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Abstract

The extraction of hadron structure information from precision electron-proton elastic

scattering experiments to date requires precise knowledge of the electromagnetic inter-

action via multi-photon exchange. The proton structure-dependent radiative correction

two-photon exchange (TPE) is a promising source to resolve the existing discrepancy

in the measurement of the proton electric to magnetic form factor ratio µpGE/GM ,

but contains significant uncertainty in its calculation. We use a recently developed

dispersive approach to compute TPE corrections to elastic electron-proton scattering,

including contributions from hadronic JP = 1/2± and 3/2± resonant intermediate states

below 1.8 GeV. For the transition amplitudes from the proton ground state to the reso-

nant excited states we employ new exclusive meson electroproduction data from CLAS

at Q2 ≲ 5 GeV2, and assess for the first time the effects of finite widths for the Breit-

Wigner resonances. Among the resonant states, the N(1520)3/2− becomes dominant for

Q2 ≳ 2 GeV2, with an opposite sign compared to the ∆(1232)3/2+ correction, leading to

an overall increase of the TPE correction to the cross section at higher Q2 values. The

results are in good agreement with recent e+p to e−p cross section ratio and polariza-

tion transfer measurements, and provide a partial resolution of the electric to magnetic

form factor ratio discrepancy. This same model is also applied to the inelastic processes

involving the imaginary part of TPE amplitudes, as seen in single-spin asymmetries,

with either beam or target being polarized normal to the scattering plane.
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Chapter 1

Introduction

Scattering experiments have been a long-standing tool in search of the fundamental

constituents of matter since its early use by Ernest Rutherford to reveal the existence of

dense and positively charged nucleus at the centre of atom in 1911 [1]. With the rapid

development of both theory and experiment, it was soon realized that the constituents

of the nucleus (i.e. nucleons) themselves have internal structure. The magnetic mo-

ment of a point-like (structureless) proton is supposed to be µp = µN, µN being the

nuclear magneton, and for chargeless neutron (point-like) µn should be zero. But the

measured magnetic moments of proton and neutron are found to be µp ≃ 2.79µN and

µn ≃ −1.91µN, respectively, which indicates the substructure of nucleons. However, the

concrete details of nucleon structure are yet to be unveiled.

With the electron being a fundamental particle, elastic electron–nucleon scattering has

become one of the most indispensible tools to probe the internal structure of nucleons

through the determination of their electromagnetic form factors. For many decades the

proton electric, GE(Q
2), and magnetic, GM(Q2), elastic form factors have been measured

in unpolarized scattering experiments using the Rosenbluth separation technique [2–4].

These experiments found that the ratio µp GE/GM hovered consistently around 1 over a

large range of the four-momentum transfer squared, Q2, up to 8.83 GeV2. More recently,

measurements of the electric to magnetic form factor ratio with significantly reduced

1
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uncertainties were performed at Jefferson Lab using the polarization transfer technique,

and found in contrast a linear fall-off of the ratio from 1 with increasing Q2 in the range

up to Q2 ≈ 8.5 GeV2 [5–9]. Proper account of the two-photon exchange (TPE) radiative

correction in cross section data is expected to resolve the discrepancy of µp GE/GM ratio

measurements [10, 11]. Before diving into the details of the TPE radiative correction, I

present here a brief overview of the methods of proton structure information extraction

from electron–proton elastic scattering.

To begin the discussion about electron-proton elastic scattering, it is a good approxima-

tion to assume the interaction is mediated by the exchange of a single virtual photon.

In principle, the electromagnetic interaction of e-p involves an infinite series of virtual

photons exchange, but each additional photon introduces two new vertices which in

turn brings in roughly the factor of fine structure constant α = e2/4π ≃ 1/137 in the

corresponding amplitude. Therefore, apparently the series can safely be attenuated at

the one photon exchange approximation, or Born approximation, with a fairly precise

prediction of the measured observables. However, the precision level achieved in mea-

surement with the aid of the modern experimental facilities compels the theorists to

look for the higher order effects, which will also be discussed in subsequent chapters, in

the observable quantities. In the next section I explain e-p scattering kinematics within

the Born approximation before going for the details of the methods of revealing the

proton’s internal structure.

1.1 Scattering kinematics

The kinematics of the elastic electron–proton scattering process are shown in Fig. 1.1

for the one-photon exchange approximation. Here an electron with four-momentum

k = (E,k) is scattered from a proton initially at rest, p = (M, 0) in the target rest frame,

to an electron in the final state with four-momentum k′ = (E ′,k′). The transferred four-

momentum from the electron to the proton is q = k − k′, and the proton recoils with

four-momentum p′ = p+ q.
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Figure 1.1: Elastic scattering of an electron (with four-momentum k) from a proton
(p) to a final state electron (k′) and recoil proton (p′), with q = k − k′ = p′ − p the

four-momentum transfer, in the Born approximation.

For the one-photon exchange (Born approximation), the amplitude Mγ for scattering

an electron from a proton can be written as [12]

Mγ = −e2 jµ
1

q2
Jµ, (1.1)

where e is the charge of the proton, and the characteristic Lorentz invariant, q2, of

the process can be written in terms of the electron energy E and scattering angle θ

as q2 = −4EE ′ sin2(θ/2). For space like virtual photon, it is convenient to introduce

the positive quantity Q2 ≡ −q2. The electron transition current is given by jµ =

ū(k′) γµ u(k), where the Dirac spinor for an electron of mass m and four-momentum k

is u(k) =
(√

E +m,σ · k/
√
E +m

)
χs, with σ and χs being the standard Pauli spin

matrices and the two component spinors, respectively. The proton transition current is

Jµ = ū(p′) Γµ(q) u(p), where Γµ(q) is the current operator at the hadronic vertex.

1.2 Hadronic current operator parametrization

The hadronic current operator Γµ could be replaced by γµ if it were a point-like par-

ticle. But, for the extended structure of the proton, it has to be parametrized using

appropriate form factors that take into account the proton’s internal structure. Since

Γµ has to be a Lorentz four vector, hence this should be constructed in a general form

using the relevant Lorentz four vectors pµ, p′µ, qµ, and the Dirac matrices, γµ at the
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proton-photon-proton vertex as [13–15],

Γµ = f1γ
µ + f2q

µ + f3p
µ + f4p

′µ. (1.2)

Parity conservation does not allow the terms involving γ5 in Γµ. The Lorentz scalar

coefficients fi have inter dependency. Conservation of momentum, qµ = p′µ − pµ, at

the hadronic vertex allows to set f2 = 0. For the on-shell external legs of hadron, the

Ward identity, qµJµ = 0, leaves f3 = f4. Therefore, it is left with only two independent

Lorentz vectors and one can write the hadronic current operator as,

Γµ = F1γ
µ + F2(p+ p′)µ. (1.3)

Here one can choose the Dirac F1 and Pauli F2 form factors as the Lorentz scalar

coefficients. For a free on-shell particle, F1 and F2 depend only on Q2. Using the

Gordon identity,

ū(p′) γµ(q) u(p) = ū(p′)

[
pµ + p′µ

2M
+

iσµν(p′ν − pν)

2M

]
u(p), (1.4)

hadronic current can also be written as,

Γµ(Q2) = F1(Q
2)γµ + F2(Q

2)
iσµνqν
2M

, (1.5)

where M is the proton mass.

1.3 The proton structure information from cross sec-

tion measurement

The differential cross section for single photon exchange is proportional to the square

of the scattering amplitude Mγ. Plugging the expression of Γµ in Mγ, the differential
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cross section in the Born approximation can thus be written as

(
dσ

dΩ

)
0

=

(
αE ′

4MQ2E

)2

|Mγ|2

= σMott

[(
F 2
1 + τF 2

2

)
+

Q2

2M2

(
F1 + F2

)2
tan2(θ/2)

]
, (1.6)

where τ = Q2/4M2 and σMott corresponds to the cross section if the target proton were

a structureless point particle instead. Ignoring the recoil of the proton, i.e. in the limit

of M → ∞ (or, E ≪ M), σMott can be given by

σMott =
4α2E ′3 cos2(θ/2)

EQ4
. (1.7)

Therefore, it is evident that the structure information of proton contains entirely within

the form factors Fi(Q
2) (i = 1, 2). In other words, for a point like Dirac target particle

the form factors would take the form F1(Q
2) = 1 and F2(Q

2) = 0, so that the cross

section reduces to σMott in the limit of M → ∞. Note that the form factors F1(Q
2) and

F2(Q
2) are normalized such that

F1(0) = 1, F2(0) = 1.79, (1.8)

i.e. probing with the long wavelength photons (Q2 → 0) one does not see any internal

structure of proton but only a point particle of charge e and magnetic moment µp = 2.79.

The physical meaning of the form factor can be better understood with the convention

of the Sachs electric and magnetic form factors GE and GM , which are defined as linear

combinations of the Dirac and Pauli form factors [16, 17],

GE(Q
2) = F1(Q

2)− τF2(Q
2), GM(Q2) = F1(Q

2) + F2(Q
2). (1.9)

In Breit frame1 and in the non-relativistic limit of Q2 ≪ M2, the form factors GE and

GM can be interpreted as the Fourier transform of the spatial charge and magnetization
1The Breit frame or the brick wall frame is the special Lorentz frame where p′ = −p. In this frame

the scattered electron does not transfer any energy to the target proton.



Chapter 1 Introduction 6

distribution, respectively. On the basis of such interpretation, GE and GM are normal-

ized to the charge and magnetic moment of proton, respectively, in the limit of Q2 = 0,

i.e.

GE(0) = 1, GM(0) = µp. (1.10)

One specific advantage of using the Sachs electric and magnetic form factors is that the

cross section does not have any cross terms of the form factors. The differential cross

section, diagonal in GE and GM , is given by

(
dσ

dΩ

)
0

=
σMott

[
εG2

E(Q
2) + τG2

M(Q2)
]

ε (1 + τ)
, (1.11)

where the dimensionless quantity

ε =
[
1 + 2 (1 + τ) tan2 (θ/2)

]−1
, (1.12)

is the virtual photon polarization. It is useful to introduce the reduced (Born) cross

section σBorn
R , defined by

σBorn
R = ε (1 + τ)

(
dσ

dΩ

)
0

/
σMott = εG2

E(Q
2) + τG2

M(Q2), (1.13)

for future use in the coming sections. Equation (1.11) is known as the Rosenbluth or

the Longitudinal-Transverse (LT) separation formula [18].

1.3.1 Form factors from Rosenbluth separation formula

The Rosenbluth separation formula of Eq. (1.13) is very useful in extraction of the

internal structure of proton. Using this form of the reduced cross section, the electric

(GE) and magnetic (GM) form factors, hence the internal structure of proton, can be

extracted by measuring σBorn
R in unpolarized e-p elastic scattering at a specific value of

Q2 by varying the scattering angle θ and the beam energy E. A plot of the measured

reduced cross section as a function of ε at fixed Q2 is expected to be a straight line

following Eq. (1.13), interception of which provides τ times the square of the magnetic
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Figure 1.2: Extraction of the electric (GE) and magnetic (GM ) form factors from
the reduced Born cross section σBorn

R using the Rosenbluth (LT) separation method.
The data points are taken from Ref. [22] and the line is a linear fit to the data.

form factor GM , and the square of the electric form factor GE can be obtained from

the slope. This method of Rosenbluth (LT) separation has been traditionally used for

several decades to measure the form factors GE and GM of proton [3, 4, 19–21]. For

clarity, one such measurement from JLab [4] is illustrated in Fig. 1.2. Here the reduced

cross section is measured at several ε points corresponding to different scattering angle

and beam energies but at fixed Q2 = 2.64 GeV2. The magnetic form factor can be

obtained from the interception point with the vertical axis as addressed in the plot.

The slope of the fitted line gives G2
E for that particular Q2 value.

It is important to address that the experimentally measured cross sections are not the

Born cross section, rather it contains the contributions from the exchange of more than

one photon, known as radiative corrections. For the earlier scattering experiments with

low Q2, it might be acceptable to ignore the higher order (in α) correction terms, but the

high precision experiments to date [3, 4, 19–21] reaching Q2 ≃ 9.0 GeV2 require to take

into account of the cross section corrections coming from at least the next to leading

order Feynman diagrams. Before exploiting Eq. (1.13) during the extraction of the

form factors it is required to eliminate the higher order corrections from the measured

cross section
(
dσ

dΩ

)
meas

and isolate the measured Born cross section so that the real

form factors can be obtained. In reaching that objective,
(
dσ

dΩ

)
meas

(or, σmeas
R ) can

be expressed using a correction term relative to the Born (leading order) cross section
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dσ

dΩ

)
0

(or, σBorn
R ) as

(
dσ

dΩ

)
meas

=

(
dσ

dΩ

)
0

(1 + δ), (1.14)

where δ is the relative cross section correction coming from every possible Feynman

diagrams, in principle. Comparing the measured cross section with the left side of

Eq. (1.14) and plugging in the calculated higher order cross section corrections δ on the

right one can separate the measured Born cross section from the total. However, several

independent measurements [2, 3, 19, 23–28] of GE and GM using Rosenbluth separation

method found consistently the same asymptotic behaviour for the ratio µpGE/GM ≃ 1

at large Q2 in coherence with the normalizing condition of Eq. (1.10) at Q2 = 0 GeV2.

Figure 1.3 illustrates the scenario with the data extracted by Walker et al.[2] (open blue

squares), Andivahis et al. [3] (open red circles). The black triangles are from the global

analysis of Walker et al. [2] with the original data source from Refs. [23, 24, 24–28]. All

the data points are close to the scale of µpGE/GM = 1, within the uncertainty range,

up to Q2 = 8.83 GeV2 even though there are some scatter among the values.

1.3.2 Alternative measurement of the form factors

It is a common and basic practice in science to reproduce the results of the observable

quantities in variety of methods having its own dependencies, both in theory and exper-

iment. One such alternative method to measure the ratio of the form factors µpGE/GM

is to scatter the longitudinally polarized electron (e⃗) beam from an unpolarized proton

target (p) and detecting the polarization transfer to the recoiled proton p⃗. In the Born

approximation of e⃗-p → e-p⃗ elastic scattering, the scattering cross section with the re-

coiled proton being polarized longitudinally with respect to its recoiling momentum is

given by [12, 29]

dσ(L)

dΩ
= hσMott

E + E ′

M

√
τ

1 + τ
tan2

(
θ

2

)
G2

M , (1.15)
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Figure 1.3: Proton electric to magnetic form factor ratio µpGE/GM extracted using
Rosenbluth LT separation method. The blue squared data are by Walker et al. [2],
black triangles from Walker’s global analysis [2], and the red circles correspond to
the extraction of Andivahis et al. [3]. The black solid line corresponds to the scaling
µpGE/GM = 1. Note that some overlapping LT data points are slightly offset for

clarity.

where h is the electron helicity and θ is still the electron scattering angle. The cross

section for the recoiled proton having transverse (in the scattering plane) polarization

is

dσ(T )

dΩ
= 2hσMott

√
τ

1 + τ
tan

(
θ

2

)
GE GM . (1.16)

Having defined the longitudinal and transverse polarization transfers to the recoiled

proton, PL and PT respectively, in the Born approximation by

PL =
τ
√
1− ε2

σBorn
R

G2
M , (1.17a)

PT = −
√

2 ε (1− ε) τ

σBorn
R

GE GM , (1.17b)
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one can obtain the electric to magnetic form factor ratio µpGE/GM from the ratio of

the transverse to longitudinally polarized recoiled proton cross sections as [12, 29]

RTL = −µp

√
τ(1 + ε)

2ε

PT

PL

= −µp
E + E ′

2M
tan

(
θ

2

)
PT

PL

= µp
GE

GM

. (1.18)

Note that the normal component of the polarization transfer is zero in Born approx-

imation. In case of the LT separation measurement, GM dominates the total cross

section of Eq. (1.13) in the large Q2 region suppressing the GE contribution, while for

Q2 → 0 it is basically the electric form factor GE that contributes to the cross sec-

tion. Such suppression of GE by GM in the large Q2 region makes the determination

imprecise. On the other hand, the exact values of the form factors GE and GM can-

not be extracted in the method of polarization transfer (PT), but it provides a direct

measurement of the ratio µpGE/GM precisely over a wide range of Q2. It will be clear

from the discussions in the coming chapters that the ratio of the polarization transfer

measurement is relatively insensitive to the hadron structure-dependent radiative cor-

rections, especially the two-photon exchange, which reduces the level of uncertainty in

the measurement. Considering the precision aspect of the PT measurement technique

a series of experiments [5–9, 30–34] at Jefferson Lab have been performed in last two

decades using longitudinally polarized electron beams to determine the ratio µpGE/GM

up to Q2 = 8.5 GeV2. The results for µpGE/GM obtained in those experiments us-

ing PT measurement method is shown in Fig. 1.4(a) including a nonlinear fit to data

with a green band at 99% confidence level. Surprisingly the results of the ratio, hav-

ing an approximately linear falloff above Q2 = 1 GeV2, are in clear disagreement with

that obtained from the LT separation measurement as compared in Fig. 1.4(b). The

consistent discrepancy between the LT separation and PT measurement methods of

the ratio µpGE/GM brought significant theoretical efforts, along with the experimental

activity, mostly focusing on the reanalysis of the radiative corrections. Since the rela-

tive contribution of the electric form factor GE in reduced cross section decreases with

increasing Q2 any error in radiative corrections comparable to G2
E makes the extrac-

tion of GE meaningless. Thus the improved treatment of the radiative corrections has
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Figure 1.4: The electric to magnetic form factor ratio µpGE/GM extracted by (a)
the PT measurement, and (b) the LT separation method (along with the PT method
result), are shown for several values of Q2 ranging up to ∼ 8.5 GeV2. The green band
is a nonlinear fit to the PT data with 99% confidence level. The LT data in (b) are
taken from three updated sources of Refs. [2, 3]. For LT data, some overlapping points

are slightly offset for clarity. Note that the scale on the right is different.

been emphasized in most of the reanalyses [10, 35–39]. Particularly, µpGE/GM ratio

discrepancy motivated studies of the hadron structure-dependent two-photon exchange

radiative correction which is found to give ε-dependent cross section itself, and the

problem was generally believed to be resolved with the inclusion of these effects [10, 11].

Subsequent years have seen a growing sophistication in the theoretical efforts that have

been made to better understand the TPE phenomena using various approaches. These

have included using hadronic models to compute the real part of the TPE amplitude

through loop integrals with (on-shell) transition form factors [37, 38, 40, 41], and using

generalized parton distributions (GPD) [42, 43] and perturbative QCD framework [44,

45] to model the high-energy behaviour of the intermediate state hadrons at the quark

level. But the use of GPD and pQCD based calculation is preferable in the high Q2

limit.

The use of hadronic degrees of freedom can be thought as a reasonable approximation

for low to moderate values of Q2 ≲ 5 GeV2, where hadrons can be expected to retain

their identity. However, for excited intermediate states of higher spin, such as the ∆



Chapter 1 Introduction 12

isobar, in the forward angle limit [46] the on-shell approximation gives rise to unphys-

ical divergences in the TPE amplitude. This problem of unphysical behaviour can be

resolved using the dispersive method described in Refs. [46–52], where the on-shell form

factors are used explicitly to calculate the imaginary part of the TPE amplitude from

unitarity, with the real part then obtained from dispersion theory.

1.4 Overview of the work

Early model estimations of TPE effects [10, 11], which have significant uncertainties in

their calculations, found that TPE partially resolves the µpGE/GM ratio discrepancy.

In this work I decided to further investigate the TPE correction to shed light on the issue

of the form factor ratio measurement. In evaluation of the real part of the TPE effect,

we follow the dispersive approach developed in Ref. [46], but generalize the calculation

to transition form factors that are arbitrary functions of the momentum transfer, rather

than restricted to be sums of monopoles as in Ref. [46]. Unlike previous calculations

which made use of the narrow resonance approximation, here we allow a Breit-Wigner

shape with a nonzero width for each individual resonance contribution, with either a

fixed width or a dynamical width that depends on the final state hadron mass. Further-

more, in addition to the ∆(1232)3/2+ resonance intermediate state, we also compute the

TPE contribution from all the established JP = 1/2± and 3/2± states below 1.8 GeV, in-

cluding the N(1440)1/2+ Roper resonance, N(1520)3/2−, N(1535)1/2−, ∆(1620)1/2−,

N(1650)1/2−, ∆(1700)3/2−, N(1710)1/2+, and N(1720)3/2+ resonances. With the ex-

ception of the ∆(1232)3/2+, for which we use the fit by Aznauryan and Burkert [53], for

the resonance electrocouplings at the hadronic vertices we use the most recent helicity

amplitudes extracted from the analysis of CLAS meson electroproduction data [54–56].

The imaginary part of the TPE amplitude generates an observable quantity single spin

asymmetry (SSA) at its leading order in e-p scattering with either beam or target be-

ing polarized normal to the scattering plane. While the target normal SSA is of order

10−3−10−2, the beam normal SSA is of order 10−6−10−5. Having such a small numerical
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value, the beam normal SSA still plays a vital role in parity violating electron scattering

experiments to improve the precision level, as the SSA appears as a false asymmetry

there. For example, the highly precise QWeak experiment [57] at Jefferson Lab attempts

to determine the weak charge of the proton in search of physics beyond standard model

requires to know this particular source of systematic error from the background beam

normal single spin asymmetry. Recently, QWeak collaboration published their own mea-

sured value of this observable quantity at some forward scattering angle (θLab = 7.9◦)

and Q2 = 1.149 GeV2. Several other parity violating experiments [58–61] including A4

collaboration [62–64] have also measured the quantity but the results are little scat-

tered. The significant disagreement between the measured value [60] of beam normal

SSA and the corresponding estimation [65] for heavier target nucleus 208Pb raised ques-

tion about the estimations in general. More importantly the theory predictions from

different groups [66–71] are not also consistent.

To better understand both the beam and target normal single spin asymmetries orig-

inating from the mentioned spin-parity 1/2± and 3/2± resonance intermediate states

associated with πN and ππN channels, we apply the same elctrocouplings data from

CLAS [54–56] in evaluation of the imaginary part of the TPE amplitude in polarized

e-p elastic scattering. Along with the resonance states the effect of elastic nucleon inter-

mediate state is also accounted using GE,M(Q2) from the parametrization of Arrington

et al. [72]. Alike the real part, here again the Breit-Wigner shaped width is assigned for

each resonance state.

1.5 Outline

This dissertation continues with a brief review of the efforts to reconcile the form factor

ratio, µpGE/GM discrepancy in chapter 2. For completeness, the relevant radiative

corrections in analysis of e-p elastic scattering cross section data for Q2 ≲ 9 GeV2 is

also discussed in the same chapter (Sec. 2.3). Finally, the TPE emerges as a potential

candidate to reconcile the existing discrepancy between the two different measurements
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of electric to magnetic form factor ratio in the end of the chapter. Chapter 3 describes

the general formalism of the TPE radiative correction followed by a detailed review of the

previous calculations and experimental extractions of the hadron structure-dependent

correction. My input in this thesis partially starts from chapter 4. In chapter 4, I explain

the foundation (i.e. dispersive method) of the model we have prepared, published in

Ref. [73], to numerically evaluate the TPE amplitude and test it with a simple warm up

problem of electron-muon scattering. After having a convincing outcome of the method

in the simple test problem, in chapter 5, I apply it in evaluation of the TPE correction in

e-p scattering with elastic nucleon intermediate state for completeness, results of which

are already well estimated though. A complete discussion of the model to estimate the

resonance states’ effect in total TPE correction is explained in the same chapter. The

obtained results for the TPE effects in unpolarized e-p scattering are then discussed in

chapter 6. Following a brief review of the polarization observable, SSA, sensitive to the

imaginary part of the TPE amplitude in beam/target polarized e-p scattering, a detailed

description of the numerical calculation of SSA is presented in chapter 7. Results of the

beam and target normal single spin asymmetry are discussed in chapter 8. Finally, the

conclusion of this work is drawn in chapter 9.



Chapter 2

Revisit to the µpGE/GM discrepancy

Observing the somewhat scatter of the LT separation data of µpGE/GM around ≈ 1

(Fig. 1.3), at the initial time when the discrepancy between the LT separation and

PT measurement was popped up, three issues were mainly addressed by several groups

of authors. One anticipation was that the discrepancy is perhaps due to an error in

the early cross section measurements and the two other issues were regarding the data

analysis, i.e. either inappropriate treatment of the relative normalization uncertainty

in analyzing multiple cross section data sets or an effect from unaccounted radiative

corrections are responsible for the disagreement in two different methods of measurement

for the same physical quantity. This chapter reviews the major efforts, both theoretical

and experimental, to reconcile the discrepancy.

2.1 Early reanalyses of Rosenbluth separation data

Considering the two points about normalization uncertainty and radiative corrections

Arrington preformed two series of reanalyses [35, 36] of the world data, only excluding

some erroneous small angle (< 20◦) data from Walker’s work, in Ref. [2]. In Ref. [35],

Arrington first figured out that the independent analysis of the individual LT separation

measurements give consistent results for µpGE/GM scaling around ≈ 1, meaning an

15
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insignificant impact on the results from the normalization uncertainty between different

measurements. Then in the global analysis he investigated several potential effects in

hope of a solution to the problem. Exclusion of data sets for θ < 20◦ due to a missing

correction in those data required to use in that small angle limit, random exclusion of

data sets at high Q2 to see if any particular data with error strongly influences the

result, addition of some newly published data in the analysis, updating some double

count of the normalization uncertainty in some previous global analysis, determination

of an overall normalization uncertainty for each data set other than the point-to-point

systematic uncertainty and use of independent normalization uncertainties for the data

from each detectors when multiple detectors were used in a single experiment were some

key features particularly focused in the global analysis. For the radiative corrections,

some improved treatment of the vacuum polarization with muon and quark loops have

also been applied in some previous measurements along with the Schwinger term even

though it had very little ε dependence resulting in negligible effect on the form factor

ratio. Note that the previous global analysis by Walker [2] had also accounted for

such massive loops in vacuum polarization in addition to the radiative corrections from

Mo and Tsai prescriptions [74]. Unfortunately, the re-examination of the world data

in Refs. [35, 36] did not find any concrete reason of the discrepancy. The Rosenbluth

separation data were still self-consistent around the scale µpGE/GM = 1. However, the

author suggested any missing ε-dependent correction in the measured cross section with

≈ 6% ε dependence is required to resolve the discrepancy.

2.2 Experimental effort to reconcile µpGE/GM ratio

discrepancy

Alongside the initial reanalyses of the Rosenbluth separation data, from the experimen-

tal side, there was continued effort in extraction of form factors using Rosenbluth LT

separation method more precisely. One major problem in the Rosenbluth separation

method is the extraction of electric form factor GE at larger Q2 where the magnetic form
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factor GM part dominates the total reduced cross section as discussed in Sec. 1.3.2. Since

at larger Q2, GE contributes a very small fraction in total cross section, any amount

of ε-dependent correction would significantly alter the extracted GE. In fact, this is-

sue was one of the motivations of initiating polarization transfer measurement. From

the experimental perspective, the cross section of detecting the scattered electron, and

its momentum have strong ε dependence at fixed Q2 measurements. Thus, any rate-

or momentum-dependent correction will also impact the extraction of GE significantly.

In contrast, the cross section of proton detection is less sensitive on ε and the proton

momentum remains constant at fixed value of Q2. Moreover, the ε-dependent inelastic

bremsstrahlung correction, and any offsets in beam energy and scattering angle has less

impact if the proton is detected instead of electron. Considering these points regarding

the proper extraction of GE a modified Rosenbluth experiment [4, 22] was initiated to

measure the form factors where the recoiled proton was detected instead of the scat-

tered electron. The precision level of this experiment was comparable to those in the

polarization transfer method because of the improvements achieved by switching from

scattered electron detection to the recoiled proton detection basically. Among the ra-

diative corrections, they accounted the bremsstrahlung, vertex and vacuum polarization

corrections following the Mo and Tsai prescription [74, 75] along with the improvements

done by Walker [2]. For two-photon exchange correction they only considered the cor-

rection from the soft photons exchange. The measured µpGE/GM from this experiment

(black diamonds) is represented in Fig. 2.1 along with some selected data sets from

Andivahis et al. [3] (red circles) and Walker et al. [2] (blue squares). The obtained

results from such a precise experiment were still incompatible with that from the polar-

ization transfer measurements. This finding at least ruled out the possibility that the

discrepancy is due to any error in previous LT measurements.

However, there were several recent reanalyses [10, 37–39] of the Rosenbluth separation

data focusing particularly on the inclusion of the updated radiative corrections. Before

proceeding to the effects of the improved estimations of radiative corrections in unpo-

larized cross section data, in the next section, the radiative corrections relevant for the

form factor measurement experiments are discussed in detail followed by the review of
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Figure 2.1: Proton electric to magnetic form factor ratio from the Super Rosenbluth
measurement of Qattan et al. [4] (open black diamonds), along with the data from
Refs. [2, 3]. The green band corresponds to a non-linear fit to polarization transfer

data [7–9].

a latest reanalysis by Gramolin and Nikolenko [39]. After that the structure-dependent

two-photon exchange radiative correction and its impact on µpGE/GM measurement is

discussed in a separate section.

2.3 Radiative corrections to e-p elastic scattering

In perturbative QED the elastic scattering of e-p involves the exchange and emission

of series (in principle infinite) of photons. Part of the photons are virtual and they

do contain Feynman loop diagrams. Apart from the loop, there is emission of real

photons from the external legs of the Feynman diagrams, known as bremsstrahlung, as

well. It is interesting to note that the emission and exchange of the real and virtual

photons are both important and need to take them into account simultaneously to keep

the prediction of the observable quantities finite in QED. It would be clear from the
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detailed discussion ahead. However, the discussion will be restricted within the next to

leading order (up to order α2) radiative corrections relevant to the experiments for the

low energy precision tests of standard model. Within this limit, the relevant Feynman

diagrams with the exchange of an additional virtual photon are shown in Fig. 2.2, while

Fig. 2.3 corresponds to the diagrams with an additional real photon emission either from

electron or proton leg.

Figure 2.2: Feynman diagrams for next to leading order radiative corrections. The
top row is for electron (left two) and proton (right two) self energy corrections. First
diagram of the bottom row corresponds to the vacuum polarization, and the next two

correspond to e− − γ − e− and proton − γ − proton vertex corrections.

Ignoring the corrections beyond order α2 one can approximate the measured reduced

cross section by

σexp
R ≃ CRC (σBorn

R ), (2.1)
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where CRC is the sum of cross section corrections, relative to Born cross section, coming

from the vacuum polarization (δvp), electron and proton vertex (δevertex and δpvertex),

hadron structure-dependent two-photon exchange δγγ , and the real bremsstrahlung

δbrems, i.e.

CRC = 1 + δvp + δevertex + δpvertex + δγγ + δbrems. (2.2)

Traditionally most of the experimental analyses use the approximate estimation of these

corrections from the analysis of Mo and Tsai [74, 75]. The evaluation of these radiative

corrections are tedious and almost impossible without simplifying assumptions. Mo

and Tsai [74, 75] also had to make some assumptions, particularly in the evaluation

of δpvertex, δγγ, and δbrems they assumed standard soft photon approximation for the

additional exchanged or emitted photon. The term soft means the photon momentum is

vanishingly small. More recently, an improved estimation of these Feynman diagrams by

Maximon and Tjon [76] has been used in some contemporary experiments like Ref. [21].

