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1 Introduction

Perturbations of asymptotically AdS black holes relate to the thermal stochastic dynamics
of the dual boundary conformal field theory plasma [1–4]. The classical decay of per-
turbations via quasinormal modes is accompanied by the thermal and quantum fluctua-
tions, manifested in the form of Hawking quanta. The physics of such dissipative systems
should be encoded in a real-time open effective field theory (EFT). Such a theory can be
constructed as the dynamics induced onto a probe system coupled to the thermal envi-
ronment after integrating out the plasma degrees of freedom. Recently, such open EFTs
were constructed from holography: for instance, [5] describes the non-linear dynamics of
quasinormal modes associated with probes that have short lifetimes of order the thermal
scale, and [6, 7] (cf., also [8–10]) describe the physics of diffusion which originates from
the fact that the conserved currents of plasma have long-lived modes. Other related work
includes [11–15]. Progress in this direction was spurred by [8] who gave a simple geometric
proposal for computing real-time, Schwinger-Keldysh ordered observables in holography
(cf., [16–19] for earlier work in this direction).

In the previous works [6, 7] the focus was on constructing an open effective field theory
of diffusive modes focusing on momentum diffusion. This occurs through shear modes,
which carry transverse momentum and shear the fluid elements (hence their name) without
compressing the plasma as they propagate. Hence, the shear hydrodynamic mode is present
in compressible as well as incompressible fluids alike. The shearing causes transverse viscous
drag, resulting in the diffusion of the transverse momentum. These shear modes are long-
lived and diffuse slowly through the medium.

On the other hand, compressible fluids have an additional degree of freedom: the sound
mode. Sound travels by carrying a longitudinal momentum, applying pressure on the fluid
elements, which in turn results in a wave of compressions and rarefactions. As the fluid
gets compressed, there is a local change in pressure and energy density, unlike in the case
of shear modes (where the local pressure and energy density remain unperturbed). We re-
mind the reader that the relativistic fluids are always compressible since incompressibility
requires an instantaneous transmission of pressure which is forbidden within special relativ-
ity. Thus, relativistic fluids always have sound modes. The physics of shear and sound are
qualitatively different. While shear modes are diffusive and obey parabolic PDEs, sound
modes are oscillatory and obey hyperbolic PDEs. The difference owes to the fact that a
fluid at rest already has an energy density and pressure. A perturbation over this back-
ground results in the sound mode.1 In contrast, a fluid at rest has no momentum density,
so the transverse momentum diffuses, resulting in the shear mode.

We have described until now the sound and the shear mode as being governed by
second order PDEs. In a realistic system, higher derivative corrections appear and the
effects of the thermal fluctuations need to be considered, resulting in a higher derivative
stochastic PDE. In the case of the sound mode, higher derivative corrections describe the
sound relaxation whereas fluctuations describe the noise background. More precisely, the

1We will only discuss perturbations which do not change the flat spacetime energy density. A static
homogeneous change of temperature or energy density is IR divergent and not included in our analysis.
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sound mode (and the shear mode) should be thought in terms of an open effective theory
incorporating both fluctuation and dissipation. Such a theory is obtained by integrating
out the fast modes in the plasma. This is more easily said than done: one first needs to
systematically separate out the fast modes from the slow modes. In weakly coupled theories,
we need to further deal with the fact that sound relaxes over non-perturbatively long time
scales. We will sidestep these issues by considering a strongly coupled CFT plasma and
study it using holography. Sound and shear modes in holography appear as linearized
metric perturbations over planar Schwarzschild-AdSd+1 black holes [3, 4]. Non-linearly,
the plasma dynamics is captured by the fluid/gravity correspondence [20, 21] (which as
constructed to date however only captures the dissipative but not the fluctuation effects).

The holographic set-up using gravitational dynamics to model the dynamics of a
strongly coupled plasma has some important features highlighted in [6]. Firstly, it makes
clear that the dynamics of short-lived and long-lived modes, dubbed Markovian and non-
Markovian, respectively, are qualitatively different. At the linearized level, each such mode
is described by a scalar field propagating in the AdS black hole background. These fields
were called designer scalars as they are non-minimally coupled to the gravitational back-
ground, with the coupling modeled as a (auxiliary) background dilaton. This dilatonic cou-
pling modulates the interaction the field has in the radial direction. Heuristically, the short-
lived modes are repelled from the boundary of the spacetime, while the long-lived modes are
floppy and have a large wavefunction support near the boundary, which prevents them from
decaying away rapidly. Technically, the Markovian nature is captured by the asymptotic
behaviour of the dilaton and can be encoded in a single number, the Markovianity index, M.

The Markovian nature of a bulk field is characterized by the boundary conditions
imposed on it in order to compute correlation functions via the GKPW dictionary.

• Markovian fields are quantized with Dirichlet boundary conditions and have index M >

−1.

• Non-Markovian fields are quantized with Neumann boundary conditions and have index
M < 1.

This definition mildly updates the definition given in [6]. The main distinction is that fields
in the window M ∈ (−1, 1) can either be Markovian or non-Markovian, depending on the
boundary conditions imposed. This window is similar to the usual discussion of relevant
operators close to the unitarity bound in AdS/CFT [22], when near-boundary fall-offs are
slow enough that one can switch to general multi-trace boundary conditions [23].

Secondly, the linearized metric perturbations which contain both short and long-lived
modes can be decoupled by working with diffeomorphism/gauge invariant degrees of free-
dom. This provides a clean separation of fast and slow modes, allowing one to integrate
out the former. It also makes clear what the natural gauge choices are for analyzing per-
turbations in the real-time gravitational Schwinger-Keldysh (grSK) geometry of [8]. For
instance, use of standard gauge fixing in the AdS black hole background leads to solutions
which have spurious singularities at the horizon, necessitating artificial boundary conditions
in the interior of the spacetime, in tension with the rules of the AdS/CFT correspondence
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(this is an issue for instance in the solutions discussed in [8] and [10]). In contrast, the
gauge invariant variables chosen in [6, 7] lead to a smooth solution on the grSK geometry
with appropriate boundary conditions on the two asymptotic boundaries (corresponding
to the bra and ket pieces of the Schwinger-Keldysh evolution).

Let us understand these statements by examining the dynamics of the plasma stress
tensor. Given a direction of propagation we can identify polarizations labeled by the little
group in the transverse spatial geometry. The stress tensor operator has traceless spin-
2 polarizations which are short-lived, and hence are Markovian with index M = d − 1.
The transverse vector spin-1 polarizations are non-Markovian with index M = 1 − d and
correspond to the shear modes of the plasma. This leaves the single longitudinal mode
which is the focus of the present paper — it relates to the sound mode resulting from
energy transport. These statements translate directly in the dual gravity picture, for the
selfsame decomposition can be applied to the linearized gravitons [24, 25].

In [6] and [7] we derived the effective dynamics from the dual gravitational perspective
for the spin-2 transverse traceless tensor and spin-1 transverse vector modes. The non-
Markovian shear mode was captured by a designer scalar with index 1 − d. This scalar,
which is weakly coupled near the AdS boundary due to the dilatonic modulation, should be
quantized with Neumann boundary conditions for purposes of computing the generating
function of dual stress tensor correlators. This is not an ad-hoc choice, but rather one
enforced by the underlying Einstein-Hilbert dynamics which, when distilled through the
field redefinitions necessary to arrive at the decoupled designer scalar dynamics, ensures
that the variational principle arises with suitable boundary terms for this choice.

Since the shear mode is long-lived, constructing a local effective field theory requires
that we treat it in a Wilsonian fashion. Rather than compute the generating function
of Schwinger-Keldysh correlators one therefore chooses to compute a Wilsonian influence
functional (WIF) parameterized by the long-lived boundary modulus field — the momen-
tum flux operator for shear modes. In practice, one can obtain this WIF by Legendre
transforming the generating function of correlators. Happily, the Legendre transforma-
tion is simple and can be obtained by quantizing the designer non-Markovian field with
(renormalized) Dirichlet boundary conditions.

Based on the description of sound propagation in relativistic plasma, one expects that
the longitudinal modes of the gravitons are similarly captured by an effective designer
non-Markovian scalar, which is dual to the boundary energy flux operator. While this
observation is morally correct, the technical details are significantly more involved. For
one, the field dual to the energy flux operator by itself (which we denote as Θ below) does
not have a nice dual geometric description. Rather, a linear combination of this field and
the conformal mode of gravitational perturbations has simple autonomous non-Markovian
dynamics. Even more curiously, this designer field, denoted Z, has its coupling to the
background geometry modulated non-trivially as a function of momentum.

While the technical reason for these statements can be traced through the derivation,
we do not understand the physical reason for why this should happen. On the contrary, the
field Θ, while exhibiting no such pathologies, does not have simple autonomous dynamics.
All of this is in stark contrast with the physics of diffusive modes; even for charged plasmas
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where the shear mode mixes with the Markovian charge current mode, the dynamical
system allows for clear decoupling and relatively simple dynamics for the resulting non-
Markovian degrees of freedom [7].

We will primarily focus on the spatially inhomogeneous modes of the plasma. Phys-
ically, we imagine cutting-off spatial momenta as k ≥ kIR and examining the dynamics
of propagating sound modes above this cut-off. This is sensible for the plasma on Rd−1,1

to mitigate IR effects.2 This perspective will be important for us, since the dynamical
system we analyze exhibits a somewhat discontinuous behaviour as a function of momen-
tum. Spatially homogeneous modes (zero spatial momentum) have a qualitatively different
behaviour. For one, their dynamics appears to be Markovian, and further there are zero
modes that do not merge into Z. One such is the mode which corresponds to a homogeneous
static heating of the plasma, which as explained in footnote 1 is unphysical (it changes the
background solution). Since these modes do not directly affect the dynamics of sound, we
will mostly not discuss them in the main text. Nevertheless, for the sake of completeness,
we include an analysis of the homogeneous solution space. We demonstrate that it can be
understood as the space of large diffeomorphisms, and moreover demarcate the part which
is captured by our designer field in appendix E (see [26] for an earlier analysis).

Part of the complication in the sound mode sector has to do with the fact that there
are many degrees of freedom in the dual gravitational description. One has seven metric
functions which can be combined into diffeomorphism invariant combinations. Four of these
can be eliminated a-priori, three by gauge fixing and one by using an algebraic constraint
arising from the dynamical equations of motion (latter for k 6= 0). The remaining three
fields satisfy three linearly independent equations of motion, of which two can be solved
by introducing the field Θ and enabling elimination of two functions. The final step is to
show that this field combines with the conformal mode to produce the designer field Z for
spatially inhomogeneous modes. Somewhat amazingly, the off-shell Einstein-Hilbert action
simplifies considerably when we parameterize the linearized gravitons using Z.

The complexities are all pushed to pure boundary terms (a consequence of the large
degree of redundancy in the classical system). These also simplify significantly when we
consider asymptotically locally AdS boundary conditions, allowing one to show that for
purposes of computing correlation functions, Z should be quantized with Neumann bound-
ary conditions. Earlier analyses of scalar sector quasinormal modes in AdS black hole
geometries have not carefully analyzed the variational principle, leading to some inaccu-
rate statements in the literature.

The reduction to the single scalar field Z was first ascertained by [24] at the level
of equations of motion. Using their results and examining the asymptotics in global
Schwarzschild-AdS4, [27] argued that one should impose a Robin boundary condition for
the global analog of our field Z. During their study of planar black hole quasinormal
modes, [28] argued that the field Z should have Robin boundary conditions in d = 3, 4

2The Goldstone mode for sound in Minkowski spacetime has soft modes which may be tamed by con-
sidering the plasma on a large compact spatial sphere, i.e., using global AdS to provide a regulator. While
this is an interesting problem to study, working with a momentum cut-off will suffice to extract the physics
of fluctuating phonons.
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but should have Dirichlet boundary conditions in d ≥ 5.3 Since we follow the field redef-
initions and examine the variational principle, we have a clear prescription to obtain an
unambiguous answer: Z should be quantized with Neumann boundary conditions to ob-
tain boundary stress tensor correlation functions.4 One way to see the issue is to note that
the field Z, and not its conjugate momentum, gets renormalized by higher order countert-
erms. The renormalization of Z starts with the counterterm at quartic order in boundary
gradients (the leading cosmological constant and boundary Einstein-Hilbert counterterms
do not renormalize Z). Usual AdS/CFT dictionary with Dirichlet boundary conditions
renormalizes the field momentum and not the field, which is held frozen as the source.

Once we have isolated the dynamics in terms of a single designer scalar degree of
freedom, the rest of the analysis follows along the lines described in [6]. We first obtain the
ingoing boundary to bulk (inverse) Green’s function by solving the dynamical equation of
motion, order by order in boundary gradient expansion. We discover in this process another
surprise: the solution for Z can be written in terms of the solution to the minimally coupled
scalar wave equation (equivalently the tensor mode solution) with some simple replacement
rules up to cubic order in gradients. At quartic order there are new functions which reflect
the change in the nature of the dynamics.

Armed with the boundary to bulk (inverse) ingoing Green’s function we can construct
the full boundary to bulk solution on the grSK geometry, parameterized by the expectation
value of the corresponding boundary plasma operator. This information then suffices to
obtain the WIF at the Gaussian order by evaluating the on-shell action (which gives the
saddle point semiclassical answer). This expression can be equivalently written in terms of
the energy flux operator by a suitable field redefinition.

This is the primary result of the paper: we reproduce in the process the expected
correlation function of the energy-momentum tensor isolating the locus of the sound pole
and obtaining thus the sound dispersion relation of the holographic plasma. Our results
are consistent with the earlier computations of [29] and [30], who obtained the non-linear
sound dispersion for N = 4 SYM (d = 4) and ABJM plasma (d = 3), respectively, and
generalize them to arbitrary dimensions.

The outline of the paper is as follows. We begin with a quick summary of the grSK
geometry which forms the arena of the computation in section 2. In section 3 we argue that
the dynamics of Einstein’s equations can be distilled into one designer field. We primarily
present the final result of the analysis and give a bird’s-eye view of the arguments leading
up to capturing the dynamics into a single field. We describe in section 4 the solutions of
the designer field and its on-shell action on the grSK geometry. We then use this data in
section 5 to write down the open effective action for the energy flux operator, completing
thereby the task initiated in [6] for the neutral plasma.

3A different combination of the linearized metric components with decoupled dynamics was constructed
in [25] in radial gauge. This combination should be quantized with Dirichlet boundary conditions as noted
by the authors. We have not made direct contact with their variables, but note that the relation to the
field Z can be recovered from eq. (4.7) of [28].

4This is true even in low dimensions d = 3, 4 where the index for Z lies in the window MZ ∈ (−1, 1)
mentioned earlier, allowing for both sets of boundary conditions. So while general boundary conditions are
technically allowed, they don’t compute stress tensor correlation functions.
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To avoid cluttering the text with technical details, we have tried to summarize the es-
sential points as much as possible. Readers interested in understanding the steps leading to
our statements in detail are invited to consult the appendices. Appendix A gives a detailed
argument of how to assemble the gauge invariant data and use the dynamics implied by
Einstein’s equations to deduce the field Z for spatially inhomogeneous modes. While the
final result is not original, with a close relative of Z having already been motivated in [24],
we have tried to make more transparent the origins of the designer field. On the other hand,
appendix B contains a careful examination of the Einstein-Hilbert dynamics at the level of
the off-shell action, which has hitherto not appeared in the literature. For completeness, we
give two presentations, one in terms of metric functions after suitable gauge fixing to make
connection with the dynamical equations, and another in terms of the designer field Z. The
latter is important for our analysis, since we wish to establish the boundary conditions for
Z — we prove that it satisfies Neumann boundary conditions asymptotically for comput-
ing the generating function of correlations. In appendix C we give the expressions for the
boundary observables which we use in section 5. Finally, appendix D compiles details of
the solution we obtain in gradient expansion. In particular, we give the near-boundary
asymptotics of the functions which enter the computation of the boundary observables.

For completeness, we also include appendix E where we characterize the dynamics of
the spatially homogeneous modes and relate them to the large diffeomorphisms of the back-
ground geometry. We demonstrate that there are additional zero modes in the problem,
which do not smoothly connect to the solution space parameterized by Z.

2 Background

We are interested in analyzing the real-time dynamics of energy current and the associated
propagation of sound in a neutral plasma. Holographically, a neutral conformal plasma is
dual to the Schwarzschild-AdSd+1 geometry, which is a solution of the Einstein-Hilbert ac-
tion (with a negative cosmological constant). In ingoing Eddington-Finkelstein coordinates
the background metric reads

ds2
(0) = g

(0)
AB dx

A dxB = −r2 f(br) dv2 + 2 dv dr + r2 dx2 . (2.1)

For analyzing real-time dynamics in the d dimensional field theory we want to use the
grSK geometry. In the conventions introduced in [5, 6] the metric reads

ds2
(0) = −r2 f(br) dv2 + i β r2 f(br) dv dζ + r2 dx2 , f(ξ) = 1− 1

ξd
. (2.2)

Here ζ is the mock tortoise coordinate, a real-time contour in the bulk complexified radial
coordinate figure 1 and is defined by

dr

dζ
= i β

2 r2 f(br) , β = 4πb
d
≡ 4π
d rh

, (2.3)

subject to the following boundary conditions at the cut-off surface r = rc

ζ(rc + i ε) = 0 , ζ(rc − i ε) = 1 . (2.4)

– 7 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
2

rh
rc

rc+iε
Re(ζ)=0

Re(ζ)=1
rc−iε

Im(r)

Re(r)

Figure 1. The complex r plane with the locations of the two boundaries and the horizon marked.
The grSK contour is a codimension-1 surface in this plane (drawn at fixed v). As indicated the
direction of the contour is counter-clockwise and it encircles the branch point at the horizon. The
left SK boundary (denoted L) is located at rc+iε, while the right boundary (denoted R) is at rc−iε.

The grSK geometry has two boundaries, denoted L and R, respectively, which we assign
to be at ζ = 0 and ζ = 1, respectively. When analyzing asymptotics of bulk fields we
will use the notation r →∞± i0 to denote the L and R boundary of the grSK geometry.
For further details, and for an overview of real-time holography, we refer the reader to the
aforementioned papers.5

When we analyze the dynamics of gravitational fluctuations, it will be convenient to
work with suitably dressed radial derivative operators that make Schwinger-Keldysh time
reversal properties manifest. Time-reversal is a Z2 involution acting as v 7→ iβζ−v.6 Thus,
a natural basis for tangent and cotangent spaces are {D+, ∂v, ∂i} and { drr2f , dv −

dr
r2f , dx

i},
respectively. We defined following [6] the operators D±

D± = r2f
∂

∂r
± ∂

∂v
, D± = r2f

∂

∂r
∓ i ω , (2.5)

in the time and frequency domain, respectively.
In presenting our results we find it helpful to scale out dimensions using the horizon

scale set by b−1 and work with dimensionless parameters

w = b ω , q = b k , ξ = br . (2.6)

3 Dynamics and the designer sound field

As discussed in section 1, to understand energy transport and the sound modes in the
plasma, it suffices to focus on metric perturbations involving scalar plane waves and their
derivatives. These scalar polarized gravitons will be the only set of modes we analyze
here; the discussion of tensor and vector polarizations was previously described in [6, 7] for
neutral and charged plasmas, respectively. For this decomposition we pick a direction for
the spatial momentum k and define harmonics on Rd−1,1 to be the SO(d − 2) harmonics
of the corresponding little group.

5As in those references, uppercase Latin indices are used for the bulk AdS spacetime, with lowercase
Greek indices reserved for the timelike boundary. Spatial directions along the boundary are further indexed
by lowercase mid-alphabet Latin indices. Furthermore, gAB is the bulk metric, γµν the induced boundary
metric, and nA the unit normal to the boundary.

