2Δx , y0)F(x0, y0 − Δy)

F(x0 − 2Δx , y0 − Δy)

]−2

·
[
F(x0 − Δx , y0)F(x0, y0 − 2Δy)

F(x0 − Δx , y0 − 2Δy)

]−2

+ O(Δ4).

(15)

However, having more CRs does not always result in
reduced error. Since the method involves multiplication or
division operations, statistical uncertainties, due to the finite
number of entries in each CR directly affect the uncertainty
of the prediction. From practical considerations, it may be
desirable to have fewer CRs, so we also derived an optimal
expression for the case of five control regions, by allowing
for two control region bins in either x or y, but not in both.
In the case of two control region bins in x , but one in y, the
optimal combination of the control region measurements is

F(x0, y0)

=
[
F(x0 − Δx , y0)F(x0, y0 − Δy)

F(x0 − Δx , y0 − Δy)

]2

·
[

F(x0 − 2Δx , y0 − Δy)

F(x0 − 2Δx , y0)F(x0, y0 − Δy)

]

+O(Δ2
xΔy). (16)

As before, the error depends on the assumptions of weak cor-
relations among the dependent variables x and y, as described
by ε(x, y). We also assume that ε(x, y) varies slowly enough
to allow for the series expansion.

While the results derived are for fixed width bins, they
can be applied to the variable widths cases. The variable-
widths bins could be modified into fixed-width bins by locally
stretching or squeezing the control variables phase space.
And as long as this operation does not invalidate the assump-
tion of the weak correlations, these methods are applicable.

3.2 Case studies of extended ABCD methods

3.2.1 Toy example

As a simple test, we apply the ABCD method and the
extended ABCD method of Eq. (16) to a distribution

1

1 + 1
2 x

2

1

1 + y2 [1 + α(x + y)] , (17)

which is a smoothly decreasing distribution in x and y, but
otherwise arbitrary. The distribution would separable in x
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Fig. 3 Plot of ratio of prediction to the truth of the different extrap-
olation methods as a function of α together with error bands for the
example distribution in Eq. (17)

and y in the absence of the x + y term, which provides some
correlation between x and y. For simplicity, the boundaries
for the ABCD method are set to x0 = 1, x1 = 2, x2 = 3,
y0 = 1, y1 = 1, y2 = 2. The true value of the area in D is
FD = 0.1210 for α = 0.5, while the ABCD method (Eq.
12) yields 0.1247. The extended ABCD method with the left
boundary at x−1 = 0 yields 0.1195. Extended ABCD method
reduces the error in prediction by a factor of 2.5 for this case.

Figure 3 shows how the predictions of ABCD and
extended ABCD change with α. The bands represent the error
terms of the respective methods in the appendix. Since the
distribution is known explicitly, the error terms can be calcu-
lated. As α → 0, both methods converge to 1, as expected,
since the distribution becomes independent in x and y.

3.2.2 t t̄+multi-jets in hadronic channels

For the second case study, we apply various ABCD meth-
ods of background estimations to t t̄ + j j simulated sample.
The t t̄+multi-jets processes are backgrounds to many of the
searches for physics beyond the standard model at the LHC
[14,15]. While calculation of t t̄ + j j is available at the next-
to-leading order (NLO), it has relatively larger theoretical
uncertainties than what is desired by the experiments [5].
Furthermore, the quoted uncertainties in the literature are on
the overall inclusive cross sections, but in some phase space,
the uncertainties on the the differential cross sections could
be even larger. It is difficult to envision improved calculations
for these processes in the foreseeable future. Therefore, hav-
ing a more reliable data-driven technique is important for
these processes.

We generated one million events of pp → t t̄ j j sam-
ple at

√
s = 14 TeV with MG5aMC@NLO v2.61 at LO

[4]. The extra partons are required to have pT > 20 GeV
and |η| < 5.0. The partons are hadronized with Pythia 8
[16]. Delphes 3 fast detector simulation and reconstruction
were subsequently applied [17]. The reconstructed jets are
required to be pT > 30 GeV and |η| < 2.4. We required zero

Fig. 4 Distribution of the number of jets (N j ) and the number of b-
tagged jets (Nbj ) in t t̄ + multi jets sample

Table 1 Number of events in various Nbj and N j regions in t t̄ +
multi jets samples. The SR considered in this study requires N j ≥ 9
and Nb ≥ 4

Nbj N j

7 8 ≥ 9

2 63216 49685 55756

3 15046 14378 20068

≥ 4 1961 2388 4874

Table 2 Predictions of the number of events for N j ≥ 9 and Nbj ≥ 4 in
t t̄ +multi jets samples using various extrapolation methods and ratios
with respect to the true value (4874). The statistical uncertainties on
the predictions are calculated from Poisson fluctuations of the control
regions

Extrapolation method Prediction (F̂D) F̂D/FD

ABCD (Eq. 12) 3333 ± 77 0.684 ± 0.015

Ext. ABCD (Eq. 14) 4149 ± 132 0.851 ± 0.027

Ext. ABCD (Eq. 15) 4352 ± 271 0.893 ± 0.056

Ext. ABCD (Eq. 16) 4247 ± 217 0.871 ± 0.045

isolated lepton that satisfies pT > 20 GeV and |η| < 2.4 in
an event.

The distribution of the number of hadronic jets (N j ) and
the number of b-tagged jets (Nbj ) is shown in Fig. 4, and
the number of entries in each bin is listed in Table 1. The
correlation coefficient of the two variables is 0.139, hence,
they are weakly correlated. We apply the methods in Eqs.
(14–16), taking N j and Nbj as control variables. The SR is
N j ≥ 9 and Nbj ≥ 4. It could be applicable in a scenario
where signature of interest consists of multijets and multiple
b-tagged jets.

