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Resumo

Neste trabalho empregamos a técnica de BF'V para quantizar uma teoria
com simetria de gauge SP(2,R). Para isso em primeiro lugar, analisamos
o critério de admissibilidade de Govaerts para as condicoes de gauge para a
teoria da particula relativistica, cujo propagador ¢ calculado nos gauges co-
variante, canonico e do cone de luz por meio da discretizacao da integral de
trajetoria e esta mostra que a acao discretizada perde a invariancia por trans-
formacoes de BRST; e para restaurar sua invariancia é necessario modificar
as transformacoes de BRST.

Em segundo lugar, aplicamos a técnica de BFV para uma teoria com dois
tempos e simetria de gauge SP(2,R), em seguida, analisamos o efeito da dis-
cretizacao e mostramos que a agao discretizada perde a invariancia por trans-
formacoes de BRST. Neste caso, as modificacdes necessarias incluem termos
de ordem % nas transformacoes de BRST e estas passam a ser nilpotentes
apenas on-shell. Ao fixarmos um tempo fisico de duas formas diferentes ob-
tivemos o propagador de uma particula relativistica em d dimensoes e de um
oscilador harmonico invertido em d — 2 dimensoes espaciais.



Abstract

In this work we employ the BFV technique to quantize a theory with
gauge symmetry Sp(2,R). First, we analyze the admissibility criterion of
Govaerts for gauge conditions on the theory of a relativistic particle. The
propagator for the relativistic particle is calculated in the covariant, canonical
and light cone gauges. The discretization of the path integral shows that the
discretized action looses invariance by the BRST transformations. To restore
the invariance it is necessary to include modified transformations.

Secondly, we apply the BF'V technique to a theory with two times and
gauge symmetry Sp(2,R). We analyze the effect of discretization and show
that the discretized action looses the BRST invariance. In this case, it is
necessary to change the transformations including terms of order % , which
become nilpotent only on-shell. Fixing the physical time in two different
ways we get the propagator for a relativistic particle in d dimensions and for
an inverted harmonic oscillator in d — 2 spatial dimensions.



Sumario

1 Introducgao 1
2 Sistemas Hamiltonianos Vinculados 5
2.1 Formalismo Hamiltoniano . . . .. .. .. .. ... ... ... 5
2.2 Vinculos de Primeira Classe e Transformagoes de Gauge . .. 7
2.3 Fixacgode Gauge . . . . . . . ..o 8
2.4 Quantizacao por Integrais de Trajetoria em Mecanica Quantica 9
2.5 Quantizacao por Integrais de Trajetoria em Teorias de Gauge . 11
2.5.1 Método de Faddeev-Popov . . . . . .. ... ... ... 11
2.5.2 Método BFV . . . ... 12
3 Quantizacao BRST da Particula Relativistica 15
3.1 Introducao . . . . . . . .. .. .. . ... 15
3.1.1 Condicio Covariante de Gauge \(7) = f(\) . . . ... 18
3.1.2  Condigdo de Gauge Canonico 2° —7=0 . ... .. .. 19
3.1.3 Condi¢ao de Gauge do Cone de Luz z* —7=0 . ... 20
3.2 Admissibilidade das Condicoes de Gauge . . . . . . .. .. .. 22
3.3 Propagador para a Particula Relativistica no Gauge A = f(\) 25
3.3.1 Invariancia da Acao Discretizada . . . . .. ... ... 26

3.3.2 Propagador Discretizado para o Gauge Covariante A=
OO o 27
3.4 Propagador para a Particula Relativistica no Gauge 2° — 7 =0 32
3.5 Propagador para a Particula Relativistica no Gauge 2™ —7 =0 37
4 Quantizacao BRST e Simetria de Gauge Sp(2,R) 43
4.1 Introducao . . . . . . . . . . ... 43
4.2 Formulagao Classica . . . . . . ... .. ... ... ... ... 43
4.2.1 Particula Relativistica Livre . . . . . . ... .. .. .. 47
4.2.2  Oscilador Harmoénico em d — 2 Dimensoes . . . . . . . 49
4.3 Quantizacdo BRST Com Simetria de Gauge Sp(2,R) . . . . . 51
4.4 Propagador no Formalismo BFV . . . .. ... ... ... .. 25

il



SUMARIO iv
4.4.1 Invariancia da Ag¢do Discretizada . . . . . .. ... .. 55
4.4.2 Propagador . . . . ... .. ... .. o7
4.4.3 Propagador da Particula Relativistica em d Dimensoes 65