6Note that in the ingoing coordinates v → −v is not an isometry. The involution v 7→ iβζ− v exchanges
the ingoing and outgoing Eddington-Finkelstein coordinates; we have written this in a manner natural to
the complex grSK geometry.
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Concretely, we consider metric perturbations of the form

ds2
(1) =

(
hAB dx

AdxB
)
Scal

=
∫
k

{(
2 ΨS ds

2
(0) + Ψvv dv

2 + 2 Ψvr dvdr + Ψrr dr
2
)
S

−
[
2 r (Ψvx dv + Ψrx dr) Si dxi − 2 r2 ΨT ST

ij dx
idxj

]}
.

(3.1)

Here S = eik·x−iωv is the scalar plane wave on Rd−1,1 and Si and ST
ij are derived harmonics,

defined as
Si = 1

k
∂i S , ST

ij = 1
k2

(
∂i ∂j −

δij
d− 1 ∂

2
)

S . (3.2)

ST
ij is traceless but not transverse, ∂iST

ij = d−2
d−1 ∂

2 ∂j . It is thus distinguished from the
derived harmonic Sij defined in [6], which is neither transverse nor traceless. We have also
defined a short-hand for the measure on the Fourier domain∫

k
≡
∫
dω

2π

∫
dd−1k

(2π)d−1 (3.3)

to keep expressions compact.
There are seven metric components in the perturbation above. A-priori we expect that

these seven functions obey seven coupled radial ODEs arising from the linearized Einstein
equations. Owing to diffeomorphism invariance not all of these dynamical equations are
independent. One must first identify the pure gauge modes from the physical perturbations
and focus on their dynamics. This problem has been analyzed in detail in [24], whose
discussion we can adapt for our purposes. Following their analysis we will refer to the
two-dimensional {v, r} spacetime as the orbit space. The physical sound mode ends up
being described as a non-Markovian scalar field in this orbit space.

We now explain how to efficiently distill the dynamics into a single gauge invariant
degree of freedom inspired by the previous analysis of gauge dynamics in [6, 7].7 The
key point is that there are seven metric functions while the classical phase space, param-
eterized by gauge invariant data, has only one physical degree of freedom in the scalar
sector of gravitational perturbations. To arrive at this result we make use of the following
observations which are elaborated upon in appendix A:

• There are seven diffeomorphism invariant combinations of the metric perturbations ΨAB

which can be organized as an orbit space traceless tensor, an orbit space vector, and two
orbit space scalars. One first deduces that the orbit space vector (Ψvx and Ψrx) and one
scalar (ΨT) can be gauge fixed to vanish, leaving four functions, which are essentially
ΨS ,Ψvv,Ψvr,Ψrr.

• Time-reversal involution is an orbit space diffeomorphism: ΨS ,Ψvv,Ψvr + 1
2 r

2f Ψrr are
time-reversal even, while Ψvv + r2f Ψvr is time-reversal odd. This information is useful
to constrain the structure of the equations of motion and the action.
7We will exclusively describe the dynamics of modes carrying non-vanishing spatial momentum in the

text, relegating the analysis of spatially homogeneous modes to appendix E.
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• Among the equations of motion we find an algebraic constraint, which allows elimination
of Ψrr for non-zero spatial momentum. Two other equations are the momentum con-
straint equation (which is the boundary energy-momentum tensor conservation) and a
first order radial equation. These two equations can be used to solve for Ψvv and Ψvr in
terms of a function Θ, which is related to the boundary stress tensor component (TCFT) i

v .

One therefore finds that the metric can be parameterized by two functions: an overall
Weyl rescaling of the background geometry and a function which encodes the physical data
of the boundary stress tensor. We will label these fields as ΦW and Θ, respectively, and
judiciously define them with suitable factors of r to simplify the dynamical equations;

ΨS ≡
1

2rd−2 ΦW , Ψvv + r2f Ψvr ≡ −
iω

rd−3 Θ . (3.4)

The metric parameterized by these fields, subject to the gauge fixing where all the
metric components involving derived scalar spherical harmonics are set to zero, is said to
be in the Debye gauge. Our scalar perturbations are then captured by8

ds2
(1) = ΦW

rd−2 ds
2
(0) +2 f

rd−5
dΘ
dr

dr

r2f

(
dr

r2f
− dv

)
+ D+Θ
rd−3 dv

2− (d−1) f ΦW

rd−4

(
dr

r2f

)2
. (3.5)

We have written the metric in the basis of the cotangent space that is adapted to the
time-reversal involution of the background.

The last step involves analyzing the remaining dynamical equations of motion and
discerning that they can be solved if one further introduces a field Z to parameterize ΦW

and Θ as
Θ = r

Λk

(
D+ −

1
2 r

2 f ′
)
Z , ΦW = 1

Λk

(
rD+ + k2

d− 1

)
Z . (3.6)

The function Λk is curious. It is a non-trivial function of spatial momentum (indicated by
the subscript). It will turn out to be a designer dilaton for the field Z and is given by

Λk(r) ≡ k2 + d− 1
2 r3 f ′ = k2 + d(d− 1)

2 bd rd−2 . (3.7)

Because of the momentum dependence, the field Z should be seen as residing in the orbit
space and not in the entire background geometry.9 Note that there is a linear relation
between Θ and ΦW from (3.6)

Θ = ΦW −
1

(d− 1) Z . (3.8)

Our main claim is the following: linearized Einstein equations for scalar perturbations
of the Schwarzschild-AdSd+1 geometry are satisfied provided the field Z obeys a second
order linear differential equation

rd−3 Λk(r)2 D+

( 1
rd−3 Λk(r)2 D+Z

)
+
(
ω2 − k2f

[
1− d (d− 2)

bd rd−2 Λk(r)

])
Z = 0 . (3.9)

8We have written the metric directly in position space as the fields ΦW and Θ are simply Fourier
transformed with the scalar harmonic S.

9The origin of Λk is analogous to the Ohmic function h(r) which appears in the analysis of vector
perturbations of the Reissner-Nordström-AdSd+1 black hole [7]. The modulation there was due to the
background charge whereas here it directly relates to the momentum carried by the perturbation.
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This equation is the ‘master field equation’ obtained in [24], which we have obtained in a
somewhat different parameterization.10

We have written the effective dynamics in a manifest time-reversal invariant form.
This implies that for analyzing the solution on the grSK geometry (2.2) we only need to
solve (3.9) in a single copy background (2.1) with ingoing boundary conditions. One can
then use the time-reversal properties to construct the outgoing solution and thence the
full grSK solution with boundary conditions specified on the two asymptotic boundaries at
r →∞±i0 as described in [5]. Arriving here was a key step in the analysis: had one worked
with other gauge fixing methods traditionally employed in AdS/CFT such as radial gauge,
while one would have been able to solve the ingoing problem, the corresponding outgoing
solution would be singular. The issue is similar to the problems encountered with gauge
fields and momentum diffusion analyzed in [6, 7].

Not only does one end up with a single second order differential equation to solve in the
scalar sector of gravity, but there is also a remarkable simplification of the Einstein-Hilbert
action. Plugging in the parameterization, we find after a series of algebraic simplifications
the dynamics of Z to be governed by a simple dynamical system11

1
ceff

S[Z] = −
∫
k

d

8 νs k
4
∫
dr
√
−g eχs

[ 1
r2f

D+Z
†D+Z + VZ(r)Z† Z

]
+ Sbdy [Z] ,

VZ(r) = − ω2

r2f
+ k2

r2

(
1− (d− 2) r3 f ′

Λk

)
.

(3.10)

The dilaton χs which modulates the gravitational interaction is

eχs ≡ 1
r2(d−2) Λ2

k

, (3.11)

while the normalization is fixed by a parameter νs, which in turn is

νs ≡
2 (d− 2)
d (d− 1) . (3.12)

This is a remarkable simplification given the complexities inherent in the scalar perturba-
tion; our field redefinitions in (3.6) imply that the metric in Debye gauge is a function of
{Z,D+Z,D2

+Z}, so the truncation of two derivative dynamics is indeed a welcome surprise.
As one might expect, much of the complication is hidden in the boundary term Sbdy [Z]
in (3.10). It captures all the contributions from the Gibbons-Hawking term, additional
boundary terms encountered while writing the action in terms of Z, and counterterms. In
appendix B, we explain how to obtain the action and the variational principle for the field
Z starting from the Einstein-Hilbert dynamics.

10The authors of [24] prefer to write the equations in Schwarzschild coordinates and express it as
a Schrödinger equation in orbit space for a field SKI. To bring our equation to their form, one first
transforms from our ingoing coordinates to Schwarzschild coordinates and implements a field redefinition:
Z = r

d−5
2 Λk SKI.

11The effective central charge is defined as ceff = `d−1
AdS

16πGN
.
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This action (3.10) is of the general form of a non-Markovian designer scalar introduced
in [6], albeit with some additional novelties. Firstly, the dilaton χs modulates the gravi-
tational interaction non-trivially as a function of spatial momentum k. The Markovianity
index,12 which depends on the asymptotic behaviour of the dilaton, is determined to be

lim
r→∞

eχs = 1
k4 r2(d−2) =⇒ Mk≥kIR = 3− d . (3.13)

We have made explicit our spatial momentum cut-off for clarity. Thus, we see that for non-
zero momentum the field Z is a non-Markovian designer scalar with index M = 3−d. Note
that while the field Z has a non-trivial potential which we will need to take into account,
the potential does not, as in the analysis of [7], modify the Markovianity properties. The
latter is purely governed by the radial kinetic operator.

While our distillation of the dynamics into the designer field Z is only valid for spatially
inhomogeneous modes, for purposes of finding the solution, we can examine the behaviour
of the dilaton and the wave equation (3.9) at zero spatial momentum. On this locus
Markovianity index changes to M = d − 1, which suggests that the zero mode sector
comprises of short-lived modes (sound of course doesn’t propagate without momentum).
The full dynamics of k = 0 modes is a bit more involved, though a part of the solution
space is indeed captured by Z with an effective Markovian dynamics as (3.9) suggests.

From a pragmatic standpoint, this switch between Markovian and non-Markovian be-
haviour in section 4.2 will prove very useful when we solve (3.9) in a gradient expansion.
Thanks to this observation, we will be able to write down the solution directly in terms of
known solutions [6] of the Markovian wave equation with M = d − 1 at low orders in the
gradient expansion. As mentioned earlier, an analysis of zero modes can be found in ap-
pendix E, where we describe how Z(r, ω,0) connects onto the set of large diffeomorphisms.

4 Sounding out the grSK geometry

For the rest of the discussion we will focus on the dynamics of the gravitational system
encoded in Z and recover the physics of sound propagation with attenuation. We begin
with the solution to the equation (3.9) with ingoing boundary conditions. Subsequently,
using the time-reversal involution of the grSK geometry we will construct the full linearized
solution parameterized by the expectation value of a boundary stress tensor component at
the L and R boundaries.

4.1 Solving the designer equation

To better understand the nature of the designer scalar Z(r, ω,k), we first analyze the
asymptotics of the wave equation (3.9). As described above, while the derivation of the Z

equation is valid for k 6= 0, we can consider k ≥ 0, since part of the homogeneous mode
solutions merge into Z.

Let us first focus on zero frequency solutions, but examine both the zero momentum
and non-zero momentum behaviour separately, owing to (3.13). At zero spatial momentum,

12The Markovianity index was defined in [6] with a minimally coupled massless scalar having index d−1.
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we have the asymptotic behaviour determined by

Z(r, 0,0) = c̃a + c̃m
1
rd
, (4.1)

where the constant mode ca is analytic, but the monodromy mode cm typically has a
logarithmic branch cut emanating from the horizon. On the other hand at non-zero spatial
momentum one finds the expected non-Markovian behaviour:

Z(r, 0,k) = ca + cm r
d−4 . (4.2)

Per se, this is not unexpected given the general analysis of Markovian and non-Markovian
degrees of freedom as described in [6]. This is an explicit realization of the observation
above that naively there is a change in character as a function of momentum.

Let us pause here to comment on two special cases: d = 3 and d = 4. The situation
in d = 4 is marginal; the monodromy mode behaves logarithmically. When we present
solutions we will be careful to normalize them as rd−4

d−4 so the limit d→ 4 can be easily taken
by replacing this function by log r. On the other hand, in d = 3, it appears from the fall-offs
that the field Z is Markovian since the index vanishes. This is misleading since, as noted
in section 1, the field Z is actually non-Markovian for all d ≥ 3. This is not manifest from
just analyzing fall-offs, for we also need to take into consideration the variational principle
and the boundary conditions for Z, which we discuss in appendix B.3. We demonstrate
there that Z has Neumann boundary conditions imposed on it for purposes of computing
the generating function of correlators and hence it is non-Markovian for all d ≥ 3.

Returning to the dynamical problem we can solve (3.9) by disentangling the physical
non-Markovian behaviour from the auxiliary Markovian one. We first rewrite the differen-
tial equation for Z in terms of the designer scalar wave operator [6, 7]:

DM = r−MD+
(
rMD+

)
+
(
ω2 − k2f

)
. (4.3)

When expanded in powers of momentum we find a remarkably simple form for (3.9):

Dd−1 Z− k2νs f

(
1− νs k

2

(d− 2) r2 (1− f) +O
(
k4
))( 2

r(1− f) D+ − d
)
Z = 0 , (4.4)

where the parameter νs was defined earlier in (3.12).
Since the operator Dd−1 annihilates a Markovian scalar of index d− 1, which we write

as the field ϕ
d−1 in the notation of [6], one can subtract out this piece from Z and write a

general solution as
Z(r, ω,k) = ϕ

d−1(r, ω,k)− νs q2 Z̃(r, ω,k) . (4.5)

We are almost done: Z̃ satisfies an inhomogeneous linear differential equation of the
form Dd−1Z̃ = source. The source is simply determined in terms of a Markovian field
ϕ
d−1 in the background Schwarzschild-AdSd+1 geometry, which has already been solved for

in [6, 7]. That analysis has already inverted the operator Dd−1, so one simply needs to add
in a particular solution to determine the full behaviour.
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Not only do we have access to the solution space, but the nature of the change in
asymptotics is now transparent. At zero momentum the second term in (4.4) vanishes
and simply has Dd−1 annihilating Z(r, ω,0). At non-zero momentum however, the source
provided by the Markovian solution is scaled up because of the 2

r(1−f) D+ term. This
accounts for the change in behaviour. We will parameterize the solutions in a particularly
convenient manner so that the non-Markovian behaviour in fact only sets in at quartic
order.13 This will turn out to be another artifact of the field Z; translating back to the
metric function ΦW , or even Θ, we will see a change at quadratic order in momenta.

We now present the ingoing solution for the field Z and use it to determine the full
solution on the grSK geometry. Our analysis will be accurate to quartic order in the
boundary gradient expansion.

4.2 Ingoing solution in gradient expansion

Working with the dimensionless variables (2.6), we obtain the ingoing inverse Green’s
function for the field Z, normalized to satisfy limξ→∞G

in
Z

(ξ, ω,0) = 1:

Gin
Z

(ξ,ω,k) = e−iwF (ξ)
{

1−w2Hω(ξ)−p2
sHk(ξ)+ iwp2

s Ik(ξ)+ iw3Iω(ξ)

+ p4
s Jk(ξ)+w2 p2

s Jωk(ξ)+w4Jω(ξ)

− q2

d(d−1)

[
4(d−2)2w2Jk(ξ)+2Ks(ω,k)

d−2 Vk(ξ)
]

+ · · ·
}
.

(4.6)

We have written the solution using the notation employed in [6] since the functions ap-
pearing below are essentially those already encountered there.14

We have introduced two new functions of frequencies and momenta in parameteriz-
ing (4.6). The first, Ks(ω,k), which we will later confirm to be the sound dispersion
function, is defined as

Ks(ω,k) ≡ −w2 + q2

d− 1 + νs q
2 Γs(ω,k) ,

Γs(ω,k) = −iw−w2
[
(d− 2)Hk(1)− 1

d− 2

]
+ d− 3

(d− 1) (d− 2) q
2 + · · · .

(4.7)

Up to quadratic order Ks captures the propagation of sound while Γs encodes its atten-
uation. The second parameter, ps, may be viewed as a ‘deformed momentum’ parameter
arising from the spatial modulation of the dilaton and is

p2
s ≡ q2

(
−d− 3
d− 1 + 2 νs Γs

)
. (4.8)

13In fact, this behaviour is quite similar conceptually to that observed for transverse vector polarizations
of photons and gravitons in [7]. There it was found that one had a Markovian mode which mixed with a non-
Markovian mode and picked up additional divergent terms. In that discussion there were two independent
degrees of freedom, which were decoupled to isolate the long-lived and short-lived modes. Here there is
only a single mode whose character changes owing to the underlying gauge invariance.

14In [6] we had only obtained the solution to cubic order in gradients. Solutions accurate to the quartic
order were obtained in [7] both for the neutral and charged black holes. In the latter reference the gradient
expansion used a slightly different grouping of terms in the solution; we describe this form for completeness
in appendix D.3.
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We have judiciously combined terms from the solution for ϕ
d−1 and Z̃ to write the result

in this compact form (introducing the parameter ps in the process).15
There is one important subtlety which the reader should be aware of in the way we

have presented the solution for Z. The solution to (3.9) up to the quartic order in gradients
does not determine Γs owing to the explicit factor of q2 multiplying Vk(ξ) in (4.6). This
would be unfortunate since Γs will turn out to be the sound attenuation function. However,
if we compute the functions ΦW and Θ from Z (or any other metric function) then this
overall factor of q2 disappears and we obtain Γs accurate to quadratic order by examining
the coefficient of the non-normalizable mode in the solution. A physical way to say this is
to note that the boundary source is the conjugate momentum with a factor of k2 stripped
off, see (5.5). This behaviour is manifest in the ingoing Green’s function of the field ΦW

which is given in (D.10) (the information in Θ is similar, but not independent owing to
the linear relation (3.8)). To obtain Γs directly from Z as written above, we would have
to compute the solution accurately to sextic order, another peculiarity of the fact that it
is related to radial derivatives of the metric functions.

In fact, we would like to conjecture that one can actually get Γs to quartic order in
gradients. From the leading divergent mode in ΦW (or Θ), which scales as rd−2, we get
an expression for Ks to quartic order. However, we can also examine the constant mode,
scaling as r0, near the boundary. It has a coefficient which is a non-trivial function of ω
and k. By judiciously parameterizing the solution for ΦW , one finds that this function
starts off as Γs and gets corrected at cubic and quartic corrections (the same quantity
appears as the constant mode of Gin

Z
). If one uses a parameterization of the solution in

terms of Γs, simply noting that it starts at linear order, then the on-shell action is finite
up to sextic order. Based on this observation and the nature of the explicit solution, we
predict an expression for Γs up to the fourth order in boundary gradients, which we record
for completeness in (D.9) (where for clarity it is denoted as Γ̃s(ω,k)).

