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Resumo
Neste trabalho empregamos a técnica de BFV para quantizar uma teoria

com simetria de gauge SP (2,R). Para isso em primeiro lugar, analisamos
o critério de admissibilidade de Govaerts para as condições de gauge para a
teoria da partícula relativística, cujo propagador é calculado nos gauges co-
variante, canônico e do cone de luz por meio da discretização da integral de
trajetória e esta mostra que a ação discretizada perde a invariância por trans-
formações de BRST; e para restaurar sua invariância é necessário modi�car
as transformaçoes de BRST.

Em segundo lugar, aplicamos a técnica de BFV para uma teoria com dois
tempos e simetria de gauge SP (2,R), em seguida, analisamos o efeito da dis-
cretização e mostramos que a ação discretizada perde a invariância por trans-
formações de BRST. Neste caso, as modi�cações necessárias incluem termos
de ordem ∆τ

N
nas transformações de BRST e estas passam a ser nilpotentes

apenas on-shell. Ao �xarmos um tempo físico de duas formas diferentes ob-
tivemos o propagador de uma partícula relativística em d dimensões e de um
oscilador harmônico invertido em d− 2 dimensões espaciais.



Abstract
In this work we employ the BFV technique to quantize a theory with

gauge symmetry Sp(2,R). First, we analyze the admissibility criterion of
Govaerts for gauge conditions on the theory of a relativistic particle. The
propagator for the relativistic particle is calculated in the covariant, canonical
and light cone gauges. The discretization of the path integral shows that the
discretized action looses invariance by the BRST transformations. To restore
the invariance it is necessary to include modi�ed transformations.

Secondly, we apply the BFV technique to a theory with two times and
gauge symmetry Sp(2,R). We analyze the e�ect of discretization and show
that the discretized action looses the BRST invariance. In this case, it is
necessary to change the transformations including terms of order ∆τ

N
, which

become nilpotent only on-shell. Fixing the physical time in two di�erent
ways we get the propagator for a relativistic particle in d dimensions and for
an inverted harmonic oscillator in d− 2 spatial dimensions.
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Capítulo 1

Introdução

A simetria conforme em um espaço com d dimensões é realizada pelo grupo
SO(d, 2) cuja ação nesse espaço ocorre de forma não linear. Entretanto,
em 1936, Dirac [1] introduziu uma formulação para uma teoria de campos
manifestamente covariante na qual esse grupo age de forma linear e essa
nova formulação foi desenvolvida em um espaço com d + 2 dimensões, com
duas componentes temporais. Em função de uma simetria de gauge presente
nesta formulação de Dirac, foi possível descrever teorias em um espaço com
d dimensões.

Na década de 70, Marnelius [2] ao estudar a formulação de uma teoria
conforme em um espaço com d + 2 dimensões mostrou a existência de uma
equivalência entre uma partícula massiva em um espaço de Minkowski em d
dimensões e uma partícula sem massa que se propaga num espaço AdSd−1,
utilizando o formalismo introduzido por Dirac [1] e aplicado à teoria de uma
partícula. Além disso, diversas generalizações foram feitas a �m de introduzir
fermions na teoria [3, 2, 4]. A implementação da quantização desses modelos
pela técnica de BRST (Bechi, Rouet,Stora,Tyltin)foi feita em [5].

Na década de 90, este modelo foi estudado num outro contexto por Mon-
tesinos [6, 7] o qual introduziu uma simetria de gauge Sl(2,R) a �m de obter
uma teoria que descrevesse a relatividade geral. Com isso, obteve as soluções
clássicas que descrevem: uma partícula relativística com massa e um oscila-
dor harmônico após resolver as equações de movimento para duas escolhas
de gauge diferentes.

No �nal de década de 90, com os avanços das teoria das cordas no estudo
dos aspectos não perturbativos, Bars e colaboradores, observaram evidências
de que a descrição das teorias de uni�cação poderia incluir duas coordenadas
temporais [8, 9, 10, 11, 12, 13, 14, 15, 16]. A partir desse momento, eles estu-
daram como implementar essas teorias [17, 18]. E em 1998, reformularam a
teoria para uma partícula sem massa e introduzindo uma simetria de gauge
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Sp(2,R) e uma simetria global SO(d, 2) agindo linearmente num espaço com
d + 2 dimensões [19, 20, 21]. Desta forma, mostraram que esta teoria era
capaz de descrever, em espaços com dimensão mais baixa, sistemas que apa-
rentemente não são relacionados, como equivalentes: a partícula relativística
com ou sem massa, o átomo de hidrogênio e o oscilador harmônico. Es-
ses resultados permitiram a estes autores proporem que o modelo com dois
tempos descrevesse de forma uni�cada estes sistemas. As transformações
de gauge que conectam estes diversos sistemas foram chamadas dualidade e
esta reformulação de física com dois tempos. A simetria de gauge torna a
teoria unitária removendo os estado de norma negativa resultantes da intro-
dução das duas coordenadas temporais. Em seguida, Bars e colaboradores
generalizaram a formulação a �m de introduzir férmions o que implicou na
existência de uma surpersimetria na linha mundo [22] e posteriormente no
espaço-tempo [23]. Também foram realizadas por eles aplicações da formu-
lação para teoria de cordas, branas e teoria M [24, 25, 26]. Em seguida, eles
aplicaram o formalismo a �m de incluir campos de fundo gravitacionais e
de gauge [27] e introduziram o formalismo de segunda quantização, ou seja,
teoria de campos, descrito em [28, 29, 30, 31].

Em 2001, Bars e colaboradores começaram a estudar a relação da formu-
lação de física com dois tempos [32, 33, 34, 35, 36] com os twistors propostos
por Penrose [37] e em 2006, obtiveram uma formulação que descreve o mo-
delo padrão das partículas como uma escolha de gauge da formulação com
dois tempos[38].Outras aplicações da teoria com dois tempos foram obtidas
em [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] e algumas revisões que discutem
o desenvolvimento do formalismo estão descritas em [50, 51]. Entretanto,
todos os resultados obtidos por esta formulação utilizam o método de quan-
tização de operadores. Neste trabalho introduzimos o formalismo de integrais
de trajetória para o modelo mais simples com dois tempos.

A formulação de integrais de trajetória para a mecânica quântica foi de-
senvolvida por Feynman [52] e posteriormente, no �nal da década de 60,
Faddeev e Popov [53, 54] introduziram a formulação para uma teoria de
gauge usando um par de variáveis grassmanianas: os fantasmas de Faddeev-
Popov. Entretanto, esse método não funciona se a álgebra de gauge não
é fechada,ou seja, as constantes de estrutura são funções das coordenadas.
Uma forma de resolver esse problema é introduzir campos auxiliares, ou seja,
campos que não possuem dinâmica [55, 56], mas não existe uma forma geral
de introduzir estes campos auxiliares. Em vista disso, uma outra forma de
implementação da integral de trajetória foi desenvolvida por Batalin, Frad-
kin e Vilkoviski [57, 58] que é denominada de método BFV e esta não sofre
do problema apresentado pelo método de Faddeev. O formalismo BFV se
baseia na invariancia de BRST [59, 60].



3

Quanto à implementação do formalismo BFV para uma teoria da par-
tícula relativística esta foi realizada por Henneaux e Teitelboim[61]. Em
seu trabalho, os autores calcularam o propagador da partícula relativística
usando uma escolha de gauge covariante. Num outro trabalho, Teitelboim
[62] mostrou que devido à simetria de gauge da teoria da partícula relativís-
tica, as únicas escolhas de gauge possíveis eram as do tipo covariante. Esse
resultado excluiu as condições de gauge canônicas.

Na decada de 80, Govaerts [63, 64, 65] introduziu um outro critério de
admissibilidade para as escolhas de gauge no formalismo BFV. Em seus tra-
balhos, ele propôs uma relação entre a admissibilidade e a existência de cópias
de Gribov [66]. Ainda sobre o trabalho original de cópias de Gribov pode-se
encontrar uma revisão em [67].

Num outro momento, Vergara e colaboradores desenvolveram um método
para implementar as condições de gauge canônicas [68, 69] e uma outra abor-
dagem foi feita por Ikemori[70]. Para calcular o propagador, ele analisou o
comportamento da teoria após a discretização. Nessa análise, Ikemori obser-
vou que a ação discretizada perde a invariância em relação às transformações
discretizadas de forma ingênua. Para solucionar esse problema, ele sugeriu
modi�car as transformações de gauge discretizadas. Essa idéia também foi
aplicada a uma teoria dada em [71, 72]. Com essa análise, mostrou um cál-
culo explícito do propagador da partícula relativística num gauge canônico
[70] sem as modi�cações feitas por Vergara e colaboradores.

Em nosso trabalho, vamos em primeiro lugar discuir o critério de admis-
sibilidade proposto por Govaerts [63, 64, 65, 73]. Em seguida, calculamos o
propagador da partícula relativística utilizando o método BFV e seguindo a
análise introduzida por Ikemori [70]. Num segundo momento, aplicamos as
técnicas usadas no caso da partícula relativística para o caso da teoria com
dois tempos, ou seja, com simetria de gauge Sp(2,R) [74].

No Capítulo 2, fazemos uma revisão dos conceitos da teoria de vínculos
[75, 76], sua relação com as simetrias de gauge e discutimos sua quantização
por meio da integração de trajetória. Em um primeiro momento, de�nimos
a integral de trajetória para a mecânica quântica e depois apresentamos os
métodos de Faddeev e Batalin, Fradkin e Vilkoviski.

No Capítulo 3, faremos a aplicação do método BFV para o caso da par-
tícula relativística. Para isso, analisamos o critério proposto por Govaerts
[64, 65, 73, 63] sobre a admissibilidade das escolhas de gauge. Em seguida,
discretizamos a expressão do propagador e analisamos sua invariânça após
a discretização do tempo. Finalizando esse capítulo, calculamos explicita-
mente os propagadores para a partícula relativística nos gauges covariante,
canônico e do cone de luz.

No Capítulo 4, introduzimos a formulação da teoria com dois tempos [19]
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e analisamos sua estrutura de vínculos. Na sequência mostramos os resulta-
dos obtidos por Bars e colaboradores que descrevem a partícula relativística
em d dimensões e o oscilador harmônico em d − 2 dimensões espaciais [20].
Em seguida, construimos o formalismo BFV e discretizamos o propagador,
analisamos a invariância da ação após a discretizaçao e �nalmente calculamos
o propagador.

No Capítulo 5, analisamos as conclusões obtidas no capítulo 3 em relação
ao critério proposto por Govaerts e os resultados obtidos no capítulo 4. Pos-
síveis trabalhos futuros com relação à teoria com dois tempos são discutidos
nesse trabalho.



Capítulo 2

Sistemas Hamiltonianos

Vinculados

2.1 Formalismo Hamiltoniano

Vamos considerar um sistema físico com N graus de liberdade descrito pela
ação

S =

� τ2

τ1

dτL(xi, ẋi, τ), i = 1, · · ·N, (2.1)

onde L é função das coordenadas generalizadas xi, das velocidades genera-
lizadas ẋi e do tempo τ . As equações de movimento clássicas obtidas pela
variação de (2.1), sujeitas às condições δxi = 0 nos extremos, são

∂L

∂xi
− d

dτ

(
∂L

∂ẋi

)
= 0. (2.2)

Podemos reescrever essas equações da seguinte forma

∂2L

(∂ẋi∂ẋj)
ẍj =

∂L

∂xi
− ∂2L

∂xi∂ẋj
ẋj. (2.3)

O termo

∂2L

∂ẋi∂ẋj
. (2.4)

é chamado de matriz hessiana. Se o determinante desta matriz for nulo, dize-
mos que o sistema é singular ou vinculado [75, 76] e não poderemos determi-
nar univocamente as acelerações em função das coordenadas generalizadas e
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2.1: Formalismo Hamiltoniano 6

de suas velocidades. Neste caso, existem diferentes evoluções temporais para
uma mesma condição inicial.

A transição para o formalismo Hamiltoniano é feita de�nindo o momento
canônico conjugado

pi =
∂L

∂ẋi
. (2.5)

Para sistemas vinculados não é possível expressar através da expressão (2.5)
todas as velocidades ẋi como função dos momentos e das coordenadas, ou
seja, nem todos os momentos pi são independentes, mas existem relações

φm(x, p) = 0, m = 1, · · · , M, (2.6)

que seguem de (2.5) e que são chamados de vínculos primários. Esses víncu-
los de�nem uma hipersuperfície no espaço de fase denominada superfície de
vínculos primários que denotaremos por ΓM .

A hamiltoniana canônica é dada por

H = piẋ
i − L(xi, ẋi, τ), (2.7)

que devido à expressão (2.6) é válida somente na superfície de vínculos primá-
rios. Para estendermos esta de�nição para todo o espaço de fase, de�nimos
outra hamiltoniana HT dada por

HT = H + cmφm (2.8)

onde os cm são funções arbitrárias de x e p.
Como os vínculos φm podem ter colchetes de Poisson não nulos com al-

guma variável canônica, devemos calcular os colchetes antes de levarmos em
conta as equações dos vínculos. Para lembrarmos deste fato, Dirac [75] in-
troduziu a noção de igualdade fraca, escrevendo os vínculos como

φm ≈ 0. (2.9)

Assim, podemos escrever as equações de movimento geradas por esta nova
hamiltoniana da seguinte forma

ẋi ≈ {xi, H}+ cm{xi, φm}
ṗi ≈ {pi, H}+ cm{pi, φm}. (2.10)

A �m de construirmos uma teoria consistente, devemos impor a conser-
vação temporal dos vínculos

φ̇m ≈ 0⇒ {φm, H}+ cn{φm, φn} ≈ 0. (2.11)

Analisando esta equação, observamos três possibilidades:
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1. a equação é identicamente satisfeita;

2. essa equação determina as funções arbitrárias cm univocamente;

3. essa equação pode dar origem a novos vínculos, os chamados vínculos
secundários e neste caso, deve-se impor a consistência desses vínculos
no tempo até que não haja mais vínculos.

Na análise, feita por Dirac [76], usamos uma classi�cação que divide os vín-
culos em primeira classe e segunda classe. Um vínculo, ou mais geralmente,
uma função A(x,p) é dito de primeira classe se seus colchetes de Poisson com
todos os vínculos são fracamente nulos, isto é

{A, φm} ≈ 0, (2.12)

enquanto os de segunda classe, são aqueles que tem pelo menos um dos
colchetes de Poisson da função A(x,p) com algum vínculo, não fracamente
nulo

{A(x, p), φm} 6≈ 0. (2.13)

2.2 Vínculos de Primeira Classe e Transforma-

ções de Gauge

Vamos analisar a evolução temporal de sistemas com vínculos de primeira
classe. Para isso, consideramos uma con�guração inicial no espaço de fase
(x0, p0) em t = t0. Esta evolução temporal de uma quantidade F(q,p) será
dada por

Ḟ = {F,H}+ cm{F, φm}. (2.14)

Devido a existência de funções arbitrárias nas equações de movimento con-
cluimos que não poderemos determinar univocamente sua evolução temporal.
Neste caso existem conjuntos de pontos dados por pares de x e p que corres-
pondem à mesma con�guração física. Este conjunto de pontos �sicamente
equivalentes de�nem uma classe de equivalência. Surge então a seguinte per-
gunta: existe alguma transformação que conecte os pontos de uma mesma
classe de equivalência? Para respondermos esta questão vamos calcular a
variação entre dois conjuntos de pontos obtidas a partir de duas escolhas
funções arbritárias. Na escolha da função arbitrária cm, F será dado por

F (τ) = F (0) + Ḟ∆τ = F (0) + {F,H}∆τ + cm{F, φm}∆τ. (2.15)
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Já na escolha de uma outra função um, obtemos o valor de F

F ′(τ) = F (0) + {F,H}∆τ + um{F, φm}∆τ. (2.16)

Calculando a variação da função F obtemos

δF = F (τ)− F ′(τ) = δvm{F, φm}, (2.17)

onde δvm = (cm − um)∆τ .
A partir desta expressão podemos concluir que os vínculos de primeira

classe geram as transformações canônicas que conectam os diversos conjun-
tos de pontos dentro da classe de equivalência. Estas tranformações são
chamadas de transformações de gauge hamiltonianas.

2.3 Fixação de Gauge

Como foi discutido nas seções anteriores, a existência de vínculos de primeira
classe acarreta que os estados físicos podem ser descritos por mais de um
conjunto de variáveis canônicas, causando ambigüidades na teoria. Para
eliminarmos tais ambigüidades, impomos certas condições extras à nossa
teoria, chamadas de condições de gauge. As condições de gauge podem ser:

1. condições Canônicas de Gauge: quando impomos restrições às variáveis
canônicas do sistema. Ex.: Gauge de Coulomb na eletrodinâmica;

2. condições Covariantes de Gauge: quando restringimos a derivada tem-
poral dos multiplicadores de Lagrange. Ex.: Gauge do tempo próprio
na teoria da partícula relativística.

Para que as ambigüidades sejam eliminadas, nossas condições de gauge devem
satisfazer

1. a acessibilidade da escolha de gauge, ou seja, dado um conjunto de
variáveis canônicas, deve existir uma transformação de gauge que leve
o conjunto inicial a outro que satisfaça a condição de gauge.

2. a �xação de gauge deve ser completa, ou seja, dada uma condição de
gauge χ, esta deve satisfazer a seguinte condição

{χ, φm} 6≈ 0. (2.18)

Ao observarmos a expressão acima, notamos que após a �xação de gauge não
há mais vínculos de primeira classe, ou melhor, o nosso sistema transfoma-se
num sistema de segunda classe.
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Por outro lado, analisando geometricamente o processo de �xação de
gauge, observamos que as condições de gauge de�nem uma superfície no
espaço de fase que intercepta as órbitas de gauge somente uma vez. Os
resultados acima garantem somente que a �xação é completa localmente.

2.4 Quantização por Integrais de Trajetória em

Mecânica Quântica

Na formulação de Feynman da mecânica quântica [52], o objeto fundamental
é a amplitude de transição ou propagador, que mede a probabilidade de um
sistema passar de um estado a outro, ou seja, descreve o processo quântico.
Vamos construir este propagador a partir da formulação usual da mecânica
quântica, em que a evolução temporal de um sistema é dada pela equação de
Schrödinger

Ĥ|Ψ; t〉 = i~
d

dt
|Ψ; t〉, (2.19)

onde |Ψ; t〉 representa o estado do sistema num instante de tempo t. A
solução desta equação pode ser escrita como

|Ψ; t〉 = U(t, t0)|Ψ; t0〉, (2.20)

em que o operador U(t, t0) é o chamado operador de evolução temporal.
Se Ĥ não for explicitamente dependente do tempo, podemos representar o
operador evolução por

U(t, t0) = exp− i
~

((t− t0)Ĥ), (2.21)

que satisfaz as seguintes propriedades

1. U(t3, t2)U(t2, t1) = U(t3, t1)

2. U(t2, t1)† = U−1(t2, t1) = U(t1, t2).

Podemos então de�nir o propagador no espaço das coordenadas como

Z(xN , x0; tN , t0) = 〈xN |U(t)|xo〉, (2.22)

onde os auto-estados da posição |xi〉 são ortonormais, completos que satisfa-
zem as seguintes relações:
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〈x|x′〉 = δ(x− x′)�
dx|x〉〈x| = 1 (2.23)

〈x|p〉 = exp
i

~
px

Vamos representar este propagador em termos de integrais de trajetória.
Para isto, dividimos o intervalo entre o instante �nal e o instante inicial
em N subintervalos in�nitesimais intermediários de valor ε = ∆τ

N
= τN−τ0

N
.