Due to the differences in the assumptions used in evaluation of these corrections, the

results are also different in some cases. The vacuum polarization and electron vertex

correction results agree fairly well, while the proton vertex and the soft part of the two-

photon exchange are significantly different due to the variation in assumptions. The

difference in the soft part of the TPE correction between the two treatments will be

discussed in Sec. 3.1.2. However, having the same assumptions in both calculations for

the soft bremsstrahlung the results are still different and that was due to an incorrect

substitution, which was updated by Tsai in a later preprint [77] but still with an error

in sign, as pointed out in Ref. [78]. Due to such variations in the outcomes of the

model estimations of radiative corrections one needs to be cautious about the used

treatment while comparing data from different experiments, particularly in case of any

global analysis of the Rosenbluth separation data. For example, Walker et al. [2] used

the Mo and Tsai prescription [75] of the radiative corrections but with the corrected

sign in the proton vertex correction along with the inclusion of the heavier lepton and

hadron loops in vacuum polarization. For completeness, I discuss here the results from

the Mo-Tsai [75] and Maximon-Tjon [76] prescriptions.
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The corrections δevertex and δvp from electron vertex and vacuum polarization are well

estimated in literature. Considering only the virtual lepton loops (e+e−, µ+µ−, and

τ+τ− pairs) in vacuum polarization diagram of Fig. 2.2, δvp can be given a general form

as [39, 76, 78]

δlvp =
2α

3π

{
− 5

3
+

4m2
l

Q2
+

(
1− 2m2

l

Q2

)√
1 +

4m2
l

Q2

× ln

 Q2

4m2
l

1 +

√
1 +

4m2
l

Q2

2}, (2.3)

where ml is the lepton mass. Only for the e+e− loop (as was considered in Ref. [75]

by Mo and Tsai) in the limit of Q2 ≫ m2, applicable for most high Q2 experiments,

Eq. (2.3) reduces to a simplified form

δvp ≃ α

π

2

3

{
−5

3
+ ln

(
Q2

m2

)}
. (2.4)

Walker et al. [2] included the contributions from all three lepton pairs in his global

reanalysis of the Rosenbluth data in an attempt to reconcile the discrepancy in form

factor measurements. Note that Ref. [2] has a misprint for the corresponding expression

of δvp which is corrected in Eq. (2.3) following Ref. [39]. However, in addition to the

lepton loops, Walker et al. also included quark loop contributions parametrized from

the measured data of e+e− annihilation into hadron with a simple fit of the form of

Eq. (2.3) (correcting for the charge and colour factors) as

δqvp = 0.002
[
1.513 + 2.822 ln(1 + 1.218Q2)

]
. (2.5)

Ideally, one should also consider the effect of structure-less spin zero Bosons (can be

obtained from Refs. [79, 80]), pion structure and spin-one mesons like ρ mesons.
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The electron vertex correction term from Mo-Tsai work is also identical with the Maximon-

Tjon result given by

δevertex =
α

π

{
−K(k, k′) +K(k, k) +

3

2
ln

(
Q2

m2

)
− 2

}
, (2.6)

where K(k, k′) can be given by [78]

K(ki, kj) = ki · kj
∫

dy′

k2
y′
ln

(
k2
y′

λ2

)
, (2.7)

with ky′ = kiy
′ + kj(1 − y′) following the convention of Ref. [74]. Evaluation of the

integrals gives [75, 78]

δevertex =
α

π

{
ln

m2

λ2

(
1− ln

Q2

m2

)
+

3

2
ln

(
Q2

m2

)
− 2− 1

2
ln2

(
Q2

m2

)
+

π2

6

}
. (2.8)

The correction δevertex is infrared (IR) divergent. But the λ-dependent divergent term

will exactly be cancelled by a counter term from the real soft photon emission cross

section represented in Eq. (2.10) with no Z-term.

For the proton vertex correction, Maximon-Tjon [76] improved the work of Mo-Tsai [75]

by applying a more realistic assumption that takes proton structure-dependent correc-

tion into account, while Mo-Tsai used the simple soft photon approximation for the

additional exchanged photon at the proton vertex, i.e. the proton is treated as a point

particle in the later treatment. To account the proton structure effect in δpvertex, Ref. [76]

used monopole or dipole form of the Dirac and Pauli form factors F1 and F2. For com-

putational simplicity they further assumed the two form factors be equal in form. To

compare with the Mo-Tsai results, Maximon-Tjon separated the structure-dependent

part δ
p(1)
vertex (δ(1)el in Maximon-Tjon notation) from the structure independent contribu-

tion δ
p(0)
vertex, i.e. δpvertex = δ

p(0)
vertex + δ

p(1)
vertex. The structure independent δ

p(0)
vertex, common to

both Mo-Tsai and Maximon-Tjon, consists the IR divergence and can be written as [76]

δ
p(0)
vertex =

αZ2

π
{−K(p, p′) +K(p, p)} . (2.9)
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Figure 2.3: Feynman diagrams for single real photon emission from either electron
or proton external legs in e-p scattering.

The structure-dependent δ
p(1)
vertex was found small relative to other contributions in the

total cross section. Numerical value of δp(1)vertex was smaller than 0.0068 for Q2 < 6 GeV2

but it keeps increasing with Q2 and beam energy. Similar to the case of δevertex, proton

vertex correction is also IR divergent and this divergent term is also cancelled by the

inelastic cross section of real photon emission from the proton legs. It is important to

note that the corrections from the electron and proton self energy diagrams in Fig. 2.2

are also included in evaluation of the corresponding vertex corrections [76]. However,

the corrections discussed up to this point does not show any ε dependence. Therefore,

they do not have any significant influence in LT separation data apart from the effect

of a normalization factor.

On the other hand, the corrections from the real soft photon emission and the soft part

of the two-photon exchange radiative correction have significant ε dependence as pointed

out by both group of authors of Refs. [75, 76]. More importantly the outcomes for these

corrections estimated by the two prescriptions are different. The discussion on the IR

divergent soft photon contribution in TPE is left as a separate section in chapter 3

(Sec. 3.1.2). As pointed out before, the real soft photon emission correction calculated

by Mo-Tsai is different from that by Maximon-Tjon due to an incorrect substitution

made in Ref. [75] which needs to be taken care if one uses the earlier prescription, as

was done by Walker et al. [2] in his reanalysis. However, I prefer to show here the cross
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section correction, δbrems from the real single photon bremsstrahlung within the soft

photon approximation obtained by Maximon-Tjon as

δbrems =
α

π

{[
ln

(
Q2

m2

)
− 1

]
ln

(
(η m∆E)2

EE ′λ2

)
+

1

2
ln2

(
Q2

m2

)
− 1

2
ln2 η + Li2

(
cos2

θ

2

)
−π2

3
+ 2Z

[
ln η ln

(
(2 η∆E)2

yλ2

)
+ Li2

(
1− η

y

)
− Li2

(
1− 1

ηy

)]
+Z2

[(
Ep′

|p′|
ln y − 1

)
ln

(
(2 η∆E)2

λ2

)
−Ep′

|p′|

[
ln2 y − ln y + Li2

(
1− 1

y2

)]
− 1

]}
, (2.10)

where η = E/E
′ , Li2 is the dilogarithm function, y = 1 + 2τ + 2

√
τ(1 + τ), Ep′ is the

energy of the final proton and ∆E is the cut off energy below which soft photon can not

be detected due to detector acceptance [12]. In Eq. (2.10), the terms with Z0, Z1, and

Z2 correspond to the cross section corrections from electron bremsstrahlung, the inter-

ference between electron and proton bremsstrahlung, and the proton bremsstrahlung,

respectively. Note since Z is the charge number it becomes 1 for e-p scattering. Fur-

ther note that each of the terms coming from three different bremsstrahlung corrections

has λ-dependent parts, i.e. IR divergent parts. The λ-dependent parts in the terms

proportional to Z0 and Z2 will be cancelled out by similar counter terms from electron

and proton vertex corrections, respectively, as pointed out before. The IR divergence

in the interference term (proportional to Z1) will also be cancelled out once the TPE

correction is taken into account.

A comparison of the Mo-Tsai findings for the soft bremsstrahlung correction with that

from Maximon-Tjon in terms of their difference (∆brems) would be convenient for any

future global analysis of LT separation data. The difference in bremsstrahlung correction
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between the two prescriptions, ∆brems can be written as [78]

∆brems =
α

π

{[
Li2
(
cos2

θ

2

)
− π2

6

]
− 2Z

[
ln η ln x− Li2

(
1− η

x

)
+ Li2

(
1− 1

ηx

)
+
1

2
Li2
(
1− η

2Ep′

M

)
− 1

2
Li2
(
1− 2Ep′

ηM

)]
+ Z2

[
Ep′

|p′|

(
ln x− Li2

(
1− 1

x2

)
+Li2

(
− 1

x2

)
+

π2

12

)
− ln

(
4Ep′

M

)
+ 1

]}
, (2.11)

where x = (Ep′ + |p′|)/M . Note that the difference is independent of λ, i.e. the IR

divergent part is same irrespective of the prescription used.

Adding up all the elastic and inelastic radiative corrections of Figs. 2.2 and 2.3 gives

the total cross section correction (finite) in Maximon-Tjon evaluation as

δMTj =
α

π

{
13

6
ln

(
Q2

m2

)
− 28

9
−
[
ln

(
Q2

m2

)
− 1

]
ln

(
4EE ′

(2η∆E)2

)
− 1

2
ln2 η

+Li2
(
cos2

θ

2

)
− π2

6

]
+

2αZ

π

[
− ln η ln

(
Q2y

(2η∆E)2

)
+ Li2

(
1− η

y

)

−Li2
(
1− 1

ηy

)]
+

αZ2

π

[
Ep′

|p′|

(
− 1

2
ln2 y − ln y ln

(
ρ2

M2

)
+ ln y

)
−
(
Ep′

|p′|
ln y − 1

)
ln

(
M2

(2η∆E)2

)
+ 1

+
Ep′

|p′|

(
− Li2

(
1− 1

y2

)
+ 2Li2

(
− 1

y

)
+

π2

6

)}
+ δ

p(1)
vertex. (2.12)

2.4 Recent reanalysis of the Rosenbluth separation

data

In a recent reanalysis of the LT separation data [39], Gramolin and Nikolenko used a

selective data set from Refs. [2, 3], for which the detailed information about the radia-

tive correction is available. In the reanalysis they substituted the Mo-Tsai corrections

from the original literature by the Maximon-Tjon corrections given in Eq. (2.12) but
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neglected the proton structure-dependent term δ
p(1)
vertex. Apart from this substitution,

they also added the vacuum polarization correction from the two more leptonic, µ+µ−

and τ+τ−, loops using Eq. (2.3) and the hadron loop using Eq. (2.5). Note that the

the vacuum polarization correction form e+e− loop is already included in Eq. (2.12). In

addition to the updates mentioned above they also included an estimated hard internal

bremsstrahlung correction given by

δint.brems =
2α

π

(
ln

Q2

m2
− 1

)
ln

δE

∆E
+

[(
dσ

dΩ

)
0

(E)

]−1 ∫ E′−δE

E′−∆E

d2σint.brems

dΩ dE ′′ dE ′′, (2.13)

where the cutoff energy δE should be chosen such that δE ≪ ∆E (authors considered

δE = 10−4 GeV) and the integrand is given by

d2σint.brems

dΩ dE ′′ =
M + (E − ω1)(1− cos θ)

M − E ′′(1− cos θ)

t1
ω1

(
dσ

dΩ

)
0

(E − ω1) +
t3
ω3

(
dσ

dΩ

)
0

(E), (2.14)

with

t1,3 =
α

π

[
1 + x2

1,3

2
ln

2EE ′′(1− cos θ)

m2
− x1,3

]
, R =

M + E(1− cos θ)

M − E ′′(1− cos θ)
,

x1 =
E − ω1

E
, x3 =

E ′′

E ′′ + ω3

, ω1 = Rω3, ω3 = E ′ − E ′′. (2.15)

Here E ′′ is the measured energy of the scattered electron and E ′ can be interpreted as the

peak energy of the scattered electron in case of the hard bremsstrahlung. The improved

prediction of the radiative tail given in Eq. (2.14) is compared with that estimated

using the approximation of soft photon emission is compared in Fig. 2.4. The kinematic

consideration in plotting the analytical results of the radiative tail were E = 1.0 GeV,

θ = 70◦ and the elastic peak energy E ′ = 0.588 GeV. Clearly, the inclusion of the hard

bremsstrahlung makes a big difference with the soft photon approximation for smaller

E ′′. However, with this addition of the hard internal bremsstrahlung correction the total

radiative correction factor CRC can be written as

CRC =
(
1 + δMTj + δµ,τ,qvp + δint.brems + δext.brems

)
CL, (2.16)
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Figure 2.4: The radiative tail predicted using soft photon approximation (blue
dashed) and from the sum of soft and hard internal bremsstrahlung (red solid line).The

points are simulated data from Ref. [81]

where δext.brems and CL account for the external bremsstrahlung and the ionization losses

in the target materials. Ref. [39] took the exponentiation of the cross section corrections

from the additional single photon emissions discussed above to take into account the

effect of an arbitrary number of soft photons and thus CRC takes the form

CRC = CL exp(δRC), (2.17)

with

δRC = δMTj + δµ,τ,qvp + δint.brems + δext.brems. (2.18)

The extracted electric and magnetic form factors using these updated treatment of

the radiative corrections in just two sets of Rosenbluth data Gramolin and Nikolenko

found better agreement with the polarization transfer data of the ratio µpGE/GM . It

is important to note here that this reanalysis did not take account of the ε-dependent

hard TPE effect which makes the analysis partly incomplete.



Chapter 2 Revisit to the µpGE/GM discrepancy 28

2.5 Potential solution to the µpGE/GM discrepancy

The proton structure-dependent radiative correction two-photon exchange (hard) is a

potential candidate to resolve the discrepancy in proton electric to magnetic form fac-

tor ratio µpGE/GM as it is found an ε-dependent correction. Approximately half of the

discrepancy was resolved once the TPE correction was applied indirectly in some previ-

ously extracted ratio µpGE/GM using LT separation method, where this correction term

was ignored during the initial extraction, by Blunden et al. [10, 37]. In their hadronic

calculation, the TPE cross section correction δγγ was found nearly linear in polarization

ε, at least in the interval of 0.2 ≤ ε ≤ 0.9. Therefore, the correction factor 1 + δγγ to

the reduced Born cross section σBorn
R is fitted to a function of the form a+ bε for corre-

sponding Q2 values of the experiments satisfying the condition that the (1 + δγγ) → 1

in the limit of ε → 1. Then knowing the fitted parameters a and b the TPE corrected

form factor ratio R = µpGE/GM was extracted from the TPE contaminated ratio R̃

using,

R2 =
R̃2 − bτµ2

p/a

1 + ε̄b/a
, (2.19)

where R̃ is the TPE contaminated ratio and ε̄ is an approximated average value of the

total ε range of data.

The TPE corrected results for µpGE/GM along with the TPE contaminated ones from

the reanalysis of the unpolarized Rosenbluth data by Arrington [35] are compared with

the polarization transfer data from [5, 6, 9] in Fig. 2.5(a). Note also that the TPE effect

on µpGE/GM data from polarization transfer measurements were also investigated and

found very negligible change due to inclusion of TPE correction as shown in Fig. 2.5(b).

This is because the PT data were mostly in the region ε ≈ 0.7 − 0.8 where the TPE

correction was found very small.

At the then contemporary time of Blunden’s work [10], Guichon and Vanderhaeghen [11]

also emphasized on hard TPE correction as the source of the discrepancy. Their con-

clusion was coherent with that of Refs. [10, 37] that the Rosenbluth data are sensitive

to the hard TPE correction while the PT data are relatively blind about TPE.
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Figure 2.5: TPE contaminated LT data (open diamonds) for proton electric to
magnetic form factor ratio, µpGE/GM , from Ref. [35], and the corresponding TPE
corrected data (green circles and red squares) by Blunden et al. [37] are compared
with the polarization transfer data(black open circles)[7–9] on the left. On the right
a similar comparison is shown, but here the PT data are TPE corrected (red circles).
The TPE corrected LT points (green circles) on the left panel are obtained assuming
a linear relation of the TPE cross section with ε in the range 0.5 to 0.8, while the
points with red squares used the ε range of 0.2 to 0.9. Plots are taken from Ref. [37].

2.6 Summary and discussion

Having discussed the details of the existing discrepancy between the two different meth-

ods of measurement (LT and PT) of the electric to magnetic form factor ratio µpGE/GM ,

it turns out to be a puzzle. This so-called puzzle seems to have its solution in a neglected

correction which actually is not negligible, at least due to its significant ε dependence.

Thus, I see hope in hard two-photon exchange. But the correction itself has large uncer-

tainty in its calculation which needs to be taken under control either by any improvement

in the model estimation or by direct experimental extraction (or both). Plenty of efforts

has already been applied to better understand the correction since the first observation

of the effect as a potential candidate to resolve the µpGE/GM puzzle. Before carrying

out a rigorous and improved numerical estimation of the TPE correction in chapter 4

it is important to discuss the general formalism of TPE amplitude and review its quan-

titative estimations and/or measurements to date. In the next chapter, the details of

the hadron structure-dependent TPE radiative correction will be discussed along with

a review of the previous works in the specific topic.



Chapter 3

Two-photon exchange

This chapter describes the basic formalism (Sec. 3.1) and a brief review of the model cal-

culations (Sec. 3.2) along with the direct experimental (Sec. 3.4) and phenomenological

(Sec. 3.3) measurements of the two-photon exchange radiative correction, the evaluation

of which is the main subject matter of this thesis. The formalism illustrated in Sec. 3.1 is

basically focused on the inelastic resonance intermediate states for which the subscript

R is used in the notations of intermediate hadron momenta and the corresponding tran-

sition currents even though the specific description of the spin half intermediate states is

also applicable for the elastic nucleon. Representation of the TPE amplitude and corre-

sponding cross section in terms of the generalized form factors is discussed in Sec. 3.1.1

followed by the description of the infrared divergence in TPE (Sec. 3.1.2). Finally the

necessity of the used method and the extended breadth in calculation of the real part

of TPE amplitude will be summed up in the last section (Sec. 3.6).

30
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Figure 3.1: Two-photon exchange amplitude Feynman diagram for s-channel box
(left panel) and u channel x-box (right panel). The two exchanged photons carry

momenta q1 and q2.

3.1 Two-photon exchange amplitude

The two-photon exchange amplitude, Mγγ , is the sum of contributions from the s-

channel box (left panel) and u- channel crossed-box diagrams (right panel) of Fig. 3.1,

Mγγ = Mbox
γγ +Mxbox

γγ . (3.1)

In general, the box and crossed-box diagram amplitudes Mbox
γγ and Mxbox

γγ can be written

as an integral over loop momenta q1 or q2 of the exchanged photons [12],

Mbox
γγ = −ie4

∫
d4q1
(2π)4

Lbox
µν Hµν

R

(q21 − λ2)(q22 − λ2)
, (3.2a)

Mxbox
γγ = −ie4

∫
d4q1
(2π)4

Lxbox
µν Hµν

R

(q21 − λ2)(q22 − λ2)
, (3.2b)

where an infinitesimal photon mass λ is introduced to regulate infrared divergences.

Note a sum over all the intermediate states (R) is implicit in Eq. (3.2b) to get the total

TPE correction. The leptonic tensor Lµν in Eq. (3.2b) is given by

Lbox
µν = ūe(k

′)γµSF (k1,me)γνue(k), (3.3)

where k1 = k − q1 is the intermediate lepton four-momentum, me is the electron mass

(which can in practice be taken to zero at the kinematics considered here), and SF is
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the electron propagator defined by

SF (k1,me) =
(/k1 +me)

k2
1 −m2

e + i0+
. (3.4)

The hadronic tensor Hµν
R (same for box and crossed-box TPE) for each intermediate

state R can be expressed as

Hµν
R = ūN(p

′) Γµα
R→γN(pR,−q2)Sαβ(pR,W ) Γβν

γN→R(pR, q1) uN(p), (3.5)

in terms of the transition operators Γβν
γN→R (Γµα

R→γN) between the initial (final) nucleon

and intermediate resonance R (or, elastic nucleon) states, where pR = p + q1 is the

four-momentum of the intermediate state and W its (in principle running) mass.

For spin 1/2 baryon intermediate states the propagator Sαβ(pR,W ) reduces to the usual

spin-1/2 propagator

Sαβ(pR,W ) = δαβ
(/pR +W )

p2R −W 2 + i0+
= δαβ SF (pR,W ), (3.6)

for a particle with mass W . The hadronic tensor for spin-1/2 baryons can then be

written

Hµν
R = ūN(p

′) Γµ
R→γN(pR,−q2)SF (pR,W ) Γν

γN→R(pR, q1) uN(p), (3.7)

where the operator ΓγN→R describes the transition to a baryon resonance with spin

1/2. Note that this hadronic tensor will remain identical for the case of elastic nucleon

intermediate state except the mass W will be replaced by the nucleon mass M and the

transition operators will be substituted by the operator shown in Eq. (1.5).

For the hadronic propagator of spin-3/2 states the form

Sαβ(pR,W ) = −P3/2
αβ (pR)

(/pR +W )

p2R −W 2 + i0+
, (3.8)
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is used, where the spin-3/2 projection operator P3/2
αβ is defined by

P3/2
αβ (pR) = gαβ −

1

3
γαγβ −

1

3p2R

(
/pRγα(pR)β + (pR)αγβ/pR

)
. (3.9)

The resonance transition currents Γβν
γN→R(pR, q1) and Γµα

R→γN(pR,−q2) at the two hadron

vertices can be parametrized using the form factors G1, G2, and G3 [53, 82, 83]. These

parametrizations are not unique. They can also be parametrized in terms of the electric

(G∗
E), magnetic (G∗

M), and Coulomb (G∗
C) form factors [82]. Details of the transition

current are discussed in Sec. 5.2.

The TPE crossed-box amplitude Mxbox
γγ can be calculated by using the lepton tensor

Lxbox
µν in Eq. (3.2) as

Lxbox
µν = ūe(k

′) γν SF (k2,me) γµue(k), (3.10)

where the intermediate lepton momentum is k2 = k − q2. The crossed-box amplitude

can also be obtained from the crossing symmetry relation [46]

Mxbox
γγ (u, t) = −Mbox

γγ (s, t)
∣∣∣
s→u

, (3.11)

where the Mandelstam variables s, t, and u are defined by

s = (k + p)2 = (k′ + p′)2, (3.12a)

t = (k − k′)2 = q2, (3.12b)

u = (p− k′)2 = (p′ − k)2. (3.12c)

Note however, that unlike the box amplitude, which is complex, the crossed-box ampli-

tude is purely real. In the dispersive approach it is therefore not necessary to consider

the crossed-box term explicitly. It will be shown explicitly in Sec. 4.2 that the imaginary

part of the TPE amplitude entirely comes from the box diagram of Fig. 3.1 and that

the real part of the TPE amplitude from the direct analytic calculation and numerical

calculation are identical considering the simple case of point-like target particle, i.e. in

e-µ scattering. Including the one- and two-photon exchange contributions, the total
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squared amplitude can be written

|Mγ +Mγγ|2 ≈ |Mγ|2 + 2Re(M†
γMγγ)

≡ |Mγ|2 (1 + δγγ), (3.13)

where terms of order α4 and beyond have been neglected, and we have defined the

relative two-photon exchange correction to the cross section as

δγγ =
2Re(M†

γMγγ)

|Mγ|2
. (3.14)

For the nucleon intermediate state the TPE cross section correction is infrared divergent

in the soft photon limit, but this divergence is exactly cancelled by a corresponding di-

vergence in the real photon emission from the electron and proton, discussed in Sec. 2.3.

It is useful, however, to define a finite TPE correction which has the IR divergent contri-

bution subtracted. This correction will not be unique, as it depends on the prescription

used for the regularization [12, 46, 75, 76]. For most of the theoretical results presented

in this analysis the prescription of Maximon and Tjon [76],

δ = δγγ − δIR
γγ(MTj), (3.15)

is used. Note that the notation δ is dedicated for the IR subtracted TPE cross section

correction from now on. For comparisons with experimental data, however, we use the

Mo and Tsai prescription [75], which has traditionally been employed in analyses of

electron-proton scattering.

3.1.1 TPE in terms of generalized form factors

The general amplitude of the elastic scattering between two spin-1/2 particles involves 16

helicity amplitudes. The discrete symmetries, parity and charge conjugation invariances,

leaves only 6 independent helicity amplitudes or invariant amplitudes [84]. Three of

them flip the lepton helicity, while the other three do not [11, 68]. The amplitudes that
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flips the helicity are of the order of lepton mass (me), i.e. the amplitude is factored

by the lepton mass. In other words, in the massless limit lepton helicity is conserved

in every order of perturbation theory in a gauge theory [11]. As a consequence, only

three helicity amplitudes, Thh′λλ′ survive in this limit. Here h and h′ are the helicity

of the incident and scattered lepton, while λ and λ′ are that of the target and recoiled

particle. The surviving set of amplitudes may be: T++++, T++−−, and T++−+ = T+++−;

or T−−++, T−−−−, and T−−−+ = T−−+−, for example. Therefore, in the massless electron

limit, which is a reasonably good approximation in the kinematics of the experiments

mentioned in this thesis, the general form of the scattering amplitude can be decomposed

into three Lorentz structures with coefficients being the generalized form factors F ′
1, F ′

2,

and G′
a, as [43, 46]

M = −e2

q2
ūe(k

′)γµu(k) ūN(p
′)

[
F ′
1(Q

2, ν)γµ + F ′
2(Q

2, ν)
iσµνqν
2M

]
uN(p)

−e2

q2
ūe(k

′)γµγ5u(k) ūN(p
′)G′

a(Q
2, ν)γµγ5uN(p), (3.16)

where these are functions of Q2 and the dimensionless variable

ν ≡ s− u

4M2
=

√
τ(1 + τ)(1 + ε)

1− ε
. (3.17)

Including only the TPE correction, the generalized amplitude and the form factors can

further be decomposed as

M = Mγ +Mγγ , (3.18a)

F ′
1(Q

2, ν) = F1(Q
2) + F ′

1γγ (Q
2, ν), (3.18b)

F ′
2(Q

2, ν) = F2(Q
2) + F ′

2γγ (Q
2, ν), (3.18c)

G′
a(Q

2, ν) = G′
aγγ (Q

2, ν), (3.18d)

i.e. in the One Photon Exchange (OPE) limit, the generalized form factors, F ′
1(Q

2, ν),

and F ′
2(Q

2, ν) will be reduced to the the Dirac and Pauli form factors F1(Q
2) and F2(Q

2),

respectively, and G′
a(Q

2, ν) → 0. Thus, the OPE amplitude in that limit takes the usual
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form

Mγ = −e2

q2
ūe(k

′)γµu(k) ūN(p
′)

[
F1(Q

2)γµ + F2(Q
2)
iσµνqν
2M

]
uN(p). (3.19)

The TPE amplitude, Mγγ can be written as

Mγγ = −e2

q2
ūe(k

′)γµu(k) ūN(p
′)

[
F ′
1γγ (Q

2, ν)γµ + F ′
2γγ (Q

2, ν)
iσµνqν
2M

]
uN(p)

−e2

q2
ūe(k

′)γµγ5u(k) ūN(p
′)G′

aγγ (Q
2, ν)γµγ5uN(p). (3.20)

For simplicity of notation, the subscript ”γγ” in the generalized form factor corrections

from TPE will be omitted in the remainder of the thesis. Therefore, F ′
1(Q

2, ν), F ′
2(Q

2, ν),

and G′
a(Q

2, ν) will imply the TPE correction to the generalized form factors in rest of

the thesis. To eliminate any confusion in future use the TPE amplitude Mγγ is written

again in terms of these TPE generalized form factors correction as

Mγγ = −e2

q2
ūe(k

′)γµue(k) ūN(p
′)

[
F ′
1(Q

2, ν)γµ + F ′
2(Q

2, ν)
iσµνqν
2M

]
uN(p)

−e2

q2
ūe(k

′)γµγ5ue(k) ūN(p
′)G′

a(Q
2, ν)γµγ5uN(p). (3.21)

The TPE cross section can then be expressed in terms of the generalized TPE form

factors as [46]

δγγ = 2ReεGE(F
′
1 − τF ′

2) + τGM(F ′
1 + F ′

2) + ν(1− ε)GMG′
a

εG2
E + τG2

M

. (3.22)

An alternative representation for the TPE cross section combines the F ′
1, F ′

2, and G′
a

generalized TPE form factors into combinations that resemble the electric and magnetic

Sachs form factors at the Born level. Namely, defining [48]

GE ≡ F ′
1 − τF ′

2, (3.23a)

GM ≡ F ′
1 + F ′

2 +
ν

τ
(1− ϵ)G′

a, (3.23b)
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the TPE cross section can be written in a simplified form analogous to the diagonal

structure of the Born cross section of Eq. (1.13),

δγγ = 2ReεGEGE + τGMGM

εG2
E + τG2

M

. (3.24)

However, the representation of the scattering amplitude and hence the TPE amplitude

in terms of the generalized form factors is not unique. Some authors [11] prefer the

convention of the form factors F̃1, F̃2, and F̃3, in terms of which Mγγ is given by

Mγγ = −e2

q2
ūe(k

′)γµue(k) × ūN(p
′)

[
F̃1(Q

2, ν)γµ + F̃2(Q
2, ν)

iσµνqν
2M

+F̃3(Q
2, ν)

/kpµ

M2

]
uN(p). (3.25)

The relationship between the two sets of form factors can easily be established as

F ′
1 = F̃1 + νF̃3, (3.26a)

F ′
2 = F̃2, (3.26b)

G′
a = −τ F̃3. (3.26c)

For completeness, the lepton helicity-flipping Lorentz structures involve three more

complex-valued coefficients F̃4, F̃5, and F̃6, known as the generalized form factors that

construct the helicity-flipped part of the most general form of the scattering amplitude

M. In the later convention of Ref. [11], the helicity-flipping amplitude is given by [85]

Mflip = −me

M

e2

q2

[
ūe(k

′)ue(k) . ūN(p
′)

(
F̃4(Q

2, ν) + F̃5(Q
2, ν)

/k + /k′

2M

)
uN(p)

+F̃6(Q
2, ν)ūe(k

′)γ5ue(k)ūN(p
′)γ5uN(p)

]
. (3.27)

Here all three form factors vanish in the Born approximation, i.e. F̃Born
4,5,6 = 0.
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3.1.2 Infrared divergence

The TPE amplitude Mγγ of Eq. (3.2b) has IR poles at the soft photon limit of either

of the two exchanged virtual photons, i.e. at either q1 → 0 or q2 → 0. To regulate

the IR divergences originating from these poles, the infinitesimally small parameter λ is

introduced in the two virtual photon propagators’ denominator. In general the calcu-

lated TPE cross section correction, for nucleon intermediate state, is thus λ-dependent.

Fortunately, a similar term originating from the cross section due to the interference

between the emission of real photon (bremsstrahlung) from electron and from proton,

as shown in Fig. 2.3, cancels the λ-dependent divergent term from the total e-p elas-

tic scattering cross section [76]. Therefore, separating out the λ-dependent divergent

part from the finite part of the TPE calculation is useful since only the finite part

will eventually be accounted in observable quantities. However, isolating the divergent

part from the finite part is not unique. The IR divergent part obtained by the old

traditional prescription of Mo and Tsai [75] is mostly used in experimental analyses for

historical reasons, perhaps. On the other hand, in theoretical calculations the updated

prescriptions by Maximon and Tjon [76] is preferred. One needs to be cautious during

the comparison of experimentally measured observable with the theoretical predictions.

Also, it is preferable to use the same prescription for isolating the IR divergent parts

both from TPE and real bremsstrahlung corrections as the later in Mo-Tsai treatment

has a wrong substitution that leads to the different results even after having the same

assumptions.