All of the functions that appear above, except for Vk(ξ), are defined using the ingoing
solution for massless Klein-Gordon scalar ϕ

d−1 in the Schwarzschild-AdSd+1 background.
More precisely,

Gin
d−1(ξ, ω,k) ≡ e−iwF (ξ)

{
1− w2Hω(ξ)− q2Hk(ξ) + iwq2 Ik(ξ) + iw3 Iω(ξ)

+ q4 Jk(ξ) + w2 q2 Jωk(ξ) + w4 Jω(ξ) + · · ·
} (4.9)

solves Dd−1ϕd−1 = 0 with ingoing boundary conditions, limr→∞ ϕ
d−1 = 1, and thus is

the ingoing bulk to boundary Green function for the massless scalar described in [6]. The
asymptotic boundary condition along with the regularity at the horizon (ingoing boundary
condition) uniquely fixes the eight functions {F,Hω, Hk, Iω, Ik, Jω, Jωk, Jk}. The asymp-
totic boundary condition implies that they all vanish as r →∞. The conversion from the

15One way to observe that p2
s starts off as − d−3

d−1 q2 is to note that setting Λk = d−1
2 r3f ′ in (3.9) reduces

it to
1

rd−1 D+
(
rd−1 D+Z

)
+
(
ω2 + d− 3

d− 1 k
2
)

Z = 0 ,

which has the form of a Markovian wave operator with analytically continued momenta.
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Function Source Function Source
F (d− 1) ξd−1 (ξd − 1) Iω

2
d−2 (ξd−2 − 1)− 2 (d− 2) Ĥk(ξ)

Hω 1− ξ2(d−1) Jωk
(
1− ξ2(d−1)

)
Hk(ξ)− 4 Ĥk(ξ)

+ξd−2 (ξd − 1)Hω(ξ)
Hk ξd−2(ξd − 1) Jω

(
1− ξ2(d−1)

)
Hω(ξ)− 4 Ĥω(ξ)

Ik − 2
d−2 (ξd−2 − 1) Jk ξd−2 (ξd − 1)Hk(ξ)

Table 1. The sources for the functions parameterizing the ingoing solution for Z in (4.6) which
enter their integral representation (4.11).

massless scalar to the field Z involves replacing factors q2 with p2
s in various places up to

the quartic order: this in particular means that Gin
Z
remains Markovian up to that order

(for reasons explained in footnote 15).
The key function that controls non-Markovianity is Vk(ξ), which is defined by the

integral

Vk(ξ) ≡ −
ξd−4

d− 4 +
∫ ∞
ξ

yd−4 − 1
y(yd − 1) . (4.10)

For d > 4 this function grows as r → ∞, unlike the other functions. We have extracted
the leading divergence as rd−4, which is precisely what one expects for a non-Markovian
field of index M = 3− d as described around (4.2).

Since we are effectively inverting the Markovian operator Dd−1 to find the functions
above, they can all be given formal integral representations, assuming that the sources
are regular on the horizon and do not grow too fast at infinity. We can write in general
following [6]

F(ξ) =
∫ ∞
ξ

dy

y (yd − 1)

∫ y

1

dy′

y′ (y′d − 1) Ĵ(y′) , (4.11)

with F̂(ξ) = F(ξ)−F(1) defined to measure function values relative to that on the horizon.
We tabulate the data for the functions appearing in the gradient expansion originating
from the minimally coupled scalar in table 1. Further details of the solution, including
asymptotic expansions and expressions for the gravitational data from our solution for Z,
are compiled in appendix D.

4.3 The grSK solution for the designer field

The ingoing Green’s function for Z suffices for us to determine the full solution on the
grSK geometry thanks to the time-reversal invariance of (3.9). We want to impose suitable
boundary conditions at the two boundaries of the grSK geometry at r → ∞± i0. It was
argued in [6] that a non-Markovian fields should be quantized with Neumann boundary
conditions if we wish to compute their correlation functions. Equivalently, the asymptotic
field value does not correspond to the boundary source, but rather gives the dual boundary
operator (akin to the alternate quantization of low lying operators). This was cleanly
formulated for probe non-Markovian fields and established to be the case for diffusive
modes in the aforementioned reference and [7].
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The question we should first ask is what the Einstein-Hilbert dynamics with its
usual Dirichlet boundary conditions for computing correlation functions of dual energy-
momentum tensor correlation functions implies for the field Z. It turns out that while
the dynamics of Z is pretty simple in the bulk, as evidenced from (3.10), it has a pretty
involved set of boundary terms owing to the redefinitions in (A.27). The boundary terms
are a general quadratic form in Z, D+Z, and D2

+Z, implying that generically we need to
fix a combination of these three quantities for stationarity of the action. However, one can
do better: armed with the asymptotic fall-offs of the field, one learns that the leading set
of boundary terms in a near-boundary expansion are simpler, and one indeed finds that Z
ought to be quantized with Neumann boundary conditions to obtain the dual stress tensor
correlators. The detailed argument analyzing the variational principle for the designer field
Z is given in appendix B.3.

While the field Z is quantized with Neumann boundary conditions in order to compute
the generating function of boundary correlators, the resulting correlators have a sound pole,
reflecting the non-Markovian nature of the field. For this reason, it was proposed in [6] that
one should, for purposes of computing a real-time Wilsonian influence functional, param-
eterize the solution for Z in terms of the normalizable mode, which for a non-Markovian
field corresponds to the conjugate momentum.

With this understanding we will now parameterize the general solution on the grSK
geometry in terms of the sound modulus, which is the expectation value of the dual bound-
ary operator Ŏ

Z
(thinking of Z probe field in the fixed Schwarzschild-AdSd+1 background).

We will denote the modulus associated with the auxiliary field Z as Z̆ and write〈
(Ŏ

Z
)L
〉

= Z̆L ,
〈

(Ŏ
Z
)R
〉

= Z̆R , (4.12)

with
Z̆L/R = lim

r→∞±i0
[Z + counterterms] . (4.13)

In terms this boundary modulus field Z̆ we can write the full grSK solution in the
average-difference basis defined as

ZSK(ζ, ω,k) = Gin
Z
Z̆a +

[(
nB + 1

2

)
Gin

Z
− nB e

βω(1−ζ)Grev
Z

]
Z̆d , (4.14)

with Grev
Z

(ζ, ω,k) = Gin
Z

(ζ,−ω,k) being the time-reversed propagator. Here nB is the
Bose-Einstein distribution function

nB (ω) = 1
eβ ω − 1 = 1

e
4π
d

w − 1
. (4.15)

The average-difference fields are defined by the usual Keldysh rotation to be Z̆a =
1
2

(
Z̆R + Z̆L

)
and Z̆d = Z̆R − Z̆L, respectively.

It was important that Z obeys a time-reversal invariant equation for us to write down
this solution from the knowledge of the ingoing solution alone. For a detailed derivation
of this fact we refer the reader to [5, section 4.1]. It is useful to note that Z has mass
dimension d− 2 and hence Z̆a,d are likewise boundary fields with this dimension. We will
use this information in the next section to present the effective action for the phonon modes
in the relativistic plasma.
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5 Effective dynamics of sound and energy transport

With the grSK solution for the designer sound mode, we can evaluate the on-shell action
parameterized by the fields Z̆a,d, which then gives us the open effective field theory of sound
propagation in the holographic plasma at the Gaussian order in amplitudes. We first outline
the details of this effective action and then turn to the boundary stress tensor, which we
will express in terms of Z̆ and background polarization terms involving the sources ζ̆.

5.1 The sound Wilsonian influence functional

Since the background Schwarzschild-AdSd+1 geometry has a non-vanishing free energy, we
expect to see two contributions to the on-shell action. One is a piece from the background,
which based on fluid/gravity intuition should correspond to the ideal fluid free energy. In
addition, there will be the true dynamical data corresponding to the Wilsonian influence
functional (WIF) of the field Z. These two contributions are cleanly separated in the
shear and tensor sectors of a neutral fluid [6] because, in those sectors, we do not have a
propagating mode.

A relativistic ideal fluid has a propagating phonon mode, so the split in this sound
sector is not a-priori manifest. We will therefore not identify the ideal fluid contribution
at this stage, but simply separate the on-shell action into the WIF and contact terms.
Subsequently, working out the stress tensor will enable us to understand which pieces
should be regarded as part of the ideal fluid contribution. With this preamble, let us write
the full action as a sum of two pieces, viz.,

S[Z] = Scontact[Z] + SWIF[Z] . (5.1)

We now summarize the final result for the Schwinger-Keldysh effective action obtained
by computing the on-shell action for Z with the gradient expansion solution given in sec-
tion 4.2. The reader can find details of the evaluation in appendix C.3.

Let us start with the contribution to the WIF, which is ascertained to be
1
ceff

SWIF[Z] = −
∫
k
k2
(
Z̆†dK

in
Z

[
Z̆a +

(
nB + 1

2

)
Z̆d
]

+ cc
)
, (5.2)

where
K in

Z
(ω,k) = bd−2

2 d (d− 1)2 Ks(ω,k) . (5.3)

From this expression we solve for the boundary source of the field Z in terms of the moduli
field Z̆ and obtain

ζ̆a = K in
Z
Z̆a +

(
nB + 1

2

) [
K in

Z
−Krev

Z

]
Z̆d ,

ζ̆d = Krev
Z
Z̆d .

(5.4)

One can give an alternate expression for the source directly from the conjugate mo-
mentum of the field Z, after stripping off a factor of k2, viz.,

ζ̆L/R = − lim
r→∞±i0

Π
Z

k2 . (5.5)
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It can be checked that our identification of the source in (5.5) agrees with the expectation
from the WIF (5.4) (which we expect on general grounds from [6]) and is verified in
appendix B. Isolating a factor of k2 in the WIF results in stripping off a similar factor from
the conjugate momentum (5.5).16 The rescaling by a factor of k2 is only allowed since we
are focusing on spatially inhomogeneous modes and are implicitly working with k > kIR .

The source for the designer field can be given several equivalent expressions in terms
of the metric functions. Using the asymptotics of the solutions obtained in appendix D.2
(see in particular (D.10) and (D.12)) one can show

ζ̆L/R = 1
4 (d− 1) lim

r→∞±i0

D+Θ
rd−1 = d νs

8 lim
r→∞±i0

ΦW

rd−2 . (5.6)

These source terms are basically capturing the deformation of the boundary metric order
by order in the gradient expansion. Indeed, upon examining the induced metric γµν on the
boundary

(γL/R)µν = lim
r→∞±i0

[D+Θ
rd−1 dv

2 +
(

1 + ΦW

rd−2

)
ηµν dx

µ dxν
]

= −
(

1− 4 (d− 1) (d− 3)
d− 2 ζ̆L/R

)
dv2 +

(
1 + 4 (d− 1)

d− 2 ζ̆L/R

)
dx2 ,

(5.7)

we see that spatial and temporal components of the perturbed boundary metric can be
viewed as sources for Z. Since we have only one physical degree of freedom in the longi-
tudinal sector, we do not have independent metric perturbations, but rather see that the
red-shift factor captured by the temporal term is related up to a dimension dependent
constant to Weyl rescaling of the background.

With the identification of the sources we can now present the contact term part of the
action, which is a functional of these sources. Ignoring the background free energy term
for simplicity, we find the following result at linear and quadratic order in amplitudes:

1
ceff

Scontact[Z] = 2 (d− 1)2

bd

∫
k

[
ζ̆R − ζ̆L + (d− 1) (d− 6)

(d− 2)
(
ζ̆†R ζ̆R − ζ̆†L ζ̆L

)]
. (5.8)

In section 5.4 we will argue that this contact term can be understood as arising from
the on-shell action of an ideal fluid propagating on (5.7). This includes the somewhat
counter-intuitive numerical factor in the quadratic term, which vanishes in d = 6.

We will explain the individual contribution to the action, in particular the split between
ideal and non-ideal parts, after we discuss the stress tensor. With that understanding we
will be able to cleanly identify the ideal fluid contribution. Along the way, we will also
argue that the non-dissipative part of the hydrodynamic action, the Class L terms in the
terminology of [31], can be extracted from the WIF. For the scalar sector we will for example
see the curvature coupling of the fluid at quadratic order in gradients. These statements
will be elaborated in section 5.4.

16In the vector sector, the passage to Debye gauge already factors out a piece proportional to k2, even
in the off-shell action for the designer fields [6, 7]. This does not happen in the off-shell action (3.10) for Z
due to the momentum dependent dilaton, but is reinstated in the on-shell action.
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Let us take stock of some physical implications from the grSK solution for Z, and the
results for the Wilsonian influence functional. We see that the inverse Green’s function
computed from the WIF is proportional to Ks(ω,k). In other words, the retarded Green’s
function of Ŏ

Z
has a pole at the vanishing locus of Ks. This function also appears as

the coefficient of the divergent (non-normalizable) mode in Z. As described in [6], non-
Markovian fields have a completely normalizable solution on a codimension-1 locus in the
boundary Fourier domain. For Z this is the vanishing locus of Ks; it will end up defining
the dispersion function for sound. This also implies that Γs defined in (4.7) is the rate of
attenuation of sound speed due to viscosity. We will elaborate on this further below when
we discuss the physical sound degree of freedom and compute boundary energy-momentum
tensor correlators.

5.2 The boundary stress tensor

With the Wilsonian influence functional parameterized by the boundary value of the field
Z at hand, we can now turn to the physical boundary observables, which are the scalar
polarizations of the boundary energy-momentum tensor density. The stress tensor has both
a background contact piece and a contribution given in terms of the fluctuating field Ŏ

Z
.

In the scalar sector, the presence of a non-trivial boundary metric (5.7) means that the
result we quote for the contact terms depends on the index positions and whether or not
we work with stress tensor densities. We will work with tensor densities, quoting the mixed
components for the stress tensor operator, but compute the correlator for the operator with
both indices raised.17 For the sake of notational simplicity, we define

T̂µν ≡ 1
ceff

TµνCFT . (5.9)

Here TµνCFT is the counterterm corrected Brown-York stress tensor density given in (C.4).

We will take the viewpoint that the standard rules of the extrapolate dictionary in
holography (which can be extended to grSK geometry [5]) as applied to non-Markovian
operators dictates a canonical split between operator (or vev) and source contributions.
As explained in appendix C.2, this can be seen by examining the Brown-York stress tensor
(corrected by the counterterms) directly in terms of the metric fields ΦW and Θ. This
tensor must satisfy conservation and be traceless (up to the conformal anomaly, which we
do not access in d > 4). This statement follows naturally from the momentum constraint
equation in the bulk geometry and underlies the original identification in [32].

17In the AdS/CFT context, it is natural, as from any effective action, to extract the boundary stress
tensor density, since it only requires variation with respect to the boundary metric and no removal of
metric determinants (recall that the stress tensor operator is Tµν = 2√

−γ
δS
δγµν

).
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With this choice the Schwinger-Keldysh stress tensor operator has the following rep-
resentation:

(
T̂ v
v

)
L/R

= −d− 1
bd

+
∫
k
S
[

2 (d− 1)2

bd
ζ̆L/R −

k2

d− 1 (Ŏ
Z
)L/R

]
,

(
T̂ i
v

)
L/R

= i

∫
k

k ω

d− 1 Si (Ŏ
Z
)L/R ,(

T̂ j
i

)
L/R

= δ ji
bd

+
∫
k
S

2 (d− 1)2

bd
δ ji ζ̆L/R

+
∫
k

[ 1
d− 1

(
ω2 − νs Γs k2

)
δ ji S− 1

d− 2 νs Γs k2 (ST) ji
]

(Ŏ
Z
)L/R .

(5.10)

We recognize the background contribution which says that the unperturbed planar
Schwarzschild-AdSd+1 black hole is a conformal plasma. The terms linear in ζ̆ and Ŏ

Z

are the terms we should understand.
As it is written, the stress tensor is not manifestly traceless. Nor is the conservation

Ward identify obvious on the induced boundary geometry (5.7). The two do hold, and
are, in fact, equivalent to the relation between sources and vevs (5.4), which picks out the
sound dispersion locus:18

〈
∇µT̂µν

〉
= 0 =

〈
T̂ µ
µ

〉
=⇒

(
ω2 − k2

d− 1 − k
2 νs Γs

)
Z̆L/R + 2 d (d− 1)2

bd
ζ̆L/R = 0 .

(5.11)
We should view (5.11) as giving us the on-shell condition for the sound mode which

occurs when the solution is purely normalizable, i.e., when the source contribution is set
to vanish. This confirms that the operator Ks gives us the dispersion relation for sound in
the plasma and identifies Γs(ω,k) as the attenuation function.

With this identification we can now give an alternate presentation of the stress tensor.
Let us use the dispersion relation (5.11) to shift the source and vev contributions in the
spatial part of the stress tensor, i.e., use the replacement rule

ω2 − νs Γs k2 7→ k2

d− 1 −
1
b2
Ks . (5.12)

Re-expressing Ks Z̆ in terms of ζ̆ we find that the stress tensor in (5.10) can be equivalently
presented as

〈
T̂ v
v

〉
L/R

= −d− 1
bd

+
∫
k
S
[

2 (d− 1)2

bd
ζ̆L/R −

k2

d− 1 Z̆L/R

]
,

〈
T̂ i
v

〉
L/R

= i

∫
k

k ω

d− 1 Si Z̆L/R ,〈
T̂ j
i

〉
L/R

= − 1
d− 1

〈
T̂ v
v

〉
L/R

δ ji −
∫
k

k2

d− 2 νs Γs (ST) ji Z̆L/R .

(5.13)

18The covariant derivative in the conservation equation is the one appropriate for the stress tensor density,
cf., footnote 17.
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The representation of the CFT stress tensor (5.13) renders the trace Ward identity
manifest. Additionally, it also isolates the sound attenuation contribution captured by Γs
solely into the spatial part of the stress tensor. In fact, the contribution is governed by the
longitudinal trace-free tensor structure ST

ij . In this presentation, the tracelessness Ward
identity is manifest, but conservation now implies the on-shell condition (5.11).

One could go a step further and replace the Γs term in the spatial part of the stress
tensor once again using (5.12), i.e., express it as

〈
T̂ j
i

〉
L/R

= − 1
d− 1

〈
T̂ v
v

〉
L/R

δ ji + 1
d− 2

∫
k

(
k2

d− 1 − ω
2
)

(ST) ji Z̆L/R

− 2 d (d− 1)2

(d− 2) bd
∫
k

(ST) ji ζ̆L/R .
(5.14)

In this manner of presentation, both the conservation and tracelessness Ward identities
of the stress tensor are identically satisfied. The operator contribution encoded in Z̆ has
the right momentum and frequency dependent factors for the conservation to be rendered
trivial, while the terms involving ζ̆, one can check, respect ∇γ µ T̂

µν = 0 by themselves.19
While there appear to be three distinct parameterizations, the form given in (5.13)

is the one that separates the ideal fluid contribution from the dissipative part. We will
demonstrate this in section 5.4 after writing down the stress tensor correlators.

5.3 Correlation functions

From the Wilsonian influence functional (5.2) we can read off the correlation functions of
the Ŏ

Z
field operator on the boundary. The retarded Green’s function is given by〈

Ŏ
Z
(−ω,−k) Ŏ

Z
(ω,k)

〉Ret
= 1
i ceff k2K in

Z
(ω,k) = −i 2 d (d− 1)2

ceff bd
1

q2Ks(ω,k) . (5.15)

The structure of the WIF respects the KMS condition, as explained in the earlier works,
implying that the Keldysh correlator satisfies the fluctuation dissipation condition, viz.,

〈
Ŏ

Z
(−ω,−k) Ŏ

Z
(ω,k)

〉Kel
= − 1

2 ceff
coth

(
βω

2

) Im
[
K in

Z
(ω,k)

]
k2
∣∣∣K in

Z
(ω,k)

∣∣∣2 . (5.16)

We can use this information to write down the stress tensor correlators given the
explicit expressions for the components in (5.10). From this expression it is clear that
the result is given by the two-point functions of Ŏ

Z
, suitably dressed to account for the

derivative operators present (the functions of ω, k in frequency/momentum domain).
Before doing so however, we should note that we have the boundary metric determined

by a single source function (5.7), which implies relation between sources of various com-
ponents (and an absence of source for the spatial-temporal component). We will view the
boundary metric as defining the source for the energy density. Thus, we can obtain the en-
ergy density two-point function naturally. Once we have this piece of data, we will use flat

19 ∇γ µ is the boundary covariant derivative, compatible with the induced metric γµν . We use a preceding
γ supercript (northwest) of all boundary quantities to remind the reader of this fact.
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spacetime Ward identities, as explained in [4], to fix the remaining correlation functions.
In particular, we demand that the contact terms in the retarded correlation functions are
fixed so that flat spacetime momentum conservation holds — this implies that correlation
functions with at least one temporal index vanish at zero momentum. To fix the purely
spatial components we utilize full energy-momentum tensor conservation.