4.4.4 Propagador para o Oscilador Harmonico em d — 2 Di-
MENSOES . . . v v v e e e e e e e e e 66
5 Conclusao e Perspectivas 70
A Nilpoténcia das Transformacgoes de BRST 72
Bibliografia 84



Capitulo 1

Introducao

A simetria conforme em um espacgo com d dimensoes é realizada pelo grupo
SO(d,2) cuja agao nesse espaco ocorre de forma nao linear. Entretanto,
em 1936, Dirac [1] introduziu uma formulagao para uma teoria de campos
manifestamente covariante na qual esse grupo age de forma linear e essa
nova formulacgao foi desenvolvida em um espaco com d + 2 dimensoes, com
duas componentes temporais. Em funcao de uma simetria de gauge presente
nesta formulacao de Dirac, foi possivel descrever teorias em um espaco com
d dimensoes.

Na década de 70, Marnelius [2| ao estudar a formulagao de uma teoria
conforme em um espago com d + 2 dimensdes mostrou a existéncia de uma
equivaléncia entre uma particula massiva em um espaco de Minkowski em d
dimensoes e uma particula sem massa que se propaga num espaco AdSy 1,
utilizando o formalismo introduzido por Dirac [1] e aplicado & teoria de uma
particula. Além disso, diversas generalizacoes foram feitas a fim de introduzir
fermions na teoria |3, 2, 4]. A implementagdo da quantizagao desses modelos
pela técnica de BRST (Bechi, Rouet,Stora, Tyltin)foi feita em [5].

Na década de 90, este modelo foi estudado num outro contexto por Mon-
tesinos [6, 7| o qual introduziu uma simetria de gauge SI(2,R) a fim de obter
uma teoria que descrevesse a relatividade geral. Com isso, obteve as solugoes
classicas que descrevem: uma particula relativistica com massa e um oscila-
dor harmonico apoés resolver as equacgoes de movimento para duas escolhas
de gauge diferentes.

No final de década de 90, com os avancos das teoria das cordas no estudo
dos aspectos nao perturbativos, Bars e colaboradores, observaram evidéncias
de que a descri¢ao das teorias de unificacao poderia incluir duas coordenadas
temporais |8, 9, 10, 11, 12, 13, 14, 15, 16]. A partir desse momento, eles estu-
daram como implementar essas teorias [17, 18]. E em 1998, reformularam a
teoria para uma particula sem massa e introduzindo uma simetria de gauge



Sp(2,R) e uma simetria global SO(d, 2) agindo linearmente num espago com
d + 2 dimensoes [19, 20, 21]. Desta forma, mostraram que esta teoria era
capaz de descrever, em espacos com dimensao mais baixa, sistemas que apa-
rentemente nao sao relacionados, como equivalentes: a particula relativistica
com ou sem massa, o atomo de hidrogénio e o oscilador harmonico. Es-
ses resultados permitiram a estes autores proporem que o modelo com dois
tempos descrevesse de forma unificada estes sistemas. As transformacoes
de gauge que conectam estes diversos sistemas foram chamadas dualidade e
esta reformulacao de fisica com dois tempos. A simetria de gauge torna a
teoria unitaria removendo os estado de norma negativa resultantes da intro-
dugao das duas coordenadas temporais. Em seguida, Bars e colaboradores
generalizaram a formulacao a fim de introduzir férmions o que implicou na
existéncia de uma surpersimetria na linha mundo [22]| e posteriormente no
espago-tempo [23]. Também foram realizadas por eles aplicagoes da formu-
lacdo para teoria de cordas, branas e teoria M [24, 25, 26]. Em seguida, eles
aplicaram o formalismo a fim de incluir campos de fundo gravitacionais e
de gauge [27] e introduziram o formalismo de segunda quantizacao, ou seja,
teoria de campos, descrito em [28, 29, 30, 31].

