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Abstract

The extraction of hadron structure information from precision electron-proton elastic
scattering experiments to date requires precise knowledge of the electromagnetic inter-
action via multi-photon exchange. The proton structure-dependent radiative correction
two-photon exchange (TPE) is a promising source to resolve the existing discrepancy
in the measurement of the proton electric to magnetic form factor ratio p,Gg/Gu,
but contains significant uncertainty in its calculation. We use a recently developed
dispersive approach to compute TPE corrections to elastic electron-proton scattering,
including contributions from hadronic J* = 1/2* and 3/2* resonant intermediate states
below 1.8 GeV. For the transition amplitudes from the proton ground state to the reso-
nant excited states we employ new exclusive meson electroproduction data from CLAS
at Q% <5 GeV?, and assess for the first time the effects of finite widths for the Breit-
Wigner resonances. Among the resonant states, the N(1520)3/2~ becomes dominant for
Q? 2 2 GeV?, with an opposite sign compared to the A(1232)3 /2" correction, leading to
an overall increase of the TPE correction to the cross section at higher Q? values. The
results are in good agreement with recent e™p to e p cross section ratio and polariza-
tion transfer measurements, and provide a partial resolution of the electric to magnetic
form factor ratio discrepancy. This same model is also applied to the inelastic processes
involving the imaginary part of TPE amplitudes, as seen in single-spin asymmetries,

with either beam or target being polarized normal to the scattering plane.
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Chapter 1

Introduction

Scattering experiments have been a long-standing tool in search of the fundamental
constituents of matter since its early use by Ernest Rutherford to reveal the existence of
dense and positively charged nucleus at the centre of atom in 1911 [1]. With the rapid
development of both theory and experiment, it was soon realized that the constituents
of the nucleus (i.e. nucleons) themselves have internal structure. The magnetic mo-
ment of a point-like (structureless) proton is supposed to be p, = un, pun being the
nuclear magneton, and for chargeless neutron (point-like) p, should be zero. But the
measured magnetic moments of proton and neutron are found to be p, ~ 2.79ux and
pn =~ —1.91uy, respectively, which indicates the substructure of nucleons. However, the

concrete details of nucleon structure are yet to be unveiled.

With the electron being a fundamental particle, elastic electron—nucleon scattering has
become one of the most indispensible tools to probe the internal structure of nucleons
through the determination of their electromagnetic form factors. For many decades the
proton electric, Gg(Q?), and magnetic, G/ (Q?), elastic form factors have been measured
in unpolarized scattering experiments using the Rosenbluth separation technique [2-4].
These experiments found that the ratio u, Gg/Gar hovered consistently around 1 over a
large range of the four-momentum transfer squared, Q?, up to 8.83 GeV2. More recently,

measurements of the electric to magnetic form factor ratio with significantly reduced

1
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uncertainties were performed at Jefferson Lab using the polarization transfer technique,
and found in contrast a linear fall-off of the ratio from 1 with increasing () in the range
up to Q% ~ 8.5 GeV? [5-9]. Proper account of the two-photon exchange (TPE) radiative
correction in cross section data is expected to resolve the discrepancy of y, G /Gy ratio
measurements [10, 11]. Before diving into the details of the TPE radiative correction, I
present here a brief overview of the methods of proton structure information extraction

from electron—proton elastic scattering.

To begin the discussion about electron-proton elastic scattering, it is a good approxima-
tion to assume the interaction is mediated by the exchange of a single virtual photon.
In principle, the electromagnetic interaction of e-p involves an infinite series of virtual
photons exchange, but each additional photon introduces two new vertices which in
turn brings in roughly the factor of fine structure constant o = e*/4r ~ 1/137 in the
corresponding amplitude. Therefore, apparently the series can safely be attenuated at
the one photon exchange approximation, or Born approximation, with a fairly precise
prediction of the measured observables. However, the precision level achieved in mea-
surement with the aid of the modern experimental facilities compels the theorists to
look for the higher order effects, which will also be discussed in subsequent chapters, in
the observable quantities. In the next section I explain e-p scattering kinematics within
the Born approximation before going for the details of the methods of revealing the

proton’s internal structure.

1.1 Scattering kinematics

The kinematics of the elastic electron—proton scattering process are shown in Fig. 1.1
for the one-photon exchange approximation. Here an electron with four-momentum
k = (E, k) is scattered from a proton initially at rest, p = (M, 0) in the target rest frame,
to an electron in the final state with four-momentum k&’ = (E’, k’). The transferred four-
momentum from the electron to the proton is ¢ = k — &/, and the proton recoils with

four-momentum p’ = p + q.
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FIGURE 1.1: Elastic scattering of an electron (with four-momentum k) from a proton
(p) to a final state electron (k') and recoil proton (p'), with ¢ = k — k' = p’ — p the
four-momentum transfer, in the Born approximation.

For the one-photon exchange (Born approximation), the amplitude M., for scattering

an electron from a proton can be written as [12]
M, = —e*j, = J*, (1.1)

where e is the charge of the proton, and the characteristic Lorentz invariant, ¢2, of
the process can be written in terms of the electron energy F and scattering angle 6
as ¢> = —4EFE'sin?(0/2). For space like virtual photon, it is convenient to introduce
the positive quantity @Q* = —¢®. The electron transition current is given by j, =
(k') v, u(k), where the Dirac spinor for an electron of mass m and four-momentum k
is u(k) = (VE+m,o - k/vVE+m) x,, with o and y, being the standard Pauli spin

matrices and the two component spinors, respectively. The proton transition current is

J* =u(p") " (q) u(p), where I'*(q) is the current operator at the hadronic vertex.

1.2 Hadronic current operator parametrization

The hadronic current operator I'* could be replaced by +* if it were a point-like par-
ticle. But, for the extended structure of the proton, it has to be parametrized using
appropriate form factors that take into account the proton’s internal structure. Since
I'* has to be a Lorentz four vector, hence this should be constructed in a general form

using the relevant Lorentz four vectors p#, p, ¢*, and the Dirac matrices, v* at the
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proton-photon-proton vertex as [13-15],

" = fint + fog" + fsp* + fap™. (1.2)

Parity conservation does not allow the terms involving 7° in I'*. The Lorentz scalar
coefficients f; have inter dependency. Conservation of momentum, ¢* = p'* — p*, at
the hadronic vertex allows to set fo = 0. For the on-shell external legs of hadron, the
Ward identity, g#J"* = 0, leaves f3 = f4. Therefore, it is left with only two independent

Lorentz vectors and one can write the hadronic current operator as,

I = Fiy" 4+ Fy(p +p')". (1.3)

Here one can choose the Dirac F; and Pauli F5 form factors as the Lorentz scalar
coefficients. For a free on-shell particle, F} and F, depend only on Q?. Using the
Gordon identity,

() (@) ulp) = a(p') |52 TP (14

hadronic current can also be written as,

(1.5)

where M is the proton mass.

1.3 The proton structure information from cross sec-

tion measurement

The differential cross section for single photon exchange is proportional to the square

of the scattering amplitude M,,. Plugging the expression of I'* in M., the differential
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cross section in the Born approximation can thus be written as

d_J — aE’ ? |M |2
i), Qe )

=  OMott |:(F12 +TF22) + 2?\42

2

(Fy + F)” tan?(6/2) |, (1.6)

where 7 = Q?/4M? and oyjoi; corresponds to the cross section if the target proton were
a structureless point particle instead. Ignoring the recoil of the proton, i.e. in the limit
of M = oo (or, E < M), oyt can be given by

402 E" cos?(0/2)
EQ*

. (1.7)

OMott =

Therefore, it is evident that the structure information of proton contains entirely within
the form factors F;(Q?) (i = 1,2). In other words, for a point like Dirac target particle
the form factors would take the form Fj(Q?) = 1 and F5(Q?) = 0, so that the cross
section reduces to oy in the limit of M — co. Note that the form factors F;(Q?) and

F»(Q?) are normalized such that
Fi0)=1,  F(0)=1.79, (1.8)

i.e. probing with the long wavelength photons (Q* — 0) one does not see any internal
structure of proton but only a point particle of charge e and magnetic moment p, = 2.79.
The physical meaning of the form factor can be better understood with the convention
of the Sachs electric and magnetic form factors Gz and G, which are defined as linear

combinations of the Dirac and Pauli form factors [16, 17],

Gp(Q%) = Fi(Q*) — TFR(Q?), Gu(Q%) = F1(Q%) + F»(Q?). (1.9)

In Breit frame! and in the non-relativistic limit of Q? < M?, the form factors G and

Gj; can be interpreted as the Fourier transform of the spatial charge and magnetization

IThe Breit frame or the brick wall frame is the special Lorentz frame where p’ = —p. In this frame
the scattered electron does not transfer any energy to the target proton.
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distribution, respectively. On the basis of such interpretation, G and G); are normal-
ized to the charge and magnetic moment of proton, respectively, in the limit of Q? = 0,
i.e.

Ge0)=1,  Gu(0) = . (1.10)

One specific advantage of using the Sachs electric and magnetic form factors is that the
cross section does not have any cross terms of the form factors. The differential cross

section, diagonal in G and G}y, is given by

do omott [GE(Q?) + TG, (Q%)]
— ] = , (1.11)
sy /, e(l+71)
where the dimensionless quantity
e=[1+2(147)tan?(6/2)] ", (1.12)

is the virtual photon polarization. It is useful to introduce the reduced (Born) cross

section oo™, defined by

oo =2 (147) () /o = cCHQ@) + 76H(@P), (113)
0

for future use in the coming sections. Equation (1.11) is known as the Rosenbluth or

the Longitudinal-Transverse (LT) separation formula [18].

1.3.1 Form factors from Rosenbluth separation formula

The Rosenbluth separation formula of Eq. (1.13) is very useful in extraction of the
internal structure of proton. Using this form of the reduced cross section, the electric
(Gg) and magnetic (Gjr) form factors, hence the internal structure of proton, can be
extracted by measuring o5°™ in unpolarized e-p elastic scattering at a specific value of
Q? by varying the scattering angle 6 and the beam energy E. A plot of the measured

reduced cross section as a function of ¢ at fixed Q? is expected to be a straight line

following Eq. (1.13), interception of which provides 7 times the square of the magnetic
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FIGURE 1.2: Extraction of the electric (Gg) and magnetic (Gjs) form factors from
the reduced Born cross section agom using the Rosenbluth (LT) separation method.
The data points are taken from Ref. [22] and the line is a linear fit to the data.

form factor G, and the square of the electric form factor Gg can be obtained from
the slope. This method of Rosenbluth (LT) separation has been traditionally used for
several decades to measure the form factors Gg and G of proton [3, 4, 19-21]. For
clarity, one such measurement from JLab [4] is illustrated in Fig. 1.2. Here the reduced
cross section is measured at several € points corresponding to different scattering angle
and beam energies but at fixed Q* = 2.64 GeV2. The magnetic form factor can be
obtained from the interception point with the vertical axis as addressed in the plot.

The slope of the fitted line gives G% for that particular Q? value.

It is important to address that the experimentally measured cross sections are not the
Born cross section, rather it contains the contributions from the exchange of more than
one photon, known as radiative corrections. For the earlier scattering experiments with
low Q?, it might be acceptable to ignore the higher order (in a) correction terms, but the
high precision experiments to date [3, 4, 19-21] reaching Q* ~ 9.0 GeV? require to take
into account of the cross section corrections coming from at least the next to leading
order Feynman diagrams. Before exploiting Eq. (1.13) during the extraction of the

form factors it is required to eliminate the higher order corrections from the measured
do

cross section [ —
(%

> and isolate the measured Born cross section so that the real
meas

meas

o
form factors can be obtained. In reaching that objective, m) (or, oR*) can
meas

be expressed using a correction term relative to the Born (leading order) cross section
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d
(d_SU)) (or, oR°™) as
0

(i) s (3_;)0(1 + o) (1.14)

where 0 is the relative cross section correction coming from every possible Feynman
diagrams, in principle. Comparing the measured cross section with the left side of
Eq. (1.14) and plugging in the calculated higher order cross section corrections ¢ on the
right one can separate the measured Born cross section from the total. However, several
independent measurements [2, 3, 19, 23-28] of Gg and G, using Rosenbluth separation
method found consistently the same asymptotic behaviour for the ratio ,Gg/Gpy ~ 1
at large Q% in coherence with the normalizing condition of Eq. (1.10) at Q? = 0 GeV?2.
Figure 1.3 illustrates the scenario with the data extracted by Walker et al.[2] (open blue
squares), Andivahis et al. [3] (open red circles). The black triangles are from the global
analysis of Walker et al. [2] with the original data source from Refs. [23, 24, 24-28]. All
the data points are close to the scale of p,Gg/Gy = 1, within the uncertainty range,

up to Q* = 8.83 GeV? even though there are some scatter among the values.

1.3.2 Alternative measurement of the form factors

It is a common and basic practice in science to reproduce the results of the observable
quantities in variety of methods having its own dependencies, both in theory and exper-
iment. One such alternative method to measure the ratio of the form factors p1,Gg/Gu
is to scatter the longitudinally polarized electron (€) beam from an unpolarized proton
target (p) and detecting the polarization transfer to the recoiled proton p. In the Born
approximation of é-p — e-p elastic scattering, the scattering cross section with the re-
coiled proton being polarized longitudinally with respect to its recoiling momentum is

given by [12, 29|

do® E+FE T 5 (0N o
= — 1.1
do = e T Ty e (2) G (1.15)
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FIGURE 1.3: Proton electric to magnetic form factor ratio p,Gr /G extracted using
Rosenbluth LT separation method. The blue squared data are by Walker et al. [2],
black triangles from Walker’s global analysis [2], and the red circles correspond to
the extraction of Andivahis et al. [3]. The black solid line corresponds to the scaling

upGE/Gy = 1. Note that some overlapping LT data points are slightly offset for
clarity.

where h is the electron helicity and 6 is still the electron scattering angle. The cross
section for the recoiled proton having transverse (in the scattering plane) polarization

is

do@ T

0
a0 = 2h0Mott 1+ 7 tan (5) GE GM (116)

Having defined the longitudinal and transverse polarization transfers to the recoiled

proton, P;, and Pr respectively, in the Born approximation by

T\/1_€2 2

po= S, (1.17a)
OR
NCEI

pro— V2L (1.17b)

OR
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one can obtain the electric to magnetic form factor ratio p,G /Gy from the ratio of

the transverse to longitudinally polarized recoiled proton cross sections as [12, 29

2 P, "PTon

> = (1.18)

Pr PGy

Ry = —pyp

Note that the normal component of the polarization transfer is zero in Born approx-
imation. In case of the LT separation measurement, GG,; dominates the total cross
section of Eq. (1.13) in the large Q? region suppressing the G contribution, while for
Q? — 0 it is basically the electric form factor G that contributes to the cross sec-
tion. Such suppression of Gz by Gy in the large Q% region makes the determination
imprecise. On the other hand, the exact values of the form factors Gg and G,; can-
not be extracted in the method of polarization transfer (PT), but it provides a direct
measurement of the ratio 1, Gg/Gyr precisely over a wide range of Q2. It will be clear
from the discussions in the coming chapters that the ratio of the polarization transfer
measurement is relatively insensitive to the hadron structure-dependent radiative cor-
rections, especially the two-photon exchange, which reduces the level of uncertainty in
the measurement. Considering the precision aspect of the PT measurement technique
a series of experiments [5-9, 30-34] at Jefferson Lab have been performed in last two
decades using longitudinally polarized electron beams to determine the ratio p,Gg/Gun
up to Q* = 8.5 GeV2. The results for p,Gr/Gy obtained in those experiments us-
ing PT measurement method is shown in Fig. 1.4(a) including a nonlinear fit to data
with a green band at 99% confidence level. Surprisingly the results of the ratio, hav-
ing an approximately linear falloff above % = 1 GeV?, are in clear disagreement with
that obtained from the LT separation measurement as compared in Fig. 1.4(b). The
consistent discrepancy between the LT separation and PT measurement methods of
the ratio p,Gg/Gy brought significant theoretical efforts, along with the experimental
activity, mostly focusing on the reanalysis of the radiative corrections. Since the rela-
tive contribution of the electric form factor Gg in reduced cross section decreases with
increasing Q% any error in radiative corrections comparable to G% makes the extrac-

tion of G meaningless. Thus the improved treatment of the radiative corrections has
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FIGURE 1.4: The electric to magnetic form factor ratio p,Gr /Gy extracted by (a)

the PT measurement, and (b) the LT separation method (along with the PT method

result), are shown for several values of Q? ranging up to ~ 8.5 GeV2. The green band

is a nonlinear fit to the PT data with 99% confidence level. The LT data in (b) are

taken from three updated sources of Refs. [2, 3]. For LT data, some overlapping points
are slightly offset for clarity. Note that the scale on the right is different.

been emphasized in most of the reanalyses [10, 35-39]. Particularly, p,Gg/Ga ratio
discrepancy motivated studies of the hadron structure-dependent two-photon exchange
radiative correction which is found to give e-dependent cross section itself, and the

problem was generally believed to be resolved with the inclusion of these effects [10, 11].

Subsequent years have seen a growing sophistication in the theoretical efforts that have
been made to better understand the TPE phenomena using various approaches. These
have included using hadronic models to compute the real part of the TPE amplitude
through loop integrals with (on-shell) transition form factors [37, 38, 40, 41], and using
generalized parton distributions (GPD) [42, 43] and perturbative QCD framework [44,
45] to model the high-energy behaviour of the intermediate state hadrons at the quark
level. But the use of GPD and pQCD based calculation is preferable in the high Q?

limit.

The use of hadronic degrees of freedom can be thought as a reasonable approximation
for low to moderate values of Q% < 5 GeV?, where hadrons can be expected to retain

their identity. However, for excited intermediate states of higher spin, such as the A
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isobar, in the forward angle limit [46] the on-shell approximation gives rise to unphys-
ical divergences in the TPE amplitude. This problem of unphysical behaviour can be
resolved using the dispersive method described in Refs. [46-52], where the on-shell form
factors are used explicitly to calculate the imaginary part of the TPE amplitude from

unitarity, with the real part then obtained from dispersion theory.

1.4 Overview of the work

Early model estimations of TPE effects [10, 11], which have significant uncertainties in
their calculations, found that TPE partially resolves the p,G'r/Gp ratio discrepancy.
In this work I decided to further investigate the TPE correction to shed light on the issue
of the form factor ratio measurement. In evaluation of the real part of the TPE effect,
we follow the dispersive approach developed in Ref. [46], but generalize the calculation
to transition form factors that are arbitrary functions of the momentum transfer, rather
than restricted to be sums of monopoles as in Ref. [46]. Unlike previous calculations
which made use of the narrow resonance approximation, here we allow a Breit-Wigner
shape with a nonzero width for each individual resonance contribution, with either a
fixed width or a dynamical width that depends on the final state hadron mass. Further-
more, in addition to the A(1232)3/2" resonance intermediate state, we also compute the
TPE contribution from all the established J© = 1/2* and 3/2% states below 1.8 GeV, in-
cluding the N(1440)1/2" Roper resonance, N(1520)3/27, N(1535)1/27, A(1620)1/2™,
N(1650)1/27, A(1700)3/2~, N(1710)1/2", and N(1720)3/2" resonances. With the ex-
ception of the A(1232)3/27", for which we use the fit by Aznauryan and Burkert [53], for
the resonance electrocouplings at the hadronic vertices we use the most recent helicity

amplitudes extracted from the analysis of CLAS meson electroproduction data [54-56].

The imaginary part of the TPE amplitude generates an observable quantity single spin
asymmetry (SSA) at its leading order in e-p scattering with either beam or target be-
ing polarized normal to the scattering plane. While the target normal SSA is of order

1073—1072, the beam normal SSA is of order 1076—107°. Having such a small numerical
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value, the beam normal SSA still plays a vital role in parity violating electron scattering
experiments to improve the precision level, as the SSA appears as a false asymmetry
there. For example, the highly precise Qweax experiment [57] at Jefferson Lab attempts
to determine the weak charge of the proton in search of physics beyond standard model
requires to know this particular source of systematic error from the background beam
normal single spin asymmetry. Recently, Qweax collaboration published their own mea-
sured value of this observable quantity at some forward scattering angle (Op., = 7.9°)
and Q% = 1.149 GeV2. Several other parity violating experiments [58-61] including A4
collaboration [62-64] have also measured the quantity but the results are little scat-
tered. The significant disagreement between the measured value [60] of beam normal
SSA and the corresponding estimation [65] for heavier target nucleus ?**Pb raised ques-
tion about the estimations in general. More importantly the theory predictions from

different groups [66-71] are not also consistent.

To better understand both the beam and target normal single spin asymmetries orig-
inating from the mentioned spin-parity 1/2* and 3/2* resonance intermediate states
associated with 7N and nw N channels, we apply the same elctrocouplings data from
CLAS [54-56] in evaluation of the imaginary part of the TPE amplitude in polarized
e-p elastic scattering. Along with the resonance states the effect of elastic nucleon inter-
mediate state is also accounted using Gg (Q?) from the parametrization of Arrington
et al. [72]. Alike the real part, here again the Breit-Wigner shaped width is assigned for

each resonance state.

1.5 Outline

This dissertation continues with a brief review of the efforts to reconcile the form factor
ratio, u,Gg/Gyr discrepancy in chapter 2. For completeness, the relevant radiative
corrections in analysis of e-p elastic scattering cross section data for Q* < 9 GeV? is
also discussed in the same chapter (Sec. 2.3). Finally, the TPE emerges as a potential

candidate to reconcile the existing discrepancy between the two different measurements
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of electric to magnetic form factor ratio in the end of the chapter. Chapter 3 describes
the general formalism of the TPE radiative correction followed by a detailed review of the
previous calculations and experimental extractions of the hadron structure-dependent
correction. My input in this thesis partially starts from chapter 4. In chapter 4, I explain
the foundation (i.e. dispersive method) of the model we have prepared, published in
Ref. [73], to numerically evaluate the TPE amplitude and test it with a simple warm up
problem of electron-muon scattering. After having a convincing outcome of the method
in the simple test problem, in chapter 5, [ apply it in evaluation of the TPE correction in
e-p scattering with elastic nucleon intermediate state for completeness, results of which
are already well estimated though. A complete discussion of the model to estimate the
resonance states’ effect in total TPE correction is explained in the same chapter. The
obtained results for the TPE effects in unpolarized e-p scattering are then discussed in
chapter 6. Following a brief review of the polarization observable, SSA, sensitive to the
imaginary part of the TPE amplitude in beam/target polarized e-p scattering, a detailed
description of the numerical calculation of SSA is presented in chapter 7. Results of the
beam and target normal single spin asymmetry are discussed in chapter 8. Finally, the

conclusion of this work is drawn in chapter 9.



Chapter 2

Revisit to the 1,Gp/G) discrepancy

Observing the somewhat scatter of the LT separation data of 1,Gg/Gp around ~ 1
(Fig. 1.3), at the initial time when the discrepancy between the LT separation and
PT measurement was popped up, three issues were mainly addressed by several groups
of authors. One anticipation was that the discrepancy is perhaps due to an error in
the early cross section measurements and the two other issues were regarding the data
analysis, 7.e. either inappropriate treatment of the relative normalization uncertainty
in analyzing multiple cross section data sets or an effect from unaccounted radiative
corrections are responsible for the disagreement in two different methods of measurement
for the same physical quantity. This chapter reviews the major efforts, both theoretical

and experimental, to reconcile the discrepancy.

2.1 Early reanalyses of Rosenbluth separation data

Considering the two points about normalization uncertainty and radiative corrections
Arrington preformed two series of reanalyses [35, 36] of the world data, only excluding
some erroneous small angle (< 20°) data from Walker’s work, in Ref. [2]. In Ref. [35],
Arrington first figured out that the independent analysis of the individual LT separation

measurements give consistent results for u,Gg/Gy scaling around ~ 1, meaning an

15
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insignificant impact on the results from the normalization uncertainty between different
measurements. Then in the global analysis he investigated several potential effects in
hope of a solution to the problem. Exclusion of data sets for 8 < 20° due to a missing
correction in those data required to use in that small angle limit, random exclusion of
data sets at high Q? to see if any particular data with error strongly influences the
result, addition of some newly published data in the analysis, updating some double
count of the normalization uncertainty in some previous global analysis, determination
of an overall normalization uncertainty for each data set other than the point-to-point
systematic uncertainty and use of independent normalization uncertainties for the data
from each detectors when multiple detectors were used in a single experiment were some
key features particularly focused in the global analysis. For the radiative corrections,
some improved treatment of the vacuum polarization with muon and quark loops have
also been applied in some previous measurements along with the Schwinger term even
though it had very little ¢ dependence resulting in negligible effect on the form factor
ratio. Note that the previous global analysis by Walker [2] had also accounted for
such massive loops in vacuum polarization in addition to the radiative corrections from
Mo and Tsai prescriptions [74]. Unfortunately, the re-examination of the world data
in Refs. [35, 36] did not find any concrete reason of the discrepancy. The Rosenbluth
separation data were still self-consistent around the scale ;,G /Gy = 1. However, the
author suggested any missing e-dependent correction in the measured cross section with

~ 6% e dependence is required to resolve the discrepancy.

2.2 Experimental effort to reconcile 1,Gr/G); ratio

discrepancy

Alongside the initial reanalyses of the Rosenbluth separation data, from the experimen-
tal side, there was continued effort in extraction of form factors using Rosenbluth LT
separation method more precisely. One major problem in the Rosenbluth separation

method is the extraction of electric form factor G at larger Q? where the magnetic form



Chapter 2 Revisit to the p1,G /Gy discrepancy 17

factor Gj; part dominates the total reduced cross section as discussed in Sec. 1.3.2. Since
at larger Q?, G5 contributes a very small fraction in total cross section, any amount
of e-dependent correction would significantly alter the extracted Gg. In fact, this is-
sue was one of the motivations of initiating polarization transfer measurement. From
the experimental perspective, the cross section of detecting the scattered electron, and
its momentum have strong £ dependence at fixed Q? measurements. Thus, any rate-
or momentum-dependent correction will also impact the extraction of G'g significantly.
In contrast, the cross section of proton detection is less sensitive on € and the proton
momentum remains constant at fixed value of Q2. Moreover, the e-dependent inelastic
bremsstrahlung correction, and any offsets in beam energy and scattering angle has less
impact if the proton is detected instead of electron. Considering these points regarding
the proper extraction of Gg a modified Rosenbluth experiment [4, 22] was initiated to
measure the form factors where the recoiled proton was detected instead of the scat-
tered electron. The precision level of this experiment was comparable to those in the
polarization transfer method because of the improvements achieved by switching from
scattered electron detection to the recoiled proton detection basically. Among the ra-
diative corrections, they accounted the bremsstrahlung, vertex and vacuum polarization
corrections following the Mo and Tsai prescription [74, 75] along with the improvements
done by Walker [2]. For two-photon exchange correction they only considered the cor-
rection from the soft photons exchange. The measured p,Gg/Gyy from this experiment
(black diamonds) is represented in Fig. 2.1 along with some selected data sets from
Andivahis et al. [3] (red circles) and Walker et al. [2] (blue squares). The obtained
results from such a precise experiment were still incompatible with that from the polar-
ization transfer measurements. This finding at least ruled out the possibility that the

discrepancy is due to any error in previous LT measurements.

However, there were several recent reanalyses [10, 37-39] of the Rosenbluth separation
data focusing particularly on the inclusion of the updated radiative corrections. Before
proceeding to the effects of the improved estimations of radiative corrections in unpo-
larized cross section data, in the next section, the radiative corrections relevant for the

form factor measurement experiments are discussed in detail followed by the review of
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FIGURE 2.1: Proton electric to magnetic form factor ratio from the Super Rosenbluth

measurement of Qattan et al. [4] (open black diamonds), along with the data from

Refs. [2, 3]. The green band corresponds to a non-linear fit to polarization transfer
data [7-9].

a latest reanalysis by Gramolin and Nikolenko [39]. After that the structure-dependent
two-photon exchange radiative correction and its impact on u,Gg/Gyr measurement is

discussed in a separate section.

2.3 Radiative corrections to e-p elastic scattering

In perturbative QED the elastic scattering of e-p involves the exchange and emission
of series (in principle infinite) of photons. Part of the photons are virtual and they
do contain Feynman loop diagrams. Apart from the loop, there is emission of real
photons from the external legs of the Feynman diagrams, known as bremsstrahlung, as
well. It is interesting to note that the emission and exchange of the real and virtual
photons are both important and need to take them into account simultaneously to keep

the prediction of the observable quantities finite in QED. It would be clear from the
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detailed discussion ahead. However, the discussion will be restricted within the next to
leading order (up to order o) radiative corrections relevant to the experiments for the
low energy precision tests of standard model. Within this limit, the relevant Feynman
diagrams with the exchange of an additional virtual photon are shown in Fig. 2.2, while
Fig. 2.3 corresponds to the diagrams with an additional real photon emission either from

electron or proton leg.

FIGURE 2.2: Feynman diagrams for next to leading order radiative corrections. The

top row is for electron (left two) and proton (right two) self energy corrections. First

diagram of the bottom row corresponds to the vacuum polarization, and the next two
correspond to e~ — vy — e~ and proton — v — proton vertex corrections.

Ignoring the corrections beyond order o one can approximate the measured reduced

cross section by

on? =~ Cre (op™™), (2.1)
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where Cgc is the sum of cross section corrections, relative to Born cross section, coming

and 0%

from the vacuum polarization (dyp), electron and proton vertex (4% ertex )

vertex

hadron structure-dependent two-photon exchange .., and the real bremsstrahlung

Y

5bremsv i.e.