With this understanding, we now quote the result for the physical retarded correlator
for the energy-momentum tensor density operator TµνCFT . We parameterize these as

〈
TµνCFT(−ω,−k)TµνCFT(ω,k)

〉Ret
= 2d
i ceff bd

Gµν,ρσ(ω,k)
Ks(ω,k) + analytic . (5.17)

To avoid writing involved expressions we pick a spatial direction for sound propagation,
setting k = k x̂, decomposing Rd−1 coordinates into {x, xs} with s = 2, · · · , d− 1. One can
check that with this choice ST

ij = 1
d−1 diag{−(d− 2), 1, · · · , 1}. We choose a representation

where Gµν,ρσ(ω,k) are polynomials in ω, k and take the form:

Gvv,vv = q2 , Gvv,vx = qw ,

Gvv,xx = q2
( 1
d− 1 + νs Γs

)
, Gvv,ss = q2

( 1
d− 1 −

1
d− 2 νs Γs

)
,

Gvx,vx = q2
( 1
d− 1 + νs Γs

)
, Gvx,xx = wq

( 1
d− 1 + νs Γs

)
,

Gvx,ss = wq

( 1
d− 1 −

1
d− 2 νs Γs

)
, Gxx,xx = w2

( 1
d− 1 + νs Γs

)
,

Gxx,ss = w2
( 1
d− 1 −

1
d− 2 νs Γs

)
,

Gss,ss = w2
( 1
d− 1 −

1
d− 2 νs Γs

)
− d− 1
d− 2 νs Γ∗s

(
w2 − d− 1

d− 2 q2 νs Γs
)
. (5.18)

Any other representation of Gµν,ρσ would differ from the above by factors of Ks. The
Keldysh propagator follows naturally from the fluctuation dissipation theorem. Our choice
for non-analytic part of the retarded Green’s function recovers the result for the analytically
continued Wightman function given in [4] for d = 4.

The physical aspect of the result which is interesting is the fact that the stress tensor
correlators have a sound pole at the dispersion locus characterized by the vanishing of Ks.
As noted around (5.11) this function gives us the on-shell condition for the phonon mode.
At the leading order in gradients it enforces the expected equation of state condition, which
fixes the speed of sound in a conformal plasma to be 1√

d−1 . At higher orders the Γs pieces
serve to attenuate the propagation and predicts its half-life.

Solving (5.11), and using the expression for Γs given in (4.7), we find20

ω = k√
d− 1

− i d− 2
d (d− 1) b k

2 + d− 2
2 d2 (d− 1) 3

2

[
d+ 2 + 2 Har

(2− d
d

)]
b2 k3 + · · · . (5.19)

We have indicated only one branch of the solution in the above expression.
20We used Hk(1) = − 1

d (d−2) Har
(

2−d
d

)
where Har (x) is the Harmonic number function.
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As particular cases, note that with d = 4 we recover the results for the N = 4 SYM
plasmas,21

w = q√
3
− i

6 q2 + 3− 2 log 2
24
√

3
q3 + · · · , (5.20)

which was first obtained to cubic order in [29] (extending the original result of [4]). Setting
d = 3 we obtain the corresponding result for the ABJM plasma obtained in [28, 30]:

w = q√
2
− i

6 q2 + 15 +
√

3π − 9 log 3
108
√

2
q3 + · · · . (5.21)

As we describe in appendix D.2, from our solution we can actually extract higher order
corrections to the dispersion, and quote the result accurate to quintic order in (D.13).

5.4 A fluid dynamical perspective

We have now reproduced the physical results expected for sound propagation as encoded
in the stress tensor correlators. Let us therefore try to analyze features of the solution from
a hydrodynamic perspective and, in particular, attempt to understand the contributions
to the action (5.8). The gravitational calculation gives us the answer tout ensemble, but
we can attempt to decompose it using hydrodynamic intuition.

The physical question of interest is how one delineates the ideal and non-ideal parts of
the effective action. Addressing this question will make clear that one should think of the
action as comprising of a Schwinger-Keldysh factorized part corresponding to sound propa-
gation, in addition to the physical influence phase, the part that governs sound attenuation,
as we indicate in (5.31) below.

The non-ideal part, by definition, includes all the gradient contributions in the stress
tensor parameterized in hydrodynamic variables, whether or not they lead to dissipation.
We will use the stress tensor in the form parameterized in (5.13), which judiciously iso-
lates the non-ideal contributions into Γs. As has been argued earlier [31], not all higher
order transport is dissipative. While dissipative transport leads to entropy production, in
general, there exists non-dissipative transport which is adiabatic and leads to no entropy
production. While at leading order Γs(ω,k) captures sound attenuation, which originates
from the dissipative shear viscosity term, it also includes contributions from higher order
non-dissipative gradient terms.

To keep the discussion transparent, we will first identify the ideal fluid contribution,
which by definition only captures zeroth order terms in the gradient expansion of the stress
tensor. Having understood this part, we will then attempt to address higher order (spatial)
gradient terms, which capture non-dissipative transport.

21We work with dimensionless frequencies and momenta defined in (2.6). This definition differs from
normalizations used in earlier references. Our normalization is twice that used in [29], while [30] uses a
normalization set by temperature and not (inverse) horizon size, which in d = 3 differs by a factor of 3

4π .
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Consider an ideal fluid with energy density and pressure related by the conformal equa-
tion of state ε = (d− 1) p, viz., the tensor density (nb: T̃ is dimensionless for simplicity)22

Tµνideal =
√
−γ

(
T̃

b

)d
(γµν + d uµ uν) . (5.22)

We claim that the part of our solution which is insensitive to sound attenuation, i.e., with
Γs → 0, describes the dynamics of such an ideal fluid on the boundary geometry (on either
L or R boundary). Specifically, we assert

Tµνideal =
〈
T̂µν

〉 ∣∣∣∣
Γs→ 0

. (5.23)

We can confirm this by solving the conservation equations arising from (5.22) on the induced
boundary geometry (5.7).

We can parameterize the temperature and velocity by a field Z̆, which is a-priori
unrelated to the stress tensor expectation value

T̃L/R = 1−
∫
k

[
2 (d− 1)
d− 2 S ζ̆L/R −

bd−2 q2

d (d− 1)2 S Z̆L/R

]
,

(uµ dxµ)L/R =
(
−1 +

∫
k

2 (d− 1) (d− 3)
d− 2 S ζ̆L/R

)
dv −

∫
k

i bd−2 qw

d (d− 1) Si Z̆L/R dx
i .

(5.24)

Imposing the conservation equation one finds that Z̆ and ζ̆ must satisfy the relation (5.11)
with Γs = 0.23 With this constraint recovered, we may identify Z̆ as the physical phonon
mode, i.e., as the boundary value of the non-Markovian field. We have effectively isolated
the dynamical sound mode, which importantly does exist even in the absence of dissipation,
on the inhomogeneous dynamical boundary spacetime (5.7). One can, furthermore, use the
on-shell relation to write the temperature more suggestively as

T̃L/R = 1 +
∫
k

[
2 (d− 1) (d− 3)

d− 2 S ζ̆L/R + bd−2 w2

d (d− 1) S Z̆L/R

]
. (5.25)

In this presentation, we see that the source ζ̆ contribution to the temperature is just the
red-shift effect for a fluid propagating on (5.7). The contribution from Z̆ parameterizes
the response of the fluid.

22We are not keeping track of the normalization factor translating between the horizon size parameter b
and the physical temperature T , cf., (2.3).

23This parameterization can be motivated by considering a phonon mode for a relativistic plasma in
flat spacetime. All one needs is the statement that the dynamics is captured by conservation of the stress
energy tensor. It is not hard to check that for a linearized perturbation about an equilibrium plasma in
flat spacetime,

T = T0 +
∫
k

k2

d− 1 S Z̆ , uµ dx
µ = −dv −

∫
k

i ω k Si Z̆ dxi ,

satisfies the conservation law at linear order in amplitudes provided
(
−ω2 + k2

d−1

)
Z̆ = 0. The latter

equation picks out the sound dispersion locus in the absence of a source.
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Beyond the ideal fluid, the first correction comes from the dissipative shear viscosity
term, which physically leads to the damping of the sound in the medium. This is the leading
iω contribution to Γs. To isolate any non-dissipative contributions we must therefore switch
off time-dependence and focus on equilibrium data. In stationary equilibrium, Γs(0,k) =

d−3
(d−1) (d−2) b

2 k2 + · · · . The ST
ij part of the spatial stress tensor can be identified as the

coupling of the fluid to background curvature. For a conformal plasma it takes the form

TµνCFT ⊃ κ
(
Cγ µανβ uα uβ + σ<µαsh (σsh)ν>α + ω<µαvor (ωvor) ν>

α

)
. (5.26)

Here Cγ µανβ is the Weyl tensor of the boundary geometry (5.7), ωvor is the fluid vorticity,
σsh is the shear tensor of the fluid, and the angle brackets indicate transverse projection.24
The value of the transport coefficient κ = 2 ceff T d−2 is known for Schwarzschild-AdSd+1
black holes [33] (it was initially derived in d = 4 in [29]). Using the temperature and velocity
profiles identified above, one can directly check that our result captures this contribution
to the stress tensor.

Having understood the contributions at the level of the stress tensor we can now
explain how to interpret the contact terms in the action. Furthermore, we can also isolate
terms corresponding to the Class L adiabatic action for holographic plasmas conjectured
in [31], by reverse engineering a boundary action from transport data. In terms of the
Weyl covariant hydrodynamic variables this action reads

SW = b−d
∫
ddx
√
−γ

(
T̃ d−b2 T̃ d−2

[
RW

d−2 + 1
2ω

2
vor+ 1

d
Harmonic

(2
d
−1
)
σ2
sh

])
. (5.27)

Here RW is the Weyl covariant curvature scalar on the boundary.
Let us begin with the ideal fluid part which is the leading contribution in (5.27). To

understand this we first note that the contribution to S[Z] can be understood directly from
the variational definition of the stress energy tensor. Specifically, the on-shell action with
Γs → 0, which prior to our Legendre transformation is the usual generating function of
correlators, is given by contracting the ideal stress tensor (5.22) with the change in the
background metric from flat spacetime, viz.,

Sideal[Z] = 1
2

∫
ddxTµνideal (γµν − ηµν) Legendre−→

transform
S[Z]

∣∣∣∣
Γs→ 0

. (5.28)

We have dropped the background constant free energy part and focused on the pieces
arising from the solution to the linearized equations of motion. In particular, the contact
term contribution in its entirety originates from the propagation of an ideal fluid on (5.7).
It should now be clear that the curious factor of (d − 6) is just a numerical accident; it
arises due to the relation between the metric components in γµν . There is nothing special
about relativistic conformal fluids in six spacetime dimensions, nor are Schwarzschild-AdS7
black holes (and the dual (0, 2) SCFT plasma) in any way singled out.

24We have written this term in the second order stress tensor in a form inspired by the classification of
hydrodynamic transport introduced in [31].
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Having understood the connection between the gravitational on-shell action and the
stress tensor, we can connect to the adiabatic effective action (5.27). Prior to Legen-
dre transformation the ideal part is simply the free energy evaluated on the sound mode
solution. On the grsK solution we can represent it using the rescaled thermal vector
bµL/R =

(
uµ

T

)
L/R

, which is

bµL/R = b

[(
1−

∫
k
S
bd−2 w2

d (d− 1) Z̆L/R

)
∂

∂v
−
∫
k
i
bd−2 qw

d (d− 1) Si Z̆L/R
∂

∂xi

]
. (5.29)

In order to compute the quadratic part of the action it will suffice to know rescaled thermal
vector accurate to linear order in amplitude, consistent with our identification using the
stress tensor. The reason is that the amplitude expansion of the ideal fluid action

Sideal[Z] =
∫
ddx
√
−γR [−(γR)µν bµR bνR]−

d
2 −

∫
ddx
√
−γR [−(γR)µν bµR bνR]−

d
2 , (5.30)

results in two terms. One is the contribution which leads to the ideal fluid stress tensor
in (5.28), and the other the ‘heat current’ term, which originates from the change of the
rescaled thermal vector (the δbµ = bµ − 1

b∂v variation), cf., [31]. Using the on-shell
relation for the ideal fluid one can check that these two contributions nicely sum up (up to
the aforementioned Legendre transform) into the terms arising from (5.30).

This is structurally similar to the Wilsonian influence functional in the vector sector,
which captures the shear modes driving momentum diffusion in [6]. The main difference
in that case was that since there was no propagating mode; the ideal piece was purely
expressible in terms of a contact term, and moreover could be isolated directly from the
boundary terms of the Einstein-Hilbert action.

For the sound mode we can re-express the on-shell action as an ideal piece and a term
that captures sound attenuation. To wit,

1
ceff

S[Z] = Sideal,LT[Z]− d− 2
d2 (d− 1)3

∫
k
bd k4

(
Z̆†d Γs(ω,k)

[
Z̆a +

(
nB + 1

2

)
Z̆d
]

+ cc
)
.

(5.31)
Here the ‘LT’ term in the subscript is present to remind us that one should Legendre
transform the ideal fluid part to account for the fact that we have a sound pole. From
the Γs term we can also reproduce the Weyl curvature contribution in (5.27) above, as
promised. One finds

S[Z] ⊃ −
∫
k

8 (d− 1)2 (d− 3)
bd

q2
(
ζ̆†R ζ̆R − ζ̆†L ζ̆L

)
. (5.32)

We have used the on-shell relation (5.4) between Z̆ and ζ̆ to make clear that this term
arises from the spatial curvature of the boundary geometry.

6 Discussion

In this paper, we have extended the analysis of open quantum systems with memory to
include Goldstone modes with a decay width. The earlier analysis of [6, 7] focused on
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diffusive modes in thermal plasmas, which does not incorporate such propagating modes.
Specifically, we analyzed the dynamics of energy transport and the physics of associated
sound modes in a relativistic thermal plasma. While there is a physical difference in the
nature of the long-lived modes, our analysis confirms the general paradigm articulated
in these earlier works. Namely, the long-lived modes can be captured into a Wilsonian
Schwinger-Keldysh effective action, which we derived for conformal relativistic plasma with
a holographic dual. The key result is the Wilsonian influence functional parameterized
directly in terms of the boundary expectation value of the energy flux operator

〈
(TCFT) i

v

〉
.

While the field theory result shares many characteristics with the corresponding ef-
fective action for diffusive modes, there are interesting technical peculiarities in the grav-
itational description. For the diffusive modes one was able to distill the bulk dynamics
into non-minimally coupled designer scalar fields (one per polarization), where the non-
minimal coupling was captured by an auxiliary dilaton, whose primary characterization was
its asymptotic fall-off rate (the Markovianity index). This auxiliary dilaton however mod-
ulated only the interactions in the radial direction, i.e., as a function of energy scale in the
field theory, but was spatially homogeneous. This no longer holds for the bulk dual of the
sound mode; the auxiliary dilaton has a non-trivial modulation along the spatial directions
of the boundary. It nevertheless remains true that the dual field has a non-Markovianity
index 3− d for spatially inhomogeneous modes.

Furthermore, the gravitational analysis gives a beautiful picture for the dynamics of
energy transport. The physical phonon degree of freedom is part of the ideal fluid, and thus
should be captured by the hydrodynamic sigma model (Class L) actions of [31]. Owing to
the presence of a gapless mode, one should not construct the sigma model action directly,
but rather write the Wilsonian analog, which effectively captures the two derivative kinetic
term of the Goldstone mode. Since this part is conservative, the resulting Schwinger-
Keldysh effective action is factorized into L and R pieces. This is manifest in the ideal fluid
action derived in (5.30), which after Legendre transform gives the first term in the effective
action in (5.31). The dynamical information, viz., the dispersion relation (5.4), is obtained
from this action by the constrained variational principle outlined in the aforementioned
reference. The Class L action also captures higher order non-dissipative contributions, like
the background curvature coupling (5.32).25

Once we have separated out the propagating mode, what is left is the physics of sound
attenuation. Since this is driven by the leading order dissipative terms, the shear viscosity
of a conformal plasma, the structure is isomorphic to that found for momentum diffusion
in [6]. In other words, the physical influence phase of the sound mode is the non-factorized
part of the Wilsonian influence functional, with a physical kernel Γs(ω,k). The dissipative
part of this kernel is not captured by the Class L sigma model actions, as it should be; it is
these frictional effects which drive the plasma to behave as an open quantum system. So
in a sense, Γs(ω,k) is the physical influence functional for phonons, though their complete
dynamics also requires the kinetic operator arising from the conservative part of the action.

25There is a specific prediction for fourth order (in gradients) transport data contained in the q4 terms
of (D.9). We have not attempted to classify the terms in the Class L action that are responsible for it.
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This part of the action should not factorize, but should obey the fluctuation/dissipation
relations, which it does, as noted above.

Owing to the spatial modulation of the designer field dynamics in the gravitational
description, one finds there to be an interesting discontinuity in the dynamics between
vanishing and non-vanishing spatial momentum. As explained at the outset, in order
to isolate the physics of sound, it suffices to imagine there being an infra-red cut-off in
momenta and to study modes which are long-wavelength above this cut-off scale. To
understand the physics of the soft zero modes however, needs a bit more work. These modes
can be understood as large diffeomorphisms of the background, but we have not attempted
to quantize this system. It would be interesting to do so. Alternately, one could work with
a physical cut-off, say by placing the plasma on a compact spatial volume, e.g., on Sd−1.

While our analysis was focused on sound modes in a neutral plasma, it can be readily
extended to include additional conserved charges. For example, in a charged plasma we
have fluctuations of both energy and charge density; while the former leads to sound, the
latter leads to charge diffusion in the scalar sector. In this case, one has intricate dynamics
where two long-lived modes are coupled to each other. It is nevertheless possible, as in the
case of vector perturbations discussed in [7], to decouple these two modes and construct the
desired effective action. Our preliminary investigations suggest that the general paradigm
explained here continues to hold; we hope to report on this in the near future [34].

Finally, it is worth contrasting the analysis of real-time fluctuating hydrodynamics
with the earlier work on the fluid/gravity correspondence [20, 21]. The focus in that work
and extensions thereof was to construct the gravity dual of a fluid flow of the boundary
CFT. In particular, given a holographic system whose stress tensor one-point function can
be parameterized in terms of hydrodynamic variables, viz., temperatures and velocities,
obeying the conservation equations, the fluid/gravity paradigm constructs a spacetime
geometry characterized by this hydrodynamic data. By virtue of focusing on thermal
one-point functions, that analysis had a technical advantage of being able to work with
SO(d− 1) tensor decomposition, but more importantly was fully non-linear in amplitudes
of departures from thermal equilibrium.