Portanto, utilizando a propriedade 1 podemos escrever o operador evolução
temporal da seguinte forma:

U(tN , t0) = U(tN , tN−1)U(tN−1, tN−2).......U(t1, t0). (2.24)

O propagador pode ser escrito como

Z(xN , x0; tN , t0) = 〈xN |U(tN , tN−1)U(tN−1, tN−2).......U(t1, t0)|xo〉. (2.25)

InserindoN−1 conjuntos intermediários completos de estados entre a posição
inicial x0 e �nal xN na expressão (2.25) temos

Z(xN , x0; tN , t0) =

�
dxN−1dxN−2....dx1〈xN |U(tN , tN−1)|xN−1〉

〈xN−1|U(tN−1, tN−2)|xN−2〉..... (2.26)

〈x1|U(t1, t0)|x0〉. (2.27)

E inserindo entre estes N vezes a seguinte expressão
�
dp|p〉〈p| = 1. (2.28)

Podemos reescrever o propagador da seguinte forma:

Z(xN , x0; tN , t0) = lim
N→∞

�
dxN−1dxN−2......dx1dpN−1dpN−2....dp0

〈xN |U(tN , tN−1)|pN−1〉〈pN−1||xN−1〉
〈xN−1|U(tN−1, tN−2)|pN−1〉〈pN−1||xN−2〉
〈xN−1|U(tN−1, tN−2)|pN−1〉〈pN−1||xN−2〉.
...〈x1|U(t1, t0)|p0〉〈p0||x0〉.
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Mas usando o resultado abaixo

〈xi+1|U(tN , tN−1)|pi〉〈pi||xi〉 = 〈xi+1| exp(
i

~
Ĥε)|pi〉〈pi||xi〉

= 〈xi+1|(1−
i

~
Ĥ)|pi〉〈pi||xi〉

= (1− i

~
hk) exp(

i

~
pi(xi+1 − xi)) (2.29)

= exp
i

~
(pi(xi+1 − xi)− hi),

podemos reescrever o propagador como

Z(xN , x0; tN , t0) = lim
N→∞

� N−1∏
i=0

dpi

N−1∏
i=1

dxiexp
i

~

N−1∑
i=0

(pi (xi+1 − xi)

−εhi),

=

�
DxDp exp

i

~

�
dt(piẋ

i − h), (2.30)

onde Dx,Dp é a medida funcional na integral de trajetória.

2.5 Quantização por Integrais de Trajetória em

Teorias de Gauge

Para uma teoria de gauge, a formulação de integrais de trajetória �ca um
pouco mais complicada em função da simetria de gauge. Existem duas formas
de implementar a formulação: o método de Faddeev-Popov[53] e o método
BFV[58, 57].

2.5.1 Método de Faddeev-Popov

O primeiro método a incorporar vínculos na formulação de integrais de traje-
tória foi desenvolvido por Faddeev[53], para o qual se consideravam vínculos
de primeira classe. Posteriormente, Senjanovic[77] generalizou este resultado
para incluir vínculos de segunda classe. Em nossos sistemas estudados exis-
tem somente vínculos de primeira classe e, portanto, iremos somente discutir
o resultado de Faddeev.

Considere um sistema de N graus de liberdade, que possui M vínculos de
primeira classe φa. Temos então de introduzir M �xações de gauge Ωa. Este
sistema de vínculos e �xações devem satisfazer as seguintes condições:
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{φa, φb} ≈ 0

det{Ωa, φb} 6= 0, (2.31)

sobre a hipersuperfície dada por φa = 0 e Ωa = 0. Podemos a partir daqui
enunciar o teorema de Faddeev.

Teorema

O propagador é dado por

Z(xN , X0) =

�
dµ exp

i

~
(

�
dτ(pẋ−H)), (2.32)

em que a medida da integral é dada por

dµ = det{Ωa, φa}
M∏
a=1

δ(Ωa)δ(φa)
N∏
i=1

dpidx
i. (2.33)

2.5.2 Método BFV

Vamos considerar um sistema com N graus de liberdade de�nido em um
espaço de fase composto por variáveis que comutam e por variáveis de Gras-
smann. As variáveis que comutam têm paridade de Grassmann εa = 0 e as
variáveis de Grassmann têm paridade εa = 1. Os vínculos de primeira classe
são φa(a = 1....M) e satisfazem à seguinte álgebra

{φa, φb} = fdabφd (2.34)

{H,φa} = V b
a φb,

onde fdabe V
b
a são as funções de estrutura .

O formalismo é implementado em dois passos. O primeiro consiste em
promover os multiplicadores de Lagrange λa a variáveis dinâmicas do espaço
de fase e introduzir um momento canônico para o multiplicador de lagrange
Πa, satisfazendo a condição

{λa,Πb} = δab . (2.35)

Para não modi�carmos o conteúdo dinâmico da teoria, introduzimos um
vínculo adicional



2.5: Quantização por Integrais de Trajetória em Teorias de Gauge 13

Πa = 0. (2.36)

Os vínculos φ e Π formam um sistema de vínculos de primeira classe. No
formalismo BFV este conjunto é denotado por Gi(i = 1, 2, .....2M) que satis-
faz

{Gi, Gj} = fkijGk (2.37)

{H,Gi} = V j
i Gj.

Num segundo passo, introduzimos novos graus de liberdade a �m de com-
pensar o aumento do espaço de fase. Estes graus de liberdade adicionais
são chamados de pares de fantasmas de BFV. Para cada vínculo de pri-
meira classe introduzimos um par de fantasmas (ηi,P i), mas com paridade
de Grassman oposta ao correspodente vínculo de primeira classe, que satisfaz
à seguinte álgebra

{Pi, ηj} = −δji , (2.38)

e os outros colchetes de Poisson generalizados nulos. Portanto, nosso novo
espaço de fase é (x, p, λa,Πa; η

i,Pi). Neste novo espaço de fase, o número de
graus de liberdade é dado por 2(N −M).

Neste espaço de fase estendido, a simetria original de gauge é substituída
por uma simetria global gerada pela seguinte carga fermiônica QB

QB = ηiGi −
1

2
ηjηkf ijkPi, (2.39)

que é anticomutativo e por construção satisfaz

{QB, QB} = 0. (2.40)

Esta carga fermiônica recebe o nome de carga BRST. Esta carga gera as
seguintes transformações

δBx = {x,Gi}ηi

δBp = {p,Gi}ηi

δBλ
a = ηa (2.41)

δBΠa = 0

δBη
i =

1

2
f ijkη

jηk

δBPi = −Gi + fkijη
jPk.
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Podemos agora escrever a ação invariante por BRST

Sef =

�
dτ(ẋp− λaΠ̇a + η̇iP i −H − {Ψ, QB}), (2.42)

onde Ψ é uma função fermiônica arbitrária.
As equações de movimento provenientes desta ação devem ser suplemen-

tadas por condições de fronteira que sejam invariantes pela simetria de BRST.
Existem várias condições invariantes que poderíamos adotar. Vamos intro-
duzir um conjunto muito usado na literatura, e para implementá-lo, vamos
primeiro decompor o par de fantasmas da seguinte forma

ηi = (Pa, Ca),

Pi = (C̄a, P̄a), (2.43)

que satisfazem as seguintes relações

{Pa, C̄a} = −1,

{Ca, P̄a} = −1. (2.44)

Podemos agora de�nir as condições de fronteira invariantes de BRST dadas
por

Πa(τ0) = 0, Πa(τN) = 0,

Ca(τ0) = 0, Ca(τN) = 0,

C̄a(τ0) = 0, C̄a(τN) = 0, (2.45)

x(τ0) = x0, x(τN) = xN .

Podemos de�nir agora o teorema BFV.

Teorema BFV

O propagador é dado por

Z(xN , x0) =

�
Dµ exp i

(�
dτ(ẋp− λaΠ̇a + P̄aĊa − C̄aṖa −H + {Ψ, QB})

)
,

(2.46)
é independente de Ψ e Dµ = DxDpDλDΠDP̄DPDCDC̄ é a medida de
Liouville. As diversas escolhas de gauge são obtidas por diferentes escolhas
da função arbitrária Ψ. A demonstração deste teorema pode ser encontrada
em [57, 78, 79].



Capítulo 3

Quantização BRST da Partícula

Relativística

3.1 Introdução

Neste capítulo, vamos analisar o caso de uma partícula relativística livre, de
massa m, num espaço de Minkowski em d dimensões. A ação que a descreve
é

S = −m
� τ2

τ1

dτ
√
−ẋ2(τ), (3.1)

e τ parametriza a linha mundo da partícula relativística. E a posição no
espaço-tempo é descrita por xµ(τ) com µ = 0, 1, ...d − 1. Adotaremos a
convenção ηµν = diag(−1, 1, 1....1) para a métrica. Esta ação é invariante
por reparametrização da linha mundo de�nida pelas transformações

τ → τ̃ = τ̃(τ),

xµ(τ)→ x̃µ(τ̃) = xµ(τ), (3.2)

ou seja, as coordenadas se transformam como escalares. As equações de
movimento são

d

dτ

(
mẋµ(τ)√
−ẋ2(τ)

)
= 0, (3.3)

sujeitas às condições de contorno xµ(τ1) = xµ1 e xµ(τ2) = xµ2 .
Passamos à formulação hamiltoniana calculando o momento canônico

15
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pµ(τ) =
∂L

∂ẋµ
,

=
mẋµ√
−ẋ2(τ)

′
(3.4)

e utilizando a expressão acima, obtemos o vínculo primário

φ =
1

2
(p2 +m2) ≈ 0. (3.5)

Então a hamiltoniana canônica é

H = pµẋ
µ − L,

=
mẋµ√
−ẋ2(τ)

ẋµ − L,

= 0, (3.6)

e, neste caso, a evolução temporal do sistema será governada pela hamilto-
niana total HT

HT = H + λ(τ)φ

= λ(τ)φ, (3.7)

onde λ é o multiplicador de Lagrange. Impondo-se a consistência temporal
do vínculo (3.5) temos

φ̇ = λ{φ, φ} ≈ 0, (3.8)

o que permite concluir que φ é único e de primeira classe. Reescrevendo a
ação na forma hamiltoniana obtemos

S =

� τ2

τ1

dτ

(
pµẋ

µ − 1

2
λ(τ)(p2 +m2)

)
. (3.9)

As transformações de gauge gerados por (3.5) são

δxµ = ε(τ)pµ,

δpµ = 0, (3.10)

δλ(τ) = ε̇(τ),
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onde ε(τ) é o parâmetro da transformação. Tomando a variação da ação

δS =

� τ2

τ1

dτ
d

dτ

(
ε(τ)

1

2
(p2 −m2)

)
= ε(τ)

1

2
(p2 −m2)

∣∣∣∣τ2
τ1

, (3.11)

concluimos que a invariância impõe o anulamento dos parâmetros de gauge
nos extremos.

Vamos agora considerar o formalismo BFV. Num primeiro momento in-
troduzimos um grau de liberdade Π conjugado ao multiplicador de Lagrange
λ, satisfazendo o seguinte colchete de Poisson

{λ,Π} = 1, (3.12)

e para não alterarmos o conteúdo físico da teoria impomos

Π = 0. (3.13)

Este vínculo adicional (3.13) forma um sistema de primeira classe com o
vínculo φ, que será denotado por Ga a = 1, 2 da seguinte forma:

G1 = Π, G2 = φ, (3.14)

satisfazendo a seguinte álgebra:

{Ga, Gb} = 0, a, b = 1, 2 (3.15)

{H,Ga} = 0, (3.16)

onde H é a hamiltoniana canônica.
Num segundo passo, introduzimos um par de fantasmas (C, P̄) e (P , C̄)

associados aos vínculos dados em (3.14), respectivamente, satisfazendo os
seguintes colchetes de Poisson:

{C, P̄} = {P , C̄} = −1, (3.17)

e com os outros colchetes de Poisson nulos. A carga de BRST é

QB =
1

2
C
(
p2 +m2

)
+ PΠ, (3.18)

e gera as seguintes transformações de BRST
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δxµ = Cpµ, δpµ = 0,

δλ = P , δΠ = 0,

δC = 0, δC̄ = −Π,

δP̄ = −1

2
(p2 +m2), δP = 0. (3.19)

Vamos analisar algumas escolhas de gauge no formalismo BFV.

3.1.1 Condição Covariante de Gauge λ̇(τ) = f(λ)

O primeiro caso a ser analisado é o da condição covariante de gauge e esta é
implementada pela seguinte função grasmaniana

Ψ = C̄f(λ) + λP̄ , (3.20)

onde f(λ) é uma função arbitrária dos multiplicadores de Lagrange. Calcu-
lando o colchetes de Poisson de Ψ com a carga de BRST temos

{Ψ, QB} = −f(λ)Π + C̄Pf ′(λ) + P̄P − λ

2
(p2 +m2), (3.21)

em que f
′
(λ) é a derivada de f em relação a λ. A ação efetiva é

Sef =

� τ2

τ1

dτ(pµẋ
µ + Πλ̇+ P̄Ċ + C̄Ṗ − f(λ)Π + C̄Pf ′(λ)

+P̄P − λ

2
(p2 +m2)). (3.22)

As equações de movimento são

ẋµ = λpµ, ṗµ = 0,
˙̄C = −P̄ , Ċ = P ,

λ̇ = f(λ), Π̇ = f
′
(λ)Π + C̄Pf ′′(λ)− 1

2
(p2 +m2). (3.23)

Resolvendo estas equações para o caso em que f(λ) = 0 e utilizando as
condições de contorno (2.44), obtemos as seguintes soluções
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xµ(τ) = xµ1 +
∆xµ

∆τ
(τ − τ1), pµ(τ) =

∆xµ

∆τ
,

C̄(τ) = 0, C(τ) = 0,

P(τ) = 0, P(τ) = 0,

λ(τ) = λ0, Π(τ) = 0, (3.24)

onde ∆xµ = xµ2−x
µ
1 e λ0 é uma constante. Uma das consequências que pode-

mos concluir é que o vínculo φ é satisfeito em qualquer instante. Utilizando
a solução para pµ obtemos que (∆x)2 = m2(∆τ)2.

3.1.2 Condição de Gauge Canônico x0 − τ = 0

Para analisarmos esta condição de gauge escreveremos xµ = (x0, ~x), onde x0

é componente temporal e ~x corresponde as d − 1 coordenadas espaciais. A
função grasmaniana que implementa este gauge é

Ψ =
1

β
(x0 − τ)C̄ + λP̄ , (3.25)

onde β é uma constante real diferente de zero. Calculando-se o colchete de
Poisson temos

{Ψ, QB} =
1

β
Π(x0 − τ) +

1

β
C̄Cp0 + P̄P +

λ

2
(p2

0 − ~p2 −m2). (3.26)

Neste caso, a ação efetiva é

Sef =

� τ2

τ1

dτ(−p0ẋ0 + ~p · ~̇x+ Πλ̇+ P̄Ċ + C̄Ṗ +
1

β
Π(x0 − τ)

+
1

β
C̄Cp0 + P̄P +

λ

2
(p2

0 − ~p2 −m2)).

Para obtermos a �xação de gauge desejada temos que fazer a seguinte mu-
dança de variáveis invariante por BRST Π→ βΠ̃ e C̄ → β ˜̄C que reescreve a
ação da seguinte forma

Sef =

� τ2

τ1

dτ(−p0ẋ0 + ~p · ~̇x+ βΠ̃λ̇+ P̄Ċ + β ˜̄CṖ + Π̃(x0 − τ)

+ ˜̄CCp0 + P̄P +
λ

2
(p2

0 − ~p2 −m2)).
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Tomando o limite β → 0, e renomeando Π̃→ Π e ˜̄C → C̄, podemos escrever
a ação efetiva como

Sef =

� τ2

τ1

dτ(−p0ẋ0 + ~p · ~̇x+ ĊP̄ + C̄Cp0 − Π(x0 − τ)

+λ(p2
0 − ~p2 −m2) + P̄P). (3.27)

As equações de movimento neste gauge são

ẋ0 = λp0, ~̇x = λ~p,

ṗ0 = Π, ~̇p = 0, (3.28)
˙̄P = −C̄p0, Ċ = P ,

x0 − τ = 0, p2
0 − ~p2 −m2 = 0.

Resolvendo as equações de movimento utilizando as condições de contorno
dadas por (2.45), obtemos as soluções

x0(τ) = τ, ~x(τ) = ~x1 +
∆~x

∆τ
(τ − τ1),

p0 = ±
√
p2 +m2, ~p =

∆~x

∆τ
,

λ(τ) =
1

p0(τ)
, Π(τ) = 0,

C̄(τ) = 0, C(τ) = 0,

P(τ) = 0, P(τ) = 0. (3.29)

Estas soluções descrevem a mesma situação física do caso covariante.

3.1.3 Condição de Gauge do Cone de Luz x+ − τ = 0

Para estudarmos esta condição introduziremos o sistema de coordenadas do
cone de luz, de�nindo

x+ =
1√
2

(x0 + xd−1),

x− =
1√
2

(x0 − xd−1). (3.30)
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Neste caso podemos escrever xµ = (x+, x−, ~x) onde ~x corresponde a d − 2
coordenadas espaciais. A métrica de Minkowski neste sistema de coordenadas
possui as seguintes componentes não nulas

η+− = η−+ = −1, ηij = δij i, j = 1, 2, ...d− 2, (3.31)

A condição de gauge do cone de luz é implementada pela seguinte função
grasmaniana

Ψ =
1

β
(x+ − τ)C̄ + λP̄ , (3.32)

onde β é uma constante real diferente de zero. Calculando-se o colchete de
Poisson

{Ψ, QB} =
1

β
Π(x+ − τ) +

1

β
C̄Cp+ + P̄P

+λ(p+p− − 1

2
(~p2 +m2)).

Neste caso, a ação efetiva é

Sef =

� τ2

τ1

dτ(−p+ẋ− − p−ẋ+ + ~p · ~̇x+ Πλ̇+ P̄Ċ + C̄Ṗ

+
1

β
Π(x+ − τ) +

1

β
C̄Cp+ + P̄P + λ(p+p− − 1

2
(p2 +m2)))

Para obtermos a �xação de gauge desejada temos que fazer a seguinte mu-
dança de variáveis invariante por BRST Π→ βΠ̃ e C̄ → β ˜̄C que transforma
a ação efetiva da seguinte forma

Sef =

� τ2

τ1

dτ(pẋ+ + p+ẋ− − ~p · ~̇x+ β̇λΠ̃ + P̄Ċ + β ˜̄CṖ

+Π̃(x+ − τ) + ˜̄CCp+ + P̄P + λ(p+p− − 1

2
(~p2 +m2))),

Novamente tomamos o limite β → 0, e renomeando Π̃ → Π e ˜̄C → C̄,
podemos escrever a ação efetiva como

Sef =

� τ2

τ1

dτ(p−ẋ+ + p+ẋ− − ~p · ~x+ P̄Ċ + Π(x+ − τ)

+C̄Cp+ + P̄P + λ(p+p− − 1

2
(~p2 +m2))). (3.33)
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As equações de movimento são

ẋ− = λp− − C̄C, ẋ+ = −λp+,

~̇x = λ~p, ṗ+ = 0,

ṗ− = Π, ~̇p = 0,
˙̄P = −C̄p+, Ċ = P ,
P̄ = 0, Cp+ = 0,

x+ − τ = 0, p+p− − 1

2
(~p2 +m2) = 0, (3.34)

cujas soluções são

x+(τ) = τ, x−(τ) = x−1 +
∆x−

∆τ
(τ − τ1),

~x(τ) = ~x1 +
∆~x

∆τ
(τ − τ1), p+ =

∆x+

∆τ
,

p− =
~p2 +m2

2p+
, ~p =

∆~x

∆τ
,

λ(τ) =
1

p+
Π(τ) = 0,

C̄(τ) = 0, C(τ) = 0,

P(τ) = 0, P̄(τ) = 0. (3.35)

Novamente estas soluções descrevem a mesma situação física dos casos ante-
riores.