CRC =1+ 5\/1) + &iertex + 5€ertex + 5w + 5brems' (2‘2)

Traditionally most of the experimental analyses use the approximate estimation of these
corrections from the analysis of Mo and Tsai [74, 75]. The evaluation of these radiative
corrections are tedious and almost impossible without simplifying assumptions. Mo
and Tsai [74, 75] also had to make some assumptions, particularly in the evaluation

of &7

vertex»

0y, and Oprems they assumed standard soft photon approximation for the
additional exchanged or emitted photon. The term soft means the photon momentum is
vanishingly small. More recently, an improved estimation of these Feynman diagrams by
Maximon and Tjon [76] has been used in some contemporary experiments like Ref. [21].
Due to the differences in the assumptions used in evaluation of these corrections, the
results are also different in some cases. The vacuum polarization and electron vertex
correction results agree fairly well, while the proton vertex and the soft part of the two-
photon exchange are significantly different due to the variation in assumptions. The
difference in the soft part of the TPE correction between the two treatments will be
discussed in Sec. 3.1.2. However, having the same assumptions in both calculations for
the soft bremsstrahlung the results are still different and that was due to an incorrect
substitution, which was updated by Tsai in a later preprint [77] but still with an error
in sign, as pointed out in Ref. [78]. Due to such variations in the outcomes of the
model estimations of radiative corrections one needs to be cautious about the used
treatment while comparing data from different experiments, particularly in case of any
global analysis of the Rosenbluth separation data. For example, Walker et al. [2] used
the Mo and Tsai prescription [75] of the radiative corrections but with the corrected
sign in the proton vertex correction along with the inclusion of the heavier lepton and
hadron loops in vacuum polarization. For completeness, I discuss here the results from

the Mo-Tsai [75] and Maximon-Tjon [76] prescriptions.
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The corrections ¢

ertex aNd Oy, from electron vertex and vacuum polarization are well

estimated in literature. Considering only the virtual lepton loops (eTe™, pu*u~, and
7777 pairs) in vacuum polarization diagram of Fig. 2.2, d,, can be given a general form

as [39, 76, 78]

2 4 2
DRI [ PR A L , (2.3)
mZ

where m; is the lepton mass. Only for the eTe™ loop (as was considered in Ref. [75]
by Mo and Tsai) in the limit of Q? > m?, applicable for most high Q? experiments,
Eq. (2.3) reduces to a simplified form

5Vp:%§{—g+1n (%)} (2.4)

Walker et al. [2] included the contributions from all three lepton pairs in his global
reanalysis of the Rosenbluth data in an attempt to reconcile the discrepancy in form
factor measurements. Note that Ref. [2] has a misprint for the corresponding expression
of d,, which is corrected in Eq. (2.3) following Ref. [39]. However, in addition to the
lepton loops, Walker et al. also included quark loop contributions parametrized from
the measured data of eTe~ annihilation into hadron with a simple fit of the form of

Eq. (2.3) (correcting for the charge and colour factors) as
62, =0.002 [1.513 +2.8221n(1 + 1.218Q%)] . (2.5)

Ideally, one should also consider the effect of structure-less spin zero Bosons (can be

obtained from Refs. [79, 80]), pion structure and spin-one mesons like p mesons.
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The electron vertex correction term from Mo-Tsai work is also identical with the Maximon-

Tjon result given by

g .= % {—K(k, k) + K (k, k) + gln (—) - 2} , (2.6)

where K (k, k) can be given by [78§]

dy’ k2/
,y/

with ky = k;y' + k;(1 — ¢/) following the convention of Ref. [74]. Evaluation of the

integrals gives [75, 78]

. a m2 Q2 3 Q2 1 ) Q2 ﬂ.Q
5vertex = ; {lnﬁ (1 — ln w) + 511’1 <ﬁ) — 2 — §ln (ﬁ) + E} . (28)

1 e
The correction %oy

is infrared (IR) divergent. But the A-dependent divergent term
will exactly be cancelled by a counter term from the real soft photon emission cross

section represented in Eq. (2.10) with no Z-term.

For the proton vertex correction, Maximon-Tjon [76] improved the work of Mo-Tsai [75]
by applying a more realistic assumption that takes proton structure-dependent correc-
tion into account, while Mo-Tsai used the simple soft photon approximation for the
additional exchanged photon at the proton vertex, i.e. the proton is treated as a point
particle in the later treatment. To account the proton structure effect in ¢, Ref. [76]
used monopole or dipole form of the Dirac and Pauli form factors F; and F5. For com-
putational simplicity they further assumed the two form factors be equal in form. To
compare with the Mo-Tsai results, Maximon-Tjon separated the structure-dependent
part (556(;)6)( (53) in Maximon-Tjon notation) from the structure independent contribu-

tion 67 e 67 .. =" 4+ 5PV The structure independent §*%)  common to

vertex? vertex vertex vertex* vertex»

both Mo-Tsai and Maximon-Tjon, consists the IR divergence and can be written as [76]

p(0) aZ’ /
5vertex — T{_K(pap) +I((pap)} (29)
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FIGURE 2.3: Feynman diagrams for single real photon emission from either electron
or proton external legs in e-p scattering.

5?(1)

vertex

The structure-dependent was found small relative to other contributions in the

total cross section. Numerical value of 55&38}{ was smaller than 0.0068 for Q2 < 6 GeV?
but it keeps increasing with Q% and beam energy. Similar to the case of 6¢,,.,, proton
vertex correction is also IR divergent and this divergent term is also cancelled by the
inelastic cross section of real photon emission from the proton legs. It is important to
note that the corrections from the electron and proton self energy diagrams in Fig. 2.2
are also included in evaluation of the corresponding vertex corrections [76]. However,
the corrections discussed up to this point does not show any ¢ dependence. Therefore,

they do not have any significant influence in LT separation data apart from the effect

of a normalization factor.

On the other hand, the corrections from the real soft photon emission and the soft part
of the two-photon exchange radiative correction have significant € dependence as pointed
out by both group of authors of Refs. [75, 76]. More importantly the outcomes for these
corrections estimated by the two prescriptions are different. The discussion on the IR
divergent soft photon contribution in TPE is left as a separate section in chapter 3
(Sec. 3.1.2). As pointed out before, the real soft photon emission correction calculated
by Mo-Tsai is different from that by Maximon-Tjon due to an incorrect substitution
made in Ref. [75] which needs to be taken care if one uses the earlier prescription, as

was done by Walker et al. [2] in his reanalysis. However, I prefer to show here the cross
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section correction, dprems from the real single photon bremsstrahlung within the soft

photon approximation obtained by Maximon-Tjon as

o Q* (qmAE?\ 1 L@\ 1 , .. G
5brems = ;{[ln (ﬁ>_1:| ln <W —|—§ln ﬁ —§ln 77+L12 COSQ§
2 2
- +2Z[1n77 In (M) +L12(1 - ﬂ) —L12(1 - i)]
3 YA Y ny
2
—l—Zﬂ(%lny—l)ln(M)
4 A

E, 1
—Efj'{any—lnyjuLh(pE)} —1”, (2.10)

where = E/E', Liy is the dilogarithm function, y = 1+ 27 + 24/7(1 +7), E, is the
energy of the final proton and AFE is the cut off energy below which soft photon can not
be detected due to detector acceptance [12]. In Eq. (2.10), the terms with Z° Z!, and
Z? correspond to the cross section corrections from electron bremsstrahlung, the inter-
ference between electron and proton bremsstrahlung, and the proton bremsstrahlung,
respectively. Note since Z is the charge number it becomes 1 for e-p scattering. Fur-
ther note that each of the terms coming from three different bremsstrahlung corrections
has A-dependent parts, 7.e. IR divergent parts. The A-dependent parts in the terms
proportional to Z° and Z? will be cancelled out by similar counter terms from electron
and proton vertex corrections, respectively, as pointed out before. The IR divergence
in the interference term (proportional to Z') will also be cancelled out once the TPE

correction is taken into account.

A comparison of the Mo-Tsai findings for the soft bremsstrahlung correction with that
from Maximon-Tjon in terms of their difference (Apems) would be convenient for any

future global analysis of LT separation data. The difference in bremsstrahlung correction
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between the two prescriptions, Appens can be written as [78]

0 2 1

Aprems = ¢ Liy | cos® = S VAR n Inz — Lis 11 + Lig| 1 — —
T 2 6 x nx

1 2F, 1 2F, E, 1

“Lig( 1 —n=E ) — ZLiy(1 - =2 72| | Inx — Lig( 1 — =
gt (125 ) - (1258 )|+ 22 (ma a1 )

+Li2(—%) +71T—;) —In <4]\E;”’> +1”, (2.11)

where © = (E, + |p/|)/M. Note that the difference is independent of A, i.e. the IR

divergent part is same irrespective of the prescription used.

Adding up all the elastic and inelastic radiative corrections of Figs. 2.2 and 2.3 gives

the total cross section correction (finite) in Maximon-Tjon evaluation as
a |13 Q? 28 Q? AEE' 1. 5
oy = —¢—h|=S]|—-——-|In|l=|-1h|—75)—=!
MT; w{ 6 <m2) 9 [ " (m2 " (2nAE)? o
0 2 207 Q%y n
. 2 .
+L12<COS 5) - E] + T — lnnln (W) + L12 <1 — ;)
1 E, 1 p?
—Lip(1 - — P ——-ln?y—Inyln [+ | +1
L) (e men () o)
Ey M?
— lny—l)ln(—)—i—l
(Ip’| (2nAE)?

o 1 1 2
+ﬁ ( — Li, (1 - ?) + 2L12< - §> + %) } + o7 (2.12)

2.4 Recent reanalysis of the Rosenbluth separation

aZ?

™

data

In a recent reanalysis of the LT separation data [39], Gramolin and Nikolenko used a
selective data set from Refs. [2, 3], for which the detailed information about the radia-
tive correction is available. In the reanalysis they substituted the Mo-Tsai corrections

from the original literature by the Maximon-Tjon corrections given in Eq. (2.12) but
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p(1)

neglected the proton structure-dependent term e qex-

Apart from this substitution,
they also added the vacuum polarization correction from the two more leptonic, p*pu~
and 777, loops using Eq. (2.3) and the hadron loop using Eq. (2.5). Note that the
the vacuum polarization correction form e*e™ loop is already included in Eq. (2.12). In

addition to the updates mentioned above they also included an estimated hard internal

bremsstrahlung correction given by

2c Q? oF do O EE 2
6in rems — In— —1)In-— A E ﬂdE//, 2.13
tb w ( b ) "AE T [(dQ)O( >] [E,_AE Q) dE” (2.13)

where the cutoff energy JF should be chosen such that 6 < AE (authors considered
dE =107* GeV) and the integrand is given by

dQUint.brems M + (E - Wl)(l — COS 9) ty (do ts (do
WQdE" ~  M—F(1—cos) wn\an),F i) [Bh 21

w3

with
a[l+azi, 2EE"(1 — cosf) M + E(1 — cosf)
t — - : 1 —_ R =
b3 T 2 m? 13| M — E"(1 — cos )’
E —w; B
T = 5 BT B+ wy = Rws, ws3=E —E" (2.15)

Here E” is the measured energy of the scattered electron and E’ can be interpreted as the
peak energy of the scattered electron in case of the hard bremsstrahlung. The improved
prediction of the radiative tail given in Eq. (2.14) is compared with that estimated
using the approximation of soft photon emission is compared in Fig. 2.4. The kinematic
consideration in plotting the analytical results of the radiative tail were £ = 1.0 GeV,
0 = 70° and the elastic peak energy £’ = 0.588 GeV. Clearly, the inclusion of the hard
bremsstrahlung makes a big difference with the soft photon approximation for smaller
E”. However, with this addition of the hard internal bremsstrahlung correction the total

radiative correction factor Crc can be written as

CRC = (1 + 6MTj + 5517)7-# + 5int.brems + 6ext.brems) CL7 (216)
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FIGURE 2.4: The radiative tail predicted using soft photon approximation (blue
dashed) and from the sum of soft and hard internal bremsstrahlung (red solid line).The
points are simulated data from Ref. [81]

where eyt prems and Cf, account for the external bremsstrahlung and the ionization losses
in the target materials. Ref. [39] took the exponentiation of the cross section corrections
from the additional single photon emissions discussed above to take into account the

effect of an arbitrary number of soft photons and thus Cr¢ takes the form
CRC = CL exp(5Rc), (217)
with

(5RC = 5MTj + 551;)7—7‘1 + 6int.brems + 6ext.brems' (218)

The extracted electric and magnetic form factors using these updated treatment of
the radiative corrections in just two sets of Rosenbluth data Gramolin and Nikolenko
found better agreement with the polarization transfer data of the ratio u,Gg/Gu. It
is important to note here that this reanalysis did not take account of the e-dependent

hard TPE effect which makes the analysis partly incomplete.



Chapter 2 Revisit to the p1,G /Gy discrepancy 28

2.5 Potential solution to the 1,Gr/G); discrepancy

The proton structure-dependent radiative correction two-photon exchange (hard) is a
potential candidate to resolve the discrepancy in proton electric to magnetic form fac-
tor ratio y,G /G as it is found an e-dependent correction. Approximately half of the
discrepancy was resolved once the TPE correction was applied indirectly in some previ-
ously extracted ratio p1,G /Gy using LT separation method, where this correction term
was ignored during the initial extraction, by Blunden et al. [10, 37]. In their hadronic
calculation, the TPE cross section correction 0., was found nearly linear in polarization
g, at least in the interval of 0.2 < e < 0.9. Therefore, the correction factor 1 + ¢, to
the reduced Born cross section oo™ is fitted to a function of the form a + be for corre-
sponding Q? values of the experiments satisfying the condition that the (1 +4,,) — 1
in the limit of ¢ — 1. Then knowing the fitted parameters a and b the TPE corrected

form factor ratio R = p,Gg/Gy was extracted from the TPE contaminated ratio R

using,
2 _ — bz /a

1+ 2b/a (2.19)

where R is the TPE contaminated ratio and & is an approximated average value of the

total ¢ range of data.

The TPE corrected results for 1,Gg/Gyr along with the TPE contaminated ones from
the reanalysis of the unpolarized Rosenbluth data by Arrington [35] are compared with
the polarization transfer data from [5, 6, 9] in Fig. 2.5(a). Note also that the TPE effect
on p,Gr/Gy data from polarization transfer measurements were also investigated and
found very negligible change due to inclusion of TPE correction as shown in Fig. 2.5(b).
This is because the PT data were mostly in the region € =~ 0.7 — 0.8 where the TPE

correction was found very small.

At the then contemporary time of Blunden’s work [10], Guichon and Vanderhaeghen [11]
also emphasized on hard TPE correction as the source of the discrepancy. Their con-
clusion was coherent with that of Refs. [10, 37] that the Rosenbluth data are sensitive
to the hard TPE correction while the PT data are relatively blind about TPE.
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FIGURE 2.5: TPE contaminated LT data (open diamonds) for proton electric to
magnetic form factor ratio, u,Gg/Gar, from Ref. [35], and the corresponding TPE
corrected data (green circles and red squares) by Blunden et al. [37] are compared
with the polarization transfer data(black open circles)[7-9] on the left. On the right
a similar comparison is shown, but here the PT data are TPE corrected (red circles).
The TPE corrected LT points (green circles) on the left panel are obtained assuming
a linear relation of the TPE cross section with ¢ in the range 0.5 to 0.8, while the
points with red squares used the ¢ range of 0.2 to 0.9. Plots are taken from Ref. [37].

2.6 Summary and discussion

Having discussed the details of the existing discrepancy between the two different meth-
ods of measurement (LT and PT) of the electric to magnetic form factor ratio p,Gg /G,
it turns out to be a puzzle. This so-called puzzle seems to have its solution in a neglected
correction which actually is not negligible, at least due to its significant ¢ dependence.
Thus, I see hope in hard two-photon exchange. But the correction itself has large uncer-
tainty in its calculation which needs to be taken under control either by any improvement
in the model estimation or by direct experimental extraction (or both). Plenty of efforts
has already been applied to better understand the correction since the first observation
of the effect as a potential candidate to resolve the p,G'r/Gy puzzle. Before carrying
out a rigorous and improved numerical estimation of the TPE correction in chapter 4
it is important to discuss the general formalism of TPE amplitude and review its quan-
titative estimations and/or measurements to date. In the next chapter, the details of
the hadron structure-dependent TPE radiative correction will be discussed along with

a review of the previous works in the specific topic.



Chapter 3

Two-photon exchange

This chapter describes the basic formalism (Sec. 3.1) and a brief review of the model cal-
culations (Sec. 3.2) along with the direct experimental (Sec. 3.4) and phenomenological
(Sec. 3.3) measurements of the two-photon exchange radiative correction, the evaluation
of which is the main subject matter of this thesis. The formalism illustrated in Sec. 3.1 is
basically focused on the inelastic resonance intermediate states for which the subscript
R is used in the notations of intermediate hadron momenta and the corresponding tran-
sition currents even though the specific description of the spin half intermediate states is
also applicable for the elastic nucleon. Representation of the TPE amplitude and corre-
sponding cross section in terms of the generalized form factors is discussed in Sec. 3.1.1
followed by the description of the infrared divergence in TPE (Sec. 3.1.2). Finally the
necessity of the used method and the extended breadth in calculation of the real part

of TPE amplitude will be summed up in the last section (Sec. 3.6).

30
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p p p p

FiGurE 3.1: Two-photon exchange amplitude Feynman diagram for s-channel box
(left panel) and w channel x-box (right panel). The two exchanged photons carry
momenta g; and gs.

3.1 Two-photon exchange amplitude

The two-photon exchange amplitude, M.,., is the sum of contributions from the s-

YV

channel box (left panel) and u- channel crossed-box diagrams (right panel) of Fig. 3.1,
M.y = MEZ - M, (3.1)

In general, the box and crossed-box diagram amplitudes M];g" and Mﬁg"x can be written

as an integral over loop momenta ¢; or g, of the exchanged photons [12],

d4q1 LbOXH'/“/
box - 4 uv R
_ 3.2
Moy’ = —te / @r)i (@ = \) (@ — N (3:2)
d4q beoxHﬂV
xbox . 4 1 1122 R
- _ 3.2b
Moy = e / @) (@ = V)@ — A2)’ (3:20)

where an infinitesimal photon mass A is introduced to regulate infrared divergences.
Note a sum over all the intermediate states (R) is implicit in Eq. (3.2b) to get the total
TPE correction. The leptonic tensor L, in Eq. (3.2b) is given by

Lpo* = tie(K)7,Sp(ky, me)yue(k), (3.3)

where k1 = k — ¢; is the intermediate lepton four-momentum, m, is the electron mass

(which can in practice be taken to zero at the kinematics considered here), and Sp is
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the electron propagator defined by

(kl + me)

Selknme) = s ior

(3.4)

The hadronic tensor Hy” (same for box and crossed-box TPE) for each intermediate

state R can be expressed as

Hy' = an(p) T (PR, =) Sas(0r, W) T3 g (PR, 01) un (), (3.5)

in terms of the transition operators Ff}’v L r (I'g%,, n) between the initial (final) nucleon

and intermediate resonance R (or, elastic nucleon) states, where pr = p + ¢ is the

four-momentum of the intermediate state and W its (in principle running) mass.

For spin 1/2 baryon intermediate states the propagator S,s(pr, W) reduces to the usual
spin-1/2 propagator

Sap(PrR, W) = bap— et V)

Py — W2 + 10+ = 50!5 SF(me W)J (36)

for a particle with mass W. The hadronic tensor for spin-1/2 baryons can then be

written

Hy = un(p) gy, n(PR: —@2) Se(pr: W) T v m (PR 1) un (), (3.7)

where the operator I'yny_,r describes the transition to a baryon resonance with spin
1/2. Note that this hadronic tensor will remain identical for the case of elastic nucleon
intermediate state except the mass W will be replaced by the nucleon mass M and the

transition operators will be substituted by the operator shown in Eq. (1.5).

For the hadronic propagator of spin-3/2 states the form

P+ W)

Sas(pr W) = =Paf (0r) 5 or (3.8)
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is used, where the spin-3/2 projection operator 73222 is defined by

1 1

3/2

P (DR) = Gap — 30" 37 (?R%z(pR)ﬁ + (pR)wﬁpR) : (3.9)

R

The resonance transition currents Ffj]”v Lr(pr,@1) and TR, (PR, —¢2) at the two hadron
vertices can be parametrized using the form factors Gy, Go, and G3 [53, 82, 83]. These
parametrizations are not unique. They can also be parametrized in terms of the electric
(G%;), magnetic (G3;), and Coulomb (GY,) form factors [82]. Details of the transition

current are discussed in Sec. 5.2.

The TPE crossed-box amplitude Mﬁ:‘”‘ can be calculated by using the lepton tensor
xbox
L3 in Eq. (3.2) as
LZEOX = ﬂe(k/) T SF<k27 me) f}/ﬂue<k‘)7 (310)

where the intermediate lepton momentum is ks = k — ¢o. The crossed-box amplitude

can also be obtained from the crossing symmetry relation [46]

xbox box
M (1) = — M2 (s )| (3.11)

S—U

where the Mandelstam variables s, ¢, and u are defined by

s = (k+p)? = +p), (3.12a)
t = (k—K)=¢, (3.12b)
u = (p—k) =@ —k> (3.12¢)

Note however, that unlike the box amplitude, which is complex, the crossed-box ampli-
tude is purely real. In the dispersive approach it is therefore not necessary to consider
the crossed-box term explicitly. It will be shown explicitly in Sec. 4.2 that the imaginary
part of the TPE amplitude entirely comes from the box diagram of Fig. 3.1 and that
the real part of the TPE amplitude from the direct analytic calculation and numerical
calculation are identical considering the simple case of point-like target particle, i.e. in

e-p scattering. Including the one- and two-photon exchange contributions, the total
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squared amplitude can be written

M, + Mw|2 ~ |/\/l~/|2 + QRG(MLMW)
= |M7|2 (1+0y,), (3.13)

where terms of order a* and beyond have been neglected, and we have defined the

relative two-photon exchange correction to the cross section as

2Re(MIM.,)
(M, [?

(3.14)

5w =

For the nucleon intermediate state the TPE cross section correction is infrared divergent
in the soft photon limit, but this divergence is exactly cancelled by a corresponding di-
vergence in the real photon emission from the electron and proton, discussed in Sec. 2.3.
It is useful, however, to define a finite TPE correction which has the IR divergent contri-
bution subtracted. This correction will not be unique, as it depends on the prescription
used for the regularization [12, 46, 75, 76]. For most of the theoretical results presented

in this analysis the prescription of Maximon and Tjon [76],
§ = 0y — OO (MT)), (3.15)

is used. Note that the notation ¢ is dedicated for the IR subtracted TPE cross section
correction from now on. For comparisons with experimental data, however, we use the
Mo and Tsai prescription [75], which has traditionally been employed in analyses of

electron-proton scattering.

3.1.1 TPE in terms of generalized form factors

The general amplitude of the elastic scattering between two spin-1/2 particles involves 16
helicity amplitudes. The discrete symmetries, parity and charge conjugation invariances,
leaves only 6 independent helicity amplitudes or invariant amplitudes [84]. Three of

them flip the lepton helicity, while the other three do not [11, 68]. The amplitudes that
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flips the helicity are of the order of lepton mass (me), i.e. the amplitude is factored
by the lepton mass. In other words, in the massless limit lepton helicity is conserved
in every order of perturbation theory in a gauge theory [11]. As a consequence, only
three helicity amplitudes, T}, n survive in this limit. Here h and A’ are the helicity
of the incident and scattered lepton, while A and )\ are that of the target and recoiled
particle. The surviving set of amplitudes may be: 7', T+ and T, . =T, ;
orT .., T andT___, =T _, | forexample. Therefore, in the massless electron
limit, which is a reasonably good approximation in the kinematics of the experiments
mentioned in this thesis, the general form of the scattering amplitude can be decomposed
into three Lorentz structures with coefficients being the generalized form factors Fj, F3,
and G/, as [43, 46]

io""q,
2M

M = _%ﬂe(k/)%U(k)ﬂN(p/> {F Q% v + F3(Q%,v) un(p)

—%Ue(’f'm%u(k) an (p)Go (@ v)y" y5un (p), (3.16)

where these are functions of Q% and the dimensionless variable

_s—u _ [T(1+7)(1+4¢)
”:4M2_\/ 1—c (3:17)

Including only the TPE correction, the generalized amplitude and the form factors can

further be decomposed as

M = M+ M., (3.18)
Fl(Q*v) = R(Q%)+F (Q*v), (3.18b)
Q%) = R(Q°)+F (Q%v), (3.18¢)
G.(Q%v) = G, (Q%v), (3.18d)

i.e. in the One Photon Exchange (OPE) limit, the generalized form factors, F|(Q? v),
and Fy(Q?, v) will be reduced to the the Dirac and Pauli form factors Fy(Q?) and Fy(Q?),
respectively, and G/ (Q?,v) — 0. Thus, the OPE amplitude in that limit takes the usual
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form

e _ _ ioc*q,
M, = =S W) ) | AQ@0* + F@) G an). 319
The TPE amplitude, M., can be written as
62 — ! — / / 2 o / 2 iU#VQV
Mvv = _Eue(kj ),Vuu(k‘) UN(p) P"Ly.Y (Q 77/)7 + F2.w (Q 7V) IM uN(p)
2
e _
=S s ) o ()G, (QF v s () (3.20)

For simplicity of notation, the subscript 747" in the generalized form factor corrections
from TPE will be omitted in the remainder of the thesis. Therefore, F}(Q? v), F3(Q? v),
and G/ (Q?% v) will imply the TPE correction to the generalized form factors in rest of
the thesis. To eliminate any confusion in future use the TPE amplitude M., is written

again in terms of these TPE generalized form factors correction as

@27 , B , y 9 , 9 Z'O'Myql,
My, = —?Ue(k)’mue(k)uzv(p) Fl(Q* v)y" + F5(Q%, v) o7 un(p)
2
= e (K s (6) B () G (Q%, ) s () (3.21)

The TPE cross section can then be expressed in terms of the generalized TPE form

factors as [46]

eGp(Fl — TF) + 7Guy(Fl + F) + v(1 — £)G G,

5y =2
v = 2Re Gy +7GY,

(3.22)

An alternative representation for the TPE cross section combines the FY, Fj, and G/,
generalized TPE form factors into combinations that resemble the electric and magnetic

Sachs form factors at the Born level. Namely, defining [48]

Gy = F|—1F, (3.23a)

Gy = F +F+ g(l T (3.23b)
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the TPE cross section can be written in a simplified form analogous to the diagonal

structure of the Born cross section of Eq. (1.13),

eGpGr + 171G Gy

0~y = 2R
m ¢ eG%L +1G3,

(3.24)

However, the representation of the scattering amplitude and hence the TPE amplitude
in terms of the generalized form factors is not unique. Some authors [11] prefer the

convention of the form factors Fy, Fy, and Fj, in terms of which M., is given by

My = =S ma(h) < x| F(@% v + F@n) 5
o= 2 Ue (R )Vple un\p 1 V)Y 2 Y Wi
+F5(Q7, V)%} un (p)- (3.25)

The relationship between the two sets of form factors can easily be established as

Fl = F,+vF;, (3.26a)
F, = B, (3.26b)
G\ = —1k;. (3.26¢)

For completeness, the lepton helicity-flipping Lorentz structures involve three more
complex-valued coefficients Fy, Fs, and Fj, known as the generalized form factors that
construct the helicity-flipped part of the most general form of the scattering amplitude

M. In the later convention of Ref. [11], the helicity-flipping amplitude is given by [85]

M = L 0 o) Fi@) + B @ i
FR(@ ) st () () )] (327

Here all three form factors vanish in the Born approximation, i.e. F fg’fgl =0.
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3.1.2 Infrared divergence

The TPE amplitude M., of Eq. (3.2b) has IR poles at the soft photon limit of either
of the two exchanged virtual photons, i.e. at either ¢ — 0 or ¢o — 0. To regulate
the IR divergences originating from these poles, the infinitesimally small parameter \ is
introduced in the two virtual photon propagators’ denominator. In general the calcu-
lated TPE cross section correction, for nucleon intermediate state, is thus A\-dependent.
Fortunately, a similar term originating from the cross section due to the interference
between the emission of real photon (bremsstrahlung) from electron and from proton,
as shown in Fig. 2.3, cancels the A-dependent divergent term from the total e-p elas-
tic scattering cross section [76]. Therefore, separating out the A-dependent divergent
part from the finite part of the TPE calculation is useful since only the finite part
will eventually be accounted in observable quantities. However, isolating the divergent
part from the finite part is not unique. The IR divergent part obtained by the old
traditional prescription of Mo and Tsai [75] is mostly used in experimental analyses for
historical reasons, perhaps. On the other hand, in theoretical calculations the updated
prescriptions by Maximon and Tjon [76] is preferred. One needs to be cautious during
the comparison of experimentally measured observable with the theoretical predictions.
Also, it is preferable to use the same prescription for isolating the IR divergent parts
both from TPE and real bremsstrahlung corrections as the later in Mo-Tsai treatment
has a wrong substitution that leads to the different results even after having the same

assumptions.

In evaluation of the box and crossed-box diagram of Fig. 3.1 at such poles, Maximon
and Tjon considered the single soft photon approximation, i.e. ¢; =0 (or ¢; = ¢), and
¢2 = q (or g = 0), only in the numerator of Eq. (3.2b) for nucleon intermediate state,
while Mo and Tsai [75] treated both numerator and denominator with single soft photon
approximation. Taking the soft photon approximation at a hadronic vertex is actually
equivalent to treating the nucleon as a point-like particle, i.e. one of the hadronic
vertices, where soft photon is assumed, will have the substitution I'*(0) — ~* for the

transition current operator, whereas the other hadronic vertex will have the current
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operator as ['V(g). With this approximation, the pole contribution (divergent) becomes
proportional to the Born amplitude and hence the TPE cross section correction coming
from the pole contribution remains independent of the structure of proton. Thus the

total TPE amplitude with the soft photon approximation becomes [12, 76]

d4Q1 1

(2m)* [qf — MN][g3 — N[kt — mZ][(p + q1)* — M?]
d*q 1

(2m)* [gF — N][g5 — N[k — me]l(p + ¢1)* — M?)’

M = " Nyoy (0) / (3.28)

+64Nxbox(0) /

where Npox(0) and Nypox(0) are obtained after using the soft photon approximation, for
corresponding box and crossed-box diagrams, respectively, at either of the exchanged

photons as [37, 76]

2 M
Niox(0) = Noo(q) = 4dik-p? - (3.292)
2
Nxbox(o) - Nxbox(Q) = 4 k, -p % (329b)

(&

It is interesting to note that the soft photon approximation for either of the two ex-
changed virtual photons gives the same result since the TPE amplitude is symmetric
under the interchange of ¢; < ¢2. The integral of Eq. (3.28) can be expressed as
four-point Passarino—Veltman functions Dy(s) and Dg(u) for box and crossed-box con-
tributions, respectively, by [12]

«

27Tq2/\/17 (s — M?*)Dy(s) — (u — M*)Dy(u)|, (3.30)

IR _

M77 -
where s and u are the Mandelstam variables defined in Eq. (3.12¢). The asymptotic
expansion of the IR divergent four point Passarino-Veltman functions Dy(s) is available
from Ref. [86]. In the limit of s — M? > (m? m.M) or \* < Q% Dy(s) can be written

as

Dis) = — §42)q2 In (Aﬁ;) In (‘Tf) (3.31)
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Exploiting the crossing symmetry of MX>*(u,t) = —MDb%(s,t) s, one can write the

IR divergent part of total TPE amplitude MIV% as
® O M? — s —q? M? —u —q?
M = —EMW{IH< N )ln( 32 ) —ln( N In Y3
a M? —s Q?
(2w (2] o

Therefore, the IR singularity in the TPE cross section using Maximon and Tjon treat-

ment is given by,

. Q M? — s Q?
0~ (IR-divergent) = —2; {ln <M2 — u> In (ﬁ)] . (3.33)

Equation 3.33 contains both real and imaginary parts in it. For completeness, extracting

the explicit forms of the real and imaginary parts of d., (IR-divergent) as

: . 0% S — M2 QQ
03 (MTj) = Red,, (IR-divergent) = —2— [m (M2 — u) In (F)} . (3.34a)
Q2
Im 0., (IR-divergent) = 2aln (F), (3.34Db)

even though the real part is of particular interest in this work. Here the convention of

In(—z) = In(z) — iw for x > 0 is used. The A-dependent logarithmic IR singularity on
IR . . . 1 .