The open effective field theory paradigm however addresses a slightly different question:
“What is the gravitational dual of a fluctuating plasma”? More precisely, realizing that
the plasma consists of both short-lived and long-lived modes, we seek to parameterize its
dynamics in terms of the sources for the former and the operators (or fields) corresponding
to the latter. This was the philosophy outlined [6] for the study of the Wilsonian influence
functional of the plasma. One has to not only keep track of the dissipative pieces which
relate to infalling quanta in the dual gravity, but also the Hawking quanta that correspond
to stochastic fluctuations. But this is precisely what has been achieved in terms of the
designer fields, which now parameterize the fluctuating bulk metric. While they are not
manifestly SO(d−1) covariant, and our analysis thus far has been restricted to linear order
in amplitudes, the close resemblance of the ingoing part of our solutions to those obtained
in the fluid/gravity literature makes it highly suggestive that it should be possible to
bootstrap onto a non-linear solution. It would be fascinating if this goal can be realized.
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A Dynamics of scalar gravitons

Our starting point for analyzing the action is simply the Einstein-Hilbert action with its
Gibbons-Hawking variational boundary term and appropriate counterterms. We are going
to be working to quartic order in gradients. A-priori we expect that we would need countert-
erms accurate to that order. However, as we shall see there are some additional subtleties
in this system which will allow us to obtain certain finite results from the quadratic coun-
terterms alone. Irrespective of this we will quote here the full counterterm action accurate
to fourth order in boundary derivatives.26

The gravitational dynamics we consider is governed by27

Sgrav =
∫
dd+1x

√
−g (R+ d(d− 1)) + 2

∫
ddx
√
−γ K + Sct (A.1)

Sct =
√
−γ

(
−2(d− 1)− 1

d− 2 Rγ − 1
(d− 4) (d− 2)2

(
Rγ µν Rγ µν − d

4(d− 1) Rγ 2
))

.

We will first examine the equations of motion which we write as

EAB = RAB −
1
2 RgAB −

1
2 d(d− 1) gAB = 0 , (A.2)

and then proceed to analyze the variational principle.

A.1 Gauge invariant data and time-reversal

To understand the dynamics of the scalar gravitational perturbations and deduce that
the dynamics can be captured by a single field Z we will proceed in a series of steps.
Our first task will be to identify the diffeomorphism invariant combinations of the metric
perturbations for the ansatz (3.1). A natural way to capture this information is to look at

26The fourth order counterterms will turn out to be the leading regularization for Z which receives no
corrections at lower orders.

27We eschew the overall normalization by 1
16πGN

to keep the expressions simple. Boundary quantities
will be obtained by multiplying by ceff at the end.
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the curvature tensors which we write in terms of orbit space tensors. It will be convenient
to define a connection on this part of the geometry:28

Υ ≡ d
dr
(
r2f

)
= d r − (d− 2) rf . (A.3)

Some useful identities which we have used to simplify the expressions are:(
D+ −

1
2Υ
)
F = r

√
f D+

(
F

r
√
f

)
,

(
D+ −

1
2 Υ

)
(r F) = r

(
D+ −

1
2 r

2f ′
)
F. (A.4)

We start with the metric parameterized in terms of ΨAB as presented in (3.1). For this
geometry the gauge invariant combinations organized into the orbit space tensors are [24]:

• An orbit space vector Xa whose dual one-form has components

Xv ≡ k rΨvx − iω r2 ΨT , Xr ≡ k rΨrx + r2 dΨT

dr . (A.5)

• An orbit space symmetric traceless rank 2 tensor, Yab, with components

Yvv ≡ k2 (Ψvv − 2 r2f ΨS)− 2 iωXv −Υ (Xv + r2f Xr) ,

Yvr ≡ Yrv ≡ k2 (Ψvr + 2 ΨS) + (Υ− iω) Xr + dXv
dr ,

Yrr ≡ k2 Ψrr + 2 dXr
dr .

(A.6)

• And finally, we have orbit space scalars

YS ≡ k
2
(

ΨS + ΨT

d− 1

)
+ 1
r

(Xv + r2f Xr) ,

1
2 Yaa = Yvr + 1

2r
2f Yrr = k2

(
Ψvr + 2 ΨS + 1

2 r
2f Ψrr

)
+ dXv

dr
+ (D+ + Υ)Xr .

(A.7)

To understand the time-reversal properties of these combinations we use the obser-
vation that on the orbit space time-reversal is just a diffeomorphism. Hence we conclude
that Yaa and YS have even time-reversal parity. For the reminder we use the fact that the
orbit space vectors can be decomposed into the basis adapted to time-reversal introduced
above (2.5),

Xa dxa = Xv
(
dv − dr

r2f

)
+ (Xv + r2f Xr)

dr

r2f
, (A.8)

and use the fact that dv − dr
r2f is odd under time-reversal and dr

r2f is even. Similar decom-
position for the tensors leads to

Yab dxa dxb = Yvv

{(
dv − dr

r2f

)2
+
(
dr

r2f

)2}
+ 2 r2f

(
Yvr + 1

2r
2f Yrr

)(
dr

r2f

)2

+ 2
(
r2fYvr + Yvv

) dr

r2f

(
dv − dr

r2f

)
.

(A.9)

28We will use lowercase early alphabet Latin characters to indicate orbit space tensors in addition to the
conventions specified in footnote 5.
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TR Parity Gauge invariants Metric components Debye gauge data

Even
YS , Yvv ΨS , Ψvv, ΨT ΦE , ΦW

Yvr + 1
2 r

2f Yrr Ψvr + 1
2 r

2f Ψrr Θ, Z
Xv + r2f Xr Ψvx + r2f Ψrx

Odd
r2f Yvr + Yvv Ψvv + r2f Ψvr ΦO

Xv Ψvx

Table 2. Time-reversal parity of the scalar perturbation of Schwarzschild-AdSd+1.

For the purposes of analyzing the equations of motion it is helpful to define some
rescaled combinations of fields which have definite time-reversal parity. We introduce:

ΦE = rd−3 Ψvv , ΦO = rd−3
(
Ψvv + r2f Ψvr

)
, ΦW = 2 rd−2 ΨS . (A.10)

We summarize the essential information from this analysis in table 2.

A.2 Dynamics in the Debye gauge

In appendix A.1 we introduced the gauge invariant combinations of metric perturbations.
One can however fix some of these metric functions by using the diffeomorphism freedom.
A-priori we can gauge fix three functions, leaving behind four of the seven perturbation
functions appearing in (3.1). We will implement this by working with a set of 4 functions
{ΨS ,Ψvv,Ψvr,Ψrr} by first rescaling out a factor of k2 from the gauge invariant scalar
and tensor data, YS and Yab, i.e., setting Xa = ΨT = 0. Equivalently, we have the gauge
conditions

Debye Gauge: Ψvx = Ψrx = ΨT = 0 . (A.11)

We can interpret YS and Yab in terms of metric components in the scalar sector in a Debye
gauge.29 This is a coordinate chart such that metric has no derivatives of scalar plane
waves under plane wave decomposition, viz., the perturbation can be recast into the form

ds2
(1) =

∫
k

{
(Ψvv−2r2fΨS)dv2 +2(Ψvr+2ΨS)dvdr+Ψrr dr

2 +2r2 ΨS dx2
}
S . (A.12)

This was the gauge choice adopted in [24].

29This statement is true for spatially inhomgeneous modes. For spatially homogeneous modes all the
invariants Yab and YS are determined in terms of the vector invariant Xa, which has been set to zero here
by our gauge choice. Most of our analysis will be for k 6= 0 where this is not an issue. We will highlight
this when we study the homogeneous modes in appendix E.
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We will now present the linearized Einstein equations in terms of these scalars by
decomposing (A.2) into plane waves. Employing the definitions in (A.10) and further
introducing the combination:

Ψrr = − 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW + ΦB ] , (A.13)

we end up the metric which at linear order takes the form:

ds2
(1) = ΦE − rf ΦW

rd−3 dv2 + 2
rd−1f

(ΦO − ΦE + rf ΦW) dv dr + r2 ΦW

rd−2 dx2

− 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW + ΦB ] dr2 .

(A.14)

With this choice of gauge the vector gauge invariants vanish Xa = 0, while the remain-
ing scalar and tensor invariants simplify in the parameterization (A.14) to

YS ≡
k2

2 rd−2 ΦW ,

YE ≡ Yvv = k2

rd−3 (ΦE − rf ΦW) ,

YO ≡ Yvv + r2f Yvr = k2

rd−3 ΦO ,

YB ≡ Yvr + 1
2 r

2f Yrr = − k2

2 rd−1f
(ΦB + (d− 3) rf ΦW) .

(A.15)

It will be helpful to assemble the equations of motion (A.2) into time-reversal invariant
orbit space tensor combinations as above. We first have the scalar equation, which involves
only ΦB and takes a simple form:30

ET = − k2

2 rd−1 ΦB . (A.16)

This equation is actually a simple algebraic constraint on the invariants:
ET = YB + (d− 3)YS .

30With ΨT 6= 0, this equation gets modified to

ET = − k2

2 rd−1 ΦB +
[ 1
rd−1 D+

(
rd−1 D+

)
+ ω2 + d− 3

d− 1 k
2f
]

ΨT .

Now ΨT is a Markovian field of index M = d−1, albeit one with an analytically continued momentum k2 →
− d−3
d−1 k

2 and sourced by ΦB . The operator acting on ΨT is the one acting on Z in (3.9) with the specification
Λk = d−1

2 r3f ′. The Markovian part of the Z solution in (4.6) is homogeneous solution of this operator.
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The orbit space tensor equations assembled again into time-reversal invariant combi-
nations take the form:

E1 ≡
2 rd−1

d− 1 Evv

= D+ (T − rΦB) + k2

d− 1 (ΦE − ΦB) ,

E2 ≡
2 rd−1

d− 1 (Evv + r2f Evr)

= −iω (T − rΦB) + k2

d− 1ΦO ,

EB ≡
2 rd+1f

d− 1

(
Evr + 1

2 r
2f Err

)
= −D+

(
T − r

2 ΦB

)
− iω rΦO −

r

2 (D+ −Υ + rf) [D+ΦW − (d− 2) rf ΦW ]

+ r

2 (ω2 − k2f) ΦW + k2 + d(d− 1) r2

2 (d− 1) ΦB .

(A.17)

We introduced here the quantity T, which is defined to be

T ≡ rΦE −
(
D+ −

Υ
2

)
(rΦW) = r

[
ΦE − D+ΦW + r2f ′

2 ΦW

]
. (A.18)

This leaves us with the vector equations which being coefficients of Si have an explicit
momentum factor, keeping track of which will be important for understanding spatial zero
modes. We find:

E4 ≡ 2 rd−1f Evi = iki Ẽ4

= iki [D+ΦO + iω (ΦE − ΦB)] ,

E5 ≡ 2 rd−1f
(
Evi + r2f Eri

)
= iki Ẽ5

= iki

[
D+ΦE + iωΦO − (d− 1)

(
D+ −

1
2 Υ

)
(rfΦW)− r

2 (d+ (d− 2)f) ΦB

]
.

(A.19)

The tilded equations strip out the momentum factor which is convenient to do. The
remaining equations which are orbit space scalars picking out the trace and the Sij part of
the spatial harmonics can be naturally expressed in terms of them as

E6 ≡ −
2 rd−1f

d− 1

d−1∑
i=1

Eii

= D+

(
Ẽ5
f

)
+ iω

Ẽ4
f

+ 2 d− 2
d− 1 r

d−1 ET ,

E7 ≡ f Eij = ki kj
k2 ET .

(A.20)
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Finally, a natural way to combine the equations involves taking a particular combination
of EB and E5:

E3 = 2
r
EB + Ẽ5

= (D+ + 2rf) [D+ΦW − ΦE + ΦB ]− iωΦO + Λk
(d− 1) rΦB

+
(
ω2 − k2f + d− 3

2 r3ff ′
)

ΦW .

(A.21)

A.3 Parameterizing the solution space: k 6= 0

Since there are only four physical functions, we should only have to use four of the equations
of motion. One can check that not all the equations given above are independent (explicitly
visible for example in E6 and E7), which suggests that a judicious choice of four equations
should suffice to distill the dynamics into a manageable form. For k 6= 0 an efficient choice
turns out to be the set {ET ,E1,E2,E3}, satisfying which will ensure that the reminder
are also upheld. We will now analyze the equations introducing Θ and Z to simplify the
dynamics in the process.

Let us begin with ET = 0 which says that ΦB(r, ω, k) = 0, as long as we focus on
non-zero k, spatially inhomogeneous modes. We will use this to set ΦB = 0 this subsection
and return to the case where we have a spatially homogeneous function in appendix E.

In the rest of the section we will give a brief discussion of how one simplifies the
dynamics to that of a single scalar field. We have three independent linearized Einstein’s
equations in the set (A.17), (A.19) for the fields {ΦE ,ΦO ,ΦW}. It will be convenient to
pick the following combinations as our independent Einstein’s equations, setting ΦB = 0
in the process to simplify our expressions:

E1 = D+T + k2

d− 1 ΦE ,

E2 = −iω T + k2

d− 1 ΦO ,

E3 = (D+ + 2 rf) [D+ΦW − ΦE ]− iωΦO +
(
ω2 − k2f + (d− 3)

2 r3ff ′
)

ΦW .

(A.22)

We will see shortly that E4 in (A.19) will be accounted for (actually it can be eliminated
algebraically using an algebraic identity). The combination E3 above will simultaneously
take care of E5 and EB by definition.

The Weyl factor and momentum flux fields. To solve these equations we adopt a
strategy similar to the one employed in the analysis of gauge field equations in [6, 7]. One
notes that E2 is the energy conservation equation; in fact ΦO is the only time-reversal odd
field which is related to the momentum flux. This suggests we should algebraically solve
this equation by letting ΦO ∝ ω. We express T in terms of the same variable and then fix
ΦE using the first equation. To wit,

T = − k2

d− 1 Θ , ΦO = −iωΘ , ΦE = D+Θ . (A.23)
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This choice ensures that the first two equations in (A.22) are satisfied. We are then left
with third equation E3, which can be viewed as a relation between ΦW and Θ. This gives
a constraint on the parameterization, isolating the true dynamical equation.

The designer field for sound. At this point, based on the experience with vector
polarizations and diffusive mode, one would expect that Θ is the physical variable that
should parameterize the designer field dual to the sound mode in the plasma. While
this is physically correct (as we will justify) there is however a technical obstacle. The
parameterization (A.23) does not immediately give an autonomous equation for Θ but
rather leads to a coupled system between Θ and ΦW from E3.

One can however isolate a new field Z by realizing that ΦW and Θ are not independent
but related to each other through the relation

ΦE −
1
r
T =

(
D+ −

1
2 r

2 f ′
)

ΦW =
(
D+ + k2

d− 1
1
r

)
Θ . (A.24)

The first equality follows from (A.18) and the second from (A.23). This can be solved by
introducing an auxiliary field Z and solving for ΦW and Θ in terms of it.31 This results in
the expression (3.6) quoted above.

This explains the origin of the designer field Z and the momentum dependent factor
Λk, which originates during decoupling the Θ and ΦW dynamics. Once we arrive here, it is
straightforward to check that the final constraint equation on the system is the equation
of motion for Z given earlier in (3.9). It is easy to see that the resulting equation is second
order once one appreciates that Θ, Z, and ΦW satisfy a linear relation from (3.6)

Θ = ΦW −
1

(d− 1) Z . (A.25)

This allows us to write D+ΦW −ΦE = D+ΦW −D+Θ = 1
d−1 D+Z which then reduces E3 to

rd−3 Λ2
k

f

(
D+ −

Υ
2

)[
f

rd−3 Λ2
k

(
D+ −

Υ
2

)]
(rZ) +

(
ω2 − k2f + d2

4 r2(1− f)2
)
rZ = 0 .

(A.26)
A slight simplification of (A.26) using the explicit expression for Λk and (A.4) leads to
the equation of motion (3.9) quoted in the main text. We emphasize that the dynamics
is governed by a time-reversal invariant equation, which as explained in [5], allows one to
construct smooth solutions on the grSK geometry.

The parameterization of the metric functions in terms of Z is easily obtained to be

ΦE = D+

(
r

Λk

[
D+ −

r2 f ′

2

]
Z

)
,

ΦO = − iω rΛk

[
D+ −

r2 f ′

2

]
Z ,

ΦW = 1
Λk

[
rD+ + k2

d− 1

]
Z .

(A.27)

31To do so we use the observation that equations of the form (∂ + A)X = (∂ + B)Y can be solved by
setting X = 1

A−B (∂ +B)Z and Y = 1
A−B (∂ +A)Z.
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This suffices to determine the linearized geometry (3.5) once we know the solution for Z.
The change of variables involves Z, D+Z, and D2

+Z and appears to be necessary to ensure
that the classical phase space is only two-dimensional, parameterized by an effective
source and a corresponding dual CFT plasma operator. We will focus on parameterizing
the phase space for the present by boundary values of Z and subsequently argue that the
physical solution space is best parameterized by the stress tensor component (TCFT)iv or
equivalently by Θ.

B Variational principle in the scalar sector

We have indicated in (A.1) that L will refer to the Lagrangian including the measure factor.
Unless explicitly indicated, we will write the terms in the action in a series of steps below,
quoting at each stage this Lagrangian in momentum space. Integrations over momenta and
over the bulk radial coordinate can thus be avoided in the expressions, which themselves
tend to be pretty long. We also use † to indicate the frequency and momentum reversed
field, viz., Φ†(ω,k) = Φ(−ω,−k), and thus use + cc to account for symmetrization. This
analysis is restricted to k 6= 0 as we seek to establish the variational principle for Z at the
end of the day.

B.1 Action for time-reversal invariant fields

Since the background Schwarzschild-AdSd+1 solution has a non-vanishing on-shell action,
when we expand the Einstein-Hilbert action with the perturbation ansatz, we will have
terms starting at the zeroth order in the amplitudes of the perturbation. We will separate
out the zeroth and first order contributions out ab-initio — they do not contribute to the
dynamics of the linearized modes. Rather, these terms correspond to the background free
energy and represent the ideal fluid contribution of the boundary action.32 We therefore
will write:

Sgrav = Sgrav,lin + Sgrav,quad . (B.1)

We work with the fields {ΦE ,ΦO ,ΦW} having chosen to eliminate Ψrr using (A.13) (and
use (A.16) to set ΦB = 0).

To begin, let us look at the contribution from the background and the linear terms in
the fluctuations takes the form

Sgrav,lin =
∫
ddx

{
rd
(
d+ (d− 2) f − 2 (d− 1)

√
f
)

+ (d− 1)
[
d

(1 + f

2 −
√
f

)
r2 ΦW − rΦE

(
1− 1√

f

)]}
.

(B.2)

32In the analysis of the tensor and vector modes in [6, 7] we in fact even extracted a part of the quadratic
terms which assembled nicely to give ideal fluid contribution at the outset. In the present case, given the
relative complexity of the dynamics, we find it useful to keep the quadratic pieces together and only isolate
the part which involves terms at most linear in the fluctuation fields.
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Up to this order, we can express this result as an ideal fluid action on the induced boundary
geometry. This is similar to the earlier discussion in the vector and tensor cases [6]. One
can equivalently write

Sgrav,lin =
∫
ddx
√
−γ [−γµν bµ bν ]−

d
2 , bµ ∂µ = b ∂v. (B.3)

Here bµ is the (rescaled) thermal vector that picks out the inertial frame. We will later
see that on our solution there are corrections to the thermal vector, which we will need to
account for, to get the correct ideal fluid action at quadratic order as noted in footnote 32.

Turning to the quadratic part, we will proceed in a series of steps, outlining indepen-
dently the contributions of the bulk Einstein-Hilbert and Gibbons-Hawking terms. This
will suffice to demonstrate that the dynamics is governed by the familiar Dirichlet bound-
ary conditions for the aforementioned fields (and hence for ΨAB). Finally, we will outline
the contribution from the counterterms that render the on-shell action finite.