3.2 Admissibilidade das Condições de Gauge

No �nal da década de 80 Govaerts [63, 64, 65, 73] analisou a implementação
do formalismo BFV para a teoria da partícula relativística e sugeriu que a
amplitude de transição calculada não era independente da escolha da função
grasmaniana arbitrária Ψ. Para demonstrar este resultado ele de�niu um
critério que classi�cava quais funções Ψ eram admissíveis, ou seja, quais
condições de gauge poderiam ser implementadas .

Como foi descrito na seção 1.2, a existência de vínculos de primeira classe
divide o espaço de fase em classes de equivalência, que também chamamos
de órbitas de gauge. No caso da partícula relativística, usaremos o espaço
das órbitas no espaço dos multiplicadores que chamaremos de espaço de Tei-
chmuller. Podemos agora de�nir um critério neste espaço



3.2: Admissibilidade das Condições de Gauge 23

• Uma �xação é dita admissível, se esta de�ne uma hipersuperfície no
espaço de Teichmuller que intercepta todas as órbitas uma única vez.
Caso contrário diremos que é não admissível e que possui o problema
de Gribov [66] .

Podemos classi�car então o problema de Gribov em dois tipos. O problema
de Gribov de tipo I é de carater local e acontece quando uma órbita é inter-
ceptada mais de uma vez. Um problema de Gribov do tipo II é de carater
global e acontece quando nem todas as órbitas são interceptadas.

Para caracterizar o espaço de Teichmuller no caso da partícula relativís-
tica devemos encontrar uma quantidade invariante de gauge nesse espaço.
Para tal introduzimos o tempo próprio dado por

T =

� τ2

τ1

λ(τ)dτ, (3.36)

que é invariante pelas transformações �nitas de gauge

x
′µ(τ) = xµ(τ) + h(τ)pµ(τ),

p
′µ = pµ,

λ′(τ) = λ(τ) +
dh(τ)

dτ
, (3.37)

que são obtidas a partir das transformações in�nitesimais dadas em (3.10).
Utilizando essas transformações podemos concluir que:

• Se dois multiplicadores λ1(τ) e λ2(τ), com tempos próprios dados por
T1 e T2 respectivamente forem equivalentes de gauge, então T1 = T2.

• É sempre possível encontrar uma função h(τ) que relaciona um multi-
plicador λ1(τ) com um multiplicador constante λ0.

Esses dois resultados nos permitem concluir que o espaço de Teichmuller
para a partícula relativística é dado pelo conjunto R dos números reais. Va-
mos analisar diversas condições de gauge, seguindo os próximos passos para
determinar sua admissibilidade.

1. Resolvendo a equação λ̇ = f(λ) para uma determinada função f(λ) a
�m de obter o multiplicador de Lagrange λ em função de uma constante
de integração λN ;

2. A partir da solução encontrada acima, calculamos o tempo próprio;
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3. Avaliamos qual o comportamento do tempo próprio ao variarmos nossa
constante de integração λN no intervalo [−∞,+∞]. Se o domínio de T
também for [−∞,+∞] dizemos que a condição de gauge é admissível,
caso contrário, diremos que sofre do problema de Gribov.

Vamos analisar algumas escolhas particulares para a função f(λ) descrita em
[64],[73].

• O primeiro caso analisado foi f(λ) = 0, gerando a seguinte �xação de
gauge

λ̇ = 0. (3.38)

Resolvendo a equação acima, obtemos

λ(τ) = λN , (3.39)

onde λN é uma constante de integração real. Ao calcularmos o tempo próprio
utilizando a equação (3.36) obtemos

T (λN) = λN∆τ. (3.40)

Variando λN no intervalo [−∞,+∞], observamos que T varia no intervalo
[−∞,+∞]. Portanto esta escolha de gauge é admissível.

• Uma segunda condição de gauge é obtida tomando f(λ) = αλ3, onde
α é uma constante real positiva. Neste caso a �xação é dada por

λ̇ = αλ3. (3.41)

Resolvendo esta equação obtemos a seguinte solução

λ(τ) =
λN√

1 + 2αλ2
N(τN − τ)

, (3.42)

onde λN é uma constante de integração real. Ao calcularmos o tempo próprio
obtemos

T (λN) =
[
√

1 + 2α∆τλ2
N − 1]

αλN
. (3.43)

Variando λN no intervalo [−∞,+∞] encontramos que o domínio de T é

dado pelo intervalo [−
√

(2∆τ
α

),
√

(2∆τ
α

)]. Como não obtemos o intervalo

[−∞,+∞], a �xação de gauge não é admissível pelo critério de Govarts,
ou seja, essa condição sofre do problema de Gribov do tipo II, pois ela não
intercepta todas as órbitas.
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• Uma terceira condição gauge é a do tipo canônica

x0 = τ. (3.44)

Neste caso obtemos o multiplicador de Lagrange através das equações de
movimento (3.28) , obtendo

λ(τ) =
1

p0

, (3.45)

onde p0 =
√
~p2 +m2 = cte e que ~p fará o papel de uma constante de inte-

gração real. Calculando o tempo próprio

T (λ) =
∆τ√
~p2 +m2

. (3.46)

Levando em conta que ~p2 pode variar no intervalo [0,∞] concluimos que T
varia no intervalo [0, ∆τ

m
]. Novamente o intervalo de domínio de T não é

[−∞,∞] e portanto a condição não é admissível e possui um problema de
Gribov do tipo II.

• A última escolha de gauge é a do cone de luz. O multiplicador de
Lagrange encontrado pelas equações (3.34) é

λ(τ) =
1

p+
. (3.47)

O tempo próprio então é dado por

T (λ) =
∆τ

p+
, (3.48)

onde p+ é uma constante que varia no intervalo [−∞,∞]. Neste caso, o tempo
próprio irá variar no intervalo [−∞,∞] e portanto não possui problema de
Gribov.

3.3 Propagador para a Partícula Relativística

no Gauge λ̇ = f (λ)

Podemos construir o propagador

Z(xµN , x
µ
0) =

� x2

x1

DpDxDλDΠDCDC̄DPDP̄ exp(iSef ), (3.49)

onde Sef é dada pela expressão (3.22).
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Vamos escrever este propagador na forma de uma integral de trajetória
discretizada. Para isso dividimos o intervalo entre τ2 e τ1 em N intervalos
in�nitesimais ε = ∆τ

N
. Utilizamos também neste processo as condições de

contorno dadas em (2.44). Podemos então escrever a ação dada em (3.22)
em sua forma discretizada

Sef =
N−1∑
i=0

(pµi(x
µ
i+1 − x

µ
i )− λi(Πi+1 − Πi)− Pi(C̄i+1 − C̄i) + P̄ i(Ci+1 − Ci)

+P̄iPi
∆τ

N
+ λi

1

2
(p2
i +m2)

∆τ

N
) +

N−1∑
i=1

(f ′i(λi)C̄iPi
∆τ

N
− fi(λi)Πi

∆τ

N
) (3.50)

3.3.1 Invariância da Acão Discretizada

Nesta seção estudamos o efeito da discretização sobre a invariança BRST
da ação no caso da partícula relativística no gauge covariante. O desenvolvi-
mento utilizado em nosso trabalho baseia-se nos resultados dados em [70, 71].
Em primeiro lugar discretizamos as transformações BRST de forma ingênua,
obtendo

δxµi = Cip
µ
i , δpµ = 0,

δCi = 0, δC̄i = −Πi,

δP̄i = −1

2
(p2
i +m2), δλi = −Pi,

δΠi = 0, δPi = 0. (3.51)

Variando a ação (3.50) em relação às transformações (3.51) obtemos

δSef =
N−1∑
i=0

(
Ci+1(p2

i+1 +m2)− Ci(p2
i +m2)− Ci+1(pi+1 − pi)2

)
=

N−1∑
i=0

−Ci+1(pi+1 − pi)2

6= 0

mostrando que a ação deixa de ser invariante. A �m de restaurarmos a
invariância, modi�camos as transformações discretizadas (3.51) de forma que
ao tomarmos o limite do caso contínuo obtemos as transformações usuais de
BRST. As transformações modi�cadas �cam iguais a
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δxµi = Ci
(pµi + pµi−1)

2
, δpµi = 0,

δCi = 0, δC̄i = −Πi,

δP̄i = − 1

2
(p2
i +m2), δλi = −Pi,

δΠi = 0, δPi = 0. (3.52)

Estas transformações são nilpotentes.
Variando a ação efetiva dada por (3.50) em relação a (3.52) obtemos

δSef =
N−1∑
i=0

Ci+1(p2
i+1 +m2)− Ci(p2

i +m2)

= 0, (3.53)

levando em conta as condições de contorno para os C dadas em (2.45).

3.3.2 Propagador Discretizado para o Gauge Covari-

ante λ̇ = f(λ)

Discretizando a expressão do propagador (3.49) obtemos

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpµi

N−1∏
i=1

dxµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i

(
N−1∑
i=0

[pµi(x
µ
i+1 − x

µ
i )− λi(Πi+1 − Πi)− Pi(C̄i+1 − C̄i)

+P̄i(Ci+1 − Ci) + P̄i(Ci+1 − Ci) + P̄iPi
∆τ

N
− λi

1

2
(p2
i +m2)

∆τ

N
]

+
N−1∑
i=1

(f ′i(λi)C̄iPi
∆τ

N
− fi(λi)Πi

∆τ

N
)

)
. (3.54)

Para fazermos os cálculos, note que podemos utilizar o seguinte resultado

N−1∑
i=0

P̄i(Ci+1 − Ci) = −
N−1∑
i=1

(P̄i − P̄i−1)Ci. (3.55)
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Pelas condições de contorno para os C, o termo de fronteira se anula. Inte-
grando nos Ci obtemos

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpµi

N−1∏
i=1

dxµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi

N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

δ(P̄i − P̄i−1) exp i

(
N−1∑
i=0

[pµi(x
µ
i+1 − x

µ
i )− λi(Πi+1 − Πi)

−Pi(C̄i+1 − C̄i) + P̄iPi
∆τ

N
− λi

1

2
(p2
i +m2)

∆τ

N
] +

N−1∑
i=1

(f ′i(λi)C̄iPi
∆τ

N

−fi(λi)Πi
∆τ

N
)

)
. (3.56)

Integrando N − 1 vezes em P̄i �camos com uma integral ordinária em P̄N−1.
Usando a seguinte propriedade

N−1∑
i=0

Pi(C̄i+1 − C̄i) = −
N−1∑
i=1

C̄i(Pi − Pi−1), (3.57)

podemos integrar C̄i obtendo:

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpµi

N−1∏
i=1

dxµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
�
dP̄N−1

N−1∏
i=1

δ(Pi−1 − Pi(1− f ′(λi)
∆τ

N
)) exp i

(
N−1∑
i=0

[pµi(x
µ
i+1 − x

µ
i )− λi(Πi+1 − Πi)

+P̄N−1Pi
∆τ

N
− λi

1

2
(p2
i +m2)

∆τ

N
]−

N−1∑
i=1

fi(λi)Πi
∆τ

N

)
. (3.58)

Integrando em Pi obtemos o seguinte resultado

P0 = P1(1− f ′(λ1)
∆τ

N
)

P1 = P2(1− f ′(λ2)
∆τ

N
)

.

.

PN−2 = PN−1(1− f ′(λN−1)
∆τ

N
). (3.59)
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Utilizando a expressão acima, podemos escrever o termo abaixo da seguinte
forma

N−1∑
i=0

Pi
∆τ

N
= [1 +

N−2∑
i=1

N−1∏
j=i+1

(1− f ′(λi)
∆τ

N
)]

∆τ

N
PN−1. (3.60)

Substituindo o resultado acima na expressão do propagador e integrando em
P̄N−1 e PN−1 obtemos

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpi

N−1∏
i=1

dxµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi(1 +
N−2∑
i=1

N−1∏
j=i+1

(1−

−f ′(λi)
∆τ

N
))

∆τ

N
) exp i

(
N−1∑
i=0

[pµi (xµi+1 − xµi)− λi(Πi+1 − Πi)− λi
1

2
(p2
i

+m2)
∆τ

N
]−

N−1∑
i=1

fi(λi)Πi
∆τ

N

)
. (3.61)

Para fazer as integrações que faltam, usamos os resultados abaixo

N−1∑
i=0

pµi(x
µ
i+1 − x

µ
i ) = −

N−1∑
i=1

xµi (pµi − pµi−1)− p0x0 + pN−1xN ,

N−1∑
i=0

λi(Πi+1 − Πi) = −
N−1∑
i=1

Πi(λi − λi−1). (3.62)

Integrando em xµi obtemos

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=1

δ(pµi − pµi−1)

[1 +
N−2∑
i=1

N−1∏
j=i+1

(1− f ′(λi)
∆τ

N
)]

∆τ

N
exp i

(
N−1∑
i=1

(
−(λi − λi−1)Πi − fi(λi)Πi

∆τ

N

)

−
N−1∑
i=0

λi
1

2
(p2
i +m2)

∆τ

N
− pµ0x

µ
0 + pµN−1x

µ
N)

)
. (3.63)



3.3: Propagador para a Partícula Relativística no Gauge λ̇ = f(λ) 30

Integrando em pµi
conseguimos

Z(xµN , x
µ
0) = lim

N→∞

� ∞
−∞

dpµ0

� N−1∏
i=0

dλi

N−1∏
i=1

dΠi[1 +
N−2∑
i=1

N−1∏
j=i+1

(1

−f ′(λi)
∆τ

N
)]

∆τ

N
exp i

(
N−1∑
i=1

(
−(λi − λi−1)Πi + fi(λi)Πi

∆τ

N

)

−
N−1∑
i=0

λi
1

2
(p2

0 +m2)
∆τ

N
+ pµ0∆xµ

)
. (3.64)

Integrando em Πi obtemos

Z(xµN , x
µ
0) = lim

N→∞

� ∞
−∞

dpµ0

N−1∏
i=0

dλi(1 +
N−2∑
i=1

N−1∏
j=i+1

(1− f ′(λi)
∆τ

N
))

∆τ

N
)

N−1∏
i=1

δ(−λi(1− fi(λi)
∆τ

N
) + λi−1) exp i

(
N−1∑
i=0

λi
1

2
(p2

0 +m2)
∆τ

N
+ pµ0∆xµ

)
.(3.65)

Escrevendo

T =
N−1∑
i=0

λi
∆τ

N
. (3.66)

Integrando em λi obtemos

λ0 = λ1 − f(λ1)
∆τ

N

λ1 = λ2 − f(λ2)
∆τ

N

λ2 = λ3 − f(λ3)
∆τ

N
.

.

λN−2 = λN−1 − f(λN−1)
∆τ

N
, (3.67)

que reduz a integração em λi a uma integral em λN−1. Utilizando a relação
(3.66) podemos calcular a seguinte relação

dT =
∆τ

N

[
1 +

N−2∑
i=1

N−1∏
j=i+1

(1− f ′(λi)
∆τ

N
)

]
dλN−1, (3.68)
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o que permite reescrever o propagador da seguinte forma

Z(xµN , x
µ
0) =

� ∞
−∞

dpµ0

�
D
dT exp i

(
T

1

2
(p2

0 +m2) + pµ0∆xµ
)
, (3.69)

que é independente de f(λ). Entretanto não conseguimos determinar o domí-
nio D de integração em T . Para obtermos esta informação devemos calcular
explicitamente o Jacobiano abaixo

J = lim
N→∞

[
1 +

N−2∑
i=1

N−1∏
j=i+1

(1− f ′(λi)
∆τ

N

]
∆τ

N
. (3.70)

Portanto, o domínio de T depende da f(λ). Para funções que são admis-
síveis classicamente, o domínio D será o intervalo [−∞,∞] e o propagador
calculado em (3.69) é igual ao obtido por [61, 68] . Em caso contrário, o
propagador sofrerá de problema de Gribov.

Analisando a expressão (3.66) com a ajuda das relações (3.67 ), podemos
concluir que o domínio de integração do tempo próprio T depende da função
f(λ). Esse resultado nos permite concluir que não é possível garantir a
inexistência de problemas de Gribov e portanto o critério de Govaerts está
correto quando aplicamos condições de gauge covariantes.

Entretanto, este propagador não é causal, pois não se anula se τ2 < τ1.
Para implementarmos a causalidade devemos calcular o seguinte objeto

ZF (xµN , x
µ
0) =< x2|Θ(T )|x1 >, (3.71)

onde Θ(T ) é a função degrau de Heaviside. Escrevendo a integral de traje-
tória deste objeto obtemos

ZF (xµN , x
µ
0) =

�
DpDxDλDΠDCDC̄DPDP̄Θ(T ) exp(iSef ). (3.72)

Discretizando a expressão acima temos

Z(xµN , x
µ
0) = lim

N→∞

� N−1∏
i=0

dpµi

N−1∏
i=1

dxµi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCiΘ(
N−1∑
i=0

λi
∆τ

N
) exp i

(
N−1∑
i=0

[pµi(x
µ
i+1 − x

µ
i )− λi(Πi+1 − Πi)

−Pi(C̄i+1 − C̄i) + P̄i(Ci+1 − Ci) + P̄iPi
∆τ

N
− λi

1

2
(p2
i +m2)

∆τ

N
]

+
N−1∑
i=1

[f ′i(λi)C̄iPi
∆τ

N
− fi(λi)Πi

∆τ

N
]

)
. (3.73)
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Comparando a expressão (3.73) com (3.54) concluimos que a única diferença
entre elas é o termo da função de Heaviside. Integrando na mesma ordem
feita anteriormente chegamos ao seguinte resultado

Z(xµN , x
µ
0) =

� ∞
−∞

dpµ0

� ∞
−∞

dTΘ(T ) exp i(T
1

2
(p2

0 +m2) + pµ0∆xµ)

=

� ∞
−∞

dpµ0

� ∞
0

dT exp i(T
1

2
(p2

0 +m2) + pµ0∆xµ), (3.74)

que é uma representação do propagador de Feynman ∆F (x2− x1) obtido em
[61].

3.4 Propagador para a Partícula Relativística

no Gauge x0 − τ = 0

O propagador neste gauge é dado por

Z(x0
N , x

0
0; ~xN , ~x0) =

�
Dp0D~pDx

0D~xDλDΠDCDC̄DPDP̄ exp(iSef ), (3.75)

onde agora Sef é dado por (3.27)
De forma análoga ao caso da condição de gauge covariante da seção ante-

rior, discretizamos a ação efetiva dada em (3.27) utilizando as condições de
contorno (2.44) obtemos

Sef =
N−1∑
i=0

(−p0i(x
0
i+1 − x0

i ) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci))−
N−1∑
i=1

(C̄iCip0i
∆τ

N

+Πi(x
0
i − τi)

∆τ

N
) +

N−1∑
i=0

(−λi(p2
oi − (~p2

i +m2)
∆τ

N
+ P̄iPi

∆τ

N
). (3.76)

Aplicando as transformações discretizadas dadas em (3.51), observamos que
a ação discretizada (3.76) também perde a invariância após a discretização.
É possível mostrar que as modi�cações na transformações discretizadas são
as mesmas do gauge covariante. Portanto as transformações discretizadas
que mantém a invariância da ação acima são as mesmas dadas na equação
(3.52).