Re (577(MTJ) is exactly cancelled by by a term proportional to Z* in the bremsstrahlung

cross section of Eq. (2.10). To see the cancellation one needs to use the expressions of

the Mandelstam variables s and u in terms of initial and final electron energies E and

E’ in lab frame as

s=M?+2ME, u=M?*-2ME' (3.35)

Providing the results obtained by Mo and Tsai [75] for the IR divergent part of TPE
cross section would be helpful to compare the calculated values of the observable quan-
tities, e.g. 1,G /Gy ratio, with the measured ones to avoid any unwanted ambiguity

arising due to the preference of one treatment over other. By the application of the
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soft photon approximation at the denominator of Eq. (3.2b) along with the numerator
reduces the loop integral to three point Passarino-Veltman functions Cy(s) and Cy(u)
for box and crossed-box part, respectively. Since no simple analytic form is available
for the asymptotic expansion of the three point Passarino-Veltman function in the limit
of s — M? > m? m.M or \» < Q? Mo and Tsai further used a mathematical approxi-
mation of replacing p — —p in the three point function for the TPE box diagram alone

which gives the final expression of the IR singularity in the TPE cross section as [12]

2a M M
IR _ . .
57,Y(MOT) = ? [ng (1 — ﬁ) — L12 <]. — 2El>

1 s — M? AM?EFE'

Note that the A-dependent terms in both treatments, i.e. in Egs. (3.34b) and (3.36),

are same even though the cross section results of the soft photon approximation are
not identical. Therefore, the elimination of the IR pole singularity from the total cross
section, by a same counter term coming from the Bremsstrahlung cross section, is guar-
anteed in either prescriptions. However, it is important to analyze the virtual photon
polarization, e dependence of the difference A™ = §1%(MTj) — 01%(MoT), especially for
the extraction of the ratio u,Gg/G )y using Rosenbluth (LT) separation technique [18].
Fig. 3.2 illustrates the difference A™ as a function of ¢ at the representative squared
four-momentum transfers Q? = 0.2, 1.0, 3.0, and 5.0 GeV2. It is evident that the
treatments are almost identical at small Q* values and forward angles (large €) but as
Q? increases the difference exceeds even 1% at the backward angles corresponding to
smaller ¢ for Q2 = 5 GeV2. A visible non-linearity of A™ in ¢ is also observed with
increasing Q®. These differences in the soft photon treatments are significant in LT
separation data and hence in the discrepancy of p,Gr /Gy ratio [10]. A™ alone reduces
the 11, G/Gy discrepancy by 3% and 7% for Q% = 3 and 6 GeV?, respectively [10]. It is
important to note that the divergence in TPE amplitude at the soft photon limit exists
only for elastic nucleon intermediate states. In case of excited resonance intermediate

states every terms in the numerator of Eq. (3.2b) contains the four-momentum factor
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F1GuRE 3.2: Difference between the IR divergent parts of the TPE cross section from
Refs. [76] and [75] as a function of virtual photon polarization ¢ at fixed values of
Q? =0.2, 1.0, 3.0, and 5.0 GeV?.

g coming from the parametrizations of the hadronic transition currents at the two ver-
tices described in Sec. 5.2. As a consequence the numerator also vanishes in the limit

of Q% — 0 and the amplitude remains finite in that limit.

3.2 TPE calculation review

The hadron structure-dependent part of the TPE box and crossed-box diagrams have
been evaluated by several groups of authors from nearly two decades starting from the
work of Blunden et al. [10]. All the model estimations can be categorized into three
methods of evaluation. One such method assumes the interaction of the virtual photons
at the quark level of the hadron [43], while the two other methods consider that the
hadron retains its properties during interaction [10, 37, 40, 41, 45, 46, 48-52, 87-89).
Within the hadronic degrees of freedom the early estimations directly evaluated the
real part of the TPE amplitude [10, 37, 40, 41], while the updated scheme of dispersive
approach evaluated the imaginary part from which the real part was generated using dis-
persion relations [45, 46, 48-52, 88, 89]. The TPE calculation in these three approaches

are reviewed in the following subsections.
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FIGURE 3.3: e-p elastic scattering in the (a) single photon exchange, and (b,c) TPE

approximations, at the quark level interaction. The kinematics is same as those in

Fig. 3.1. Three constituent quarks of proton are represented by three internal lines

with arrows to demonstrate the interaction with individual photons. Both photons

interact with same quark in (b) and different quarks in (c). Other combinations of
gluon exchange are available in Ref. [45].

3.2.1 High Q? partonic and pQCD approach

The TPE calculation assuming the interaction with the constituents of the proton was
first performed in a partonic approach relating the Generalized Parton Distributions
(GPD) with TPE amplitude in Ref. [42, 43] following the formulation in Ref. [90] for
wide angle Compton scattering. The underlying assumption was that both the photons
interact with a single quark. These calculations found non-linearity in the reduced cross
section as a function of ¢, especially in the forward directions, at the Q? values of the
wp,G /Gy ratio data extracted by Andivahis et al. [3] providing compelling evidence to
resolve the discrepancy between the LT and PT measurements. The authors compared
their TPE corrected reduced cross sections with the measured cross sections of Ref. [3]
scaled by 42 times the square of the dipole form factor Gp = (14 Q*/0.71)"% as shown
in Fig. 3.4. The TPE corrected curves move closer to the data points, indicating a reso-
lution of the form factor measurement discrepancy once the TPE effect is taken into ac-
count. Based on their analysis, the authors suggested a global re-analysis of the large Q?
data to determine the correct values of Gz js although the applicability of the partonic
approach is questionable at the kinematics of the existing discrepancy in p,Gr /Gy mea-
surement. However, Borisyuk and Kobushkin [45], and Kivel and Vanderhaeghen [44]
estimated the TPE correction in the perturbative QCD (pQCD) framework claiming
that the interaction of the two photons are with two different quarks, especially at the

backward angles. As shown in Fig. 3.3, the TPE diagram with two photons interacting
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1.20 [~ 1v+2v, m.Reg. GPD, G 5"« 0.996] — 1y+2y, m.Reg. GPD, G_B?"x 1.000
YH2Y, g M ] 1.14 M

— ~ " 1y+2v, gauss. GPD, GMBrath 0.998 | ~ = "1y+2y, gauss. GPD, GMB’ath 1.002

2 2:
1.02 | + | Q° =56 GeV” |

d 0.2 0.4 0.6 0.8 1 (0] 0.2 0.4 0.6 0.8 1
(a) £ (b) e

FIGURE 3.4: Reduced cross section op scaled by uf, times the dipole form factor G2D
as a function of € at Q% = 4 and 5 GeV?, calculated by Afanasev et al. [43]. The solid
red and dashed blue curves correspond to the TPE corrected or using two different
models for the GPD. The dotted blue line is the result obtained by using G ys from
polarization transfer data [5, 6]. Plots are adjusted from Ref. [43].

with two different quarks involves only one gluon (hard) that enhances the TPE cross
section § by a factor of 1/ay, a being the strong coupling, compared to the diagrams
involving two gluons where the photons interact with only one quark. Borisyuk and
Kobushkin obtained negative value for the TPE cross section with an approximately
linear € dependence and logarithmic growth with Q? reaching 7% near 30 GeV2. They
also tried to establish the bridge between the pQCD based results and the results ob-
tained using the hadronic approximation in the low Q? limit as illustrated in Fig. 3.5
for the generalized TPE amplitudes dGy; /Gy (note dGys of Ref. [45] is equivalent to the
Gy defined in Eq. (3.23b)). For Q? < 3.0 GeV?, the results for §Gy; /Gy from the two
methods of pQCD and hadronic degrees of freedom are shown to almost coincide where
only nucleon intermediate state is considered in the later method. But the application
of the pQCD approach in the low Q2 (~ 3.0 GeV?) limit still remains doubtful. On the
other side, inclusion of the effect of the higher excited resonance intermediate state is

also required in the hadronic limit to better compare the results around Q? ~ 3.0 GeV?2.
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FIGURE 3.5: The generalized TPE amplitude §Gy/Gys as a function of Q? at (a)

e = 0.5, and (b) £ = 0.1, calculated by Borisyuk and Kobushkin in pQCD framework

(solid line). The corresponding results in hadronic approach with two different form
factors is also compared. Plots are taken from Ref. [45].

3.2.2 Direct loop integral

The early estimations of the TPE correction assumed only elastic nucleon intermediate
state. Later on some excited intermediate states had also been taken into account. Based
on the intermediate state considerations in the gradual development of the direct loop
integration calculation the discussion can be sub-categorized into elastic and inelastic

intermediate states considerations.

3.2.2.1 Elastic intermediate state

In the low to intermediate region of @* (< 5 GeV?), where most of the TPE sensitive
observable quantities are experimentally investigated, the hadron is expected to retain
its identity fairly well. Therefore in these kinematic region most of the early theoretical
efforts in estimation of the TPE effects have evaluated the one-loop integral of Eq. (3.2b)
for both box and crossed-box diagram within the hadronic framework. Starting from
the calculation of the hadron structure-dependent TPE effects by Blunden et al. [10]
a series of evaluations of the TPE loop integrals directly within hadronic degrees of
freedom has been initiated [37, 38, 40, 41]. Reference [10] considered only the elastic

nucleon intermediate state with the simple monopole form of the form factors as Gg ar ~
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A?/(A? + Q?) having A = 0.84 GeV. The model dependence of the TPE cross section
d (with nucleon intermediate state only) has been investigated in Ref. [37] by varying
the form factors input at the two hadronic vertices. While the default consideration of
the form factors was a sum of monopole form, results with the dipole form and separate
empirical fits from the LT separation [36, 91] and PT data [36, 92] were compared which
indicates a negligible dependence on the choice of form factors as they appear in both
the numerator and denominator of ., in Eq. (3.22). The authors evaluated the one-loop
integrals of Eq. (3.2b) analytically in terms of the scalar four point Passarino-Veltman
(PV) functions [93] and the numerical evaluation of the PV functions were obtained

using the program FF [94].
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FIGURE 3.6: TPE cross section correction §, relative to Mo-Tsai soft photon approx-

imation, from the nucleon intermediate state in e-p elastic scattering for @2 = 0.001

to 1.0 GeV? (left) and Q? = 1.0 to 6.0 GeV? (right) [37]. Plots are adjusted from
Ref. [29].

The results obtained for the hard TPE cross section correction § relative to the Mo-
Tsai soft photon approximation is shown in Fig. 3.6 as a function of the virtual photon
polarization ¢ at Q? values ranging from 0.001 to 1.0 GeV? (left) and 1.0 to 6.0 GeV?
(right). In general, the absolute value of the TPE cross section is maximal at the
backward angles (smaller ) with non-negligible values ranging from approximately ~
+1.5% to —6% in the kinematics considered in Fig. 3.6 and it essentially vanishes in the
forward direction (¢ — 1) in coherence with the unitarity condition. For lower values

of Q? (< 0.3 GeV?), § becomes positive and at some point near Q? ~ 0.001 GeV? it
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reaches the so-called Feshbach correction

o sin(6/2) — sin?(6/2)
or = cos?(6/2) ’ (3:37)

independent of energy F, evaluated as the second Born approximation to the Coulomb
scattering from structureless, massive target by McKinley and Feshbach [74, 95]. There-
fore, for the Q% — 0 limit, which is equivalent to the static limit of M — oo, the TPE
cross section due to nucleon intermediate state alone can be approximated by Feshbach

correction term that can also be written in terms of ¢ as [29]

T 1+¢

oN — .
NTErr TV

(3.38)

In the left diagram of Fig. 3.6, i.e. for Q% < 1.0 GeV?, roughly a linear behaviour of
§ with respect to ¢ is observed, while some non-linearity is visible with increasing Q?
(> 1 GeV?), as shown in the right plot. More importantly the negative value and the
positive slope at Q% > 1 GeV? is in favour of resolving the existing discrepancy between
the two methods (LT separation and PT) of measurements of the electric to magnetic

form factor ratio, 1,Gg/Gm.

3.2.2.2 Excited resonance intermediate state

The hadronic intermediate state, represented by the blob, in the TPE diagrams of
Fig. 3.1 can also be anything (both resonance and non-resonant background) beyond
elastic nucleon itself satisfying the energy momentum conservation at the two vertices.
Among the possibilities, A(1232)3/2% being the first and most prominent excited res-
onance state of proton is anticipated to be an essential part in theoretical analyses of
the TPE effects. An analytical evaluation of the loop integral of the TPE amplitude in
Eq. (3.2b) with resonance intermediate state A(1232)3/2% was performed in terms of
the PV functions in Ref. [40] considering the zero resonance width approximation for
A(1232)3/2*. The parametrization of the transition current I',y_,a from nucleon to

the off-shell A(1232)3/2" resonance by the absorption of a virtual photon was adopted
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from the same parametrization given in Refs. [82, 96] for on-shell particles as

I alparq) = ﬁ\/g{gl(éf) {g‘“‘%m — 4"PA — V"epa + Parta”
2
F (@) — a7ams| + B P — gy
+q"(q"p, — vaq-pa)] }75, (3.39)

where Mx is the mass of the resonance state A(1232)3/2%, pa, and ¢ are the momenta
of the outgoing A and incoming photon, respectively. Note that I'yy_a of Eq. (3.39)
satisfies the gauge invariance condition ¢,I"75 ,, = 0, and the relation p,I'J5 o =0,
which ensures the safe removal of the unphysical spin 1/2 component of the Rarita-
Schwinger propagator of Eq. (3.8). The form factors g1, g2 — g1, and g3 are related with
the magnetic G, electric G}, and Coulomb G form factors, respectively. The details
of G%,, G, and G, will be discussed in Sec. 6.3.3. However, Ref. [40] assumed the dipole
shape for the form factors ¢;(Q?), i = 1, 2, and 3, as ¢;(Q?) = ¢;(0)(1 + Q*/A%)~?2, with
the dipole mass parameter Ax = 0.84. As g3(Q?) is very small compared to g;(Q?) and
g2(Q?), the authors considered only the later two (neglecting gs(Q?)) with the coupling
constants g1 = ¢1(0) = 7, g2 = ¢2(0) = 9 taken from the dressed K-matrix model [96].
Later on, Zhou and Yang [38] used a more realistic form of the form factors by fitting the
then existing electroproduction data to sum of monopoles. They also compared the effect
of the Coulomb equivalent form factor g3 in the evaluation and found a negligible impact
on the cross section. Figure 3.7 compares the TPE cross section correction from the A
intermediate state obtained in Ref. [40] and [38] as a function of € at Q% = 3.0 GeV?. Use
of a realistic form factor for transition to the excited A(1232)3/2" resonance suppresses
the corresponding TPE cross section effect as seen from the comparison of do between
the use of dipole form factor (dashed red line) [40] and the fit to sum of monopoles
(solid black line) [38]. Overall, the A(1232)3/2% state partially cancels the nucleon
effect alone by ~ 1.8% having positive cross section at Q% = 3.0 GeV2. The behaviour
in the forward direction (¢ > 1, Q* — 0) creates some sort of tension since it tends to

diverge in that limit indicating the violation of unitarity. A similar divergence in the
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FIGURE 3.7: A(1232) intermediate state contribution to the TPE total cross section

1.0
§ as a function of virtual photon polarization € at Q? = 3 GeV2. The red dotted line

corresponds to the evaluation with electric and magnetic form factors of dipole form,

having I'a = 0.84, by Kondratyuk et al. [40]. The black solid and blue dashed lines
are the results from Ref. [38]. Figure source is Ref. [29, 38].

state in parity violating electron-proton elastic scattering.

forward angle limit, e — 1, is also visible in Refs. [97-99] for A(1232)3/2" intermediate

Figure 3.8 represents the TPE cross section results  obtained for the nucleon and
A(1232)3/2" intermediate states from further work by Lorenz et al. (left column) [101]
and Graczyk (right column) [100] within the same hadronic approximation. Lorenz
et al. analyzed the model dependence by changing the nucleon electric and magnetic
form factor inputs in both cases of nucleon and A(1232)3/2" intermediate states at
Q? = 3.0 GeV2. For nucleon, they reproduced the results of Blunden et al. [37] using

sum of monopole fits and overall, the form factor dependence was found negligible by

comparing it with the dipole form. In contrast to the nucleon case the dependence on
the parametrization of G ;, was found significant. Note that the yNA transition form

factors are parametrized using the helicity amplitude formulation (details of these are

discussed in Sec. 5.3) in this particular work. At Q* = 3.0 GeV?, the A(1232)3/2*
contribution to the TPE cross section ¢, using the dipole times a monopole shaped form

factor, evaluated by Graczyk [100] (Fig. 3.8(d)) shows almost the same behaviour as

obtained by Lorenz et al. (Fig. 3.8(c)), especially in the backward direction reaching

d ~ +(1 to 1.2)% at € ~ 0.1. In summary, the common features of all those above
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FIGURE 3.8: TPE cross section correction from nucleon (a,b) and A(1232)3/2% (c,d)

resonance intermediate states calculated by Graczyk [100] and Lorenz et al. [101]. The

effect of nucleon form factor variations are compared in (a,c). Q2 values are given in
units of GeV2. Diagrams are adjusted from Refs. [100, 101]

discussed calculations are the suppression of the magnitude of net TPE correction 0 by
the A(1232)3/2" intermediate state contribution and the divergence of ¢ in the forward
direction corresponding to ¢ — 1 for all three Q2 values, as observed in Figs. 3.7 and

3.8(d) (Lorenz et al. didn’t extend the evaluation in that much forward direction).

However, within the same approach of Ref. [37] the effect of the heavier resonance states
including, N(1440)1/2%, N(1520)3/2~, N(1535)1/2~, A(1620)1/2~, and A(1700)3/2~
were also investigated by Kondratyuk and Blunden in Ref. [41]. Here again the dipole
shape of the transition form factors were assumed with the coupling constants deter-
mined from the dressed K-matrix model [96]. The authors ignored the Coulomb cou-
plings in this evaluation as well, assuming the dominance of the magnetic coupling
applicable in all the resonance intermediate states. Among the resonances, the state

N(1520)3/27 is claimed to have the significant TPE effect after A(1232)3/2" with a
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maximal effect of +0.7% in the smallest possible e, coherent with the TPE cross section
correction from elastic nucleon state. The net effect of all the resonances is to nullify

the nucleon contribution in 6.

Aside from the issue of divergence of the cross section for inelastic resonance intermediate
state A(1232)3/2" in the forward angles, the direct evaluation of the TPE amplitude
has a significant source of uncertainty due to the use of the on-shell parametrization
of the transition currents at the two hadronic vertices YN N* and yN*N with off-shell
intermediate states N*. It is also anticipated as the source of the divergence of TPE

cross sections at the limit of ¢ — 1 as shown in Figs.3.7 and 3.8.

3.2.3 Dispersive method

The ambiguity of the off-shell parametrizations of the hadronic transition currents at
the vertices in Fig. 3.1 can be eliminated by applying the dispersion relation formula in
evaluation of M., [48, 70]. The primary motivation of this formulation comes from the
unitarity of the scattering matrix S, originating from the requirement of the conserva-
tion of probability, that allows the use of the on-shell parametrization of the hadronic

transition currents. Having defined the scattering matrix S as
S=1+1T, (3.40)

where the matrix element of the non-trivial transfer matrix 7, which in principle de-

scribes the interaction, is defined by
(fITI) = (20)" 6*(pi — py) Micsy. (3.41)
The unitarity condition STS = 1 then leads to the generalized optical theorem [13, 102]

Misg =M, =1 / dIT,, (27)* 5% (p; — pu) Missn M3, . (3.42)
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Here the sum is over the complete set of intermediate states, n, of any Feynman loop
diagram. Note that the right side of Eq. (3.42) is a product of amplitudes whereas the
left side is just an amplitude. Thus the left side must correspond to a loop diagram
implying a relation with the tree level Feynman diagram on the right so that the two sides
are of same order of perturbation theory. The physical implication of the generalized
optical theorem can be better understood with the simplified but important special case
of forward scattering when the initial and final states being equal, |i) = |f). In this
limit, one can relate the imaginary part of a loop diagram with the total tree level cross

section of getting the intermediate state of the loop diagram as the final state by
Im Mi; = 2Eem |pi| ) 0icon. (3.43)

This result is very important as the motivation of using the dispersion method in calcu-
lating the TPE amplitude. Since the imaginary part of the TPE amplitude is directly
linked with the experimentally accessible cross section the phenomenological input form
factor parametrizations for the on-shell particles can now be used in evaluation of the

imaginary part of the specific one loop amplitude without any ambiguity.

In practice of theory, the imaginary part of any loop amplitude can be directly accessed
by putting the intermediate particles on-shell by using the following Cutkosky cutting
rules [103]:

o cut through the loop diagram in every possible ways so that the cut propagators
are on-shell simultaneously, and also obey the momentum conservation.

« substitute the propagator factors by

for each cut propagator.

o sum of all cuts provides the discontinuity, and hence the imaginary part of the

loop diagram, as Disc(iM) = —2Im M.
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FI1GURE 3.9: Extraction of the imaginary part of the TPE amplitude by putting the
intermediate lepton and hadron in the TPE box diagram on-shell. The corresponding
crossed-box has no imaginary part.

For the specific case of TPE amplitude the scenario is illustrated in Fig. 3.9 by putting
the intermediate lepton and hadron propagators on-shell with the substitutions followed
by Eq. (3.44). Only the box diagram is shown here as the crossed-box part is purely
real. With the evaluated imaginary part of the TPE amplitude one can obtain the real
part by exploiting the Cauchy integral theorem that leads to the dispersion relation [12]

* Im M, (s

s'—s

Re M., (s) = —73/ )ds, (3.45)

relating the real and imaginary parts of the TPE amplitude M.,,(s), provided M., (s)
is an analytic function everywhere within the contour in the complex plane of the vari-
able s. Here P denotes the principal value of the integral. Details of the dispersive

formulation will be discussed in Sec. 4.1.

The use of the dispersion formalism resolves the issue of divergence in § coming from
the inelastic intermediate states in the forward angle or high energy limit corresponding
to € — 1 as explained in Fig. 3.10 taken from Ref. [46]. Clearly, the red solid line
representing the dispersive evaluation at Q? = 3.0 GeV? with magnetic form factor only
(for simplicity of calculation) converges as (a) ¢ — 1, and (b) energy keeps increasing.
By contrast, the direct loop integration results represented by the blue dashed line

diverges in that limit.

Before the calculation of Ref. [46], Borisyuk and Kobushkin used the dispersive approach

in calculation of the TPE correction in a series of papers starting from the simplified
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FIGURE 3.10: TPE cross section correction from A(1232)3/2% resonance intermediate

state calculated by Blunden et al. [46] using direct loop integral (blue dashed and

green dotted lines) and dispersive method (red solid line) as a function of (a) e, and

(b) beam energy E, at Q? = 3.0 GeV?2. For simplicity only the magnetic form factor
is considered here. Diagram taken from Ref. [46].

case of nucleon intermediate state [48] and later on extending the formulation to include
the intermediate A(1232)3/2" resonance with zero width approximation and sum of
monopoles type input form factors fit [88]. More recently they used helicity amplitudes
input from MAID model [104] at the hadronic transition current to account the mN

intermediate state contribution in total TPE amplitude [49, 50].

In these updated evaluations non-zero width and background effects were also consid-
ered. The result for the P33 channel evaluated at Q% = 1.0 and 5.0 GeV? is still the
dominant one, among all the channels considered, having the positive cross section cor-
rection in coherence with the results from the direct loop integral method applied by
Kondratyuk et al. [41], as shown in Fig.3.11. But the next significant contributions
are coming from the spin half channels Sj; and Pj; in contrast to Ref. [41], where the
spin 3/2 channel D;3 was the major contributor, with negative cross section, after Pis.
However, the important feature is that the cross section in this dispersive method is

also converging in the limit of ¢ — 1.

The method is also applied by Tomalak et al. in some recent TPE evaluations at low Q?
values [51, 52, 89]. They transformed the phase space integral into an elliptic coordinate
system to perform the integration as a contour integration in a complex plane during

the evaluation of the imaginary part of the TPE amplitude with nucleon intermediate
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FIGURE 3.11: TPE cross section correction ¢, in percent, from 7w /N intermediate states
evaluated using dispersion formalism by Borisyuk et al. [50] at fixed Q?: (a) 1.0 GeV?,
and (b) 5.0 GeV2. Figure courtesy of Ref. [50].

state [51]. The introduced contour allows the integral to be analytically continued into
some unphysical region by a deformation of the contour, for dipole shaped nucleon form
factors, which is required to utilize the dispersion relation above some definite kine-
matics (details are discussed in Sec. 4.1). Later on they further calculated the TPE
effects coming from the inelastic 7N intermediate states at small Q? values of 0.05 and
0.005 GeV? where the analytical continuation is not required. The input pion electropro-
duction amplitudes were also taken from the MAID 2007 parametrizations [104]. The
result shows a good agreement with the empirical extraction of the TPE cross section
of Ref. [21] in the forward angles, while in the backward direction a significant disagree-
ment suggests a re-analysis of the data in the backward angles and small Q? values to

better extract the proton magnetic form factors.

An improved version of the deformed contour was introduced in Ref. [46] in evaluation
of the inelastic A(1232)3/2" intermediate state contribution in the total TPE cross
section. With this deformed contour of integration a more generalized class of form
factors can be used, other than the dipole shape only, as input. This particular contour
prescription will also be used in this thesis to evaluate the resonance contributions in

the total §.
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3.3 Phenomenological extraction of TPE effect

Guichon and Vanderhaeghen [11] extracted the TPE amplitude by comparing the form
factor ratio, p,Gg/Gp, data from Rosenbluth LT separation method and the polariza-
tion transfer method. In the analysis they used the LT separation data from Ref. [3] and
the polarization data from Refs. [5, 6]. The main assumption in the phenomenological
extraction was that the TPE effect is entirely responsible for the discrepancy between
the two measurements of the ratio 11,G/Gpr. The extraction was basically carried out
in terms of the generalized form factors Gy, G, and Y5, defined by the decomposition

of the TPE amplitude similar to Eq. (3.25) with a small change of convention as

Mey = =Sl < () |Gul@. ) - B@n
—i—ﬁg(Q?,y)ﬂi;quN(p), (3.46)

where K = (k + k')/2 and P = (p + p')/2. The form factors G and Y3, are explicitly
related to Fy and Fj by

éE(Q27V> = éM(Q27~V)_(1+T)F2(Q27V>7
Y2, (Q%Lv) = Re <”~F3). (3.47)

M

Note that the definition of Y5, is adjusted with the definition of v used in this thesis.

G and G can also be decomposed into the Born and TPE correction part as
éE,M(Va QQ) = GE,M(QQ) + 5GE,M(V7 QZ)- (3.48)

However, Guichon and Vanderhaeghen [11] ignored the TPE correction in the ratio
G e/ G u by further assuming that the TPE correction in G g is small and of similar
magnitude. As a result the form factor Fy was considered to be coming entirely from
the TPE effect. The obtained Ys, was almost independent of v (or, €) and a few percent

in magnitude. But such a small correction of Y5, (or, F3) was still able to bring the
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FIGURE 3.12: TPE amplitudes Yg (red dotted), Yas (blue dashed), and Y3 (dark red
dot-dashed) from phenomenological extraction of Ref. [105] as a function of ¢ at Q:
(a) 0.5 GeV?, (b) 1 GeV?, and (c) 3 GeVZ.

Rosenbluth data close to the polarization transfer data. It was also explained that

polarization transfer data has little effect from the TPE correction.

Qattan et al. [22, 105-107] carried out a series of phenomenological extraction of the TPE

amplitude from the cross section (og) data following a similar treatment but including

a wider range of unpolarized data from Refs. [2, 3, 21]. The results obtained from the

latest analysis is shown in Fig. 3.12 for Q% = 3.0 GeV? in terms of a slightly modified
convention of amplitudes Yz, Y);, and Y3 defined by

(5@]5 5GM 2 14 F 3

Yp =Re | —=— Yy =Re|—— Y- =Re|l —=—"). 3.49

E e(GM)’ M e(GM>7 3(@’”) € GM ( )

The figure illustrates that in contrast to the findings of Ref. [11], the TPE effect in G

and Fy are almost cancelling each other, and the magnetic equivalent G, carries the

most part of the TPE correction to og rather than Fj (i.e. Yo, or Y3).

3.4 Direct measurement of TPE correction

The defining equation of the TPE cross section correction ¢ (or, IR divergent d,,) in
Eq. (3.14) contains three lepton vertices which indicates § must be a charge-dependent
quantity. As a consequence ¢ in eTp and e p elastic scattering have opposite signs. One
direct extraction of the TPE cross section correction ¢ is thus to analyze the ratio of
the total cross sections o (e*p) in unpolarized e™p and e~ p elastic scattering. The total

amplitude of the elastic scattering of either e*p or e~ p can be written in a common
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form as

M = M, + M + M e + Moy + M.,

vertex

= de9p [M’Y + szfertex + Q;Mfertex + qg/vap + QerM'w} . (35())

In the second line, the charge factors g. and g, coming from the electron and proton
vertices, respectively, are taken out to see the charge dependence of the individual radia-
tive corrections explicitly. The radiative corrections at electron and proton vertex, and
vacuum polarization (corresponding to M2 ., and M,,) in Eq. (3.50) are discussed
in Sec. 2.3. Neglecting the terms beyond order a3, the square of the amplitudes can be
given by

+ M,

|_/\/l|2 = 64 []\472 + 2€2M; Re (M\fertex vertex

+ Myy) + 2¢eqy M Re M, . (3.51)

Here the the charges ¢. and g, are replaced by e where it enters as squared. Since the
vertex corrections (both electron and proton) and vacuum polarization contain even
power of electric charge they must be identical in e™p and e™p scattering. Only the
correction from the TPE amplitude is sensitive to the lepton charge having odd power
of q.. Therefore, the TPE cross section correction ¢ can be extracted from the com-
parison of the measured cross sections og(e*p) with known input from other radiative

corrections.