The bulk Einstein-Hilbert term can be shown to decompose into a bulk piece, a bound-
ary term, and a total temporal derivative term, viz.,

√
−g (R+ d(d− 1)) = Lbulk

EOW + ∂

∂r
Lbdy

EOW + ∂

∂v
Ldot

EOW . (B.4)

We start with the bulk term which can be simplified to the form:

Lbulk
EOW [ΦE ,ΦO ,ΦW ]

= d−1
4f rd

{
drD+ΦWD+Φ†W−

D+Φ†WD+ΦE +cc
f

+(d−3)r
(
Φ†ED+ΦW +cc

)
+(d−2)r

(
Φ†WD+ΦE +cc

)
+r2(d−(d−2)(d+1)f

) (
Φ†WD+ΦW +cc

)
+ 2iω

(d−1)f

[(
(d−2)Φ†WD+ΦO−ΦOD+Φ†W−cc

)
− 1
rf

(
Φ†ED+ΦO +ΦOD+Φ†E−cc

)]
+ iω r

(d−1)f
(
d(d−3)+(d2−5d+8)f

)(
ΦWΦ†O−cc

)
+ 4iω (d−f)

(d−1)r2

(
Φ†E ΦO−cc)

)
+ 2k2

(d−1)rf
(
Φ†O ΦO−Φ†E ΦE

)
− ω

2−k2f+(d−2)(d−3)r2f2

f
(Φ†EΦW +cc)

+r
[
(d−2)(ω2−k2f)+r2f

(
−2d(2d−5)+(d+2)(d−2)2 f

)]
Φ†W ΦW

}
. (B.5)

This part of the action is obtained by direct evaluation and integrating by parts to isolate
the boundary terms. It is interesting to observe that only ΦW has a quadratic kinetic term
and ΦE appears in the kinetic part only coupled to ΦW . Since ΦO is the only time-reversal
odd field its appearance in the action is highly constrained (and it only shows up with
explicit time-derivatives). Note also that the field ΦW has a wrong sign kinetic term (from
the last line) reflecting the familiar issue with the conformal mode in gravity. This already
suggests that despite appearances ΦW is not the physical field.

The temporal boundary term Ldot
EOW does not enter the analysis and can be dropped ab-

initio. The radial boundary term cancels against a similar contribution from the Gibbons-
Hawking term. The precise form of these terms will therefore not be necessary for us.

2
√
−γ K = LGH

EOW − L
bdy
EOW . (B.6)
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This is a good consistency check for our computation ensuring that the Einstein-Hilbert
action together with the Gibbons-Hawking term has a good variational principle. The
remaining part of the Gibbons-Hawking term turns out to be:33

LGH
EOW [ΦE ,ΦO ,ΦW ] = 1

2 rd f

{
iω (d− 2) r2

(
Φ†OΦW − cc

)
− iω r

f

(
Φ†OΦE − cc

)
− (d− 1) (d− 2) r3f

(
Φ†E ΦW + cc

)
+ d− 1

2 r4f [d (d− 3) + (d+ 1) (d− 2) f ] Φ†W ΦW

}
.

(B.7)

The variation of (B.5) gives us three independent equations. One of these is the
momentum conservation equation E1 from (A.22) which comes from varying ΦO . The other
two equations are linear combinations of the ones we have given above. It is interesting
to note that the variation does not directly produce the E3 equation which was crucial
to derive the autonomous second order equation for Z. One aspect that is clear from the
variational analysis is that the fields {ΦE ,ΦO ,ΦW} obey Dirichlet boundary conditions.
This is manifest from the structure of the Gibbons-Hawking term which is a quadratic
form in these three fields.

Finally, the counterterm action is given as

Lct
EOW [ΦE ,ΦO ,ΦW ] = 1

4 rd f 3
2

{[
(d− 1) r2 − 1

(d− 1) (d− 2) (d− 4)
k4

r2

]
Φ†E ΦE

+ rf
[
k2 + (d− 1) (d− 2) r2

] (
Φ†E ΦW + cc

)
+ (d− 1) r2f

[(
ω2 − k2f

)
− d (d− 2) r2f

]
Φ†W ΦW

}
.

(B.8)

We will quote results accurate to quartic order in the gradient expansion for which it suffices
to include the boundary counterterm that is quadratic in derivatives (i.e., it only includes
the boundary Einstein-Hilbert term in (A.1)). We have included here the contribution
from the quartic counterterm for completeness.

B.2 The designer scalar action

We would now like to distill the action in terms of the designer scalar field Z. To do so we
can directly compute the terms the bulk Lagrangian and boundary terms from the Einstein-
Hilbert dynamics defined in (A.1) with the metric ansatz (3.5) and expand to quadratic
order. We could equivalently begin with the action given in terms of the {ΦE ,ΦO ,ΦW}
fields and use the substitutions given in (A.27). This is a bit more useful, since we have
already removed in the process redundant boundary terms. We can therefore focus on just
the three terms computed earlier: Lbulk

EOW , LGH
EOW , and Lct

EOW .

33In [6, 7] this contribution was referred to as the ideal piece, since in those cases, it corresponds to the
bare ideal fluid action. We will refrain from employing that notation here; the ideal fluid contribution to
the on-shell action is a bit more involved in the scalar sector, owing to the presence of a propagating mode.
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Direct substitution of (A.27) into the bulk term Lbulk
EOW leads to formidable expression,

denoted as LEH [Z]. There is however a nice structure beneath this mess. Lets first see why
LEH [Z] reduces into a two-derivative action in the bulk, with the complications relegated
to the boundary terms. Since ΦE appears with a single radial derivative in (B.5) and the
change of variables to Z involves a double radial derivative (A.27), we end up with a action
with higher derivative terms. The highest derivative term is d3

dr3Z
† d2Z

dr2 . If we naively vary
this action with respect to the field Z we expect to get a quintic order equation of motion
which should be implied by (A.26), i.e., the resulting equation must be some combination
of EZ and derivatives thereof. Carrying out the exercise we find however

(
− d3

dr3
δ

δZ′′′
+ d2

dr2
δ

δZ′′
− d

dr
δ

δZ′
+ δ

δZ

)
LEH [Z] = 1

4
d− 2
d− 1

k4

rd−1 f Λ2
k

E†Z . (B.9)

The fact that the higher order action leads to a second order equation of motion is a
sign of the hidden simplicity. Once one knows this it is a matter of corralling the higher
derivative terms and showing they are total derivatives. With some effort one can show that

Lbulk
EOW [ΦE ,ΦO ,ΦW ] −→ LEH [Z] = L[Z] + d

drL∂ [Z] . (B.10)

The bulk action in momentum space is given in (3.10) which we reproduce here

L[Z] = −
√
−g
4

(
d− 2
d− 1

)
k4

r2(d−2) Λ2
k

×
[
D+Z

†D+Z

r2f
−
(
ω2

r2f
− k2

r2

(
1− (d− 2) r3 f ′

Λk

))
Z† Z

]
.

(B.11)

The complicated boundary terms can be understood as follows. Firstly, the leading
d3

dr3Z
† d2Z

dr2 term being absent in (B.11) suggests that L∂EH [Z] begins with d2

dr2Z
† d2Z

dr2 . The
Gibbons-Hawking term LGH

EOW does not have a corresponding term with this high derivative
order, but the counterterm does (from ΦE Φ†E). The cleanest presentation of the boundary
terms turns out to be to combine the contributions from L∂ [Z] and LGH

EOW and express the
result as a general quadratic form in the variables D+Θ ∼ D2

+Z, ΦW ∼ D+Z, and Z itself.
We will refer to this total collection of boundary terms as the variational boundary terms
of Z and write:

Lvar[Z] = LGH
EOW [ΦE ,ΦO ,ΦW ] + L∂ [Z] . (B.12)

We find

Lvar[Z] = − d− 1
4 rd−2f

{
D+ΘD+Θ† + c1

(
Φ†W D+Θ + cc

)
+ c2

(
Z†D+Θ + cc

)
+ c3 Φ†W ΦW + c4

(
Z†Θ + cc

)
+ c5 Z

† Z

}
,

(B.13)
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with coefficient functions

c1 = k2

(d− 1) r + 1
2 r (d+ (d− 4) f) ,

c2 = − k2

(d− 1)2 r
,

c3 = −d(d− 2)
2 r2f (1 + f) + d

2 (d− 1) (1− f) Λk + (ω2 − k2 f) ,

c4 = − d k2

2 (d− 1)2 (1− f) ,

c5 = −d
3 (d− 2) r6 f (1− f)3

8 Λ2
k

+ d2 r4 (1− f)2 (d+ (3 d− 8) f)
8 (d− 1) Λk

− k2 (ω2 − k2 f)
(d− 1)2 Λk

− d (d− 2)
2 (d− 1)2 r

2f (1− f)− d

2 (d− 1)3 (1− f) Λk .

(B.14)

One can check directly that

Lbulk
EOW + d

drL
GH
EOW = L[Z] + d

drLvar[Z] . (B.15)

Having dealt with the bulk and boundary terms let us turn to the counterterms. These
can be evaluated by direct substitution, though we note that the presence of the ΦE Φ†E
does mean that the counterterms are functionals of D2

+Z, which is somewhat unusual. The
counterterm action can be corralled into:

Lct[Z] = d− 1
4 rd−2 f3/2

{
b0 D+Θ†D+Θ + b1

(
Φ†WD+Θ + cc

)
+ b2 Φ†W ΦW

}
, (B.16)

with coefficient functions

b0 = 1− k4

(d− 1)2 (d− 2) (d− 4) r4 ,

b1 = 1
2 (d− 4 + d f) rf + f

(d− 1) r Λk ,

b2 = −d (d− 2) r2 f2 + (ω2 − k2 f) f .

(B.17)

B.3 The variational principle for Z

We have all the pieces at our disposal to deduce the variational principle for the field Z.
Our first task will be to work out the variational principle that leads to the generating
function of boundary correlators, viz., the usual boundary conditions in the AdS/CFT
parlance. We will then work out the appropriate Legendre transform that computes the
WIF of the boundary theory from the grSK contour.

For the variational analysis we will treat the factor k4

Λ2
k
as an overall pre-factor that we

will account for at the end of the day. Equivalently, we work with an auxiliary system for
Z where the action has this factor scaled out.

With this understanding let us first record the momentum conjugate the field Z.
From (B.11) we find:

Π
Z

= −d νs8
1

rd−3 D+Z . (B.18)
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Further, using the Green’s function (4.6) we can check that the asymptotically the conju-
gate momentum is constant and parameterized by the inverse Green’s function Ks. With
our conventions for Gin

Z
we have

Π
Z

= −k
2Ks(ω,k)

2 d (d− 1)2 b
d−2 coeffξ0

[
Gin

Z

]
+ · · · . (B.19)

We see that the conjugate momentum Π
Z
is finite; the ellipses is (B.19) denote the sub-

leading terms of O
(
ξ2−d

)
.

This behaviour of the field Z and its conjugate Π
Z
is indeed what one expects from

a non-Markovian field based on the analysis of [6]. At this point we can even guess that
the boundary conditions for Z are Neumann for the purposes of computing correlation
functions. We will however want to compute the Wilsonian Influence Functional (WIF)
parameterized by the boundary moduli fields for Z, which will turn out to be computed by
quantizing the field with renormalized Dirichlet boundary conditions.

We will now argue for this directly by analyzing the variational principle for the action
S[Z]. Recall that we have organized the classical action for the designer field as

Sgrav[Z] =
∫
k

∫
dr L[Z] +

∫
k

(Lvar[Z] + Lct[Z]) . (B.20)

Let us begin with the bulk term whose variation is simply:

δL[Z] = k4

Λ2
k

Π
Z
δZ† . (B.21)

The variation of the boundary term Lvar[Z] produces various terms which can be expressed
a combinations of δZ, δD+Z ∝ δΠ

Z
and δ2D+Z. To deduce this we note that Θ and ΦW

contain D+Z while D+Θ has a piece that behaves as D2
+Z. Putting this together we expect

that the stationarity of the action demands

k4

Λ2
k

[
Π†

Z
δZ +A1 δZ +A2 δD+Z +A3 δD2

+Z
]

= 0 , (B.22)

where Ai depends on (Z,D+Z,D2
+Z) and background metric data through the coefficient

functions defined in (B.14). We factored out the k4

Λ2
k
piece as advertised which will be

helpful when we use our knowledge of the solution in the gradient expansion (at this stage
it was not strictly necessary). This complicated second order boundary condition is what
is necessary for ensuring the stationarity of the action at a generic radial hypersurface. We
are however interested in an asymptotically locally AdS geometry, so we should understand
what the behaviour of the boundary condition is in the r →∞ limit (see similar discussion
in [7]). For this we need not only the asymptotics of the coefficient functions ci in (B.14)
(which is clear from their definition), but also the large r behaviour of the functions Θ,
ΦW , D+Θ. These are of course easy to extract given the solution (4.6) for Z.

Generally, for the purposes of the variational principle it suffices to focus on the bulk
and the boundary terms as we have done above. One ignores the counterterms — they
are important to ensure that we have a finite norm on the phase space. Crucially, they
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should be expressed in terms of the intrinsic data on the boundary that are being held
fixed by the boundary conditions. Since we inherit the counterterm action from those
for the Einstein-Hilbert dynamics (A.1) they are naturally expressed in terms of variables
that are held fixed. This is easy to see from our discussion of the dynamics in terms of the
triple {ΦE ,ΦO ,ΦW} in appendix B.1. We have a complicated boundary action as evidenced
above, and if we wish to discern the asymptotic behaviour of (B.22) it will be helpful to
work with a regularized phase space. Consequently, we will include the counterterms in
our variation and discern what they tell us about the variational principle asymptotically.

Before we evaluate the variation of the boundary terms and counterterms it will helpful
to corral them into a nicer form. Using (B.13) and (B.16) we find:

Lvar+ct[Z] ≡ Lvar[Z] + Lct[Z]

= − d− 1
4 rd−2f

[(
1− b0√

f

)
D+Θ†D+Θ +

(
c1 −

b1√
f

) [
Φ†W D+Θ + cc

]
(B.23)

+
(
c3 −

b2√
f

)
Φ†W ΦW +

[
Z† (c2 D+Θ + c4 Θ) + cc

]
+ c5 Z

† Z

]
.

We now simplify this in the following steps:

• The coefficient functions are explicitly known, so we can use the background data to
estimate the leading large r behaviour. To do so we must carefully extract the pieces
that scale as r−2(d−1) since the functions are highly divergent. Carrying out this exercise
we notice that some terms drop out (eg., the Φ†W ΦW term).

• Next using the asymptotics of the solution given in (D.10), (D.12), and (B.19) we learn
that at large r

ΦW

rd−2 = 1
d− 2

D+Θ
rd−1 + · · · , k2 D+Θ

rd−1 = −4 (d− 1) Π
Z

+ · · · . (B.24)

This implies that we can for purposes of the large r behaviour carry out the replacements
above. We will not directly eliminate all occurrences of D+Θ since the relation to Π

Z

involves a factor of k2.

Implementing this we find the boundary action (B.23) reduces to

Lvar+ct[Z] = (d− 1) (d− 6)
8 (d− 2) bd

(
D+Θ†
rd−1

D+Θ
rd−1

)
−
(
Π†

Z
Z + cc

)
+ subleading counterterms .

(B.25)
The two terms that are indicated above are the leading contribution near the boundary
while the terms we have dropped have subleading pieces that serve as counterterms. For
the purposes of ascertaining the variation principle the terms we have retained suffice.

With this simplified boundary term in hand, we can now understand the full variational
principle. Taking a variation of (B.25) and including the bulk contribution (B.21) we find:

δS[Z] =
∫
k

k4

Λ2
k

[(d− 1) (d− 6)
8 (d− 2)

D+Θ
r2(d−1) δD+Θ† − Z δΠ†

Z

]
. (B.26)
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Finally, using (B.24) we conclude that the first term is subdominant and the total variation
of the action is proportional to Z δΠ†

Z
.34 Thus, the conventional boundary conditions used

to compute the generating function of stress tensor correlators is a Neumann boundary
condition for Z.

We emphasize that this is a highly non-trivial statement relying on the nature of the
asymptotic fall-offs for the fields involved. At finite radial position we would have a compli-
cated mixed boundary condition fixing some relation of the schematic form given in (B.22).
In fact, this is what would have been suggested if we examined the field redefinitions (A.27)
and used the fact that {ΦE ,ΦO ,ΦW} have Dirichlet boundary conditions imposed on them.
It is also not something we have imposed by hand, but rather it is completely inherited
from the original gravitational dynamics (A.1).35

C Boundary observables

We now have understood the dynamics of the gravitational system encoded in Z. This
information can be used to decipher the boundary observables directly. We describe the
computation of the on-shell action, the boundary stress tensor, and then turn to a brief
discussion of the relative merits of the field Z versus Θ. We will continue to drop an overall
factor of ceff which we have restored in the main text.

C.1 The boundary sources and operators

We have determined that the Z should be quantized with Neumann boundary conditions for
purposes of computing correlation functions. This suffices for us to see that Z does behave
like a regular non-Markovian field introduced in [6]. The field Z should, by virtue of this
boundary condition, limit to the dual boundary operator Ŏ

Z
. Taking the limit on the grsK

geometry leads to the statements asserted in section 4.3, in particular, (4.12) and (4.13).
The field Z is only divergent starting at O

(
rd−4

)
, which is lower than what one would

expect for a field that is supposed to encode the physics of the boundary stress tensor.
A consequence of this is that the renormalized field Z is not modified by the boundary
counterterms up to the quartic order (i.e., it is uncorrected by the boundary cosmological
constant and Einstein-Hilbert counterterm). It only gets renormalized by the quartic R2

counterterm in (A.1) which is contained in the coefficient b0 at O
(
k4) in (B.17). Taking this

into account we learn that the correction comes from the k4 contribution to b0 in (B.17).
The renormalized field Zren can be determined to be

Zren = Z− k2

(d− 2) (d− 4)
D+Θ
rd−1 r

d−4 + · · ·

= Z + 4 (d− 1)
(d− 2) (d− 4) r

d−4 Π
Z

+ · · · .
(C.1)

34Strictly speaking this is not necessary; from (B.24) we note that δD+Θ ∼ δΠ
Z
so the total variation is

indeed proportional to δΠ†
Z
implying the Neumann boundary condition deduced above.

35This is analogous to what was seen earlier in the analysis of vector modes in Reissner-Nordström-AdSd+1

background, see [7] for details.
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Having identified the boundary conditions for Z and its renormalized counterpart Zren ,
let us turn to identifying the source. Since Z is quantized with Neumann boundary con-
dition, the source should be defined in terms of the conjugate momentum Π

Z
. However,

the relations in (B.24) suggests that the conjugate momentum can be traded for the fields
D+Θ
rd−1 and ΦW

rd−2 . This is consistent with the fact that these fields determined the induced
boundary geometry. Indeed, including the background piece the induced metric on the
boundary evaluates (on either boundary) to

γµν dx
µ dxν =

(
1 + ΦW

rd−2

)
ηµν dx

µ dxν + D+Θ
rd−1 dv

2 . (C.2)

It therefore makes sense to identify the temporal and spatial components of the boundary
metric as the sources. These are however not independent from each other or from that
conjugate momentum Π

Z
owing to (B.24). We define therefore the boundary source as

in (5.5) and note that

ζ̆L/R = lim
r→∞±i0

1
4 (d− 1)

D+Θ
rd−1 = lim

r→∞±i0

d− 2
4 (d− 1)

ΦW

rd−2 . (C.3)

This definition of the boundary source for Z in terms of D+Θ has a proper gradient ex-
pansion, unlike Π

Z
which has an additional k2. As noted above, it is also the physically

correct variable; the temporal component of the boundary metric Ψvv that couples to the
energy density is indeed ΦE = D+Θ up to a factor of rd−1. Fixing all the normalization
factors we find that the induced boundary metric can be expressed as in (5.7).