Podemos então escrever o propagador como
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Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

dx0
i d~xi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i

(
N−1∑
i=0

[−p0i(x
0
i+1 − x0

i ) + ~pi(~xi+1 − ~xi)

+P̄i(Ci+1 − Ci)]−
N−1∑
i=1

(
C̄iCip0i

∆τ

N
+ Πi(x

0
i − τi)

∆τ

N

)

+
N−1∑
i=0

(
−λi((p2

oi − (~p2
i +m2))

∆τ

N
) + P̄iPi

∆τ

N

))
. (3.77)

Fazendo todas as integrações chegaremos ao seguinte resultado

Z(x0
2, x

0
1; ~x2, ~x1) = lim

N→∞

� ∞
−∞

d~p0
1

w0

exp(i~p0∆~x) (exp(w0∆τ)

+(−1)N exp(−w0∆τ)
)
. (3.78)

o que mostra uma dependência do número de intervalos utilizados na discre-
tização. Uma forma de resolver este problema é introduzirmos uma função
sinal ε(p0) na condição de gauge. Esta mudança não altera o resultado do
propagador calculado no caso contínuo. Portanto a nova função grasmaniana
�ca

Ψ =
1

β
ε(p0)(x0 − τ)C̄ + λP̄ , (3.79)

que irá corresponder a seguinte ação efetiva discretizada

Sef =
N−1∑
i=0

[−p0i(x
0
i+1 − x0

i ) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci)]−
N−1∑
i=1

[C̄iCiε(p0i)p0i
∆τ

N

+Πiε(p0i)(x
0
i − τi)

∆τ

N
] +

N−1∑
i=0

[−λi(p2
oi − (~p2

i +m2)
∆τ

N
+ P̄iPi

∆τ

N
]. (3.80)

Como a única modi�cação foi a inserção da função sinal, podemos concluir
que esta nova ação efetiva é invariante pela mesmas transformações de BRST
discretizadas do que aquela dada em (3.76). Portando, o propagador é escrito
como
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Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

dx0
i d~xi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi

N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i

(
N−1∑
i=0

(
−p0i(x

0
i+1 − x0

i ) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci)
)

−
N−1∑
i=1

(
C̄iCiε(poi)p0i

∆τ

N
+ Πiε(p0i)(x

0
i − τi)

∆τ

N

)
+

N−1∑
i=0

(
−λi(p2

oi − (~p2
i +m2)

∆τ

N

+P̄iPi
∆τ

N

))
. (3.81)

Integrando em Πi obtemos

1

|ε(p0i)|
(
N

∆τ
)N−1

N−1∏
i=1

δ(x0
i − τi). (3.82)

Integrando em x0
i temos

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

d~xi

N−1∏
i=0

dλi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i

(
N−1∑
i=0

(
−p0i(τi+1 − τi) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci)

)
−

N−1∑
i=1

C̄iCi|p0i|
∆τ

N
+

N−1∑
i=0

[−λi
(
(p2
oi − (~p2

i +m2)
) ∆τ

N
+ P̄iPi

∆τ

N
]

)
(3.83)

Integrando em C̄i e Ci obtemos

(
∆τ

N
)N−1

N−1∏
i=1

|p0i|. (3.84)

Portanto temos
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Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

d~xi

N−1∏
i=0

dλi

N−1∏
i=0

dPi
N−1∏
i=0

dP̄i

(
∆τ

N
)N−1

N−1∏
i=1

|p0i| exp i

(
N−1∑
i=0

[−p0i(τi+1 − τi) + ~pi(~xi+1 − ~xi)− λi(p2
oi − (~p2

i +m2))
∆τ

N

+P̄iPi
∆τ

N
]

)
. (3.85)

Integrando em P̄i e Pi obtemos o seguinte termo

(
∆τ

N
)N . (3.86)

Portanto temos

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

d~xi

N−1∏
i=0

dλi
1

|ε(p0i)|
(
N

∆τ
)N−1

(
∆τ

N
)2N−1

N−1∏
i=1

|p0i| exp i

(
N−1∑
i=0

[−p0i(τi+1 − τi) + ~pi(~xi+1 − ~xi)− λi(p2
oi−

(~p2
i +m2))

∆τ

N
]

)
(3.87)

Agora podemos usar os seguintes fatos

|ε(poi)| = 1,

(τi+1 − τi) =
∆τ

N
, (3.88)

e integrando em λi obtemos

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

d~xi

N−1∏
i=1

|p0i|(
∆τ

N
)N

N−1∏
i=0

δ

(
(p2
oi − (~p2

i +m2))
∆τ

N

)
exp i

(
N−1∑
i=0

(−p0i∆τ + ~pi(~xi+1 − ~xi))

)
.(3.89)

Utilizando a seguinte propriedade abaixo
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N−1∏
i=0

δ

(
(p2
oi − (~p2

i +m2))
∆τ

N

)
= (

N

∆τ
)N

N−1∏
i=0

|poi|
(
δ(poi +

√
~p2 +m2)

+δ(poi −
√
~p2 +m2)

)
. (3.90)

Podemos integrar em p0i �cando

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

d~pi

N−1∏
i=1

d~xi
1

wi
exp i

N−1∑
i=0

~pi(~xi+1 − ~xi) (exp(−wi∆τ)

+ exp(−wi∆τ)) , (3.91)

onde wi =
√
~p2
i +m2.

Fazendo uma integração por partes, podemos escrever

N−1∑
i=0

~pi(~xi+1 − ~xi) =
N−1∑
i=0

(~pi − ~pi−1)~xi − ~pN−1~xN + ~p0 ~x0. (3.92)

Ao substituirmos esta relação em nossa expressão e integrando em ~xi obtemos

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

d~pi
1

wi

N−1∏
i=1

δ(~pi − ~pi−1) exp i (~pN−1~xN − ~p0~x0)

(exp(wi∆τ) + exp(−wi∆τ)) . (3.93)

Ao integrarmos em N − 1 vezes em ~pi obtemos o propagador

Z(x0
N , x

0
0; ~xN , ~x0) =

� ∞
−∞

d~p0
1

w0

exp i (~p0∆~x) (exp(w0∆τ)

+ exp(−w0∆τ)) ,

que é uma representação da função ∆1 de Schwinger obtida em [68, 69]. Isto
nos permite concluir que não existe um problema de Gribov neste gauge.
Analogamente ao caso covariante, não obtemos o propadador causal. Para
obtermos o propagador causal, calculamos o objeto da seguinte forma

ZF (x0
N , x

0
0; ~xN , ~x0) =< x2|Θ(T )|x1 >, (3.94)
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com o tempo próprio dado por (3.45). Discretizando este propagador

Z(x0
N , x

0
0; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp0id~pi

N−1∏
i=1

dx0
i d~xi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi

N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCiΘ(
N−1∑
i=0

1

p0i

∆τ

N
) exp i

(
N−1∑
i=0

[−p0i(x
0
i+1 − x0

i ) + ~pi(~xi+1 − ~xi)

+P̄i(Ci+1 − Ci)]−
N−1∑
i=1

(
C̄iCiε(poi)p0i

∆τ

N
+ Πiε(p0i)(x

0
i − τi)

∆τ

N

)

+
N−1∑
i=0

[−λi(p2
oi − (~p2

i +m2)
∆τ

N
+ P̄iPi

∆τ

N
]

)
. (3.95)

As integrações são feitas na mesma ordem do caso do propagador anterior.
Quando integramos em poi usando a propriedade (3.90) a integral irá se
dividir em duas partes.

Z(x0
N , x

0
0; ~xN , ~x0) = Θ(

∆τ

w0

)

� ∞
−∞

d~p0
1

w0

exp i (~p0∆~x+ w0∆τ)

+Θ(
∆τ

−w0

)

� ∞
−∞

d~p0
1

w0

exp i (~p0∆~x− w0∆τ) , (3.96)

que é uma representação do propagador de Feynman obtida em [68].

3.5 Propagador para a Partícula Relativística

no Gauge x+ − τ = 0

O propagador neste gauge é dado por

Z(x+
2 , x

+
1 ;x−2 , x

−
1 ; ~x2, ~x1) =

�
Dp+Dp−D~pDx+Dx−D~xDλDΠDCDC̄

DPDP̄ exp(iSef ), (3.97)

onde Sef é dada pela expressão (3.33). Este caso é semelhante ao caso do
gauge canônico anterior. Devemos implementar a condição de gauge com
uma função sinal ε(p+) adicional à condição de gauge. Portanto a função
Grasmaniana é dada por

Ψ =
1

β
ε(p+)(x+ − τ)C̄ + λP̄ . (3.98)



3.5: Propagador para a Partícula Relativística no Gauge x+ − τ = 0 38

A ação discretizada é dada por

Sef =
N−1∑
i=0

(
−p+

i (x−i+1 − x−i )− p−(x+
i+1 − x+

i ) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci)
)

−
N−1∑
i=1

[C̄iCi|p+
i |

∆τ

N
+ Πiε(p

+
i )(x+

i − τi)
∆τ

N
] +

N−1∑
i=0

(
−λi(p+

i p
−
i −

1

2
(~p2
i +m2))

∆τ

N

+P̄iPi
∆τ

N

)
. (3.99)

Ao analisarmos a invariância desta ação discretizada obtém-se os mesmos
resultados anteriores, de forma que as transformações discretizadas que man-
tém a invariância são as mesmas dadas em (3.52). Discretizando o propaga-
dor obtemos

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+dp−d~pi

N−1∏
i=1

dx+
i dx

−d~xi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i
N−1∑
i=0

[−p+
i (x−i+1 − x−i )

−p−(x+
i+1 − x+

i ) + ~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci) + (−λi(p+
i p
−
i −

1

2
(~p2
i +m2))

∆τ

N

+P̄iPi
∆τ

N
)]−

N−1∑
i=1

[C̄iCi|p+
i |

∆τ

N
+ Πiε(p

+
i )(x+

i − τi)
∆τ

N
] (3.100)

Integrando em Πi obtemos

1

|ε(p+
i )|

(
N

∆τ
)N−1

N−1∏
i=1

δ(x+
i − τi). (3.101)

Integrando em x+
i temos
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Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+
i dp

−
i d~pi

N−1∏
i=1

dx−i d~xi

N−1∏
i=0

dλi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCi exp i

(
N−1∑
i=0

[−p+
i (x−i+1 − x−i )− p−(τ+

i+1 − τ+
i )

+~pi(~xi+1 − ~xi) + P̄i(Ci+1 − Ci)] +
N−1∑
i=1

C̄iCi|p+
i |

∆τ

N
+

N−1∑
i=0

[λi
(
p+
i p
−
i

−1

2
(~p2
i +m2)

)
∆τ

N
+ P̄iPi

∆τ

N
]

)
. (3.102)

Integrando em C̄i e Ci obtemos

(
∆τ

N
)N−1

N−1∏
i=1

|p+
i |. (3.103)

Portanto temos

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+
i dp

−
i d~pi

N−1∏
i=1

dx−i d~xi

N−1∏
i=0

dλi

N−1∏
i=0

dPi
N−1∏
i=0

dP̄i exp i

(
N−1∑
i=0

[−p+
i (x−i+1 − x−i )− p−(τ+

i+1 − τ+
i ) + ~pi(~xi+1 − ~xi)

−λi
(
p+
i p
−
i −

1

2
(~p2
i +m2)

)
∆τ

N
+ P̄iPi

∆τ

N

)
. (3.104)

Integrando em P̄i e Pi obtemos o seguinte termo

(
∆τ

N
)N . (3.105)

Portanto temos

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+
i dp

−
i d~pi

N−1∏
i=1

dx−i d~xi

N−1∏
i=0

dλi

1

|ε(p+
i )|

(
N

∆τ
)N−1(

∆τ

N
)N−1

N−1∏
i=1

|p+
i |(

∆τ

N
)

N

exp i

(
N−1∑
i=0

[−p+
i (x−i+1 − x−i )

−p−(τ+
i+1 − τ+

i ) + ~pi(~xi+1 − ~xi)− λi
(
p+
i p
−
i −

1

2
(~p2
i +m2)

)
∆τ

N
]

)
(3.106)
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Agora podemos usar os seguintes fatos:

|ε(p+
i )| = 1,

(τi+1 − τi) =
∆τ

N
(3.107)

e integrando em λi obtemos

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+
i dp

−
i d~pi

N−1∏
i=1

dx−i d~xi

N−1∏
i=1

|p+
i |(

∆τ

N
)N

N−1∏
i=0

δ((p+
i p
−
i −

1

2
(~P 2

i +m2))
∆τ

N
) exp i

N−1∑
i=0

(−p+
i (x−i+1 − x−i )

−p−∆τ

N
+ ~pi(~xi+1 − ~xi)). (3.108)

Integrando em p−i obtemos

N−1∏
i=0

δ

(
(p+
i p
−
i −

1

2
(~p2
i +m2))

∆τ

N

)
= (

N

∆τ
)N

N−1∏
i=0

1

|p+
i |
δ(p−i −

~p2
i +m2

2p+
i

),

(3.109)
que substituindo na integral temos

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+d~pi

N−1∏
i=1

dx−id~xi
1

|p+|

exp i

(
N−1∑
i=0

(−p+
i (x−i+1 − x−i )− (

~p2
i +m2

2p+
i

)
∆τ

N
+ ~pi(~xi+1 − ~xi)

)
. (3.110)

Fazendo uma integração por partes podemos escrever

N−1∑
i=0

−p+
i (x−i+1 − x−i ) =

N−1∑
i=1

(p+
i − p+

i−1)x−i − p+
N−1x

−
N + p+

0 x
−
0 ,

N−1∑
i=0

~pi(~xi+1 − ~xi) =
N−1∑
i=0

(~pi − ~pi−1)~xi − ~pN−1~xN + ~p0~x0. (3.111)

Ao substituirmos esta relação em nossa expressão e integrarmos em ~xie x
−
i

obtemos



3.5: Propagador para a Partícula Relativística no Gauge x+ − τ = 0 41

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+d~pi
1

|p+
0 |

N−1∏
i=1

δ(~pi − ~pi−1)

δ(p+
i − p+

i−1) exp i([−p+
N−1x

−
N + p+

0 x
−
0 + ~pN−1~xN − ~p0~x0

−
N−1∑
i=0

(
~p2
i +m2

2p+
i

)
∆τ

N
]) (3.112)

Ao integrarmos em N − 1 vezes em ~pi e p
+
i obtemos o propagador

Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) =

� ∞
−∞

dp+
0 d~p0

1

|p+
0 |

exp i
(
[−p+

0 ∆x−

−(
~p2
i +m2

2p+
i

)∆τ + ~p∆~x]

)
, (3.113)

que é uma representação da função ∆1 de Schwinger nas coordenadas do cone
de luz obtido em [69].

Este resultado também nos permite concluir que o resultado obtido por
Govaerts para o gauge canônico também não está correto e portanto este
gauge também não possui problema de Gribov.

O propagador de Feynman é dado por

ZF (x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) =< x2|Θ(T )|x1 >

=

�
DpDxDλDΠDCDC̄DPDP̄Θ(

� τ2

τ1

λdτ)

exp(iSef ), (3.114)

onde Sef é dada por (3.33) e T =
� τ2
τ1

1
p+
dτ . Ao passarmos para o caso discre-

tizado introduzimos a função sinal de p+ adicional. Portanto o propagador
é dado por
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Z(x+
N , x

+
0 ;x−N , x

−
0 ; ~xN , ~x0) = lim

N→∞

� N−1∏
i=0

dp+dp−d~pi

N−1∏
i=1

dx+
i dx

−d~xi

N−1∏
i=0

dλi

N−1∏
i=1

dΠi

N−1∏
i=0

dPi
N−1∏
i=1

dC̄i

N−1∏
i=0

dP̄i
N−1∏
i=1

dCiΘ(
N−1∑
i=0

1

p+
i

∆τ

N
)

exp i

(
N−1∑
i=0

(
−p+

i (x−i+1 − x−i )− p−(x+
i+1 − x+

i ) + ~pi(~xi+1 − ~xi)

+P̄i(Ci+1 − Ci)
)
−

N−1∑
i=1

[C̄iCi|p+
i |

∆τ

N
+ Πiε(p

+
i )(x+

i − τi)
∆τ

N
)]

+
N−1∑
i=0

[−λi
(
p+
i p
−
i −

1

2
(~p2
i +m2)

)
∆τ

N
+ P̄iPi

∆τ

N
]

)
. (3.115)

Fazendo todas as integrais na mesma ordem do caso anterior, obtem-se

Z(x−N , x
−
0 ; ~xN , ~x0) = Θ(∆τ)

� ∞
−∞

dp+
0 d~p0

1

|p+
0 |

exp i
(
−p+

0 ∆x− + ~p∆~x

−(
~p2
i +m2

2p+
i

)∆τ

)
, (3.116)

que é uma representação para o propagador de Feynman nas coordenadas do
cone de luz [69].



Capítulo 4

Quantização BRST e Simetria de

Gauge Sp(2,R)

4.1 Introdução

Neste capítulo iremos estudar um modelo que possui uma simetria de gauge
Sp(2,R) no espaço de fase que atua emXM e PM comM = 0′, 1′, 0, 1, .....d−1
. Além desta simetria de gauge, o modelo ainda possui uma simetria global
manifesta SO(d, 2) que age linearmente em XM quando o espaço possui duas
coordenadas temporais. Devido a essa simetria de gauge esta teoria é equi-
valente a uma teoria com uma única coordenada temporal. Entretanto a
escolha do tempo físico não é única. Para cada escolha de gauge associa-
mos uma hamiltoniana diferente. Essas diversas escolhas dão origem, por
exemplo, á descrição da partícula relativística em d dimensões, átomo de
hidrogênio em d − 1 dimensões espaciais e oscilador harmônico em d − 2
dimensões espaciais, como foi descrito por Bars em [19, 20, 21]. Como os
sistemas físicos acima mencionados provém da mesma teoria em d+2 dimen-
sões concluimos que houve uma descrição uni�cada desses sistemas por meio
do modelo com simetria de gauge Sp(2,R). Esta formulação é chamada de
Física com Dois Tempos (Two-Time Physics). Devido a esses fatos, iremos
aplicar o formalismo BFV a �m de compreendermos melhor esta teoria. Até
a seção 4.2 iremos descrever os resultados obtidos por Bars e colaboradores.