The results of applying various extrapolation methods are
shown in Table 2. The uncertainties in the predictions are sta-
tistical uncertainties due to the number of entries in the con-
trol region. They are evaluated by an ensemble test where the
number of entries in each control region fluctuates accord-
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Fig. 5 Distributions of pT 6 versus HT in t t̄ j j events for the two cases
of applications of extended ABCD methods. Note the different scales
on the axes. Various control and signal regions are delineated

ing to a Poisson distribution. The extended ABCD methods
allow for better prediction in terms of reduced deviation from
the truth, at the cost of increased statistical uncertainties.

Next, we consider cases where the control variables are
continuous. We take the hadronic scalar sum of jet transverse
momenta (HT ) and the sixth leading jet transverse momen-
tum (pT 6) as the control variables. The two variables are obvi-
ously correlated (correlation coefficient: 0.660), as shown in
Fig. 5. We deliberately chose these variables to better exem-
plify the advantages of the extended ABCD methods.

Since the distribution drops rapidly as HT or pT 6, we
consider two different use cases. In the first case, the widths
of the CRs and SR (Δx ) are wider than the widths of the
distribution, and in the second case, the widths are similar
or smaller than the width of the distribution of each control
variable (Fig. 5). Table 3 shows how the different regions are
defined and the number of entries in the respective regions
for the two cases. In the first case, the region of interest (D)
has a lower limit on HT . This could be a typical use case
in hadron colliders where we are interested in phenomena at
high energies. In the second case, D is much narrower, and
although this is not the most general use case, it is nonetheless
interesting for illustration purposes. The bins are chosen such
that the number of entries do not vary greatly among the
different regions (Table 4).

In the first case, the ABCD method yields 4802±122 while
the extended ABCD method of Eq. (16) yields 9976 ± 488.
The ABCD method is inadequate because of the correlation
between pT 6 and HT . In the second case, the ABCD method
yields 3886 ± 128 while the extended ABCD method yields
4493 ± 291. In both cases, the presence of A′ and C ′ control
regions provides an additional lever arm and allows us to take
into consideration the dependence on HT better.

One of the important reasons to use the data-driven method
is to reduce some of the systematic uncertainties. Through
several case studies, we demonstrate that the extended ABCD
methods provide estimates that are closer to the truth. For
cases where independent variables are not easy to find, the
extended ABCD method could still take into account some
of the correlations. In many analyses, the normalization of

Table 3 Number of entries in various HT and pT 6 regions in t t̄ +
multi − jets samples for the two cases considered in Fig. 5. The label
beside each entry indicates the region each entry corresponds to

Case 1
pT 6 HT (GeV)

(GeV) 700–850 850–1000 > 1000

60–70 6319 (A′) 4479 (A) 4343 (B)

70–100 3364 (C ′) 4953 (C) 9288 (D)

Case 2
pT 6 HT (GeV)

(GeV) 700–740 740–800 800–900

50–55 1901 (A′) 2332 (A) 2574 (B)

55–60 2482 (C ′) 3521 (C) 4688 (D)

Table 4 Predictions of entries in region D for the two cases in Table 3.
The errors quoted are the expected statistical uncertainties from pseudo-
experiments

ABCD Ext. ABCD Truth

Case 1 4802 ± 122 9976 ± 488 9288

Case 2 3886 ± 128 4493 ± 291 4688

the background is treated as a nuisance parameter to be con-
strained further by fitting to data. The extended ABCD meth-
ods can provide smaller uncertainty on the prior of the nor-
malization and thus move towards reducing systematic uncer-
tainties.

4 Conclusions

We propose extensions to the ABCD method of extrapolated
background estimation by exploiting information from addi-
tional control regions. The extended ABCD methods could
be useful when the control variables are not exactly indepen-
dent, since they can mitigate the effects of correlations among
the variables. Through several case studies, we demonstrate
that they provide more accurate predictions at the cost of
increased statistical uncertainties.
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ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Expressions for the extended ABCD meth-
ods

We give an explicit expression for Eq. (14) up to Δ3:

Sx (x)Sy(y) ×
{

1 + Σ

+ 2ΔxΔ
2
y

3(1 + Σ)2

[
−2(Σ(0,1))2Σ(1,0)

+2(1 + Σ)Σ(0,1)Σ(1,1)

+(1 + Σ)
(
Σ(0,2)Σ(1,0) − (1 + Σ)Σ(1,2)

)]

+ 2ΔyΔ
2
x

3(1 + Σ)2

[
−2(Σ(1,0))2Σ(0,1)

+2(1 + Σ)Σ(1,0)Σ(1,1)

+(1 + Σ)
(
Σ(2,0)Σ(0,1) − (1 + Σ)Σ(2,1)

)]}

+O(Δ4) (18)

To reduce clutter, we omit the arguments (x, y) to Σ func-
tion. The superscripts (m, n) stand for partial derivatives, as
Σ(m,n) = ( ∂

∂x )m( ∂
∂y )

nΣ(x, y).

And the expression for Eq. (16) up to Δ3 order is

Sx (x)Sy(y) ×
{

1 + Σ

+ Δ2
xΔy

(1 + Σ)2

[
Σ(0,1)

(
(Σ + 1)Σ(2,0) − 2(Σ(1,0))2

)

+(1 + Σ)
(

2Σ(1,0)Σ(1,1) − (1 + Σ)Σ(2,1)
)]}

+O(Δ4). (19)
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