In evaluation of the box and crossed-box diagram of Fig. 3.1 at such poles, Maximon

and Tjon considered the single soft photon approximation, i.e. q1 = 0 (or q1 = q), and

q2 = q (or q2 = 0), only in the numerator of Eq. (3.2b) for nucleon intermediate state,

while Mo and Tsai [75] treated both numerator and denominator with single soft photon

approximation. Taking the soft photon approximation at a hadronic vertex is actually

equivalent to treating the nucleon as a point-like particle, i.e. one of the hadronic

vertices, where soft photon is assumed, will have the substitution Γµ(0) → γµ for the

transition current operator, whereas the other hadronic vertex will have the current



Chapter 3 Two-photon exchange 39

operator as Γν(q). With this approximation, the pole contribution (divergent) becomes

proportional to the Born amplitude and hence the TPE cross section correction coming

from the pole contribution remains independent of the structure of proton. Thus the

total TPE amplitude with the soft photon approximation becomes [12, 76]

MIR
γγ = e4Nbox(0)

∫
d4q1
(2π)4

1

[q21 − λ2][q22 − λ2][k2
1 −m2

e][(p+ q1)2 −M2]
(3.28)

+e4Nxbox(0)

∫
d4q1
(2π)4

1

[q21 − λ2][q22 − λ2][k2
2 −m2

e][(p+ q1)2 −M2]
,

where Nbox(0) and Nxbox(0) are obtained after using the soft photon approximation, for

corresponding box and crossed-box diagrams, respectively, at either of the exchanged

photons as [37, 76]

Nbox(0) = Nbox(q) = 4i k · p q2 Mγ

e2
, (3.29a)

Nxbox(0) = Nxbox(q) = 4i k′ · p q2 Mγ

e2
. (3.29b)

It is interesting to note that the soft photon approximation for either of the two ex-

changed virtual photons gives the same result since the TPE amplitude is symmetric

under the interchange of q1 ⇔ q2. The integral of Eq. (3.28) can be expressed as

four-point Passarino–Veltman functions D0(s) and D0(u) for box and crossed-box con-

tributions, respectively, by [12]

MIR
γγ = − α

2π
q2Mγ

[
(s−M2)D0(s)− (u−M2)D0(u)

]
, (3.30)

where s and u are the Mandelstam variables defined in Eq. (3.12c). The asymptotic

expansion of the IR divergent four point Passarino-Veltman functions D0(s) is available

from Ref. [86]. In the limit of s−M2 ≫ (m2
e,meM) or λ2 ≪ Q2, D0(s) can be written

as

D0(s) =
2

(s−M2)q2
ln

(
M2 − s

Mme

)
ln

(
−q2

λ2

)
. (3.31)
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Exploiting the crossing symmetry of Mxbox
γγ (u, t) = −Mbox

γγ (s, t) |s→u, one can write the

IR divergent part of total TPE amplitude MIR
γγ as

MIR
γγ = −α

π
Mγ

[
ln

(
M2 − s

Mme

)
ln

(
−q2

λ2

)
− ln

(
M2 − u

Mme

)
ln

(
−q2

λ2

)]
= −α

π
Mγ

[
ln

(
M2 − s

M2 − u

)
ln

(
Q2

λ2

)]
. (3.32)

Therefore, the IR singularity in the TPE cross section using Maximon and Tjon treat-

ment is given by,

δγγ(IR-divergent) = −2
α

π

[
ln

(
M2 − s

M2 − u

)
ln

(
Q2

λ2

)]
. (3.33)

Equation 3.33 contains both real and imaginary parts in it. For completeness, extracting

the explicit forms of the real and imaginary parts of δγγ (IR-divergent) as

δIR
γγ(MTj) ≡ Re δγγ(IR-divergent) = −2

α

π

[
ln

(
s−M2

M2 − u

)
ln

(
Q2

λ2

)]
, (3.34a)

Im δγγ(IR-divergent) = 2α ln

(
Q2

λ2

)
, (3.34b)

even though the real part is of particular interest in this work. Here the convention of

ln(−x) = ln(x) − iπ for x > 0 is used. The λ-dependent logarithmic IR singularity on

Re δIR
γγ(MTj) is exactly cancelled by by a term proportional to Z1 in the bremsstrahlung

cross section of Eq. (2.10). To see the cancellation one needs to use the expressions of

the Mandelstam variables s and u in terms of initial and final electron energies E and

E ′ in lab frame as

s = M2 + 2ME, u = M2 − 2ME ′. (3.35)

Providing the results obtained by Mo and Tsai [75] for the IR divergent part of TPE

cross section would be helpful to compare the calculated values of the observable quan-

tities, e.g. µpGE/GM ratio, with the measured ones to avoid any unwanted ambiguity

arising due to the preference of one treatment over other. By the application of the
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soft photon approximation at the denominator of Eq. (3.2b) along with the numerator

reduces the loop integral to three point Passarino-Veltman functions C0(s) and C0(u)

for box and crossed-box part, respectively. Since no simple analytic form is available

for the asymptotic expansion of the three point Passarino-Veltman function in the limit

of s−M2 ≫ m2
e,meM or λ2 ≪ Q2, Mo and Tsai further used a mathematical approxi-

mation of replacing p → −p in the three point function for the TPE box diagram alone

which gives the final expression of the IR singularity in the TPE cross section as [12]

δIR
γγ(MoT) =

2α

π

[
Li2
(
1− M

2E

)
− Li2

(
1− M

2E ′

)
−1

2
ln

(
s−M2

M2 − u

)
ln

(
4M2EE ′

λ4

)]
. (3.36)

Note that the λ-dependent terms in both treatments, i.e. in Eqs. (3.34b) and (3.36),

are same even though the cross section results of the soft photon approximation are

not identical. Therefore, the elimination of the IR pole singularity from the total cross

section, by a same counter term coming from the Bremsstrahlung cross section, is guar-

anteed in either prescriptions. However, it is important to analyze the virtual photon

polarization, ε dependence of the difference ∆IR = δIR
γγ(MTj)− δIR

γγ(MoT), especially for

the extraction of the ratio µpGE/GM using Rosenbluth (LT) separation technique [18].

Fig. 3.2 illustrates the difference ∆IR as a function of ε at the representative squared

four-momentum transfers Q2 = 0.2, 1.0, 3.0, and 5.0 GeV2. It is evident that the

treatments are almost identical at small Q2 values and forward angles (large ε) but as

Q2 increases the difference exceeds even 1% at the backward angles corresponding to

smaller ε for Q2 = 5 GeV2. A visible non-linearity of ∆IR in ε is also observed with

increasing Q2. These differences in the soft photon treatments are significant in LT

separation data and hence in the discrepancy of µpGE/GM ratio [10]. ∆IR alone reduces

the µpGE/GM discrepancy by 3% and 7% for Q2 = 3 and 6 GeV2, respectively [10]. It is

important to note that the divergence in TPE amplitude at the soft photon limit exists

only for elastic nucleon intermediate states. In case of excited resonance intermediate

states every terms in the numerator of Eq. (3.2b) contains the four-momentum factor
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Figure 3.2: Difference between the IR divergent parts of the TPE cross section from
Refs. [76] and [75] as a function of virtual photon polarization ε at fixed values of

Q2 = 0.2, 1.0, 3.0, and 5.0 GeV2.

q coming from the parametrizations of the hadronic transition currents at the two ver-

tices described in Sec. 5.2. As a consequence the numerator also vanishes in the limit

of Q2 → 0 and the amplitude remains finite in that limit.

3.2 TPE calculation review

The hadron structure-dependent part of the TPE box and crossed-box diagrams have

been evaluated by several groups of authors from nearly two decades starting from the

work of Blunden et al. [10]. All the model estimations can be categorized into three

methods of evaluation. One such method assumes the interaction of the virtual photons

at the quark level of the hadron [43], while the two other methods consider that the

hadron retains its properties during interaction [10, 37, 40, 41, 45, 46, 48–52, 87–89].

Within the hadronic degrees of freedom the early estimations directly evaluated the

real part of the TPE amplitude [10, 37, 40, 41], while the updated scheme of dispersive

approach evaluated the imaginary part from which the real part was generated using dis-

persion relations [45, 46, 48–52, 88, 89]. The TPE calculation in these three approaches

are reviewed in the following subsections.
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Figure 3.3: e-p elastic scattering in the (a) single photon exchange, and (b,c) TPE
approximations, at the quark level interaction. The kinematics is same as those in
Fig. 3.1. Three constituent quarks of proton are represented by three internal lines
with arrows to demonstrate the interaction with individual photons. Both photons
interact with same quark in (b) and different quarks in (c). Other combinations of

gluon exchange are available in Ref. [45].

3.2.1 High Q2 partonic and pQCD approach

The TPE calculation assuming the interaction with the constituents of the proton was

first performed in a partonic approach relating the Generalized Parton Distributions

(GPD) with TPE amplitude in Ref. [42, 43] following the formulation in Ref. [90] for

wide angle Compton scattering. The underlying assumption was that both the photons

interact with a single quark. These calculations found non-linearity in the reduced cross

section as a function of ε, especially in the forward directions, at the Q2 values of the

µpGE/GM ratio data extracted by Andivahis et al. [3] providing compelling evidence to

resolve the discrepancy between the LT and PT measurements. The authors compared

their TPE corrected reduced cross sections with the measured cross sections of Ref. [3]

scaled by µ2
p times the square of the dipole form factor GD = (1+Q2/0.71)−2 as shown

in Fig. 3.4. The TPE corrected curves move closer to the data points, indicating a reso-

lution of the form factor measurement discrepancy once the TPE effect is taken into ac-

count. Based on their analysis, the authors suggested a global re-analysis of the large Q2

data to determine the correct values of GE,M although the applicability of the partonic

approach is questionable at the kinematics of the existing discrepancy in µpGE/GM mea-

surement. However, Borisyuk and Kobushkin [45], and Kivel and Vanderhaeghen [44]

estimated the TPE correction in the perturbative QCD (pQCD) framework claiming

that the interaction of the two photons are with two different quarks, especially at the

backward angles. As shown in Fig. 3.3, the TPE diagram with two photons interacting
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Figure 3.4: Reduced cross section σR scaled by µ2
p times the dipole form factor G2

D

as a function of ε at Q2 = 4 and 5 GeV2, calculated by Afanasev et al. [43]. The solid
red and dashed blue curves correspond to the TPE corrected σR using two different
models for the GPD. The dotted blue line is the result obtained by using GE,M from

polarization transfer data [5, 6]. Plots are adjusted from Ref. [43].

with two different quarks involves only one gluon (hard) that enhances the TPE cross

section δ by a factor of 1/αs, αs being the strong coupling, compared to the diagrams

involving two gluons where the photons interact with only one quark. Borisyuk and

Kobushkin obtained negative value for the TPE cross section with an approximately

linear ε dependence and logarithmic growth with Q2 reaching 7% near 30 GeV2. They

also tried to establish the bridge between the pQCD based results and the results ob-

tained using the hadronic approximation in the low Q2 limit as illustrated in Fig. 3.5

for the generalized TPE amplitudes δGM/GM (note δGM of Ref. [45] is equivalent to the

GM defined in Eq. (3.23b)). For Q2 ≤ 3.0 GeV2, the results for δGM/GM from the two

methods of pQCD and hadronic degrees of freedom are shown to almost coincide where

only nucleon intermediate state is considered in the later method. But the application

of the pQCD approach in the low Q2 (≃ 3.0 GeV2) limit still remains doubtful. On the

other side, inclusion of the effect of the higher excited resonance intermediate state is

also required in the hadronic limit to better compare the results around Q2 ∼ 3.0 GeV2.
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Figure 3.5: The generalized TPE amplitude δGM/GM as a function of Q2 at (a)
ε = 0.5, and (b) ε = 0.1, calculated by Borisyuk and Kobushkin in pQCD framework
(solid line). The corresponding results in hadronic approach with two different form

factors is also compared. Plots are taken from Ref. [45].

3.2.2 Direct loop integral

The early estimations of the TPE correction assumed only elastic nucleon intermediate

state. Later on some excited intermediate states had also been taken into account. Based

on the intermediate state considerations in the gradual development of the direct loop

integration calculation the discussion can be sub-categorized into elastic and inelastic

intermediate states considerations.

3.2.2.1 Elastic intermediate state

In the low to intermediate region of Q2 (≤ 5 GeV2), where most of the TPE sensitive

observable quantities are experimentally investigated, the hadron is expected to retain

its identity fairly well. Therefore in these kinematic region most of the early theoretical

efforts in estimation of the TPE effects have evaluated the one-loop integral of Eq. (3.2b)

for both box and crossed-box diagram within the hadronic framework. Starting from

the calculation of the hadron structure-dependent TPE effects by Blunden et al. [10]

a series of evaluations of the TPE loop integrals directly within hadronic degrees of

freedom has been initiated [37, 38, 40, 41]. Reference [10] considered only the elastic

nucleon intermediate state with the simple monopole form of the form factors as GE,M ∼
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Λ2/(Λ2 + Q2) having Λ = 0.84 GeV. The model dependence of the TPE cross section

δ (with nucleon intermediate state only) has been investigated in Ref. [37] by varying

the form factors input at the two hadronic vertices. While the default consideration of

the form factors was a sum of monopole form, results with the dipole form and separate

empirical fits from the LT separation [36, 91] and PT data [36, 92] were compared which

indicates a negligible dependence on the choice of form factors as they appear in both

the numerator and denominator of δγγ in Eq. (3.22). The authors evaluated the one-loop

integrals of Eq. (3.2b) analytically in terms of the scalar four point Passarino-Veltman

(PV) functions [93] and the numerical evaluation of the PV functions were obtained

using the program FF [94].

Figure 3.6: TPE cross section correction δ, relative to Mo-Tsai soft photon approx-
imation, from the nucleon intermediate state in e-p elastic scattering for Q2 = 0.001
to 1.0 GeV2 (left) and Q2 = 1.0 to 6.0 GeV2 (right) [37]. Plots are adjusted from

Ref. [29].

The results obtained for the hard TPE cross section correction δ relative to the Mo-

Tsai soft photon approximation is shown in Fig. 3.6 as a function of the virtual photon

polarization ε at Q2 values ranging from 0.001 to 1.0 GeV2 (left) and 1.0 to 6.0 GeV2

(right). In general, the absolute value of the TPE cross section is maximal at the

backward angles (smaller ε) with non-negligible values ranging from approximately ∼

+1.5% to −6% in the kinematics considered in Fig. 3.6 and it essentially vanishes in the

forward direction (ε → 1) in coherence with the unitarity condition. For lower values

of Q2 (< 0.3 GeV2), δ becomes positive and at some point near Q2 ∼ 0.001 GeV2 it
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reaches the so-called Feshbach correction

δF = απ
sin(θ/2)− sin2(θ/2)

cos2(θ/2)
, (3.37)

independent of energy E, evaluated as the second Born approximation to the Coulomb

scattering from structureless, massive target by McKinley and Feshbach [74, 95]. There-

fore, for the Q2 → 0 limit, which is equivalent to the static limit of M → ∞, the TPE

cross section due to nucleon intermediate state alone can be approximated by Feshbach

correction term that can also be written in terms of ε as [29]

δN → απ

x+ 1
, x =

√
1 + ε

1− ε
. (3.38)

In the left diagram of Fig. 3.6, i.e. for Q2 ≤ 1.0 GeV2, roughly a linear behaviour of

δ with respect to ε is observed, while some non-linearity is visible with increasing Q2

(> 1 GeV2), as shown in the right plot. More importantly the negative value and the

positive slope at Q2 > 1 GeV2 is in favour of resolving the existing discrepancy between

the two methods (LT separation and PT) of measurements of the electric to magnetic

form factor ratio, µpGE/GM .

3.2.2.2 Excited resonance intermediate state

The hadronic intermediate state, represented by the blob, in the TPE diagrams of

Fig. 3.1 can also be anything (both resonance and non-resonant background) beyond

elastic nucleon itself satisfying the energy momentum conservation at the two vertices.

Among the possibilities, ∆(1232)3/2+ being the first and most prominent excited res-

onance state of proton is anticipated to be an essential part in theoretical analyses of

the TPE effects. An analytical evaluation of the loop integral of the TPE amplitude in

Eq. (3.2b) with resonance intermediate state ∆(1232)3/2+ was performed in terms of

the PV functions in Ref. [40] considering the zero resonance width approximation for

∆(1232)3/2+. The parametrization of the transition current ΓγN→∆ from nucleon to

the off-shell ∆(1232)3/2+ resonance by the absorption of a virtual photon was adopted
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from the same parametrization given in Refs. [82, 96] for on-shell particles as

Γαµ
γN→∆(p∆, q) =

1

2M2
∆

√
2

3

{
g1(Q

2)

[
gαµ/q /p∆ − /qγ

αpµ∆ − γαγµq.p∆ + /p∆γ
µqα
]

+ g2(Q
2)

[
qαpµ∆ − gαµq.p∆

]
+

g3(Q
2)

M∆

[
q2(γαpµ∆ − gαµ/p∆)

+ qµ(qα/p∆ − γαq.p∆)

]}
γ5, (3.39)

where M∆ is the mass of the resonance state ∆(1232)3/2+, p∆, and q are the momenta

of the outgoing ∆ and incoming photon, respectively. Note that ΓγN→∆ of Eq. (3.39)

satisfies the gauge invariance condition qµΓ
αµ
γN→∆ = 0, and the relation pαΓ

αµ
γN→∆ = 0,

which ensures the safe removal of the unphysical spin 1/2 component of the Rarita-

Schwinger propagator of Eq. (3.8). The form factors g1, g2− g1, and g3 are related with

the magnetic G∗
M , electric G∗

E, and Coulomb G∗
C form factors, respectively. The details

of G∗
M , G∗

E, and G∗
C will be discussed in Sec. 6.3.3. However, Ref. [40] assumed the dipole

shape for the form factors gi(Q2), i = 1, 2, and 3, as gi(Q2) = gi(0)(1+Q2/Λ2
∆)

−2, with

the dipole mass parameter Λ∆ = 0.84. As g3(Q
2) is very small compared to g1(Q

2) and

g2(Q
2), the authors considered only the later two (neglecting g3(Q

2)) with the coupling

constants g1 ≡ g1(0) = 7, g2 ≡ g2(0) = 9 taken from the dressed K-matrix model [96].

Later on, Zhou and Yang [38] used a more realistic form of the form factors by fitting the

then existing electroproduction data to sum of monopoles. They also compared the effect

of the Coulomb equivalent form factor g3 in the evaluation and found a negligible impact

on the cross section. Figure 3.7 compares the TPE cross section correction from the ∆

intermediate state obtained in Ref. [40] and [38] as a function of ε at Q2 = 3.0 GeV2. Use

of a realistic form factor for transition to the excited ∆(1232)3/2+ resonance suppresses

the corresponding TPE cross section effect as seen from the comparison of δ∆ between

the use of dipole form factor (dashed red line) [40] and the fit to sum of monopoles

(solid black line) [38]. Overall, the ∆(1232)3/2+ state partially cancels the nucleon

effect alone by ∼ 1.8% having positive cross section at Q2 = 3.0 GeV2. The behaviour

in the forward direction (ε > 1, Q2 → 0) creates some sort of tension since it tends to

diverge in that limit indicating the violation of unitarity. A similar divergence in the
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Figure 3.7: ∆(1232) intermediate state contribution to the TPE total cross section
δ as a function of virtual photon polarization ε at Q2 = 3 GeV2. The red dotted line
corresponds to the evaluation with electric and magnetic form factors of dipole form,
having Γ∆ = 0.84, by Kondratyuk et al. [40]. The black solid and blue dashed lines

are the results from Ref. [38]. Figure source is Ref. [29, 38].

forward angle limit, ε → 1, is also visible in Refs. [97–99] for ∆(1232)3/2+ intermediate

state in parity violating electron-proton elastic scattering.

Figure 3.8 represents the TPE cross section results δ obtained for the nucleon and

∆(1232)3/2+ intermediate states from further work by Lorenz et al. (left column) [101]

and Graczyk (right column) [100] within the same hadronic approximation. Lorenz

et al. analyzed the model dependence by changing the nucleon electric and magnetic

form factor inputs in both cases of nucleon and ∆(1232)3/2+ intermediate states at

Q2 = 3.0 GeV2. For nucleon, they reproduced the results of Blunden et al. [37] using

sum of monopole fits and overall, the form factor dependence was found negligible by

comparing it with the dipole form. In contrast to the nucleon case the dependence on

the parametrization of G∗
E,M was found significant. Note that the γN∆ transition form

factors are parametrized using the helicity amplitude formulation (details of these are

discussed in Sec. 5.3) in this particular work. At Q2 = 3.0 GeV2, the ∆(1232)3/2+

contribution to the TPE cross section δ, using the dipole times a monopole shaped form

factor, evaluated by Graczyk [100] (Fig. 3.8(d)) shows almost the same behaviour as

obtained by Lorenz et al. (Fig. 3.8(c)), especially in the backward direction reaching

δ ∼ +(1 to 1.2)% at ε ∼ 0.1. In summary, the common features of all those above
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Figure 3.8: TPE cross section correction from nucleon (a,b) and ∆(1232)3/2+ (c,d)
resonance intermediate states calculated by Graczyk [100] and Lorenz et al. [101]. The
effect of nucleon form factor variations are compared in (a,c). Q2 values are given in

units of GeV2. Diagrams are adjusted from Refs. [100, 101]

discussed calculations are the suppression of the magnitude of net TPE correction δ by

the ∆(1232)3/2+ intermediate state contribution and the divergence of δ in the forward

direction corresponding to ε → 1 for all three Q2 values, as observed in Figs. 3.7 and

3.8(d) (Lorenz et al. didn’t extend the evaluation in that much forward direction).

However, within the same approach of Ref. [37] the effect of the heavier resonance states

including, N(1440)1/2+, N(1520)3/2−, N(1535)1/2−, ∆(1620)1/2−, and ∆(1700)3/2−

were also investigated by Kondratyuk and Blunden in Ref. [41]. Here again the dipole

shape of the transition form factors were assumed with the coupling constants deter-

mined from the dressed K-matrix model [96]. The authors ignored the Coulomb cou-

plings in this evaluation as well, assuming the dominance of the magnetic coupling

applicable in all the resonance intermediate states. Among the resonances, the state

N(1520)3/2− is claimed to have the significant TPE effect after ∆(1232)3/2+ with a
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maximal effect of +0.7% in the smallest possible ε, coherent with the TPE cross section

correction from elastic nucleon state. The net effect of all the resonances is to nullify

the nucleon contribution in δ.

Aside from the issue of divergence of the cross section for inelastic resonance intermediate

state ∆(1232)3/2+ in the forward angles, the direct evaluation of the TPE amplitude

has a significant source of uncertainty due to the use of the on-shell parametrization

of the transition currents at the two hadronic vertices γNN ∗ and γN∗N with off-shell

intermediate states N∗. It is also anticipated as the source of the divergence of TPE

cross sections at the limit of ε → 1 as shown in Figs.3.7 and 3.8.

3.2.3 Dispersive method

The ambiguity of the off-shell parametrizations of the hadronic transition currents at

the vertices in Fig. 3.1 can be eliminated by applying the dispersion relation formula in

evaluation of Mγγ [48, 70]. The primary motivation of this formulation comes from the

unitarity of the scattering matrix S, originating from the requirement of the conserva-

tion of probability, that allows the use of the on-shell parametrization of the hadronic

transition currents. Having defined the scattering matrix S as

S = 1 + iT , (3.40)

where the matrix element of the non-trivial transfer matrix T , which in principle de-

scribes the interaction, is defined by

⟨f |T |i⟩ = (2π)4 δ4(pi − pf )Mi→f . (3.41)

The unitarity condition S†S = 1 then leads to the generalized optical theorem [13, 102]

Mi→f −M∗
f→ i = i

∑
n

∫
dΠn (2π)

4δ4(pi − pn)Mi→n M∗
f→n. (3.42)
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Here the sum is over the complete set of intermediate states, n, of any Feynman loop

diagram. Note that the right side of Eq. (3.42) is a product of amplitudes whereas the

left side is just an amplitude. Thus the left side must correspond to a loop diagram

implying a relation with the tree level Feynman diagram on the right so that the two sides

are of same order of perturbation theory. The physical implication of the generalized

optical theorem can be better understood with the simplified but important special case

of forward scattering when the initial and final states being equal, |i⟩ = |f⟩. In this

limit, one can relate the imaginary part of a loop diagram with the total tree level cross

section of getting the intermediate state of the loop diagram as the final state by

ImMi→i = 2Ecm |pi|
∑
n

σi→n. (3.43)

This result is very important as the motivation of using the dispersion method in calcu-

lating the TPE amplitude. Since the imaginary part of the TPE amplitude is directly

linked with the experimentally accessible cross section the phenomenological input form

factor parametrizations for the on-shell particles can now be used in evaluation of the

imaginary part of the specific one loop amplitude without any ambiguity.

In practice of theory, the imaginary part of any loop amplitude can be directly accessed

by putting the intermediate particles on-shell by using the following Cutkosky cutting

rules [103]:

• cut through the loop diagram in every possible ways so that the cut propagators

are on-shell simultaneously, and also obey the momentum conservation.

• substitute the propagator factors by

1

p2 −m2 + iϵ
→ −2πi δ(p2 −m2) θ(p0), (3.44)

for each cut propagator.

• sum of all cuts provides the discontinuity, and hence the imaginary part of the

loop diagram, as Disc(iM) = −2 ImM.
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Figure 3.9: Extraction of the imaginary part of the TPE amplitude by putting the
intermediate lepton and hadron in the TPE box diagram on-shell. The corresponding

crossed-box has no imaginary part.

For the specific case of TPE amplitude the scenario is illustrated in Fig. 3.9 by putting

the intermediate lepton and hadron propagators on-shell with the substitutions followed

by Eq. (3.44). Only the box diagram is shown here as the crossed-box part is purely

real. With the evaluated imaginary part of the TPE amplitude one can obtain the real

part by exploiting the Cauchy integral theorem that leads to the dispersion relation [12]

ReMγγ(s) =
1

π
P
∫ ∞

−∞

ImMγγ(s
′)

s′ − s
ds′, (3.45)

relating the real and imaginary parts of the TPE amplitude Mγγ(s), provided Mγγ(s)

is an analytic function everywhere within the contour in the complex plane of the vari-

able s. Here P denotes the principal value of the integral. Details of the dispersive

formulation will be discussed in Sec. 4.1.

The use of the dispersion formalism resolves the issue of divergence in δ coming from

the inelastic intermediate states in the forward angle or high energy limit corresponding

to ε → 1 as explained in Fig. 3.10 taken from Ref. [46]. Clearly, the red solid line

representing the dispersive evaluation at Q2 = 3.0 GeV2 with magnetic form factor only

(for simplicity of calculation) converges as (a) ε → 1, and (b) energy keeps increasing.

By contrast, the direct loop integration results represented by the blue dashed line

diverges in that limit.

Before the calculation of Ref. [46], Borisyuk and Kobushkin used the dispersive approach

in calculation of the TPE correction in a series of papers starting from the simplified



Chapter 3 Two-photon exchange 54

Figure 3.10: TPE cross section correction from ∆(1232)3/2+ resonance intermediate
state calculated by Blunden et al. [46] using direct loop integral (blue dashed and
green dotted lines) and dispersive method (red solid line) as a function of (a) ε, and
(b) beam energy E, at Q2 = 3.0 GeV2. For simplicity only the magnetic form factor

is considered here. Diagram taken from Ref. [46].

case of nucleon intermediate state [48] and later on extending the formulation to include

the intermediate ∆(1232)3/2+ resonance with zero width approximation and sum of

monopoles type input form factors fit [88]. More recently they used helicity amplitudes

input from MAID model [104] at the hadronic transition current to account the πN

intermediate state contribution in total TPE amplitude [49, 50].

In these updated evaluations non-zero width and background effects were also consid-

ered. The result for the P33 channel evaluated at Q2 = 1.0 and 5.0 GeV2 is still the

dominant one, among all the channels considered, having the positive cross section cor-

rection in coherence with the results from the direct loop integral method applied by

Kondratyuk et al. [41], as shown in Fig.3.11. But the next significant contributions

are coming from the spin half channels S11 and P11 in contrast to Ref. [41], where the

spin 3/2 channel D13 was the major contributor, with negative cross section, after P33.

However, the important feature is that the cross section in this dispersive method is

also converging in the limit of ε → 1.

The method is also applied by Tomalak et al. in some recent TPE evaluations at low Q2

values [51, 52, 89]. They transformed the phase space integral into an elliptic coordinate

system to perform the integration as a contour integration in a complex plane during

the evaluation of the imaginary part of the TPE amplitude with nucleon intermediate
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Figure 3.11: TPE cross section correction δ, in percent, from πN intermediate states
evaluated using dispersion formalism by Borisyuk et al. [50] at fixed Q2: (a) 1.0 GeV2,

and (b) 5.0 GeV2. Figure courtesy of Ref. [50].

state [51]. The introduced contour allows the integral to be analytically continued into

some unphysical region by a deformation of the contour, for dipole shaped nucleon form

factors, which is required to utilize the dispersion relation above some definite kine-

matics (details are discussed in Sec. 4.1). Later on they further calculated the TPE

effects coming from the inelastic πN intermediate states at small Q2 values of 0.05 and

0.005 GeV2 where the analytical continuation is not required. The input pion electropro-

duction amplitudes were also taken from the MAID 2007 parametrizations [104]. The

result shows a good agreement with the empirical extraction of the TPE cross section

of Ref. [21] in the forward angles, while in the backward direction a significant disagree-

ment suggests a re-analysis of the data in the backward angles and small Q2 values to

better extract the proton magnetic form factors.

An improved version of the deformed contour was introduced in Ref. [46] in evaluation

of the inelastic ∆(1232)3/2+ intermediate state contribution in the total TPE cross

section. With this deformed contour of integration a more generalized class of form

factors can be used, other than the dipole shape only, as input. This particular contour

prescription will also be used in this thesis to evaluate the resonance contributions in

the total δ.
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3.3 Phenomenological extraction of TPE effect

Guichon and Vanderhaeghen [11] extracted the TPE amplitude by comparing the form

factor ratio, µpGE/GM , data from Rosenbluth LT separation method and the polariza-

tion transfer method. In the analysis they used the LT separation data from Ref. [3] and

the polarization data from Refs. [5, 6]. The main assumption in the phenomenological

extraction was that the TPE effect is entirely responsible for the discrepancy between

the two measurements of the ratio µpGE/GM . The extraction was basically carried out

in terms of the generalized form factors G̃M , G̃E, and Y2γ defined by the decomposition

of the TPE amplitude similar to Eq. (3.25) with a small change of convention as

Mγγ = −e2

q2
ūe(k

′)γµue(k) × ūN(p
′)

[
G̃M(Q2, ν)γµ − F̃2(Q

2, ν)
P µ

M

+F̃3(Q
2, ν)

/KP µ

M2

]
uN(p), (3.46)

where K = (k + k′)/2 and P = (p + p′)/2. The form factors G̃E and Y2γ are explicitly

related to F̃2 and F̃3 by

G̃E(Q
2, ν) = G̃M(Q2, ν)− (1 + τ)F̃2(Q

2, ν),

Y2γ(Q
2, ν) = Re

(
ν F̃3

G̃M

)
. (3.47)

Note that the definition of Y2γ is adjusted with the definition of ν used in this thesis.

G̃M and G̃E can also be decomposed into the Born and TPE correction part as

G̃E,M(ν,Q2) = GE,M(Q2) + δG̃E,M(ν,Q2). (3.48)

However, Guichon and Vanderhaeghen [11] ignored the TPE correction in the ratio

G̃E/G̃M by further assuming that the TPE correction in G̃E,M is small and of similar

magnitude. As a result the form factor F̃3 was considered to be coming entirely from

the TPE effect. The obtained Y2γ was almost independent of ν (or, ε) and a few percent

in magnitude. But such a small correction of Y2γ (or, F̃3) was still able to bring the
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Figure 3.12: TPE amplitudes YE (red dotted), YM (blue dashed), and Y3 (dark red
dot-dashed) from phenomenological extraction of Ref. [105] as a function of ε at Q2:

(a) 0.5 GeV2, (b) 1 GeV2, and (c) 3 GeV2.

Rosenbluth data close to the polarization transfer data. It was also explained that

polarization transfer data has little effect from the TPE correction.

Qattan et al. [22, 105–107] carried out a series of phenomenological extraction of the TPE

amplitude from the cross section (σR) data following a similar treatment but including

a wider range of unpolarized data from Refs. [2, 3, 21]. The results obtained from the

latest analysis is shown in Fig. 3.12 for Q2 = 3.0 GeV2 in terms of a slightly modified

convention of amplitudes YE, YM , and Y3 defined by

YE = Re

(
δG̃E

GM

)
, YM = Re

(
δG̃M

GM

)
, Y3(Q

2, ν) = Re

(
ν F̃3

GM

)
. (3.49)

The figure illustrates that in contrast to the findings of Ref. [11], the TPE effect in G̃E

and F̃3 are almost cancelling each other, and the magnetic equivalent G̃M carries the

most part of the TPE correction to σR rather than F̃3 (i.e. Y2γ or Y3).

3.4 Direct measurement of TPE correction

The defining equation of the TPE cross section correction δ (or, IR divergent δγγ) in

Eq. (3.14) contains three lepton vertices which indicates δ must be a charge-dependent

quantity. As a consequence δ in e+p and e−p elastic scattering have opposite signs. One

direct extraction of the TPE cross section correction δ is thus to analyze the ratio of

the total cross sections σR(e
±p) in unpolarized e+p and e−p elastic scattering. The total

amplitude of the elastic scattering of either e+p or e−p can be written in a common
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form as

M = Mγ +Me
vertex +Mp

vertex +Mvp +Mγγ

= qeqp
[
Mγ + q2eM

e
vertex + q2pM

p
vertex + q2e/pMvp + qeqpMγγ

]
. (3.50)

In the second line, the charge factors qe and qp coming from the electron and proton

vertices, respectively, are taken out to see the charge dependence of the individual radia-

tive corrections explicitly. The radiative corrections at electron and proton vertex, and

vacuum polarization (corresponding to Me,p
vertex, and Mvp) in Eq. (3.50) are discussed

in Sec. 2.3. Neglecting the terms beyond order α3, the square of the amplitudes can be

given by

|M|2 = e4
[
M2

γ + 2e2M∗
γ Re (M

e
vertex +Mp

vertex +Mvp) + 2qeqpM
∗
γ ReMγγ

]
. (3.51)

Here the the charges qe and qp are replaced by e where it enters as squared. Since the

vertex corrections (both electron and proton) and vacuum polarization contain even

power of electric charge they must be identical in e+p and e−p scattering. Only the

correction from the TPE amplitude is sensitive to the lepton charge having odd power

of qe. Therefore, the TPE cross section correction δ can be extracted from the com-

parison of the measured cross sections σR(e
±p) with known input from other radiative

corrections.