However, in practice, the measured elastic cross section can not be isolated with infinite
precision from the inelastic bremsstrahlung effect, described also in Sec. 2.3, which also
needs to be taken into account in og(e®p) analysis. More importantly the interference
between the bremsstrahlung amplitudes from electron and proton also contains odd
power of lepton charge. Including the inelastic real bremsstrahlung effect one can write

the amplitude squared as

’MP - 64{M’3 + 2€2M’: Re (M\fertex + M\eertex + MVP)

+2qeqﬁ [M';k Re M’Y’Y + Mg:emSlerems} } (352)
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Note that the real bremsstrahlung correction is coming from the interference between
the amplitudes of the real photon emission from electron and proton legs. The total
reduced cross section can now be written in terms of the relative cross section corrections

with respect to the Born contribution as

O-R(e:tp) = O-Igom [1 + 5even + (6wv + 5brems)] ) (353)

where oFo™

is the Born reduced cross section, deyen is the sum of all charge even relative
cross sections and the charge odd contributions from TPE and bremsstrahlung are ¢.
and Oprems, respectively. Interestingly, the charge odd pieces in the parentheses cancel
out the IR divergences of each other as well. The ratio of the cross sections of e*p and

e~ p can now be given by

o(e™p) 1+ deven — Oy — Obrems

o(e=p) 1+ Geven + vy + Obroms
(8, + Sbroms)

14 been

R:

~ 1 (3.54)

with the convention of the sign of d,, and Jprems such that they appear as additive
correction in e~ p scattering. In the second approximated equation, the logarithmic
enhanced behaviour ~ log(Q*/m?) of the vacuum polarization and vertex corrections
are exploited which is absent in case of charge asymmetric corrections d, and Oprems.
After plugging in the calculated deven and dprems corrections in the above equations one

is left with entirely the TPE effect in the cross section ratio as

Ry, ~ 126, (3.55)

Since the ratio R remains IR finite, I switch to the usual notation of IR finite TPE cross

section ¢ used in this thesis and the TPE sensitive part of the ratio is given the form

Ry, ~1—26. (3.56)

Any deviation of Ry, from unity thus clearly indicates the presence of TPE effect.
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FIGURE 3.13: Measured Ry, plotted as a function of Q? (left panel) in a logarithmic
scale and as a function of virtual photon polarization € (right panel) from the mea-
surements of Refs. [108-113]. Source of data points are labelled in the plot legends
using authors name and year of publication. The line in the right panel is the fit
reproduced from the reanalysis of Ref. [36]. Plots are taken from Ref. [29)].

Starting from the work of Yount et al. [114] in 1962, there has been several efforts [108—
113] in determination of the TPE effect directly exploiting this particular method of
analyzing the unpolarized e®p elastic scattering cross section ratio during the 1960s
and 1970s. The results of those measurements, showed in the left panel of Fig. 3.13
as a function of Q* (with data sets for varying ¢ though), hints a very small TPE
effect (< 1%). The large uncertainty of the data points for R, also compels one
to conclude that Ry, = 1, meaning no TPE correction. Note that the experiments
mentioned above are performed mostly in the low Q* and/or large e corresponding to
the forward angle scattering where TPE effect is also expected to be tiny from the model
estimations discussed in Sec. 3.2. Realizing the importance of the € dependence of the
TPE correction in the form factor extraction using Rosenbluth LT separation method,
a global reanalysis of the R,, data was performed in Ref. [36]. The results are shown
in the right panel of Fig. 3.13. The fit to data shows a linear ¢ dependence of Rs,
with nearly 5.7% increase from the forward to backward angles (small €). This much
e dependence can resolve almost half of the p,Gr /Gy discrepancy but the large angle
(small €) Ry, data in this reanalysis covered only the range of Q? < 0.5 GeV? where the
discrepancy is not evident. Even though the data indicates a non-zero TPE effect, it is
not convincing enough since most of the data are in the large € region and also due to

the inconsistent use of the model-dependent input of bremsstrahlung correction (which
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is also charge asymmetric) to isolate the TPE contribution from the total cross section

ratio.

More recently, three updated and precise experiments dedicated to extract the TPE ef-
fect from Ry, were performed at Novosibirsk [115], Jefferson Lab [116] and DESY [117]
covering an wider kinematic region. The VEPP-3 experiment at Novosibirsk [115] and
OLYMPUS experiment at DESY [117] both used monoenergetic beams of energies 0.998
and 1.594 GeV, and 2.01 GeV, respectively, from a storage ring directed to an internal
gas target, while the CLAS experiment at Jefferson Lab’s Hall B [116] used mixed simul-

taneous beam of electron and positron with energies ranging from = 0.85 to 3.50 GeV

directed to a liquid hydrogen target.
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FIGURE 3.14: Measured Ry, by VEPP-3 experiment [115] (black solid circles) at
Novosibirsk plotted as a function of ¢ for mono-energetic beams of energy £ =
1.594 GeV for run-I (left panel), and E = 0.998 GeV for run-II (right panel). The
statistical uncertainties are represented by the error bars, while the shaded bands cor-
respond to the total systematic uncertainty and the bin size for each data point. The
estimated lines correspond to Refs. [48] (cyan dot-dashed), [37] (red thin solid), [21]
(blue thick), [118] (grey long-dashed), [36] (magenta dashed), and [106] (black dotted).
Plots are taken from the original work of Ref. [115].

The VEPP-3 experiment being the first of the new and precise extractions of the TPE
effect directly, compared their results with some selected old data that had similar
kinematics and found good agreement with a clear indication of non-zero TPE effect
at the intermediate to lower values of €. They also compared the results with some
early theoretical predictions [37, 48], considering mostly the nucleon intermediate state,

and with the phenomenological values of Refs. [21, 106] along with the predictions of
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Refs. [36, 118] even though the data were required to use the model predicted values
of Ry, at the normalization points to get some more reliable conclusion. However, the
theoretical predictions of Refs. [37, 48] had very good agreement with data from the first
run, while the second run was off by ~ 1-1.5% from the predicted ones. On the other
hand, the phenomenological values obtained by Bernauer et al. [21] underestimated Ry,
according to the measurement of VEPP-3 experiment. The rest of the comparison had
worse agreement. But, overall, the outcome of this experiment shows the presence of

significant TPE effect.

The experiment at Jefferson Lab using CLAS spectrometer covered almost the entire
range of ¢ from ~ 0.2 to 0.9. Along with the € dependence of Ry, at fixed average
(Q?) = 0.85 and 1.45 GeV?, they also presented the result at fixed average (¢) = 0.45 and
0.88 with varying Q. Figure 3.15 demonstrates the original representation of the results

in their work. A reasonably good agreement is observed with the calculated Ry, by Zhou
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FIGURE 3.15: Measured Ry, by CLAS experiment [116] at Jefferson Lab plotted as a

function of & (left panel) at fixed values of averaged (Q?) = 0.85 (top) and 1.45 GeV?

(bottom), and as a function of Q? (right panel) at fixed averaged (¢) = 0.45 (top) and
0.88 (bottom). Plots are taken from the original work of Ref. [116].
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and Yang once the A(1232)3/2% resonance is included [3.15(a)]. The results from other
hadronic approach calculations [37, 38] with nucleon intermediate state only are still
in close match with the measured values within the large systematic and statistical
uncertainty at the kinematics of this experiments, i.e. at averaged (Q*) = 0.85 and
1.45 GeV2. The e dependence of the TPE cross section correction obtained from the
linear fit to data brings the Rosenbluth LT separation data for 41,G /Gy by Andivahis
et al. [3] at Q* = 1.75 GeV? within 1o agreement to the polarization transfer data
of Punjabi et al. [9] at @* = 1.77 GeV2. To be specific, the ratio u,Gr/Gp of LT
method shifts from ~ 0.91 to 0.829 once the £ dependence of the TPE cross section
from CLAS measurement is accounted. The plots as a function of Q% shown in Fig. 3.15
(right column) also hints the presence of TPE effect at the backward angle (low ¢)
with increasing Q? in coherence with the calculation, even though the line for Ry, =1
(i.e. no TPE) is still within the uncertainty range of the measured values. A global
analysis with 12 CLAS and 4 non-normalization data points of VEPP-3, with 0.3%
systematic scale-type uncertainty accounting the high ¢ normalization variation with
VEPP-3 measurement, were performed in the same paper and obtained an improved
agreement with the hadronic calculations eliminating the no-TPE hypothesis at 5.30
level.

The OLYMPUS results for R, were also published soon after the CLAS ones. They
detected the elastically scattered leptons within the scattering angles interval of &~ 20° <
6 < 80° corresponding to the virtual photon polarization range 0.456 < £ < 0.978 using
the formerly used MIT-Bates BLAST detector. Applying the Mo and Tsai prescription
for all order radiative corrections in extraction of Ry, they compared the results with the
updated theoretical predictions using the dispersive approach by Blunden et al. [46] and
Tomalak et al. [51] along with the phenomenological fit of Ref. [21] as shown in Fig. 3.16.
Note that the results using Maximon and Tjon prescription [76] of radiative correction
are also available in that paper. Unlike the two other measurements of VEPP-3 and
CLAS, Ry, in the large € region are basically negative, implying a positive TPE effect
at that kinematics, even though the results are in the close vicinity of Ry, = 1 there.

However, the phenomenological fit of Bernauer et al. [21] and the subtracted dispersive
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FIGURE 3.16: Measured Ry, by OLYMPUS experiment [117] at DESY plotted as a

function of & (corresponding Q? scale is also shown) at the beam energy E = 2.01 GeV.

Compared are the theoretical predictions of Blunden et al. [46] (blue dashed and solid

lines), Tomalak et al. [51] (Green solid), and the phenomenological fit of Bernauer et
al. [21]. Plot is taken from the original work of Ref. [117].

calculation of Tomalak [51], which used the proton form factor input from Bernauer’s
work, agrees reasonably well with the data. In contrast, Blunden’s estimation with
nucleon intermediate state alone seems to overestimate the TPE effect compared to the
data. But the inclusion of the A(1232)3/2% resonance intermediate state in Blunden’s
work negates the nucleon effect and brings the curve little closer to the data, at least at
lower . This observation stimulates one to further investigate the effect of the higher
mass resonance intermediate states within the dispersive method to see if that brings in

any dramatic change in TPE effect.

In a recent review paper [29], Afanasev et al. carried out an analysis on the com-
bined data sets of Ry, from all three contemporary experiments of VEPP-3, CLAS and
OLYMPUS to test the existence of no-TPE hypothesis and compare the agreement be-
tween model predictions and measured values by investigating the difference, Ry, — R;@;lc
between the measured and the calculated values of Ry,. Considering only the indepen-
dent data sets from CLAS and complete sets from rest of the experiments, the authors
used two different statistical approaches to account the scale-type normalization uncer-
tainty that is available for CLAS and OLYMPUS experiment only. In the first approach

adding the normalization uncertainty with the statistical and uncorrelated systematic
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uncertainties of CLAS and OLYMPUS experiment in quadrature they ruled out the hy-
pothesis of absence of TPE effect with 98% confidence level. An alternative treatment of
the normalization uncertainty, allowing the floating of the CLAS and OLYMPUS data
independently to bring in a new normalization factor N’ by minimizing the reduced
x? for each data set, also rules out the possibility of no-TPE hypothesis with an even
improved confidence level of 99.5%. However, one can not reach any definite conclusion
about the strength of the claim that the TPE effect alone can resolve the proton form
factor ratio discrepancy yet with the available data that mostly fall in the kinematic
region where the TPE effect is relatively smaller in magnitude (according to the model
predictions) and also because the form factor discrepancy becomes apparent above that

region.

3.5 Polarization observables

Another way to see the TPE effect experimentally is to observe the ¢ dependence of
the polarization transfer ratio Rry introduced in Sec. 1.3.2. The defining equations of
Pp, and Pr in Eq. (1.17b) relates the electric and magnetic form factors Gg and Gy, at
the Born level, so does the ratio Ry with p,Gg/Gpy ratio at the same approximation.

However, including the TPE effects Pr and P;, can be given by [11, 43, 46, 73]

Pro= UG QNGw () + Gul@) Re (e, @)
+Gp(QY) Re (Gu(e.QY) + =G, e Q%)] , (3.57a)
o= TS G@) +26u(@)

g2 ,

v
R( O+ 2 _q ,2), 3.57h
<Re (Gu(2.Q%) + 5 Gule.@)) | 35T
where the electric and magnetic equivalent generalized form factors Gg and G,; are

introduced in Egs. (3.23a) and (3.23b). In the Born approximation, the ratio Ry, thus



Chapter 3 Two-photon exchange 66

1.04f === N 074 Q=249 Gev? -~ N
— N+A 0.72

s 102
o ® GEp2y = 0.70
~ [ ] g
a 1.00 0.68

098] (a) 0.66

00 02 04 06 08 1.0 0.0
£ £

FIGURE 3.17: TPE effect on (a) the longitudinal polarization transfer Py, relative

to the Born approximation Péo), and (b) the ratio Rpp, as a function of ¢ at fixed

Q? ~ 2.5 GeV2. The data points (black solid circles) with the associated systematic

and statistical uncertainty are taken from Ref. [119], while the blue dashed and the

solid red lines are the calculated results by Blunden and Melnitchouk [46] with nucleon
and sum of nucleon with A(1232)3/2" intermediate states, respectively.

reduces to p1,G /Gy which is independent of €. Therefore, any ¢ dependence in Ry,
is a good check of the effects beyond single photon exchange approximation. On the
other hand, the ratio p,Gg/Gy extracted from the polarization transfer measurement
was found relatively insensitive to the TPE correction [11, 37]. But, that is perhaps
due to the fact that the data range were mostly in the high ¢ region, ¢ ~ 0.7 — 0.8,
where the TPE effect is small. However, in search of the effect to better constrain the
theoretical estimations, the GEp2y collaboration at Jefferson Lab [119] has measured
Rrp, and Pp relative to its calculated Born approximation Pp(0) at Q? = 2.5 GeV?
covering a wide range of €. The ratio Ry, was found almost independent of € at the
1.5% level whereas the longitudinal polarization P, shows an enhancement of &~ 2% over
the range of 0.635 < & < 0.785 relative to P(0). In contrast to the findings of GEp2y
collaboration, the theoretical predictions based on hadronic TPE calculation [37] with
nucleon intermediate state shows some £ dependence of Ry, taking the numerical values
away from the measured ones at the backward angles, and no € dependence for P,. The
GPD [43] and pQCD [120] based calculations also show non-zero slope of the Ry, vs. €
curve, but with an opposite sign. Later on, an improved calculation [46] in the dispersive
approach with nucleon intermediate state shows very good agreement with the data of
Ref. [119], but inclusion of the excited resonance A(1232)3/2% took the curve away from

the measured values in the backward direction, as shown in Fig. 3.17(b). Note that the
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legends for the curves of Ry in Fig. 16(b) of Ref. [46] were swapped, which has been
corrected in Fig. 3.17. The shift of the Ry, line due to inclusion of A(1232)3/2" state
compels one to further investigate the effect of the higher mass resonance intermediate
states, particularly at large momentum transfer squared. However, P; is still found

insensitive to the TPE correction in the entire range of ¢ (Fig. 3.17(a)).

3.6 Summary and discussion

The brief review of the model estimations of the TPE correction illustrates the pros
and cons of three different approaches. The GPD and pQCD based calculations are
more suitable for the high Q? interactions whereas most of the experiments discussed
above are within the range of Q% < 8.83 GeV2. In the range of 5.00 < Q? < 8.83 GeV?,
only a limited number of data are available from the LT separation and PT method
of measuring the ratio 1, Gg/G . But the discrepancy is clearly visible even for Q? <
5 GeV2. On the other hand, the hadronic approach is a reasonable approximation for Q?
up to ~ 5 GeV2. But the direct loop integration of the TPE box and crossed-box diagram
within the hadronic assumption contains a large source of uncertainty in its calculation
due to off-shell ambiguity of the hadronic intermediate state. More importantly, the
TPE cross section correction diverges in the forward angle limit violating unitarity once
the resonance intermediate states are accounted. Considering these issues along with
the kinematics of most of the existing experimental data, we find the dispersive method
very convincing in evaluation of the TPE effects. However, it is also important to
account the effects of the higher mass resonances with a realistic width consideration
and up to date input parameters. In the next chapter, I adopt the dispersive formalism
following Ref. [46] and start with an warm up TPE calculation in electron scattering
off a simplified point-like target, muon. Once convinced with the outcome, I then apply
the method to evaluate the TPE correction in e-p elastic scattering with all the 4- and

3-star, spin 1/2% and 3/2% intermediate states below 1.8 GeV in Chapter 5.



Chapter 4

Dispersive Method of TPE

Calculation

This chapter describes the technical details of the dispersive method to calculate the
TPE quantum correction in electron-proton elastic scattering within hadronic degrees
of freedom. At first, the general framework is explained (Sec. 4.1) focusing on nucleon
and resonance intermediate state, and then the method is applied to a simple test case

of the TPE correction in unpolarized electron-muon scattering (Sec. 4.2).

4.1 Dispersive method

The dispersive approach, based on the principle of unitarity of the scattering matrix, is
the most compelling method to calculate the TPE amplitudes as it can utilize the on-
shell input parametrizations of the hadronic transition currents and the corresponding
form factors at the two vertices. As a consequence, the issue of unphysical divergence
in the forward angle limit for the resonance intermediate state can be resolved. The
idea behind the dispersive method is to put the intermediate hadron and lepton on-shell

which generates the imaginary part of the amplitude. Based on this basic concept the

68



Chapter 4 Dispersive Method of TPE Calculation 69

detailed framework to calculate the TPE amplitude is discussed in the following two

sub-sections.

4.1.1 General framework

The TPE amplitude of the box diagram of Fig. 3.1 has both the real and imaginary
parts, while the corresponding cross box part of TPE has purely real values.Using the
Cutkosky cutting rules [103], one can put the intermediate lepton and hadron states

on-shell by substituting the propagator factors as

1

ph — W2 +i0*
1

k¥ —m2+i0t

= =21 f(p) d(pg — W), (4.1a)

- =2mi O(K)) §(ki — m?), (4.1b)

to obtain the imaginary part of the TPE amplitude M., of Egs. (1.1) and (3.21), and
hence the imaginary part of the generalized TPE form factors £y, F3, and G,. Note that
the intermediate lepton and hadron are now on-shell. Therefore, one can use the on-shell
parametrization of the hadronic transition current operator at the two hadronic vertices
of Fig. 3.1. Thus, the model uncertainty due to the use of on-shell parametrizations for
off-shell intermediate hadrons is eliminated. The substitutions of the propagator factors
shown in Eq. (4.1b) into Eq. (1.1) reduces the four dimensional integration in M.,
to a comparatively simpler two dimensional integral over the four-momentum transfer
squared Q% and Q2 of the two virtual photons. After mapping the TPE amplitude
M., of Eq. (3.2b) onto the generalized form given in Eq. (3.21), the integration for the
imaginary part of the generalized TPE form factors can be given a generic form in terms
of an integration over the solid angle Q,, which can also be expressed in terms of Q?

and Q3, of the intermediate state lepton,

Is =

(4.2)

s—W? Gi(Q?) G;(Q3) fi;(Q1,Q3)
4s / o ey @ )
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where G;(Q7) and G;(Q3) are the form factors at the two respective YNR (or, YN N
for nucleon) vertices with 7,7 = 1,2,3 (i,j = 1,2), and the function f;;(Q% Q3) is a
polynomial of combined degree 4 (2 for nucleon) in Q%Q The imaginary part of the
generalized TPE form factors can be computed from Eq. (4.2) for each resonance state
at a specific value of W, such as at the peak of the resonance, W? = W3. The numerical
evaluation of the integral I5 in Eq. (4.2) at W? = W} gives the imaginary part of the
generalized TPE form factors, and hence the amplitude, as a function of electron energy
E, at fixed values of the four-momentum transfer squared Q?. The same can be done for
the elastic nucleon intermediate state with the substitution of W = M (nucleon mass)
and the appropriate form factors. The detailed discussion for the input form factors will
be discussed in Sec. 5.1 for nucleon intermediate state and in Sec. 5.3.3 for resonance
intermediate states. Note that the numerator of the integrand here vanishes in the limit
of @7, — 0 for resonance intermediate states which will be clear from the expressions of
the transition currents into spin-1/2 and -3/2 resonance states discussed in Sec. 5.2. As
a consequence, the integral becomes IR finite, while a subtraction of the IR divergent

part is required for the nucleon case following the discussion of Sec. 3.1.2.

The Cauchy principal value integral formula provides the basis of the dispersion relation
to generate the real part of the generalized TPE form factors, and hence the TPE

amplitude M,,, from the corresponding imaginary parts. Using the symmetry properties

Fl,,Q(Q2> —y) = _F1/,2(Q2: V)> (43&)
Go(@Q* —v) = G (@), (4.3b)



Chapter 4 Dispersive Method of TPE Calculation 71

the real parts of the TPE amplitudes can then be computed from the dispersion rela-
tions [46, 48, 51, 70,

2 o v
Re F/(Q*,v) = ;73 | dv' R Im F}(Q*, V), (4.4a)
2 o v
Re F5(Q*v) = —P / | dv' s Im Fy(Q*, ), (4.4Db)
ReGL Q%) = 2P [ 4/ - (@ 44
e a(Q 7V> - } - v 2 12 m a(Q 7V)7 ( : C)
where P refers to the Cauchy principal value integral, with vy, = Enn/M — 7 and

Emin = (W? — M?)/2M is the minimum energy required to excite a state of invariant
mass W. For elastic nucleon intermediate states, the minimum energy is E;, = 0, so

that one has vy, = —7.

4.1.2 Analytical continuation to unphysical region

The physical threshold for electron scattering at € = 0, or backward angles, cos = —1,
is vy = \/m . In other words, the threshold energy for physical scattering to take
place is Ey, = M(7 + vy). Figure 4.1 marks the physical region of the integration of
Eq. (4.4¢) from the unphysical ones by the solid red curve where the shaded area corre-
sponds to the physical range of v. The inclined green dashed, blue long-dashed, dotted
dark-red and dot-dashed orange lines identify the minimum limit of the dimensionless
variable v, in the integral of Eq. (4.4c) for some representative intermediate states
nucleon, A(1232)3/2%, N(1520)3/2~, and N(1720)3/2", respectively, at fixed values of
Q?. Tt is evident from the diagram that the integrals in Eqgs. (4.4c) extend into the
unphysical region at certain limits of the values of W and Q?. For example, for the
A(1232)3/2% resonance, at Q* = 0.5 GeV? and W = 1.232 GeV the physical threshold
v =2 0.4, whereas the integration runs from vy;, = 0.22. On the other hand, for nu-
cleon intermediate state, the integration needs information from the unphysical region
for any value of Q2. Thus, an analytical continuation of the imaginary parts of the form

factors into the unphysical region is required to obtain the real parts from the dispersion
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relations. The analytic continuation of the integral /5 in Eq. (4.2) into the unphysical
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FIGURE 4.1: Specification of physical and unphysical regions of the dimensionless
variable v covered by the dispersive integral of Eq. (4.4c) at fixed values of four-
momentum transfer squared Q2. The shaded region bordered by solid red line corre-
sponds to the physical region, and the green dashed (nucleon), blue dashed (A(1232)),
dark-red dotted (N (1520)), and orange dot-dashed (/N(1720)) lines specify the vmin
of the fixed Q? dispersive integral. The black horizontal line represents a fixed value

of Q2.

region is discussed in Ref.[51] to apply it at a specific case of monopole type nucleon
form factors. Blunden et al. [46] modified the contour in the complex plane to calculate
the integral I5 in the unphysical region for a more general class of the form factors for
which the poles not only in the timelike region of @ but also in the spacelike region
is acceptable within some restrictions as addressed in there work. The phase space in-
tegration [ dQy, = [ dcosOy,ddg, can be expressed in terms of the integration over Q7
and Q2%. The definition of 0, and ¢, can be understood from the centre-of-mass (CM)
frame kinematics explained in Appendix A. The region covered by the integral Is forms

an elliptic shape in the Q% vs. Q3 plane having the centre at {Q32, Q2} with,

Q= M?f -V (4.5)
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Having defined the electron momenta in CM frame as Eq. (A.1d), one can express the

virtual photon momenta Q% and Q3 in the form,

QF = Q3(1—cosby), (4.6a)
Q5 = Qi (1 — cosfcosfy, — sinfsin by, sin gy, ). (4.6b)

In elliptic coordinates {c, 0y, }, following Ref. [46, 51],the phase space integral can be

1 2T
/ko1 = /dCOSle /d¢k1 — 2/ da/ d@kl, (47)
0 0

and thus the two four momenta take the form,

transferred as,

QF = Q3(1—r cosby,), (4.8a)
Q3 = Q3(1—r cosfcosby, —r sinfsinby,), (4.8Db)

where 7 = v/1 — a2 is the radial parameter of the concentric ellipses for the contours
of constant a, with o = sinf, sin ¢x,. To analytically continue the integral I into
the unphysical region the integral over 6y, is transformed as a contour integral over the
contour [46]

z = el (4.9)

for the physical region, while the deformed contour [46]
1 1 i0
2= 51+ B) + (1= Fe™, (4.10)

with 8 being defined in Eq. (4.12), is used for the calculation of I; in the unphysical
region (cosf < —1), so that any arbitrary poles in the timelike region along with some
restricted poles in the spacelike region of the form factors are accounted. With this

change of variable, the two four-momentum transfer squared Q?(r, z) and Q3(r, z) are
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now functions of radial parameter r» and the new complex variable z as,

Qi = Q) {l—f (z+§)] (4.11a)

2
@ =@h-L(240 (4.11b)
2 0 ACEEVIE .
where
e, for — 1 < cosf < +1,
8= (4.12)

cos —+/cos?2f — 1, for cosf < —1.

The contour integration using the contours of Eqs. (4.9) and (4.10) for the physical and
unphysical regions, respectively, is tested for e-u scattering case in the next section.
Then the procedure is implemented in case of elastic e-p elastic scattering to obtain the
imaginary parts of the generalized TPE form factors at specific values of Q% and a grid
of electron energy E for elastic nucleon intermediate state in Sec. 5.1 followed by the

discussions to include the resonance intermediate states from Sec. 5.2.

4.2 TPE in e-u scattering

In this section, the contour integration and the overall dispersive method discussed above
is tested by applying it into the simple case of scattering of electron off a pointlike target
particle muon, . Since p is a fundamental particle and has no internal structure hence
no structure-dependent input is required at the two target particle vertices of the TPE
Feynman diagram. Therefore, the numerical dispersive method result for this simple
case is expected to be identical with that from the direct loop integral results obtained
using Passarino-Veltman (PV) functions [93, 121]. The TPE amplitude for unpolarized

e-p scattering simplifies to the form:

YT / d*qr te(K)ya(Fy + me)ysue(k) i, (p) v (B + mu) ¥° uu(p) (4.13)

2m)* (qf — N2)(g3 — A2)(k} — m2 +i0+)(p** — m2 4 i0F)
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where p* = p + ¢ is the four-momentum of the intermediate muon and m,, is the muon
mass. Rest of the quantities are as defined before for the case of e-p elastic scattering.

The explicit form of the corresponding crossed-box amplitude is,

MS{;H(XbOX) _ —ie4 / d4Q1 ae(k/)’}/a(kQ + me),}/ﬁue(k)ﬂu(p/) ’ya (p* + m,u) 75 uﬂ(p) (414>

(2m)* (¢f — M) (g3 — N2) (k3 —m2 +i0%)(p** — m2 +i0%)

As discussed before, the crossed-box TPE amplitude can also be obtained using the

crossing symmetry relation of Eq. (3.11). The total TPE amplitude, M # = My, pbox) |
M2 can be evaluated either by direct loop integral evaluation or by the dispersive

method. Omne can also express the amplitude in terms of the generalized TPE form
factors Fy, Fy, and G, of Eq. (3.21) and mapping of M onto the generalized M.,
of Eq. (3.21) provides the expressions of F|, F,, and G, for the simplified case of e-u
scattering. The evaluated generalized TPE form factors can be used in Eq. (3.22) to get

the cross section correction. The Born cross section of Eq. (1.13) will be substituted by
op"Me—p) =e+7, (4.15)

for this case. It is important to mention that only F| is infrared divergent for point
like target and that is subtracted using Maximon and Tjon prescription [76]. In rest of
the part of this section, the two methods of evaluation are discussed and the obtained

results are compared.

4.2.1 Passarino-Veltman (PV) functions

To evaluate the one-loop integrals of Eqs. (4.13) and (4.14), T use the Mathematica
package FeynCalc [122, 123] that generates the results in terms of a set of the two

point, three point and four point scalar PV functions By, Cy, and Dy, respectively. For
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the s-channel box diagram the general expression of these scalar functions are,

| d’
Bols) = 75 [(k—qm—mzﬂoﬂ?(lpmw—m,%+z'0+1’ .
4
Cols; %) = ij/hﬁ—ﬂwkf;;—m%%ml
X[@+@grim3+mﬂ’ (4.16D)
Do(s; A1 4) = m%/ [q%—g?([];%—)\g]
y 1 . (4.16¢)

[(k —q1)? = m2+i07][(p + q1)? — m2 + 0]

Note that the PV functions By, Cy, and Dy have dependence on the variables m,,
m,, and Q? as well, which has been suppressed for simplicity of notation. However,
in practice the PV functions have other variables in the TPE amplitudes coming from
the numerator factors. Including the numerator variable dependence, the form of the
PV functions (in Mathematica package LoopTools [124] notation) that come into the
calculation of total TPE amplitudes, M:# are:

« Bo(m}, \*,m2), Bo(t,\*, X?), By(s, mZ2,m), Bo(u,m?,m?)

2 2 2 2 )2 2 2 2 2 2 2 2 2 2 2 2 2 2
* Co<me7me7t7)\ 7me7)\ )7 Co(m;umlmta)‘ 7m,u7)\ )7 CO(m,uame?Samua)\ 7m5)7 CO(m,uame?uamua)

2 2 92 2 2,2 y2 2 2 2 92 92 2 2 y2 2
o Do(mz,mi,mg,mg,t,s,\°,me, \°,mZ), Do(ma, mi,mg,me,t,u, A°,me, A%, mg)

Since A\; and Ay are some IR regulators, I have substituted them by the common param-
eter X\. The scalar functions mentioned above can be evaluated using the Mathematica

package LoopTools [124]. Among these PV functions, only the functions By(s, m2, mi),

C’o(mi,m2 s mi,)\z,m

er

2
e

. and Dy(m?,m?, m?
o

>, me,mz,t, s, \*,m2, A*,mZ) have imaginary

parts and the rest are purely real. The imaginary parts of the three scalar functions can



Chapter 4 Dispersive Method of TPE Calculation 7

be written as [86]

2
(s —m
ImBo(s,mi,mi) = u, (4.17a)
s
mlog[s A\?/(s — m?2)?
Im Co(m, m?,s,m>, \°,m?) = Bls A/ 5 “)], (4.17b)
s—m
I
2 log[—t/\°
Im Do(m,, m>, m2,mZ,t, s, \>, m>, \*, m) —%. (4.17¢)
“w

Keeping only the imaginary parts of these three functions in the expressions of general-
ized form factors and leaving the rest generates the imaginary parts of the corresponding
form factors. The imaginary parts of F|, F, and G, obtained using dispersive method,

can be tested against that obtained using the above treatment.