Em 2001, Bars e colaboradores comecaram a estudar a relacao da formu-
lacdo de fisica com dois tempos [32, 33, 34, 35, 36| com os twistors propostos
por Penrose [37| e em 2006, obtiveram uma formulacio que descreve o mo-
delo padrao das particulas como uma escolha de gauge da formulacao com
dois tempos|38].Outras aplicacoes da teoria com dois tempos foram obtidas
em (39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49| e algumas revisoes que discutem
o desenvolvimento do formalismo estdo descritas em |50, 51|. Entretanto,
todos os resultados obtidos por esta formulacao utilizam o método de quan-
tizacao de operadores. Neste trabalho introduzimos o formalismo de integrais
de trajetoria para o modelo mais simples com dois tempos.

A formulacao de integrais de trajetéria para a mecanica quantica foi de-
senvolvida por Feynman [52] e posteriormente, no final da década de 60,
Faddeev e Popov [53, 54| introduziram a formula¢ido para uma teoria de
gauge usando um par de varidveis grassmanianas: os fantasmas de Faddeev-
Popov. Entretanto, esse método nao funciona se a algebra de gauge nao
¢ fechada,ou seja, as constantes de estrutura sao funcoes das coordenadas.
Uma forma de resolver esse problema é introduzir campos auxiliares, ou seja,
campos que nao possuem dindmica |55, 56|, mas nao existe uma forma geral
de introduzir estes campos auxiliares. Em vista disso, uma outra forma de
implementacgao da integral de trajetoria foi desenvolvida por Batalin, Frad-
kin e Vilkoviski [57, 58] que ¢ denominada de método BE'V e esta nao sofre
do problema apresentado pelo método de Faddeev. O formalismo BFV se
baseia na invariancia de BRST [59, 60].



Quanto a implementacao do formalismo BFV para uma teoria da par-
ticula relativistica esta foi realizada por Henneaux e Teitelboim|[61]. Em
seu trabalho, os autores calcularam o propagador da particula relativistica
usando uma escolha de gauge covariante. Num outro trabalho, Teitelboim
|62] mostrou que devido & simetria de gauge da teoria da particula relativis-
tica, as Unicas escolhas de gauge possiveis eram as do tipo covariante. Esse
resultado excluiu as condicoes de gauge canonicas.

Na decada de 80, Govaerts |63, 64, 65| introduziu um outro critério de
admissibilidade para as escolhas de gauge no formalismo BFV. Em seus tra-
balhos, ele propos uma relagao entre a admissibilidade e a existéncia de copias
de Gribov [66]. Ainda sobre o trabalho original de copias de Gribov pode-se
encontrar uma revisao em [67].

Num outro momento, Vergara e colaboradores desenvolveram um método
para implementar as condigoes de gauge canonicas [68, 69| e uma outra abor-
dagem foi feita por Tkemori|70]. Para calcular o propagador, ele analisou o
comportamento da teoria apoés a discretizacao. Nessa analise, Ikemori obser-
vou que a agao discretizada perde a invariancia em relacao as transformacoes
discretizadas de forma ingénua. Para solucionar esse problema, ele sugeriu
modificar as transformacoes de gauge discretizadas. Essa idéia também foi
aplicada a uma teoria dada em |71, 72|. Com essa anilise, mostrou um cél-
culo explicito do propagador da particula relativistica num gauge canonico
[70] sem as modificagoes feitas por Vergara e colaboradores.

Em nosso trabalho, vamos em primeiro lugar discuir o critério de admis-
sibilidade proposto por Govaerts |63, 64, 65, 73]. Em seguida, calculamos o
propagador da particula relativistica utilizando o método BFV e seguindo a
analise introduzida por Ikemori [70]. Num segundo momento, aplicamos as
técnicas usadas no caso da particula relativistica para o caso da teoria com
dois tempos, ou seja, com simetria de gauge Sp(2,R) [74].