However, in practice, the measured elastic cross section can not be isolated with infinite

precision from the inelastic bremsstrahlung effect, described also in Sec. 2.3, which also

needs to be taken into account in σR(e
±p) analysis. More importantly the interference

between the bremsstrahlung amplitudes from electron and proton also contains odd

power of lepton charge. Including the inelastic real bremsstrahlung effect one can write

the amplitude squared as

|M|2 = e4
{
M2

γ + 2e2M∗
γ Re (M

e
vertex +Mp

vertex +Mvp)

+2qeqp
[
M∗

γ ReMγγ +M e∗

bremsM
p
brems

] }
. (3.52)
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Note that the real bremsstrahlung correction is coming from the interference between

the amplitudes of the real photon emission from electron and proton legs. The total

reduced cross section can now be written in terms of the relative cross section corrections

with respect to the Born contribution as

σR(e
±p) = σBorn

R [1 + δeven ∓ (δγγ + δbrems)] , (3.53)

where σBorn
R is the Born reduced cross section, δeven is the sum of all charge even relative

cross sections and the charge odd contributions from TPE and bremsstrahlung are δγγ

and δbrems, respectively. Interestingly, the charge odd pieces in the parentheses cancel

out the IR divergences of each other as well. The ratio of the cross sections of e+p and

e−p can now be given by

R =
σ(e+p)

σ(e−p)
≈ 1 + δeven − δγγ − δbrems

1 + δeven + δγγ + δbrems

≈ 1− 2(δγγ + δbrems)

1 + δeven
. (3.54)

with the convention of the sign of δγγ and δbrems such that they appear as additive

correction in e−p scattering. In the second approximated equation, the logarithmic

enhanced behaviour ∼ log(Q2/m2
e) of the vacuum polarization and vertex corrections

are exploited which is absent in case of charge asymmetric corrections δγγ and δbrems.

After plugging in the calculated δeven and δbrems corrections in the above equations one

is left with entirely the TPE effect in the cross section ratio as

R2γ ≈ 1− 2δγγ . (3.55)

Since the ratio R remains IR finite, I switch to the usual notation of IR finite TPE cross

section δ used in this thesis and the TPE sensitive part of the ratio is given the form

R2γ ≈ 1− 2δ. (3.56)

Any deviation of R2γ from unity thus clearly indicates the presence of TPE effect.
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Figure 3.13: Measured R2γ plotted as a function of Q2 (left panel) in a logarithmic
scale and as a function of virtual photon polarization ε (right panel) from the mea-
surements of Refs. [108–113]. Source of data points are labelled in the plot legends
using authors name and year of publication. The line in the right panel is the fit

reproduced from the reanalysis of Ref. [36]. Plots are taken from Ref. [29].

Starting from the work of Yount et al. [114] in 1962, there has been several efforts [108–

113] in determination of the TPE effect directly exploiting this particular method of

analyzing the unpolarized e±p elastic scattering cross section ratio during the 1960s

and 1970s. The results of those measurements, showed in the left panel of Fig. 3.13

as a function of Q2 (with data sets for varying ε though), hints a very small TPE

effect (< 1%). The large uncertainty of the data points for R2γ also compels one

to conclude that R2γ = 1, meaning no TPE correction. Note that the experiments

mentioned above are performed mostly in the low Q2 and/or large ε corresponding to

the forward angle scattering where TPE effect is also expected to be tiny from the model

estimations discussed in Sec. 3.2. Realizing the importance of the ε dependence of the

TPE correction in the form factor extraction using Rosenbluth LT separation method,

a global reanalysis of the R2γ data was performed in Ref. [36]. The results are shown

in the right panel of Fig. 3.13. The fit to data shows a linear ε dependence of R2γ

with nearly 5.7% increase from the forward to backward angles (small ε). This much

ε dependence can resolve almost half of the µpGE/GM discrepancy but the large angle

(small ε) R2γ data in this reanalysis covered only the range of Q2 ≤ 0.5 GeV2 where the

discrepancy is not evident. Even though the data indicates a non-zero TPE effect, it is

not convincing enough since most of the data are in the large ε region and also due to

the inconsistent use of the model-dependent input of bremsstrahlung correction (which
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is also charge asymmetric) to isolate the TPE contribution from the total cross section

ratio.

More recently, three updated and precise experiments dedicated to extract the TPE ef-

fect from R2γ were performed at Novosibirsk [115], Jefferson Lab [116] and DESY [117]

covering an wider kinematic region. The VEPP-3 experiment at Novosibirsk [115] and

OLYMPUS experiment at DESY [117] both used monoenergetic beams of energies 0.998

and 1.594 GeV, and 2.01 GeV, respectively, from a storage ring directed to an internal

gas target, while the CLAS experiment at Jefferson Lab’s Hall B [116] used mixed simul-

taneous beam of electron and positron with energies ranging from ≈ 0.85 to 3.50 GeV

directed to a liquid hydrogen target.

Figure 3.14: Measured R2γ by VEPP-3 experiment [115] (black solid circles) at
Novosibirsk plotted as a function of ε for mono-energetic beams of energy E =
1.594 GeV for run-I (left panel), and E = 0.998 GeV for run-II (right panel). The
statistical uncertainties are represented by the error bars, while the shaded bands cor-
respond to the total systematic uncertainty and the bin size for each data point. The
estimated lines correspond to Refs. [48] (cyan dot-dashed), [37] (red thin solid), [21]
(blue thick), [118] (grey long-dashed), [36] (magenta dashed), and [106] (black dotted).

Plots are taken from the original work of Ref. [115].

The VEPP-3 experiment being the first of the new and precise extractions of the TPE

effect directly, compared their results with some selected old data that had similar

kinematics and found good agreement with a clear indication of non-zero TPE effect

at the intermediate to lower values of ε. They also compared the results with some

early theoretical predictions [37, 48], considering mostly the nucleon intermediate state,

and with the phenomenological values of Refs. [21, 106] along with the predictions of
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Refs. [36, 118] even though the data were required to use the model predicted values

of R2γ at the normalization points to get some more reliable conclusion. However, the

theoretical predictions of Refs. [37, 48] had very good agreement with data from the first

run, while the second run was off by ≈ 1-1.5% from the predicted ones. On the other

hand, the phenomenological values obtained by Bernauer et al. [21] underestimated R2γ

according to the measurement of VEPP-3 experiment. The rest of the comparison had

worse agreement. But, overall, the outcome of this experiment shows the presence of

significant TPE effect.

The experiment at Jefferson Lab using CLAS spectrometer covered almost the entire

range of ε from ≈ 0.2 to 0.9. Along with the ε dependence of R2γ at fixed average

⟨Q2⟩ = 0.85 and 1.45 GeV2, they also presented the result at fixed average ⟨ε⟩ = 0.45 and

0.88 with varying Q2. Figure 3.15 demonstrates the original representation of the results

in their work. A reasonably good agreement is observed with the calculated R2γ by Zhou

Figure 3.15: Measured R2γ by CLAS experiment [116] at Jefferson Lab plotted as a
function of ε (left panel) at fixed values of averaged

〈
Q2
〉
= 0.85 (top) and 1.45 GeV2

(bottom), and as a function of Q2 (right panel) at fixed averaged ⟨ε⟩ = 0.45 (top) and
0.88 (bottom). Plots are taken from the original work of Ref. [116].
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and Yang once the ∆(1232)3/2+ resonance is included [3.15(a)]. The results from other

hadronic approach calculations [37, 38] with nucleon intermediate state only are still

in close match with the measured values within the large systematic and statistical

uncertainty at the kinematics of this experiments, i.e. at averaged ⟨Q2⟩ = 0.85 and

1.45 GeV2. The ε dependence of the TPE cross section correction obtained from the

linear fit to data brings the Rosenbluth LT separation data for µpGE/GM by Andivahis

et al. [3] at Q2 = 1.75 GeV2 within 1σ agreement to the polarization transfer data

of Punjabi et al. [9] at Q2 = 1.77 GeV2. To be specific, the ratio µpGE/GM of LT

method shifts from ∼ 0.91 to 0.829 once the ε dependence of the TPE cross section

from CLAS measurement is accounted. The plots as a function of Q2 shown in Fig. 3.15

(right column) also hints the presence of TPE effect at the backward angle (low ε)

with increasing Q2 in coherence with the calculation, even though the line for R2γ = 1

(i.e. no TPE) is still within the uncertainty range of the measured values. A global

analysis with 12 CLAS and 4 non-normalization data points of VEPP-3, with 0.3%

systematic scale-type uncertainty accounting the high ε normalization variation with

VEPP-3 measurement, were performed in the same paper and obtained an improved

agreement with the hadronic calculations eliminating the no-TPE hypothesis at 5.3σ

level.

The OLYMPUS results for R2γ were also published soon after the CLAS ones. They

detected the elastically scattered leptons within the scattering angles interval of ≈ 20◦ <

θ < 80◦ corresponding to the virtual photon polarization range 0.456 < ε < 0.978 using

the formerly used MIT-Bates BLAST detector. Applying the Mo and Tsai prescription

for all order radiative corrections in extraction of R2γ, they compared the results with the

updated theoretical predictions using the dispersive approach by Blunden et al. [46] and

Tomalak et al. [51] along with the phenomenological fit of Ref. [21] as shown in Fig. 3.16.

Note that the results using Maximon and Tjon prescription [76] of radiative correction

are also available in that paper. Unlike the two other measurements of VEPP-3 and

CLAS, R2γ in the large ε region are basically negative, implying a positive TPE effect

at that kinematics, even though the results are in the close vicinity of R2γ = 1 there.

However, the phenomenological fit of Bernauer et al. [21] and the subtracted dispersive
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Figure 3.16: Measured R2γ by OLYMPUS experiment [117] at DESY plotted as a
function of ε (corresponding Q2 scale is also shown) at the beam energy E = 2.01 GeV.
Compared are the theoretical predictions of Blunden et al. [46] (blue dashed and solid
lines), Tomalak et al. [51] (Green solid), and the phenomenological fit of Bernauer et

al. [21]. Plot is taken from the original work of Ref. [117].

calculation of Tomalak [51], which used the proton form factor input from Bernauer’s

work, agrees reasonably well with the data. In contrast, Blunden’s estimation with

nucleon intermediate state alone seems to overestimate the TPE effect compared to the

data. But the inclusion of the ∆(1232)3/2+ resonance intermediate state in Blunden’s

work negates the nucleon effect and brings the curve little closer to the data, at least at

lower ε. This observation stimulates one to further investigate the effect of the higher

mass resonance intermediate states within the dispersive method to see if that brings in

any dramatic change in TPE effect.

In a recent review paper [29], Afanasev et al. carried out an analysis on the com-

bined data sets of R2γ from all three contemporary experiments of VEPP-3, CLAS and

OLYMPUS to test the existence of no-TPE hypothesis and compare the agreement be-

tween model predictions and measured values by investigating the difference, R2γ−Rcalc
2γ

between the measured and the calculated values of R2γ. Considering only the indepen-

dent data sets from CLAS and complete sets from rest of the experiments, the authors

used two different statistical approaches to account the scale-type normalization uncer-

tainty that is available for CLAS and OLYMPUS experiment only. In the first approach

adding the normalization uncertainty with the statistical and uncorrelated systematic
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uncertainties of CLAS and OLYMPUS experiment in quadrature they ruled out the hy-

pothesis of absence of TPE effect with 98% confidence level. An alternative treatment of

the normalization uncertainty, allowing the floating of the CLAS and OLYMPUS data

independently to bring in a new normalization factor N by minimizing the reduced

χ2 for each data set, also rules out the possibility of no-TPE hypothesis with an even

improved confidence level of 99.5%. However, one can not reach any definite conclusion

about the strength of the claim that the TPE effect alone can resolve the proton form

factor ratio discrepancy yet with the available data that mostly fall in the kinematic

region where the TPE effect is relatively smaller in magnitude (according to the model

predictions) and also because the form factor discrepancy becomes apparent above that

region.

3.5 Polarization observables

Another way to see the TPE effect experimentally is to observe the ε dependence of

the polarization transfer ratio RTL introduced in Sec. 1.3.2. The defining equations of

PL and PT in Eq. (1.17b) relates the electric and magnetic form factors GE and GM at

the Born level, so does the ratio RTL with µpGE/GM ratio at the same approximation.

However, including the TPE effects PT and PL can be given by [11, 43, 46, 73]

PT = −
√

2τε(1− ε)

σR

[
GE(Q

2)GM(Q2) +GM(Q2) ReGE(ε,Q
2)

+GE(Q
2) Re

(
GM(ε,Q2) +

νε

τ
G′

a(ε,Q
2)
)]

, (3.57a)

PL =
τ
√
1− ε2

σR

[
G2

M(Q2) + 2GM(Q2)

×Re
(
GM(ε,Q2) +

νε2

τ(1 + ε)
G′

a(ε,Q
2)
)]

, (3.57b)

where the electric and magnetic equivalent generalized form factors GE and GM are

introduced in Eqs. (3.23a) and (3.23b). In the Born approximation, the ratio RTL thus
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Figure 3.17: TPE effect on (a) the longitudinal polarization transfer PL relative
to the Born approximation P

(0)
L , and (b) the ratio RTL, as a function of ε at fixed

Q2 ≈ 2.5 GeV2. The data points (black solid circles) with the associated systematic
and statistical uncertainty are taken from Ref. [119], while the blue dashed and the
solid red lines are the calculated results by Blunden and Melnitchouk [46] with nucleon

and sum of nucleon with ∆(1232)3/2+ intermediate states, respectively.

reduces to µpGE/GM which is independent of ε. Therefore, any ε dependence in RTL

is a good check of the effects beyond single photon exchange approximation. On the

other hand, the ratio µpGE/GM extracted from the polarization transfer measurement

was found relatively insensitive to the TPE correction [11, 37]. But, that is perhaps

due to the fact that the data range were mostly in the high ε region, ε ≈ 0.7 − 0.8,

where the TPE effect is small. However, in search of the effect to better constrain the

theoretical estimations, the GEp2γ collaboration at Jefferson Lab [119] has measured

RTL, and PL relative to its calculated Born approximation PL(0) at Q2 = 2.5 GeV2

covering a wide range of ε. The ratio RTL was found almost independent of ε at the

1.5% level whereas the longitudinal polarization PL shows an enhancement of ≈ 2% over

the range of 0.635 ≤ ε ≤ 0.785 relative to PL(0). In contrast to the findings of GEp2γ

collaboration, the theoretical predictions based on hadronic TPE calculation [37] with

nucleon intermediate state shows some ε dependence of RTL taking the numerical values

away from the measured ones at the backward angles, and no ε dependence for PL. The

GPD [43] and pQCD [120] based calculations also show non-zero slope of the RTL vs. ε

curve, but with an opposite sign. Later on, an improved calculation [46] in the dispersive

approach with nucleon intermediate state shows very good agreement with the data of

Ref. [119], but inclusion of the excited resonance ∆(1232)3/2+ took the curve away from

the measured values in the backward direction, as shown in Fig. 3.17(b). Note that the



Chapter 3 Two-photon exchange 67

legends for the curves of RTL in Fig. 16(b) of Ref. [46] were swapped, which has been

corrected in Fig. 3.17. The shift of the RTL line due to inclusion of ∆(1232)3/2+ state

compels one to further investigate the effect of the higher mass resonance intermediate

states, particularly at large momentum transfer squared. However, PL is still found

insensitive to the TPE correction in the entire range of ε (Fig. 3.17(a)).

3.6 Summary and discussion

The brief review of the model estimations of the TPE correction illustrates the pros

and cons of three different approaches. The GPD and pQCD based calculations are

more suitable for the high Q2 interactions whereas most of the experiments discussed

above are within the range of Q2 ≤ 8.83 GeV2. In the range of 5.00 ≤ Q2 ≤ 8.83 GeV2,

only a limited number of data are available from the LT separation and PT method

of measuring the ratio µpGE/GM . But the discrepancy is clearly visible even for Q2 ≤

5 GeV2. On the other hand, the hadronic approach is a reasonable approximation for Q2

up to ∼ 5 GeV2. But the direct loop integration of the TPE box and crossed-box diagram

within the hadronic assumption contains a large source of uncertainty in its calculation

due to off-shell ambiguity of the hadronic intermediate state. More importantly, the

TPE cross section correction diverges in the forward angle limit violating unitarity once

the resonance intermediate states are accounted. Considering these issues along with

the kinematics of most of the existing experimental data, we find the dispersive method

very convincing in evaluation of the TPE effects. However, it is also important to

account the effects of the higher mass resonances with a realistic width consideration

and up to date input parameters. In the next chapter, I adopt the dispersive formalism

following Ref. [46] and start with an warm up TPE calculation in electron scattering

off a simplified point-like target, muon. Once convinced with the outcome, I then apply

the method to evaluate the TPE correction in e-p elastic scattering with all the 4- and

3-star, spin 1/2± and 3/2± intermediate states below 1.8 GeV in Chapter 5.



Chapter 4

Dispersive Method of TPE

Calculation

This chapter describes the technical details of the dispersive method to calculate the

TPE quantum correction in electron-proton elastic scattering within hadronic degrees

of freedom. At first, the general framework is explained (Sec. 4.1) focusing on nucleon

and resonance intermediate state, and then the method is applied to a simple test case

of the TPE correction in unpolarized electron-muon scattering (Sec. 4.2).

4.1 Dispersive method

The dispersive approach, based on the principle of unitarity of the scattering matrix, is

the most compelling method to calculate the TPE amplitudes as it can utilize the on-

shell input parametrizations of the hadronic transition currents and the corresponding

form factors at the two vertices. As a consequence, the issue of unphysical divergence

in the forward angle limit for the resonance intermediate state can be resolved. The

idea behind the dispersive method is to put the intermediate hadron and lepton on-shell

which generates the imaginary part of the amplitude. Based on this basic concept the

68
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detailed framework to calculate the TPE amplitude is discussed in the following two

sub-sections.

4.1.1 General framework

The TPE amplitude of the box diagram of Fig. 3.1 has both the real and imaginary

parts, while the corresponding cross box part of TPE has purely real values.Using the

Cutkosky cutting rules [103], one can put the intermediate lepton and hadron states

on-shell by substituting the propagator factors as

1

p2R −W 2 + i0+
→ −2πi θ(p0R) δ(p

2
R −W 2), (4.1a)

1

k2
1 −m2

e + i0+
→ −2πi θ(k0

1) δ(k
2
1 −m2

e), (4.1b)

to obtain the imaginary part of the TPE amplitude Mγγ of Eqs. (1.1) and (3.21), and

hence the imaginary part of the generalized TPE form factors F ′
1, F ′

2, and G′
a. Note that

the intermediate lepton and hadron are now on-shell. Therefore, one can use the on-shell

parametrization of the hadronic transition current operator at the two hadronic vertices

of Fig. 3.1. Thus, the model uncertainty due to the use of on-shell parametrizations for

off-shell intermediate hadrons is eliminated. The substitutions of the propagator factors

shown in Eq. (4.1b) into Eq. (1.1) reduces the four dimensional integration in Mγγ

to a comparatively simpler two dimensional integral over the four-momentum transfer

squared Q2
1 and Q2

2 of the two virtual photons. After mapping the TPE amplitude

Mγγ of Eq. (3.2b) onto the generalized form given in Eq. (3.21), the integration for the

imaginary part of the generalized TPE form factors can be given a generic form in terms

of an integration over the solid angle Ωk1 , which can also be expressed in terms of Q2
1

and Q2
2, of the intermediate state lepton,

Iδ =
s−W 2

4s

∫
dΩk1

Gi(Q
2
1)Gj(Q

2
2) fij(Q

2
1, Q

2
2)

(Q2
1 + λ2)(Q2

2 + λ2)
, (4.2)
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where Gi(Q
2
1) and Gj(Q

2
2) are the form factors at the two respective γNR (or, γNN

for nucleon) vertices with i, j = 1, 2, 3 (i, j = 1, 2), and the function fij(Q
2
1, Q

2
2) is a

polynomial of combined degree 4 (2 for nucleon) in Q2
1,2. The imaginary part of the

generalized TPE form factors can be computed from Eq. (4.2) for each resonance state

at a specific value of W , such as at the peak of the resonance, W 2 = W 2
R. The numerical

evaluation of the integral Iδ in Eq. (4.2) at W 2 = W 2
R gives the imaginary part of the

generalized TPE form factors, and hence the amplitude, as a function of electron energy

E, at fixed values of the four-momentum transfer squared Q2. The same can be done for

the elastic nucleon intermediate state with the substitution of W = M(nucleon mass)

and the appropriate form factors. The detailed discussion for the input form factors will

be discussed in Sec. 5.1 for nucleon intermediate state and in Sec. 5.3.3 for resonance

intermediate states. Note that the numerator of the integrand here vanishes in the limit

of Q2
1,2 → 0 for resonance intermediate states which will be clear from the expressions of

the transition currents into spin-1/2 and -3/2 resonance states discussed in Sec. 5.2. As

a consequence, the integral becomes IR finite, while a subtraction of the IR divergent

part is required for the nucleon case following the discussion of Sec. 3.1.2.

The Cauchy principal value integral formula provides the basis of the dispersion relation

to generate the real part of the generalized TPE form factors, and hence the TPE

amplitude Mγγ, from the corresponding imaginary parts. Using the symmetry properties

F ′
1,2(Q

2,−ν) = −F ′
1,2(Q

2, ν), (4.3a)

G′
a(Q

2,−ν) = G′
a(Q

2, ν), (4.3b)



Chapter 4 Dispersive Method of TPE Calculation 71

the real parts of the TPE amplitudes can then be computed from the dispersion rela-

tions [46, 48, 51, 70],

ReF ′
1(Q

2, ν) =
2

π
P
∫ ∞

νmin

dν ′ ν

ν ′2 − ν2
ImF ′

1(Q
2, ν ′), (4.4a)

ReF ′
2(Q

2, ν) =
2

π
P
∫ ∞

νmin

dν ′ ν

ν ′2 − ν2
ImF ′

2(Q
2, ν ′), (4.4b)

ReG′
a(Q

2, ν) =
2

π
P
∫ ∞

νmin

dν ′ ν ′

ν ′2 − ν2
ImG′

a(Q
2, ν ′), (4.4c)

where P refers to the Cauchy principal value integral, with νmin = Emin/M − τ and

Emin = (W 2 −M2)/2M is the minimum energy required to excite a state of invariant

mass W . For elastic nucleon intermediate states, the minimum energy is Emin = 0, so

that one has νmin = −τ .

4.1.2 Analytical continuation to unphysical region

The physical threshold for electron scattering at ε = 0, or backward angles, cos θ = −1,

is νth ≡
√
τ(1 + τ). In other words, the threshold energy for physical scattering to take

place is Eth = M(τ + νth). Figure 4.1 marks the physical region of the integration of

Eq. (4.4c) from the unphysical ones by the solid red curve where the shaded area corre-

sponds to the physical range of ν. The inclined green dashed, blue long-dashed, dotted

dark-red and dot-dashed orange lines identify the minimum limit of the dimensionless

variable νmin in the integral of Eq. (4.4c) for some representative intermediate states

nucleon, ∆(1232)3/2+, N(1520)3/2−, and N(1720)3/2+, respectively, at fixed values of

Q2. It is evident from the diagram that the integrals in Eqs. (4.4c) extend into the

unphysical region at certain limits of the values of W and Q2. For example, for the

∆(1232)3/2+ resonance, at Q2 = 0.5 GeV2 and W = 1.232 GeV the physical threshold

νth ∼= 0.4, whereas the integration runs from νmin ∼= 0.22. On the other hand, for nu-

cleon intermediate state, the integration needs information from the unphysical region

for any value of Q2. Thus, an analytical continuation of the imaginary parts of the form

factors into the unphysical region is required to obtain the real parts from the dispersion
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relations. The analytic continuation of the integral Iδ in Eq. (4.2) into the unphysical

Figure 4.1: Specification of physical and unphysical regions of the dimensionless
variable ν covered by the dispersive integral of Eq. (4.4c) at fixed values of four-
momentum transfer squared Q2. The shaded region bordered by solid red line corre-
sponds to the physical region, and the green dashed (nucleon), blue dashed (∆(1232)),
dark-red dotted (N(1520)), and orange dot-dashed (N(1720)) lines specify the νmin
of the fixed Q2 dispersive integral. The black horizontal line represents a fixed value

of Q2.

region is discussed in Ref.[51] to apply it at a specific case of monopole type nucleon

form factors. Blunden et al. [46] modified the contour in the complex plane to calculate

the integral Iδ in the unphysical region for a more general class of the form factors for

which the poles not only in the timelike region of Q2 but also in the spacelike region

is acceptable within some restrictions as addressed in there work. The phase space in-

tegration
∫
dΩk1 =

∫
d cos θk1dϕk1 can be expressed in terms of the integration over Q2

1

and Q2
2. The definition of θk1 and ϕk1 can be understood from the centre-of-mass (CM)

frame kinematics explained in Appendix A. The region covered by the integral Iδ forms

an elliptic shape in the Q2
1 vs. Q2

2 plane having the centre at {Q2
0, Q

2
0} with,

Q2
0 =

(s−M2)(s−W 2)

2 s
. (4.5)
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Having defined the electron momenta in CM frame as Eq. (A.1d), one can express the

virtual photon momenta Q2
1 and Q2

2 in the form,

Q2
1 = Q2

0 (1− cos θk1), (4.6a)

Q2
2 = Q2

0 (1− cos θ cos θk1 − sin θ sin θk1 sinϕk1). (4.6b)

In elliptic coordinates {α, θk1}, following Ref. [46, 51],the phase space integral can be

transferred as,

∫
dΩk1 =

∫
d cos θk1

∫
dϕk1 → 2

∫ 1

0

dα

∫ 2π

0

dθk1 , (4.7)

and thus the two four momenta take the form,

Q2
1 = Q2

0 (1− r cos θk1), (4.8a)

Q2
2 = Q2

0 (1− r cos θ cos θk1 − r sin θ sin θk1), (4.8b)

where r =
√
1− α2 is the radial parameter of the concentric ellipses for the contours

of constant α, with α = sin θk1 sinϕk1 . To analytically continue the integral Iδ into

the unphysical region the integral over θk1 is transformed as a contour integral over the

contour [46]

z = eiθk1 , (4.9)

for the physical region, while the deformed contour [46]

z =
1

2
(1 + β) +

1

2
(1− β)eiθk1 , (4.10)

with β being defined in Eq. (4.12), is used for the calculation of Iδ in the unphysical

region (cos θ < −1), so that any arbitrary poles in the timelike region along with some

restricted poles in the spacelike region of the form factors are accounted. With this

change of variable, the two four-momentum transfer squared Q2
1(r, z) and Q2

2(r, z) are
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now functions of radial parameter r and the new complex variable z as,

Q2
1 = Q2

0

[
1− r

2

(
z +

1

z

)]
, (4.11a)

Q2
2 = Q2

0

[
1− r

2

(
z

β
+

β

z

)]
, (4.11b)

where

β ≡

eiθ, for − 1 ≤ cos θ ≤ +1,

cos θ −
√
cos2 θ − 1, for cos θ ≤ −1.

(4.12)

The contour integration using the contours of Eqs. (4.9) and (4.10) for the physical and

unphysical regions, respectively, is tested for e-µ scattering case in the next section.

Then the procedure is implemented in case of elastic e-p elastic scattering to obtain the

imaginary parts of the generalized TPE form factors at specific values of Q2 and a grid

of electron energy E for elastic nucleon intermediate state in Sec. 5.1 followed by the

discussions to include the resonance intermediate states from Sec. 5.2.

4.2 TPE in e-µ scattering

In this section, the contour integration and the overall dispersive method discussed above

is tested by applying it into the simple case of scattering of electron off a pointlike target

particle muon, µ. Since µ is a fundamental particle and has no internal structure hence

no structure-dependent input is required at the two target particle vertices of the TPE

Feynman diagram. Therefore, the numerical dispersive method result for this simple

case is expected to be identical with that from the direct loop integral results obtained

using Passarino-Veltman (PV) functions [93, 121]. The TPE amplitude for unpolarized

e-µ scattering simplifies to the form:

Me−µ(box)
γγ = −ie4

∫
d4q1
(2π)4

ūe(k
′)γα(/k1 +me)γβue(k)ūµ(p

′) γα (/p∗ +mµ) γ
β uµ(p)

(q21 − λ2)(q22 − λ2)(k2
1 −m2

e + i0+)(p∗2 −m2
µ + i0+)

,(4.13)
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where p∗ = p+ q1 is the four-momentum of the intermediate muon and mµ is the muon

mass. Rest of the quantities are as defined before for the case of e-p elastic scattering.

The explicit form of the corresponding crossed-box amplitude is,

Me−µ(xbox)
γγ = −ie4

∫
d4q1
(2π)4

ūe(k
′)γα(/k2 +me)γβue(k)ūµ(p

′) γα (/p∗ +mµ) γ
β uµ(p)

(q21 − λ2)(q22 − λ2)(k2
2 −m2

e + i0+)(p∗2 −m2
µ + i0+)

.(4.14)

As discussed before, the crossed-box TPE amplitude can also be obtained using the

crossing symmetry relation of Eq. (3.11). The total TPE amplitude, M e−µ
γγ = M

e−µ(box)
γγ +

M
e−µ(xbox)
γγ , can be evaluated either by direct loop integral evaluation or by the dispersive

method. One can also express the amplitude in terms of the generalized TPE form

factors F
′
1, F

′
2, and G

′
a of Eq. (3.21) and mapping of M e−µ

γγ onto the generalized Mγγ

of Eq. (3.21) provides the expressions of F ′
1, F

′
2, and G

′
a for the simplified case of e-µ

scattering. The evaluated generalized TPE form factors can be used in Eq. (3.22) to get

the cross section correction. The Born cross section of Eq. (1.13) will be substituted by

σBorn
R (e− µ) = ε+ τ, (4.15)

for this case. It is important to mention that only F
′
1 is infrared divergent for point

like target and that is subtracted using Maximon and Tjon prescription [76]. In rest of

the part of this section, the two methods of evaluation are discussed and the obtained

results are compared.

4.2.1 Passarino-Veltman (PV) functions

To evaluate the one-loop integrals of Eqs. (4.13) and (4.14), I use the Mathematica

package FeynCalc [122, 123] that generates the results in terms of a set of the two

point, three point and four point scalar PV functions B0, C0, and D0, respectively. For
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the s-channel box diagram the general expression of these scalar functions are,

B0(s) ≡ 1

iπ2

∫
d4q1

[(k − q1)2 −m2
e + i0+] [(p+ q1)2 −m2

µ + i0+]
, (4.16a)

C0(s;λ
2) ≡ 1

iπ2

∫
d4q1

[q21 − λ2] [(k − q1)2 −m2
e + i0+]

× 1

[(p+ q1)2 −m2
µ + i0+]

, (4.16b)

D0(s;λ
2
1, λ

2
2) ≡ 1

iπ2

∫
d4q1

[q21 − λ2
1] [q

2
2 − λ2

2]

× 1

[(k − q1)2 −m2
e + i0+] [(p+ q1)2 −m2

µ + i0+]
. (4.16c)

Note that the PV functions B0, C0, and D0 have dependence on the variables me,

mµ, and Q2 as well, which has been suppressed for simplicity of notation. However,

in practice the PV functions have other variables in the TPE amplitudes coming from

the numerator factors. Including the numerator variable dependence, the form of the

PV functions (in Mathematica package LoopTools [124] notation) that come into the

calculation of total TPE amplitudes, M e−µ
γγ are:

• B0(m
2
µ, λ

2,m2
µ), B0(t, λ

2, λ2), B0(s,m
2
e,m

2
µ), B0(u,m

2
e,m

2
µ)

• C0(m
2
e,m

2
e, t, λ

2,m2
e, λ

2), C0(m
2
µ,m

2
µ, t, λ

2,m2
µ, λ

2), C0(m
2
µ,m

2
e, s,m

2
µ, λ

2,m2
e), C0(m

2
µ,m

2
e, u,m

2
µ, λ

2,m2
e)

• D0(m
2
µ,m

2
µ,m

2
e,m

2
e, t, s, λ

2,m2
µ, λ

2,m2
e), D0(m

2
µ,m

2
µ,m

2
e,m

2
e, t, u, λ

2,m2
µ, λ

2,m2
e)

Since λ1 and λ2 are some IR regulators, I have substituted them by the common param-

eter λ. The scalar functions mentioned above can be evaluated using the Mathematica

package LoopTools [124]. Among these PV functions, only the functions B0(s,m
2
e,m

2
µ),

C0(m
2
µ,m

2
e, s,m

2
µ, λ

2,m2
e), and D0(m

2
µ,m

2
µ,m

2
e,m

2
e, t, s, λ

2,m2
µ, λ

2,m2
e) have imaginary

parts and the rest are purely real. The imaginary parts of the three scalar functions can
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be written as [86]

ImB0(s,m
2
e,m

2
µ) =

π(s−m2
µ)

s
, (4.17a)

ImC0(m
2
µ,m

2
e, s,m

2
µ, λ

2,m2
e) =

π log[s λ2/(s−m2
µ)

2]

s−m2
µ

, (4.17b)

ImD0(m
2
µ,m

2
µ,m

2
e,m

2
e, t, s, λ

2,m2
µ, λ

2,m2
e) = −2π log[−t/λ2]

t (s−m2
µ)

. (4.17c)

Keeping only the imaginary parts of these three functions in the expressions of general-

ized form factors and leaving the rest generates the imaginary parts of the corresponding

form factors. The imaginary parts of F ′
1, F

′
2, and G

′
a, obtained using dispersive method,

can be tested against that obtained using the above treatment.