4.2.2 Dispersive method

As discussed in Sec. 4.1, putting the intermediate leptons (for the case of e-u scatter-
ing) on-shell using Eq. (4.1b) gives the imaginary part of the amplitude and hence the
generalized form factors. The integration of Eq. (4.2) for the imaginary parts of F’ 9 FQ/,
and G, takes the simplified form

cw_ * f(Q1,Q3)
= [ et vy

where the function f(Q%, Q3) is a polynomial of combined degree 2 in Q7 ,. As addressed

(4.18)

before in this section that this integration can be IR divergent for F| only. To avoid
this difficulty, the divergent part is subtracted off from the numerator of the respective
integrand at the limit of Qiz = 0 GeV? beforehand. As a consequence, the integration
of Eq. (4.18) becomes independent of the value of the small mass parameter A, and can
be set to zero without any ambiguity. The real part of the form factors can then be
calculated using the dispersion relations of Eq. (4.4c). For any value of nonzero Q? the
integrand needs to be analytically continued into the unphysical region. Therefore, the
analytical continuation into the unphysical region is obtained by using the deformed

contour of Eq. (4.10), whereas for the physical region Eq. (4.9) is used. The obtained
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results for the imaginary parts of the generalized form factors and the cross section using
dispersive method is compared with that calculated using the scalar PV functions are

discussed in the next section.

4.2.3 Results and conclusion

Fig. 4.2 illustrates the imaginary parts of the generalized TPE form factors F; (a,b), F,
(c,d) and G, (e,f) for e-u scattering at four-momentum transfer squared Q? = 3.0 GeV?
as function of incident electron energy E. The left panel represents the magnified results
for the smaller energy range from F = 0.001 to 1 GeV, while the right panel represents
the same quantities for the extended range from 1 to 100 GeV. The results obtained
using the numerical contour integration (red long-dashed line) and the scalar one-loop
integrals (blue dotted line) are all identical which justifies the use of the contours defined
in Egs. (4.9) and (4.10). Moreover, in the higher energy region around E = 100 GeV,
the imaginary part of F, reaches a very small constant value which justifies the use of
the dispersion relation of Eq. (4.4c) to get the corresponding real part. On the other
hand, the two other form factors F, 1’ and G; have non-zero and non-negligible slope even
at around 100 GeV of energy. But they also reach the constant value near 1000 GeV and
10,000 GeV, respectively. Thus the upper limit of the dispersive integrals of Eq. (4.4¢)
are adjusted accordingly where the plateau of the imaginary parts is reached. Since
the integration is not carried up to the ideal maximum limit hence the tail effect is

accounted following the procedures discussed in Sec. 5.1.

The TPE cross section correction, in percent relative to the Born cross section, for
e-p scattering is shown in Fig. 4.3. The results in Fig. 4.3(a, b) are calculated using
dispersion relations but the imaginary parts are calculated in two different methods.
Figure 4.3(a) uses the imaginary part obtained using the contour integration, whereas
Fig. 4.3(b) make use of the imaginary part of the form factors generated by the ex-
plicit expressions of the imaginary parts of the PV functions By, Cy, and D, given in
Eq. (4.17¢). The third diagram of Fig. 4.3 shows the TPE cross section correction calcu-

lated by the direct one-loop integration in terms of the PV functions using Mathematica
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FIGURE 4.2: Imaginary part of the generalized form factors F| (top row), Fj (mid-
dle row), and G! (bottom row) for TPE in e-u scattering at a representative four-
momentum transfer squared Q> = 3 GeV2. The red long-dashed curve represents
the result using the numerical contour integration, while the blue dotted curve corre-
sponds to that using the imaginary parts of the Passarino-Veltman functions obtained
by direct loop integrals. The left column shows the results in the incident electron
energy (FE) range from 0.001 to 1 GeV, and the right column is for the range from

E =1 to 100 GeV.

package FeynCalc [123] and LoopTools [124]. Clearly, Fig. 4.3(b) and (c) demonstrate

that the dispersive method reproduces the real part of the form factors and hence the
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FIGURE 4.3: TPE cross section correction in unpolarized e-p scattering at Q2
3 GeV? as a function of virtual photon polarization e. The red long-dashed curve
(a) used the dispersive method to get the real part of the generalized form factors
from the imaginary parts obtained by numerical contour integration. The blue dotted
curve (b) used the same method to get the real part from the imaginary part of FJ,
F}, and G/, using the imaginary parts of the Passarino-Veltman functions obtained by
direct loop integrals. The green dashed curve (c) used the direct loop integrals using
LoopTools.

cross section. As the imaginary parts from the contour integration and the PV func-

tions are also identical, hence the identical cross sections in Fig. 4.3(a) and (b) motivate

further to apply the dispersive method to unpolarized e-p elastic scattering. In the next

chapter, the method is thus applied in case of e-p elastic scattering.



Chapter 5

Numerical Evaluation of TPE in e-p

Elastic Scattering

The chapter begins with the evaluation of the TPE effect in e-p elastic scattering with
nucleon intermediate state using dispersive method (Sec. 5.1). After that the discussion
on the model estimation of the resonance intermediate states effect starts with the gen-
eral decomposition of the hadronic transition current operators defining the transition
form factors G; (i = 1, 2, 3) following Refs. [53, 83|. For the numerical calculation of the
imaginary part of the TPE amplitude, input electromagnetic helicity amplitudes A; o,
Asja, and Sy from the CLAS exclusive electroproduction data at Jefferson Lab [125]
are used in this work. Therefore, an explicit relation between the form factors and the
helicity amplitudes for the proton to excited resonance intermediate states transition
with spin-parity 1/2% and 3/2* are discussed in Sec. 5.3 including the CLAS data and fit
for the electrocouplings. Inclusion of a non-zero finite resonance width in this particular

model is also explained at the end of the chapter (Sec. 5.4).

81
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5.1 TPE with elastic nucleon intermediate state

In this section, the dispersive method discussed in Sec. 4.1 is applied to calculate the
TPE correction, with elastic nucleon intermediate state only, in unpolarized e-p elastic
scattering. For the specific case of the nucleon intermediate state, the integration of

Eq. (4.2) for the imaginary part of the generalized form factors takes the form

P Ly L C T X -
4s (@1 + M) (Q3 + 2?)
where F;(Q?1) and F;(Q3) are the Dirac (i,j = 1) and Pauli (¢,j = 2) form factors at
the two hadronic vertices YN N, and f; ;(Q%, Q3) is a polynomial of combined degree
2 in Q7,. Note that the transition current operator I'yy_n of Eq. (1.5) for on-shell
states are used at each hadronic vertex. The use of such on-shell parametrization of
I'yn—n is justified since the Cutkosky cutting rules put the intermediate states on-
shell. However, as addressed in Sec. 4.1, the dispersive integral of Eq. (4.4¢) requires
the information of the imaginary part of the TPE generalized form factors in some
unphysical region for any value Q? since the minimum energy corresponding to vy, is
zero whereas the physical threshold is some non-zero positive quantity. For example,
at Q? = 1 GeV?, the physical threshold is 14, ~ 0.604, while the integration runs
from the negative value of v, = —0.284 to infinity. Thus the integration of Eq. (5.1)
is evaluated in the complex plane of four-momentum transfer squared @2, and the
analytical continuation onto the unphysical region is done using the deformed contour
of Eq. (4.10). For the physical region, the contour of Eq. (4.9) is used instead. In this
specific case of nucleon intermediate state the integration for the imaginary part of the
form factors F| and F} are infrared divergent. This divergent part is subtracted off from

the numerator using Maximon and Tjon prescription [76], described in Sec. 3.1.2; at the

limit of Q%,Z =0 GeV?, i.e. F} 5 = F] 5(unsubtracted) — F{%‘
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The input Dirac and Pauli form factors £} and F, are expressed in terms of the Sachs

electric (Gg) and magnetic (Gj) form factors by inverting the relation of Eq. (1.9) as

Gp(Q?) +7Gu(Q%)

QY = 17 ) (5.2a)
R(Q%) = GM(QB;TGE(W. (5.2b)

For Gg and G);, a number of parametrizations are available including Refs. [72, 126,
127]. The parametrizations of Refs. [72, 126, 127] are expressed as the ratio of polyno-

mials as

1+ Z?:l a; %12
n 257

Gem(Qi,) = (5.3)

with the coefficients given in Table 5.1 for three different parametrizations.

TABLE 5.1: Parameters used in the fittings as a ratio of polynomials (Eq. (5.3)) for
the Sachs electric (Gg) and magnetic (Gj) form factors by three different groups of
authors, Arrington et al. (AMT) [72], J. J. Kelly [126], and Venkat et al. [127].

Parameters AMT [72] Kelly [126] Venkat [127]
Gp Gm Gp Gwm Gg Gm
a; 3.439 -1465 -0.24  0.012 2.9096 -1.43572
a2 -1.602 1.26 0.0 0.0 -1.11542229 1.19052066
as 0.068  0.262 0.0 0.0 0.03866171  0.25455841
by 15.055 9.627  10.98  10.97 14.5187212 9.70703681
by 48.061 0.0 12.82  18.86 40.88333  0.00037357
b3 99.304 0.0 2197  6.55 99.999998  0.000006
by 0.012 11.179 0.0 0.0 0.00004579  9.9527277
bs 8.65  13.245 0.0 0.0 10.3580447  12.7977739

The three parametrizations of proton electric and magnetic form factors from J.J. Kelly
(red long-dashed line), Arrington et al. (AMT) (blue dotted line), and Venkat et al.
(black dotted line) are compared in Fig. 5.1. All three curves behave similarly, except for
a subtle difference in the Kelly parametrization for G, at larger Q?. However, one still
needs to be cautious in choosing the parametrization of G and G, due to the possibility
of poles in the spacelike region of Q%. At a first glance the three parametrizations

seem to have no poles in the spacelike region since there is no negative terms in the
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FIGURE 5.1: Nucleon electric (Gg) (a) and magnetic (Gpr) (b) form factors
parametrization by J.J. Kelly [126] (red long-dashed), Arrington et al. (AMT) [72]
(blue dotted), and Venkat et al. [127] (black dashed). G is scaled by the standard
dipole form factor Gp, and Gy is scaled by proton magnetic moment p, times Gp.

denominator. But, in the complex plane of Q? there is existence of poles in the AMT [72]

and Venkat [127] parametrizations within the range of Q* ~ 4.5 GeV?. Therefore, it is

safe to pick the Kelly parametrization as default form of G and G, in this work, unless

mentioned explicitly, since the calculation is carried up to Q% = 5.0 GeV?, and the TPE

correction with nucleon intermediate state is anticipated to be a major contributor to

the total correction.
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FIGURE 5.2: Two-photon exchange relative cross section correction dy (in percent)

due to elastic nucleon intermediate state alone, (a) as a function of virtual photon

polarization ¢ at Q% = 3 GeV?, and (b) as a function of Q? at fixed ¢ = 0.2. The results

represented by the red long-dashed curve uses the parametrization of Kelly [126], blue

dotted curve uses AMT parametrization [72], and black dashed curve uses Venkat
et.al. [127].
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Nonetheless, it is also a worth checking the TPE cross section correction (dy) using
all the mentioned parametrizations up to Q? = 5.0 GeV? and see if anything dramatic
happens due to the pole effect above ~ 4.5 GeV2. Figure 5.2 represents such an analysis
of the TPE cross section correction. The virtual photon polarization, € dependence at
fixed value of Q% = 3.0 GeV? is shown in Fig. 5.2(a), while Fig. 5.2(b) illustrates the Q>
dependence at € = 0.2, corresponding to the backward angles. The results are consistent
between all three parametrizations. At the backward angles, the cross section correction
reaches ~ 3.8% of the Born level cross section, with negative sign, at Q? = 3.0 GeV2.
The curves show some non-linearity in € up to € ~ 0.6. Interestingly, d, almost reaches
a saturation point with increasing Q? (> 4.0 GeV?), as evident from Fig. 5.2(b). The
TPE cross section correction, dy will be further discussed in Chapter 6 along with the

intermediate resonance states’ effect.

To estimate the TPE effects beyond elastic nucleon intermediate state, I adopt several
parametrizations of the resonance transition current operators following Refs. [53, 82, 83]
in the next section followed by a similar decomposition in terms of the helicity amplitudes

in Sec. 5.3.

5.2 Resonance transition current operators

I begin this section by introducing the matrix element of the transition current J” from
nucleon (N) to resonance excited state (R) and then parametrize the transition current
operator I'yy_,r describing the absorption of a virtual photon, with momentum ¢ on a
nucleon N with momentum p, producing a resonant state R with momentum pgr = p+gq.
The matrix element of the transition current J” at the first vertex of the TPE diagram

of Fig. 3.1 is defined by [53, 82,

(Rpr)|J'IN(p)) = etr(pr)Tnor(pr @) Tun(p), (5.4a)

(Rpr)|J'IN(p)) = etir,(pr)T 2%, (PR, @) Thun(p).- (5.4b)
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Equation (5.4a) corresponds to the transition of nucleon into spin-1/2 excited resonance
states and (5.4b) is for the transition into spin-3/2 resonance states. For the spin-1/2
states, the usual Dirac spinors are used and for the spin-3/2 states, the Rarita-Schwinger

spinor g, is used in Eq. (5.4). Rarita-Schwinger spinor satisfies the relations

ZZ)RuR[g - WRUR[-N pguRB - 07 ’76URg = 07 (55)

for the on-shell spin-3/2 states. T ; is the isospin transition operator, with normalizations
2

TiT; = 1 for the transition to isospin-1/2 states and TiTy = 3 for the transition

to isospin-3/2 states. Note that ¢ is a dummy variable here, representing the virtual

photon four-momentum at each vertex, not the total four-momentum of the photons.

Analogous to the decomposition of the current operator I', 5, 5 in terms of the covariants
with co-efficients named Dirac (F}) and Pauli (F,) form factors, one can decompose
I',N—r, R being any spin 3/2 state, into several covariants in a variety of way with
appropriate coefficients. The constraint from the gauge-invariance, gzI'* = 0, leaves
three covariant terms to construct the I'yx_,r vertex. One choice of gauge-invariant
covariants with the coefficients defining the three independent kinematic singularity-

free form factors G, G, and Gy is [53, 83|

12 75 1% 4

ey = : (dg™ — ¢°v"), (5.6a)
v 75 v v

0y = : (¢°p% — q-prd™), (5.6b)
v 75 1% 1%

0y = 1 ("¢ — ¢*9™), (5.6¢)

where the upper and lower rows refer to positive and negative parity states, respectively.

With these @f “ operators, I'yy_ g has the form

2% m(pr, @) = Gi(Q%) O (pr, @) + G2(Q%) ©5 (pr, ¢) + Ga(Q°) ©5" (pr,q).  (5.7)
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However,this set of form factors are useful for theoretical purpose but they do not appear
diagonally in the cross section formulae as they do not describe physical transitions. To
analyze the resonance excitation cross section, Jones and Scadron [82] introduced the
physical form factors G, G}, and G corresponding to covariant couplings @fff , @%’,
and @f}’ inducing magnetic dipole, electric quadrupole and Coulomb quadrupole transi-

tions, respectively. Using these multipole covariants the transition to any spin-3/2 even

parity state at the first vertex of Fig. 3.1 can be decomposed as

T2 r(Pr @) = G, (Q%)O5 (R, @) + G(Q%)OF (pr. @) + GL(Q*)O (PR, ),  (5.8)

with the covariants being

v C . 4
0% (pr,q) = ———ic (pry), (5.9a)
Q4
By By 4C Bo v
O% (pr,q) = —O4y — €”?(prq)en(PrRY) Vs, (5.9b)
QR+Q-
y 2C y Y
oY (pr,q) = — @’ (*p'% — a-pra”) s, (5.9¢)
Q+Q-
where
3(W + M
C= % Q.= (W + M)+ Q% (5.10)

Here the shorthand notation € (prq) = eﬁ”’”pqug is used. Note in this work the
convention of 75 = i7°y'y2+? is used and the Levi-Civita tensor e#°# is such that 1?3 =
+1, therefore €193 = —1. Devenish et al. [83] provide a more general parametrization of
the transition current I',x_,r for normal and abnormal parity transition to any excited
state R with spin J > 3/2 of which Eq. (5.8) is a special case. I restrict the discussion
only for the transition to spin 3/2, even parity states in terms of G3,, G5, and G§
since this set of form factors is used to evaluate the TPE amplitude for A(1232)3/2%

intermediate state only.

To relate the two sets of form factors for the transition to spin-3/2 and even parity
states, i.e. (Gy,Ga, and G3) with (G, Gg, and G¢), one can express the multipole

covariants of Eq. (5.9¢) in terms of the covariants of Eq. (5.6¢) for on-shell transition
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matrix elements and finds the relation [83]

_CWG3(Q?) - Gp(Q2)]

Gl(QQ) 2@3_ )
Ga(Q?) = < 265(Q°) QR +
ST 2 MA@ - W+ (@ W T '
Gy (@) M* = 2M3(QF - Q*+ W2) - 2Q3(Q* - W) + (5.11)
Q7+ W) | = Gi(@) { M +202(Q" = W?) + (@” + W?)?}] ,

2[M* + 2 M2(Q* — W?) + (Q> +W?2)?]

For the inverse transition R — N at the second vertex in Fig. 3.1, the current operator
Fﬁ‘iv ~ (PR, q) can be obtained using the Hermitian property of the transition matrix

element,

o o .|.
Lt on (PR @) = %0 (TN (PR, 0)] 0. (5.12)

For spin-1/2 resonances, on the other hand, we define the transition current operator

v
F’yN—)R as

I I
I vor(Pr, @) = G1(Q7) (40" — *7") + G2(Q?) (¢P" = P-qv"),
Vs Vs
(5.13)

where P = (p+pr)/2 = pr — ¢/2, and again the upper and lower rows refer to positive
and negative parity states, respectively. In analogy with (5.12), the inverse transition
current operator Iy N (pr, q) is obtained from the Hermitian property of the transition

matrix element,

.I.
T v (PR, @) = 70 [Ty r(PR,@)] 0- (5.14)
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5.3 Form factors from electrocouplings

Since the electroproduction of resonance states is often parametrized in terms of reso-
nance electrocouplings Aj [125], we define here the transition form factors G; in terms

of the amplitudes for specific helicity configurations.

5.3.1 Resonance electrocouplings

The resonance electrocouplings at the hadronic vertices are defined in terms of the

matrix elements of the hadron electromagnetic current as [53]

oral

Aip = T (R SE= | e | V.5, = -1), (5.15a)
ora

Azjp = %E <R, SE=3|erJt | NS, = §>, (5.15Db)
2ral R |q’ L

Sip = N <R, S, :% aezJém N,S, = %>, (5.15¢)

where a = e?/4r is the fine structure constant, e is the electron charge, and K is the
equivalent photon energy at the real photon point, K = (W? — M?)/2W. The spin
projections of the nucleon and resonances R on the z-axis are labelled by S, and SZ,
and 67]0 is the photon polarization vector for transversely or longitudinally polarized

photons,
e = (0;—€"), € =——(1,i,0), (5.16a)
0 = L(lqli0,0 5.16b
E,u - é(|q|7 ) ,—C]o)- ( )

The virtual photon three-momentum q is taken to be along the z-axis in the rest frame
of the resonance R, and its magnitude is given in terms of the final state hadron mass

W and the photon virtuality Q?,

B W2_M2_Q2 2
gl = \/Q2+< T ) (5.17)
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In this work, for the input resonance electrocouplings we use the parametrizations ob-
tained from the analysis of CLAS meson electroproduction data at Jefferson Lab [125].
To generate the electrocouplings as a function of the running invariant mass W of the
intermediate state, I use Eq. (5.18), which is consistent with the prescription in the JM
model of Ref. [128]. The W-dependent electrocoupling A, (W, Q?) is given by

44 ‘QR’

(WQ) WR q|

RARQY), (5.18)

where Af represents the electrocouplings Ay /o, As/2 or S}/, at the resonance point, W

is the invariant mass W at the resonance point, and qg is defined as

2 ar2 _ 2\ 2
lar| = \/Q2+(WR QJ\M{.R Q). (5.19)

5.3.2 Relations between form factors and electrocouplings

Following Devenish et al. [83], the hadronic transition current operator 1“7 N_sp for spin-
3/2 resonances can also be parametrized in terms of helicity form factors hq, hy, and hs,

which are given in terms of the helicity amplitudes A;/5, As/o, and Sy, by [53]

V3w V3

hy = ——r bl S12(W,Q%),  hy = \/_bAg/z(WQ) hy = \/_bAl/Q(WQ) (5.20)
where

_ (W F M)* + Q2

b:\/m UMWE (5.21)

and the upper (lower) sign corresponds to even (odd) parity states. (Note that the
expressions for the helicity form factors h; in terms of the electrocouplings A, of Ref. [53]

are off by a factor of 1/2/3, which has been corrected in Eq. (5.20).) For spin-parity
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3/2% excitations, the current operator then can be written as

ha

k) = 0.0 ¢ p-ad’ — "] s (5.22)
h2 . . h3
+ 26" (qp) €7 (qp)vs + i Wq e (qpy)] i Wq’e (qpv),
Q+Q— [ ( ) ( ) 5 ( )} Q+Q— ( )
while for spin-parity 3/2~ states it is given by
| RN _ M 2 v P 5.23
vor(0q) = 0.0- p-qq" =P s (5.23)
+ —
h vo d v
+ 2 — 5 [2¢% (qp) €7 (qp)s — i W e (qp))]
Q+Q-
h3

— i Ws q°e” (qpy).
Q.q- et

Note again that in Eqs. (5.22) and (5.23) I use the shorthand notation €*7(gp) =
€?P2q,py and € (qpy) = €°**q,prYa, Where “y” in the Levi-Civita tensor denotes the
Dirac y-matrix. Equating the expression of the current operator in Eq. (5.7) with that
of Egs. (5.22) or (5.23), the form factors G; can be expressed in terms of the helicity

form factors, and hence in terms of the electrocouplings Ay, as

Gi(w. @) = ) (5.24a)
Co(W.Q?) = Q*hy + (M?*F MWQ+ Cg;)hQ + W(W F M)h37 (5.24b)
LQ_
o 2W?2(hy — hg) — (M? —W? 4+ Q*)Iy
Gg(W,Q ) = 2Q+ Q_ . (524C)

In a similar way, one can relate the form factors G7%,, G}, and G, with the electrocou-
plings A; by comparing the expressions of the current operator of Eq. (5.8) with that
of Eq. (5.22) for transition into a spin-3/2 and even parity excited state as [53]

Gy = —F{\/§A3/2+A1/2], (5.25a)
A3/2 :|

G, = —F — Ao, 5.25b

E |:\/§ 1/2 ( )

Gy = 22 F%Sl /2, (5.25¢)



Chapter 5 Numerical Evaluation of TPE in e-p Elastic Scattering 92

where

(5.26)

F=—
+(W+M)2

M| MK [ 0
g \| 4mraW '

For spin-parity 1/2* resonant intermediate states, the spin-1/2 transition form factors

G1 and G5 can be related to the electrocouplings Aj according to [53]

‘Q|A1/2 + \/§(M + W)51/2

GL(W, Q%) 20 g (M W2 +0Q7 (5.27a)
lq[(M £=W)A; ) — \/§Q251/2
GND) = Gl W) [ E W g (5.270)
where
2 )
b = \/wa(W ?l:]\i\[/ll/l)/; ¢ : (5.28)

in analogy with Eq. (5.21).

5.3.3 Input electrocouplings

The CLAS phenomenological fit [54, 116, 125] of the transverse Afﬂ(QQ), A:?/Q(Q2), and
scalar (or, longitudinal) S/, electrocouplings for the transition from nucleon to all the
spin-parity 3/2% and 1/2% resonance excited states R is used as input in the hadronic
transition current at each vertex of Fig. 3.1. Note that the used electrocouplings from
CLAS [125] considers the excitation of nucleon to on-shell resonances. Thus to reduce
the uncertainty of the model estimation of the resonance effect in TPE correction I
choose the dispersive approach. However, for completeness, an analysis of the input

electrocouplings for all the resonance intermediate states are described below

Figure. 5.3 represents the electro- and photo-excitation data of the first, 4-starred res-
onance [129], A(1232)3/2" in terms of the transverse A; /5, As/s, and longitudinal S /s
electrocouplings. The red-squared data points are basically from the CLAS analysis of
the N7 electroproduction off proton along with that from JLab (Hall A and B), MAMI
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and MIT/BATES [54] . Whereas the blue triangles for A; ), and Ajs/, correspond to the
PDGI18 [129] value. The phenomenological fit by CLAS, represented by red-dashed lines
and numerical expressions given in Eq. (5.29¢), goes close to the data at higher values
of Q2 but in the low @Q? limit it doesn’t resemble the data trend. An alternative fit by
Aznauryan [46], given in terms of the magnetic (G7,), electric (G};) and Coulomb (G¥)
form factors in Eq. (5.30c), follows the data in the low Q? range and goes through the
well established PDG18 values [129] at Q* = 0 GeVZ2. For Sy/» (Fig. 5.3(c)), the CLAS
fit seems to show better agreement with the higher Q? data but the Aznauryan fit is

also in agreement within the uncertainty range.

0.00 — 0.00 —  0.030F,
A232) e 005 e ¥
N - - - 00250
S -005 ’,,.V S -0.10 o~ = ﬁ}“
! g ! ~
3 S CLAS g g Rt
QN ~0.10 P Aznauryan % ~020f 4 % 0015 3*
< 14 £ -0y 4 » 0010 -
~0.15 'ﬁ osol ¥ s S :
i (a) U (b) 0.005f (c) B Es = DS
0 i 3 3 ! 3 0 i 3 3 7 5 0 i F) 3 7 5
Q? (GeV?) Q? (GeV?) Q? (GeV?)

FIGURE 5.3: Parametrizations of transverse (A;/s, As/s), and longitudinal (S 2)
electrocouplings of photon-nucleon to A(1232)3/2% resonance transition by CLAS [54,
125] (red dashed line) and by Aznauryan et al. [46, 53] (blue dot-dashed line) as
function of Q2. The squared dark-red points are the CLAS N7 electroproduction
data [54], and the blue triangles are the PDG18 value [129] at Q? = 0 GeV2.

Most of the experimental analyses of the photo- and electro-excitation data of A(1232)3/27F
are carried in terms of the multipole form factors (G3,, G}, and G¢) and their ra-
tios Rgps, the electric quadrupole to magnetic dipole ratio, and Rgp;, the Coulomb
quadrupole to magnetic dipole ratio. Therefore, a pictorial view of G},, G}, and G, is
also compared between the two fits of Aznauryan [46, 53] and CLAS [125] in Fig. 5.4.
Clearly in Fig. 5.4(a), the Aznauryan fit satisfies the well established PDG18 value [129]
of the magnetic dipole form factor G3,(0) ~ 3.00. Considering the trend of the fits in
the low @Q? region, the phenomenological fit of the A(1232)3/2" transition form fac-
tors in Eq. (5.30c) is considered as default parametrization in this work. However, the
form factor dependence of TPE correction is discussed in Sec. 6.2.1 by comparing the

obtained § (Fig. 6.4) using CLAS [125] and Aznauryan [46, 53] fits.
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FIGURE 5.4: Comparison of magnetic (G},), electric (G};), and Coulomb (GY,) form
factor parametrizations for the transition into A(1232)3/2" intermediate state from
Refs. [53, 54] as a function of Q2.

Note the explicit form of the CLAS parametrizations of the electrocouplings A§(1232) [125]

are given as

170.06
AA0232) (2 _ 5.29
i (@) 1000(1 + Q2)(1 4 0.1609 Q* — 0.002 Q%) )
321.06
AA(1232) 2 _ 5.29b
32 (@) 1000(1 + Q2)(1 + 0.16 @* — 0.002 Q%) 2
29.76
s (5.29¢)

1000(1 4+ Q2)(1 + 0.0135 Q2 — 0.00046 Q%)

The corresponding multipole amplitudes are obtained using Eq. (5.25¢). On the other
hand, the direct phenomenological parametrization of G3,, G};, and G¢. from Aznau-

ryan [46, 53] is

3 V@i

Gu(@%) = T G201 Wy 1 B exp(—0.21 Q?), (5.30a)

Gu(Q%) = —RpnGy(Q), (5.30b)
* 2 * 2 4W12%

Go(Q7) = —RsuGy(Q7)—F———= (5.30c)

VQ:Q-'

where Rg) s, the electric quadrupole to magnetic dipole ratio, is taken to have a constant
value of —0.02, for the full range of Q? and Rgs, the Coulomb quadrupole to magnetic
dipole ratio, is fitted as

Rsyr = 0.01(1 4 0.0065 Q%)

x (—6.066 4 5.807 Q — 8.5639 Q* + 2.37058 Q* — 0.75445Q"). (5.31)
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The Aznauryan fit of the electrocouplings A,

A(1232)

are obtained by rearranging Eq. (5.25¢).
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FIGURE 5.5: Phenomenological fit [125] of the transverse Aj/, (red long-dashed)
and A; /5 (blue dotted), and the longitudinal S;/, (green dashed) electrocouplings for
the spin-3/2 states N (1520)3/27, A(1700)3/2~, and N(1720)3/2". The red squared
(As/2), blue circled (A;/2), and green triangle (S;,2) data are from Ref. [54]. The
dark-red points for A/, and A;/; are the PDG [125] values at Q% =0 GeV2.
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The three amplitudes A?/Q(QQ), AgR/Q(QQ), and 552(Q2) for rest of the resonance states
are taken from the CLAS fit [54, 125] directly. Figure 5.5 illustrates the elctrocouplings
for the three 4-star and spin-3/2 resonance states of PDG18 [129] as function of Q2. In all
three diagrams of Fig. 5.5,(a) N(1520)3/27, (b) A(1700)3/27, and (c) N(1720)3/2",
the solid squares (red) and circles (blue), respectively, represent the transverse Aff/z
and A{?‘/Z amplitudes from the CLAS analysis of N7 and Nzw electroproduction off
proton [54], while the green solid triangles are the data for longitudinal S/, amplitude
from the same analysis. The dark-red solid square and circle at Q* = 0 GeV? are the
PDG values [125] of the two transverse amplitudes for each of these spin-3/2 states.
For N(1520)3/2~, the explicit form of the CLAS fit of the electrocouplings is given
in Eq. (5.32¢) which are represented by the red long-dashed (AN(1520)), blue dotted

3/2
(Ai\;(21520))7 and green dashed (Si\;(;wo)) lines in Fig. 5.5(a).

N (1520 0.0009(—23.357 — 151.199533 Q?)
Al/(Z Q) = . | = (5.32a)
1 4 2.01489898 Q* — 0.2654327 Q* \/ Q)

0.0009 x 162.458285

AN (g2 . (5.32b

yp (@) 1+ 3.322979 Q2 — 2.0339966 Q* + 1.622563 Q* \/Q? ( )
0.0672

Spe QY = (5.32¢)

14 173Q% —2.804+291Q4/Q?