No Capitulo 2, fazemos uma revisao dos conceitos da teoria de vinculos
[75, 76], sua relagdo com as simetrias de gauge e discutimos sua quantizagao
por meio da integragao de trajetoria. Em um primeiro momento, definimos
a integral de trajetoria para a mecanica quantica e depois apresentamos os
métodos de Faddeev e Batalin, Fradkin e Vilkoviski.

No Capitulo 3, faremos a aplicacao do método BFV para o caso da par-
ticula relativistica. Para isso, analisamos o critério proposto por Govaerts
|64, 65, 73, 63] sobre a admissibilidade das escolhas de gauge. Em seguida,
discretizamos a expressao do propagador e analisamos sua invarianca apoés
a discretizacao do tempo. Finalizando esse capitulo, calculamos explicita-
mente os propagadores para a particula relativistica nos gauges covariante,
canodnico e do cone de luz.

No Capitulo 4, introduzimos a formulagao da teoria com dois tempos [19]



e analisamos sua estrutura de vinculos. Na sequéncia mostramos os resulta-
dos obtidos por Bars e colaboradores que descrevem a particula relativistica
em d dimensoes e o oscilador harmonico em d — 2 dimensoes espaciais [20].
Em seguida, construimos o formalismo BFV e discretizamos o propagador,
analisamos a invariancia da acao apoés a discretizagao e finalmente calculamos
o propagador.

No Capitulo 5, analisamos as conclusoes obtidas no capitulo 3 em relacao
ao critério proposto por Govaerts e os resultados obtidos no capitulo 4. Pos-
siveis trabalhos futuros com relacao a teoria com dois tempos sao discutidos
nesse trabalho.



Capitulo 2

Sistemas Hamiltonianos
Vinculados

2.1 Formalismo Hamiltoniano

Vamos considerar um sistema fisico com N graus de liberdade descrito pela
acao

S:/ drL(z',i',7), i=1,---N, (2.1)

T1

onde L & funcdo das coordenadas generalizadas z°, das velocidades genera-
lizadas %; e do tempo 7. As equacoes de movimento classicas obtidas pela
variagao de (2.1), sujeitas as condi¢oes dz' = 0 nos extremos, sao

oL d (0L

Podemos reescrever essas equacoes da seguinte forma

L ., 9L &L

el —_ — — N N . 2.
(01039) " 0zt 0xidii (2:3)
O termo
9°L
D50 (2:4)

é chamado de matriz hessiana. Se o determinante desta matriz for nulo, dize-
mos que o sistema é singular ou vinculado |75, 76] e nao poderemos determi-
nar univocamente as aceleracoes em funcao das coordenadas generalizadas e
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de suas velocidades. Neste caso, existem diferentes evolucoes temporais para
uma mesma condi¢ao inicial.

A transicao para o formalismo Hamiltoniano é feita definindo o momento
candnico conjugado
. OL

b= i

Para sistemas vinculados nao é possivel expressar através da expressao (2.5)
todas as velocidades #; como funcao dos momentos e das coordenadas, ou
seja, nem todos os momentos p’ sdo independentes, mas existem relacoes

(2.5)

Om(z,p) =0, m=1,---, M, (2.6)

que seguem de (2.5) e que sdo chamados de vinculos priméarios. Esses vincu-
los definem uma hipersuperficie no espaco de fase denominada superficie de
vinculos primarios que denotaremos por I',.

A hamiltoniana canoénica é dada por

H = pii' — L(a',d',7), (2.7)
que devido & expressao (2.6) é valida somente na superficie de vinculos primé-

rios. Para estendermos esta definicao para todo o espaco de fase, definimos
outra hamiltoniana Hp dada por

Hr = H+ "6, (2.8)

onde os ¢™ sao funcoes arbitrarias de x e p.