4.2.2 Dispersive method

As discussed in Sec. 4.1, putting the intermediate leptons (for the case of e-µ scatter-

ing) on-shell using Eq. (4.1b) gives the imaginary part of the amplitude and hence the

generalized form factors. The integration of Eq. (4.2) for the imaginary parts of F ′
1, F

′
2,

and G
′
a takes the simplified form

Ieµδ =
s−m2

µ

4s

∫
dΩk1

f(Q2
1, Q

2
2)

(Q2
1 + λ2)(Q2

2 + λ2)
, (4.18)

where the function f(Q2
1, Q

2
2) is a polynomial of combined degree 2 in Q2

1,2. As addressed

before in this section that this integration can be IR divergent for F
′
1 only. To avoid

this difficulty, the divergent part is subtracted off from the numerator of the respective

integrand at the limit of Q2
1,2 = 0 GeV2 beforehand. As a consequence, the integration

of Eq. (4.18) becomes independent of the value of the small mass parameter λ, and can

be set to zero without any ambiguity. The real part of the form factors can then be

calculated using the dispersion relations of Eq. (4.4c). For any value of nonzero Q2 the

integrand needs to be analytically continued into the unphysical region. Therefore, the

analytical continuation into the unphysical region is obtained by using the deformed

contour of Eq. (4.10), whereas for the physical region Eq. (4.9) is used. The obtained
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results for the imaginary parts of the generalized form factors and the cross section using

dispersive method is compared with that calculated using the scalar PV functions are

discussed in the next section.

4.2.3 Results and conclusion

Fig. 4.2 illustrates the imaginary parts of the generalized TPE form factors F ′
1 (a,b), F ′

2

(c,d) and G
′
a (e,f) for e-µ scattering at four-momentum transfer squared Q2 = 3.0 GeV2

as function of incident electron energy E. The left panel represents the magnified results

for the smaller energy range from E = 0.001 to 1 GeV, while the right panel represents

the same quantities for the extended range from 1 to 100 GeV. The results obtained

using the numerical contour integration (red long-dashed line) and the scalar one-loop

integrals (blue dotted line) are all identical which justifies the use of the contours defined

in Eqs. (4.9) and (4.10). Moreover, in the higher energy region around E = 100 GeV,

the imaginary part of F ′
2 reaches a very small constant value which justifies the use of

the dispersion relation of Eq. (4.4c) to get the corresponding real part. On the other

hand, the two other form factors F ′
1 and G

′
a have non-zero and non-negligible slope even

at around 100 GeV of energy. But they also reach the constant value near 1000 GeV and

10, 000 GeV, respectively. Thus the upper limit of the dispersive integrals of Eq. (4.4c)

are adjusted accordingly where the plateau of the imaginary parts is reached. Since

the integration is not carried up to the ideal maximum limit hence the tail effect is

accounted following the procedures discussed in Sec. 5.1.

The TPE cross section correction, in percent relative to the Born cross section, for

e-µ scattering is shown in Fig. 4.3. The results in Fig. 4.3(a, b) are calculated using

dispersion relations but the imaginary parts are calculated in two different methods.

Figure 4.3(a) uses the imaginary part obtained using the contour integration, whereas

Fig. 4.3(b) make use of the imaginary part of the form factors generated by the ex-

plicit expressions of the imaginary parts of the PV functions B0, C0, and D0 given in

Eq. (4.17c). The third diagram of Fig. 4.3 shows the TPE cross section correction calcu-

lated by the direct one-loop integration in terms of the PV functions using Mathematica
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Figure 4.2: Imaginary part of the generalized form factors F ′
1 (top row), F ′

2 (mid-
dle row), and G′

a (bottom row) for TPE in e-µ scattering at a representative four-
momentum transfer squared Q2 = 3 GeV2. The red long-dashed curve represents
the result using the numerical contour integration, while the blue dotted curve corre-
sponds to that using the imaginary parts of the Passarino-Veltman functions obtained
by direct loop integrals. The left column shows the results in the incident electron
energy (E) range from 0.001 to 1 GeV, and the right column is for the range from

E = 1 to 100 GeV.

package FeynCalc [123] and LoopTools [124]. Clearly, Fig. 4.3(b) and (c) demonstrate

that the dispersive method reproduces the real part of the form factors and hence the
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Figure 4.3: TPE cross section correction in unpolarized e-µ scattering at Q2 =
3 GeV2 as a function of virtual photon polarization ε. The red long-dashed curve
(a) used the dispersive method to get the real part of the generalized form factors
from the imaginary parts obtained by numerical contour integration. The blue dotted
curve (b) used the same method to get the real part from the imaginary part of F ′

1,
F ′
2, and G′

a using the imaginary parts of the Passarino-Veltman functions obtained by
direct loop integrals. The green dashed curve (c) used the direct loop integrals using

LoopTools.

cross section. As the imaginary parts from the contour integration and the PV func-

tions are also identical, hence the identical cross sections in Fig. 4.3(a) and (b) motivate

further to apply the dispersive method to unpolarized e-p elastic scattering. In the next

chapter, the method is thus applied in case of e-p elastic scattering.



Chapter 5

Numerical Evaluation of TPE in e-p

Elastic Scattering

The chapter begins with the evaluation of the TPE effect in e-p elastic scattering with

nucleon intermediate state using dispersive method (Sec. 5.1). After that the discussion

on the model estimation of the resonance intermediate states effect starts with the gen-

eral decomposition of the hadronic transition current operators defining the transition

form factors Gi (i = 1, 2, 3) following Refs. [53, 83]. For the numerical calculation of the

imaginary part of the TPE amplitude, input electromagnetic helicity amplitudes A1/2,

A3/2, and S1/2 from the CLAS exclusive electroproduction data at Jefferson Lab [125]

are used in this work. Therefore, an explicit relation between the form factors and the

helicity amplitudes for the proton to excited resonance intermediate states transition

with spin-parity 1/2± and 3/2± are discussed in Sec. 5.3 including the CLAS data and fit

for the electrocouplings. Inclusion of a non-zero finite resonance width in this particular

model is also explained at the end of the chapter (Sec. 5.4).
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5.1 TPE with elastic nucleon intermediate state

In this section, the dispersive method discussed in Sec. 4.1 is applied to calculate the

TPE correction, with elastic nucleon intermediate state only, in unpolarized e-p elastic

scattering. For the specific case of the nucleon intermediate state, the integration of

Eq. (4.2) for the imaginary part of the generalized form factors takes the form

Ieµδ =
s−M2

4s

∫
dΩk1

Fi(Q
2
1)Fj(Q

2
2)fi,j(Q

2
1, Q

2
2)

(Q2
1 + λ2)(Q2

2 + λ2)
, (5.1)

where Fi(Q
2
1) and Fj(Q

2
2) are the Dirac (i, j = 1) and Pauli (i, j = 2) form factors at

the two hadronic vertices γNN , and fi,j(Q
2
1, Q

2
2) is a polynomial of combined degree

2 in Q2
1,2. Note that the transition current operator ΓγN→N of Eq. (1.5) for on-shell

states are used at each hadronic vertex. The use of such on-shell parametrization of

ΓγN→N is justified since the Cutkosky cutting rules put the intermediate states on-

shell. However, as addressed in Sec. 4.1, the dispersive integral of Eq. (4.4c) requires

the information of the imaginary part of the TPE generalized form factors in some

unphysical region for any value Q2 since the minimum energy corresponding to νmin is

zero whereas the physical threshold is some non-zero positive quantity. For example,

at Q2 = 1 GeV2, the physical threshold is νth ≈ 0.604, while the integration runs

from the negative value of νmin = −0.284 to infinity. Thus the integration of Eq. (5.1)

is evaluated in the complex plane of four-momentum transfer squared Q2, and the

analytical continuation onto the unphysical region is done using the deformed contour

of Eq. (4.10). For the physical region, the contour of Eq. (4.9) is used instead. In this

specific case of nucleon intermediate state the integration for the imaginary part of the

form factors F ′
1 and F ′

2 are infrared divergent. This divergent part is subtracted off from

the numerator using Maximon and Tjon prescription [76], described in Sec. 3.1.2, at the

limit of Q2
1,2 = 0 GeV2, i.e. F ′

1,2 = F ′
1,2(unsubtracted)− F ′IR

1,2 .
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The input Dirac and Pauli form factors F1 and F2 are expressed in terms of the Sachs

electric (GE) and magnetic (GM) form factors by inverting the relation of Eq. (1.9) as

F1(Q
2) =

GE(Q
2) + τ GM(Q2)

1 + τ
, (5.2a)

F2(Q
2) =

GM(Q2)−GE(Q
2)

1 + τ
. (5.2b)

For GE and GM , a number of parametrizations are available including Refs. [72, 126,

127]. The parametrizations of Refs. [72, 126, 127] are expressed as the ratio of polyno-

mials as

GE,M(Q2
1,2) =

1 +
∑n

i=1 ai Q
2 i
1,2

1 +
∑n

j=1 bj Q
2 j
1,2

, (5.3)

with the coefficients given in Table 5.1 for three different parametrizations.

Table 5.1: Parameters used in the fittings as a ratio of polynomials (Eq. (5.3)) for
the Sachs electric (GE) and magnetic (GM ) form factors by three different groups of

authors, Arrington et al. (AMT) [72], J. J. Kelly [126], and Venkat et al. [127].

Parameters AMT [72] Kelly [126] Venkat [127]
GE GM GE GM GE GM

a1 3.439 -1.465 -0.24 0.012 2.9096 -1.43572
a2 -1.602 1.26 0.0 0.0 -1.11542229 1.19052066
a3 0.068 0.262 0.0 0.0 0.03866171 0.25455841
b1 15.055 9.627 10.98 10.97 14.5187212 9.70703681
b2 48.061 0.0 12.82 18.86 40.88333 0.00037357
b3 99.304 0.0 21.97 6.55 99.999998 0.000006
b4 0.012 11.179 0.0 0.0 0.00004579 9.9527277
b5 8.65 13.245 0.0 0.0 10.3580447 12.7977739

The three parametrizations of proton electric and magnetic form factors from J.J. Kelly

(red long-dashed line), Arrington et al. (AMT) (blue dotted line), and Venkat et al.

(black dotted line) are compared in Fig. 5.1. All three curves behave similarly, except for

a subtle difference in the Kelly parametrization for GM at larger Q2. However, one still

needs to be cautious in choosing the parametrization of GE and GM due to the possibility

of poles in the spacelike region of Q2. At a first glance the three parametrizations

seem to have no poles in the spacelike region since there is no negative terms in the
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Figure 5.1: Nucleon electric (GE) (a) and magnetic (GM ) (b) form factors
parametrization by J.J. Kelly [126] (red long-dashed), Arrington et al. (AMT) [72]
(blue dotted), and Venkat et al. [127] (black dashed). GE is scaled by the standard
dipole form factor GD, and GM is scaled by proton magnetic moment µp times GD.

denominator. But, in the complex plane of Q2 there is existence of poles in the AMT [72]

and Venkat [127] parametrizations within the range of Q2 ∼ 4.5 GeV2. Therefore, it is

safe to pick the Kelly parametrization as default form of GE and GM in this work, unless

mentioned explicitly, since the calculation is carried up to Q2 = 5.0 GeV2, and the TPE

correction with nucleon intermediate state is anticipated to be a major contributor to

the total correction.

Kelly

AMT

Venket
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Figure 5.2: Two-photon exchange relative cross section correction δN (in percent)
due to elastic nucleon intermediate state alone, (a) as a function of virtual photon
polarization ε at Q2 = 3 GeV2, and (b) as a function of Q2 at fixed ε = 0.2. The results
represented by the red long-dashed curve uses the parametrization of Kelly [126], blue
dotted curve uses AMT parametrization [72], and black dashed curve uses Venkat

et.al. [127].
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Nonetheless, it is also a worth checking the TPE cross section correction (δN) using

all the mentioned parametrizations up to Q2 = 5.0 GeV2 and see if anything dramatic

happens due to the pole effect above ∼ 4.5 GeV2. Figure 5.2 represents such an analysis

of the TPE cross section correction. The virtual photon polarization, ε dependence at

fixed value of Q2 = 3.0 GeV2 is shown in Fig. 5.2(a), while Fig. 5.2(b) illustrates the Q2

dependence at ε = 0.2, corresponding to the backward angles. The results are consistent

between all three parametrizations. At the backward angles, the cross section correction

reaches ∼ 3.8% of the Born level cross section, with negative sign, at Q2 = 3.0 GeV2.

The curves show some non-linearity in ε up to ε ∼ 0.6. Interestingly, δN almost reaches

a saturation point with increasing Q2 (≥ 4.0 GeV2), as evident from Fig. 5.2(b). The

TPE cross section correction, δN will be further discussed in Chapter 6 along with the

intermediate resonance states’ effect.

To estimate the TPE effects beyond elastic nucleon intermediate state, I adopt several

parametrizations of the resonance transition current operators following Refs. [53, 82, 83]

in the next section followed by a similar decomposition in terms of the helicity amplitudes

in Sec. 5.3.

5.2 Resonance transition current operators

I begin this section by introducing the matrix element of the transition current Jν from

nucleon (N) to resonance excited state (R) and then parametrize the transition current

operator ΓγN→R describing the absorption of a virtual photon, with momentum q on a

nucleon N with momentum p, producing a resonant state R with momentum pR = p+q.

The matrix element of the transition current Jν at the first vertex of the TPE diagram

of Fig. 3.1 is defined by [53, 82],

⟨R(pR)|Jν |N(p)⟩ ≡ eūR(pR)Γ
ν
γN→R(pR, q)T

†
3uN(p), (5.4a)

⟨R(pR)|Jν |N(p)⟩ ≡ eūRβ
(pR)Γ

βν
γN→R(pR, q)T

†
3uN(p). (5.4b)
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Equation (5.4a) corresponds to the transition of nucleon into spin-1/2 excited resonance

states and (5.4b) is for the transition into spin-3/2 resonance states. For the spin-1/2

states, the usual Dirac spinors are used and for the spin-3/2 states, the Rarita-Schwinger

spinor ūRβ
is used in Eq. (5.4). Rarita-Schwinger spinor satisfies the relations

/pRuRβ
= WRuRβ

, pβRuRβ
= 0, γβuRβ

= 0, (5.5)

for the on-shell spin-3/2 states. T †
3 is the isospin transition operator, with normalizations

T †
3T3 = 1 for the transition to isospin-1/2 states and T †

3T3 =
2

3
for the transition

to isospin-3/2 states. Note that q is a dummy variable here, representing the virtual

photon four-momentum at each vertex, not the total four-momentum of the photons.

Analogous to the decomposition of the current operator ΓγN→N in terms of the covariants

with co-efficients named Dirac (F1) and Pauli (F2) form factors, one can decompose

ΓγN→R, R being any spin 3/2 state, into several covariants in a variety of way with

appropriate coefficients. The constraint from the gauge-invariance, qβΓβν = 0, leaves

three covariant terms to construct the ΓγN→R vertex. One choice of gauge-invariant

covariants with the coefficients defining the three independent kinematic singularity-

free form factors G1, G2, and G3 is [53, 83]

Θβν
1 =

 γ5

I

 (/qg
βν − qβγν), (5.6a)

Θβν
2 =

 γ5

I

 (qβpνR − q · pR gβν), (5.6b)

Θβν
3 =

 γ5

I

 (qβqν − q2gβν), (5.6c)

where the upper and lower rows refer to positive and negative parity states, respectively.

With these Θβν
i operators, ΓγN→R has the form

Γβν
γN→R(pR, q) = G1(Q

2)Θβν
1 (pR, q) +G2(Q

2)Θβν
2 (pR, q) +G3(Q

2)Θβν
3 (pR, q). (5.7)
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However,this set of form factors are useful for theoretical purpose but they do not appear

diagonally in the cross section formulae as they do not describe physical transitions. To

analyze the resonance excitation cross section, Jones and Scadron [82] introduced the

physical form factors G∗
M , G∗

E, and G∗
C corresponding to covariant couplings Θβν

M ,Θβν
E ,

and Θβν
M inducing magnetic dipole, electric quadrupole and Coulomb quadrupole transi-

tions, respectively. Using these multipole covariants the transition to any spin-3/2 even

parity state at the first vertex of Fig. 3.1 can be decomposed as

Γβν
γN→R(pR, q) = G∗

M(Q2)Θβν
M (pR, q) +G∗

E(Q
2)Θβν

E (pR, q) +G∗
C(Q

2)Θβν
C (pR, q), (5.8)

with the covariants being

Θβν
M (pR, q) = − C

Q+

iϵβν(pRq), (5.9a)

Θβν
E (pR, q) = −Θβν

M − 4C

Q+Q−
ϵβσ(pRq)ϵ

ν
σ(pRq)γ5, (5.9b)

Θβν
C (pR, q) = − 2C

Q+Q−
qβ(q2pνR − q.pRq

ν)γ5, (5.9c)

where

C ≡ 3(W +M)

2M
, Q± ≡ (W ±M)2 +Q2. (5.10)

Here the shorthand notation ϵβν(pRq) ≡ ϵβνρσpRρqσ is used. Note in this work the

convention of γ5 ≡ iγ0γ1γ2γ3 is used and the Levi-Civita tensor ϵµναβ is such that ϵ0123 ≡

+1, therefore ϵ0123 ≡ −1. Devenish et al. [83] provide a more general parametrization of

the transition current ΓγN→R for normal and abnormal parity transition to any excited

state R with spin J ≥ 3/2 of which Eq. (5.8) is a special case. I restrict the discussion

only for the transition to spin 3/2, even parity states in terms of G∗
M , G∗

E, and G∗
C

since this set of form factors is used to evaluate the TPE amplitude for ∆(1232)3/2+

intermediate state only.

To relate the two sets of form factors for the transition to spin-3/2 and even parity

states, i.e. (G1, G2, and G3) with (GM , GE, and GC), one can express the multipole

covariants of Eq. (5.9c) in terms of the covariants of Eq. (5.6c) for on-shell transition
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matrix elements and finds the relation [83]

G1(Q
2) =

CW [G∗
M(Q2)−G∗

E(Q
2)]

2Q2
+

,

G2(Q
2) =

C

2Q2
+ [M2 + 2M2(Q2 −W 2) + (Q2 +W 2)2]

[
2G∗

C(Q
2)Q2Q2

+ +

G∗
E (Q2)

{
M4 − 2M2(Q2

+ −Q2 +W 2)− 2Q2
+(Q

2 −W 2)+

(Q2 +W 2)2
}
−G∗

M(Q2)
{
M4 + 2M2(Q2 −W 2) + (Q2 +W 2)2

}]
,

G3(Q
2) =C

4W 2 G∗
E(Q

2) +G∗
C(Q

2)(M2 +Q2 −W 2)

2[M4 + 2M2(Q2 −W 2) + (Q2 +W 2)2]
.

(5.11)

For the inverse transition R → γN at the second vertex in Fig. 3.1, the current operator

Γµα
R→γN(pR, q) can be obtained using the Hermitian property of the transition matrix

element,

Γµα
R→γN(pR, q) = γ0

[
Γαµ
γN→R(pR, q)

]†
γ0. (5.12)

For spin-1/2 resonances, on the other hand, we define the transition current operator

Γν
γN→R as

Γν
γN→R(pR, q) = G1(Q

2)

 I

γ5

(/qqν − q2γν
)
+G2(Q

2)

 I

γ5

(/qP ν − P · q γν
)
,

(5.13)

where P = (p+ pR)/2 = pR − q/2, and again the upper and lower rows refer to positive

and negative parity states, respectively. In analogy with (5.12), the inverse transition

current operator Γµ
R→γN(pR, q) is obtained from the Hermitian property of the transition

matrix element,

Γµ
R→γN(pR, q) = γ0

[
Γµ
γN→R(pR, q)

]†
γ0. (5.14)
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5.3 Form factors from electrocouplings

Since the electroproduction of resonance states is often parametrized in terms of reso-

nance electrocouplings Ah [125], we define here the transition form factors Gi in terms

of the amplitudes for specific helicity configurations.

5.3.1 Resonance electrocouplings

The resonance electrocouplings at the hadronic vertices are defined in terms of the

matrix elements of the hadron electromagnetic current as [53]

A1/2 =

√
2πα

K

1

e

〈
R,SR

z = 1
2

∣∣∣ ϵ+µ Jµ
em

∣∣∣N,Sz = −1
2

〉
, (5.15a)

A3/2 =

√
2πα

K

1

e

〈
R,SR

z = 3
2

∣∣∣ ϵ+µ Jµ
em

∣∣∣N,Sz =
1
2

〉
, (5.15b)

S1/2 =

√
2πα

K

1

e

〈
R,SR

z = 1
2

∣∣∣ |q|
Q

ϵ0µJ
µ
em

∣∣∣N,Sz =
1
2

〉
, (5.15c)

where α = e2/4π is the fine structure constant, e is the electron charge, and K is the

equivalent photon energy at the real photon point, K = (W 2 − M2)/2W . The spin

projections of the nucleon and resonances R on the z-axis are labelled by Sz and SR
z ,

and ϵ+,0
µ is the photon polarization vector for transversely or longitudinally polarized

photons,

ϵ+µ = (0;−ϵ+), ϵ+ = − 1√
2
(1, i, 0), (5.16a)

ϵ0µ =
1

Q
(|q|; 0, 0,−q0). (5.16b)

The virtual photon three-momentum q is taken to be along the z-axis in the rest frame

of the resonance R, and its magnitude is given in terms of the final state hadron mass

W and the photon virtuality Q2,

|q| =

√
Q2 +

(
W 2 −M2 −Q2

2W

)2

. (5.17)
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In this work, for the input resonance electrocouplings we use the parametrizations ob-

tained from the analysis of CLAS meson electroproduction data at Jefferson Lab [125].

To generate the electrocouplings as a function of the running invariant mass W of the

intermediate state, I use Eq. (5.18), which is consistent with the prescription in the JM

model of Ref. [128]. The W -dependent electrocoupling Ah(W,Q2) is given by

Ah(W,Q2) =
W

WR

|qR|
|q|

AR
h (Q

2), (5.18)

where AR
h represents the electrocouplings A1/2, A3/2 or S1/2 at the resonance point, WR

is the invariant mass W at the resonance point, and qR is defined as

|qR| =

√
Q2 +

(
W 2

R −M2 −Q2

2WR

)2

. (5.19)

5.3.2 Relations between form factors and electrocouplings

Following Devenish et al. [83], the hadronic transition current operator Γβν
γN→R for spin-

3/2 resonances can also be parametrized in terms of helicity form factors h1, h2, and h3,

which are given in terms of the helicity amplitudes A1/2, A3/2, and S1/2 by [53]

h1 =

√
3W

b |q|
S1/2(W,Q2), h2 = ± 1√

2 b
A3/2(W,Q2), h3 =

√
3√
2 b

A1/2(W,Q2), (5.20)

where

b ≡

√
πα

(W ∓M)2 +Q2

24M WK
, (5.21)

and the upper (lower) sign corresponds to even (odd) parity states. (Note that the

expressions for the helicity form factors hi in terms of the electrocouplings Ah of Ref. [53]

are off by a factor of
√

2/3, which has been corrected in Eq. (5.20).) For spin-parity
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3/2+ excitations, the current operator then can be written as

Γβν
γN→R(p, q) =

h1

Q+Q−
qβ
[
p · q qν − q2 pν

]
γ5 (5.22)

+
h2

Q+Q−

[
2ϵβσ(qp) ϵνσ(qp)γ5 + iWqβϵν(qpγ)

]
i

h3

Q+Q−
Wqβϵν(qpγ),

while for spin-parity 3/2− states it is given by

Γβν
γN→R(p, q) =

h1

Q+Q−
γ5q

β
[
p · q qν − q2 pν

]
γ5 (5.23)

+
h2

Q+Q−
γ5
[
2ϵβσ(qp) ϵνσ(qp)γ5 − iWqβϵν(qpγ)

]
− i

h3

Q+Q−
Wγ5 q

βϵν(qpγ).

Note again that in Eqs. (5.22) and (5.23) I use the shorthand notation ϵβσ(qp) ≡

ϵβσρλqρpλ and ϵν(qpγ) ≡ ϵνρλαqρpλγα, where “γ” in the Levi-Civita tensor denotes the

Dirac γ-matrix. Equating the expression of the current operator in Eq. (5.7) with that

of Eqs. (5.22) or (5.23), the form factors Gi can be expressed in terms of the helicity

form factors, and hence in terms of the electrocouplings Ah, as

G1(W,Q2) = ∓W (h2 + h3)

2Q±
, (5.24a)

G2(W,Q2) =
Q2h1 + (M2 ∓MW +Q2)h2 +W (W ∓M)h3

Q+ Q−
, (5.24b)

G3(W,Q2) =
2W 2(h2 − h3)− (M2 −W 2 +Q2)h1

2Q+ Q−
. (5.24c)

In a similar way, one can relate the form factors G∗
E, G∗

M , and G∗
C with the electrocou-

plings Ah by comparing the expressions of the current operator of Eq. (5.8) with that

of Eq. (5.22) for transition into a spin-3/2 and even parity excited state as [53]

G∗
M = −F

[√
3A3/2 + A1/2

]
, (5.25a)

G∗
E = −F

[
A3/2√

3
− A1/2

]
, (5.25b)

G∗
C = 2

√
2F

W

q
S1/2, (5.25c)
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where

F ≡ M

q

√√√√ M K

4παW

[
1 +

Q2

(W + M)2

]
. (5.26)

For spin-parity 1/2± resonant intermediate states, the spin-1/2 transition form factors

G1 and G2 can be related to the electrocouplings Ah according to [53]

G1(W,Q2) =
|q|A1/2 +

√
2(M ±W )S1/2

2 b′ |q| [(M ±W )2 +Q2]
, (5.27a)

G2(W,Q2) =
|q|(M ±W )A1/2 −

√
2Q2S1/2

b′ |q|(M ∓W ) [(M ±W )2 +Q2]
, (5.27b)

where

b′ ≡
√

πα
(W ∓M)2 +Q2

4MWK
, (5.28)

in analogy with Eq. (5.21).

5.3.3 Input electrocouplings

The CLAS phenomenological fit [54, 116, 125] of the transverse AR
1/2(Q

2), AR
3/2(Q

2), and

scalar (or, longitudinal) S1/2 electrocouplings for the transition from nucleon to all the

spin-parity 3/2± and 1/2± resonance excited states R is used as input in the hadronic

transition current at each vertex of Fig. 3.1. Note that the used electrocouplings from

CLAS [125] considers the excitation of nucleon to on-shell resonances. Thus to reduce

the uncertainty of the model estimation of the resonance effect in TPE correction I

choose the dispersive approach. However, for completeness, an analysis of the input

electrocouplings for all the resonance intermediate states are described below

Figure. 5.3 represents the electro- and photo-excitation data of the first, 4-starred res-

onance [129], ∆(1232)3/2+ in terms of the transverse A1/2, A3/2, and longitudinal S1/2

electrocouplings. The red-squared data points are basically from the CLAS analysis of

the Nπ electroproduction off proton along with that from JLab (Hall A and B), MAMI
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and MIT/BATES [54] . Whereas the blue triangles for A1/2 and A3/2 correspond to the

PDG18 [129] value. The phenomenological fit by CLAS, represented by red-dashed lines

and numerical expressions given in Eq. (5.29c), goes close to the data at higher values

of Q2 but in the low Q2 limit it doesn’t resemble the data trend. An alternative fit by

Aznauryan [46], given in terms of the magnetic (G∗
M), electric (G∗

E) and Coulomb (G∗
C)

form factors in Eq. (5.30c), follows the data in the low Q2 range and goes through the

well established PDG18 values [129] at Q2 = 0 GeV2. For S1/2 (Fig. 5.3(c)), the CLAS

fit seems to show better agreement with the higher Q2 data but the Aznauryan fit is

also in agreement within the uncertainty range.
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Figure 5.3: Parametrizations of transverse (A1/2, A3/2), and longitudinal (S1/2)
electrocouplings of photon-nucleon to ∆(1232)3/2+ resonance transition by CLAS [54,
125] (red dashed line) and by Aznauryan et al. [46, 53] (blue dot-dashed line) as
function of Q2. The squared dark-red points are the CLAS Nπ electroproduction

data [54], and the blue triangles are the PDG18 value [129] at Q2 = 0 GeV2.

Most of the experimental analyses of the photo- and electro-excitation data of ∆(1232)3/2+

are carried in terms of the multipole form factors (G∗
M , G∗

E, and G∗
C) and their ra-

tios REM , the electric quadrupole to magnetic dipole ratio, and RSM , the Coulomb

quadrupole to magnetic dipole ratio. Therefore, a pictorial view of G∗
M , G∗

E, and G∗
C is

also compared between the two fits of Aznauryan [46, 53] and CLAS [125] in Fig. 5.4.

Clearly in Fig. 5.4(a), the Aznauryan fit satisfies the well established PDG18 value [129]

of the magnetic dipole form factor G∗
M(0) ≈ 3.00. Considering the trend of the fits in

the low Q2 region, the phenomenological fit of the ∆(1232)3/2+ transition form fac-

tors in Eq. (5.30c) is considered as default parametrization in this work. However, the

form factor dependence of TPE correction is discussed in Sec. 6.2.1 by comparing the

obtained δ (Fig. 6.4) using CLAS [125] and Aznauryan [46, 53] fits.
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Figure 5.4: Comparison of magnetic (G∗
M ), electric (G∗

E), and Coulomb (G∗
C) form

factor parametrizations for the transition into ∆(1232)3/2+ intermediate state from
Refs. [53, 54] as a function of Q2.

Note the explicit form of the CLAS parametrizations of the electrocouplings A∆(1232)
h [125]

are given as

A
∆(1232)
1/2 (Q2) = − 170.06

1000(1 +Q2)(1 + 0.1609Q4 − 0.002Q8)
, (5.29a)

A
∆(1232)
3/2 (Q2) = − 321.06

1000(1 +Q2)(1 + 0.16Q4 − 0.002Q8)
, (5.29b)

S
∆(1232)
1/2 (Q2) =

29.76

1000(1 +Q2)(1 + 0.0135Q2 − 0.00046Q8)
. (5.29c)

The corresponding multipole amplitudes are obtained using Eq. (5.25c). On the other

hand, the direct phenomenological parametrization of G∗
M , G∗

E, and G∗
C from Aznau-

ryan [46, 53] is

G∗
M(Q2) =

3

(1 +Q2/0.71)2

√
Q+

WR +M
exp(−0.21Q2), (5.30a)

G∗
E(Q

2) = −REM G∗
M(Q2), (5.30b)

G∗
C(Q

2) = −RSM G∗
M(Q2)

4W 2
R√

Q+Q−
, (5.30c)

where REM , the electric quadrupole to magnetic dipole ratio, is taken to have a constant

value of −0.02, for the full range of Q2 and RSM , the Coulomb quadrupole to magnetic

dipole ratio, is fitted as

RSM = 0.01(1 + 0.0065Q4)

× (−6.066 + 5.807Q− 8.5639Q2 + 2.37058Q4 − 0.75445Q5). (5.31)
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The Aznauryan fit of the electrocouplings A∆(1232)
h are obtained by rearranging Eq. (5.25c).
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Figure 5.5: Phenomenological fit [125] of the transverse A3/2 (red long-dashed)
and A1/2 (blue dotted), and the longitudinal S1/2 (green dashed) electrocouplings for
the spin-3/2 states N(1520)3/2−, ∆(1700)3/2−, and N(1720)3/2+. The red squared
(A3/2), blue circled (A1/2), and green triangle (S1/2) data are from Ref. [54]. The

dark-red points for A3/2 and A1/2 are the PDG [125] values at Q2 = 0 GeV2.
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The three amplitudes AR
1/2(Q

2), AR
3/2(Q

2), and SR
1/2(Q

2) for rest of the resonance states

are taken from the CLAS fit [54, 125] directly. Figure 5.5 illustrates the elctrocouplings

for the three 4-star and spin-3/2 resonance states of PDG18 [129] as function of Q2. In all

three diagrams of Fig. 5.5,‘(a) N(1520)3/2−, (b) ∆(1700)3/2−, and (c) N(1720)3/2+,

the solid squares (red) and circles (blue), respectively, represent the transverse AR
3/2

and AR
1/2 amplitudes from the CLAS analysis of Nπ and Nππ electroproduction off

proton [54], while the green solid triangles are the data for longitudinal S1/2 amplitude

from the same analysis. The dark-red solid square and circle at Q2 = 0 GeV2 are the

PDG values [125] of the two transverse amplitudes for each of these spin-3/2 states.