4.2 Formulação Clássica

Vamos considerar uma partícula em movimento num espaço com coordenadas
XM
i (τ) = (XM

1 (τ), XM
2 (τ)) com M,= 0′, 1′, 0, 1, ...d − 1, que apresenta uma

simetria de gauge Sp(2,R) implementada da seguinte forma

43
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δωX
M
i (τ) = εikω

kl(τ)XM
l , i, j, k = 1, 2 (4.1)

onde ωkl(τ) são os parâmetros da transformação de gauge, simétricos em kl,
e εij é o símbolo de Levi-Civita. Introduzindo um campo de gauge Aij(τ),
simétrico em ij que transforma-se como

δωA
ij(τ) = ∂τω

ij(τ) + ωik(τ)εklA
lj(τ) + ωjk(τ)εklA

il(τ), (4.2)

podemos de�nir a derivada covariante da seguinte forma

DτX
M
i (τ) = ∂τX

M
i (τ)− εikAkl(τ)XM

l (τ). (4.3)

A ação invariante pela simetria de�nida acima, proposta em [20, 19, 21] é

S =
1

2

� τ2

τ1

dτ
(
DτX

M
i

)
εijXN

j ηMN

=

� τ2

τ1

dτ

(
∂τX

M
1 XN

2 −
1

2
AijXM

i X
N
j

)
ηMN , (4.4)

onde a métrica do espaço-tempo ηMN é plana com assinatura arbitrária.
Passamos para o formalismo hamiltoniano calculando os momentos canô-

nicos

PM =
∂L

∂ẊM
1

= XM
2 ,

Pij =
∂L

∂Ȧij
= 0. i, j = 1, 2 (4.5)

Observando as relações dadas por (4.5) associamos a coordenada XM
2 com o

momento canônico de XM
1 . Portanto a partir de agora denotaremos XM

1 =
XM e PM = XM

2 . Além dessa identi�cação, o sistema ainda possui vínculos
de primeira classe dados por

φ1 = −1

2
X2,

φ2 = −P ·X,

φ3 = −1

2
P 2, (4.6)

e satisfazem a seguinte álgebra
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{φa, φb} = fdabφd, a, b, d = 1, 2, 3 (4.7)

com as seguintes constantes de estrutura

f 1
12 = −f 1

21 = −2

f 2
13 = −f 2

31 = −1

f 3
23 = −f 3

32 = −2. (4.8)

Além da simetria de gauge, este modelo possui uma simetria global mani-
festa SO(d, 2). Utilizando o teorema de Noether obtemos os seus geradores

LMN = XMPN − PMXN , (4.9)

que satisfazem a seguinte álgebra

{LMN , LRS} = ηMRLNS + ηNSLMR − ηNRLMS − ηMSLNR. (4.10)

Estes geradores LMN são invariantes por transformações de gauge.
Ao resolver os vínculos (4.6) podemos considerar :

• que supondo a métrica do espaço tempo ηMN euclidiana, encontramos
a seguinte solução

XM(τ) = 0,

PM(τ) = 0, (4.11)

e consequetemente LMN = 0. Como esses geradores são os invariantes de
gauge da teoria, concluimos que a teoria de�nida pela solução acima é trivial.

• que se supusermos a métrica do espaço tempo sendo de Minkowski,
obtemos

X2
0 = XiX

i, i = 1, 2, ....d+ 1

P0X
0 = PiX

i,

P 2
0 = PiP

i, (4.12)

Podemos de�nir os seguintes vetores ~X = (X1, X2, ...Xd+1) e ~P = (P1, P2, ....Pd+1).
Estes correspodem a parte espacial de um vetor no espaço com d+ 2 dimen-
sões. Calculando o poduto escalar X · P obtemos
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~X · ~P = | ~X|.|~P | cos θ (4.13)

onde θ é o angulo entre os vetores ~X e ~P . Utilizando o resultado dado em
(4.12) podemos escrever

cos θ =
X0P0

±X0P0

= ±1 (4.14)

ou seja, os vetores ~X e ~P serão paralelos ou antiparalelos. Isto acarreta
que os geradores ~L são nulos e consequentemente estão de�nindo uma teoria
trivial.

• A �m de encontramos uma teoria não trivial, ou seja, com ~L 6= 0
devemos considerar uma métrica plana ηMN = diag(−1, 1, 1, .....,−1),
ou seja, com uma coordenada temporal extra. Neste caso a solução
para os vínculos é dada por

X2
0′ +X2

0 = XiX
i i = 1, 2, , ....d

X0′P0′ +X0P0 = PiX
i

P 2
0′ + P 2

0 = PiP
i

De forma análoga ao caso anterior podemos de�nir os vetores ~X = (X1, X2, ..Xd)

e ~P = (P1, P2, ...Pd). Considerando o produto escalar entre estes dois vetores,
podemos concluir que

cos θ =
~X · ~P√
X2
√
P 2

(4.15)

onde θ é o ângulo entre os vetores. Utilizando as equações dos vínculos
obtemos

cos θ =
X0P0 +X0′P0′√

X2
0 +X2

0′

√
P 2

0 + P 2
0′

(4.16)

Da expressão acima notamos que estes vetores não são paralelos, o que
acarreta que os geradores LMN 6=0, ou seja, de�nem uma teoria não trivial.

Poderíamos considerar extensões dessa teoria com mais de uma coorde-
nada temporal extra, entretanto, neste caso, a simetria de gauge Sp(2,R)
não de�nirá uma teoria quântica unitária, pois não removerá todos os esta-
dos de norma negativa que surgirão pela adição de mais de duas coordenadas
temporais. Para de�nirmos teorias com mais de duas coordenadas temporais
devemos encontrar uma nova simetria de gauge que remova todos os estados
de norma negativa presentes na teoria quântica.
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Reescrevendo a ação na forma hamiltoniana

S =

� τ2

τ1

dτ

(
∂τX

MPN − 1

2
A11XMXN − A12XMPN − 1

2
A22PMPN

)
ηMN .

(4.17)
Podemos escrever as transformações de gauge geradas pelos vínculos de pri-
meira classe (4.6) como

δωX
M = ω12(τ)XM + ω22(τ)PM(τ),

δωP
M = −ω11(τ)XM − ω12(τ)PM(τ),

δωA
11 = ∂τω

11(τ) + 2ω11(τ)A12 − 2ω12(τ)A11,

δωA
12 = ∂τω

12(τ) + ω11(τ)A22 − ω22(τ)A11,

δωA
22 = ∂τω

22(τ) + 2ω21(τ)A22 − 2ω22(τ)A12. (4.18)

Variando a ação (4.17 ) com relação a (4.18 ) obtemos

δS =

� τ2

τ1

dτ
d

dτ

(
1

2
ω22(τ)P 2 − 1

2
ω11(τ)X2

)
=

(
1

2
ω22(τ)P 2 − 1

2
ω11(τ)X2

) ∣∣∣∣τ2
τ1

, (4.19)

demonstrando que a invariância da ação impõe o anulamento nos extremos
dos parâmetros ω22(τ) e ω11(τ). Esse comportamento é análogo ao resultado
obtido no caso da partícula relativística em relação a invariância da ação.
Uma outra informação que inferimos a partir da expressão acima é que o pa-
râmetro ω22(τ) está relacionado com uma invariância por reparametrização,
enquanto que os parâmetros ω11(τ) e ω12(τ) estão relacionados com as sime-
trias locais que permitem reduzir o espaço com duas coordenadas temporais
a espaços com uma única coordenada temporal efetiva.

Vamos analisar os resultados obtido por Bars [19, 20], nas próximas sec-
ções para os casos que descrevem a partícula relativística e o oscilador harmô-
nico.

4.2.1 Partícula Relativística Livre

Vamos mostrar uma solução que descreve a partícula relativística livre sem
massa em um espaço com d dimensões espaço-temporais. Para isso devemos
escolher o sistema de coordenadas XM = (X+

′
, X−

′
, X+, X−, X i) no espaço
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tempo. As coordenadas do cone de luz são de�nidas em (3.30) e as compo-
nentes da métrica são η+′−′ = η+− = −1 nas coordenadas do cone de luz
e ηij = δij para as d − 2 coordenadas espaciais restantes. Escolhendo as
seguintes condições de gauge X+′ = 1, P+′ = 0 e X+ = τ , podemos resolver
os vínculos a �m de eliminarmos os graus de liberdade não físicos da teoria,
obtendo

XM = (1,
1

2
X2, 0, X−, X i)

PM = (0, X · P −X−P+, P+,
P 2

2P+
, P i). (4.20)

Substituindo a solução obtida acima na ação (4.17)

S =

�
dτ

(
∂τX

iP i − ∂τX−P+ − P 2

2P+

)
, (4.21)

que corresponde a ação de uma partícula relativística de massa nula em d
dimensões. Portanto, podemos quantizar a teoria nesse gauge utilizando
os graus de liberdade físicos presentes na ação dada por (4.21). Tomando
τ = 0, podemos construir operadores hermitianos da álgebra de SO(d, 2),
neste gauge, da seguinte forma

Lij = X iP j −XjP i, L+i = −X ip+,

L−i = X−P i − P jX iP j

2p+
, L−+ =

1

2
(X−P+ + P+X−),

L−
′+ =

1

2
X2P+, L+′−′ = P+, L+′− =

P 2

2P+
,

L+′i = P i, L+− =
1

2
(X iP i + P iX i −X−P+ − P+X−),

L−
′− =

1

8P+
(X2P 2 + P 2X2 − 2α)− X−

2
(XP + PX) +X−P+X−,

L−
′i =

1

2
XjP iXj − 1

2
(X · P )X i − 1

2
X i(P ·X) +

1

2
X i(X−P+

+P+X−), (4.22)

onde a constante α provem do fato de levarmos em conta o ordenamento de
X e P . Para determinar seu valor, impomos que os operadores associados
aos geradores de SO(d, 2) obedeçam à álgebra dada em (4.10).

Observando a estrutura destes operadores, podemos dividi-los nos seguintes
subconjuntos: o primeiro subconjunto é Lµν = (Lij, L+i, L−i, L+−) que forma
uma álgebra de Lorentz SO(d − 1, 1) em d dimensões espaço-temporais e o
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segundo forma o subgrupo das translações pµ = (L+′−, L+′+, L+′i). Portanto
o conjunto (Lµν , pµ) forma uma álgebra de Poincaré ISO(d−1, 1). O subcon-
junto Kµ = (L−

′+, L−
′−, L−

′i) gera as transformações conformes especiais e
D = L+′−′corresponde ao operador de dilatação. Uma outra possibilidade de
decomposição do grupo SO(d, 2) é SO(d− 2)⊗ SO(2, 2). Na próxima seção
analisaremos esta segunda decomposição.

4.2.2 Oscilador Harmônico em d− 2 Dimensões

A base de uma teoria quântica é a escolha da hamiltoniana que será diago-
nalizada. Como o modelo possui duas coordenadas temporais, a escolha do
tempo físico corresponde a uma escolha da hamiltoniana como uma combi-
nação de geradores do grupo SO(d, 2). No caso da partícula, escolhemos os
geradores (L+′+, L+′i, L+′−) para serem diagonalizados. Nesse caso a hamil-
toniana é dada por L+′− = P 2

2P+ e os estados no espaço de Hilbert são descritos
pelos vetores |P+, P µ >. Entretanto existem outras possibilidades de escolha
para a hamiltoniana em relação aos geradors de SO(d, 2). Por exemplo es-
colhendo o conjunto (Lij, L+′+, (L+′−+L−

′+)) onde Lij descreve o momento
angular em d − 2 dimensões, L+′+ correspnde ao momento na direção do
cone de luz e que fará o papel de massa, enquanto que o último gerador
H = L+′− + L−

′+ = P 2

2P+ + 1
2
P+X2 corresponderá à hamiltoniana de um

oscilador harmônico em d − 2 dimensões. O espectro desta hamiltoniana é
semelhante ao de um oscilador harmônico em d − 2 dimensões, em que a
massa é dada por P+ e frequência ω = 1, é dado por

En = [n+
1

2
(d− 2)], (4.23)

Gostaríamos de relacionar o número quântico l do momento angular em
d−2 dimensões e o número quântico n com a representação do grupo SO(d, 2).
Para isso utilizaremos as representações dos subgrupos SO(d− 2) e SO(2, 2)
para descrever a representação do grupo SO(d, 2). Da mesma forma podemos
escrever SO(2, 2) = SL(2, R)L ⊗ SL(2, R)R. O próximo passo é mostrar que
a hamiltoniana canônica do oscilador corresponde a um gerador compacto
de SL(2, R)R. Para isso escrevemos os geradores de SL(2, R)R da seguinte
forma

G2R =
1

2
(L+′− − L+−),

G0R +G1R = L+′−,

G0R −G1R = L−
′+. (4.24)
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Susbstituindo as expressões dos geradores correspondentes obtem-se

G2R =
1

4
( ~X · ~P + ~P · ~X),

G0R =
1

2
(
~P 2

2P+
+

1

2
P+ ~X2),

G1R =
1

2
(
~P 2

2P+
− 1

2
P+ ~X2). (4.25)

De forma que podemos concluir que

H = 2G0R. (4.26)

Calculando o operador de Casimir de SL(2, R)R podemos concluir que

C2(SL(2, R)R) = G2
0R −G2

1R −G2
2R

=
1

4
L2 +

1

16
(d− 2)(d− 6), (4.27)

onde L2 é o operador de Casimir para o subgrupo de SO(d − 2). Observe
também que

C2(SL(2, R)R)|j,m > = jR(jR + 1)j,m >,

2G0R|j,m > = 2mR|j,m > . (4.28)

Como G0R é positivo de�nido, a representação de SL(2, R)R é dada pela série
positiva discreta caracterizada por

mR = jR + 1 + nr, nr = 0, 1, 2, 3, .. (4.29)

onde nr é positivo e interpretado como o número quântico radial do oscilador
harmônico. Entretanto devemos encontrar quais são os valores permitidos
para jR. Da expressão (4.27) observamos que esse número quântico está
relacionado com o momento angular orbital em d− 2 dimensões da seguinte
forma

n = l + 2nr

mR =
1

2
n+

1

4
(d− 2)

jR = jL =
1

2
l +

1

4
d− 3

2
. (4.30)
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Portanto os estados físicos são descritos no espaço de Hilbert pelos vetores
|l; jLP+, jR,mR >.

Então mostramos que tanto a partícula relativística sem massa em d
dimensões como o oscilador harmônico em d−2 dimensões são descritos pela
mesma teoria com simetria de gauge Sp(2,R).

4.3 Quantização BRST Com Simetria de Gauge

Sp(2,R)

Vamos considerar o formalismo BFV para a teoria Sp(2,R) [74]. Em primeiro
lugar adotamos a seguinte notação Aa = (A11, A12, A22) com a = 1, 2, 3.
Introduzimos os graus de liberdade Πa conjugados aos multiplicadores de
Lagrange Aa satisfazendo os colchetes de Poisson

{Aa,Πb} = δab . (4.31)

Para não modi�carmos o conteúdo físico impomos como vínculo

Πa = 0. (4.32)

O sistema formado pelos vínculos dados por (4.6) e (4.32) é um sistema de
primeira classe, que será denotado por

G1a = φa G2a = Πa, (4.33)

e satisfaz a seguinte álgebra

{G1a, G1b} = fdabG1d,

{G2a, G2b} = 0,

{G1a, G2b} = 0. (4.34)

onde fdab é dado por (4.8).
Num segundo momento, introduzimos pares de fantasmas (Ca, P̄a) e (Pa, C̄a)

associados aos vínculos dados em (4.33) satisfazendo os colchetes de Poisson

{Ca, P̄b} = {Pa, C̄b} = −δab . (4.35)

A carga de BRST é

QB = C1φ1 + C2φ2 + C3φ3 + P1Π1 + P2Π2 + P3Π3 +
1

2
fabdC

bCdP̄a, (4.36)
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e gera as seguintes transformações de BRST

δXM = −C2XM − C3PM , δPM = C1XM + C2PM ,

δAa = Pa, δΠa = 0,

δC̄a = −Πa, δPa = 0,

δCa = −1

2
fabdC

bP̄a, δP̄a = −φa − fdabCbP̄d. (4.37)

Vamos agora estudar a implementação da quantização BRST. A condição de
gauge é implementada pela seguinte função grasmaniana

Ψ =
1

β
A1C̄1 +

1

β
A2C̄2 + A1P̄1 + A2P̄2 + A3P̄3, (4.38)

onde β é uma constante real diferente de zero. O colchete de Poisson entre
a carga de BRST e a função grasmaniana é dado por

{Ψ, QB} =
1

β
P1C̄1 −

1

β
A1Π1 +

1

β
P2C̄2 −

1

β
A2Π2 + P1P̄1 + P2P̄2

+P3P̄3 − A1(
1

2
X2 − 2C2P̄1 − C3P̄2) + A2(−P ·X − 2C3P̄3 + 2C1P̄1)

+A3(
1

2
P 2 + 2C2P̄3 + C1P̄2), (4.39)

e a ação efetiva �ca

Sef =

� τ2

τ1

dτ
(
PMẊ

M + P̄1Ċ
1 + P̄2Ċ

2 + P̄3Ċ
3 − Π1Ȧ

1 − Π2Ȧ
2 − Π3Ȧ

3

− ˙̄C1P1 − ˙̄C2P2 − ˙̄C3P3 − 1

β
P1C̄1 −

1

β
A1Π1 +

1

β
P2C̄2 −

1

β
A2Π2 + P1P̄1

+P3P̄3 + P2P̄2 + A1(
1

2
X2 − 2C2P̄1 − C3P̄2) + A2(P ·X − 2C3P̄3 + 2C1P̄1)

+A3(
1

2
P 2 + 2C2P̄3 + C1P̄2)

)
. (4.40)

De forma análoga ao gauge canônico da partícula relativística discutido no
capítulo anterior, fazemos a seguinte transformação invariante por BRST

Π1 → βΠ1,

Π2 → βΠ2,

C̄1 → βC̄1,

C̄2 → βC̄2,
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de forma a reescrever a ação efetiva como

Sef =

� τ2

τ1

dτ
(
PMẊ

M + P̄1Ċ + P̄2Ċ
2 + P̄3Ċ

3 − βΠ̃1Ȧ
1 − βΠ̃2Ȧ

2

−Π3Ȧ
3 − β ˙̄̃

C1P1 − β ˙̄̃
C2P2 − ˙̄C3P3 − 1

β
P1 ˜̄C1 −

1

β
A1Π̃1 +

1

β
P2 ˜̄C2

− 1

β
A2Π̃2 + P1P̄1 + P2P̄2 + P3P̄3 + A1(

1

2
X2 − 2C2P̄1 − C3P̄2)

+A2(P ·X − 2C3P̄3 + 2C1P̄1) +
1

2
A3(P 2 + 2C2P̄3 + C1P̄2)

)
, (4.41)

Tomando o limite β → 0

Sef =

� τ2

τ1

dτ
(
PMẊ

M + P̄1Ċ + P̄2Ċ
2 + P̄3Ċ

3 − Π3iȦ
3
i − ˙̄C3P3

−P1 ˜̄C1 − A1Π̃1 + P2 ˜̄C2 − A2Π̃2 + P1P̄1 + P2P̄2 + P3P̄3 + A1(
1

2
X2

−2C2P̄1 − C3P̄2) + A2(P ·X − 2C3P̄3 + 2C1P̄1) +
1

2
A3(P 2

+2C2P̄3 + C1P̄2)
)
, (4.42)

Fazendo a seguinte transformação invariante por transformações de BRST
dada por

Π̃1 → Π1, Π̃2 → Π2,
˜̄C1 → C̄1,

˜̄C2 → C̄2,

a ação efetiva é escrita da seguinte forma

Sef =

� τ2

τ1

dτ
(
PMẊ

M + P̄1Ċ
1 + P̄2Ċ

2 + P̄3Ċ
3 − Π3Ȧ

3 − ˙̄C3P3

−P1C̄1 − A1Π1 + P2C̄2 − A2Π2 + P1P̄1 + P2P̄2 + P3P̄3 − CP̄1

+A1(
1

2
X2 − 2C2P̄1 − C3P̄2) + A2(P ·X − 2C3P̄3 + 2C1P̄1)

+A3(
1

2
P 2 + 2C2P̄3 + C1P̄2)

)
. (4.43)

As equações de movimento são
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ṖM + A1XM − A2PM = 0

ẊM + A2XM + A3PM = 0
˙̄P1 − 2A2P̄1 − A3P̄2 = 0

˙̄P2 + 2A1P̄1 − 2A3P̄3 = 0
˙̄P3 − A1P̄2 + 2A2P̄3 = 0

Ċ1 − P1 − 2A1C2 + 2A2C1 = 0

Ċ2 + P2 − A1C3 + A3C1 = 0

Ċ3 − P3 + 2A3C2 − 2A2C1 = 0

Pa = 0 a = 1, 2
˙̄C3 − P̄3 = 0

Aa = 0 a = 1, 2

C̄2 + P̄2 = 0

Ȧ3 = 0

C̄1 + P̄1 = 0

Ṗ3 = 0

−Π̇3 +
1

2
P 2 + 2C2P̄3 + C1P̄2 = 0

Π1 −
1

2
X2 + 2C2P̄1 + C3P̄2 = 0

Π2 −
1

2
P ·X − 2C1P̄1 + 2C3P̄3 = 0 (4.44)

Utilizando as condições de contorno dadas em (2.45) encontramos as se-
guintes soluções

XM(τ) = XM
1 +

∆XM

∆τ
(τ − τ1),

A3(τ) = A3
0,

PM =
∆XM

∆τ
,

A1 = A2 = 0

C̄1 = C̄2 = C̄3 = 0

C1 = C2 = C3 = 0

P1 = P2 = P3 = 0

P̄1 = P̄2 = P̄3 = 0

Π1 = Π2 = Π3 = 0 (4.45)
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onde A3
0 é uma constante real. Observando as soluções notamos que essas são

semelhantes às encontradas para uma partícula relativística em d dimensões
dadas por (3.24).