The fit follows the PDG [125] value of the transverse amplitudes, within the uncertainty
range, at Q? = 0 GeV2, where the CLAS data and the PDG18 value themselves are also
in agreement within experimental uncertainty. On the other hand, the PDG values [54]

of A3A/(21700), AlA/(QNOO) (Fig. 5.5(b)), and Aé\;(zmo), Aiv/(21720) (Fig. 5.5(c)) at Q* = 0 GeV?
are significantly away from the CLAS analysis of N7 photo-production data [130]. The
CLAS phenomenological fit of the electrocouplings of these two higher mass, spin-3/2

resonances, A(1700)3/2~ and N(1720)3/2%, from the third resonance region of meson
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electroproduction are given in Egs. (5.33c) and (5.34c).

AR™@) = 1000(1 + 0.72155‘—2%83.26 Q@) .
A3 (Q) = 1000(1 + 16.6 2221— 5.0Q1/Q) o550)
Sia (@) = 1000(1 + (2)412 Q2 \/Q?) 15:33)
A QY = 1000(1 + 3??6 02,/Q2) (o34
gy - SRS (o340

Sl/;mo Q) = - 3.09 . (5.34c)

1000(1 — 3.7Q2 + 2.86 Q2 \/Q?)

It is evident from Fig. 5.5(b,c) that the CLAS phenomenological fit of Egs. (5.33¢) and
(5.34c) prefers its own data at Q* = 0 GeV2 The fitting curves well match with the
N7 electroproduction [125] even though the number of data are not enough and no
available data in the higher range of Q* > 1.5 GeV? yet. But in that range of Q?, the
fits of Eqgs. (5.33¢) and (5.34c) are approximately close to the form of ~ 1/Q3 or, 1/Q°,

following quark counting rules, except 53(21700)

The remaining five spin-1/2 resonances, N(1440)1/2%, N(1535)1/27, A(1620)1/2",
N(1650)1/2, and N(1710)1/2%, have only two electrocouplings A/, and Sy/. Ex-
tracted electrocouplings from the CLAS analyses of Nm and N7w photo- and electro-
production are shown in Fig. 5.6. The detailed specification of the plots is same as that
of Fig. 5.5. Below, I list up the CLAS fitting [125] of A1/2 and Sﬁz for these spin-1/2

resonances. For the Roper resonance N(1440)1/2", the parametrization is

—68.7866 + 21.3966 Q2 + 79.8415 /)?
AVS@QY = , (5.35a)

1000(1 — 0.7178 Q2 + 0.5663 Q% \/Q?)

o 3110227 + 3.5338 Q*

Sye (@Y = _ . (535D)
1000(1 — 0.278265 Q2 + 0.3677575 Q* \/Q?)
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FIGURE 5.6: CLAS fit [125] of the electrocouplings A;/, (blue dotted) and S/,
(green dashed) for the spin-1/2 states N(1440)1/2%, N(1535)1/2~, A(1620)1/27,
N(1650)1/27, and N(1710)1/2%. The blue circled (A;/5) and green squared (S o)
data are from Ref. [54]. The dark-red circled data for A,/ are the PDG [125] values
at Q2 = 0 GeV2.
The CLAS phenomenological fit of the electrocouplings for N(1535)1/27 is
N(1535 92.5029 + 1.45023 Q*
AVSTNQY) = 5 = (5.36a)
1000(1 + 0.1095 Q% — 0.000322 Q2 \/Q)?)
—9.758811 — 4.231412 Q?
Sie@QY) = (5.36b)

1000(1 — 0.7341952 Q2 4 0.5087887 Q2 \/Q?)
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For the only isospin-3/2 and spin-1/2 state A(1620), the fit is given by

472
AS1620) (2 : 5.37
e (@) 1000(1 + 3.71Q*/Q?) (5.37)
61.864
SAUE) A2y . 5.37h
ve (@) 1000(1 + Q2 1/Q?) (537)

Note the 53(21620) of Eq. (5.37b) is an arbitrary fit following the CLAS data trend and
the CLAS fitting behaviour at the off-shell, spacelike photon region. The CLAS fitting
for this specific electrocoupling is avoided due to existence of an unexpected singularity
at Q% = 0 GeV?2. For the last two spin-1/2 resonances, N(1650)1/2~ and N(1710)1/2%,
the electrocouplings fitting from CLAS [125] are given in Eqs. (5.38b) and (5.39b).

N (1650 474 -19.6Q°
Al/(Z )(QZ) — - 5 - o (538&)
1000(1 — 1.46 Q21/Q? + 1.17 Q%)
2.67
GN650) 2y . 5.38b
2 (@) 1000(1 — 2.82Q% + 2 Q% \/Q?) ( )
N(1710) y 42\ 27.36
7.25
gNaTIOo) 2y ) 5.39b
iz (@) 1000(1 4 0.0733 Q2,/Q?) 5:3%)

The values of A{{/Q at Q? = 0 GeV? from the CLAS analysis of N7 photo-production [130]
and that from PDG [125] are in good agreement within the uncertainty range for
N(1440)1/2" and N(1535) 1/27 resonances. The fit also follows the data at smaller
range of Q?, as shown in Fig. 5.6(a,b). For A(1620)1/2~, the PDG point of A}%O is off
from the value of CLAS N7 photo-production (Fig. 5.6(c)). The deviation in A{%/Q from
the two sources is even larger for N(1650)1/2~ state. Interestingly, the fit function of
Eq. (5.38b) follows the PDG value at the real photon point. Whereas the Afm fit func-
tion of Eq. (5.37b) for A(1620)1/2~ follows the CLAS data, as illustrated in Figs. 5.6(c,
d). For these two resonances, a limited number of data are available only within the

range of Q? < 2 GeV2. In the higher Q? limit where experimental data is not available
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yet the fitting curve approximately follows the ~ 1/Q? behaviour assuming the quark
counting rules. A converse picture is seen in case of the resonance N(1710)1/2% for
which no CLAS data available in the lower range of Q? < 1.8 GeV?2. At the real photon
point, only the PDG value is present which is followed by the CLAS fitted curve of Ai%o

as shown in Fig. 5.6(e). The A%go fitting also goes approximately as ~ 1/Q? in the high
Q? limit whereas the S};° fitting is purely based on the data trend.

Overall, based on the latest experimental information, the CLAS fit for these resonance
electrocouplings can be considered as a reliable input for the hadronic transition current
at cach of the TPE vertices for spacelike Q2. The fittings are also extended into the
timelike Q? region without any experimental or theoretical constrain, to carry out the

analytical continuation of the integrand of Eq. (4.2) into the unphysical region.

5.4 Resonance finite widths

As the imaginary part of the TPE box diagram corresponds to real excitation, there is
a discontinuity in the imaginary part of the TPE amplitudes for resonance intermediate
states with zero width, at sharp W = Wk, such that they vanish for £ < E;,(Wg).
When put into a dispersion integral, this will translate into a cusp in the real part of the
amplitude at the same energy. If the threshold energy is above the minimum energy,
FEy > Eoi, then this cusp is of no concern. However, if Ey, < Eoi,, then there exists
some physical energy E for which one may have £ = E;;,. Equivalently, there is a cusp
if the four-momentum transfer squared goes below a threshold value, Q* < Q2 , where

(W2 - M2>2

Q= "7 (5.40)

In terms of the photon polarization variable ¢, the cusp will occur for

_ 202 (@2, — @)
€cuSP<Q2) - 2W2 (Qgh _ Q2) —:Q2 <4M2 T QQ) . (541)
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In Table 5.2 we show the values of Q2 and e.s,(Q?) for several physically relevant
examples that illustrate the effect, specifically, for the A(1232)3/2%, N(1520)3/2~, and
N(1720)3/2" states.

TABLE 5.2: Kinematics at which threshold cusp effects appear for the A(1232),
N(1520), and N(1720) resonances, at several typical Q? values relevant phenomeno-

logically.
Wk (GeV)  QF, (GeV?) Ecusp(Q?)
Q?=0.2GeV? @Q?=0.5GeV? Q?=1.0GeV?
1.232 0.27 0.22 - -
1.520 0.89 0.81 0.47 -
1.720 1.46 0.91 0.74 0.38

For the case of a resonance of finite width I'(W) that is centred at W = Wpg and

governed by a Breit-Wigner distribution,

1 I(W)Wr
™ (W2 —WR)2 +T2(W)Wg’

FOV?) = (5.42)

the cusp behaviour is smoothed out. To consider a finite width, we assume the contin-
uum of the invariant mass squared W2 as an infinite set of Dirac § functions, §(W?—W?2),
and evaluate the integral of Eq. (4.2) at a set of discrete values of W ranging from
(M +m,) to 2 GeV for each resonance intermediate state. The corresponding real parts
are calculated from Eqs. (4.4c). The set of generated real parts of the generalized TPE
from factors are then interpolated using a spline fit to obtain a smooth function F'(1W?)
for the generalized TPE form factors at fixed values of Q% and electron energy E. Note
that the numerical errors from the fitting of the form factors F{, F3, and G, at a set
of discrete W values are insignificant as the functional forms seem fairly smooth. More
importantly, as will be clear from Sec. 6.2.2, the overall width effect itself doesn’t bring
anything dramatic in the net cross section results other than the removal of cusps in
the sharp (zero width) resonance case. However, in practice, we perform the integration

over W of f(W?) F(W?) using

2
Wmax

Iy =N dW? f(W?) F(W?), (5.43)

(M+mz)?
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where the normalization constant N ensures that the integration from (M + my)? to

W2

max

is unity.

In our numerical calculations, we take W.. = 2 GeV for all the resonance states
except the A(1232)3/2% and N(1440)1/2", for which we restrict the integration to
Wiax = 1.7 GeV (since the contribution from the third resonance region to the total
cross section for these is negligible). While the total decay widths I'(W) of the resonances
are in general energy-dependent, for the default calculations in this work we restrict at
I'(W) = I'(Wg) = I'g, the constant total decay width. The numerical values of the
constant total decay width, I'g, and the Breit-Wigner resonance masses Wx for each of
the resonance states are taken from Ref. [54]. In Sec. 6.2.2 below we will discuss the
effect of the nonzero width, both constant and dynamic, on the total TPE cross section

in detail.



Chapter 6

Results and Discussions

In this chapter I present the numerical results for the imaginary (Sec. 6.1.1) and real
(Sec. 6.1.2) parts of the TPE generalized form factors F|, Fy, and G/, for excited in-
termediate states. Using the numerical values of the real parts of the form factors in
Eq. (3.24), the obtained TPE corrections § to the elastic scattering cross section are also
discussed (Sec. 6.2.1) including a study of the effect of nonzero widths for the resonances
(Sec. 6.2.2). In Sec. 6.2.3, the dependence of the TPE corrections on the spin, isospin

and parity of the intermediate states is identified.

6.1 Generalized form factors

Following the discussion of Secs. 3.1.1 and 4.1.1, the TPE amplitude M,, is mapped
into the generalized amplitude in terms of the generalized TPE form factors F}, Fj, and
G!. Thus evaluating Fy, Fy, and G, will provide the TPE cross section correction and
other observables. In this section, I will analyze the results of these form factors starting

with the imaginary parts first.

103
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FIGURE 6.1: Imaginary parts of the generalized TPE form factors F (a,b), Fj

(c,d), and G’ (e,(f) versus € at fixed Q% = 3 GeV? for the nine resonance interme-

diate states A(1232)3/2+, N(1440)1/2%, N(1520)3/2~, N(1535)1/2~, A(1620)1/2-,

N(1650)1/27, A(1700)3/2~, N(1710)1/2%, and N(1720)3/27 contributions. The plot
legends are as identified in (e) and (f).

6.1.1 Imaginary part

For a qualitative analysis, the imaginary parts of the TPE generalized form factors for

individual excited resonances A(1232)3/2%, N(1440)1/2%, N(1520)3/2~, N(1535)1/2~,
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A(1620)1/2, N(1650)1/2~, A(1700)3/2~, N(1710)1/2*, and N(1720)3/2" at the sharp
resonance point W = Wp, are shown in Fig. 6.1 as a function of incident electron en-
ergy F at a representative four-momentum transfer squared Q? = 3 GeV2. The top
row illustrates the correction to the imaginary part of F}] from the mentioned individ-
ual resonances, while the middle and the bottom row represent the same for Fj and
G! . The left panel shows the correction down to energy F ~ 1.15 GeV corresponding
to the minimum energy required to excite the highest mass resonance N(1720)3/27.
There are some noticeable non-linearity in the low energy behaviour of all three form
factors, especially for the resonances N(1520)3/27, A(1700)3/2~, and N(1720)3/2", as
shown in the left panel of Fig. 6.1. A similar non-linearity is also observed for the lower
mass resonances A(1232)3/2% and N(1440)1/27 if one goes further down to the energy
E ~ 0.3 GeV. Fig. B.1 shows such non-linearity in the imaginary part of the form factors
explicitly for the most prominent resonance A(1232)3/27.

Overall, the magnitude of the correction from the resonances, N (1440)1/2%, A(1620)1/2,
N(1650)1/27, A(1700)3/27, and N(1710)1/2% are tiny compared to rest of the four res-
onances at this specific Q% value, indicating a smaller correction in the real parts as well.
Nevertheless, the qualitative higher energy behaviour of the imaginary parts for all the
intermediate states are important to utilize the dispersion relations. It is interesting to
note that the imaginary part of ] and Fj both become constant at above E 2 20 GeV
for all the resonances, whereas that for G/, falls off as ~ 1/FE at higher energy for each
of the excited states. Such behaviour of the form factors at high energy ensures the
convergence of the dispersive integrals of Eq. (4.4c). The overall qualitative behaviour
remains the same at other W values of each resonances and also at other Q2 values. For

completeness, Appendix B.2 illustrates similar behaviour at two other values of Q? = 1

and 5 GeVZ2.

6.1.2 Real part

Before proceeding to the quantitative comparison of the calculated full cross sections

with experimental observables sensitive to TPE effects, in this section I present the TPE
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results in terms of the generalized TPE form factors introduced in Sec. 3.1.1. In Fig. 6.2
I present the € dependence of the TPE form factors Fj, Fj, and G, at fixed values of
Q? =1 and 5 GeV?, scaled by a dipole form factor Gp,

Gn(@?) = (QAﬁ) , 6.1

with mass A = 0.84 GeV. Illustrated are the individual contributions from the nu-
cleon elastic intermediate state and the 3 most prominent resonance states, namely, the
A(1232)3/2%, N(1520)3/27, and the N(1720)3/2%, as well as the total of elastic nucleon
and all resonances considered in this work. Rest of the states are left for Appendix B.3

since the magnitudes are tiny relative to the ones shown in Fig. 6.2.

However, clearly evident for the F| TPE form factor is that at Q* = 1 GeV? this
contribution is negative at all ¢ values and is dominated by the nucleon elastic state.
The higher-mass resonance contributions grow rapidly with increasing Q?, but there is a
strong cancellation between the (positive) J¥ = 3/2% and (negative) J© = 3/2~ states,

rendering the total effect to be very small and close to zero at Q% = 5 GeV?.

For the Pauli F;j TPE form factor, a similar pattern repeats as for the Dirac form factor,
namely, at Q% = 1 GeV? the cancellations between the various resonance contributions
leave the total TPE form factor to be negative and dominated by the nucleon elastic
intermediate state. In contrast to the F] case, however, at larger Q? the main resonance
contributions grow in magnitude but remain negative, so that the net effect is a coherent
enhancement of the TPE form factor up to ~ 10% of the dipole at Q% = 5 GeV? for

backward angles.

For the axial G! TPE form factor, the magnitude of the various resonance contribu-
tions is generally smaller than for the other two TPE form factors, with the nucleon
elastic state giving negative contributions at both low and high Q2. Once again a high
degree of cancellation occurs between the (positive) A(1232) and N(1520) states and
the (negative) nucleon elastic and N (1720) states, leaving an overall small positive total

correction to GY.
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FIGURE 6.2: Generalized TPE form factors Fy (a,b), Fy (c,d), and G, (e,f), scaled

by the dipole form factor Gp, versus ¢ at fixed Q2 = 1 GeV? (left column) and

5 GeV? (right column) for the nucleon elastic (red dashed lines), A(1232)3/2% (blue

long-dashed lines), N (1520)3/2~ (green dot-dashed lines), N(1720)3/2* (black dotted
lines), and total TPE (red solid lines) contributions.

In fact, as observed by Borisyuk and Kobushkin [48], it is quite natural to combine
the small G’ contribution with the F] + F} form factor combination into an effective
“magnetic” TPE form factor Gy as in Eq. (3.23b). Observing that the TPE FFs in
Fig. 6.2 do not in general show strong variation with e, in Fig. 6.3 I display the Q?
dependence of both the “electric” and “magnetic” TPE form factor Gg and G,,, scaled
by the dipole form factors, at a fixed value of ¢ = 0.2, where the TPE effects are not

suppressed.
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FIGURE 6.3: Generalized TPE form factors Gg (a,b) and Gy (c,d), scaled by the
dipole form factor Gp, at fixed ¢ = 0.2 for low Q? (Q? < 2 GeV?, left column)
and high Q2 (1 < Q? < 5 GeV?, right column), for the nucleon elastic (red dashed
lines), A(1232)3/2% (blue long-dashed lines), N(1520)3/2~ (green dot-dashed lines),
N(1720)3/2% (black dotted lines), and total TPE (red solid lines) contributions.

For Q% > 2 GeV? one observes that the magnitude of both the generalized electric Gg
and magnetic Gy, TPE form factors rises linearly with Q2. The positive sign of Gz and
the negative sign of Gy, result in corrections to the effective Born level form factors
that render the Gg/G), ratio smaller than that naively extracted from cross section
data without TPE corrections. This would make it more compatible with the Gg/G
ratio extracted from the polarization transfer data, which suggest a strong fall-off of the
ratio with Q% above Q% ~ 1 GeV?, resolving the discrepancy with the Rosenbluth cross

section results.

At low Q?, Q? <1 GeV?, the TPE form factors are dominated by the nucleon elastic
contribution, as already indicated in the Q? dependence of the total TPE correction §
in Fig. 6.7. For higher Q* values, Q* > 2 GeV?, the magnitudes of the various excited
state contributions grow, with the A(1232) and N(1720) contributions to both Gg and

G remaining positive and the N(1520) states negative.
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More specifically, while the N(1520) resonance state gives rather small corrections to
Gr at most values of Q?, its contribution to Ga; becomes even more important than the
nucleon elastic for the largest @2, Q* > 4 GeV2. Because of the 7 factor in Eq. (3.24),
the magnetic contribution to the total cross section dominates at high @2, so that the
N(1520) state plays the most significant role in the TPE cross section at high Q%. At
high Q? the negative sign of the Gy, TPE form factor is driven by the nucleon elastic
and N (1520) states, while the positive sign of the Gg TPE form factor is due mostly to
the A(1232) and N(1720).

6.2 TPE correction to the e -p elastic scattering cross

section

The generated real parts of the form factors Fy, Fj, and G/, for individual resonance
intermediate states are plugged into Eq. (3.22) to get the corresponding cross section
corrections 0. An analysis of the obtained ¢ (published in Ref. [73]) is presented in the

following sections.

6.2.1 Resonance intermediate state contribution to TPE

Before analyzing the TPE cross section correction from all the individual resonance
intermediate states let’s discuss the correction from the most prominent excited state
A(1232)3/2%. Figure 6.4 represents the TPE correction to the cross section, § from this
particular intermediate state as a function of ¢ at three fixed Q? values of (a) 1 GeV?,

(b) 3 GeV?2, and (c) 5 GeVZ.

It is evident from Fig. 6.4 that the difference between the cross section corrections from
the two parametrizations of Aznauryan et al. [46, 53] and CLAS [54, 125] increases for
lower values of Q2. This could be anticipated from Fig. 5.4 where the difference between

the two parametrizations themselves is noticeable for lower values of Q?. However, for
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FIGURE 6.4: TPE cross section correction ¢ from A(1232)3/2% resonance interme-

diate state as a function of ¢ at fixed values of Q%: (a) 1 GeV?, (b) 3 GeV?, and

(c) 5 GeV2. The blue dot-dashed curve represents the result using Aznauryan [53]

parametrization of G73,, G%, and G{,, while the red dashed curve shows that using
CLAS parametrization [54, 125].

A(1232)3/2%, the TPE cross section using Aznauryan parametrization [53] of G3%;, G,
and G is considered as the default one in rest of the thesis since this is obtained using

the well established constrain of G%,(0) = 3.0.

The contributions to the TPE correction ¢ from the individual intermediate state reso-
nances are shown in Fig. 6.5 versus ¢, for fixed values of Q% = 0.5, 1, 2, 3 and 5 GeV?2. As
mentioned earlier, we account for all 4 and 3-star spin-1/2 and spin-3/2 resonances with
mass below 1.8 GeV from the Particle Data Group [129], which include the six isospin-
1/2 states N(1440)1/2+, N(1520)3/2~, N(1535)1/2-, N(1650)1/2-, N(1710)1/2",
and N(1720)3/2%, and the three isospin-3/2 states A(1232)3/27, A(1620)1/2~, and
A(1700)3/2~. In our numerical calculations, for the resonance electrocouplings at the
hadronic vertices we use the most recent helicity amplitudes extracted from the anal-
ysis of CLAS electroproduction data [54, 55|, except for the A(1232)3/2" resonance
for which the alternative parametrization is discussed above. Apart from the elastic
intermediate state contribution, the proton electric and magnetic form factors Gg(Q?)
and G(Q?) are still required to be used in evaluation of ¢ for each resonance according
to Eq. (3.22). In this case, one has the freedom to choose either of the parametriza-
tions [72, 126, 127] since the pole issue only comes in the complex plane. However,
for consistency, I use Kelly parametrization [126] of Gy in Eq. (3.22) to evaluate the

resonance contributions in 9.
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FIGURE 6.5: Relative contributions § (in percent) to the TPE cross section for the nine

spin-1/2 and spin-3/2 nucleon and A intermediate state resonances, as indicated in

the legend, versus the virtual photon polarization ¢ for fixed Q2 values: (a) 0.5 GeV?,

(b) 1 GeV?2, (c) 2 GeVZ, (d) 3 GeV?, and (d) 5 GeV2. Note the vertical scale is different
in each panel.

In the low-Q? region, for Q2 up to ~ 1 GeV?, the N(1520)3/2~ and N(1535)1/2~ reso-
nances give the most significant contributions, aside from the A(1232)3/2% resonance,
although the largest correction from the A(1232)3/2% ranges within only 0.2% of the
Born level cross section. We find an almost complete cancellation of the N(1520)3/2~
state contribution by that from the sum of other higher-mass resonances, leaving a
net correction that is well approximated by that from the A(1232)3/2" alone. In this
Q? range the A(1232)3/2" contribution flips in sign and suppresses the elastic nucleon
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FIGURE 6.6: Contributions to the TPE correction ¢ (in %) versus the virtual photon

polarization e for (a) nucleon only, and (b) all spin-parity 1/2% and 3/2% states

including the nucleon, at Q? = 0.2 GeV? (green dashed line), 0.5 GeV? (dark red

long-dashed), 1 GeV? (red solid), 3 GeV? (orange dot-dashed),4 GeV? (black dotted),

and 5 GeV? (blue dashed). The shaded bands in (b) correspond to the uncertainty
propagated from the input electrocouplings.

intermediate state correction. At higher Q? values, Q% 2> 2 GeV?, the N(1520)3/2~ over-
takes the A(1232)3/2% contribution to ¢, but with opposite sign. Moreover, in the high-
Q? region the N(1535)1/2~ contribution flips sign from positive to negative, however,
this effect is somewhat negated by the growth of the N(1720)3/27 and A(1700)3/2~
corrections. The overall effect is that the suppression of the TPE cross section (rela-
tive to the nucleon elastic contribution) by the A(1232)3/2% is largely nullified by the
N(1520)3/27, leaving a small increase in the total TPE correction over that from the

nucleon intermediate state alone.

The combined effect on the TPE correction d from all the spin-parity 1/2* and 3/2*
resonances is illustrated in Fig. 6.6 as a function of virtual photon polarization, ¢, for a
range of fixed Q? values between 0.2 and 5 GeV2. For contrast, the contribution from
the nucleon elastic intermediate state alone is also shown at the same kinematics. At
low Q? the excited state resonance contributions are found to be negligible, and the
total correction is dominated by the nucleon elastic intermediate state. Note that the
elastic contribution is positive at the lowest Q?, Q% = 0.2 GeV2, but rapidly changes
sign and becomes increasingly more negative at higher Q?. At Q% = 5 GeV? the nucleon
contribution becomes as large as 4% — 5% at low values of € &~ 0.1 — 0.2. There is also

a trend toward increasing nonlinearity at higher Q? values, Q? 2 3 GeV?, especially at
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low €.

The net effect of the higher mass resonances is to increase the magnitude of the TPE
correction at Q? > 3 GeV?, due primarily to the growth of the (negative) odd-parity
N(1520)3/2~ and N(1535)1/2~ resonances which overcompensates the (positive) con-
tributions from the A(1232)3/2". At the highest Q? = 5 GeV? value shown in Fig. 6.6,
the total TPE correction 0, reaches ~ 6% — 7% at low €. Note that the results shown
in Fig. 6.6 follows Maximon and Tjon prescription [76] to control the IR divergence at
the soft photon limit. For completeness, the TPE correction § using the two different

treatments of Maximon-Tjon [76] and Mo-Tsai [75] is contrasted in Appendix C.

An estimate of the theoretical uncertainties on the TPE contributions can be made by
propagating the uncertainties on the fitted values of the transition electrocouplings [54],
which are dominated by the A(1232)3/27 and N(1520)3/2~ intermediate states. At
low Q?, Q? < 0.5 GeV2, the uncertainties are insignificant, but become more visible
at higher Q? values, as illustrated by the shaded bands in Fig. 6.6(b) for Q* = 1 to
5 GeV?2. Uncertainties in the proton form factors G and Gj; have a negligible effect on
the largest contribution, dy, for two reasons: first, at large Q% the well-known magnetic
coupling dominates; and second, the correlated uncertainties tend to cancel in the ratio
of two-photon to one-photon exchange. For the A(1232)3/2%, the well-known magnetic

transition amplitude also dominates.

To provide a more graphic illustration of the Q? dependence of the intermediate state
resonance contributions to the cross section, I show in Fig. 6.7 the TPE corrections from
the major individual contributors for Q2 up to 5 GeV2. A nominal value for the virtual
photon polarization of € = 0.2 is chosen in order to emphasize the largest effect on 4 at
backward angles. One of the prominent effects is the cancellation of part of the nucleon
elastic contribution by the A(1232)3/2" resonance across the entire Q* range. On the
other hand, the sum of the higher-mass resonances has a mixed impact on §. In the low-
Q? region, Q* < 1.8 GeV?, the higher resonance state corrections largely cancel, leaving
an approximately zero net contribution. As Q? increases, the role of the A(1232)3/2*

is partially nullified by contributions from the higher mass resonances, and eventually
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FIGURE 6.7: Contributions to the TPE correction & (in %) versus Q? at backward

scattering angles, ¢ = 0.2, for (a) nucleon only (blue dashed line), N + A(1232) (green

dotted) and the sum of all resonances (red solid line, with uncertainty band), and (b)

the major individual contributors at the same kinematics, including the A(1232) (red

solid), N (1440) (black dashed), N(1520) (blue solid), N(1535) (green solid), A(1700)
(orange dot-dashed), and N(1720) (blue dashed).

is outweighed by the heavier states. An overall increase in the total TPE cross section

over that from the nucleon alone is thus observed for Q% > 3 GeV?.

In the low-Q? range, the odd parity N(1520)3/2~ resonance state gives a comparable
cross section to that from the A(1232)3/2" state, but with opposite sign. The TPE
correction from the N(1520)3/2~ state keeps rising with @* and becomes the largest
contributor at Q* > 4 GeV?, outweighing even the elastic nucleon component. The

other resonances largely cancel each other, leaving behind a negligible net contribution.

An earlier calculation of resonance TPE contributions by Kondratyuk and Blunden [41]
correctly identified the A(1232)3/2% and N(1520)3/2~ resonances as the most impor-
tant contributors, after the nucleon. At Q? = 4 GeV?, for small values of ¢, that analysis
found oy =~ —4.7%, da(1232) = +1.9%, and dn(1520) & —0.7%. The nucleon and A(1232)
corrections are in excellent agreement with the results in Fig. 6.7. Our N(1520) correc-
tion of is larger in magnitude due to an improved parametrization of the electrocoupling
from the recent CLAS data [54], whereas Ref. [41] used a cruder estimate based on a

dressed K-matrix model.

As noted previously, for the default numerical calculations presented here the resonance

width has been taken to be the constant total decay width, I'g, for each resonance R.



Chapter 6 Results and Discussions 115

To explore the sensitivity of the TPE corrections to the assumptions about the width,
in the next section I show other cases, including the zero-width approximation and an

energy-dependent dynamical-width.

6.2.2 Nonzero resonance widths

As discussed in Sec. 5.4, the discontinuity in the imaginary part of the TPE amplitude
for the case of zero-width resonances gives rise to cusps in the real part of the amplitude
from physical threshold effects at specific kinematics. In this section I represent the
threshold effect on the TPE correction for the three representative resonance states

A(1232)3/2%, N(1520)3/2~ and N(1720)3/2" discussed in Table 5.2.

The interplay between the resonance mass and the (Q? and € values at which the threshold
effect appears is illustrated in Fig. 6.8, where the TPE correction ¢ is shown as a function
of ¢ at several fixed values of Q2. One observes that the higher the resonance mass,
the higher the Q* value at which the cusp comes in. For the lowest-mass A(1232)
excitation, the cusp at the lowest Q? = 0.2 GeV? value occurs at € ~ 0.06, as indicated
by the wiggle in Fig. 6.8(a). The effect of the constant, nonzero width, with a Breit-
Wigner distribution centred at the resonance mass, is to smooth out the wiggles in the
calculated §, although the effect overall is not dramatic here. At higher Q?, above the
kinematic threshold, both curves are smooth, and the finite width has little impact on

the TPE correction [Fig. 6.8(b) and (c)].

For the intermediate-mass N(1520)3/2~ resonance, the effect of the kinematical thresh-
old is more dramatic, with a prominent cusp visible for the zero-width result at € =~ 0.8
for @* = 0.2 GeV? [Fig. 6.8(d)], and a smaller cusp at ¢ ~ 0.5 for Q* = 0.5 GeV?
[Fig. 6.8(e)]. In both cases the finite width of the resonance washes out the cusps, leav-
ing a smooth function across the threshold. Above the threshold the contribution to § is
smooth [Fig. 6.8(f)], and the finite width has little impact. The most dramatic effect is
seen for the heaviest N(1720)3/2% resonance, where the kinematic threshold produces

strong cusps at € ~ 0.9 for Q* = 0.2 GeV? [Fig. 6.8(g)] and ¢ ~ 0.4 for Q% = 1 GeV?
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FIGURE 6.8: Effect of a finite resonance width on the TPE correction ¢ (in %) from

three significant resonance intermediate states, A(1232)3/2% (a—c), N(1520)3/2~ (d—

f), and N(1720)3/2% (g-i), as a function of ¢ at fixed Q? values. The kinematical

kinks in the zero-width results (blue dashed lines) are smoothed out by the effect of
the nonzero, constant width (red solid lines).