For N(1520)3/2−, the explicit form of the CLAS fit of the electrocouplings is given

in Eq. (5.32c) which are represented by the red long-dashed (AN(1520)
3/2 ), blue dotted

(AN(1520)
1/2 ), and green dashed (SN(1520)

1/2 ) lines in Fig. 5.5(a).

A
N(1520)
1/2 (Q2) =

0.0009(−23.357− 151.199533Q2)

1 + 2.01489898Q4 − 0.2654327Q4
√
Q2

, (5.32a)

A
N(1520)
3/2 (Q2) =

0.0009 × 162.458285

1 + 3.322979Q2 − 2.0339966Q4 + 1.622563Q4
√
Q2

, (5.32b)

S
N(1520)
1/2 (Q2) = − 0.0672

1 + 1.73Q2 − 2.8Q4 + 2.91Q4
√

Q2
. (5.32c)

The fit follows the PDG [125] value of the transverse amplitudes, within the uncertainty

range, at Q2 = 0 GeV2, where the CLAS data and the PDG18 value themselves are also

in agreement within experimental uncertainty. On the other hand, the PDG values [54]

of A∆(1700)
3/2 , A∆(1700)

1/2 (Fig. 5.5(b)), and A
N(1720)
3/2 , AN(1720)

1/2 (Fig. 5.5(c)) at Q2 = 0 GeV2

are significantly away from the CLAS analysis of Nπ photo-production data [130]. The

CLAS phenomenological fit of the electrocouplings of these two higher mass, spin-3/2

resonances, ∆(1700)3/2− and N(1720)3/2+, from the third resonance region of meson
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electroproduction are given in Eqs. (5.33c) and (5.34c).

A
∆(1700)
1/2 (Q2) =

118.28

1000(1 + 0.72Q4 + 3.26Q4
√
Q2)

, (5.33a)

A
∆(1700)
3/2 (Q2) =

101

1000(1 + 16.6Q2 − 5.0Q4
√
Q2)

, (5.33b)

S
∆(1700)
1/2 (Q2) =

24.5

1000(1 + 0.15Q2
√

Q2)
. (5.33c)

A
N(1720)
1/2 (Q2) =

90

1000(1 + 3.16Q2
√
Q2)

, (5.34a)

A
N(1720)
3/2 (Q2) =

−35.87− 6.85Q2

(1 + 0.118Q4)
, (5.34b)

S
N(1720)
1/2 (Q2) = − 3.09

1000(1− 3.7Q2 + 2.86Q2
√
Q2)

. (5.34c)

It is evident from Fig. 5.5(b,c) that the CLAS phenomenological fit of Eqs. (5.33c) and

(5.34c) prefers its own data at Q2 = 0 GeV2. The fitting curves well match with the

Nππ electroproduction [125] even though the number of data are not enough and no

available data in the higher range of Q2 ≥ 1.5 GeV2 yet. But in that range of Q2, the

fits of Eqs. (5.33c) and (5.34c) are approximately close to the form of ∼ 1/Q3 or, 1/Q5,

following quark counting rules, except S
∆(1700)
1/2 .

The remaining five spin-1/2 resonances, N(1440)1/2+, N(1535)1/2−, ∆(1620)1/2−,

N(1650)1/2−, and N(1710)1/2+, have only two electrocouplings A1/2 and S1/2. Ex-

tracted electrocouplings from the CLAS analyses of Nπ and Nππ photo- and electro-

production are shown in Fig. 5.6. The detailed specification of the plots is same as that

of Fig. 5.5. Below, I list up the CLAS fitting [125] of AR
1/2 and SR

1/2 for these spin-1/2

resonances. For the Roper resonance N(1440)1/2+, the parametrization is

A
N(1440)
1/2 (Q2) =

−68.7866 + 21.3966Q2 + 79.8415
√
Q2

1000(1− 0.7178Q2 + 0.5663Q2
√

Q2)
, (5.35a)

S
N(1440)
1/2 (Q2) =

31.19227 + 3.5338Q2

1000(1− 0.278265Q2 + 0.3677575Q2
√
Q2)

. (5.35b)
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Figure 5.6: CLAS fit [125] of the electrocouplings A1/2 (blue dotted) and S1/2

(green dashed) for the spin-1/2 states N(1440)1/2+, N(1535)1/2−, ∆(1620)1/2−,
N(1650)1/2−, and N(1710)1/2+. The blue circled (A1/2) and green squared (S1/2)
data are from Ref. [54]. The dark-red circled data for A1/2 are the PDG [125] values

at Q2 = 0 GeV2.

The CLAS phenomenological fit of the electrocouplings for N(1535)1/2− is

A
N(1535)
1/2 (Q2) =

92.5029 + 1.45023Q2

1000(1 + 0.1095Q2 − 0.000322Q2
√

Q2)
, (5.36a)

S
N(1535)
1/2 (Q2) =

−9.758811− 4.231412Q2

1000(1− 0.7341952Q2 + 0.5087887Q2
√
Q2)

. (5.36b)
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For the only isospin-3/2 and spin-1/2 state ∆(1620), the fit is given by

A
∆(1620)
1/2 (Q2) =

47.2

1000(1 + 3.71Q2
√
Q2)

, (5.37a)

S
∆(1620)
1/2 (Q2) = − 61.864

1000(1 +Q2
√
Q2)

. (5.37b)

Note the S
∆(1620)
1/2 of Eq. (5.37b) is an arbitrary fit following the CLAS data trend and

the CLAS fitting behaviour at the off-shell, spacelike photon region. The CLAS fitting

for this specific electrocoupling is avoided due to existence of an unexpected singularity

at Q2 = 0 GeV2. For the last two spin-1/2 resonances, N(1650)1/2− and N(1710)1/2+,

the electrocouplings fitting from CLAS [125] are given in Eqs. (5.38b) and (5.39b).

A
N(1650)
1/2 (Q2) =

47.4− 19.6Q2

1000(1− 1.46Q2
√

Q2 + 1.17Q6)
, (5.38a)

S
N(1650)
1/2 (Q2) = − 2.67

1000(1− 2.82Q2 + 2Q2
√
Q2)

. (5.38b)

A
N(1710)
1/2 (Q2) =

27.36

1000(1 + 0.77Q2
√
Q2)

, (5.39a)

S
N(1710)
1/2 (Q2) = − 7.25

1000(1 + 0.0733Q2
√
Q2)

. (5.39b)

The values of AR
1/2 at Q2 = 0 GeV2 from the CLAS analysis of Nπ photo-production [130]

and that from PDG [125] are in good agreement within the uncertainty range for

N(1440)1/2+ and N(1535) 1/2− resonances. The fit also follows the data at smaller

range of Q2, as shown in Fig. 5.6(a,b). For ∆(1620)1/2−, the PDG point of A1620
1/2 is off

from the value of CLAS Nπ photo-production (Fig. 5.6(c)). The deviation in AR
1/2 from

the two sources is even larger for N(1650)1/2− state. Interestingly, the fit function of

Eq. (5.38b) follows the PDG value at the real photon point. Whereas the AR
1/2 fit func-

tion of Eq. (5.37b) for ∆(1620)1/2− follows the CLAS data, as illustrated in Figs. 5.6(c,

d). For these two resonances, a limited number of data are available only within the

range of Q2 ≤ 2 GeV2. In the higher Q2 limit where experimental data is not available
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yet the fitting curve approximately follows the ∼ 1/Q3 behaviour assuming the quark

counting rules. A converse picture is seen in case of the resonance N(1710)1/2+ for

which no CLAS data available in the lower range of Q2 ≤ 1.8 GeV2. At the real photon

point, only the PDG value is present which is followed by the CLAS fitted curve of A1710
1/2

as shown in Fig. 5.6(e). The A1710
1/2 fitting also goes approximately as ∼ 1/Q3 in the high

Q2 limit whereas the S1710
1/2 fitting is purely based on the data trend.

Overall, based on the latest experimental information, the CLAS fit for these resonance

electrocouplings can be considered as a reliable input for the hadronic transition current

at each of the TPE vertices for spacelike Q2. The fittings are also extended into the

timelike Q2 region without any experimental or theoretical constrain, to carry out the

analytical continuation of the integrand of Eq. (4.2) into the unphysical region.

5.4 Resonance finite widths

As the imaginary part of the TPE box diagram corresponds to real excitation, there is

a discontinuity in the imaginary part of the TPE amplitudes for resonance intermediate

states with zero width, at sharp W = WR, such that they vanish for E < Emin(WR).

When put into a dispersion integral, this will translate into a cusp in the real part of the

amplitude at the same energy. If the threshold energy is above the minimum energy,

Eth ≥ Emin, then this cusp is of no concern. However, if Eth < Emin, then there exists

some physical energy E for which one may have E = Emin. Equivalently, there is a cusp

if the four-momentum transfer squared goes below a threshold value, Q2 < Q2
th, where

Q2
th =

(W 2 −M2)2

W 2
. (5.40)

In terms of the photon polarization variable ε, the cusp will occur for

εcusp(Q
2) =

2W 2 (Q2
th −Q2)

2W 2 (Q2
th −Q2) +Q2 (4M2 +Q2)

. (5.41)
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In Table 5.2 we show the values of Q2
th and εcusp(Q

2) for several physically relevant

examples that illustrate the effect, specifically, for the ∆(1232)3/2+, N(1520)3/2−, and

N(1720)3/2+ states.

Table 5.2: Kinematics at which threshold cusp effects appear for the ∆(1232),
N(1520), and N(1720) resonances, at several typical Q2 values relevant phenomeno-

logically.

WR (GeV) Q2
th (GeV2) εcusp(Q

2)

Q2 = 0.2 GeV2 Q2 = 0.5 GeV2 Q2 = 1.0 GeV2

1.232 0.27 0.22 – –
1.520 0.89 0.81 0.47 –
1.720 1.46 0.91 0.74 0.38

For the case of a resonance of finite width Γ(W ) that is centred at W = WR and

governed by a Breit-Wigner distribution,

f(W 2) =
1

π

Γ(W )WR

(W 2 −W 2
R)

2 + Γ2(W )W 2
R

, (5.42)

the cusp behaviour is smoothed out. To consider a finite width, we assume the contin-

uum of the invariant mass squared W 2 as an infinite set of Dirac δ functions, δ(W 2−W 2
i ),

and evaluate the integral of Eq. (4.2) at a set of discrete values of W ranging from

(M +mπ) to 2 GeV for each resonance intermediate state. The corresponding real parts

are calculated from Eqs. (4.4c). The set of generated real parts of the generalized TPE

from factors are then interpolated using a spline fit to obtain a smooth function F (W 2)

for the generalized TPE form factors at fixed values of Q2 and electron energy E. Note

that the numerical errors from the fitting of the form factors F ′
1, F ′

2, and G′
a at a set

of discrete W values are insignificant as the functional forms seem fairly smooth. More

importantly, as will be clear from Sec. 6.2.2, the overall width effect itself doesn’t bring

anything dramatic in the net cross section results other than the removal of cusps in

the sharp (zero width) resonance case. However, in practice, we perform the integration

over W of f(W 2)F (W 2) using

IW = N

∫ W 2
max

(M+mπ)2
dW 2 f(W 2)F (W 2), (5.43)
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where the normalization constant N ensures that the integration from (M + mπ)
2 to

W 2
max is unity.

In our numerical calculations, we take Wmax = 2 GeV for all the resonance states

except the ∆(1232)3/2+ and N(1440)1/2+, for which we restrict the integration to

Wmax = 1.7 GeV (since the contribution from the third resonance region to the total

cross section for these is negligible). While the total decay widths Γ(W ) of the resonances

are in general energy-dependent, for the default calculations in this work we restrict at

Γ(W ) = Γ(WR) = ΓR, the constant total decay width. The numerical values of the

constant total decay width, ΓR, and the Breit-Wigner resonance masses WR for each of

the resonance states are taken from Ref. [54]. In Sec. 6.2.2 below we will discuss the

effect of the nonzero width, both constant and dynamic, on the total TPE cross section

in detail.



Chapter 6

Results and Discussions

In this chapter I present the numerical results for the imaginary (Sec. 6.1.1) and real

(Sec. 6.1.2) parts of the TPE generalized form factors F ′
1, F ′

2, and G′
a for excited in-

termediate states. Using the numerical values of the real parts of the form factors in

Eq. (3.24), the obtained TPE corrections δ to the elastic scattering cross section are also

discussed (Sec. 6.2.1) including a study of the effect of nonzero widths for the resonances

(Sec. 6.2.2). In Sec. 6.2.3, the dependence of the TPE corrections on the spin, isospin

and parity of the intermediate states is identified.

6.1 Generalized form factors

Following the discussion of Secs. 3.1.1 and 4.1.1, the TPE amplitude Mγγ is mapped

into the generalized amplitude in terms of the generalized TPE form factors F ′
1, F ′

2, and

G′
a. Thus evaluating F ′

1, F ′
2, and G′

a will provide the TPE cross section correction and

other observables. In this section, I will analyze the results of these form factors starting

with the imaginary parts first.

103
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Figure 6.1: Imaginary parts of the generalized TPE form factors F ′
1 (a,b), F ′

2

(c,d), and G′
a (e,f) versus ε at fixed Q2 = 3 GeV2 for the nine resonance interme-

diate states ∆(1232)3/2+, N(1440)1/2+, N(1520)3/2−, N(1535)1/2−, ∆(1620)1/2−,
N(1650)1/2−, ∆(1700)3/2−, N(1710)1/2+, and N(1720)3/2+ contributions. The plot

legends are as identified in (e) and (f).

6.1.1 Imaginary part

For a qualitative analysis, the imaginary parts of the TPE generalized form factors for

individual excited resonances ∆(1232)3/2+, N(1440)1/2+, N(1520)3/2−, N(1535)1/2−,
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∆(1620)1/2−, N(1650)1/2−, ∆(1700)3/2−, N(1710)1/2+, and N(1720)3/2+ at the sharp

resonance point W = WR, are shown in Fig. 6.1 as a function of incident electron en-

ergy E at a representative four-momentum transfer squared Q2 = 3 GeV2. The top

row illustrates the correction to the imaginary part of F ′
1 from the mentioned individ-

ual resonances, while the middle and the bottom row represent the same for F ′
2 and

G′
a. The left panel shows the correction down to energy E ∼ 1.15 GeV corresponding

to the minimum energy required to excite the highest mass resonance N(1720)3/2+.

There are some noticeable non-linearity in the low energy behaviour of all three form

factors, especially for the resonances N(1520)3/2−, ∆(1700)3/2−, and N(1720)3/2+, as

shown in the left panel of Fig. 6.1. A similar non-linearity is also observed for the lower

mass resonances ∆(1232)3/2+ and N(1440)1/2+ if one goes further down to the energy

E ∼ 0.3 GeV. Fig. B.1 shows such non-linearity in the imaginary part of the form factors

explicitly for the most prominent resonance ∆(1232)3/2+.

Overall, the magnitude of the correction from the resonances, N(1440)1/2+, ∆(1620)1/2−,

N(1650)1/2−, ∆(1700)3/2−, and N(1710)1/2+ are tiny compared to rest of the four res-

onances at this specific Q2 value, indicating a smaller correction in the real parts as well.

Nevertheless, the qualitative higher energy behaviour of the imaginary parts for all the

intermediate states are important to utilize the dispersion relations. It is interesting to

note that the imaginary part of F ′
1 and F ′

2 both become constant at above E ≳ 20 GeV

for all the resonances, whereas that for G′
a falls off as ∼ 1/E at higher energy for each

of the excited states. Such behaviour of the form factors at high energy ensures the

convergence of the dispersive integrals of Eq. (4.4c). The overall qualitative behaviour

remains the same at other W values of each resonances and also at other Q2 values. For

completeness, Appendix B.2 illustrates similar behaviour at two other values of Q2 = 1

and 5 GeV2.

6.1.2 Real part

Before proceeding to the quantitative comparison of the calculated full cross sections

with experimental observables sensitive to TPE effects, in this section I present the TPE
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results in terms of the generalized TPE form factors introduced in Sec. 3.1.1. In Fig. 6.2

I present the ε dependence of the TPE form factors F ′
1, F ′

2, and G′
a at fixed values of

Q2 = 1 and 5 GeV2, scaled by a dipole form factor GD,

GD(Q
2) =

(
Λ2

Q2 + Λ2

)2

, (6.1)

with mass Λ = 0.84 GeV. Illustrated are the individual contributions from the nu-

cleon elastic intermediate state and the 3 most prominent resonance states, namely, the

∆(1232)3/2+, N(1520)3/2−, and the N(1720)3/2+, as well as the total of elastic nucleon

and all resonances considered in this work. Rest of the states are left for Appendix B.3

since the magnitudes are tiny relative to the ones shown in Fig. 6.2.

However, clearly evident for the F ′
1 TPE form factor is that at Q2 = 1 GeV2 this

contribution is negative at all ε values and is dominated by the nucleon elastic state.

The higher-mass resonance contributions grow rapidly with increasing Q2, but there is a

strong cancellation between the (positive) JP = 3/2+ and (negative) JP = 3/2− states,

rendering the total effect to be very small and close to zero at Q2 = 5 GeV2.

For the Pauli F ′
2 TPE form factor, a similar pattern repeats as for the Dirac form factor,

namely, at Q2 = 1 GeV2 the cancellations between the various resonance contributions

leave the total TPE form factor to be negative and dominated by the nucleon elastic

intermediate state. In contrast to the F ′
1 case, however, at larger Q2 the main resonance

contributions grow in magnitude but remain negative, so that the net effect is a coherent

enhancement of the TPE form factor up to ∼ 10% of the dipole at Q2 = 5 GeV2 for

backward angles.

For the axial G′
a TPE form factor, the magnitude of the various resonance contribu-

tions is generally smaller than for the other two TPE form factors, with the nucleon

elastic state giving negative contributions at both low and high Q2. Once again a high

degree of cancellation occurs between the (positive) ∆(1232) and N(1520) states and

the (negative) nucleon elastic and N(1720) states, leaving an overall small positive total

correction to G′
a.
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Figure 6.2: Generalized TPE form factors F ′
1 (a,b), F ′

2 (c,d), and G′
a (e,f), scaled

by the dipole form factor GD, versus ε at fixed Q2 = 1 GeV2 (left column) and
5 GeV2 (right column) for the nucleon elastic (red dashed lines), ∆(1232)3/2+ (blue
long-dashed lines), N(1520)3/2− (green dot-dashed lines), N(1720)3/2+ (black dotted

lines), and total TPE (red solid lines) contributions.

In fact, as observed by Borisyuk and Kobushkin [48], it is quite natural to combine

the small G′
a contribution with the F ′

1 + F ′
2 form factor combination into an effective

“magnetic” TPE form factor GM as in Eq. (3.23b). Observing that the TPE FFs in

Fig. 6.2 do not in general show strong variation with ε, in Fig. 6.3 I display the Q2

dependence of both the “electric” and “magnetic” TPE form factor GE and GM , scaled

by the dipole form factors, at a fixed value of ε = 0.2, where the TPE effects are not

suppressed.
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Figure 6.3: Generalized TPE form factors GE (a,b) and GM (c,d), scaled by the
dipole form factor GD, at fixed ε = 0.2 for low Q2 (Q2 ≤ 2 GeV2, left column)
and high Q2 (1 ≤ Q2 ≤ 5 GeV2, right column), for the nucleon elastic (red dashed
lines), ∆(1232)3/2+ (blue long-dashed lines), N(1520)3/2− (green dot-dashed lines),
N(1720)3/2+ (black dotted lines), and total TPE (red solid lines) contributions.

For Q2 ≳ 2 GeV2 one observes that the magnitude of both the generalized electric GE

and magnetic GM TPE form factors rises linearly with Q2. The positive sign of GE and

the negative sign of GM result in corrections to the effective Born level form factors

that render the GE/GM ratio smaller than that naively extracted from cross section

data without TPE corrections. This would make it more compatible with the GE/GM

ratio extracted from the polarization transfer data, which suggest a strong fall-off of the

ratio with Q2 above Q2 ∼ 1 GeV2, resolving the discrepancy with the Rosenbluth cross

section results.

At low Q2, Q2 ≲ 1 GeV2, the TPE form factors are dominated by the nucleon elastic

contribution, as already indicated in the Q2 dependence of the total TPE correction δ

in Fig. 6.7. For higher Q2 values, Q2 ≳ 2 GeV2, the magnitudes of the various excited

state contributions grow, with the ∆(1232) and N(1720) contributions to both GE and

GM remaining positive and the N(1520) states negative.
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More specifically, while the N(1520) resonance state gives rather small corrections to

GE at most values of Q2, its contribution to GM becomes even more important than the

nucleon elastic for the largest Q2, Q2 ≳ 4 GeV2. Because of the τ factor in Eq. (3.24),

the magnetic contribution to the total cross section dominates at high Q2, so that the

N(1520) state plays the most significant role in the TPE cross section at high Q2. At

high Q2 the negative sign of the GM TPE form factor is driven by the nucleon elastic

and N(1520) states, while the positive sign of the GE TPE form factor is due mostly to

the ∆(1232) and N(1720).

6.2 TPE correction to the e−-p elastic scattering cross

section

The generated real parts of the form factors F ′
1, F ′

2, and G′
a for individual resonance

intermediate states are plugged into Eq. (3.22) to get the corresponding cross section

corrections δ. An analysis of the obtained δ (published in Ref. [73]) is presented in the

following sections.

6.2.1 Resonance intermediate state contribution to TPE

Before analyzing the TPE cross section correction from all the individual resonance

intermediate states let’s discuss the correction from the most prominent excited state

∆(1232)3/2+. Figure 6.4 represents the TPE correction to the cross section, δ from this

particular intermediate state as a function of ε at three fixed Q2 values of (a) 1 GeV2,

(b) 3 GeV2, and (c) 5 GeV2.

It is evident from Fig. 6.4 that the difference between the cross section corrections from

the two parametrizations of Aznauryan et al. [46, 53] and CLAS [54, 125] increases for

lower values of Q2. This could be anticipated from Fig. 5.4 where the difference between

the two parametrizations themselves is noticeable for lower values of Q2. However, for
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Figure 6.4: TPE cross section correction δ from ∆(1232)3/2+ resonance interme-
diate state as a function of ε at fixed values of Q2: (a) 1 GeV2, (b) 3 GeV2, and
(c) 5 GeV2. The blue dot-dashed curve represents the result using Aznauryan [53]
parametrization of G∗

M , G∗
E , and G∗

C , while the red dashed curve shows that using
CLAS parametrization [54, 125].

∆(1232)3/2+, the TPE cross section using Aznauryan parametrization [53] of G∗
M , G∗

E,

and G∗
C is considered as the default one in rest of the thesis since this is obtained using

the well established constrain of G∗
M(0) = 3.0.

The contributions to the TPE correction δ from the individual intermediate state reso-

nances are shown in Fig. 6.5 versus ε, for fixed values of Q2 = 0.5, 1, 2, 3 and 5 GeV2. As

mentioned earlier, we account for all 4 and 3-star spin-1/2 and spin-3/2 resonances with

mass below 1.8 GeV from the Particle Data Group [129], which include the six isospin-

1/2 states N(1440) 1/2+, N(1520) 3/2−, N(1535) 1/2−, N(1650) 1/2−, N(1710) 1/2+,

and N(1720) 3/2+, and the three isospin-3/2 states ∆(1232) 3/2+, ∆(1620) 1/2−, and

∆(1700) 3/2−. In our numerical calculations, for the resonance electrocouplings at the

hadronic vertices we use the most recent helicity amplitudes extracted from the anal-

ysis of CLAS electroproduction data [54, 55], except for the ∆(1232) 3/2+ resonance

for which the alternative parametrization is discussed above. Apart from the elastic

intermediate state contribution, the proton electric and magnetic form factors GE(Q
2)

and GM(Q2) are still required to be used in evaluation of δ for each resonance according

to Eq. (3.22). In this case, one has the freedom to choose either of the parametriza-

tions [72, 126, 127] since the pole issue only comes in the complex plane. However,

for consistency, I use Kelly parametrization [126] of GE,M in Eq. (3.22) to evaluate the

resonance contributions in δ.
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Figure 6.5: Relative contributions δ (in percent) to the TPE cross section for the nine
spin-1/2 and spin-3/2 nucleon and ∆ intermediate state resonances, as indicated in
the legend, versus the virtual photon polarization ε for fixed Q2 values: (a) 0.5 GeV2,
(b) 1 GeV2, (c) 2 GeV2, (d) 3 GeV2, and (d) 5 GeV2. Note the vertical scale is different

in each panel.

In the low-Q2 region, for Q2 up to ∼ 1 GeV2, the N(1520)3/2− and N(1535)1/2− reso-

nances give the most significant contributions, aside from the ∆(1232)3/2+ resonance,

although the largest correction from the ∆(1232)3/2+ ranges within only 0.2% of the

Born level cross section. We find an almost complete cancellation of the N(1520)3/2−

state contribution by that from the sum of other higher-mass resonances, leaving a

net correction that is well approximated by that from the ∆(1232)3/2+ alone. In this

Q2 range the ∆(1232)3/2+ contribution flips in sign and suppresses the elastic nucleon
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Figure 6.6: Contributions to the TPE correction δ (in %) versus the virtual photon
polarization ε for (a) nucleon only, and (b) all spin-parity 1/2± and 3/2± states
including the nucleon, at Q2 = 0.2 GeV2 (green dashed line), 0.5 GeV2 (dark red
long-dashed), 1 GeV2 (red solid), 3 GeV2 (orange dot-dashed),4 GeV2 (black dotted),
and 5 GeV2 (blue dashed). The shaded bands in (b) correspond to the uncertainty

propagated from the input electrocouplings.

intermediate state correction. At higher Q2 values, Q2 ≳ 2 GeV2, the N(1520)3/2− over-

takes the ∆(1232)3/2+ contribution to δ, but with opposite sign. Moreover, in the high-

Q2 region the N(1535)1/2− contribution flips sign from positive to negative, however,

this effect is somewhat negated by the growth of the N(1720)3/2+ and ∆(1700)3/2−

corrections. The overall effect is that the suppression of the TPE cross section (rela-

tive to the nucleon elastic contribution) by the ∆(1232)3/2+ is largely nullified by the

N(1520)3/2−, leaving a small increase in the total TPE correction over that from the

nucleon intermediate state alone.

The combined effect on the TPE correction δ from all the spin-parity 1/2± and 3/2±

resonances is illustrated in Fig. 6.6 as a function of virtual photon polarization, ε, for a

range of fixed Q2 values between 0.2 and 5 GeV2. For contrast, the contribution from

the nucleon elastic intermediate state alone is also shown at the same kinematics. At

low Q2 the excited state resonance contributions are found to be negligible, and the

total correction is dominated by the nucleon elastic intermediate state. Note that the

elastic contribution is positive at the lowest Q2, Q2 = 0.2 GeV2, but rapidly changes

sign and becomes increasingly more negative at higher Q2. At Q2 = 5 GeV2 the nucleon

contribution becomes as large as 4%− 5% at low values of ε ≈ 0.1− 0.2. There is also

a trend toward increasing nonlinearity at higher Q2 values, Q2 ≳ 3 GeV2, especially at
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low ε.

The net effect of the higher mass resonances is to increase the magnitude of the TPE

correction at Q2 ≳ 3 GeV2, due primarily to the growth of the (negative) odd-parity

N(1520)3/2− and N(1535)1/2− resonances which overcompensates the (positive) con-

tributions from the ∆(1232)3/2+. At the highest Q2 = 5 GeV2 value shown in Fig. 6.6,

the total TPE correction δtot reaches ≈ 6% – 7% at low ε. Note that the results shown

in Fig. 6.6 follows Maximon and Tjon prescription [76] to control the IR divergence at

the soft photon limit. For completeness, the TPE correction δ using the two different

treatments of Maximon-Tjon [76] and Mo-Tsai [75] is contrasted in Appendix C.

An estimate of the theoretical uncertainties on the TPE contributions can be made by

propagating the uncertainties on the fitted values of the transition electrocouplings [54],

which are dominated by the ∆(1232)3/2+ and N(1520)3/2− intermediate states. At

low Q2, Q2 ≲ 0.5 GeV2, the uncertainties are insignificant, but become more visible

at higher Q2 values, as illustrated by the shaded bands in Fig. 6.6(b) for Q2 = 1 to

5 GeV2. Uncertainties in the proton form factors GE and GM have a negligible effect on

the largest contribution, δN , for two reasons: first, at large Q2 the well-known magnetic

coupling dominates; and second, the correlated uncertainties tend to cancel in the ratio

of two-photon to one-photon exchange. For the ∆(1232)3/2+, the well-known magnetic

transition amplitude also dominates.

To provide a more graphic illustration of the Q2 dependence of the intermediate state

resonance contributions to the cross section, I show in Fig. 6.7 the TPE corrections from

the major individual contributors for Q2 up to 5 GeV2. A nominal value for the virtual

photon polarization of ε = 0.2 is chosen in order to emphasize the largest effect on δ at

backward angles. One of the prominent effects is the cancellation of part of the nucleon

elastic contribution by the ∆(1232)3/2+ resonance across the entire Q2 range. On the

other hand, the sum of the higher-mass resonances has a mixed impact on δ. In the low-

Q2 region, Q2 ≲ 1.8 GeV2, the higher resonance state corrections largely cancel, leaving

an approximately zero net contribution. As Q2 increases, the role of the ∆(1232)3/2+

is partially nullified by contributions from the higher mass resonances, and eventually
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Figure 6.7: Contributions to the TPE correction δ (in %) versus Q2 at backward
scattering angles, ε = 0.2, for (a) nucleon only (blue dashed line), N +∆(1232) (green
dotted) and the sum of all resonances (red solid line, with uncertainty band), and (b)
the major individual contributors at the same kinematics, including the ∆(1232) (red
solid), N(1440) (black dashed), N(1520) (blue solid), N(1535) (green solid), ∆(1700)

(orange dot-dashed), and N(1720) (blue dashed).

is outweighed by the heavier states. An overall increase in the total TPE cross section

over that from the nucleon alone is thus observed for Q2 ≳ 3 GeV2.

In the low-Q2 range, the odd parity N(1520)3/2− resonance state gives a comparable

cross section to that from the ∆(1232)3/2+ state, but with opposite sign. The TPE

correction from the N(1520)3/2− state keeps rising with Q2 and becomes the largest

contributor at Q2 ≳ 4 GeV2, outweighing even the elastic nucleon component. The

other resonances largely cancel each other, leaving behind a negligible net contribution.

An earlier calculation of resonance TPE contributions by Kondratyuk and Blunden [41]

correctly identified the ∆(1232)3/2+ and N(1520)3/2− resonances as the most impor-

tant contributors, after the nucleon. At Q2 = 4 GeV2, for small values of ε, that analysis

found δN ≈ −4.7%, δ∆(1232) ≈ +1.9%, and δN(1520) ≈ −0.7%. The nucleon and ∆(1232)

corrections are in excellent agreement with the results in Fig. 6.7. Our N(1520) correc-

tion of is larger in magnitude due to an improved parametrization of the electrocoupling

from the recent CLAS data [54], whereas Ref. [41] used a cruder estimate based on a

dressed K-matrix model.

As noted previously, for the default numerical calculations presented here the resonance

width has been taken to be the constant total decay width, ΓR, for each resonance R.
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To explore the sensitivity of the TPE corrections to the assumptions about the width,

in the next section I show other cases, including the zero-width approximation and an

energy-dependent dynamical-width.

6.2.2 Nonzero resonance widths

As discussed in Sec. 5.4, the discontinuity in the imaginary part of the TPE amplitude

for the case of zero-width resonances gives rise to cusps in the real part of the amplitude

from physical threshold effects at specific kinematics. In this section I represent the

threshold effect on the TPE correction for the three representative resonance states

∆(1232)3/2+, N(1520)3/2− and N(1720)3/2+ discussed in Table 5.2.

The interplay between the resonance mass and the Q2 and ε values at which the threshold

effect appears is illustrated in Fig. 6.8, where the TPE correction δ is shown as a function

of ε at several fixed values of Q2. One observes that the higher the resonance mass,

the higher the Q2 value at which the cusp comes in. For the lowest-mass ∆(1232)

excitation, the cusp at the lowest Q2 = 0.2 GeV2 value occurs at ε ≈ 0.06, as indicated

by the wiggle in Fig. 6.8(a). The effect of the constant, nonzero width, with a Breit-

Wigner distribution centred at the resonance mass, is to smooth out the wiggles in the

calculated δ, although the effect overall is not dramatic here. At higher Q2, above the

kinematic threshold, both curves are smooth, and the finite width has little impact on

the TPE correction [Fig. 6.8(b) and (c)].