Como os vinculos ¢,, podem ter colchetes de Poisson nao nulos com al-
guma variavel canonica, devemos calcular os colchetes antes de levarmos em
conta as equagoes dos vinculos. Para lembrarmos deste fato, Dirac [75] in-
troduziu a nocao de igualdade fraca, escrevendo os vinculos como

Om = 0. (2.9)

Assim, podemos escrever as equacoes de movimento geradas por esta nova
hamiltoniana da seguinte forma

i'i ~ {xl>H}+cm{xla¢m}
P~ P HY + M ) (2.10)

A fim de construirmos uma teoria consistente, devemos impor a conser-
vacao temporal dos vinculos

Om = 0= {dm, H} + { b, dn} ~ 0. (2.11)

Analisando esta equacao, observamos trés possibilidades:
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1. a equacao é identicamente satisfeita;
2. essa equacao determina as fungoes arbitrarias ¢ univocamente;

3. essa equacao pode dar origem a novos vinculos, os chamados vinculos
secundarios e neste caso, deve-se impor a consisténcia desses vinculos
no tempo até que nao haja mais vinculos.

Na anélise, feita por Dirac [76], usamos uma classificagao que divide os vin-
culos em primeira classe e segunda classe. Um vinculo, ou mais geralmente,
uma fungao A(x,p) é dito de primeira classe se seus colchetes de Poisson com
todos os vinculos sao fracamente nulos, isto é

{A, ém} =0, (2.12)

enquanto os de segunda classe, sao aqueles que tem pelo menos um dos
colchetes de Poisson da fungdo A(x,p) com algum vinculo, ndo fracamente
nulo

{A(z,p), ¢} # 0. (2.13)

2.2 Vinculos de Primeira Classe e Transforma-
coes de Gauge

Vamos analisar a evolugao temporal de sistemas com vinculos de primeira
classe. Para isso, consideramos uma configuragdo inicial no espago de fase
(0, po) em t = to. Esta evolucdo temporal de uma quantidade F(q,p) sera
dada por

F={F H}+ "{F, én}. (2.14)

Devido a existéncia de fungoes arbitrarias nas equacoes de movimento con-
cluimos que nao poderemos determinar univocamente sua evolugao temporal.
Neste caso existem conjuntos de pontos dados por pares de x e p que corres-
pondem & mesma configuracao fisica. Este conjunto de pontos fisicamente
equivalentes definem uma classe de equivaléncia. Surge entao a seguinte per-
gunta: existe alguma transformacgao que conecte os pontos de uma mesma
classe de equivaléncia? Para respondermos esta questao vamos calcular a
variacao entre dois conjuntos de pontos obtidas a partir de duas escolhas
funcoes arbritarias. Na escolha da funcao arbitraria ¢, F' sera dado por

F(1) = F(0) + FAT = F(0) + {F, H}AT + ¢™{F, ¢ }AT. (2.15)
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Ja na escolha de uma outra funcao u™, obtemos o valor de F

F'(r) = F(0) + {F, HYAT + u™{F, ¢, } AT, (2.16)

Calculando a variacao da funcao F obtemos

OF = F(1) — F'(1) = 0v™{F, ¢ }, (2.17)

onde 0v™ = (™ — u™)AT.

A partir desta expressao podemos concluir que os vinculos de primeira
classe geram as transformagoOes canonicas que conectam os diversos conjun-
tos de pontos dentro da classe de equivaléncia. Estas tranformacoes sao
chamadas de transformacoes de gauge hamiltonianas.

2.3 Fixacao de Gauge

Como foi discutido nas secoes anteriores, a existéncia de vinculos de primeira
classe acarreta que os estados fisicos podem ser descritos por mais de um
conjunto de variaveis canonicas, causando ambigiiidades na teoria. Para
eliminarmos tais ambigiliidades, impomos certas condi¢oes extras a nossa
teoria, chamadas de condigoes de gauge. As condicoes de gauge podem ser:

1. condig¢oes Canonicas de Gauge: quando impomos restri¢coes as variaveis
canonicas do sistema. Ex.: Gauge de Coulomb na eletrodinamica;

2. condicoes Covariantes de Gauge: quando restringimos a derivada tem-
poral dos multiplicadores de Lagrange. Ex.: Gauge do tempo proprio
na teoria da particula relativistica.