C.2 The boundary stress tensor

The boundary stress tensor density is given by varying the boundary Gibbons-Hawking
term and the counterterms given in (A.1). This leads to the following expression accurate
to quartic order in gradients

TCFT
µν = lim

r→∞
2√−γ
r2

[
K γµν −Kµν − (d− 1) γµν + 1

d− 2 Gγ µν

+ 1
(d− 2)2 (d− 4)

(
∇γ 2 Rγ µν + 2 Rγ µρνσ Rγ ρσ

+ 1
2 (d− 1)

[
−(d− 2) ∇γ µ ∇γ ν Rγ − d Rγ Rγ µν

]
− 1

2 γµν
(
Rγ ρσ Rγ ρσ − d

4(d− 1) Rγ 2 + 1
d− 1 ∇

γ 2 Rγ
))]

.

(C.4)

We will now present the result for (TCFT) ν
µ which makes it easier to see the traceless

condition by inspection. At the first order in amplitudes one evaluates the components
of the stress tensor from the Brown-York analysis supplemented with counterterms (C.4).
We quote the results for the individual components in turn.
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First up, the spatio-temporal pieces are

(TCFT) i
v = −f (TCFT) vi = − lim

r→∞±i0
ik Si T1 ,

T1 = iΦO − ω
√
f ΦW −

ω k2

(d− 1) (d− 2) (d− 4)
1

r3√f
ΦE ,

= − ω

d− 1 Zren + ω
(
1−

√
f
)

ΦW ,

(C.5)

where Zren was defined in (C.1). Notice that the ΦW term limits to zero as we approach
the asymptopia. As such, from the original expression it appears that we should regard Θ
as the field dual to the energy flux operator, since

√
f ΦW is a counterterm contribution.

However, as assembled in the last line, it is somewhat transparent that the boundary
operator is Z which is cleanly renormalized by the quartic counterterm. We will return to
this in appendix C.4.

The temporal component is a bit more complicated but can be evaluated straightfor-
wardly. We find:

(TCFT) v
v = −d− 1

bd
+ lim
r→∞±i0

ST2 ,

T2 = (d− 1) r
[
D+ΦW −

(
2− 1√

f

)
ΦE − d (1−

√
f) r

√
f ΦW + ΦB

]
− k2√f ΦW −

k4

(d− 1) (d− 2) (d− 4)
1

r3√f
ΦE ,

= −(d− 1)
[(

1− 1√
f

)
rΦE + T − rΦB + k2

d− 1 Θ
]
− k2

d− 1 Zren

+ (1−
√
f)
[
d (d− 1)

2 r2 (1−
√
f) + k2

]
ΦW .

(C.6)

Once again we have combined terms suitably; in the last line the ΦW terms are vanishing in
the limit r →∞±i0. If we also use (A.23) and set ΦB = 0 as we are allowed by the ET equa-
tion, the first parenthesis also simplifies to ΦE

rd−1 which we recognize as a source contribution.
Finally, the spatial stress tensor has contributions from two tensor structures, δij and

ST
ij . We will write these as the pressure and shear-stress contribution as follows:

(TCFT) ji = 1
bd
δ ji + lim

r→∞±i0

[ 1
f
TP δ

j
i S+TY (ST) ji

]
TP = (d−1)r

√
f(1−

√
f)ΦE− iωΦO +ω2√f ΦW + k2

d−1

√
f

r
(ΦE−(d−2)rf ΦW)

+ d(d−1)
2

(
1−

√
f
)2
r2f ΦW− Ẽ5

TY =− k2

r
√
f

[
rf ΦW−

ΦE

d−2

]
. (C.7)

We refrained from writing the quartic order in gradient term which renormalizes Z and
also have exploited the fact that there is an explicit contribution proportional to the E5
equation to simplify the answer. The first summand in TP simplifies to ΦE

2 rd−1 , which is a
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source term, while the designer field Z assembles from the subsequent pieces involving ΦO

and ΦW which constitute part of the operator contribution. One gets a term proportional
to ω2Z from them. The contribution from ΦE − (d − 2) rΦW is however also an operator
contribution, the leading order terms in this difference cancels, as the reader can verify
from (D.10) and (D.12).

With this information we can evaluate the stress tensor on our solution parameterized
by the designer field. The result of this exercise is what is reported in (5.10) where we
have adhered to the identification of source and vev terms. Specifically, contributions of
the form ΦE

rd−1 and ΦW
rd−2 are written in terms of ζ̆ using (C.3).

C.3 The on-shell action

Once we have identified the boundary conditions for Z, we can evaluate the on-shell action
on the grSK solution. At quadratic order this is just a boundary term and can be easily eval-
uated on the grSK geometry. One will obtain from this the generating function of boundary
correlation functions with sources on the two boundaries of the grSK geometry, viz.,

Sgrav[Z] = SSR − SSL . (C.8)

We would however like to evaluate the Wilsonian influence function, for which we need
to perform a Legendre transformation of the generating functional. This requires one
to evaluate the on-shell action after including a suitable boundary term to carry out the
Legendre transform:

S[Z] =
[
Sgrav[Z] +

∫
k

(
Π

Z
Z† + cc

)]
on-shell

. (C.9)

As noted in [6] this amounts to quantizing Z without the additional variational boundary
term, i.e., we quantize Z with (renormalized) Dirichlet boundary conditions as have noted
in (C.1).

We will find two distinct contributions to the on-shell action: one arises from terms
of the form Π

Z
Z† and originates from a combination of bulk action, various boundary

terms, and the Legendre transform. The other contribution will turn out to be purely
a functional of the source originating from the D+Θ†D+Θ in (B.25). Using (5.5) this
piece can be written as a factorized source contribution on the two boundaries of the grSK
geometry. We end up with the result quoted in (5.1) in the form of a contact term (the
source contribution) and the genuine influence functional.

The explicit evaluation of the on-shell action is straightforward since we have already
deduced the asymptotic behaviour of the field and the conjugate momentum. Let us start
with the non-contact term and record the influence functional. The grsK solution for Z is
given in (4.14). Accounting for the contribution from the Legendre transform we find this
evaluates to

SWIF[Z] =
∫
k

1
2
(
Z†ren Π

Z
+ Π†

Z
Zren

) ∣∣∣∣r=rc−i0
r=rc+i0

= −
∫
k
k2
(
Z̆†d

bd−2

2 d (d− 1)2 Ks(ω,k)
[
Z̆a +

(
nB + 1

2

)
Z̆d
]

+ cc
)
,

(C.10)

where we introduced a large radius regulator at r = rc. This is the result quoted in (5.2).
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The contact term may likewise be evaluated directly. From the definition of the
sources (5.5) and the form of the boundary terms in (B.25) we see that this is simply
given in terms of the boundary source. The contributions furthermore factorize leading us
to the following expression at quadratic order:

Scontact[Z] =
∫
k

2 (d− 1)3 (d− 6)
(d− 2) bd

[
ζ̆†R ζ̆R − ζ̆†L ζ̆L

]
. (C.11)

This contact term contribution is quite peculiar. However, as we describe in section 5.4,
it is nothing but the contact term part of an ideal fluid on the boundary geometry (C.2).
We also explain there how one can isolate various hydrodynamic transport data from our
answer and connect to the discussion of Class L adiabatic fluid lagrangians of [31].

C.4 On field redefinitions and boundary operators

The solution for the designer sound field Z on the grSK contour can be repackaged di-
rectly in terms of field theory data. Recall that we expect a single mode of the boundary
stress tensor that captures the effective dynamics in the low energy limit. The conservation
equation of the stress tensor turns out to be a constraint on the field Θ, cf., the discus-
sion around (A.22) and (A.23). Equivalently, examination of the induced boundary stress
reveals that the leading contribution comes directly from Θ,

(TCFT) i
v =

∫
k
Sω ki (Θ + counterterms) . (C.12)

The full expression for the stress tensor including the counterterms can be found in (C.5),
where the

√
fΦW term can be seen to arise from counterterm contributions.

These arguments suggest to us that the holographic dual of the sound mode in the
plasma should be identified with Θ. However, Θ does not by itself have simple dynamics.36
Consequently, we rely on Z as an intermediate auxiliary field to analyze the problem and
translate the physical data back onto Θ therefrom.

The relative choice between Z and Θ is effectively a field redefinition in the boundary.
To appreciate this, let us obtain the grSK solution for Θ by first constructing the inverse
Green’s function Gin

Θ for Θ which is reported in (D.11). We find

ΘSK(ζ, ω,k) = Gin
Θ Z̆a +

[(
nB + 1

2

)
Gin

Θ − nB e
βω(1−ζ)Grev

Θ

]
Z̆d . (C.13)

The key point to note is that the coefficient of radially homogeneous mode Gin
Θ from (D.11) is

coeffξ0

[
Gin

Θ

]
= − 1

d− 1

(
1 + 2

d
Γs
)
, (C.14)

which suggests that

ĔL,R = lim
r→∞±i0

[Θ + counterterms]

= − 1
d− 1

(
1 + 2

d
Γs
)
Z̆L,R .

(C.15)

36We were able to derive a third order radial differential equation for Θ directly. At each order in the
gradient expansion this equation turned out to be a second order inhomogeneous equation for d

drΘ which
suggests again that there is further simplification possible by passing onto Z.
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One could, if one wished to do so, convert the expressions in the main text directly to
expressions involving Ĕ , but we have refrained from doing so to avoid complicating the
already involved discussion.

D Further details of the gradient expansion solutions

The solution for the designer field Z which satisfies (3.9) with ingoing boundary conditions
was given in section 4.2. This form was chosen to make direct contact with the functions
appearing in the fluid/gravity literature [33] and the earlier analysis in [6]. We compile
some useful results about the functions appearing in the expansion in this appendix.

The functions {F,Hω, Hk, Iω, Ik, Jω, Jωk, Jk} that parameterize the solution for Z

in (4.6) have compact integral expressions tabulated in table 1. In appendix D.1 we col-
lect several useful facts about them and determine their asymptotic behaviour. Using this
data we record in appendix D.2 the asymptotic expansions for the fields Z, Θ, and the
metric functions ΦE ,ΦW which will prove useful for the phase space and boundary condi-
tion analysis. Subsequently, in appendix D.3 we present the solution in the alternate form
parameterized in [7] for ease of comparison.

D.1 Asympotics of the solution

As noted in section 4.2 the functions parameterizing the solution for Z in gradient expansion
are cleanly written in terms of a double-integral transform of a source function J, cf., (4.11).
The sources for the various functions are collated in table 3. Examining this data we
immediately see that there are some useful relations:

• First, the sources for the functions Hω and Hk determine an useful identity for Ik:

Hω(ξ) +Hk(ξ) = d− 2
2 Ik(ξ) . (D.1)

• In some cases, the inner integral in (4.11) can be performed, resulting in a representation
involving only one integral, e.g.,

F (ξ) ≡
∫ ∞
ξ

yd−1 − 1
y(yd − 1)dy ,

Hk(ξ) ≡
1

d− 2

∫ ∞
ξ

yd−2 − 1
y(yd − 1)dy ,

Hω(ξ) ≡ −Hk(ξ) + (d− 2)
∫ ∞
ξ

Hk(y)−Hk(1)
y(yd − 1) dy ,

Iω(ξ) ≡ 2
∫ ∞
ξ

Hω(y)−Hω(1)
y(yd − 1) dy = −Ik(ξ) + (d− 2)

∫ ∞
ξ

Ik(y)− Ik(1)
y(yd − 1) dy .

(D.2)

These integral expressions allow us to write down the asymptotic solution for the
functions quite efficiently at low orders in gradient expansion. As we proceed to higher
orders this structure is lost, and we have to use the nested integral representation (4.11)
to deduce the asymptotics. We now record the behaviour of the functions to a sufficiently
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large order to ensure that we can recover the part of the metric functions which contribute
to finite boundary data.

Up to the third order in the gradient expansion, we have the functions
{F,Hk, Hω, Ik, Iω}, whose asymptotics can be determined from (D.2) to be

F (ξ) = ξ−1− ξ
−d

d
+ ξ−d−1

d+1 −
ξ−2d

2d + ξ−2d−1

2d+1 + · · · ,

Hk(ξ) = ξ−2

2(d−2)−
ξ−d

d(d−2) + ξ−d−2

d2−4 −
ξ−2d

2d(d−2) + ξ−2d−2

2(d+1)(d−2) + · · · ,

Hω(ξ) =− ξ−2

2(d−2)−
(d−2)2Hk(1)−1

d(d−2) ξ−d+ d−4
2(d2−4)ξ

−d−2

− d(d−2)2Hk(1)−2
2d2(d−2) ξ−2d+ d2−12

4(d+1)(d2−4)ξ
−2d−2 + · · · ,

Ik(ξ) =−2Hk(1)
d

ξ−d+ ξ−d−2

d2−4 −
d(d−2)Hk(1)+1

d2(d−2) ξ−2d+ (d+4)ξ−2d−2

2(d+1)(d2−4) + · · · ,

Iω(ξ) =−2Hω(1)
d

ξ−d− ξ
−d−2

d2−4

− d(d−2)Hω(1)+(d−2)2Hk(1)−1
d2(d−2) ξ−2d− 3ξ−2d−2

(d+1)(d2−4) + · · · .

(D.3)

In addition at the quartic order we have four functions. Three of them {Jω, Jk, Jωk} are
finite and have the following asymptotic behaviour:

Jω(ξ)= ξ−4

8(d−2)(d−4) + 4Hω(1)+λωd
d2 ξ−d+ 1−(d−2)2Hk(1)

2d(d2−4) ξ−d−2

− d−16
4(d2−4)(d2−16) ξ

−d−4+λω
2d ξ

−2d− 2(d2−2d−1)+d(d+5)(d−2)2Hk(1)
4d2(d2−4)(d+1) ξ−2d−2

− 5(d2−20d−32)
8(d2−4)(d2−16)(d+1)(d+2)ξ

−2d−4+··· ,

Jωk(ξ)=− ξ−4

4(d−2)(d−4) + 4Hk(1)+λωkd
d2 ξ−d− 2−(d−2)2Hk(1)

2d(d2−4) ξ−d−2 (D.4)

− 6
(d2−4)(d2−16)ξ

−d−4+λωk
2d ξ

−2d+ d2−7d−2+d(d+3)(d−2)2Hk(1)
4d2(d2−4)(d+1) ξ−2d−2

+ d3−16d2−144d−192
8(d2−4)(d2−16)(d+1)(d+2)ξ

−2d−4+··· ,

Jk(ξ)= ξ−4

8(d−2)(d−4) +λk
d
ξ−d+ 1

2d(d2−4)ξ
−d−2+ d2+6d−16

4(d−2)(d2−4)(d2−16)ξ
−d−4

+λk
2dξ

−2d+ d+3
4d(d+1)(d2−4)ξ

−2d−2+ d3+11d2+48d+48
8(d2−4)(d2−16)(d+1)(d+2)ξ

−2d−4+··· ,

while the fourth function is the one that captures all the divergences in Z and asymptotes to

Vk(ξ) = − ξ
d−4

d− 4 + ξ−4

4 − ξ−d

d
+ ξ−d−4

d+ 4 −
ξ−2d

2d + ξ−2d−4

2d+ 4 + · · · . (D.5)
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In writing these expressions we have introduced three numerical constants {λω, λωk, λk},
which are defined via the large r limits:

λω + 4
d
Hω(1) ≡ lim

y→∞

{
− yd−4

2(d− 2)(d− 4) +
∫ y

1

Jω(z) dz
z(zd − 1)

}
,

λωk + 4
d
Hk(1) ≡ lim

y→∞

{
yd−4

(d− 2)(d− 4) +
∫ y

1

Jωk(z) dz
z(zd − 1)

}
,

λk ≡ lim
y→∞

{
− yd−4

2(d− 2)(d− 4) +
∫ y

1

Jk(z) dz
z(zd − 1)

}
,

(D.6)

where {Jω, Jωk, Jk} are the source functions for {Jω, Jωk, Jk} given in table 3.

D.2 The metric functions in gradient expansion

Armed with the expressions for the asymptotics of the functions appearing in the gradient
expansion, we can estimate the near-boundary behaviour of Z. Firstly, for Z we find the
asymptotic expansion:

Gin
Z

(ξ, ω,k) = 2 q2Ks(ω,k) ξd−4

d (d− 1) (d− 2)(d− 4) + 1− iw

ξ
+

4∑
i=2

ai
ξi
− 1
d

Γ̃s(ω,k)
ξd

+O
(
ξ−d−1

)
, (D.7)

where

a2 = 2q2 Γ̃s(ω,k)
d(d−1) + d−3

2(d−2)

(
q2

d−1−w2
)

a3 = iw

[
Γ̃s(ω,k)
d2 (d2−1)

(
(d2−1)(d+3)

3 w2−(d2 +2d+5)q2
)

− d−3
2(d−2)

(
q2

d−1−
d−5
d−3 w2

)
+ iw

d2

(
d2−5
d2−1 q2 +(d+3)w

2

3

)]

a4 = 1
8(d−2)(d−4)

[
(d−5)(d−7)w4

3 +
( 16
d(d−1) +d−5

)
q2
(

q2

d−1−2w2
)]

.

(D.8)

Furthermore, we have introduced a new function Γ̃s(ω,k), which is determined up to the
quartic order in gradients to be

Γ̃s(ω,k) ≡ Γs + 2iw
(
Hk(1) p2

s +Hω(1)w2
)

− 2 q2Ks

d (d− 1) (d− 2) −
(
λω + 4

d
Hω(1)

)
w4

−
(
λωk + 4

d
Hk(1)

)
w2 p2

s − λk

(
p2
s + 4(d− 2)2

d(d− 3) w2
)

+ · · · .

(D.9)

We will have more to say about this function below, but note that it agrees with Γs up to
quadratic order in gradients.

The rescaled metric functions {ΦE ,ΦO ,ΦW} and the field Θ can be recovered from
the above solution for Z using (A.27). We can express these functions in terms of the
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ingoing boundary to bulk Green’s function. We normalize this inverse propagator using
the solution for Z so the asymptotic values are obtained in terms of the modulus field Z̆L,R

on the grSK geometry.
Denoting the ingoing Green’s function of the Weyl factor ΦW as Gin

W we can eval-
uate directly (we report all the divergent non-normalizable terms, but only the leading
normalizable ones)

Gin
W(ξ, ω,k) = 1

Λk

[
rD+ + k2

d− 1

]
Gin

Z
(ξ, ω,k)

= 2Ks

d (d− 1) (d− 2) ξ
d−2

[
1− iw

ξ
− (d− 5)(d− 1)w2 + (d− 3) q2

2 (d− 1) (d− 4)
1
ξ2

]

+ 2 Γ̃s(ω,k)
d (d− 1)

[
1− iw

ξ

]
+O

(
ξ−2

)
.

(D.10)

The data above is sufficient to obtain Θ, which after all is just a linear combination
of Z and ΦW from (A.25). Scaling Θ with a factor of iw gives us the function ΦO . For
completeness let us record the leading terms in Θ:

Gin
Θ(ξ, ω,k) = r

Λk

(
D+ −

1
2 r

2 f ′
)
Gin

Z
(ξ, ω,k)

= 2Ks

d (d− 1) (d− 2) ξ
d−2

[
1− iw

ξ
− (d− 5)w2 + q2

2 (d− 4)
1
ξ2

]

− 1
d− 1

(
1− 2

d
Γ̃s(ω,k)

)[
1− iw

ξ

]
+O

(
ξ−2

)
.