For the intermediate-mass N(1520)3/2− resonance, the effect of the kinematical thresh-

old is more dramatic, with a prominent cusp visible for the zero-width result at ε ≈ 0.8

for Q2 = 0.2 GeV2 [Fig. 6.8(d)], and a smaller cusp at ε ≈ 0.5 for Q2 = 0.5 GeV2

[Fig. 6.8(e)]. In both cases the finite width of the resonance washes out the cusps, leav-

ing a smooth function across the threshold. Above the threshold the contribution to δ is

smooth [Fig. 6.8(f)], and the finite width has little impact. The most dramatic effect is

seen for the heaviest N(1720)3/2+ resonance, where the kinematic threshold produces

strong cusps at ε ≈ 0.9 for Q2 = 0.2 GeV2 [Fig. 6.8(g)] and ε ≈ 0.4 for Q2 = 1 GeV2
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Figure 6.8: Effect of a finite resonance width on the TPE correction δ (in %) from
three significant resonance intermediate states, ∆(1232)3/2+ (a–c), N(1520)3/2− (d–
f), and N(1720)3/2+ (g–i), as a function of ε at fixed Q2 values. The kinematical
kinks in the zero-width results (blue dashed lines) are smoothed out by the effect of

the nonzero, constant width (red solid lines).

[Fig. 6.8(h)]. Once again the finite, constant width modulates the cusps and leads to

considerably smoother results. At Q2 = 2 GeV2, above the kinematic threshold for this

state, both the zero-width and finite-width results produce smooth curves, but the effect

of the latter is still numerically significant [Fig. 6.8(i)].

To test the model dependence of the TPE correction on the resonance width prescription,

we also consider the effect of including an energy-dependent dynamic decay width,

Γ(W ), of Eq. (5.42) for each resonant intermediate state. We consider the energy-

dependant Γ(W ) to have contributions from three different decay channels for each

resonances, namely, πN , ππN , and ηN ,

Γ(W ) = ΓπN(W ) + ΓππN(W ) + ΓηN(W ). (6.2)
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Following Ref. [54], the partial decay widths Γπ(η)N(W ) and ΓππN(W ) are parametrized

as

Γπ(η)N(W ) = ΓR βπ(η)N

(
pπ(η)(W )

pπ(η)(WR)

)2LR+1
(
X2 + p2π(η)(WR)

X2 + p2π(η)(W )

)LR

, (6.3a)

ΓππN(W ) = ΓR βππN

(
pππ(W )

pππ(WR)

)2LR+4(
X2 + p2ππ(WR)

X2 + p2ππ(W )

)LR+2

, (6.3b)

where the constant total decay width ΓR of each resonance state is taken from Ref. [54],

and we have assumed the centrifugal barrier penetration factors to be the major con-

tributors to the off-shell behaviour of the resonances. Here the energy and momentum

factors for the two-body channels are given by

pπ(η)(W ) =
√

E2
π(η)(W )−m2

π(η), (6.4a)

Eπ(η)(W ) =
W 2 +m2

π(η) −M2

2W
, (6.4b)

and for the three-body channel is given by

pππ(W ) =
√

E2
ππ(W )− 4m2

π, (6.5a)

Eππ(W ) =
W 2 + 4m2

π −M2

2W
, (6.5b)

where mπ(η) is the mass of pion (η meson). The branching fractions for the resonance

decays into the πN , ππN and ηN channels are given by βπN , βππN , and βηN , respectively,

and satisfy the relation βπN + βππN + βηN = 1. The values of the other parameters in

Eqs. (6.3) — X, LR, βπN , βππN , and βηN — are taken from Ref. [54].

To illustrate the effect of the dynamical width, we select the two major resonance con-

tributors to the total cross section, namely, the ∆(1232)3/2+ and N(1520)3/2− states.

In Fig. 6.9(a-d) I compare the TPE correction δ using the dynamic, energy-dependent

width with the results of the zero-width and constant-width calculations at fixed Q2 = 1

and 3 GeV2. At the higher Q2 = 3 GeV2 value, well above the kinematic thresholds,

the dependence on the prescription for the width is negligibly small, with the dynamic-
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Figure 6.9: Comparison of the TPE correction δ (in %) computed for resonances
with zero width (blue dashed lines), constant width (red solid lines) and a dynamical
width (green dotted lines) for Q2 = 1 GeV2 (left panels) and 3 GeV2 (right panels).
Contributions from the ∆(1232)3/2+ (a–b) and N(1520)3/2− (c–d) states are shown

separately, along with the sum of all resonance contributions (e–f).

and constant-width results very similar to those for the zero-width case. On the other

hand, at Q2 = 1 GeV2 the details of the treatment of the widths are more important.

In particular, for the ∆(1232)3/2+ the dynamical width leads to an ≈ 30% reduction of

the (positive) correction relative to the zero-width case across all ε, and a smaller but

non-negligible increase in the (negative) N(1520)3/2− contribution at backward angles.

For the higher-mass resonances, the contributions again enter with oscillating signs,
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producing a net effect of the width in the total TPE cross section ratio δtot, including

nucleon elastic and all excited resonance states, that is very small across all ε values for

both Q2 = 1 and 3 GeV2 [Fig. 6.9(e-f)] for all three width prescriptions. The kink in

the zero-width result at ε ≈ 0.4 for Q2 = 1 GeV2 arises from threshold effects in the

third resonance region (see Table 5.2 and Fig. 6.8(h)). As for the ∆(1232) and N(1520),

the kink is eliminated by the tail effects of the resonances for either the constant-

width or dynamical-width approximation, producing a smooth, monotonic result. At

the higher Q2 = 3 GeV2 value the effects of the finite widths are negligible. Since the

differences between the constant- and dynamical-width results are generally not large,

for computational simplicity we employ the constant decay width approximation as the

default throughout this work.

6.2.3 Spin, isospin and parity dependence

To further investigate the systematics of the TPE corrections from various intermedi-

ate states resonances, I compare the relative contributions from resonances with similar

spin J , isospin I, and parity P . In Fig. 6.10 I show the combined effects of the differ-

ent groupings versus Q2 for two representative values of ε, where the TPE effects are

relatively large (backward angles, ε = 0.2) and where they are relatively small (forward

angles, ε = 0.9). To contrast the impact of the excited states, I show the resonance

contributions separately from the nucleon elastic channel and the total (both of which

are the same in the left and right columns).

For the resonance contributions with different spin, Fig. 6.10(a,b) shows qualitatively

similar effects from excited states with spin J = 1/2 and those with spin J = 3/2.

The sum of the resonances in both channels is significantly smaller than the nucleon

elastic at low values of Q2, and only starts to become non-negligible for larger Q2,

Q2 ≳ (3− 4) GeV2, with the relative impact somewhat greater at high ε than at low ε.

The total TPE correction δ is therefore well approximated by the elastic term alone for

Q2 ≲ 3 GeV2 at ε = 0.2, and Q2 ≲ 2 GeV2 at ε = 0.9.
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Figure 6.10: Comparison between the contributions to the TPE correction δ (in
%) from intermediate state resonances with spin J = 1/2 and J = 3/2 (a–b), isospin
I = 1/2 and I = 3/2 (c–d), and even parity P = +1 and odd parity P = −1 (e–f),
for ε = 0.2 (left columns) and ε = 0.9 (right columns). The nucleon-only contribution
(black dotted lines), which is not included in the other curves, and the total (red solid

lines) are shown for comparison in each panel.

The decomposition into contributions from different isospins in Fig. 6.10(c,d) is rather

more dramatic. Large cancellations occur between the (negative) isospin I = 1/2 in-

termediate states and the (positive) I = 3/2 states. At lower Q2, Q2 ≲ 2 GeV2, the

I = 3/2 transitions are dominant, while at larger Q2 the I = 1/2 intermediate states

become more important, rendering the TPE effect more negative compared with the

nucleon elastic term alone and contributing to the rapid increase in magnitude of the
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(negative) total TPE correction with Q2. This qualitative behaviour is similar at low

and high ε.

Interestingly, a similar cancellation is found between the parity-even (P = +1) and

parity-odd (P = −1) intermediate states in Fig. 6.10(e,f). In this case the P = +1

contributions to δ are positive, while the P = −1 contributions are negative, with the

latter becoming more important with increasing Q2. The qualitative behaviour of the

curves for each of the spin, isospin and parity decompositions can be understood from the

results illustrated in Fig. 6.5, where numerically the largest positive contribution is seen

to be from the ∆(1232)3/2+, and the negative of that from N(1520)3/2− states. The

former dominates the isospin 3/2 and even-parity channels, while the latter dominates

the isospin 1/2 and odd-parity channels, but since both have spin 3/2 and enter with

opposite signs, their combined contributions largely cancel, leaving the spin-1/2 channel

as the relatively more important one phenomenologically.

6.3 TPE-sensitive observables

Having described the features of the TPE corrections from excited intermediate states

to elastic ep scattering cross sections in the previous sections, in the remainder of this

chapter I will discuss the impact of these corrections on observables sensitive to the

TPE effects.

In particular, I analyze the numerical effects of the calculated TPE corrections on the

elastic e+p to e−p cross section ratio measured recently by the CLAS [116], VEPP-

3 [115] and OLYMPUS [117] experiments, as well as with polarization transfer data

from the GEp2γ experiment [119] in Hall C at Jefferson Lab. In addition, I investigate

the effect of the resonance contributions to the TPE on the proton GE/GM form factor

ratio discrepancy between the LT and PT data [10, 11, 37, 42].
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6.3.1 e+p to e−p elastic scattering ratio

Perhaps the most direct consequence of TPE in lepton scattering is the deviation from

unity of the ratio of e+p to e−p elastic scattering cross sections. As explained in Sec. 3.4,

the interference of the Born amplitude and the TPE amplitude depends on the sign of

the lepton charge, so that the ratio

R2γ =
σ(e+p)

σ(e−p)
≈ 1− 2 δγγ , (6.6)

where σ(e±p) ≡ dσ(e±p → e±p)/dΩ, is a direct measure of the TPE correction δγγ.

Early measurements of R2γ in the 1960s at SLAC [108, 109], Cornell [110], DESY [111]

and Orsay [112] obtained some hints of nonzero TPE effects, however, since the data

were predominantly at low Q2 and forward angles, the deviations of R2γ from unity

were small and within the experimental uncertainties. The more recent experiments

at Jefferson Lab [116], Novosibirsk [115] and DESY [117] have attempted more precise

determinations of R2γ over a larger range of Q2 and ε values than previously available.

The R2γ ratio from the CLAS experiment [116] is shown in Fig. 6.11 versus Q2 at fixed

averaged ε values, ⟨ε⟩ = 0.45 and 0.88 (Fig. 6.11(a,b)), and versus ε for fixed averaged

Q2, ⟨Q2⟩ = 0.85 and 1.45 GeV2 (Fig. 6.11(c,d)). The deviations from unity of the

measured ratios are relatively small, with most of the data points consistent with no TPE

effects within the relatively large experimental uncertainties. (Note that in Fig. 6.11 and

in subsequent data comparisons, the statistical and systematic uncertainties are shown

separately as inner and outer error bars, respectively.) The data are also consistent,

however, with the calculated TPE corrections, which are ≲ 2% in the measured region,

but increase at lower ε and higher Q2. A significant contribution to the cross section

ratio is observed from the nucleon elastic intermediate state, with the ∆(1232)3/2+

resonance cancelling some of the deviation from unity. The higher mass resonances have

little impact in the experimentally measured regions of ε and Q2, but their contributions

become more significant at higher Q2 in particular, Q2 ≳ 3 GeV2.
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Figure 6.11: Ratio R2γ of e+p to e−p elastic cross sections from CLAS [116] (a)
versus Q2 for fixed averaged ⟨ε⟩ = 0.45, and (b) ⟨ε⟩ = 0.88, (c) versus ε for fixed aver-
aged ⟨Q2⟩ = 0.85 GeV2, and (d) ⟨Q2⟩ = 1.45 GeV2, compared with the nucleon only
(blue dashed lines), sum of nucleon and ∆(1232) (green dot-dashed lines), and sum
of all intermediate state contributions (red solid lines). The experimental statistical
and systematic uncertainties are indicated by the (black) inner and (grey) outer error

bars, respectively.

A similar comparison of the calculated R2γ ratio with data from the VEPP-3 experiment

at Novosibirsk [115] is shown in Fig. 6.12. The experiment scattered electrons at fixed

beam energy E = 0.998 GeV (Fig. 6.12(a)), and E = 1.594 GeV (Fig. 6.12(b)), for ε

down to ≈ 0.3. This corresponds to a Q2 range between ≈ 0.3 GeV2 and 1.5 GeV2.

At these Q2 values the nucleon elastic intermediate state gives the largest contribution,

with again the ∆(1232) cancelling some of the effect, and bringing the calculation with

the TPE corrections in better agreement with the data. The contributions of the higher

mass resonances at the kinematics of this experiment are negligible.

The most recent OLYMPUS experiment at DESY [117] measured the ratio R2γ over a

range of ε from ≈ 0.46 to 0.9 at an electron energy E ≈ 2 GeV, with Q2 ranging up to

≈ 2 GeV2. The results, illustrated in Fig. 6.13, indicate an enhancement of the ratio at
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Figure 6.12: Ratio R2γ of e+p to e−p elastic cross sections versus ε from the VEPP-
3 experiment [115] for beam energy (a) E = 0.998 GeV, and (b) E = 1.594 GeV,
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Figure 6.13: Ratio R2γ of e+p to e−p elastic cross sections versus ε from the OLYM-
PUS experiment [117] with beam energy E = 2.01 GeV, compared with the nucleon
only (blue dashed lines), sum of nucleon and ∆(1232) (green dot-dashed lines), and
sum of all intermediate state contributions (red solid lines). The experimental statis-
tical and systematic uncertainties are indicated by the (black) inner and (grey) outer

error bars, respectively.

ε ≲ 0.6 and a dip below unity at ε ≳ 0.7, although still compatible with no deviation

from 1 within the combined statistical and systematic uncertainties. The suppression

of the ratio at large ε is in slight tension from other measurements, but again the

effect is consistent within the errors [46]. Inclusion of the ∆(1232) intermediate state

reduces the effect of the nucleon elastic contribution away from the forward scattering

region, but the effect of the higher mass resonances is very small for all ε shown. The
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overall agreement between the TPE calculation and the OLYMPUS data is reasonable

within the experimental uncertainties, although there is no indication in our model for

a decrease of the ratio below unity at large ε.

6.3.2 Polarization observables

In addition to the unpolarized e+p to e−p cross section ratio, other observables that

are directly sensitive to the presence of effects beyond the Born approximation involve

elastic scattering of longitudinally polarized electrons from unpolarized protons, with

polarization transferred to the final state proton, e⃗ p → e p⃗. The relevant observables

are the transverse and longitudinal polarizations, PT and PL, relative to the proton

momentum in the scattering plane defined in Sec. 3.5 including the TPE effect. The

ratio of the transverse to longitudinal polarizations, RTL given by

RTL = −µp

√
τ(1 + ε)

2ε

PT

PL

, (6.7)

reduces to the ratio of electric to magnetic form factors, µpGE/GM , and becomes inde-

pendent of ε. Since, any observed ε dependence of these polarization observables would

be an indication of TPE effects an investigation of RTL along with the ratio PL/P
(0)
L as

a function of ε is represented in Fig. 6.14 at an average value of Q2 = 2.49 GeV2.

Data on the transverse and longitudinal polarizations were obtained from the GEp2γ

experiment at Jefferson Lab [119], and are also shown in Fig. 6.14 for the ratio PL/P
(0)
L

and RTL. The calculated TPE effect in this model is almost negligible for the longi-

tudinal polarization, giving very little additional ε dependence in the ratio PL/P
(0)
L in

Fig. 6.14(a), and consistent within 1σ with the data. A larger TPE effect is found for

the transverse polarization, where the nucleon alone gives a small slope in ε, with the ef-

fects of the ∆(1232) and higher mass intermediate states enhancing the TPE correction

to ≈ 3% effect at ε ≈ 0.2. For the nucleon, and the sum of nucleon and ∆(1232)3/2+

intermediate states this was already concluded in the earlier analysis in Refs. [37, 46].

The data do not show any clear evidence for an ε dependence within the experimental
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Figure 6.14: Effect of TPE corrections on polarization observables from the GEp2γ
experiment at Jefferson Lab [119] for (a) longitudinal polarization PL relative to the
Born level result P

(0)
L , and (b) polarization transfer ratio RTL at Q2 = 2.49 GeV2,

compared with calculations including nucleon only (blue dashed lines), sum of nucleon
and ∆(1232) (green dot-dashed lines), and sum of all intermediate state contributions
(red solid lines). The experimental statistical and systematic uncertainties are indi-

cated by the (black) inner and (grey) outer error bars, respectively.

uncertainties, although the calculated effect is also compatible with the data within 1σ

errors.

6.3.3 Electric to magnetic form factor ratio µpGE/GM

Perhaps the most well-known consequence of TPE that has been identified in the last

two decades is the ratio of the electric to magnetic form factors extracted from elastic

scattering cross sections using the LT separation method [10]. It is explained in Sec. 1.3.1

that the Longitudinal-transverse separation requires measurements of cross sections as

a function of ε (or scattering angle) at fixed values of Q2. In the Born approximation,

the reduced cross section σBorn
R in Eq. (1.13) is a linear function of ε, which allows the

form factors G2
M and G2

E to be extracted from a linear fit to the reduced cross section

data.

As observed in the preceding sections, the TPE correction induces an additional shift

in the ε dependence, which alters the effective slope of the reduced cross section versus

ε. Furthermore, since the ε dependence of the TPE effect is not restricted to be linear,
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any nonlinearity introduced through radiative corrections could potentially complicate

the form factor extraction via the LT analysis, especially at higher values of Q2.

In Secs. 6.3.1 and 6.3.2 I compared the available data to calculations incorporating TPE

effects. However, to extract GE and GM it is more appropriate to correct the data for

TPE contributions at the same level as other radiative corrections in order to obtain the

genuine Born contribution, σBorn
R . The measured and Born cross sections can be related

by

σmeas
R = Cold

RC
(
σBorn

R
)old

= Cnew
RC

(
σBorn

R
)new

, (6.8)

where Cold
RC is the radiative correction (RC) factor applied in the original analyses [2, 3],

and Cnew
RC incorporates any improvements, including the new TPE effects. For the RC

factor CRC we adopt the definition used by Gramolin and Nikolenko [39],

CRC = CL exp (δRC + δ) , (6.9a)

where δRC is given in Eq. (2.18), CL (introduced in Sec. 2.3) is the correction factor for

ionization losses in the target, and δ is the hard TPE correction (δ = δγγ − δIR
γγ(MTj))

of Eq. (3.15). Although exponentiation is strictly only justified for the soft photon

emission correction, it is conventionally applied to all RCs.

Gramolin and Nikolenko [39] reanalyzed the SLAC data [2, 3], which used the standard

RCs of Mo and Tsai [75], to include improvements to δbrems as well as the use of the

standard RCs of Maximon and Tjon [76]. Their Born cross section can be written in

terms of that given in Refs. [2, 3] as

(
σBorn

R
)new

=
Cold

RC
Cnew

RC

(
σBorn

R
)old

. (6.10)

The ratio Cold
RC/C

new
RC is tabulated for the SLAC data in Ref. [39], to which we add our

calculated TPE contribution δ of this work. For the Super-Rosenbluth data [4] details
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of the RCs that were applied are not available, so the improvements made to δRC are

restricted to using δIR
γγ(MTj) instead of δIR

γγ(MoT).
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Figure 6.15: Reduced cross section σBorn
R at Q2 = 4 GeV2, scaled by τ times the

dipole form factor squared G2
D. Open circles are the original data points from Ref. [3].

Filled circles (slightly offset for clarity) include improved standard RCs from Ref. [39],
together with the TPE corrections from the present work. The weighted least squares
fits (solid lines) determine G2

E and G2
M . Data points from the 8 GeV spectrometer are

shown in red, while the data point from the 1.6 GeV spectrometer (which is separately
normalized [3]) is shown in blue.
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Figure 6.16: (a) Ratio of the proton electric to magnetic form factors, µpGE/GM ,
versus Q2, extracted using LT separation data [2–4]. A nonlinear fit to the combined
PT results [5–9] at the 99% confidence limit is shown by the green band. (b) The
ratio µpGE/GM extracted from a reanalysis of the LT data using improved standard

RCs from Ref. [39], together with the TPE effects from the present work.
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A comparison of the original reduced cross sections and the results with the improved

RCs of Ref. [39] plus the TPE of this work is shown in Fig. 6.15 for the Q2 = 4 GeV2

data from Ref. [3]. We note that the original and the TPE-corrected data are equally

well described by a linear dependence on ε, and no nonlinearity effects are apparent.

In Fig. 6.16 I show the GE/GM ratio extracted from this analysis for the SLAC [2, 3] and

Jefferson Lab Super-Rosenbluth [4] experiments up to Q2 = 5 GeV2. To avoid clutter,

the PT data from Refs. [5–9] are shown as a band, which is introduced also in Sec. 1.3.2.

The original analysis, shown in Fig. 6.16(a), is consistent with µpGE/GM ≈ 1, while

a progressively larger effect of TPE with increasing Q2 for all LT data sets is seen in

Fig. 6.16(b), with a commensurate increase in the uncertainty of GE. In particular the

LT data of Andivahis et al. [3] are striking in their consistency with the PT band, with

a near linear falloff of GE/GM with Q2. These results provide compelling evidence that

there is no inconsistency between the LT and PT data once improvements in the RCs

and TPE effects are made.



Chapter 7

Imaginary Part of TPE Amplitude

Having discussed the dispersive (real) part of the TPE correction in unpolarized e-p

elastic scattering, I now switch to the absorptive (imaginary) part of this particular

correction. But, this time the scattering requires either the beam or target being polar-

ized. Polarizing the beam or target normal to the electron scattering plane gives direct

access to the imaginary part of the TPE amplitude from the measured asymmetry in

cross sections due to change of orientation of the polarization vector. Investigation of

such asymmetry, known as single spin asymmetry (SSA), is the subject matter of this

chapter. Before going into the technical details to calculate this observable quantity in

Sec. 7.3, I explain the defining equation in the next section followed by a review of the

estimated and measured values of this quantity in Sec. 7.2.

7.1 Single Spin Asymmetry (SSA)

The experimentally measured observable, transverse (normal) single spin asymmetry

defined by

SSA =
σ↑ − σ↓

σ↑ + σ↓ , (7.1)

where σ↑ (σ↓) are the cross section of e-p elastic scattering with either beam or target

spin polarized parallel (anti-parallel) to the normal, Sn, to the scattering plane formed
130
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by the three-momenta of the incident and scattered particles k and k′, respectively, as

Sn =
k × k′

|k × k′|
, (7.2)

gets its leading term from the imaginary part of the TPE amplitude. It has been first

shown by De Rujula et al. [131] that the time reversal invariance leaves zero contribution

to SSA from the single photon exchange transition amplitude Tγ, and the leading term

of beam/target normal SSA comes from the absorptive part of the TPE transition

amplitude Tγγ, in short Abs[Tγγ ], according to the relation

SSA =

Im

( ∑
spins

T ∗
γ · Abs[Tγγ ]

)
∑

spins
|Tγ|2

. (7.3)

Note there is a lot of inconsistency in the notation of this observable quantity in literature

but the convention of An for target normal SSA and Bn for beam normal single spin

asymmetry will be used in this thesis, particularly in the plots. However, the details of

the calculation of An and Bn will be discussed in Sec. 7.3. Before discussing the technical

details of the calculation, a brief review of the available data and model estimation is

presented in the next section.

7.2 Review of SSA

Since the SSA (both An and Bn) originates from the radiative correction TPE in its

leading order it is expected to be of order α, the fine structure constant of QED, following

Eq. (7.3). In addition to the factor α, Bn is also suppressed by the small factor me/E,

where me is the electron mass and E is the beam energy. As a consequence Bn is

expected to be of order 10−6 − 10−5 for beam energies in GeV range. On the other

hand, there is no additional suppression in An, and hence it is anticipated to be of

order 10−3− 10−2 for the same beam energy. Alongside the importance in exploring the

details of the TPE effect, Bn is particularly important in parity violating experiments
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Table 7.1: Beam normal single spin asymmetry Bn from various experiments, along

with the corresponding kinematics.

Exp. Name ELab
(GeV)

θLab
(◦)

θcm
(◦)

Q2

(GeV2)

Bn
(ppm)

Uncer.(ppm)
Stat. Sys.

Qweak (2020) [132] 1.149 7.9 14.6 0.0248 −5.195 0.067 0.082
HAPPEX (2012) [60] 3.026 6.0 16.3 0.099 −6.800 1.540

G0 (2011) [58] 0.362 108.0 122.7 0.220 −176.500 9.400
0.687 130.3 0.630 −21.000 24.000

G0 (2007) [59] 3.031 7.5 20.2 0.150 −4.060 0.990 0.630
9.6 25.9 0.250 −4.280 1.870 0.980

A4 (2020) [64]

0.315

34.1

43.1 0.032 −2.220 0.400 0.430
0.420 46.1 0.057 −6.880 0.530 0.420
0.510 47.8 0.082 −9.320 0.630 0.620
0.855 54.6 0.218 −7.460 1.220 1.550
1.508 64.4 0.613 −0.060 2.890 1.900

A4 (2017) [63] 0.315 145.0 152.6 0.220 −94.830 6.020 4.070
0.420 154.2 0.350 −99.550 6.730 4.630

A4 (2005) [62] 0.855 35 56.2 0.230 −8.520 2.310 0.870
0.569 50.4 0.106 −8.590 0.890 0.750

SAMPLE (2001)[133] 0.200 146.1 158.0 0.100 −15.400 5.400

that use longitudinally polarized lepton beams to measure the asymmetry due to the

spin flip. Usually that asymmetry is of order ∼ 10−6, while the beam normal SSA is also

of the same order. In parity violating experiments, Bn is usually considered as a false

asymmetry due to slow drift in rapid flip of beam polarization. As a requirement to

control the possible systematic error all parity violating experiments determine the SSA

as a by-product, which made Bn available at a large range of kinematics. Starting from

the work of SAMPLE collaboration [133] at beam energy E = 0.2 GeV and averaged

backward scattering angle in the laboratory frame θLab = 146◦, there has been several

measurements [58–64, 132] of Bn to date in a wide range of scattering angle. A summary

of the findings of those experiments along with the corresponding kinematics is shown

in Tab. 7.1. In a crude observation of the experimental results it is visible that Bn gets

suppressed with increasing energy, even though no definite trend and interplay between

energy and scattering angle can be concluded from the results displayed in the table.

The backward scattering, at relatively low energies, of Refs. [58, 63] finds Bn of order
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∼ 10−5 (maximum value reaches -176.5 ppm in Ref. [58]). Whereas the recent work

of A4 collaboration [64] in the near forward scattering (θLab ≃ 34.1◦) obtained Bn of

order 10−6 (-9.32 ppm at most) at the similar range of beam energies. Note that the

SAMPLE [133] result at ELab = 0.2 GeV and θLab = 146.1◦ is little incompatible with

the two other lower energy and backward angle measurements of Refs. [58, 63]. One

possible reason, that would be clear in the subsequent chapters, might be the absence of

contributions from the higher mass resonance states in the SAMPLE kinematics. The

relatively higher energy (1.15 ≤ ELab ≤ 3.031 GeV) experiments [59, 60, 64, 132] are in

the small scattering angles (except the single data of Ref. [64]), and are consistently in

the range of −6.80 to −4.06 ppm.

After the work of De Rujula et al. [131], the theoretical model estimations of Bn include

the work in Refs. [66–69]. The hadronic approximation with a doubly virtual Compton

scattering analogy of the imaginary part of the TPE correction is used in the calculation

of Pasquini and Vanderhaeghen in Ref. [66, 67]. In this calculation πN intermediate

state has been considered, along with the elastic nucleon, and the input were taken

from the MAID electroproduction amplitudes [134]. However, the model is believed to

be appropriate for the forward angle regions. The GPD approach, with a real Compton

scattering analogy (RCS) suitable for forward angles as well, by Gorchtein in Ref. [68]

found completely different outcomes even with an opposite sign to that obtained by

Pasquini and Vanderhaeghen [66, 67]. This is not surprising since the GPD approach

is found more useful in the high Q2 region. Later on, Gorchtein also used a Quasi

Real Compton Scattering (QRCS) formalism (more appropriate for backward angles) in

estimation of the observable Bn (also An). The results are still not coherent with that

of Refs. [66, 67].

On the other hand, unfortunately, the target normal single spin asymmetry, An, has

no available data yet for the proton case. However, the first non-zero value of An has

recently been measured for the neutron target, where the data was obtained from an

e−3He quasielastic scattering [135]. In that extraction the input of An for proton was
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required which had been taken from the theoretical estimation of Ref. [136] that was

calculated assuming only the nucleon intermediate state in the TPE box diagram.

7.3 Calculation of SSA

The one photon exchange transition amplitude Tγ can be substituted by the Born level

amplitude Mγ of Eq. (1.1) and Tγγ by the TPE amplitude Mγγ without loss of any

factor including the total-momentum conserving delta function since SSA is a ratio of

cross sections. Therefore, an equivalent form of SSA is

SSA =

Im

( ∑
spins

M∗
γ · Abs[Mγγ ]

)
∑

spins
|Mγ|2

. (7.4)

For convenience, reiterating the explicit form of the OPE amplitude Mγ here,

Mγ = e2 ūe(k
′) γρ ue(k)

1

Q2
ūN(p

′) Γρ(q) uN(p). (7.5)

Each of the terms of Eq. (7.5) are introduced in Sec. 1.1. The complex conjugation of

Mγ simply reverses the momentum of the virtual photon from q → −q in the hadronic

transition current operator. Thus M∗
γ takes the form

M∗
γ = e2 ūe(k) γρ ue(k

′)
1

Q2
ūN(p) Γ

ρ(−q) uN(p
′). (7.6)

The denominator of Eq. (7.4) is identical with the Born cross section for unpolarized e-p

elastic scattering since the spin components (beam/target) has no impact at the Born

level. The denominator of Eq. (7.4) can be written in terms of the invariant Mandelstam

variable s as ∑
spins

|Mγ|2 =
∑
spins

M†
γMγ =

Q4

(4π α)2
D(s,Q2), (7.7)
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where

D(s,Q2) = 2(2M4 +Q4 − 4M2s− 2Q2s+ 2s2)F 2
1 (Q

2) + 4Q4F1(Q
2)F2(Q

2)

+ Q2
[
M4 + 2M2(Q2 − s) + s(−Q2 + s)F 2

2 (Q
2)
] /

M2. (7.8)

Note that the terms of the order of electron mass squared m2
e are ignored in the ex-

pression. To get the absorptive part of the TPE amplitude one can again exploit the

Cutkosky cutting rules to put the intermediate lepton and hadron on-shell by the sub-

stitutions shown in Eq. (4.1b), while describing the dispersive method (Sec. 4.1). This

substitution provides the discontinuity, Disc(iMγγ) (or −2 ImMγγ), of the TPE box

diagram of Fig. 3.1, and hence the absorptive part of TPE amplitude −Abs[Mγγ ]. It

is important to note here that for the calculation of SSA one does not need to consider

the crossed-box diagram, which is purely a real quantity. However, the absorptive part

of the TPE amplitude in Eq. (7.4) can be expressed in the form

Abs[Mγγ ] = e4
∫

d3k1

(2π)32Ek1

ūe(k
′)γµ(/k1 +me)γνue(k)Wµν

(Q2
1 + λ2)(Q2

2 + λ2)
, (7.9)

once the Cutkosky cutting rules are applied. Here the loop integration has been car-

ried over the intermediate lepton four-momentum k1 = (Ek1 ,k1), where Ek1 and k1

are the intermediate lepton energy and three-momentum, respectively. The hadronic

tensor Wµν contains the information about the transition from proton to every possi-

ble intermediate states including the inelastic resonances and the elastic proton itself

by the absorption of a virtual photon at the first vertex of TPE Feynman diagram of

Fig. 3.1. As addressed before, SSA is calculated for each of the 4 and 3-star resonance

intermediate states of PDG 2018 [129] below 1.8 GeV of invariant mass W . Then I sum

up all the resonance contributions with the nucleons to get the total Bn and An. For

elastic nucleon and inelastic spin-1/2 resonances, Wµν takes the simplified form

Wµν = 2πδ(W 2 −W 2
i )ūN(p

′) Γµ
R→γN(pR,−q2) (/pR +W ) Γν

γN→R(pR, q1) uN(p), (7.10)
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where pR is the intermediate hadron four-momentum, i.e. pR = p + q1. The Dirac δ

function here sets the invariant mass W to a particular value Wi for individual resonance

states. For elastic intermediate state, W 2
i is substituted by M2, the proton mass squared.

On the other hand, in hadronic tensor for spin-3/2 resonances I use the Rarita-Schwinger

spinors for each intermediate states. Thus the tensor becomes

Wµν = −2πδ(W 2−W 2
i )ūN(p

′) Γµα
R→γN(pR,−q2)P3/2

αβ (pR) (/pR+W ) Γβν
γN→R(pR, q1) uN(p),

(7.11)

where P3/2
αβ is the spin-3/2 projection operator, associated with the Rarita-Schwinger

spinor, defined in Eq. (3.8).