Para que as ambigiiidades sejam eliminadas, nossas condigoes de gauge devem
satisfazer

1. a acessibilidade da escolha de gauge, ou seja, dado um conjunto de
variaveis canonicas, deve existir uma transformacao de gauge que leve
o conjunto inicial a outro que satisfaca a condicao de gauge.

2. a fixacao de gauge deve ser completa, ou seja, dada uma condicao de
gauge Y, esta deve satisfazer a seguinte condicao

{x, dm} # 0. (2.18)

Ao observarmos a expressao acima, notamos que apo6s a fixacao de gauge nao
ha mais vinculos de primeira classe, ou melhor, o nosso sistema transfoma-se
num sistema de segunda classe.
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Por outro lado, analisando geometricamente o processo de fixacao de
gauge, observamos que as condigcoes de gauge definem uma superficie no
espaco de fase que intercepta as oOrbitas de gauge somente uma vez. Os
resultados acima garantem somente que a fixacao é completa localmente.

2.4 Quantizacao por Integrais de Trajetoria em
Mecanica Quantica

Na formulac¢ao de Feynman da mecanica quantica [52], o objeto fundamental
¢ a amplitude de transicao ou propagador, que mede a probabilidade de um
sistema passar de um estado a outro, ou seja, descreve o processo quantico.
Vamos construir este propagador a partir da formulacao usual da mecéanica
quantica, em que a evolucao temporal de um sistema ¢ dada pela equacao de
Schrodinger

A . d

H|U;t) = zha\llf;t% (2.19)

onde |U;t) representa o estado do sistema num instante de tempo t. A
solucao desta equacao pode ser escrita como

s 8) = U(t, to)|¥; to), (2.20)

em que o operador U(t,ty) ¢ o chamado operador de evolugao temporal.
Se H nao for explicitamente dependente do tempo, podemos representar o
operador evolucao por

Ult,ty) = exp—%((t—to)lfl), (2.21)
que satisfaz as seguintes propriedades
1. Ults, t2)U(ta, ty) = Ults, t1)
2. Ulty, )T = U Hta, t1) = U(ty, ta).
Podemos entao definir o propagador no espago das coordenadas como

Z(xn, zostn, to) = (xn|U(t)|xo), (2.22)

onde os auto-estados da posi¢ao |z;) sdo ortonormais, completos que satisfa-
zem as seguintes relacoes:



2.4: Quantizacao por Integrais de Trajetéria em Mecanica Quantica 10

!

(la) = oz —a)
/dx|x)<x| =1 (2.23)

(z|lp) = exp %px

Vamos representar este propagador em termos de integrais de trajetoria.

Para isto, dividimos o intervalo entre o instante final e o instante inicial

em N subintervalos infinitesimais intermediarios de valor € = % = %

Portanto, utilizando a propriedade 1 podemos escrever o operador evolugao
temporal da seguinte forma:

U(tN,t[)) = U(tN,tN_l)U(tN_l,tN_Q) ....... U(tl,to). (224)

O propagador pode ser escrito como

Z(l‘]\ul’(ﬁf]\[,fo) = <ZEN|U<tN,tN_l)U(tN_l,tN_Q) ....... U(tl,t0)|Io>. (225)

Inserindo N —1 conjuntos intermediarios completos de estados entre a posicao
inicial x¢ e final zx na expressao (2.25) temos

Z(l‘N, Zo; tN, to) = /d(lﬁN1dl’N2....dl'1<l’N’U(tN, tN,1)|l'N,1>

<$N—1|U<tN—1atN—2)|xN—2> ..... (226)
(21|U (t1, to)|wo)- (2.27)

E inserindo entre estes N vezes a seguinte expressao

/ dplp)(p] = 1. (2.28)