(D.11)

The final piece of data is the metric function ΦE (we don’t need to evaluate ΦO since
it is just Θ up to a factor of iω). The easiest way to obtain its inverse Green’s function,
denoted Gin

E , is by using ΦE = D+Θ. We find that it has the following asymptotic expansion:

Gin
E (ξ, ω,k) = D+

(
r

Λk

[
D+ −

r2 f ′

2

])
Gin

Z
(ξ, ω,k) = D+G

in
Θ(ξ, ω,k) (D.12)

= 2Ks

d (d− 1) b ξ
d−1

[
1− iw

ξ
− (d− 3)w2 + q2

2 ξ2 + iw
(d− 5)w2 + q2

2 (d− 4) ξ3

]
+O

(
ξ0
)
.

As noted in the main text below (4.8), by examining the leading non-normalizable
mode of ΦW , or equivalently Θ, we deduce the coefficient Ks accurate to quartic order in
gradients, enabling us to get the sound attenuation function Γs(ω,k) to quadratic order.
However, if one parameterizes the solution by a function Γs(ω,k), which is at least first
order in derivatives, then we find that the constant mode in ΦW and Θ, given in terms
of Γ̃s(ω,k) above, can equivalently be expressed in terms of this attenuation function.
Our explicit expression determines this coefficient to be Γ̃s(ω,k), suggesting that Γs and
Γ̃s(ω,k) agree not just up to quadratic order, but rather that Γ̃s(ω,k) determines Γs(ω,k)
all the way to quartic order, with the specific relation Γ̃s(ω,k) = Γs(ω,k). While we have
not checked this statement explicitly, we conjecture this to be true to all orders in the
gradient expansion. As evidence we offer that the expressions for the on-shell action and
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the stress tensor can be entirely parameterized in terms of Γs, suggesting that the solution
must likewise be given in terms of it.

Sound dispersion to quintic order. If, as conjectured above, the function Γ̃s(ω,k) is
indeed the attenuation function Γs, one can deduce the dispersion locus ω(k) to quintic
order in momenta. This is because with the knowledge of Γ̃s(ω,k) to quartic order, we
actually have Ks accurate to sextic order in gradients. Assuming our conjecture Γ̃s(ω,k) =
Γs(ω,k), we find

w(q) = q√
d− 1

− i νs2 q2 + νs

2
√
d− 1

(
1− d− 1

4 νs − (d− 2)Hk(1)
)
q3

+ iνs h4 q
4 + νs√

d− 1
h5 q

5 ,
(D.13)

with

h4 = νs
2 (d− 2) + 1

d− 1 Hω(1)− d− 4
d(d− 1) Hk(1),

h5 = − (d+ 2)
8 (d− 2) νs + (d− 1) (4 d ( d+ 4)− 4)

64 d (d− 2) ν2
s −

3 d3 − 38 d2 + 60 d+ 24
4 d2 (d− 1) Hk(1)

+ 3
8 (d− 2)2 νsHk(1)2 + 3 d− 8

d (d− 1) Hω(1)− 1
2(d− 1) λω + d− 2

2 (d− 1) λωk

− d4 − 9 d3 + 31 d2 − 43 d+ 16
2 d (d− 1) (d− 3) λk .

(D.14)

The constants Hk(1) is known in terms of the Harmonic number function as noted in
footnote 20, while Hω(1) has an expression in terms of an infinite sum (cf., eq. (A.28)
of [6]). We have not attempted to derive similar expressions for the constants λω. λk, and
λωk defined in (D.6).

D.3 The designer field solution repackaged

To facilitate comparisons with the analysis of [7] we present first the solution of Z in a
slightly different form, using the exponentiated form of the gradient expansion ansatz. We
introduce

Z(r) = 1
bd−2 exp

 ∞∑
n,m=1

(−i)mwm qn ϕm,n
Z

(ξ)

 . (D.15)

The functions ϕm,n
Z

(ξ) can be determined almost entirely in terms of the solution for the
M = d − 1 Markovian scalar, ϕm,n

d−1 (ξ). The deviations from Markovian behaviour only
occurs for the momentum dependent pieces, as explained in section 4.2. Therefore,

ϕm,0
Z

(ξ) = ϕm,0
d−1 (ξ) . (D.16)

These functions ϕm,n
d−1 (ξ) are compiled in table 1 of [7] for general Markovianity index

M and can be specialized to M = d − 1. To write compact expressions we introduce an

– 53 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
2

T
[
g
]

g Asymptotics
ϕ1,0
d−1

1−ξ1−d 1
ξ −

ξ−d

d

ϕ0,2
d−1

1
d−2

1
ξ

(
1−ξ2−d) 1

d−2

(
1

2ξ2 − ξ−d

d

)
ϕ2,0
d−1

−ξ1−d∆̂2,0
d−1

(ξ) 1
2(d−2)

1
ξ2 −

∆2,0
d−1

(1)
d ξ−d

ϕ3,0
d−1

2ξ1−dϕ̂2,0
d−1

(ξ) −
2ϕ2,0
d−1

(1)
d ξ−d− ξ−2−d

(d−2)(d+2)

ϕ1,2
d−1

2ξ1−dϕ̂0,2
d−1

(ξ)
2ϕ0,2
d−1

(1)
d ξ−d− ξ−2−d

(d−2)(d+2)

ϕ4,0
d−1

2ξ1−d
(
ϕ̂3,0
d−1

(ξ)+ 1
2∆̂3,0

d−1
(ξ)
)

− 1
4(d−4)(d−2)2

1
ξ4 +

∆3,0
d−1

(1)+2ϕ3,0
d−1

(1)
d

ξ−d+
∆2,0
d−1

(1)
(d−2)(d+2) ξ

−2−d

ϕ2,2
d−1

2ξ1−d
(
ϕ̂1,2
d−1 (ξ)− 1

d−2

(
∆̂1,2
d−1 (ξ)− ϕ̂2,0

d−1 (ξ)
))

− 1
2(d−4)(d−2)2

1
ξ4 −

1+(d−2)∆2,0
d−1

(1)

(d+2)(d−2)2 ξ−2−d

−
2
(
ϕ2,0
d−1

(1)−∆1,2
d−1

(1)+(d−2)ϕ1,2
d−1

(1)
)

d(d−2) ξ−d

ϕ0,4
d−1

− 1
d−2

(
ϕ̂0,2
d−1

(ξ)− ϕ̂0,2
3−d

(ξ)
)

− 1
4(d−4)(d−2)2

1
ξ4 +

ϕ0,2
d−1

(1)−ϕ0,2
2−d−1

(1)
d(d−2) ξ−d+ ξ−2−d

(d+2)(d−2)2

Table 3. The functions appearing in the gradient expansion of the Markovian ϕ
d−1 up to the fourth

order in gradients, given in the form of an integral transform defined in eq. (D.17). We also present
the leading asymptotic behaviour of the functions which is used for computing boundary observables.

integral transform:37

T
[
g
]
(ξ) ≡

∫ ∞
ξ

dy

y2 f
g(y), T̂

[
g
]
(ξ) ≡

∫ 1

ξ

dy

y2 f
g(y) . (D.17)

In terms of these, the auxiliary functions ∆m,n
d−1 (ξ) are defined at low orders in the gradient

expansion as

∆̂2,0
M

(ξ) = T̂
[
ξ1−d − ξd−1

]
,

∆̂1,2
M

(ξ) = −T̂
[
ξ−1 ∆̂2,0

M
(ξ)
]
,

∆̂3,0
M

(%) = −T̂
[
ξ1−d ∆̂2,0

M
(ξ)2

]
.

(D.18)

The data entering the solution can then be presented compactly in table 3.
The solutions for the remaining functions with n 6= 0 up to quartic order can be

determined to be

ϕ0,2
Z

(ξ) =ϕ0,2
d−1(ξ)− 2(d−2)

d−1 ϕ0,2
d−1(ξ) ,

ϕ1,2
Z

(ξ) =ϕ1,2
d−1(ξ)− 2(d−2)

d−1 ϕ1,2
d−1(ξ)− 4(d−2)

d(d−1) ϕ
0,2
d−1(ξ) ,

ϕ2,2
Z

(ξ) =ϕ2,2
d−1(ξ)− 2(d−2)

d−1 ϕ2,2
d−1(ξ)− 4

d(d−1) ϕ
2,0
d−1(ξ)+ 4

d(d−1) ϕ
0,2
d−1(ξ)

+ 2
d(d−1) ∆2,2

Z
(ξ)+ 4

d(d−1) ∆1,2
d−1(ξ)− 2

d(d−1)(d−2)(d−4) ξ
d−4 ,

ϕ0,4
Z

(ξ) =ϕ0,4
d−1(ξ)− 4(d−2)

(d−1)2 ϕ
0,4
d−1(ξ)+ 4(d−3)

d(d−1)2 ϕ
0,2
d−1(ξ)+ 2

d(d−1)2(d−2) ∆0,4
Z

(ξ) .

(D.19)

37The data given in [7] is written in terms of the inverse radial variable % = 1
ξ
which we have translated

here to the dimensionless radial variable ξ.
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As indicated we could express the solution almost completely in terms of the Markovian
data computed earlier, but had to introduce two additional functions:

∆0,4
Z

(ξ) =
∫ ξ

∞

dy

y2f

( 1
yd−1 − y

d−3
)
,

∆2,2
Z

(ξ) =
∫ ξ

∞

dy

y2f

[ 1
yd−1

(
2 ∆̂0,4

Z
(y)− 1

d− 2

)
+ 1
d− 2

1
y3

]
.

(D.20)

Of these, only ∆0,4
Z

(ξ) has a divergent behaviour at large ξ. It is defined using the earlier
functions in (4.3) by analytic continuation. In this parameterization, both ϕ2,2

Z
(ξ) and

ϕ0,4
Z

(ξ) have divergent corrections (to quartic order), while that used in section 4.2 the
divergence was isolated into Vk(ξ).

E Spatially homogeneous modes

This appendix is somewhat outside the main line of development of the paper and is in-
cluded for completeness. As we saw above in appendix A.3 the dynamics of spatially
inhomogeneous modes can be distilled into that of a single non-Markovian scalar Z satis-
fying a second order non-Markovian differential equation. We wish now to analyze what
the equations of motion imply for spatially homogeneous modes.

We will carry out the analysis in two steps. First we examine the large diffeomorphisms
of the Schwarzschild-AdSd+1 solution that respect the Debye gauge choice. Subsequently,
we look at the solution space for spatially homogeneous modes looks like and parameterize
it in terms of the most general allowed data compatible with asymptotically locally AdS
asymptotics.

We will find that the two sets of analyses lead to the same set of zero modes. The
surprise will be that there are more zero modes than those that can be lifted to physical
moduli captured by Z.

E.1 Large diffeomorphisms of the background

The background Schwarzschild-AdSd+1 geometry is parameterized by b which is a measure
of the black hole temperature or mass. One has additionally chosen a particular Weyl frame,
by making a suitable choice of the radial coordinate r. Consider the now the following
diffeomorphism and parameter shift on the orbit space, leaving spatial homogeneity intact:

r 7→ r + χr(v, r) , x 7→ (1 + Cx) x ,
v 7→ v + χv(v, r) , b 7→ (1 + Cb) b .

(E.1)

We have two functions on the orbit space and two constants Cx and Cb which the reader
will recognize is precisely the freedom to rescale spatial length scales and the boundary
temperature homogeneously.

To check this explicitly, we simply implement this change on the background solution,

ds2
(0) = −r2f dv2 + 2 dv dr + r2 dx2 . (E.2)
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Retaining terms to linear order in the χ’s and C’s to be consistent with our linearized
analysis, we find that the metric remains in the Debye gauge and can be cast in the form
of our linearized ansatz. To wit,

ds2
(0) 7→ ds2

(0) + ΦE − rf ΦW

rd−3 dv2 + 2
rd−1f

(ΦO − ΦE + rf ΦW) dv dr + r2 ΦW

rd−2 dx2

− 1
rd+1f2 [2(ΦO − ΦE) + rf (d− 1) ΦW + ΦB ] dr2

(E.3)

with the metric functions taking the form:

ΦW = 2Cx rd−2 + 2 rd−3 χr ,

ΦO = −rd−1f D+

(
χv −

χr
r2f

)
+ rd−3 ∂

∂v
χr − rdf ′Cb ,

ΦE = −2 rd−1f
∂

∂v

(
χv −

χr
r2f

)
− rd−1f ′ χr + 2 rd−1f Cx − rdf ′Cb

ΦB = −2 rd−1f
∂

∂v

(
χv −

χr
r2f

)
− 2D+

(
rd−3 χr

)
− 2 (d− 3) rd−1f Cx .

(E.4)

To summarize, we have two functions on the orbit space, which along with two
constant parameters characterize the space of large diffeomorphisms. As such, demanding
that the spacetime be asymptotically locally AdSd+1 constrains the two functions. It is
not hard to see that χr(v, r)→ r χ∞r (v), while χv(v, r)→ χ∞v (v). The former corresponds
to a choice of (time-dependent) Weyl frame, while the latter is the boundary time
reparameterization mode.

Before we turn to the dynamical equations it is useful to examine the quantity T. We
find

T − rΦB = d (Cx − Cb)
bd

. (E.5)

We recall that in our solutions this parameter is vanishing which suggests that in our
solution space for k 6= 0 we only have access to the locus Cx = Cb. This says that we
are only allowed to change the background temperature (which is rescaled by Cb) provided
that we concertedly change the spatial length scales/volume (set by Cx). As presaged early
on in our discussion, the overall rescaling of temperature in non-compact space requires
injecting an infinite amount of energy, which is unphysical.

It is interesting to evaluate the boundary stress tensor for this family of large diffeor-
morphisms. One finds using the results of appendix C.2

T v
v = lim

r→∞
d− 1

2
ΦE

rd−1 −
d (d− 1)

bd
(Cx − Cb) ,

T j
i = lim

r→∞
d− 1

2
ΦE

rd−1 δ
j
i .

(E.6)

Notice that the contribution from the asymptotic value of the source ΦE is exactly what
the spatially inhomogeneous modes pick up. Our large diffeomorphisms however have an
additional contribution in the energy density which comes from T − rΦB using (E.5); it is
this contribution that is vanishing in our designer solution.
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E.2 Parameterizing the solution space: k = 0

We give now a short complementary perspective on the spatially homogeneous modes from
the dynamical equations of motion. As one might anticipate the physical solution space
is already fully characterized by the large diffeomorphism modes, so we expect to see the
same degree of freedom in the solution space, as we shall verify below. The manner in
which this happens is that the dynamics of the system is modified at k = 0 resulting in
additional moduli in the problem. Technically, at k = 0 some of the equations degenerate.
For one, the scalar equation ET , the spatial vector equations E4 and E5, and the spatial
tensor equation E7 are trivially satisfied, each being explicitly proportional ki.

We are then left with a simpler set of equations, which we write as38

E1 = D+
(
T0k − rΦ0k

B

)
,

E2 = ∂

∂v

(
T0k − rΦ0k

B

)
,

EB = −D+

(
T0k − r

2 Φ0k
B

)
+ r

∂

∂v
Φ0k

O −
r

2 (D+ −Υ + rf)
[
D+Φ0k

W − (d− 2) rf Φ0k
W

]
+ r

2

(
− ∂2

∂v2 Φ0k
W + d rΦ0k

B

)
,

E6 = D+

(
Ẽ5
f

)
+ iω

Ẽ4
f
,

(E.7)

where we have written the last equation succinctly using the parameterization defined
in (A.19) for convenience.

The first two equations in (E.7) imply that the combination T0k − rΦ0k
B must be a

constant,

T0k − rΦ0k
B = CT =⇒ D+Φ0k

W = Φ0k
E − Φ0k

B + r2f ′

2 Φ0k
W −

CT
r
. (E.8)

We are then left with two equations for effectively three variables. However, the remaining
two equations are not independent, for

E6 + D+

(2EB

rf

)
+ rf ′

f
EB = 0 . (E.9)

The one remaining equation can be written as

rd−1f D+

( 1
rd−1 f

(
D+Φ0k

W + Φ0k
B

))
+
(
∂2

∂v2 Φ0k
W − 2 ∂

∂v
Φ0k

O

)
= 0 . (E.10)

The solution space is parameterized by two functions Φ0k
W and Φ0k

O . The other two
functions {Φ0k

E ,Φ
0k
B } can be solved in terms of them using (E.8) and (E.10). Inspired

by (E.4), we can w.l.o.g parameterize the functions Φ0k
W and Φ0k

O

Φ0k
W = 2F1(v, r) + 2Cx rd−2 ,

Φ0k
O = ∂

∂v
F1 + rd−1f D+F2(v, r)− dCb

bd r
,

(E.11)

38We use the superscript 0k to remind us that we are looking at spatially homogeneous modes of our fields.
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where we demanded that the solution be asymptotically AdS. Here Cx is a coefficient that
will related to integration constants momentarily. We recover the other two functions as
given in (E.4) as39

Φ0k
B = −2D+

(
F1 + Cx r

d−2
)

+ 2 rd−1f
∂

∂v
F2 + rd−1f CB ,

Φ0k
E = 2 rd−1f

∂

∂v
F2 − r2f ′

(
F1 + Cx r

d−2
)

+ CT
r

+ rd−1f CB .

(E.12)

One can readily see that we may identify F1 = rd−3 χr and F2 = −χv + χr
r2f recovering

the background diffeomorphisms. This implies that the time-independent pieces in Φ0k
B

and Φ0k
E are

Φ0k
B (r) ∼ (CB − 2 (d− 2)Cx) rd−1f , Φ0k

E (r) ∼ CT − b−d dCx
r

+ rd−1f CB . (E.13)

Comparing with (E.4) we conclude that we can parameterize the integration constants by
defining them in terms of Cx and Cb:

CB = 2Cx , CT = d(Cx − Cb)
bd

. (E.14)

We thus recover the full set of large diffeomorphisms from the analysis of the equations of
motion.

Zero modes and designer field. One can ask if this solution is related to the zero
momentum solution of the designer field Z. The ingoing Green’s function given in (4.6)
requires CT = CB = 0, which can be inferred by noting that the source terms vanish at
ω = 0. In addition, we also note that ΦB vanishes identically in our parameterization by
Z, which demands a relation between F1 and F2, viz.,

D+F1 = rd−1f
∂

∂v
F2 . (E.15)

This is consistent with the relations (A.27) between ΦE ,ΦO ,ΦW and Z at k = 0, which in
turn require that Z is given in terms of the diffeomorphism functions F1 and F2 as

1
d− 1 D+Z

0k = r2f ′ F1 ,
1

d− 1
∂

∂v
Z0k = ∂

∂v
F1 − rd−1f D+F2 . (E.16)

Solving for F1 and F2 using (E.15) and the first equation of (E.16), we can then write
an autonomous equation for Z0k . The resulting equations turns out to be implied by the
Markovian wave equation (with k = 0)

1
rd−1 D+

(
rd−1 D+Z

0k
)
− ∂2

∂v2Z
0k = 0 , (E.17)

which is of course the zero momentum limit of our designer field equation (3.9).
This is also the zero momentum limit of a minimally coupled massless scalar field in
Schwarzschild-AdSd+1.

39The operator D+ annihilates e− 1
2 w ζ but this solution does not satisfy ingoing boundary conditions and

hence we restrict to allowing an integration constant CB .
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We thus see that a part of the large diffeomorphisms is indeed the homogeneous solution
for the designer field. In particular, given a solution for Z(r, ω,k) satisfying (E.17), we can
determine large diffeomorphism functions F1 and F2. However, one does not recover the
full set of large diffeomorphisms. Specifically, the part parameterized by the constants
{CT ,CB} (or equivalently {Cx, Cb}) is not recovered from the designer field dynamics.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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