[Fig. 6.8(h)]. Once again the finite, constant width modulates the cusps and leads to
considerably smoother results. At Q? = 2 GeV?, above the kinematic threshold for this
state, both the zero-width and finite-width results produce smooth curves, but the effect

of the latter is still numerically significant [Fig. 6.8(i)].

To test the model dependence of the TPE correction on the resonance width prescription,
we also consider the effect of including an energy-dependent dynamic decay width,
L(W), of Eq. (5.42) for each resonant intermediate state. We consider the energy-
dependant I'(W) to have contributions from three different decay channels for each

resonances, namely, 7N, 7w N, and nN,

T(W) = Lan(W) + Doapn (W) + Ly (W). (6.2)
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Following Ref. [54], the partial decay widths Iz n (W) and 'y (W) are parametrized

as

2Lptl (X2 42 (W) Lr
Pr(n (W) Pr(n (W
FW N(W) = FRﬂﬂ' N<— s (63&)
" "N\ pri) (W) X2+ p2, (W)

Prn(W) )2“”4 (X 24 p2 (Wh) ) hree (6.3b)
pmr(WR) X2 +p3r7r(W) ’ .

FT(TI’N(W> - FR 67r7rN <

where the constant total decay width I'g of each resonance state is taken from Ref. [54],
and we have assumed the centrifugal barrier penetration factors to be the major con-
tributors to the off-shell behaviour of the resonances. Here the energy and momentum

factors for the two-body channels are given by

pﬂ(ﬁ)(W) = Ei(n)<W) - mi(n); (6.4&)

By (W W2t gy = M7 6.4b

(W) = S , (6.4b)

and for the three-body channel is given by
Per(W) = VE2 (W) —4m2, (6.52)
W2 +4m?2 — M?
E = 7 5b
wr (W) 511 : (6.5b)

where my(, is the mass of pion (7 meson). The branching fractions for the resonance
decays into the 7NV, 7w N and 1N channels are given by v, B=xn, and 3, n, respectively,
and satisfy the relation B;nx + Brry + Byv = 1. The values of the other parameters in

Egs. (6.3) — X, Lg, Brn, Brarn, and B,n — are taken from Ref. [54].

To illustrate the effect of the dynamical width, we select the two major resonance con-
tributors to the total cross section, namely, the A(1232)3/2" and N(1520)3/2~ states.
In Fig. 6.9(a-d) I compare the TPE correction ¢ using the dynamic, energy-dependent
width with the results of the zero-width and constant-width calculations at fixed Q% = 1
and 3 GeV2. At the higher Q? = 3 GeV? value, well above the kinematic thresholds,

the dependence on the prescription for the width is negligibly small, with the dynamic-
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FIGURE 6.9: Comparison of the TPE correction 0 (in %) computed for resonances
with zero width (blue dashed lines), constant width (red solid lines) and a dynamical
width (green dotted lines) for Q% = 1 GeV? (left panels) and 3 GeV? (right panels).
Contributions from the A(1232)3/2% (a-b) and N(1520)3/2~ (c-d) states are shown
separately, along with the sum of all resonance contributions (e—f).

and constant-width results very similar to those for the zero-width case. On the other

hand, at Q?

1 GeV? the details of the treatment of the widths are more important.

In particular, for the A(1232)3/2% the dynamical width leads to an ~ 30% reduction of

the (positive) correction relative to the zero-width case across all €, and a smaller but

non-negligible increase in the (negative) N(1520)3/2~ contribution at backward angles.

For the higher-mass resonances, the contributions again enter with oscillating signs,
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producing a net effect of the width in the total TPE cross section ratio di¢, including
nucleon elastic and all excited resonance states, that is very small across all € values for
both Q? = 1 and 3 GeV? [Fig. 6.9(e-f)] for all three width prescriptions. The kink in
the zero-width result at € ~ 0.4 for Q* = 1 GeV? arises from threshold effects in the
third resonance region (see Table 5.2 and Fig. 6.8(h)). As for the A(1232) and N(1520),
the kink is eliminated by the tail effects of the resonances for either the constant-
width or dynamical-width approximation, producing a smooth, monotonic result. At
the higher Q* = 3 GeV? value the effects of the finite widths are negligible. Since the
differences between the constant- and dynamical-width results are generally not large,
for computational simplicity we employ the constant decay width approximation as the

default throughout this work.

6.2.3 Spin, isospin and parity dependence

To further investigate the systematics of the TPE corrections from various intermedi-
ate states resonances, I compare the relative contributions from resonances with similar
spin J, isospin I, and parity P. In Fig. 6.10 I show the combined effects of the differ-
ent groupings versus Q? for two representative values of e, where the TPE effects are
relatively large (backward angles, ¢ = 0.2) and where they are relatively small (forward
angles, ¢ = 0.9). To contrast the impact of the excited states, I show the resonance
contributions separately from the nucleon elastic channel and the total (both of which

are the same in the left and right columns).

For the resonance contributions with different spin, Fig. 6.10(a,b) shows qualitatively
similar effects from excited states with spin J = 1/2 and those with spin J = 3/2.
The sum of the resonances in both channels is significantly smaller than the nucleon
elastic at low values of %, and only starts to become non-negligible for larger Q2
Q? 2 (3 —4) GeV?, with the relative impact somewhat greater at high ¢ than at low ¢.
The total TPE correction ¢ is therefore well approximated by the elastic term alone for

Q? <3GeV?at e =0.2, and Q* <2 GeV? at £ = 0.9.
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FIGURE 6.10: Comparison between the contributions to the TPE correction ¢ (in

%) from intermediate state resonances with spin J =1/2 and J = 3/2 (a—b), isospin

I =1/2 and I = 3/2 (c-d), and even parity P = +1 and odd parity P = —1 (e-f),

for ¢ = 0.2 (left columns) and € = 0.9 (right columns). The nucleon-only contribution

(black dotted lines), which is not included in the other curves, and the total (red solid
lines) are shown for comparison in each panel.

The decomposition into contributions from different isospins in Fig. 6.10(c,d) is rather
more dramatic. Large cancellations occur between the (negative) isospin I = 1/2 in-
termediate states and the (positive) I = 3/2 states. At lower Q?, Q? < 2 GeV?, the
I = 3/2 transitions are dominant, while at larger Q? the I = 1/2 intermediate states
become more important, rendering the TPE effect more negative compared with the

nucleon elastic term alone and contributing to the rapid increase in magnitude of the
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(negative) total TPE correction with Q2. This qualitative behaviour is similar at low

and high ¢.

Interestingly, a similar cancellation is found between the parity-even (P = +1) and
parity-odd (P = —1) intermediate states in Fig. 6.10(e,f). In this case the P = +1
contributions to § are positive, while the P = —1 contributions are negative, with the
latter becoming more important with increasing Q2. The qualitative behaviour of the
curves for each of the spin, isospin and parity decompositions can be understood from the
results illustrated in Fig. 6.5, where numerically the largest positive contribution is seen
to be from the A(1232)3/2%, and the negative of that from N(1520)3/2 states. The
former dominates the isospin 3/2 and even-parity channels, while the latter dominates
the isospin 1/2 and odd-parity channels, but since both have spin 3/2 and enter with
opposite signs, their combined contributions largely cancel, leaving the spin-1/2 channel

as the relatively more important one phenomenologically.

6.3 TPE-sensitive observables

Having described the features of the TPE corrections from excited intermediate states
to elastic ep scattering cross sections in the previous sections, in the remainder of this
chapter I will discuss the impact of these corrections on observables sensitive to the

TPE effects.

In particular, I analyze the numerical effects of the calculated TPE corrections on the
elastic e™p to e”p cross section ratio measured recently by the CLAS [116], VEPP-
3 [115] and OLYMPUS [117] experiments, as well as with polarization transfer data
from the GEp2y experiment [119] in Hall C at Jefferson Lab. In addition, I investigate
the effect of the resonance contributions to the TPE on the proton Gg/G)s form factor

ratio discrepancy between the LT and PT data [10, 11, 37, 42].
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6.3.1 e'p to e p elastic scattering ratio

Perhaps the most direct consequence of TPE in lepton scattering is the deviation from
unity of the ratio of e™p to e~ p elastic scattering cross sections. As explained in Sec. 3.4,
the interference of the Born amplitude and the TPE amplitude depends on the sign of
the lepton charge, so that the ratio

>
3
I
%

1-26,, (6.6)

where o(e*p) = do(etp — e*p)/dS, is a direct measure of the TPE correction d.,,.
Early measurements of Ry, in the 1960s at SLAC [108, 109], Cornell [110], DESY [111]
and Orsay [112] obtained some hints of nonzero TPE effects, however, since the data
were predominantly at low Q? and forward angles, the deviations of Ry, from unity
were small and within the experimental uncertainties. The more recent experiments
at Jefferson Lab [116], Novosibirsk [115] and DESY [117] have attempted more precise

determinations of Ry, over a larger range of @* and ¢ values than previously available.

The Rs, ratio from the CLAS experiment [116] is shown in Fig. 6.11 versus Q? at fixed
averaged € values, (¢) = 0.45 and 0.88 (Fig. 6.11(a,b)), and versus ¢ for fixed averaged
Q% (Q?) = 0.85 and 1.45 GeV? (Fig. 6.11(c,d)). The deviations from unity of the
measured ratios are relatively small, with most of the data points consistent with no TPE
effects within the relatively large experimental uncertainties. (Note that in Fig. 6.11 and
in subsequent data comparisons, the statistical and systematic uncertainties are shown
separately as inner and outer error bars, respectively.) The data are also consistent,
however, with the calculated TPE corrections, which are < 2% in the measured region,
but increase at lower € and higher Q2. A significant contribution to the cross section
ratio is observed from the nucleon elastic intermediate state, with the A(1232)3/2%
resonance cancelling some of the deviation from unity. The higher mass resonances have
little impact in the experimentally measured regions of € and Q?, but their contributions

become more significant at higher Q? in particular, Q? > 3 GeV2.
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FIGURE 6.11: Ratio Ray of eTp to e p elastic cross sections from CLAS [116] (a)

versus Q? for fixed averaged () = 0.45, and (b) (g) = 0.88, (c) versus ¢ for fixed aver-

aged (Q?) = 0.85 GeV?, and (d) (Q?) = 1.45 GeV?, compared with the nucleon only

(blue dashed lines), sum of nucleon and A(1232) (green dot-dashed lines), and sum

of all intermediate state contributions (red solid lines). The experimental statistical

and systematic uncertainties are indicated by the (black) inner and (grey) outer error
bars, respectively.

A similar comparison of the calculated Ry, ratio with data from the VEPP-3 experiment
at Novosibirsk [115] is shown in Fig. 6.12. The experiment scattered electrons at fixed
beam energy F = 0.998 GeV (Fig. 6.12(a)), and F = 1.594 GeV (Fig. 6.12(b)), for
down to ~ 0.3. This corresponds to a Q? range between ~ 0.3 GeV? and 1.5 GeV?2.
At these Q% values the nucleon elastic intermediate state gives the largest contribution,
with again the A(1232) cancelling some of the effect, and bringing the calculation with
the TPE corrections in better agreement with the data. The contributions of the higher

mass resonances at the kinematics of this experiment are negligible.

The most recent OLYMPUS experiment at DESY [117] measured the ratio Ry, over a
range of ¢ from ~ 0.46 to 0.9 at an electron energy E ~ 2 GeV, with Q? ranging up to

~ 2 GeV2. The results, illustrated in Fig. 6.13, indicate an enhancement of the ratio at
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FIGURE 6.12: Ratio Ray of ep to e p elastic cross sections versus e from the VEPP-

3 experiment [115] for beam energy (a) E = 0.998 GeV, and (b) E = 1.594 GeV,

compared with the nucleon only (blue dashed lines), sum of nucleon and A(1232)

(green dot-dashed lines), and sum of all intermediate state contributions (red solid

lines). The experimental statistical and systematic uncertainties are indicated by the
(black) inner and (grey) outer error bars, respectively.
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FIGURE 6.13: Ratio Ry, of e™p to e p elastic cross sections versus e from the OLYM-

PUS experiment [117] with beam energy F = 2.01 GeV, compared with the nucleon

only (blue dashed lines), sum of nucleon and A(1232) (green dot-dashed lines), and

sum of all intermediate state contributions (red solid lines). The experimental statis-

tical and systematic uncertainties are indicated by the (black) inner and (grey) outer
error bars, respectively.

£ < 0.6 and a dip below unity at e = 0.7, although still compatible with no deviation

from 1 within the combined statistical and systematic uncertainties. The suppression

of the ratio at large ¢ is in slight tension from other measurements, but again the

effect is consistent within the errors [46]. Inclusion of the A(1232) intermediate state

reduces the effect of the nucleon elastic contribution away from the forward scattering

region, but the effect of the higher mass resonances is very small for all € shown. The
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overall agreement between the TPE calculation and the OLYMPUS data is reasonable
within the experimental uncertainties, although there is no indication in our model for

a decrease of the ratio below unity at large €.

6.3.2 Polarization observables

In addition to the unpolarized e™p to e p cross section ratio, other observables that
are directly sensitive to the presence of effects beyond the Born approximation involve
elastic scattering of longitudinally polarized electrons from unpolarized protons, with
polarization transferred to the final state proton, €p — ep. The relevant observables
are the transverse and longitudinal polarizations, Pr and Pj, relative to the proton
momentum in the scattering plane defined in Sec. 3.5 including the TPE effect. The

ratio of the transverse to longitudinal polarizations, Ry given by

T(1+€)PT

— 6.7
= P, (6.7)

Ry = —pyp

reduces to the ratio of electric to magnetic form factors, 1, Gg/Gr, and becomes inde-
pendent of €. Since, any observed £ dependence of these polarization observables would
be an indication of TPE effects an investigation of Rr; along with the ratio P/ P]SO) as

a function of ¢ is represented in Fig. 6.14 at an average value of Q% = 2.49 GeV2.

Data on the transverse and longitudinal polarizations were obtained from the GEpo,
experiment at Jefferson Lab [119], and are also shown in Fig. 6.14 for the ratio P/ P]SO)
and Rrp. The calculated TPE effect in this model is almost negligible for the longi-
tudinal polarization, giving very little additional € dependence in the ratio Py / PL(O) in
Fig. 6.14(a), and consistent within 1o with the data. A larger TPE effect is found for
the transverse polarization, where the nucleon alone gives a small slope in ¢, with the ef-
fects of the A(1232) and higher mass intermediate states enhancing the TPE correction
to = 3% effect at ¢ ~ 0.2. For the nucleon, and the sum of nucleon and A(1232)3/2%
intermediate states this was already concluded in the earlier analysis in Refs. [37, 46].

The data do not show any clear evidence for an ¢ dependence within the experimental
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FIGURE 6.14: Effect of TPE corrections on polarization observables from the GEp2y
experiment at Jefferson Lab [119] for (a) longitudinal polarization Py, relative to the

Born level result Péo), and (b) polarization transfer ratio Rry at Q% = 2.49 GeV?,

compared with calculations including nucleon only (blue dashed lines), sum of nucleon

and A(1232) (green dot-dashed lines), and sum of all intermediate state contributions

(red solid lines). The experimental statistical and systematic uncertainties are indi-
cated by the (black) inner and (grey) outer error bars, respectively.

uncertainties, although the calculated effect is also compatible with the data within 1o

eITrors.

6.3.3 Electric to magnetic form factor ratio p,Gr/Gy

Perhaps the most well-known consequence of TPE that has been identified in the last
two decades is the ratio of the electric to magnetic form factors extracted from elastic
scattering cross sections using the LT separation method [10]. It is explained in Sec. 1.3.1
that the Longitudinal-transverse separation requires measurements of cross sections as
a function of & (or scattering angle) at fixed values of Q2. In the Born approximation,
the reduced cross section o5°™ in Eq. (1.13) is a linear function of e, which allows the

form factors G%; and G% to be extracted from a linear fit to the reduced cross section

data.

As observed in the preceding sections, the TPE correction induces an additional shift
in the ¢ dependence, which alters the effective slope of the reduced cross section versus

. Furthermore, since the £ dependence of the TPE effect is not restricted to be linear,
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any nonlinearity introduced through radiative corrections could potentially complicate

the form factor extraction via the LT analysis, especially at higher values of Q2.

In Secs. 6.3.1 and 6.3.2 I compared the available data to calculations incorporating TPE
effects. However, to extract Gg and G, it is more appropriate to correct the data for
TPE contributions at the same level as other radiative corrections in order to obtain the

genuine Born contribution, o§°™. The measured and Born cross sections can be related

by

Ugeas — C{:){lél (Ugorn)dd — ﬁ%w (0_Eorn)new

, (6.8)

where C84 is the radiative correction (RC) factor applied in the original analyses [2, 3],
and CR&” incorporates any improvements, including the new TPE effects. For the RC

factor Crc we adopt the definition used by Gramolin and Nikolenko [39],
Cre = (f exp (5RC + 5) , (69&)

where 0rc is given in Eq. (2.18), Cf, (introduced in Sec. 2.3) is the correction factor for
ionization losses in the target, and ¢ is the hard TPE correction (§ = d,, — 6'%(MTj))
of Eq. (3.15). Although exponentiation is strictly only justified for the soft photon

emission correction, it is conventionally applied to all RCs.

Gramolin and Nikolenko [39] reanalyzed the SLAC data [2, 3], which used the standard
RCs of Mo and Tsai [75], to include improvements to dpems as well as the use of the
standard RCs of Maximon and Tjon [76]. Their Born cross section can be written in

terms of that given in Refs. [2, 3] as

old
(agorn)new — CRC (Ugorn)(’ld . (610)
Gy

The ratio C3a/CReY is tabulated for the SLAC data in Ref. [39], to which we add our
calculated TPE contribution § of this work. For the Super-Rosenbluth data [4] details
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of the RCs that were applied are not available, so the improvements made to drc are

restricted to using 012 (MTj) instead of 032 (MoT).

8.2 0% = 4 GeV? |

02 04 06 0.8 1.0
E

FIGURE 6.15: Reduced cross section agom at Q%2 = 4 GeV?, scaled by 7 times the

dipole form factor squared G%. Open circles are the original data points from Ref. [3].

Filled circles (slightly offset for clarity) include improved standard RCs from Ref. [39],

together with the TPE corrections from the present work. The weighted least squares

fits (solid lines) determine G% and G%,. Data points from the 8 GeV spectrometer are

shown in red, while the data point from the 1.6 GeV spectrometer (which is separately
normalized [3]) is shown in blue.
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FIGURE 6.16: (a) Ratio of the proton electric to magnetic form factors, p, Gg/Gar,

versus 2, extracted using LT separation data [2-4]. A nonlinear fit to the combined

PT results [5-9] at the 99% confidence limit is shown by the green band. (b) The

ratio p, Gg /Gy extracted from a reanalysis of the LT data using improved standard
RCs from Ref. [39], together with the TPE effects from the present work.
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A comparison of the original reduced cross sections and the results with the improved
RCs of Ref. [39] plus the TPE of this work is shown in Fig. 6.15 for the Q* = 4 GeV?
data from Ref. [3]. We note that the original and the TPE-corrected data are equally

well described by a linear dependence on ¢, and no nonlinearity effects are apparent.

In Fig. 6.16 I show the G /G ) ratio extracted from this analysis for the SLAC [2, 3] and
Jefferson Lab Super-Rosenbluth [4] experiments up to Q? = 5 GeV2. To avoid clutter,
the PT data from Refs. [5-9] are shown as a band, which is introduced also in Sec. 1.3.2.
The original analysis, shown in Fig. 6.16(a), is consistent with 1,Gg/Gy ~ 1, while
a progressively larger effect of TPE with increasing Q? for all LT data sets is seen in
Fig. 6.16(b), with a commensurate increase in the uncertainty of Gg. In particular the
LT data of Andivahis et al. [3] are striking in their consistency with the PT band, with
a near linear falloff of G /Gy with Q2. These results provide compelling evidence that
there is no inconsistency between the LT and PT data once improvements in the RCs

and TPE effects are made.
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Imaginary Part of TPE Amplitude

Having discussed the dispersive (real) part of the TPE correction in unpolarized e-p
elastic scattering, I now switch to the absorptive (imaginary) part of this particular
correction. But, this time the scattering requires either the beam or target being polar-
ized. Polarizing the beam or target normal to the electron scattering plane gives direct
access to the imaginary part of the TPE amplitude from the measured asymmetry in
cross sections due to change of orientation of the polarization vector. Investigation of
such asymmetry, known as single spin asymmetry (SSA), is the subject matter of this
chapter. Before going into the technical details to calculate this observable quantity in
Sec. 7.3, 1 explain the defining equation in the next section followed by a review of the

estimated and measured values of this quantity in Sec. 7.2.

7.1 Single Spin Asymmetry (SSA)

The experimentally measured observable, transverse (normal) single spin asymmetry
defined by
SSA = — (7.1)

where o' (o) are the cross section of e-p elastic scattering with either beam or target

spin polarized parallel (anti-parallel) to the normal, S, to the scattering plane formed
130
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by the three-momenta of the incident and scattered particles k and k', respectively, as

kx K
Sh =, 7.2
|k x K| (72)
gets its leading term from the imaginary part of the TPE amplitude. It has been first
shown by De Rujula et al. [131] that the time reversal invariance leaves zero contribution
to SSA from the single photon exchange transition amplitude 7%, and the leading term

of beam/target normal SSA comes from the absorptive part of the TPE transition

amplitude 7., in short Abs[T,], according to the relation

spins

2 T2

spins

tn (75 A

SSA = (7.3)

Note there is a lot of inconsistency in the notation of this observable quantity in literature
but the convention of A, for target normal SSA and B, for beam normal single spin
asymmetry will be used in this thesis, particularly in the plots. However, the details of
the calculation of A, and B, will be discussed in Sec. 7.3. Before discussing the technical
details of the calculation, a brief review of the available data and model estimation is

presented in the next section.

7.2 Review of SSA

Since the SSA (both A, and B,) originates from the radiative correction TPE in its
leading order it is expected to be of order «, the fine structure constant of QED, following
Eq. (7.3). In addition to the factor a;, B, is also suppressed by the small factor m./E,
where m, is the electron mass and E is the beam energy. As a consequence B, is
expected to be of order 107% — 1075 for beam energies in GeV range. On the other
hand, there is no additional suppression in A,, and hence it is anticipated to be of
order 1073 — 1072 for the same beam energy. Alongside the importance in exploring the

details of the TPE effect, B, is particularly important in parity violating experiments
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TABLE 7.1: Beam normal single spin asymmetry B, from various experiments, along
with the corresponding kinematics.

ELab eLab ecm Q2 Bn Uncer. (ppm)
Exp. N
*p. rame (GeV) | (°) () | (Gev®)| (ppm) | Stat. | Sys.
Queax (2020) [132] 1149 | 7.9 [ 14.6 [0.0248 ] —5.195 [0.067 | 0.082
HAPPEX (2012) [60} 3.026 6.0 16.3 0.099 —6.800 1.540
0.362 122.7 | 0.220 | —176.500 9.400
GO (2011) [58] 0.687 108.0 130.3 | 0.630 —21.000 24.000
7.5 20.2 0.150 —4.060 0.990 | 0.630
GO (2007) [59] 3.031 9.6 25.9 0.250 —4.280 1.870 | 0.980
0.315 43.1 0.032 —2.220 0.400 | 0.430
0.420 46.1 0.057 —6.880 0.530 | 0.420
A4 (2020) [64] 0510 | o 0 | 47.8 | 0.082 | —9.320 | 0.630 | 0.620
0.855 ' 54.6 0.218 —7.460 1.220 | 1.550
1.508 64.4 0.613 —0.060 2.890 | 1.900
0.315 152.6 | 0.220 | —94.830 | 6.020 | 4.070
Ad <2017) [63] 0.420 145.0 154.2 | 0.350 —99.550 | 6.730 | 4.630
0.855 56.2 | 0230 | —8.520 | 2.310 | 0.870
Ad <2005> [62] 0.569 35 50.4 0.106 —8&.590 0.890 | 0.750
SAMPLE (2001)[133] | 0.200 | 146.1 | 158.0 | 0.100 | —15.400 5.400

that use longitudinally polarized lepton beams to measure the asymmetry due to the
spin flip. Usually that asymmetry is of order ~ 1076, while the beam normal SSA is also
of the same order. In parity violating experiments, B, is usually considered as a false
asymmetry due to slow drift in rapid flip of beam polarization. As a requirement to
control the possible systematic error all parity violating experiments determine the SSA
as a by-product, which made B, available at a large range of kinematics. Starting from
the work of SAMPLE collaboration [133] at beam energy E = 0.2 GeV and averaged
backward scattering angle in the laboratory frame 6y,, = 146°, there has been several
measurements [58-64, 132] of B, to date in a wide range of scattering angle. A summary
of the findings of those experiments along with the corresponding kinematics is shown
in Tab. 7.1. In a crude observation of the experimental results it is visible that B, gets
suppressed with increasing energy, even though no definite trend and interplay between
energy and scattering angle can be concluded from the results displayed in the table.

The backward scattering, at relatively low energies, of Refs. [58, 63| finds B, of order
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~ 107° (maximum value reaches -176.5 ppm in Ref. [58]). Whereas the recent work
of A4 collaboration [64] in the near forward scattering (6., ~ 34.1°) obtained B, of
order 107 (-9.32 ppm at most) at the similar range of beam energies. Note that the
SAMPLE [133] result at Ep., = 0.2 GeV and 60,, = 146.1° is little incompatible with
the two other lower energy and backward angle measurements of Refs. [58, 63]. One
possible reason, that would be clear in the subsequent chapters, might be the absence of
contributions from the higher mass resonance states in the SAMPLE kinematics. The
relatively higher energy (1.15 < Ep,, < 3.031 GeV) experiments [59, 60, 64, 132] are in
the small scattering angles (except the single data of Ref. [64]), and are consistently in

the range of —6.80 to —4.06 ppm.

After the work of De Rujula et al. [131], the theoretical model estimations of B, include
the work in Refs. [66-69]. The hadronic approximation with a doubly virtual Compton
scattering analogy of the imaginary part of the TPE correction is used in the calculation
of Pasquini and Vanderhaeghen in Ref. [66, 67]. In this calculation 7N intermediate
state has been considered, along with the elastic nucleon, and the input were taken
from the MAID electroproduction amplitudes [134]. However, the model is believed to
be appropriate for the forward angle regions. The GPD approach, with a real Compton
scattering analogy (RCS) suitable for forward angles as well, by Gorchtein in Ref. [68]
found completely different outcomes even with an opposite sign to that obtained by
Pasquini and Vanderhaeghen [66, 67]. This is not surprising since the GPD approach
is found more useful in the high Q? region. Later on, Gorchtein also used a Quasi
Real Compton Scattering (QRCS) formalism (more appropriate for backward angles) in
estimation of the observable B, (also A,). The results are still not coherent with that

of Refs. [66, 67].

On the other hand, unfortunately, the target normal single spin asymmetry, A,, has
no available data yet for the proton case. However, the first non-zero value of A, has
recently been measured for the neutron target, where the data was obtained from an

e—3He quasielastic scattering [135]. In that extraction the input of A, for proton was
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required which had been taken from the theoretical estimation of Ref. [136] that was

calculated assuming only the nucleon intermediate state in the TPE box diagram.

7.3 Calculation of SSA

The one photon exchange transition amplitude 7', can be substituted by the Born level
amplitude M, of Eq. (1.1) and T, by the TPE amplitude M., without loss of any
factor including the total-momentum conserving delta function since SSA is a ratio of

cross sections. Therefore, an equivalent form of SSA is

tn (2 Al )

spins

SSA = (7.4)
> My
spins
For convenience, reiterating the explicit form of the OPE amplitude M, here,
1
M = € 3 () g v ) D°(0) ). (7.5)

Each of the terms of Eq. (7.5) are introduced in Sec. 1.1. The complex conjugation of
M., simply reverses the momentum of the virtual photon from ¢ — —¢ in the hadronic

transition current operator. Thus M takes the form
« _ I
M = (k) 3 ue(F) 35 v () I (—0) un (¢, (7.6)

The denominator of Eq. (7.4) is identical with the Born cross section for unpolarized e-p
elastic scattering since the spin components (beam/target) has no impact at the Born
level. The denominator of Eq. (7.4) can be written in terms of the invariant Mandelstam

variable s as

Q4
Z M, = Z MM, = (47 a)? D(s, @), (7.7)
spins spins
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where

D(s,Q%) = 202M"+ Q" —4M?s — 2Q%s + 25*) F{(Q*) + 4Q"F1(Q*) F»(Q?)
+ Q% [M* +2M*(Q% — s) + s(—Q* + s)F5(Q%)] / M>. (7.8)

Note that the terms of the order of electron mass squared m? are ignored in the ex-
pression. To get the absorptive part of the TPE amplitude one can again exploit the
Cutkosky cutting rules to put the intermediate lepton and hadron on-shell by the sub-
stitutions shown in Eq. (4.1b), while describing the dispersive method (Sec. 4.1). This
substitution provides the discontinuity, Disc(iM.,,) (or —2Im M.,.), of the TPE box
diagram of Fig. 3.1, and hence the absorptive part of TPE amplitude —Abs[M.,,]. It
is important to note here that for the calculation of SSA one does not need to consider
the crossed-box diagram, which is purely a real quantity. However, the absorptive part

of the TPE amplitude in Eq. (7.4) can be expressed in the form

o dgkl ﬂE(k/)7 (%1 + mfi)%/uez(k)wwl
MM = e e i ey

(7.9)

once the Cutkosky cutting rules are applied. Here the loop integration has been car-
ried over the intermediate lepton four-momentum k; = (Ej,, k1), where Ey, and k;
are the intermediate lepton energy and three-momentum, respectively. The hadronic
tensor WH contains the information about the transition from proton to every possi-
ble intermediate states including the inelastic resonances and the elastic proton itself
by the absorption of a virtual photon at the first vertex of TPE Feynman diagram of
Fig. 3.1. As addressed before, SSA is calculated for each of the 4 and 3-star resonance
intermediate states of PDG 2018 [129] below 1.8 GeV of invariant mass W. Then I sum
up all the resonance contributions with the nucleons to get the total B, and A,. For

elastic nucleon and inelastic spin-1/2 resonances, W*" takes the simplified form

WH = 275(W2 - VV?)EN(JU/) F!}Lﬁ—wN(pRa —q2) (?R +W) FfI;NHR(pRa q1) un(p), (7.10)
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where pg is the intermediate hadron four-momentum, i.e. pr = p + ¢;. The Dirac
function here sets the invariant mass W to a particular value W; for individual resonance
states. For elastic intermediate state, W? is substituted by M?, the proton mass squared.
On the other hand, in hadronic tensor for spin-3/2 resonances I use the Rarita-Schwinger

spinors for each intermediate states. Thus the tensor becomes

WH = —21§(W? — W)y (p) R N (PR, —2) 7’3,22(193) (Pt W) F-yN—>R(pR7 q1) un(p),
(7.11)
where P?/ 5 is the spin-3/2 projection operator, associated with the Rarita-Schwinger

spinor, defined in Eq. (3.8).