4.4 Propagador no Formalismo BFV

O propagador, no formalismo BFV é dado por

Z(Xµ
N , X

µ
0 ) =

�
DXMDPMDA1DA2DA3DΠ1DΠ2DΠ3

DC̄1DC̄2DC̄3DC
1DC2DC3DP̄1DP̄2DP̄3DP1DP2 exp(iSef ), (4.46)

com Sef é dado por (4.43). Para calcularmos este propagador, discretizamos
a integral de trajetória utilizando as condições de contorno dadas em (2.45).
Entretanto, antes de calcularmos o propagador explicitamente, devemos ana-
lisar o efeito da discretização sobre a invariância da ação discretizada. Isso
será discutido na próxima seção com detalhes.

4.4.1 Invariância da Ação Discretizada

A ação dada em (4.43) é discretizada da seguinte forma

Sef =
N−1∑
i=0

(
PMi(X

M
i+1 −XM

i )] +
N∑
i=0

P̄1i(C
1
i+1 − C1

i ) +
N−1∑
i=0

P̄2i(C
2
i+1 − C2

i )

+P̄3i(C
3
i+1 − C3

i )
)

+
N−1∑
i=1

[C̄3i(P3
i+1 − P3

i ) + Π3i(A
3
i+1 − A3

i )]

+
∆τ

N

(
−

N−1∑
i=1

(P1
i C̄1i + P2

i C̄2i)−
N∑
i=0

P1
i P̄1i −

N−1∑
i=1

(P2
i P̄2i + P3

i P̄3i)

+
N−1∑
i=1

(A1
iΠ1i + A2

iΠ2i)−
N∑
i=0

A1
i (

1

2
X2
i − 2C2

i P̄1i − C3
i P̄2i)−

N−1∑
i=1

A2
i (PMiX

M
i

+2C1
i P̄1i − 2C3

i P̄3i)−
N−1∑
i=1

A3
i (

1

2
P 2
i − C1

i P̄2i + 2C2
i P̄3i)

)
. (4.47)

Discretizando de forma ingênua as transformações de BRST dadas em (4.37),
podemos escrever
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δXM
i = −C2

iX
M
i − C3

i P
M , δPM

i = C1
iX

M
i + C2

i P
M
i ,

δAai = Pai , δΠai = 0

δC̄ia = −Πa, δPai = 0

δCa
i = −1

2
fabdC

b
i P̄ia δP̄ia = −φai − fdabCbP̄d, (4.48)

Variando a ação (4.47) em relação (4.48) obtem-se

δSef =
N−1∑
i=0

(
C1
iXiXi+1 −

3

2
C1
iX

2
i − (C2

i+1 − C2
i )Pi(X i+1 −Xi)

−C3
i+1PiPi+1 +

1

2
C3
i P

2
i + C3

i+1P
2
i +

1

2
C1
i+1X

2
i + fdabP̄di(Cb

iC
a
i+1 −

1

2
Cb
i+1C

a
i+1

−1

2
Cb
iC

a
i

)
6= 0, (4.49)

ou seja, a ação perde a invariância após o processo de discretização. Para
restaurarmos a sua invariância devemos modi�car as transformações de forma
que no limite do contínuo obtenhamos as transformações usuais de BRST
(4.37). Introduzindo modi�cações de ordem zero em ∆τ

N
nas transformações,

como foi feito no caso da partícula, não foi possível restaurar a invariância
da ação discretizada. Nesse caso, precisamos introduzir termos de ordem ∆τ

N

nas transformações. As transformações de BRST discretizadas modi�cadas
�cam da seguinte forma

δXM
i = −C2

iX
M
i −

1

2
C3
i (PM

i + PM
i−1) +

∆τ

N

(
1

2
(A1

iX
M
i + A2

iP
M
i )C3

i

)
,

δPM
i =

1

2
C1
i (XM

i+1 +XM
i ) + C2

i P
M
i +

∆τ

N

(
1

2
P1
i (XM

i+1 +XM
i ) + P2

i P
M
i

−A1
iC

2
i (XM

i+1 +XM
i )− A1

iC
3
i P

M
i + A2

iC
1
i (XM

i+1 +
1

2
XM
i ) + A3

iC
1
i P

M
i

)
,
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δP̄1i =
1

2
X2
i+1 − (C2

i+1 + C2
i )P̄1i −

1

2
(C3

i+1 + C3
i )P̄2i +

∆τ

N

(
−P2

i P̄1i

−1

2
P3
i P̄2i + A1

iC
3
i P̄1i + A2

iC
3
i P̄2i − A3

iC
1
i P̄1i − A3

iC
2
i P̄2i

)
,

δP̄2i = PMiX
M
i+1 + (C1

i+1 + C1
i )P̄1i − (C3

i+1 + C3
i )P̄3i +

∆τ

N

(
P1
i P̄1i

−P3
i P̄3i − 2A1

iC
2
i P̄1i + 2A2

iC
1
i P̄1i + 2A2

iC
3
i P̄3i − 2A3

iC
2
i P̄3i

)
,

δP̄3i =
1

2
P 2 +

1

2
(C1

i+1 + C1
i )P̄2i + (C2

i+1 + C2
i )P̄3i +

∆τ

N

(
1

2
P1
i P̄2i

+P2P̄3i − A1
iC

2
i P̄2i − A1

iC
3
i P̄3i + A2

iC
1
i P̄2i + A3

iC
1
i P̄3i

)
. (4.50)

As outras transformações de BRST pemanecem inalteradas. Estas trans-
formações são nilpotentes on-shell como é demonstrado no apêndice.

4.4.2 Propagador

Discretizando o propagador dado em (4.46) obtemos

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i

N∏
i=0

dA1
i

N−1∏
i=1

dA2
i

N∏
i=0

dA3
i

N−1∏
i=1

dΠ1i

dΠ2idΠ3i

N∏
i=1

dC1
i

N−1∏
i=1

dC2
i dC

3
i dC̄1idC̄2idC̄3i

N∏
i=0

dP1
i

N−1∏
i=1

dP2
i

N∏
i=1

dP3
i

N∏
i=0

dP̄1i

N−1∏
i=0

dP̄2idP̄3i exp(iSef ), (4.51)

onde Sef é a ação discretizada dada em (4.47).
Integrando o propagador em relação a Π1i e Π2i chegamos a

N−1∏
i=1

δ(A1
i

∆τ

N
) = (

N

∆τ
)N−1

N−1∏
i=1

δ(A1
i ),

N−1∏
i=1

δ(A2
i

∆τ

N
) = (

N

∆τ
)N−1

N−1∏
i=1

δ(A2
i ), (4.52)

Integrando em A1
i e A

2
i encontramos
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Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i

N−1∏
i=1

dΠ3i

N∏
i=1

dC1
i

N−1∏
i=1

dC2
i dC

3
i dC̄1idC̄2idC̄3i

N∏
i=0

dP1
i

N−1∏
i=1

dP2
i

N∏
i=1

dP3
i

N∏
i=0

dP̄1i

N−1∏
i=0

dP̄2idP̄3i

(
∆τ

N
)−2(N−1) exp i

(
N−1∑
i=0

[PMi(X
M
i+1 −XM

i ) +
N∑
i=0

P̄1i(C
1
i+1 − C1

i )]

+
N−1∑
i=0

[P̄2i(C
2
i+1 − C2

i ) + P̄3i(C
3
i+1 − C3

i )] +
N−1∑
i=1

(
C̄3i(P3

i+1 − P3
i )

+Π3i(A
3
i+1 − A3

i )
)

+
∆τ

N

(
−

N−1∑
i=1

(P1
i C̄1i + P2

i C̄2i)−
N∑
i=0

P1
i P̄1i +

N−1∑
i=1

(P2
i P̄2i

+P3
i P̄3i)−

1

2
(A1

0X
2 + A1

NX
2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

i P̄2i + 2C2
i P̄3i)

))
. (4.53)

Integrando a expressão acima em relação a C̄1i e em seguida em P1
i chegamos

a

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i

N−1∏
i=1

dΠ3i

N∏
i=1

dC1
i

N−1∏
i=1

dC2
i dC

3
i dC̄2idC̄3idP1

0dP1
N

N−1∏
i=1

dP2
i

N∏
i=1

dP3
i

N∏
i=0

dP̄1i

N−1∏
i=0

dP̄2idP̄3i

(
∆τ

N
)−(N−1) exp i

(
N−1∑
i=0

[PMi(X
M
i+1 −XM

i ) +
N∑
i=0

P̄1i(C
1
i+1 − C1

i )]

+
N−1∑
i=0

[P̄2i(C
2
i+1 − C2

i ) + P̄3i(C
3
i+1 − C3

i )] +
N−1∑
i=1

(
C̄3i(P3

i+1 − P3
i )

+Π3i(A
3
i+1 − A3

i )
)

+
∆τ

N

(
−

N−1∑
i=1

(P2
i C̄2i)− P1

0 P̄10 − P1
N P̄1N +

N−1∑
i=1

(P2
i P̄2i

+P3
i P̄3i) +

1

2
(A1

0X
2 + A1

NX
2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

i P̄2i − 2C2
i P̄3i)

))
. (4.54)

Integrando o resultado acima em relação a C̄2i e em seguida em P2
i obtemos
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Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i

N−1∏
i=1

dΠ3i

N∏
i=1

dC1
i

N−1∏
i=1

dC2
i dC

3
i dC̄3idP1

0dP1
N

N∏
i=1

dP3
i

N∏
i=0

dP̄1i

N−1∏
i=0

dP̄2idP̄3i exp i

(
N−1∑
i=0

PMi(X
M
i+1

−XM
i ) +

N∑
i=0

P̄1i(C
1
i+1 − C1

i ) +
N−1∑
i=0

[P̄2i(C
2
i+1 − C2

i ) + P̄3i(C
3
i+1 − C3

i )]

+
N−1∑
i=1

(
C̄3i((P3

i+1 − P3
i ) + Π3i(A

3
i+1 − A3

i )
)

+
∆τ

N

(
(−P1

0 P̄10 − P1
N P̄1N + A1

NX
2
N)

+
N−1∑
i=1

(P3
i P̄3i)−

1

2
(A1

0X
2 + A1

NX
2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

i P̄2i − 2C2
i P̄3i

−2C2
i P̄3i)

))
(4.55)

Integrando em P1
0 e P1

N concluimos que P̄10 = P̄1N = 0 e podemos escrever
a expressão do propagador como

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i

N−1∏
i=1

dΠ3i

N∏
i=1

dC1
i

N−1∏
i=1

dC2
i dC

3
i dC̄3i

N∏
i=1

dP3
i

N−1∏
i=1

dP̄1i

N−1∏
i=0

dP̄2idP̄3i(
∆τ

N
)2 exp i

(
N−1∑
i=0

PMi(X
M
i+1

−XM
i ) +

N−1∑
i=1

P̄1i(C
1
i+1 − C1

i ) +
N−1∑
i=0

[P̄2i(C
2
i+1 − C2

i ) + P̄3i(C
3
i+1 − C3

i )]

N−1∑
i=1

(
C̄3i(P3

i+1 − P3
i ) + Π3i(A

3
i+1 − A3

i )
)

+
∆τ

N

(
+

N−1∑
i=1

(P3
i P̄3i)−

1

2
(A1

0X
2

+A1
NX

2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

i P̄2i − 2C2
i P̄3i)

))
. (4.56)

Integrando em P̄1i(i = 1, ..N-1) e em seguida em C1
i podemos reescrever o

propagador como
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Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i

N−1∏
i=1

dΠ3idC
1
N

N−1∏
i=1

dC2
i

dC3
i dC̄3i

N∏
i=1

dP3
i

N−1∏
i=0

dP̄2idP̄3i(
∆τ

N
)2 exp i

(
N−1∑
i=0

PMi(X
M
i+1 −XM

i ) +
N−1∑
i=0

[P̄2i(C
2
i+1

−C2
i ) + P̄3i(C

3
i+1 − C3

i )] +
N−1∑
i=1

[C̄3i(P3
i+1 − P3

i ) + Π3i(A
3
i+1 − A3

i )] +
∆τ

N
[(
N−1∑
i=1

(P3
i P̄3i)

−1

2
(A1

0X
2 + A1

NX
2
N)− 1

2
(A1

0X
2 + A1

NX
2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

N P̄2i − 2C2
i P̄3i)]

)
(4.57)

Integrando em Π3i escrevemos

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
N

N∏
i=1

dA3
i dC

1
N
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dC2
i dC

3
i
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N∏
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dP3
i

N−1∏
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dP̄2idP̄3i
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i=1

δ(A3
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∆τ

N
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(
N−1∑
i=0

PMi(X
M
i+1

−XM
i ) +

N−1∑
i=0

[P̄2i(C
2
i+1 − C2

i ) + P̄3i(C
3
i+1 − C3

i )] +
N−1∑
i=1

[C̄3i(P
3
i+1 − P3

i )

+
∆τ

N

(
N−1∑
i=1

(P3
i P̄3i)−

1

2
(A1

0X
2 + A1

NX
2
N)−

N−1∑
i=1

A3
i (

1

2
P 2
i − C1

N P̄2i

−2C2
i P̄3i)

))
. (4.58)

Integrando em A3
i obtemos

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
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dXM
i dA
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NdA
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3
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∆τ
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N−1∑
i=1

(P3
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2
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2
P 2
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))
. (4.59)
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Agora integrando em P̄2i(i = 1, ..N − 1) e C2
i mostramos que

C2
1 = C2

2 +
∆τ

N
A3

2C
1
N

C2
2 = C2

3 +
∆τ

N
A3

3C
1
N

...

C2
N−1 =

∆τ

N
A3
NC

1
N . (4.60)

Portanto podemos reescrever o propagador da seguinte forma

Z(XM
N , X

M
0 ) = lim

N→∞
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. (4.61)

Integrando em C1
N e P̄20 encontramos
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1

2
(A1

0X
2
0 + A1

NX
2
N)−

N−1∑
i=1

A3
N(

1

2
P 2

−2
∆τ

N
A3
NC

1
N P̄3i)

))
. (4.62)

Integrando em C̄3i e em P3
i podemos escrever
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Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPMi

N−1∏
i=1

dXM
i dA

1
0dA

1
NdA

3
NdC

1
N

N−1∏
i=1

dC3
i dP3

N

N−1∏
i=0

dP̄3i(
∆τ

N
)2dA3

N∆τ exp i

(
N−1∑
i=0

[+PMi(X
M
i+1 −XM

i ) + P̄3i(C
3
i+1 − C3

i )]

+
∆τ

N

(
N−1∑
i=1

(P3
N P̄3i)−

1

2
(A1

0X
2
0 + A1

NX
2
N)−

N−1∑
i=1

A3
N(

1

2
P 2
i

−2
∆τ

N
A3
NC

1
N P̄3i)

))
. (4.63)

Integrando em C3
i e P̄3i obtemos

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
NdA

3
NdP3

NdP̄30(
∆τ

N
)2A3

N∆τ

exp i

(
N−1∑
i=0

PMi(X
M
i+1 −XM

i ) +
∆τ

N

(
P3
N P̄30 −

1

2
(A1

0X
2
0 + A1

NX
2
N)

−
N−1∑
i=1

A3
N(

1

2
P 2
i )− 2

∆τ

N
(A3

N)2C1
N P̄30(N − 1)

))
. (4.64)

Integrando P3
N e em seguida P̄1

30 podemos escrever

Z(XM
N , X

M
0 ) = lim

N→∞

� N−1∏
i=0

dPM
i

N−1∏
i=1

dXM
i dA

1
0dA

1
NdA

3
N(

∆τ

N
)2

A3
N(∆τ)2 exp i

(
N−1∑
i=0

PMi(X
M
i+1 −XM

i ) +
1

2
(A1

0X
2
0 + A1

NX
2
N)

∆τ

N

−
N−1∑
i=1

A3
N(

1

2
P 2
i )

∆τ

N

)
(4.65)

Integrando em XM
i e PM

i obtemos

Z(XM
N , X

M
0 ) = lim

N→∞

�
dPM

0 dA1
0dA

1
NdA

3
N(

∆τ

N
)2A3

N(∆τ)2

exp i

(
∆τ

N
(−1

2
A3
N−1P

2
0 ∆τ − 1

2
A1
NX

2
N −

1

2
A1

0X
2
0 ) + PM

0 ∆XM .

)
(4.66)
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Integrando em A1
0 e A1

N encontramos

Z(XM
N , X

M
0 ) = δ(X2

0 )δ(X2
N)

�
dPM

0 dA3
NA

3
N(∆τ)2

exp i

(
PM

0 ∆XM −
1

2
AP 2

0 ∆τ

)
. (4.67)

Fazendo a seguinte mudança de variáveis A3
N = λ

∆τ
podemos reescrever o

propagador

Z(XM
N , X

M
0 ) = δ(X2

0 )δ(X2
N)

�
dPM

0 dλ λ exp i

(
PM

0 ∆XM −
1

2
λP 2

)
.