Using Eqs. (7.6), (7.7), and (7.9), one can write SSA as

SSA =
4αQ2

8π2D(s,Q2)

∑
spins

∫
d3k1

2Ek1

1

(Q2
1 + λ2)(Q2

2 + λ2)
(7.12)

× ūe(k) γρ ue(k
′)ūe(k

′)γµ(/k1 +me)γνue(k)ūN(p) Γ
ρ(−q) uN(p

′)Wµν .

For the two different cases of beam and target normal SSA (Bn and An) the spin sum

will lead to two different expressions for SSA. Taking the spin sum one can express

Eq. (7.13) in a concise form in terms of the leptonic and hadronic tensors Lρµν and

Hρµν , respectively, as

SSA =
4αQ2

8πD(s,Q2)

∫
d3k1

Ek1

ImLρµνH
ρµν

(Q2
1 + λ2)(Q2

2 + λ2)
. (7.13)

For Bn, the leptonic tensor Lρµν contains the lepton polarization vector Sµ
n ≡ (0,Sn),

and takes the form

Lρµν =
1

2
Tr
[
(1 + γ5/Sn)(/k +me)γρ(/k

′
+me)γµ(/k1 +me)γν

]
. (7.14)

It is important to note that the imaginary part in Eq. (7.4) for Bn comes entirely from

this spin polarization Sµ
n-dependent term. However, Hρµν remains independent of the

polarization of the target particle, i.e. remains equivalent to the case of the unpolarized

e-p scattering. But it has two different expressions for spin-1/2 and -3/2 intermediate
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hadrons as the Rarita-Schwinger spinors are used for the spin-3/2 states, while the usual

Dirac spinors are used for spin-1/2 states. For spin-1/2 resonances, Hρµν becomes

Hρµν =
1

2
Tr
[
(/p+M)Γρ(−q)(/p

′ +M)Γµ
R→γN(pR,−q2)(/pR +W )

×Γν
γN→R(pR, q1)

]
δ(W 2 −W 2

i ). (7.15)

For spin-3/2 resonances it is given by

Hρµν = −1

2
Tr
[
(/p+M)Γρ(−q)(/p

′ +M)Γµα
R→γN(pR,−q2)P3/2

αβ (pR)(/pR +W )

× Γβν
γN→R(pR, q1)

]
δ(W 2 −W 2

i ). (7.16)

On the other hand, for An, the spin sum leaves the leptonic tensor Lρµν identical to that

of the unpolarized e-p scattering, as the beam is unpolarized in this case. Thus, for An,

Lρµν can be written as

Lρµν =
1

2
Tr [(/k +me)γρ(/k

′
+me)γµ(/k1 +me)γν ]. (7.17)

Unlike Bn, the hadronic tensor Hρµν contains the polarization vector Sµ
n in it’s expression

after the spin sum. For spin-1/2 resonances, Hρµν becomes

Hρµν =
1

2
Tr
[
(1 + γ5/Sn)(/p+M)Γρ(−q)(/p

′ +M)Γµ
R→γN(pR,−q2)(/pR +W )

× Γν
γN→R(pR, q1)

]
δ(W 2 −W 2

i ), (7.18)

whereas for spin 3/2 resonances, it is of the form

Hρµν = −1

2
Tr
[
(1 + γ5/Sn)(/p+M)Γρ(−q)(/p

′ +M)Γµα
R→γN(pR,−q2)P3/2

αβ (pR)

× (/pR +W )Γβν
γN→R(pR, q1)

]
δ(W 2 −W 2

i ). (7.19)

It is convenient to transform the phase space integral, over the intermediate electron

momentum k1, of Eq. (7.13) in terms of the Lorentz invariant Mandelstam variable

s. Defining the kinematics in the centre-of-mass (CM) frame (see Appendix A), the
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integration over d3k1 = |k1|2 d|k1| d cos θk1dϕk1 can be written as

∫
d3k1 = −

E2
k1

2
√
s
2

∫ s

M2

dW 2

∫ 1

−1

d cos θk1

∫ π

0

dϕk1 , (7.20)

where the symmetry of the integral over the variable ϕk1 and the CM frame relation for

the intermediate electron three-momentum |k1| ≃ Ek1 , with

Ek1 =
s−W 2 +m2

e

2
√
s

, (7.21)

from Eq. (A.3b) is utilized to get Eq. (7.20). Note that the negligibly small quantity of

electron mass squared m2
e is not ignored in the expression of Ek1 on purpose that will be

clarified, while discussing the Q2
1 and Q2

2 below. Use of Eq. (7.20) into Eq. (7.13) gives

SSA = − αQ2 Ek1

πD(s,Q2) 2
√
s

∫ s

M2

dW 2

∫ 1

−1

d cos θk1

∫ π

0

dϕk1

ImLρµνH
ρµν

(Q2
1 + λ2)(Q2

2 + λ2)
. (7.22)

In the CM frame, Q2
1 and Q2

2 can be expressed as

Q2
1 = 2

[
E Ek1 − |k| · |k1| cos θk1 −m2

e

]
, (7.23a)

Q2
2 = 2

[
E Ek1 − |k| · |k1|

(
cos θ cos θk1 + sin θ sin θk1 cosϕk1

)
−m2

e

]
, (7.23b)

where θ is the CM frame scattering angle and the beam energy E can be expressed in

CM frame in terms of the Mandelstam variable s as

E =
s−M2 +m2

e

2
√
s

, (7.24)

the magnitudes of the incident and intermediate electron momenta are, respectively,

|k| =
√

E2 −m2
e, (7.25a)

|k1| =
√

Ek21
−m2

e. (7.25b)

It is important to note that unlike the numerical evaluation of the real part of the TPE

in unpolarized e-p scattering, the small parameter of electron mass squared m2
e in the
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expressions of Q2
1 and Q2

2, especially in the denominator of Eq. (7.22), is not neglected

in this case. The consideration of massive lepton in the expressions of Q2
1 and Q2

2 is

useful to avoid IR divergence of the integral of Eq. (7.22) by keeping the virtual photons

away from the on-shell point, particularly for the calculation of SSA with resonance

intermediate states.

Similar to the calculation of the real part of TPE, a non-zero finite resonance width

with a Breit-Wigner distribution f(W 2) given in Eq. (5.42) is also considered in the

calculation of the imaginary part. To evaluate the W 2 integral of Eq. (7.22), the W 2

continuum is assumed as an infinite set of Dirac δ functions δ(W 2 − W 2
i ) for each of

the resonances. In practice, the total integral is evaluated at around 15-25 Wi points

depending on the maximum range of the integration. The obtained values for the set

of Wi points are interpolated using spline fit to get a functional form as F (W 2). The

function F (W 2), weighted by the Breit-Wigner distribution f(W 2), is again integrated

over W 2 to get SSA for a particular resonance, with a constant total decay width, at

the specific value of beam energy E and four-momentum transfer squared Q2.



Chapter 8

SSA Results and Discussions

In this chapter I will discuss the calculated results of single spin asymmetry for both

beam 8.1 and target 8.2 spin normal to the scattering plane at the kinematics of the

experiments discussed in Table 7.1.

8.1 Beam normal single spin asymmetry

Using the CLAS electrocouplings (Ah) input in the hadronic transition currents for the

excited resonance intermediate states with a finite constant total decay width and a

Breit-Wigner distribution, the beam normal single spin asymmetry Bn is calculated

numerically mostly for the beam energies corresponding to the kinematics of the per-

formed experiments to date. To analyze the effect of each of the considered resonances

in total Bn, Fig. 8.1 illustrates the calculated Bn coming from the individual reso-

nances at three different representative beam energies in the lab frame, ELab = 0.5

(Fig. 8.1(a)), 1 (Fig. 8.1(b)), and 3 GeV (Fig. 8.1(c)), as function of the CM frame scat-

tering angles θcm, ranging from ∼ 5◦ to 170◦. Among the resonances, the four spin-3/2

resonances ∆(1232)3/2+, N(1520)3/2−, ∆(1700)3/2−, and N(1720)3/2+ have sizeable

effects with some partial cancellation between the contributions. Both the lower mass,

spin-3/2 resonances ∆(1232)3/2+ and N(1520)3/2− have negative values of Bn, while

140
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Figure 8.1: Elastic nucleon and resonance intermediate states contributions to the
beam normal single spin asymmetry Bn, along with the total, as a function of the
centre-of-mass scattering angle θcm at three representative beam energies E: (a)

0.5 GeV, (b) 1.0 GeV, and (c) 3.026 GeV, in the target rest (Lab) frame.

they are of different isospin and opposite parity. On the other hand, the two other higher

mass, spin-3/2 states ∆(1700)3/2− and N(1720)3/2+, with opposite parity and different

isospin, have positive contributions to the total Bn. Therefore, no definite correlation

between the isospin and parity is observed in the imaginary part of the TPE amplitude

for the case of normally polarized electron and unpolarized proton elastic scattering. In

the forward angles it is basically ∆(1232)3/2+ and N(1520)3/2− that are noticeable,

while ∆(1700)3/2− and N(1720)3/2+ are the dominant contributors in the far-forward

to backward scattering angles, except for the lower energies where ∆(1232)3/2+ has

the highest magnitudes of Bn throughout the entire range of angles (Fig. 8.1(a)). It

is interesting to note that the elastic nucleon intermediate state gives negligibly small

effect in Bn, unlike the real part of the TPE amplitude in case of unpolarized e-p elastic

scattering. Overall, the net effect of all the resonances gives an oscillating Bn in the full
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range of θcm. Note that for lower beam energies only the tail effects, due to non-zero

finite width, of the higher mass resonances are accounted as the individual resonances

require a minimum energy to be excited from the nucleon intermediate state. For ex-

ample, at the beam energy ELab = 0.5 GeV, the maximum W values covered in the

numerical integration of Eq. (7.22) is
√
s = M2 + 2MELab ≃ 1.35 GeV. Therefore, only

the ∆(1232)3/2+ resonance contributes in the total Bn if the zero width approximation

is considered. But in case of a more realistic assumption of constant finite non-zero

resonance width all higher resonances will have the tail effect, and the total Bn is antic-

ipated to be modified from that with zero width approximation. The effect of non-zero
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Figure 8.2: Non-zero finite resonance width effect on the calculated total beam
normal single spin asymmetry Bn at three representative beam energies ELab: (a)
0.5 GeV, (b) 1.0 GeV, and (c) 3.026 GeV. The dashed red line corresponds to zero
width approximation and the solid blue line represents the results considering constant

total decay width of each resonance.

resonance width in the total Bn is explained in Fig. 8.2 by comparing the results using

zero width and constant total decay width approximations at the three same energy

values of ELab = 0.5 (a), 1.0 (b), and 3.026 (c) GeV. The consideration of constant

total decay width, taken from Refs. [54, 137], with a Breit-Wigner distribution signif-

icantly alters Bn for all three energies except the forward directions. In case of sharp

resonances, i.e. the zero width case, only the nucleon and ∆(1232)3/2+ intermediate

states are accounted for ELab = 0.5 GeV, and for ELab = 1.0 GeV resonance states up to

N(1650)1/2− are taken into account as the maximum allowed W is ∼ 1.66 GeV for this

case. The total exclusion of the two higher mass, spin-3/2 resonances ∆(1700)3/2− and

N(1720)3/2+, mostly originating from the ππN channel, significantly deviates Bn from

the real value especially in the far-forward to backward scattering angles. The large pos-

itive contributions from ∆(1700)3/2− and N(1720)3/2+ (Fig. 8.1(a,b)) forces the total
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Bn to oscillate and be positive in the backward direction as shown in Fig. 8.2(a,b) by

the solid blue lines, whereas the zero width result remains significantly negative through

out the entire range of θcm. At ELab = 3.026 GeV, all the resonance contributions are

accounted in zero-width approximation as well but the two scenario are still surprisingly

different at larger θcm (Fig. 8.2(c)). Contrary to the TPE correction to the unpolarized

cross section, Bn is significantly modified by the width effect, since it involves the real

excitation of resonances. Another possible reason for the dramatic influence of non-zero

finite width in Bn would be the insignificant contribution from the most stable nucleon

intermediate state, while it is the major contributor to the TPE cross section correction

δ.

8.1.0.1 Experimental values

Beginning from the measurement of Bn by SAMPLE collaboration [133] in 2001 there

have been several experiments performed both in the forward and backward scattering

angles to date. One such measurement was performed by Qweak experiment [138] in

JLab Hall-C as part of the determination of the weak charge of proton in parity vio-

lating experiment with longitudinally polarized beam of electrons. The experiment was

initiated with the electron beam of energy E = 1.149 GeV and a small four-momentum

transfer squared ⟨Q2⟩ = 0.0248 GeV2 corresponding to a centre-of-mass scattering an-

gle θCM = 14.62o (θLab = 7.9o). Figure 8.3 represents the calculated Bn at the beam

energy of Qweak experiment as function of θCM ranging up to the backward angle of

1700 (Fig.8.3(a)). The right panel is a magnified version in θcm contrasting the Qweak

data with the prediction well. The red solid line considers only the elastic nucleon in-

termediate state which has a very tiny effect. The total value of Bn coming from the

inelastic spin-1/2 and -3/2 resonance states along with nucleon itself is shown by the

blue solid line. The Qweak value of Bn is coherent in sign with the calculated value

presented here. Even though the magnitudes are of the same order but the difference

is still non-negligible. In the forward angles, Bn flips sign and reaches a peak value of

about ∼ 80ppm at around θCM ≃ 90◦. Note that the resonance states considered in
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Figure 8.3: Beam normal single spin asymmetry Bn as a function of the centre-
of-mass scattering angle θcm at the kinematics of the Qweak [138] experiment. The
red line represents the Bn from nucleon intermediate state alone, while the blue line
accounts all the 4 and 3-star, spin-1/2, and -3/2 resonances along with the elastic
nucleon. The data point is the measured Bn by Qweak collaboration. A magnified

version is presented in the right panel.

calculation of the imaginary part of the TPE amplitude covers the πN, ππN , and ηN

decay channels as was considered in the real part of the TPE calculation. Thus the

results presented here has the impact of resonances with the decay channels beyond

πN .

Earlier in 2007, the HAPPEX collaboration [61] at Hall-A, JLab has published the mea-

sured value of Bn = −6.58 ± 1.47 (stat) ± 0.24 (syst) ppm at higher beam energy

ELab ≃ 3 GeV and forward angle θcm ≃ 16◦. At the similar kinematics G0 collabora-

tion [59] also performed the parity violating e-p scattering experiment and measured

Bn in 2007. Later in 2011, they measured Bn at smaller values of beam energies

ELab = 0.362 and 0.687 GeV but in the backward angles. Figure 8.4 compares the

calculated result with the measured values from these two experimental groups. At

the forward angles and ELab ≃ 3.0 GeV, the measured Bn from G0 experiment is in

agreement within the uncertainty range whereas the HAPPEX data is well below the

estimated value of my work. The G0 data at ELab ≃ 0.362 GeV and θcm ≃ 123◦ are

of the same order and sign even though the magnitudes are not within the error bar

of the measured value [8.4(c)]. Surprisingly, the backward angle G0 data at the beam

energy ELab = 0.687 GeV is of negative sign and relatively small magnitude whereas

our calculation predicts it to be of positive sign with significantly higher magnitude
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Figure 8.4: Beam normal single spin asymmetry Bn as a function of the centre-
of-mass scattering angle θcm at the kinematics of (a) HAPPEX Collaboration [60],
(b-d) G0 Collaboration [58, 59]. The red line represents the nucleon intermediate
state contribution, while the blue line accounts all the 4 and 3-star, spin-1/2, and

-3/2 resonances along with elastic nucleon.

[8.4(d)]. It is important to note that the sign flip of Bn at θcm ≳ 40◦ is due to the tale

effect of the two spin-3/2 resonances ∆(1700)3/2− and N(1720)3/2+, corresponding to

the ππN decay channel, which has very large contribution in the backward angles.

Starting from the 2005 measurement the A4 collaboration has initiated series of exper-

iments [62–64], including the most recent one in 2020 [64], both in the forward and

backward angles but mostly at smaller beam energies. The measurements in 2005 [62]

and 2020[64] are in the near-forward angle around θcm ≃ 50◦, while the 2017 measure-

ment considered the backward angle θcm ≃ 150◦. Considering the magnitude, the most

recent measurement from A4 at θcm ≃ 50◦ underestimates Bn according to this numer-

ical evaluation as shown in Figs. 8.5(a-c,e). The backward angle data from A4 [63] is

comparatively closer to the calculated value for ELab = 0.315 GeV (Fig. 8.5(a)), while for
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Figure 8.5: Bn vs. θcm plots at the kinematics of the PVA4 Collaboration [62–64].
The filled circles are the most updated data in the forward angles from Ref. [64], filled
squares in the backward angles are from Ref. [63], and the filled triangles are from

Ref. [62].

ELab = 0.420 GeV the scenario is even more frustrating (Fig. 8.5(b)). The calculated Bn

of Fig. 8.5(c-f) flips the sign, due to the interplay between the effect of higher and lower

mass resonances, near to the scattering angle θcm ≃ 50◦ where A4 collaboration [62, 64]

has performed their measurement. Overall, in a naked eye, the calculated curves seem

to be shifted, perhaps due to any missing effect, from the measured points along the

horizontal axis. It is important to note here that the effect of the spin-5/2 resonances
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is left as an outstanding task which might play a significant role in evaluation of Bn.

8.2 Target normal single spin asymmetry (An)

I begin this section with an illustration of the numerically calculated results of target

normal single spin asymmetry An at the beam energies corresponding to the first non-

zero experimental determination of the quantity [135], but for neutron target, in addition

to the lower energies ELab = 0.5 and 1.0 GeV. Figure 8.6 shows the contribution of elastic

nucleon and nine spin-1/2 and -3/2 excited resonance intermediate states to the total An

along with the net result. As anticipated, An is in the range of sub-percent to percent

level, and keeps increasing with beam energy in the backward direction contrary to Bn.

To further compare with Bn, the nucleon intermediate state alone has significant impact

on the total An for any value of E. While there is an overall oscillation of An between

the negative and positive values in the entire range of scattering angles, a closer look

at the plots of Fig. 8.6 shows that the magnitude of the negative peak remains roughly

constant but the negative half cycle shrinks in width with increasing beam energy.

It is interesting to note that in the forward angles, θcm ≲ 20◦, the only sizeable contribu-

tion comes from ∆(1232)3/2+. The other resonance and elastic nucleon effect becomes

comparable with ∆(1232)3/2+ at relatively larger scattering angles. However, consid-

ering the total range of θcm, ∆(1232)3/2+ is still the highest contributor among all the

resonances. At E = 0.5 GeV, it even exceeds the nucleon contribution in magnitude but

with negative sign in the entire range of θcm. As energy increases, An from ∆(1232)3/2+

starts oscillating (Fig. 8.6(b,c)) as function of the scattering angle θcm with a reduced

magnitude. Figure 8.6(d,e) shows, it again exceeds the elastic nucleon contribution at

θcm ≳ 80◦ and 60◦ for ELab ≃ 2.4 and 3.6 GeV, respectively.

Surprisingly, unlike Bn and the real part of TPE correction, An from the spin-3/2 state

N(1520)3/2− is relatively insignificant for any value of energy E in the entire range of

θcm. The two other spin-3/2 resonances ∆(1700)3/2− and N(1720)3/2+ have noticeable
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Figure 8.6: Elastic nucleon and individual resonance intermediate state contribu-
tions to the target normal single spin asymmetry An, along with the total, as a function
of θcm at five representative beam energies E: (a) 0.5 GeV, (b) 1.0 GeV, (c) 1.245 GeV,

(d) 2.425 GeV, and (e) 3.605 GeV, in the Lab frame.

contributions, especially for smaller E, but they are of opposite sign. The only non-

negligible spin-1/2 state N(1535)1/2− significantly negates the net positive values of An,

for E ≳ 1 GeV, from rest of the states in the far-forward to backward angles. Overall,

the higher resonances beyond ∆(1232)3/2+ almost cancel out their net effect. As a

consequence, the sum of elastic nucleon and ∆(1232)3/2+ contributions seems to be a
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good approximation in evaluation of An.

Note that the width effect of the resonances in An is found minimal above the threshold

energies of all the resonance excitation. Therefore, the discussion is left for Appendix. D.

8.2.0.1 Comparison with other sources

The only available measurement of An, that shows non-vanishing TPE effect in the

scattering of electron off a polarized 3He target in the quasi-elastic region, for neutron

was performed in Jefferson Lab Hall A [135]. The term “quasi-elastic scattering” im-

plies that the scattering is from one of the nucleons within the nucleus. However, the

experiment scattered unpolarized electron beams of energies ELab = 1.245, 2.425, and

3.605 GeV by the 3He target polarized normal to the scattering plane. The scattered

electrons were detected at the scattering angle θLab = 17◦ corresponding to three dif-

ferent CM angles θcm ≃ 32◦, 41◦, and 48◦ for the three respective beam energies. Note

that the experiment finally determined the asymmetry An for the target neutron case,

using a calculated input of An = (0.01 ± 0.22)%, (0.24 ± 2.96)%, and (0.62 ± 1.09)%,

for the target proton, from Ref. [136] at the above mentioned beam energies. It is im-

portant to address here that the theoretical estimation [136] of An, that has been used

as input in experimental determination of An, considered only the elastic intermediate

state contribution.

Table 8.1 contrasts the numerical results obtained in this work at the kinematics of the

JLab Hall A experiment [135] and the input An used in Ref. [135] from the source [136].

It is interesting to note that the estimation of An (proton target) from Ref. [136], as-

suming only the elastic nucleon intermediate state contributes, agrees very well with

our calculated values considering nucleon intermediate state alone at ELab = 1.245 and

2.425 GeV. But the inclusion of the resonance intermediate states alters An significantly.

Hence, the calculated value in Ref. [136] seem to be an overestimation even though the

calculated result of this work is still within the estimated large uncertainty range of
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Table 8.1: A comparison of the target normal single spin asymmetry An (for pro-
ton target) from elastic nucleon (N), and sum of nucleon (N) and all the resonance
intermediate states at the kinematics of Ref. [135]. The last two columns show the
values used as input in Ref. [135] from the source [136] and third columns are the

corresponding results calculated in this work.

ELab An(This Work) An( [135, 136])
(GeV) Intermediate State

N N + Resonances N N + Resonances
1.245 0.008 -0.089 0.01± 0.22 -
2.425 0.173 0.076 0.24± 2.96 -
3.605 0.400 0.501 0.62± 1.09 -

JLab Hall A experiment [135]. Coincidentally for ELab = 3.605 GeV, the used value of

proton An in Ref. [135] is close to our total An including all the resonances.
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Conclusions

In this study we have applied the recently developed dispersive formalism of Ref. [46]

to compute the TPE corrections to elastic electron-proton cross sections, including for

the first time contributions from all JP = 1/2± and 3/2± excited intermediate state

resonances with mass below 1.8 GeV. For the resonance electrocouplings at the hadronic

vertices we employed newly extracted helicity amplitudes from the analysis of CLAS

meson electroproduction data at Q2 ≲ 5 GeV2 [54–56].

To assess the model dependence of the resonance calculations, we investigated the effects

of finite Breit-Wigner resonance widths, comparing the TPE results for the point-like,

constant width and variable width approximations. We found that for the point-like

case kinematical thresholds produce artificial cusps at specific values of Q2 and ε, how-

ever, these are effectively smoothed out across all kinematics when a nonzero width is

introduced. The effect of using a constant or dynamical width was less dramatic, with

the latter reducing somewhat the magnitude of some of the low-lying resonances, such

as the ∆(1232), at low Q2 ∼ 1 GeV2 and at backward angles.

We also examined the spin, isospin and parity dependence of the resonance contributions

to the TPE amplitudes, finding large cancellations between the (negative) isospin I =

1/2 and the (positive) I = 3/2 intermediate states, as well as between the parity-

even and parity-odd contributions. This behaviour is mostly driven by the dominance
151
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of the (positive) ∆(1232)3/2+ and (negative) N(1520)3/2− contributions to the TPE

amplitudes, especially at larger Q2 values.

More specifically for the individual hadronic intermediate states, at low Q2, Q2 ≲
1 GeV2, the nucleon elastic state dominates, with contributions from excited states

there mostly negligible. For Q2 ≈ (1−−2) GeV2, the ∆(1232) resonance starts to play

a more important role, and here the sum of N+∆(1232) provides a good approximation

to the total TPE amplitude. At still larger Q2, the N(1520) gives the largest contri-

bution among the higher-mass resonances, exceeding even the nucleon component for

Q2 ≳ 4 GeV2. The higher-mass resonances each grow with increasing Q2, but enter with

different signs and largely cancel each other’s contributions. Compared to the nucleon

elastic component alone, the resonance excitations give rise to an overall enhancement

of the TPE cross section correction for Q2 ≳ 3 GeV2.

The excited state resonance contributions generally provide some improvement of the

phenomenological description of observables that are sensitive to TPE corrections, such

as the ratios of e+p to e−p elastic cross sections measured recently in dedicated exper-

iments at Jefferson Lab [116], Novosibirsk [115] and DESY [117]. Unfortunately most

of these data are in kinematic regions where resonance contributions are not large, and

in some cases the results are consistent with no TPE effect within the experimental

uncertainty.

Among the inelastic processes involving the imaginary part of TPE amplitudes, the

beam normal single spin asymmetry Bn has minimal contribution from the elastic

nucleon intermediate state of TPE box diagram. At the lower beam energies (e.g.

ELab = 0.5 GeV) ∆(1232)3/2+ is the major contributor which is partially negated by

the other isospin-3/2 and spin-3/2 state ∆(1700)3/2−. The next two more significant

contributors (spin-3/2) N(1520)3/2− and N(1720)3/2+ are again nullifying their net

effect. With increasing beam energies, ∆(1700)3/2− and N(1720)3/2+ become domi-

nant having the same sign (positive), while the combined negative effect of ∆(1232)3/2+

and N(1520)3/2− partially cancels out the effect of the two earlier states. However, for

Bn, no definite correlation is observed between different spin, isospin and parity states.
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Overall, the calculated total Bn falls down from the order of ∼ 10−4 to 10−6 in the range

of ELab ≃ 0.5 to 3.0 GeV respectively.

In case of An, the higher resonances beyond ∆(1232)3/2+ almost have zero net effect.

But, interestingly, unlike Bn (like δ), the elastic nucleon has significant contribution in

the entire range of energy, ELab ≃ 0.5. to 3.6 GeV, considered in this work. The sum of

nucleon and ∆(1232)3/2+ contribution is found nearly the net An. Again, contrary to

Bn, the peak value of An against θcm increases with energy by ∼ 10 times in magnitude

in the range from ELab = 0.5 to 3.6 GeV.

Improvements on the theoretical front should involve exploration of the effects from

spin-5/2 intermediate resonant states, as well as incorporation of nonresonant contri-

butions [52] at larger Q2 values. For the real part of TPE effect, future precision

measurements at higher Q2 values and backward angles (small ε), where the TPE ef-

fects are expected to be most significant, would be helpful for better constraining the

TPE calculations. This would provide a more complete understanding of the relevance

of TPE in the resolution of the proton GE/GM form factor ratio puzzle, and better

elucidate the role of multi-photon effects in electron scattering in general.



Appendix A

Scattering Kinematics in CM frame

In CM frame, e-p elastic scattering kinematics are defined below:

k = (E, 0, 0, |k|), (A.1a)

p = (Ep, 0, 0, −|k|), (A.1b)

k′ = (E, |k1| sin θ, 0, |k1| cos θ), (A.1c)

k1 = (Ek1 , |k1| sin θk1 cosϕk1 , |k1| sin θk1 sinϕk1 , |k1| cos θk1). (A.1d)

Here

|k| =
√

E2 −m2
e, (A.2a)

Ep =
√
k2 +M2, (A.2b)

|k1| =
√

E2
k1
−m2

e. (A.2c)

The incoming and intermediate electron energies E and Ek1 can be written in terms of

the invariant Mandelstam variable s as

E =
s−M2 +m2

e

2
√
s

, (A.3a)

Ek1 =
s−W 2 +m2

e

2
√
s

. (A.3b)
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In the massless electron limit they get the simplified forms

E =
s−M2

2
√
s

, (A.4a)

Ek1 =
s−W 2

2
√
s

. (A.4b)

The squared four-momentum transfers Q2, Q2
1, and Q2

2 can also be given the form using

s as

Q2 = −q2,

= −(k − k′)2,

= 2(E2 −m2
e)(1− cos θ),

=

[
(s−M2 +m2

e)
2

2s
− 2m2

e

]
(1− cos θ). (A.5)

In the massless electron limit Q2 becomes

Q2 =
(s−M2)2

2s
. (A.6)

The two other virtual photon four-momentum transfers squared can be derived as

Q2
1 = −q22,

= −(k − k1)
2,

= 2k.k1 − 2m2
e,

= 2

[
E Ek1 − |k| · |k1| cos θk1 −m2

e

]
, (A.7a)

Q2
2 = −q22,

= (k1 − k′)2,

= 2k′.k1 − 2m2
e,

= 2

[
E Ek1 − |k| · |k1|

(
cos θ cos θk1 + sin θ sin θk1 cosϕk1

)
−m2

e

]
. (A.7b)
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Since for the on-shell intermediate massless electron, Ek1 = |k1| one can write Q2
1 and

Q2
2 in a simplified form as

Q2
1 = 2EEk1 (1− cos θk1), (A.8a)

Q2
2 = 2EEk1 (1− cos θ cos θk1 − sin θ sin θk1 sinϕk1). (A.8b)



Appendix B

Generalized form factors

B.1 Imaginary part of form factors for ∆(1232)3/2+
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Figure B.1: Imaginary part of the form factors F ′
1, F ′

2, and G′
a as a function of

energy E for ∆(1232)3/2+ intermediate state at Q2 = 3 GeV2. Note that the energy
is in logarithmic scale.
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B.2 Imaginary part of form factors for all resonances
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Figure B.2: Imaginary part of the form factors F ′
1 (top row), F ′

2 (middle row), and
G′

a (bottom row) for all the resonance intermediate states as a function of energy E
at fixed Q2 = 1 GeV2 (left panel) and Q2 = 5 GeV2 (right panel).
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B.3 Real part of the form factors
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Figure B.3: Real part of the form factors F ′
1 (top row), F ′

2 (middle row), and
G′

a (bottom row) for N(1440)1/2+, N(1535)1/2−, ∆(1620)1/2−, N(1650)1/2−, and
N(1720)1/2+ resonance intermediate states as a function of energy E at fixed Q2 =

1 GeV2 (left panel) and Q2 = 5 GeV2 (right panel).
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Figure C.1: Comparison of the IR finite TPE correction δ (in %) using the treat-
ments of (a) Maximon and Tjon [76], and (b) Mo and Tsai [75], to separate the IR
divergent part from the hard TPE. The chosen kinematics are the same as Fig. 6.6,
i.e. at Q2 = 0.2 GeV2 (green dashed line), 0.5 GeV2 (dark red long-dashed), 1 GeV2

(red solid), 3 GeV2 (orange dot-dashed), 4 GeV2 (black dotted), and 5 GeV2 (blue
dashed).

Figure C.1 contrasts the model dependence of the soft photon treatment in total TPE

correction δ, including the effect of elastic nucleon and all the discussed resonance in-

termediate states. The left panel shows the correction using the Maximon-Tjon [76]

method of treating the soft photon limit, while the right panel represents the same

from the Mo-Tsai [75] prescription. The later treatment enhances the magnitude by

∼ 1.0 − 1.2% in the backward angles (ε ≲ 0.1) for the highest value of Q2 = 5 GeV2.
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The nonlinearity in δ vs. ε curve is also increased with the second method of IR di-

vergence control. Therefore, it is obvious that one needs to be cautious during any

reanalysis of e-p scattering data regarding the soft photon treatment.
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Figure D.1: Effect of constant total decay width and zero-width approximation of
resonance intermediate states of TPE box diagram in An. The red dashed lines rep-
resent the results assuming zero-width approximation and the blue dot-dashed lines
correspond to that assuming a constant total decay width in Breit-Wigner distribu-

tion.

The width effect of the resonances in An is shown in Fig. D.1. Clearly the effect is

negligible above the threshold energies of all the resonance excitation (Fig. D.1(b-d)).
162
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However, for lower beam energies (e.g. ELab = 0.5 GeV), the difference between the

zero-width and a constant total decay width with a Breit-Wigner distribution cases is

non-negligible as the effect of most of the higher resonances are absent in the zero-width

approximation. The tale effect of the higher resonances (beyond ∆(1232)3/2+) alters

An from the sharp resonance consideration, as shown in Fig. D.1(a).
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