Using Egs. (7.6), (7.7), and (7.9), one can write SSA as

4aQ2 Ak, 1
A = 12
55 872D (s, Q?) ;/ 2Ey, (QF + X2)(Q3 4+ A\?) (7.12)

X fae(k:) Yo ue(k Ve (K )y (Fy + me) e (k)i (p) TP (—q) un (p )W .

For the two different cases of beam and target normal SSA (B, and A,) the spin sum
will lead to two different expressions for SSA. Taking the spin sum one can express
Eq. (7.13) in a concise form in terms of the leptonic and hadronic tensors L,,, and

HP | respectively, as

SSA =

4aQ)? / A3k, Im L, H*

8tD(s,Q?) ) Er (Q*+ X)(Q2+X\2) (7.13)

For B,, the leptonic tensor L,,, contains the lepton polarization vector S¥ = (0, S,,),

and takes the form

L = 3T [+ 800+ m (k4 mo +mon] . (7119)

It is important to note that the imaginary part in Eq. (7.4) for B, comes entirely from
this spin polarization S¥-dependent term. However, H”*” remains independent of the
polarization of the target particle, i.e. remains equivalent to the case of the unpolarized

e-p scattering. But it has two different expressions for spin-1/2 and -3/2 intermediate
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hadrons as the Rarita-Schwinger spinors are used for the spin-3/2 states, while the usual

Dirac spinors are used for spin-1/2 states. For spin-1/2 resonances, H”*” becomes

o = DT [(p4 MT,(~a)(f + M) (o, — ) + V)
<  nlo, )]V — W), (7.15)

For spin-3/2 resonances it is given by

HO = T [(p+ MOT, () + MITE o (b 2P (o) (g + 1)

< T2 p(pro1)]S(W2 — W2). (7.16)

On the other hand, for A,, the spin sum leaves the leptonic tensor L,,, identical to that
of the unpolarized e-p scattering, as the beam is unpolarized in this case. Thus, for A,,

L,,, can be written as

Lo = 5 T+ me )y o+ me oy + o)) (7.17)

Unlike B,), the hadronic tensor H”*” contains the polarization vector S¥ in it’s expression

after the spin sum. For spin-1/2 resonances, H?** becomes

o = %Tr [(L+58.)(p+ M)To(=a)(p + M) n (PR, —@2) (P, + W)
X I v r(Pr, a)|o(W? = W), (7.18)

whereas for spin 3/2 resonances, it is of the form

How = —% Tr [(1+58,) (p + M)T,(—a)(p + M)TE, (PR, @) iy (Pr)

X (P, + WL (PR, 1) 6(W2 — W), (7.19)

It is convenient to transform the phase space integral, over the intermediate electron
momentum ki, of Eq. (7.13) in terms of the Lorentz invariant Mandelstam variable

s. Defining the kinematics in the centre-of-mass (CM) frame (see Appendix A), the
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integration over d*k; = |k1|* d|k:|d cos 0y, d¢y, can be written as

/ Phy = — ’“ 2 / dwW? / d cos Oy, / Ao, , (7.20)
M?2 0

where the symmetry of the integral over the variable ¢, and the CM frame relation for

the intermediate electron three-momentum |k;| ~ E},, with

s —W?+m?
B, =—"=2¢ 7.21
k1 2\/§ 3 ( )

from Eq. (A.3b) is utilized to get Eq. (7.20). Note that the negligibly small quantity of
electron mass squared m? is not ignored in the expression of Ej, on purpose that will be

clarified, while discussing the Q7 and Q3 below. Use of Eq. (7.20) into Eq. (7.13) gives

O‘QZ Ek1 / 2/ / Im L, HP*
SSA = — aw d cos Oy, doy, (722
mD(s,Q M? ~1 * 0 O (QF + A?)(Q3 + A?) ( )

In the CM frame, Q% and Q3 can be expressed as

Q? 2 [E Ey, — |k| - |k1| cos Ok, — mg], (7.23a)

Qi = 2 {E Ex, — |k| - |k (COSQCOS Oy, + sin @ sin 6, cos gbkl) - mg} , (7.23b)
where 6 is the CM frame scattering angle and the beam energy E can be expressed in
CM frame in terms of the Mandelstam variable s as

s — M? 4+ m?

E =
25

(7.24)
the magnitudes of the incident and intermediate electron momenta are, respectively,

k| = E?—m? (7.25a)
kil = (/B —m? (7.25Db)

It is important to note that unlike the numerical evaluation of the real part of the TPE

in unpolarized e-p scattering, the small parameter of electron mass squared m? in the
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expressions of Q% and Q3, especially in the denominator of Eq. (7.22), is not neglected
in this case. The consideration of massive lepton in the expressions of Q% and Q3 is
useful to avoid IR divergence of the integral of Eq. (7.22) by keeping the virtual photons
away from the on-shell point, particularly for the calculation of SSA with resonance

intermediate states.

Similar to the calculation of the real part of TPE, a non-zero finite resonance width
with a Breit-Wigner distribution f(W?) given in Eq. (5.42) is also considered in the
calculation of the imaginary part. To evaluate the W? integral of Eq. (7.22), the W?
continuum is assumed as an infinite set of Dirac § functions §(W? — W?) for each of
the resonances. In practice, the total integral is evaluated at around 15-25 W, points
depending on the maximum range of the integration. The obtained values for the set
of W; points are interpolated using spline fit to get a functional form as F(W?). The
function F(W?), weighted by the Breit-Wigner distribution f(WW?), is again integrated
over W2 to get SSA for a particular resonance, with a constant total decay width, at

the specific value of beam energy E and four-momentum transfer squared Q2.



Chapter 8

SSA Results and Discussions

In this chapter I will discuss the calculated results of single spin asymmetry for both
beam 8.1 and target 8.2 spin normal to the scattering plane at the kinematics of the

experiments discussed in Table 7.1.

8.1 Beam normal single spin asymmetry

Using the CLAS electrocouplings (Aj) input in the hadronic transition currents for the
excited resonance intermediate states with a finite constant total decay width and a
Breit-Wigner distribution, the beam normal single spin asymmetry B, is calculated
numerically mostly for the beam energies corresponding to the kinematics of the per-
formed experiments to date. To analyze the effect of each of the considered resonances
in total B,, Fig. 8.1 illustrates the calculated B, coming from the individual reso-
nances at three different representative beam energies in the lab frame, FEp., = 0.5
(Fig. 8.1(a)), 1 (Fig. 8.1(b)), and 3 GeV (Fig. 8.1(c)), as function of the CM frame scat-
tering angles 6., ranging from ~ 5° to 170°. Among the resonances, the four spin-3/2
resonances A(1232)3/2%, N(1520)3/2~, A(1700)3/2~, and N(1720)3/2% have sizeable
effects with some partial cancellation between the contributions. Both the lower mass,
spin-3/2 resonances A(1232)3/2% and N(1520)3/2~ have negative values of B,, while
140
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Ficure 8.1: Elastic nucleon and resonance intermediate states contributions to the

beam normal single spin asymmetry B, along with the total, as a function of the

centre-of-mass scattering angle 6., at three representative beam energies E: (a)
0.5 GeV, (b) 1.0 GeV, and (c) 3.026 GeV, in the target rest (Lab) frame.

they are of different isospin and opposite parity. On the other hand, the two other higher
mass, spin-3/2 states A(1700)3/2~ and N(1720)3/2", with opposite parity and different
isospin, have positive contributions to the total B,. Therefore, no definite correlation
between the isospin and parity is observed in the imaginary part of the TPE amplitude
for the case of normally polarized electron and unpolarized proton elastic scattering. In
the forward angles it is basically A(1232)3/2% and N(1520)3/2~ that are noticeable,
while A(1700)3/2~ and N(1720)3/27" are the dominant contributors in the far-forward
to backward scattering angles, except for the lower energies where A(1232)3/2" has
the highest magnitudes of B, throughout the entire range of angles (Fig. 8.1(a)). It
is interesting to note that the elastic nucleon intermediate state gives negligibly small
effect in B, unlike the real part of the TPE amplitude in case of unpolarized e-p elastic

scattering. Overall, the net effect of all the resonances gives an oscillating B, in the full
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range of O.,,. Note that for lower beam energies only the tail effects, due to non-zero
finite width, of the higher mass resonances are accounted as the individual resonances
require a minimum energy to be excited from the nucleon intermediate state. For ex-
ample, at the beam energy FEp., = 0.5 GeV, the maximum W values covered in the
numerical integration of Eq. (7.22) is /s = M? + 2M EL.;, ~ 1.35 GeV. Therefore, only
the A(1232)3/2" resonance contributes in the total B, if the zero width approximation
is considered. But in case of a more realistic assumption of constant finite non-zero
resonance width all higher resonances will have the tail effect, and the total B, is antic-

ipated to be modified from that with zero width approximation. The effect of non-zero

of T T T T L e pue—_
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F1GURE 8.2: Non-zero finite resonance width effect on the calculated total beam

normal single spin asymmetry B, at three representative beam energies Er.p: (a)

0.5 GeV, (b) 1.0 GeV, and (c) 3.026 GeV. The dashed red line corresponds to zero

width approximation and the solid blue line represents the results considering constant
total decay width of each resonance.

resonance width in the total B, is explained in Fig. 8.2 by comparing the results using
zero width and constant total decay width approximations at the three same energy
values of Er,, = 0.5 (a), 1.0 (b), and 3.026 (c) GeV. The consideration of constant
total decay width, taken from Refs. [54, 137], with a Breit-Wigner distribution signif-
icantly alters B, for all three energies except the forward directions. In case of sharp
resonances, i.e. the zero width case, only the nucleon and A(1232)3/2% intermediate
states are accounted for Ep,, = 0.5 GeV, and for Fr,, = 1.0 GeV resonance states up to
N(1650)1/2~ are taken into account as the maximum allowed W is ~ 1.66 GeV for this
case. The total exclusion of the two higher mass, spin-3/2 resonances A(1700)3/2~ and
N(1720)3/2", mostly originating from the 77 N channel, significantly deviates B, from
the real value especially in the far-forward to backward scattering angles. The large pos-

itive contributions from A(1700)3/2~ and N(1720)3/2% (Fig. 8.1(a,b)) forces the total
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B, to oscillate and be positive in the backward direction as shown in Fig. 8.2(a,b) by
the solid blue lines, whereas the zero width result remains significantly negative through
out the entire range of 0.,. At Ep., = 3.026 GeV, all the resonance contributions are
accounted in zero-width approximation as well but the two scenario are still surprisingly
different at larger 6., (Fig. 8.2(c)). Contrary to the TPE correction to the unpolarized
cross section, B, is significantly modified by the width effect, since it involves the real
excitation of resonances. Another possible reason for the dramatic influence of non-zero
finite width in B, would be the insignificant contribution from the most stable nucleon

intermediate state, while it is the major contributor to the TPE cross section correction

J.

8.1.0.1 Experimental values

Beginning from the measurement of B, by SAMPLE collaboration [133] in 2001 there
have been several experiments performed both in the forward and backward scattering
angles to date. One such measurement was performed by Queax experiment [138] in
JLab Hall-C as part of the determination of the weak charge of proton in parity vio-
lating experiment with longitudinally polarized beam of electrons. The experiment was
initiated with the electron beam of energy £ = 1.149 GeV and a small four-momentum
transfer squared (Q?) = 0.0248 GeV? corresponding to a centre-of-mass scattering an-
gle Oy = 14.62° (Opa, = 7.9°). Figure 8.3 represents the calculated B, at the beam
energy of Queax €xperiment as function of fqy ranging up to the backward angle of
170° (Fig.8.3(a)). The right panel is a magnified version in 6., contrasting the Qcax
data with the prediction well. The red solid line considers only the elastic nucleon in-
termediate state which has a very tiny effect. The total value of B, coming from the
inelastic spin-1/2 and -3/2 resonance states along with nucleon itself is shown by the
blue solid line. The Queax value of B, is coherent in sign with the calculated value
presented here. Even though the magnitudes are of the same order but the difference
is still non-negligible. In the forward angles, B, flips sign and reaches a peak value of

about ~ 80ppm at around fOcy >~ 90°. Note that the resonance states considered in
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FIGURE 8.3: Beam normal single spin asymmetry B, as a function of the centre-

of-mass scattering angle 6., at the kinematics of the Qweak [138] experiment. The

red line represents the B, from nucleon intermediate state alone, while the blue line

accounts all the 4 and 3-star, spin-1/2, and -3/2 resonances along with the elastic

nucleon. The data point is the measured B, by Qwearx collaboration. A magnified
version is presented in the right panel.

calculation of the imaginary part of the TPE amplitude covers the 7 N, 77N, and n/N
decay channels as was considered in the real part of the TPE calculation. Thus the

results presented here has the impact of resonances with the decay channels beyond

7N.

Earlier in 2007, the HAPPEX collaboration [61] at Hall-A, JLab has published the mea-
sured value of B, = —6.58 + 1.47 (stat) + 0.24 (syst) ppm at higher beam energy
Erap >~ 3 GeV and forward angle 6., ~ 16°. At the similar kinematics GO collabora-
tion [59] also performed the parity violating e-p scattering experiment and measured
B, in 2007. Later in 2011, they measured B, at smaller values of beam energies
FEr., = 0.362 and 0.687 GeV but in the backward angles. Figure 8.4 compares the
calculated result with the measured values from these two experimental groups. At
the forward angles and Epr., ~ 3.0 GeV, the measured B, from GO experiment is in
agreement within the uncertainty range whereas the HAPPEX data is well below the
estimated value of my work. The GO data at Fr., ~ 0.362 GeV and 0., ~ 123° are
of the same order and sign even though the magnitudes are not within the error bar
of the measured value [8.4(c)]. Surprisingly, the backward angle GO data at the beam
energy Fr., = 0.687 GeV is of negative sign and relatively small magnitude whereas

our calculation predicts it to be of positive sign with significantly higher magnitude
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FIGURE 8.4: Beam normal single spin asymmetry B, as a function of the centre-

of-mass scattering angle 0., at the kinematics of (a) HAPPEX Collaboration [60],

(b-d) GO Collaboration [58, 59]. The red line represents the nucleon intermediate

state contribution, while the blue line accounts all the 4 and 3-star, spin-1/2, and
-3/2 resonances along with elastic nucleon.

[8.4(d)]. It is important to note that the sign flip of B, at ., 2 40° is due to the tale
effect of the two spin-3/2 resonances A(1700)3/2~ and N(1720)3/2", corresponding to

the 7w N decay channel, which has very large contribution in the backward angles.

Starting from the 2005 measurement the A4 collaboration has initiated series of exper-

iments [62-64], including the most recent one in 2020 [64], both in the forward and

backward angles but mostly at smaller beam energies. The measurements in 2005 [62]

and 2020[64] are in the near-forward angle around 6., ~ 50°, while the 2017 measure-

ment considered the backward angle 6., ~ 150°. Considering the magnitude, the most

recent measurement from A4 at 6., ~ 50° underestimates B, according to this numer-

ical evaluation as shown in Figs. 8.5(a-c,e). The backward angle data from A4 [63] is

comparatively closer to the calculated value for Ep,, = 0.315 GeV (Fig. 8.5(a)), while for
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FIGURE 8.5: By vs. 6y plots at the kinematics of the PVA4 Collaboration [62—64].
The filled circles are the most updated data in the forward angles from Ref. [64], filled
squares in the backward angles are from Ref. [63], and the filled triangles are from
Ref. [62].

Erap = 0.420 GeV the scenario is even more frustrating (Fig. 8.5(b)). The calculated B,

of Fig. 8.5(c-f) flips the sign, due to the interplay between the effect of higher and lower

mass resonances, near to the scattering angle 6., ~ 50° where A4 collaboration [62, 64]

has performed their measurement. Overall, in a naked eye, the calculated curves seem

to be shifted, perhaps due to any missing effect, from the measured points along the

horizontal axis. It is important to note here that the effect of the spin-5/2 resonances
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is left as an outstanding task which might play a significant role in evaluation of B,.

8.2 Target normal single spin asymmetry (A,)

I begin this section with an illustration of the numerically calculated results of target
normal single spin asymmetry A, at the beam energies corresponding to the first non-
zero experimental determination of the quantity [135], but for neutron target, in addition
to the lower energies Er,;, = 0.5 and 1.0 GeV. Figure 8.6 shows the contribution of elastic
nucleon and nine spin-1/2 and -3/2 excited resonance intermediate states to the total A,
along with the net result. As anticipated, A, is in the range of sub-percent to percent
level, and keeps increasing with beam energy in the backward direction contrary to B,,.
To further compare with B,, the nucleon intermediate state alone has significant impact
on the total A, for any value of E. While there is an overall oscillation of A, between
the negative and positive values in the entire range of scattering angles, a closer look
at the plots of Fig. 8.6 shows that the magnitude of the negative peak remains roughly

constant but the negative half cycle shrinks in width with increasing beam energy.

It is interesting to note that in the forward angles, 0., < 20°, the only sizeable contribu-
tion comes from A(1232)3/2%. The other resonance and elastic nucleon effect becomes
comparable with A(1232)3/2" at relatively larger scattering angles. However, consid-
ering the total range of 0., A(1232)3/27" is still the highest contributor among all the
resonances. At E = 0.5 GeV, it even exceeds the nucleon contribution in magnitude but
with negative sign in the entire range of 6.,,. As energy increases, A, from A(1232)3/2%
starts oscillating (Fig. 8.6(b,c)) as function of the scattering angle 6., with a reduced
magnitude. Figure 8.6(d,e) shows, it again exceeds the elastic nucleon contribution at

O = 80° and 60° for Fr,, ~ 2.4 and 3.6 GeV, respectively.

Surprisingly, unlike B, and the real part of TPE correction, A, from the spin-3/2 state
N(1520)3/27 is relatively insignificant for any value of energy F in the entire range of
Oem. The two other spin-3/2 resonances A(1700)3/2~ and N(1720)3/2" have noticeable
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contributions, especially for smaller E, but they are of opposite sign. The only non-

negligible spin-1/2 state N(1535)1/2~ significantly negates the net positive values of A,

for £ 2 1 GeV, from rest of the states in the far-forward to backward angles. Overall,

the higher resonances beyond A(1232)3/2" almost cancel out their net effect. As a

consequence, the sum of elastic nucleon and A(1232)3/2% contributions seems to be a
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good approximation in evaluation of A,.

Note that the width effect of the resonances in A, is found minimal above the threshold

energies of all the resonance excitation. Therefore, the discussion is left for Appendix. D.

8.2.0.1 Comparison with other sources

The only available measurement of A,, that shows non-vanishing TPE effect in the
scattering of electron off a polarized *He target in the quasi-elastic region, for neutron
was performed in Jefferson Lab Hall A [135]. The term “quasi-elastic scattering” im-
plies that the scattering is from one of the nucleons within the nucleus. However, the
experiment scattered unpolarized electron beams of energies Ep,, = 1.245, 2.425, and
3.605 GeV by the 3He target polarized normal to the scattering plane. The scattered
electrons were detected at the scattering angle 0., = 17° corresponding to three dif-
ferent CM angles 6., ~ 32°, 41°, and 48° for the three respective beam energies. Note
that the experiment finally determined the asymmetry A, for the target neutron case,
using a calculated input of A, = (0.01 £ 0.22)%, (0.24 £+ 2.96)%, and (0.62 + 1.09)%,
for the target proton, from Ref. [136] at the above mentioned beam energies. It is im-
portant to address here that the theoretical estimation [136] of A,, that has been used
as input in experimental determination of A,, considered only the elastic intermediate

state contribution.

Table 8.1 contrasts the numerical results obtained in this work at the kinematics of the
JLab Hall A experiment [135] and the input A, used in Ref. [135] from the source [136].
It is interesting to note that the estimation of A, (proton target) from Ref. [136], as-
suming only the elastic nucleon intermediate state contributes, agrees very well with
our calculated values considering nucleon intermediate state alone at Er., = 1.245 and
2.425 GeV. But the inclusion of the resonance intermediate states alters A, significantly.
Hence, the calculated value in Ref. [136] seem to be an overestimation even though the

calculated result of this work is still within the estimated large uncertainty range of
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TABLE 8.1: A comparison of the target normal single spin asymmetry A, (for pro-
ton target) from elastic nucleon (N), and sum of nucleon (N) and all the resonance
intermediate states at the kinematics of Ref. [135]. The last two columns show the
values used as input in Ref. [135] from the source [136] and third columns are the
corresponding results calculated in this work.

Erap A, (This Work) An( [135, 136])
(GeV) Intermediate State
N N + Resonances \ N N + Resonances
1.245  0.008 -0.089 0.01 +0.22 -
2.425 0.173 0.076 0.24 + 2.96 -
3.605  0.400 0.501 0.62 + 1.09 -

JLab Hall A experiment [135]. Coincidentally for Fp,, = 3.605 GeV, the used value of

proton A, in Ref. [135] is close to our total A, including all the resonances.



Chapter 9

Conclusions

In this study we have applied the recently developed dispersive formalism of Ref. [46]
to compute the TPE corrections to elastic electron-proton cross sections, including for
the first time contributions from all J© = 1/2% and 3/2* excited intermediate state
resonances with mass below 1.8 GeV. For the resonance electrocouplings at the hadronic
vertices we employed newly extracted helicity amplitudes from the analysis of CLAS

meson electroproduction data at Q% < 5 GeV? [54-56].

To assess the model dependence of the resonance calculations, we investigated the effects
of finite Breit-Wigner resonance widths, comparing the TPE results for the point-like,
constant width and variable width approximations. We found that for the point-like
case kinematical thresholds produce artificial cusps at specific values of Q% and ¢, how-
ever, these are effectively smoothed out across all kinematics when a nonzero width is
introduced. The effect of using a constant or dynamical width was less dramatic, with
the latter reducing somewhat the magnitude of some of the low-lying resonances, such

as the A(1232), at low Q? ~ 1 GeV? and at backward angles.

We also examined the spin, isospin and parity dependence of the resonance contributions
to the TPE amplitudes, finding large cancellations between the (negative) isospin I =
1/2 and the (positive) I = 3/2 intermediate states, as well as between the parity-

even and parity-odd contributions. This behaviour is mostly driven by the dominance
151
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of the (positive) A(1232)3/2% and (negative) N(1520)3/2 contributions to the TPE

amplitudes, especially at larger Q? values.

More specifically for the individual hadronic intermediate states, at low Q2 @Q* <
1 GeV?, the nucleon elastic state dominates, with contributions from excited states
there mostly negligible. For Q? =~ (1 — —2) GeV?, the A(1232) resonance starts to play
a more important role, and here the sum of N + A(1232) provides a good approximation
to the total TPE amplitude. At still larger Q2 the N(1520) gives the largest contri-
bution among the higher-mass resonances, exceeding even the nucleon component for
Q? > 4 GeV?. The higher-mass resonances each grow with increasing %, but enter with
different signs and largely cancel each other’s contributions. Compared to the nucleon
elastic component alone, the resonance excitations give rise to an overall enhancement

of the TPE cross section correction for Q? > 3 GeV2.

The excited state resonance contributions generally provide some improvement of the
phenomenological description of observables that are sensitive to TPE corrections, such
as the ratios of e™p to e p elastic cross sections measured recently in dedicated exper-
iments at Jefferson Lab [116], Novosibirsk [115] and DESY [117]. Unfortunately most
of these data are in kinematic regions where resonance contributions are not large, and
in some cases the results are consistent with no TPE effect within the experimental

uncertainty.

Among the inelastic processes involving the imaginary part of TPE amplitudes, the
beam normal single spin asymmetry B, has minimal contribution from the elastic
nucleon intermediate state of TPE box diagram. At the lower beam energies (e.g.
Er.p = 0.5 GeV) A(1232)3/27 is the major contributor which is partially negated by
the other isospin-3/2 and spin-3/2 state A(1700)3/2~. The next two more significant
contributors (spin-3/2) N(1520)3/27 and N(1720)3/2" are again nullifying their net
effect. With increasing beam energies, A(1700)3/2~ and N(1720)3/2% become domi-
nant having the same sign (positive), while the combined negative effect of A(1232)3/2%
and N (1520)3/2~ partially cancels out the effect of the two earlier states. However, for

B, no definite correlation is observed between different spin, isospin and parity states.
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Overall, the calculated total B, falls down from the order of ~ 107 to 107% in the range
of Era, >~ 0.5 to 3.0 GeV respectively.

In case of A,, the higher resonances beyond A(1232)3/2" almost have zero net effect.
But, interestingly, unlike B, (like §), the elastic nucleon has significant contribution in
the entire range of energy, Er., >~ 0.5. to 3.6 GeV, considered in this work. The sum of
nucleon and A(1232)3/2% contribution is found nearly the net A,. Again, contrary to
By, the peak value of A, against 6., increases with energy by ~ 10 times in magnitude

in the range from Fp,, = 0.5 to 3.6 GeV.

Improvements on the theoretical front should involve exploration of the effects from
spin-5/2 intermediate resonant states, as well as incorporation of nonresonant contri-
butions [52] at larger Q* values. For the real part of TPE effect, future precision
measurements at higher @Q* values and backward angles (small €), where the TPE ef-
fects are expected to be most significant, would be helpful for better constraining the
TPE calculations. This would provide a more complete understanding of the relevance
of TPE in the resolution of the proton Gg/G); form factor ratio puzzle, and better

elucidate the role of multi-photon effects in electron scattering in general.



Appendix A

Scattering Kinematics in CM frame

In CM frame, e-p elastic scattering kinematics are defined below:

k= (F,0,0, k|, (A.la)
p = (E, 0,0, —|k|), (A.1b)
K = (E, |ky|sin6, 0, |kq|cos@), (A.1c)
ki = (Ek,|ki1|sinby, cos ¢y, , |ki|sin Oy, sin ¢y, , |k1| cos by, ). (A.1d)

Here

k| = E?—m2 (A.2a)
E, = VK + M2 (A.2D)

ki| = /Ep —m?2 (A.2¢)

The incoming and intermediate electron energies £ and Ej, can be written in terms of

the invariant Mandelstam variable s as

a2 2
E - 5‘];4% (A.3a)
S
S—W2+mz

1 N (A.3b)

154



Appendix A Scattering Kinematics in CM frame 155

In the massless electron limit they get the simplified forms

s — M?

EF = 2—\/57 (A4a)
_ 2

B = =W (A.4b)

1 2\/5 ‘

The squared four-momentum transfers Q%, Q%, and Q3 can also be given the form using

S as

Q2 = _q27
= _(k_k/)Q’

= 2(E* —m?)(1 — cosf),
(s — M? 4+ m?)?

= 5 —2m?2| (1 — cos ). (A.5)
In the massless electron limit )? becomes
s — M?)?
Q? = % (A.6)

The two other virtual photon four-momentum transfers squared can be derived as

Qi = —¢,

= —(k— k)

= 2k.k; —2m?

= 2[EEk1 — |k| - |k1| cos O, — mg], (A.7a)
Q = -6,

= (b —k),

= 2k .k —2m?,

= 2 [E Ex, — |k| - k1] (cochos Ok, + sin @ sin by, cos gf)kl) - mz] (A.7b)
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Since for the on-shell intermediate massless electron, Ej, = |k;| one can write Q% and

Q3 in a simplified form as

Q} = 2FE, (1 —cosby,), (A.8a)

Q% = 2EE, (1 — cosfcosby, — sinfsin by, sin ¢y, ). (A.8b)



Appendix B

Generalized form factors

B.1 Imaginary part of form factors for A(1232)3/2%

05—

0.0
> =0.5F
2 10 _ImFl'
23 - ImFE,
[ —1.5 —ImGa'
20
— _25 , )

N 0= 3 GeV A(1232)

05 1 5 10

E (GeV)

FiGURE B.1: Imaginary part of the form factors Fj, F}, and G/ as a function of
energy E for A(1232)3/2% intermediate state at Q? = 3 GeV2. Note that the energy
is in logarithmic scale.
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B.2 Imaginary part of form factors for all resonances
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FIGURE B.2: Imaginary part of the form factors F| (top row), Fj (middle row), and
G!, (bottom row) for all the resonance intermediate states as a function of energy F
at fixed @Q? =1 GeV? (left panel) and Q? =5 GeV? (right panel).
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B.3 Real part of the form factors
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FIGURE B.3: Real part of the form factors F| (top row), Fj (middle row), and

G, (bottom row) for N(1440)1/2%, N(1535)1/27, A(1620)1/2~, N(1650)1/2~, and

N(1720)1/2% resonance intermediate states as a function of energy E at fixed Q? =
1 GeV? (left panel) and Q% = 5 GeV? (right panel).



Appendix C

Maximon-Tjon vs. Mo-Tsai

prescriptions

o (a) / b)

0.2 04 0.6 0.8 10 0.2 0.4 0.6 0.8 10
& &

FIGURE C.1: Comparison of the IR finite TPE correction § (in %) using the treat-

ments of (a) Maximon and Tjon [76], and (b) Mo and Tsai [75], to separate the IR

divergent part from the hard TPE. The chosen kinematics are the same as Fig. 6.6,

i.e. at Q% = 0.2 GeV? (green dashed line), 0.5 GeV? (dark red long-dashed), 1 GeV?

(red solid), 3 GeV? (orange dot-dashed), 4 GeV? (black dotted), and 5 GeV? (blue
dashed).

Figure C.1 contrasts the model dependence of the soft photon treatment in total TPE
correction 4, including the effect of elastic nucleon and all the discussed resonance in-
termediate states. The left panel shows the correction using the Maximon-Tjon [76]
method of treating the soft photon limit, while the right panel represents the same
from the Mo-Tsai [75] prescription. The later treatment enhances the magnitude by

~ 1.0 — 1.2% in the backward angles (¢ < 0.1) for the highest value of Q* = 5 GeV?.
160
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The nonlinearity in § vs. € curve is also increased with the second method of IR di-
vergence control. Therefore, it is obvious that one needs to be cautious during any

reanalysis of e-p scattering data regarding the soft photon treatment.
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Width effect in Ay
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FiGURE D.1: Effect of constant total decay width and zero-width approximation of

resonance intermediate states of TPE box diagram in A,. The red dashed lines rep-

resent the results assuming zero-width approximation and the blue dot-dashed lines

correspond to that assuming a constant total decay width in Breit-Wigner distribu-
tion.

The width effect of the resonances in A, is shown in Fig. D.1. Clearly the effect is

negligible above the threshold energies of all the resonance excitation (Fig. D.1(b-d)).
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However, for lower beam energies (e.g. Ep.p, = 0.5 GeV), the difference between the
zero-width and a constant total decay width with a Breit-Wigner distribution cases is
non-negligible as the effect of most of the higher resonances are absent in the zero-width
approximation. The tale effect of the higher resonances (beyond A(1232)3/2%) alters

A, from the sharp resonance consideration, as shown in Fig. D.1(a).
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