(4.68)
Integrando em PM

0 escrevemos o propagador como

Z(XM
N , X

M
0 ) = δ(X2

0 )δ(X2
N)

�
dλ λ

D
2 exp−i

(
1

2λ
(∆XM)2

)
. (4.69)

Vamos agora mostrar que o propagador obtido acima satisfaz os vínculos.
Aplicando o vínculo X2 no propagador obtido concluimos que

δ(X2
0 )δ(X2

N)

�
X2

0dλ λ
D
2 exp−i

(
1

2λ
(∆XM)2

)
= 0. (4.70)

e portanto se anula devido à propriedade da função delta.
O segundo vínculo aplicado no propagador pode ser escrito como(

iXM
0 PM0 + iPM0X

M
0

)
Z(xM2 , x

M
1 ). (4.71)

Utilizando a representação na qual PM
0 = ∂

∂XM
0

obtemos para o primeiro
termo

iXM
0

∂

∂XM
0

Z = iXM
0

∂

∂XM
0

δ(X2
0 )δ(X2

N)

�
dλ λ

D
2 exp−i

(
1

2
λX0 ·XN

)
= 2X2δ′(X2

0 )δ(X2
N)I + δ(X2

0 )δ(X2
N)

∂

∂XM
0

I, (4.72)

onde I é a parte que contém a integral em λ. Fazendo a derivada da expressão
de I chegamos a

∂

∂XM
0

I = −iXM
N

�
dλ λ−( D

2
−1) exp−i

(
1

2
λX0 ·XN

)
. (4.73)
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A �m de reescrevermos a expressão acima de uma forma mais conveniente,
é preciso observar que

�
dλ λ−( D

2
−1) exp−i

(
1

2
λX0 ·XN

)
=

1

X0XN

d

dα

�
dλ λ−( D

2
)

exp−i
(

1

2λ
αX0 ·XN

) ∣∣∣∣
α=1

. (4.74)

Fazendo a transformação λ→ αλ no lado direito da igualdade obtemos

1

X0XN

d

dα

�
dλ |α| λ−( D

2
) α−

D
2 exp−i

(
1

2
λX0 ·XN

) ∣∣∣∣
α=1

. (4.75)

Derivando em relação a α obtemos

�
dλ λ−( D

2
−1) exp−i

(
1

2
λX0 ·XN

)
=

1

X0XN

(1− D

2
)

�
dλλ−( D

2
)

exp−i
(

1

2λ
X0 ·XN

)
. (4.76)

Portanto podemos concluir que

∂

∂XM
0

I =
XM
N

X0XN

(1− D

2
)I, (4.77)

o que permite escrever

iXM
0

∂

∂XM
0

Z = −i(1 +
D

2
)I (4.78)

O segundo termo é facilmente encontrado, obtendo-se

i
∂

∂XA
0

XM
0 Z(xµ2 , x

µ
1) = +i(1 +

D

2
)I. (4.79)

Portanto concluimos que

(
iXM

0 PM0 + iPM0X
M
0

)
Z(xµ2 , x

µ
1) = −(1 +

D

2
)I + (1 +

D

2
)I

= 0, (4.80)
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o que demonstra que o propagador satisfaz o segundo vínculo.
Finalizando nossa análise, vamos veri�car o último vínculo dado por

P 2Z(xµ2 , x
µ
1) = − ∂

2Z

∂X2
0

= − ∂

∂XM
0

(
X2δ′(X2

0 )δ(X2
N)I + δ(X2

0 )δ(X2
N)

∂

∂XM
0

I

)
= −[2(D + 2)δ′(X2

0 )δ(X2
N)I + 4δ

′′
(X2

0 )δ(X2
N)I +

+ 4δ′(X2
0 )δ(X2

N)XM
0

∂

∂XM
0

I + δ(X2
0 )δ(X2

N)
∂2I

∂X2
0

]

= 0, (4.81)

o que nos permite concluir que o propagador satisfaz a todos os vínculos.

4.4.3 Propagador da Partícula Relativística em d Di-

mensões

Introduzindo o sistema de coordenadas do cone de luz e escolhendo X+′

0 =
X+′

N = 1 podemos reescrever o propagador (4.69) da seguinte forma

Z(Xµ
N , X

µ
0 ) = δ(−X−′0 +

1

2
X2

0 )δ(−X−′N +
1

2
X2
N)

�
dλλ

D
2

exp−i
(

1

2λ
·∆Xµ∆Xµ

)
, (4.82)

onde µ = 0....d− 1 . E integrando em X−
′
obtemos

Zef (X
µ
N , X

µ
0 ) =

�
dX−

′

0 dX−
′

N Z(xM2 , x
M
1 ), (4.83)

e substituindo a expressão (4.82) temos

Zef (X
µ
N , X

µ
0 ) = dλ λ

D
2 exp−i

(
1

2λ
·∆Xµ∆Xµ

)
, (4.84)

que é o propagador para uma partícula relativística em d dimensões. Este
resultado é análogo ao calculado em [61]
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4.4.4 Propagador para o Oscilador Harmônico em d− 2
Dimensões

Vamos considerar o propagador (4.69) dado por

Zef (X
µ
N , X

µ
0 ) =

�
dX−

′

0 dX−
′

N δ(X
2
0 )δ(X2

N)

�
dλλ

D
2

exp−i
(

1

2λ
(∆XM)2

)
. (4.85)

Sabendo que ∆XM = XM
N − XM

0 podemos reescrever a expressão acima
como

Zef (X
µ
N , X

µ
0 ) =

�
dX−

′

0 dX−
′

N δ(X
2
0 )δ(X2

N)

�
dλλ

D
2

exp−i
(

1

2λ
(X2

N +X2
0 − 2Xµ

NX
µ
0 )

)
. (4.86)

Devido às funções deltas da expressão acima, podemos concluir que os
termos quadráticos se anulam, e podemos reescrever

Zef (X
µ
N , X

µ
0 ) =

�
dX−

′

0 dX−
′

N δ(X
2
0 )δ(X2

N)

�
dλλ

D
2 exp−i

(
1

λ
(XM

N X0M)

)
.

(4.87)
Escolhendo o sistema de coordenadas XM = (X+′ , X−

′
, X+, X−, ~X) onde

o vetor ~X possui d−2 componentes e fazendo a seguinte mudança de variávies
α = 1

λ
obtemos

Zef (X
+
N , X

+
0 ;X−N , X

−
0 ;X i

N , X
i
0) =

�
dX−

′

0 dX−
′
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′
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0 X
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0 +X2
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N X
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NX
−
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D
2
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N X
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0 −X+′

0 X−
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N

−X+
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0 −X+

0 X
−
N + ~X0

~X i
N)
)
. (4.88)

Tomando X+′

N e X+′

0 �xos mas não constantes e integrando em X−
′

0 e X−
′

N

podemos reescrever o propagador da seguinte forma
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Zef (X
+
N , X

+
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)
. (4.89)

Fazendo em seguida uma translação em X− dada por

X− =
X̃−

X+
+

1

4

~X2

X+
, (4.90)

o propagador �ca
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+
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+
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. (4.91)

Então podemos de�nir

Z̃ef (X
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+
0 ; X̃−N , X̃

−
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N , X
i
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N .
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(4.92)

No caso da partícula relativística, escolhemos �xar X+′ = 1 nos extremos.
Para obtermos o propagador do oscilador harmônico devemos fazer a seguinte
escolha a �m de de�nir o tempo físico

X+′

0

X+′

N

=
X+

0

X+
N

= exp(ω∆τ). (4.93)
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Substituindo a expressão acima no propagador e usando as de�nições das
funções hiperbólicas é possível escrever

Z̃ef (X
+
N , X

+
0 ; X̃−N , X̃

−
0 ;X i

N , X
i
0) =

�
dX̃−0 dX̃

−
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d
2
−1

exp−iα
(

1

2
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+ sinh(ωτ)X̃−N + p+
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−
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NX̃
−
N

)
. (4.94)

Integrando em X̃−0 obtemos
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Integrando em α obtemos
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i
0) =
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1
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Integrando em X̃−N obtemos

Z̃ef (X
+
N , X

+
0 ;X i

N , X
i
0) =

1

| sinh(ωτ)|
(
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sinh(ω∆τ)
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2 δ(p+
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2
[cosh(ω∆τ)( ~X2

N + ~X2
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)
. (4.97)

Portanto o propagador do oscilador harmônico invertido é dado por

Z̃Ho = ip+
0 Z̃ef (X

+
N , X

+
0 ;X i

N , X
i
0) (4.98)
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Para obtermos o oscilador harmônico usual devemos fazer a transformação
ω → iω. Essa transformção equivale a esolhermos o tempo físico utilizando
a seguinte relação

X+′

0

X+′

N

=
X+

0

X+
N

= exp(iω∆τ), (4.99)

o que torna as coordenadas X+′e X+ complexas e isto não é aceitável
Uma outra observação é que o espectro do oscilador harmônico invertido

obtido é contínuo da mesma forma que a partícula livre. Representa um
sistema instável, porém bem conhecido [80]. Isto é diferente do resultado
obtido por Bars e que foi descrito na seção 4.2.

Como conclusão �nal deste capítulo, calculamos o propagador de uma
partícula relativística sem massa em d dimensões e o propagador de um osci-
lador harmônico invertido em d− 2 dimensões espaciais partindo da mesma
teoria de gauge.



Capítulo 5

Conclusão e Perspectivas

Neste trabalho [74] introduzimos o formalismo BFV para uma teoria com
simetria de gauge Sp(2,R) e calculamos o propagador de uma partícula que
se propaga num espaço-tempo com d + 2 dimensões. Para avaliarmos quais
sistemas em dimensões mais baixas podem ser descritos pela teoria, escolhe-
mos dois valores para a componente X+′ . Se tomarmos X+′ = 1 descrevemos
uma partícula relativística sem massa num espaço tempo com d dimensões.
Entretanto, escolhendo X+′e X+ como em (4.93), descrevemos um oscilador
harmônico invertido em d− 2 dimensões espaciais. Com este resultados pu-
demos concluir que a teoria Sp(2,R) descreve esses dois sistemas descritos
acima num espaço tempo em dimensão mais baixa e que aparentemente não
estavam correlacionados.

Um outro resultado obtido nesse trabalho foi a análise de um critério de
admissibilidade proposto por Govaerts que mostrava que existiam escolhas
da função arbitrária Ψ que não eram equivalentes. Como consequência, pode-
riam aparecer problemas de Gribov na teoria. Isso acarretava que nem todos
os propagadores calculados por meio do formalismo BFV eram equivalentes.
Ao calcularmos o propagador discretizado chegamos a uma expressão para
o jacobiano na medida da integral de trajetória. E ao calcularmos explici-
tamente esse jacobiano no limite de N grande mostramos que o resultado é
uma constante.

Um outro resultado obtido foi a demonstração que a ação discretizada
perde a invariância de BRST em relação às transformações discretizadas.
Mostramos que é necessário uma modi�cação das transformações de BRST
discretizadas para restaurar a invariância. Em funçãp da estrutura da te-
oria foi necessário introduzir termos de ordem ∆τ

N
nas transformações. A

nilpotência das transformações de BRST discretizadas também foram anali-
sadas. Como resultado dessa análise mostramos que a nilpotência é realizada
somente on-shell.
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Como perspectivas futuras desse trabalho podemos citar algumas linhas
de estudo:

• estudar a generalização para teorias de campos. Bars e colaboradores
desenvolveram generalizações para segunda quantização do modelo [28,
29, 30]. Uma das aplicações foi a formulação de um modelo em seis
dimensões com simetria global SO(4, 2) que para uma escolha de gauge
descreve o modelo padrão das partículas [81]. Uma generalização de
nosso trabalho é introduzir a formulação de integral de trajetória nessa
formulação para este modelo.

• Estudar generalizações que envolvam o formailismo com dois tempos
para teoria de cordas e teoria M [25, 24, 82, 33, 36].



Apêndice A

Nilpotência das Transformações

de BRST

Como foi descrito no Capítulo 4 as transformações de BRST discretizadas
dadas em (4.48) não mantém a invariança da ação discretizada (4.47). Para
restaurar a invariância, modi�camos as transformações de BRST discretiza-
das de forma que no limite do contínuo estas se reduzem às transformações
usuais do contínuo. No Capítulo 3, aplicamos estas idéias ao caso da partícula
relativística. Nesse caso, somente os termos cinéticos da ação foram levados
em conta para determinar quais modi�cações deveriam ser introduzidas nas
transformações.

Entretanto, no caso da teoria Sp(2,R), devemos analisar todos os termos
presentes na ação discretizada. Por esse motivo, as modi�cações nas trans-
formações devem conter termos de ordem ∆τ

N
. Isso nos permite escrever as

transformações da seguinte forma

δφ = δ0φ+ δ̃1φ, (A.1)

onde δ0 é termo da transformação de ordem zero em ∆τ
N

e δ̃1 a modi�cação
de ordem ∆τ

N
. As transformações de BRST dadas em (4.50) podem ser
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reescritas como
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(C3

i+1 − C3
i )P̄2i

+
1

2
(X2

i+1 −X2
i ),

δ̃1P̄1i =
∆τ

N
[−P2

i P̄1i −
1

2
P3
i P̄2i + A1

iC
3
i P̄1i + A2

iC
3
i − A3

iC
1
i P̄1i − A3

iC
2
i P̄2i],

δ0P̄2i = P
i
·Xi + 2C1

i P̄1i − 2C3
i P̄3i + (C1

i+1 + C1
i )P̄1i − (C3

i+1 + C3
i )P̄3i

+Pi · (Xi+1 −X,i ),

δ̃1P̄2i =
∆τ

N
[P1

i P̄1i + P3
i P̄3i − 2A1

iC
2
i P̄1i + 2A2

iC
1
i P̄1i + 2A2

iC
3
i P̄3i − 2A3

iC
2
i P̄3i],

δ0P̄3i =
1

2
P 2
i + 2C1

i P̄2i + 2C2
i P̄3i +

1

2
(C1

i+1 + C1
i )P̄2i + (C2

i+1 + C2
i )P̄3i,

δ̃1P̄3i =
∆τ

N
[
1

2
P1P̄2i + P2

i P̄3i − A1
iC

2
i P̄2i − A1

iC
3
i P̄3i + A2

iC
1
i P̄2i + A3

iC
1
i P̄3i],

δ0Pai = 0, a = 1, 2, 3

δ̃1Pai = 0,

δ0A
a
i = Pai ,

δ̃1A
a
i = 0,

δ0Πai = 0,

δ̃1Πai = 0,

δ0C
a
i = −1

2
fabdC

b
iC

d
i ,

δ̃1C
a
i = 0,

δ0C̄ai = −Πai

δ̃1C̄ai = 0. (A.2)
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Vamos demonstrar a nilpotência destas transfomações on-shell. As equa-
ções de movimento que provém da ação discretizada são

(PM
i − PM

i−1) +
∆τ

N
[−A1

iX
M − A2PM

i ] = 0,

Aai = 0, a = 1, 2

Pai = 0,

(XM
i+1 −XM

i ) +
∆τ

N
[−A2

iX
M
i − A3

iP
M
i ] = 0,

∆τ

N
[Π1i −

1

2
X2
i + 2C2

i P̄1i + C3
i P̄2i] = 0,

∆τ

N
[Π2i − Pi ·Xi − 2C1

i P̄1i + 2C3
i P̄3i], = 0,

−(Π3i − Πi−1) +
∆τ

N
[−1

2
P 2
i − C1

i P̄2i − 2C2
i P̄3i] = 0,

(C1
i+1 − C1

i ) +
∆τ

N
[P1

i − 2A1
iC

2
i + 2A2

iC
1
i ] = 0,

(C2
i+1 − C2

i ) +
∆τ

N
[P2

i − A1
iC

3
i + A3

iC
1
i ] = 0,

(C3
i+1 − C3

i ) +
∆τ

N
[P3

i − 2A2
iC

3
i + 2A3

iC
2
i ] = 0,

(P̄1i − P̄1i−1) +
∆τ

N
[−2A2

i P̄1i − A3
i P̄2i] = 0,

(P̄2i − P̄2i−1) +
∆τ

N
[2A1

i P̄1i − 2A3
i P̄3i] = 0,

(P̄3i − P̄3i−1) +
∆τ

N
[A1

i P̄2i − 2A2
i P̄3i] = 0,

∆τ

N
[C̄1i + P̄1i] = 0,

∆τ

N
[C̄2i + P̄2i] = 0,

(C̄3i+1 − C̄3
i )− ∆τ

N
P̄3i = 0,

(P3i − P3i−1) = 0,

(A3
i+1 − A3

i ) = 0, (A.3)

A nilpotência é escrita como

δ2φ = δ2
0φ+ δ0δ̃1φ+ δ̃1δ0φ+ δ̃2

1φ

= δ2
0φ+ δ0δ̃1φ+ δ̃1δ0φ, (A.4)



75

onde φ representa uma coordenada do espaço de fase extendido. No resul-
tado acima usamos o fato de que δ̃2

1 é da ordem de (∆τ
N

)2 e portanto pode ser
desprezado em todos os cálculos . Vamos analisar cada uma das transforma-
ções modi�cadas dadas em (4.51). A primeira transformação a ser analisada
é a de XM

i . A nilpotência é dada por

δ2XM
i = δ2

0X
M
i + δ0δ̃1X

M
i + δ̃1δ0X

M
i . (A.5)

O primeiro termo �ca

δ2
0X

M
i = δ[−C2

iX
M
i − C3

i P
M
i +

1

2
C3
i (PM

i − PM
i−1)]. (A.6)

Aplicando as transformações obtemos

δ2
0X

M
i = −δ0C

2
iX

M
i + C2

i δ0X
M
i − δ0C

3
i P

M
i + C3

i δ0P
M
i +

1

2
δ0C

3
i (PM

i + PM
i−1)

−1

2
C3
i (δ0P

M
i − δ0P

M
i−1). (A.7)

Substituindo as transformações obtemos

δ0X
2
i = C1

i C
3
iX

M
i + C2

i C
3
i P

M
i +

1

2
C2
i C

3
i (PM

i − PM
i−1) + 2C2

i C
3
i P

M
i + C3

i C
1
iX

M
i

+C3
i C

2
i P

M
i +

1

2
C3
i C

1
i (XM

i+1 −XM
i )− C2

i C
3
i (PM

i − PM
i−1)− 1

2
C3
i C

1
iX

M
i

−1

2
C3
i C

2
i P

M
i −

1

4
C3
i C

1
i (XM

i+1 −XM
i )− 1

2
C3
i C

1
i−1X

M
i−1 −

1

2
C3
i C

2
i−1P

M
i−1

−1

4
C3
i C

1
i−1(XM

i −XM
i−1). (A.8)

Simpli�cando a expressão acima podemos escrever

δ0X
2
i = +

1

2
C2
i C

3
i (PM

i − PM
i−1) +

1

2
C3
i C

1
i (XM

i+1 −XM
i )− C2

i C
3
i (PM

i − PM
i−1)

−1

2
C3
i C

1
iX

M
i −

1

2
C3
i C

2
i P

M
i −

1

4
C3
i C

1
i (XM

i+1 −XM
i )− 1

2
C3
i C

1
i−1X

M
i−1

−1

2
C3
i C

2
i−1P

M
i−1 −

1

4
C3
i C

1
i−1(XM

i −XM
i−1). (A.9)

Reescrevendo os seguintes termos como

C3
i C

1
i−1X

M
i−1 = C3

i C
1
iX

M
i−1 − C3

i (C1
i − C1

i−1)XM
i ,

C3
i C

2
i−1P

M
i−1 = C3

i C
2
i P

M
i−1 − C3

i (C2
i − C2

i−1)PM
i . (A.10)
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podemos reescrever

δ0X
2
i = +

1

2
C2
i C

3
i (PM

i − PM
i−1) +

1

2
C3
i C

1
i (XM

i+1 −XM
i )− C2

i C
3
i (PM

i − PM
i−1)

−1

2
C3
i C

1
i (XM

i −XM
i−1)− C2

i C
3
i (PM

i − PM
i−1)− 1

2
C3
i C

1
i (XM

i −XM
i−1)

+
1

2
C3
i (C1

i − C1
i−1)XM

i −
1

2
C3
i C

2
i (PM

i − PM
i−1)− 1

2
C3
i (C2

i − C2
i−1)PM

i

−1

4
C3
i C

1
i (XM

i+1 −XM
i ) +

1

4
C3
i C

1
i (XM

i −XM
i−1). (A.11)

Utilizando as equações de movimento e desprezando termos quadráticos em
∆τ
N

obtemos

δ2
0X

M
i = −1

2

∆τ

N
A3
iP

M
i C1

i C
3
i . (A.12)

O segundo termo de (A.5) é dado por

δ0δ̃1X
M
i = δ0[−∆τ

N
(
1

2
A1XM

i C
3
i +

1

2
A2
iP

M
i C3

i ). (A.13)

Aplicando a variação em cada termo do lado direito da expressão acima
podemos escrever

δ0δ̃1X
M
i = −1

2

∆τ

N
(δ0A

1
iX

M
i C

3
i + A1

i δ0X
M
i C

3
i + A1

iX
M
i δ0C

3
i + δ0A

2
iP

M
i C3

i

+A2
i δ0P

M
i C3

i + A2PM
i δ0C

3
i ). (A.14)

Substituindo as transformações obtemos

δ0δ̃1X
M
i = −∆τ

N
[[P1

iX
M
i + A1

i (−C2
iX

M
i +

1

2
C

3

i
(PM

i − PM
i−1)) + P2

i P
M
i

+A2
i (

1

2
C1
i (XM

i+1 +XM
i ) + C2

i P
M
i )]C3

i + [A1
iX

M
i + A2PM

i ](−2C2
i C

3
i ).(A.15)

Utilizando as equações de movimento chegamos a

δ0δ̃1X
M
i = 0. (A.16)

O último termo da nilpotência de XM
i é dado por

δ̃1δ0X
M
i = δ̃1[−C2

iX
M
i − C3

i P
M
i +

1

2
C3
i (PM

i − PM
i−1)]. (A.17)
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Aplicando as transformações encontramos

δ̃1δ0X
M
i = −δ̃1C

2
iX

M
i + C2

i δ̃1X
M
i − δ̃1C

3
i P

M
i + C3

i δ̃1P
M
i +

1

2
δ̃1C

3
i (PM

i − PM
i−1)

−1

2
C3
i (δ̃1P

M
i − δ̃1P

M
i−1). (A.18)

Substituindo as transformações temos

δ̃1δ0X
M
i = C2

i [−1

2

∆τ

N
(A1

iX
M
i C

3
i + A2

iC
3
i P

M
i )] + C3

i [
∆τ

N
(−1

2
P1
i (XM

i+1 +XM
i )

P2
i P

M
i + A1

iC
2
i (XM

i+1 +XM
i ) + A1

iC
2
i P

M
i + A2

iC
1
i (XM

i+1 +XM
i )− 1

2
A3
iC

1
i P

M
i ]

−1

2
C3
i [−1

2
P1
i−1(XM

i +XM
i−1)− P2

i−1P
M
i−1 + A1

i−1C
2
i−1(XM

i +XM
i−1)

+A1
i−1C

2
i−1P

M
i−1 + A2

i−1C
1
i−1(XM

i +XM
i−1)− 1

2
A3
i−1C

1
i−1P

M
i−1]. (A.19)

Usando as equações de movimento obtemos

δ̃1δ0X
M
i =

1

2

∆τ

N
A3
iP

M
i C1

i C
3
i . (A.20)

Substituindo os resultados encontrados acima podemos concluir

δ2XM
i = 0. (A.21)

A segunda transformação analisada é para PM
i . A niltpotência é dada por

δ2PM
i = δ2

0P
M
i + δ0δ̃1P

M
i + δ̃1δ0P

M
i . (A.22)

O primeiro termo da expressão é calculado por

δ2
0P

M
i = δ0[C1

iX
M
i + C2

i P
M
i +

1

2
C1
i (XM

i+1 −XM
i )]. (A.23)

Aplicando as transformações chegamos a

δ2
0P

M
i = δ0C

1
iX

M
i − C1

i δ0X
M
i + δ0C

2
i P

M
i − C2

i δ0P
M
i +

1

2
δ0C

1
i (XM

i+1 −XM
i )

+
1

2
C1
i (δ0X

M
i+1 − δ0X

M
i ). (A.24)
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Substituindo as transformações obtemos

δ2
0P

M
i = −2C1

i C
2
iX

M
i + C1

i C
2
iX

M
i + C1

i C
3
i P

M
i −

1

2
C1
i C

3
i (PM

i − PM
i−1)

C1
i C

3
i P

M
i − C2

i C
1
iX

M
i +

1

2
C2
i C

1
i (XM

i+1 −XM
i )− 1

2
C1
i C

2
i (XM

i+1 −XM
i )

+
1

2
C1
i C

2
i+1X

M
i+1 + C1

i C
3
i+1P

M
i+1 −

1

4
C1
i C

3
i+1(PM

i+1 − PM
i )

−1

2
C1
i C

2
iX

M
i −

1

2
C1
i C

3
i P

M
i +

1

4
C1
i C

3
i (PM

i − PM
i−1). (A.25)

Simpli�cando a expressão acima e em seguida utilizando as equações de mo-
vimento, podemos escrever

δ2
0P

M
i = −∆τ

N
A3
iP

M
i C1

i C
2
i −

1

2

∆τ

N
PM
i C1

i P3
i . (A.26)

O segundo termo de (A.21) é dado por

δ0δ̃1P
M
i = δ0[

∆τ

N
(P1

i (XM
i+1 +XM

i ) + P2
i P

M
i − A1

i (X
M
i+1 +XM

i )C2
i

−A1
iP

M
i C3

i + A2
i (X

M
i+1 +

1

2
XM
i )C1

i +
1

2
A3
iC

1
i P

M
i ]. (A.27)

Portanto podemos escrever

δ0δ̃1P
M
i = δ0[

∆τ

N
(δ0P1

i (XM
i+1 +XM

i )− P1
i (δ0X

M
i+1 + δ0X

M
i ) + δ0P2

i P
M
i

−P2
i δ0P

M
i − δ0A

1
i (X

M
i+1 +XM

i )C2
i − A1

i (δ0X
M
i+1 + δ0X

M
i )C2

i

+A1
i (X

M
i+1 +XM

i )δ0C
2
i − δ0A

1
iP

M
i C3

i − A1
i δ0P

M
i C3

i − A3
iP

M
i δ0C

3
i

+δ0A
2
i (X

M
i+1 +

1

2
XM
i )C1

i + A2
i (δ0X

M
i+1 +

1

2
δXM

i )C1
i − A2

i (X
M
i+1 +XM

i )δ0C
1
i

+
1

2
δ0A

3
iC

1
i P

M
i ] + A3

i δ0C
1
i P

M
i − A3

iC
1
i δ0P

M
i ]. (A.28)

Substituindo as transformações e em seguida usando as equações de movi-
mento obtemos

δ0δ̃1P
M
i = −1

2

∆τ

N
(−PM

i C1
i P3

i − 3A3
iP

M
i C1

i C
2
i ), (A.29)
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cujo último termo da expressão (A.21) é dado por

δ̃1δ0P
M
i = δ̃1[C1XM

i + C2
i P

M
i +

1

2
C1
i (XM

i+1 −XM
i )]. (A.30)

Desenvolvendo a expressão acima obtemos

δ̃1δ0P
M
i = δ̃1C

1XM
i − C1

i δ̃1X
M
i + δ̃1C

2
i P

M
i − C2

i δ̃1P
M
i

+
1

2
δ̃C1

i (XM
i+1 −XM

i ) +
1

2
C1
i (δ̃1X

M
i+1 − δ̃1X

M
i ). (A.31)

Substituindo as transformações e utilizando as equações de movimento ob-
temos

δ̃1δ0P
M = −1

2

∆τ

N
A3
iP

M
i C1

i C
2
i . (A.32)

De acordo com os resultados obtidos acima, podemos concluir

δ2PM
i = 0. (A.33)

Vamos agora analisar as transformações dos momentos dos fantasmas. O
primeiro é dado por

δ2P̄1i = δ2
0P̄1i + δ0δ̃1P̄1i + δ̃1δ0P̄1i. (A.34)

O primeiro termo da expressão acima é dado por

δ2
0P̄1i = δ0[

1

2
X2 − 2C2

i P̄1i − C3P̄2i +
1

2
(X2

i+1 −X2
i )− (C2

i+1 − C2
i )P̄1i

−1

2
(C3

i+1 − C3
i )P̄3i. (A.35)

Desenvolvendo a expressão acima obtemos

δ2
0P̄1i = δ0X

M
i XMi − 2δ0C

2
i P̄1i + 2C2

i δ0P̄1i − δ0C
3P̄2i + C3

i δ0P̄2i

+(δ0X
M
i+1XMi+1 − δ0X

M
i XMi)− (δ0C

2
i+1 − δC2

)i)P̄1i + (C2
i+1 − C2

i )δ0P̄1i

−1

2
(δ0C

3
i+1 − C3

i )P̄3i +
1

2
(C3

i+1 − C3
i )δ0P̄3i. (A.36)

Substituindo as transformações podemos escrever
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δ2
0P̄1i = XM

i (−C2XM
i − C3

i P
M
i +

1

2
C3
i (PM

i − PM
i−1) + 2C1

i C
3
i P̄1i + 2C2

i (
1

2
X2
i

−2C2
i P̄1i − C3

i P̄2i +
1

2
(X2

i+1 −X2
i )− (C2

i+1 − C2
i )P̄1i −

1

2
(C3

i+1 − C3
i )P̄2i)

+2C2
i C

3
i P̄2i + C3

i (Pi ·Xi + 2C1
i P̄2i − 2C3

i P̄3i + Pi · (XM
i+1 −XM

i ) + (C1
i+1

−C1
i )P̄1i − (C3

i+1 − C3
i )P̄3i +XM

i+1(−C2
i+1X

M
i+1 − C3

i+1P
M
i+1 +

1

2
C3
i+1(PM

i+1 − PM
i )

−XM
i (−C2

iX
M
i − C3

i P
M
i +

1

2
C3
i (PM

i − PM
i−1) + (2C1

i+1C
3
i+1 − 2C1

i C
3
i )P̄1i

+(C3
i+1 − C3

i )[Pi ·Xi + 2C2
i P̄1i − 2C3

i P̄3i + Pi · (Xi+1 −Xi) + (C2
i+1 − C2

i )P̄1i

−(C3
i+1 − C3

i )P̄3i] + (C2
i+1 − C2

i )[
1

2
X2
i − 2C2

i P̄1i − C3
i P̄2i +

1

2
(X2

i+1 −X2
i )

−(C2
i+1 − C2

i )P̄1i −
1

2
(C3

i+1 − C3
i )P̄2i] + (C2

i+1C
3
i+1 − C2

i C
3
i )P̄2i. (A.37)

Simpli�cando a expressão acima e em seguida usando as equações de movi-
mento podemos escrever

δ2
0P̄1i =

∆τ

N
[
1

2
A3
iC

1
iX

2
i +

1

2
PMiX

M
i P3

i + A3
iPMiX

M
i C

2
i ]. (A.38)

O segundo termo é escrito como

δ0δ̃1P̄1i =
∆τ

N
(δ0P2

i P̄1i − P2
i δP̄1i +

1

2
δ0P3

i P̄2i −
1

2
P3
i δ0P̄2i

−δ0A
1
iC

3
i P̄1i − A1

i δ0C
3
i P̄1i + A1

iC
3
i δP̄1i − δ0A

2
iC

3
i P̄2i − A2

i δ0C
3
i P̄2i + A2

iC
3
i δ0P̄2i

+δ0A
3
iC

1
i P̄1i + A3

i δ0C
1
i P̄1i − A3

iC
1
i δ0P̄1i + δ0A

3
iC

2
i P̄2i + A3

i δ0C
2
i P̄2i)

−A3
iC

2
i δ0P̄2i). (A.39)

substituindo as transformações e em seguida usando as equações de movi-
mento

δ0δ̃1P̄1i =
∆τ

N
[−1

2
PMiX

M
i P3

i −
1

2
A3
iX

2
i C

1
i − C2

i P3
i P̄2i

−A3
iPMiX

M
i C

2
i + 2A3

iC
1
i C

2
i P̄1i − C3

i P3
i P̄3i + 2A3

iC
2
i C

3
i P̄3i]. (A.40)

enquanto o terceiro termo é dado por

δ̃1δ0P̄1i = δ̃1[
1

2
X2 − 2C2

i P̄1i − C3
i P̄2i +

1

2
(X2

i+1 −X2
i )− (C2

i+1 − C2
i )P̄1i

−1

2
(C3

i+1 − C3
i )P̄2i]. (A.41)
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Desenvolvendo o termo acima

δ̃1δ0P̄1i = [δ̃1X ·Xi − 2δ̃1C
2
i P̄1i + 2C2

i δ̃1P̄1i − δ̃1C
3
i P̄2i + C3

i δ̃1P̄2i

(δ̃1Xi+1 ·Xi+1 − δ̃1Xi ·Xi)− (δ̃1C
2
i+1 − δ̃1C

2
i )P̄1i + (C2

i+1 − C2
i )δ̃1P̄1i

+
1

2
(δ̃1C

3
i+1 − C3

i )P̄2i −
1

2
(C3

i+1 − C3
i )δ̃1P̄2i]. (A.42)

Substituindo as transformações e utilizando as equações de movimento ob-
temos

δ̃1δ0P̄1i =
∆τ

N
[C2

i P3
i P̄2i − 2A3

iC
1
i C

2
i P̄1i + C3P3

i P̄3i − 2A3
iC

2
i C

3
i P̄3i.(A.43)

Observando os resultados acima concluimos que

δ2
0P̄1i = 0. (A.44)

A segunda transformação para os fantasmas é de P̄2i . A nilpotência será
dada por

δ2P̄2i = δ2
0P̄2i + δ0δ̃1P̄2i + δ̃1δ0P̄2i. (A.45)

Calculando o primeiro termo temos

δ2
0P̄2i = δ0[Pi ·Xi + 2C1

i P̄1i − 2C3
i P̄3i − Pi · (XM

i+1 −XM
i ) + (C1

i+1 − C1
i )P̄1i

−(C3
i+1 − C3

i )P̄3i]. (A.46)

que pode ser reescrito como

δ2
0P̄2i = δ0Pi ·Xi + Pi · δ0Xi + 2δ0C

1
i P̄1i − 2C1

i δ0P̄1i − 2δ0C
3
i P̄3i + C3

i δ0P̄3i

−δ0Pi · (XM
i+1 −XM

i )− Pi · (δ0Xi+1 − δ0Xi) + (δ0C
1
i+1 − δ0C

1
i )P̄1i

−(C1
i+1 − C1

i )δ0P̄1i − (δ0C
3
i+1 − δ0C

3
i )P̄3i + (C3

i+1 − C3
i )δ0P̄3i. (A.47)

Substituindo as transformações e usando as equações de movimento chega-
mos a

δ2
0P̄2i =

∆τ

N
[
1

2
A3
iC

1
i PMiX

M
i +

1

2
P2
i P3

i + A3
iP

2
i C

2
i ]. (A.48)

o segundo termo é calculado por
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δ0δ̃1P̄2i = δ0[P1
i P̄1i − P3

i P̄3i − 2A1
iC

2
i P̄1i + 2A3

iC
3
i P̄1i + 2A2

iC
3
i P̄3i

−2A3
iC

2
i P̄3i], (A.49)

que é reescrito como

δ0δ̃1P̄2i = δ0P1
i P̄1i − P1

i δ0P̄1i − δ0P3
i P̄3i + P3

i δ0P̄3i − 2δ0A
1
iC

2
i P̄1i − 2A1

i δ0C
2
i P̄1i

+2A1
iC

3
i δ0P̄1i + 2δ0A

3
iC

3
i P̄1i + 2A3

i δ0C
3
i P̄1i − 2A3

iC
3
i δ0P̄1i + 2δA2

iC
3
i P̄3i

+2A2
i δ0C

3
i P̄3i + 2A2

iC
3
i δ0P̄3i − 2δ0A

3
iC

2
i P̄3i − 2A3

i δ0C
2
i P̄3i

+2A3
iC

2
i δ0P̄3i]. (A.50)

Substituindo as transfomações na expressão acima e usando as equações de
movimento obtemos

δ0δ̃1P̄2i =
∆τ

N
[−2A3

iC
1
i C

3
i P̄3i−A3

iC
2
i P

2
i + 2A3C1

i C
2
i P̄2i−

1

2
P2
i P3

i +C1P3
i P̄2i,

(A.51)
o terceiro termo é calculado por

δ̃1δ0P̄2i = δ̃1[Pi ·Xi + 2C1
i P̄1i − 2C3

i P̄3i − Pi · (Xi+1 −Xi) +

+(C1
i+1 − C1

i )P̄1i − (C3
i+1 − C3

i )P̄3i]. (A.52)

Desenvolvendo essa expressão e aplicando as equações de movimento

δ̃1δ0P̄2i =
∆τ

N
[−1

2
A3
iPMiX

M
i C

1
i − C1

i P3
i P̄2i − 2A3

iC
1
i C

2
i P̄2i + 2A3

iC
1
i C

3
i P̄3i].

(A.53)
Os resultados permitem concluir que

δ2P̄2i = 0. (A.54)

Por �m, vamos analisar a última transformação dos fantasmas P̄3i. A condi-
ção de nilpotência é escrita como

δ2P̄3i = δ2
0P̄3i + δ0δ̃1P̄3i + δ̃1δ0P̄3i. (A.55)

Substituindo as transformações obtemos

δ2
0P̄3i = δ0[

1

2
P 2 + C1

i P̄2i + 2C2
i P̄3i +

1

2
(C1

i+1 − C1
i )P̄2i

(C2
i+1 − C2

i )P̄3i], (A.56)
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que é reescrito como

δ2
0P̄3i = δ0Pi · Pi + δ0C

1
i P̄2i − C1

i δ0P̄2i + 2δ0C
2
i P̄3i − 2C2

i δ0P̄3i

+
1

2
(δ0C

1
i+1 − δ0C

1
i )P̄2i −

1

2
(C1

i+1 − C1
i )δ0P̄2i + (δ0C

2
i+1 − δ0C

2
i )P̄3i

−(C2
i+1 − C2

i )P̄3i, (A.57)

e substituindo as transformações e em seguida utilizando as equações de
movimento obtemos

δ2
0P̄3i = 0. (A.58)

O segundo termo �ca

δ0δ̃1P̄3i = δ0[
1

2
P1
i P̄2i−P3

i P̄3i+A1
iC

2
i P̄2i+A1

iC
3
i P̄3i−A2

iC
1
i P̄2i−A3

iC
1
i P̄3i]. (A.59)

Substituindo as transformações e usando as equações de movimento obtemos

δ0δ̃1P̄3i =
∆τ

N
[C1

i P3
i P̄3i + 4A3

iC
1
i C

2
i P̄3i +

1

2
A3
iP

2
i C

1
i ], (A.60)

e o terceiro termo é calculado pela expressão

δ̃1δ0P̄3i = δ̃1[
1

2
P 2
i + C1

i P̄2i + 2C2
i P̄3i +

1

2
(C1

i+1 − C1
i )P̄2i + (C2

i+1 − C2
i )P̄3i].

(A.61)
Substituindo as transformações e usando as equações de movimento obtemos

δ̃1δ0P̄3i =
∆τ

N
[−1

2
A3P 2

i C
1
i − C1

i P3
i P̄3i − 4A3

iC
1
i C

2
i P̄3i]. (A.62)

Observando os resultados encontrados para essa última transformação con-
cluimos que

δ2 ¯P3i = 0. (A.63)

As outras transformações não se modi�cam e portanto são nilpotentes como
no caso contínuo. Portanto os resultados obtidos neste apêndice nos permi-
tem concluir que as transformações são nilpotentes on-shell.
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