Podemos reescrever o propagador da seguinte forma:

Z(xN,Q?o;tN,to) = ]\}i_I}I;o/dled{L’Ng ...... d.%lde,lde,g....dpo

(xn|U(tn, tv-1)|pn—1)(On-1]|zN-1)
(@N-1|U(EN-1,tN—2)|[pn-1)(PN-1]|TN-2)
(wn_1|U(tn-1,tn—2)|pn-1)(PN=1]|TN—2)-
(z1|U (1, t0)[po) (po| o)
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Mas usando o resultado abaixo

O 0

= <xz+1|<1 - ﬁH)’pz><pz||xZ>

- —%hwexp(hm( 1~ @) (2.29)
%(pi(f’?iﬂ — i) — i),

(@i |U(tns tv—1) i) (pil|zi) = (@iga| exp(

= exp

podemos reescrever o propagador como

N-1
Z(xn, xo;tn, to) = hm /H dp; H dr;exp— Z pi (Tiy1 — ;)

—Ghi),
_ / D:z:Dpexp% / dt(p;i' — h), (2.30)

onde Dx,Dp é a medida funcional na integral de trajetoria.

2.5 Quantizacao por Integrais de Trajetoria em
Teorias de Gauge

Para uma teoria de gauge, a formulacdo de integrais de trajetoria fica um
pouco mais complicada em funcao da simetria de gauge. Existem duas formas
de implementar a formulacao: o método de Faddeev-Popov|53] e o método
BFV[58, 57].

2.5.1 Meétodo de Faddeev-Popov

O primeiro método a incorporar vinculos na formulacao de integrais de traje-
toria foi desenvolvido por Faddeev|53], para o qual se consideravam vinculos
de primeira classe. Posteriormente, Senjanovic|77] generalizou este resultado
para incluir vinculos de segunda classe. EEm nossos sistemas estudados exis-
tem somente vinculos de primeira classe e, portanto, iremos somente discutir
o resultado de Faddeev.

Considere um sistema de N graus de liberdade, que possui M vinculos de
primeira classe ¢,. Temos entao de introduzir M fixacoes de gauge €,. Este
sistema de vinculos e fixagoes devem satisfazer as seguintes condicoes:



2.5: Quantizacao por Integrais de Trajetéria em Teorias de Gauge 12

{(baa(bb} ~ 0
det{Qq, pp} # 0, (2.31)

sobre a hipersuperficie dada por ¢, = 0 e , = 0. Podemos a partir daqui
enunciar o teorema de Faddeev.

Teorema

O propagador é dado por

Z(ax, Xo) = /d,uexp%(/ dr(pi — H)), (2.32)

em que a medida da integral é dada por
M N
dp = det{Q0, ¢a} | [ 5(2)5(60) | | dpida’. (2.33)
a=1 i=1

2.5.2 Método BFV

Vamos considerar um sistema com N graus de liberdade definido em um
espaco de fase composto por variaveis que comutam e por variaveis de Gras-
smann. As variaveis que comutam tém paridade de Grassmann €, = 0 e as
varidveis de Grassmann tém paridade €, = 1. Os vinculos de primeira classe
840 ¢4(a = 1....M) e satisfazem a seguinte algebra

{ba )} = fada (2.34)
{H’Qba} = V;zbgbba

onde f%e VP sdo as fungoes de estrutura .

O formalismo é implementado em dois passos. O primeiro consiste em
promover os multiplicadores de Lagrange A, a varidveis dinamicas do espago
de fase e introduzir um momento candnico para o multiplicador de lagrange
I1,, satisfazendo a condigao

(I} = o2 (2.35)

Para nao modificarmos o contetido dinamico da teoria, introduzimos um
vinculo adicional
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I, = 0. (2.36)

Os vinculos ¢ e II formam um sistema de vinculos de primeira classe. No
formalismo BFV este conjunto é denotado por G;(i = 1,2, .....2M) que satis-
faz

{Gi,G;} = [hGk (2.37)

Num segundo passo, introduzimos novos graus de liberdade a fim de com-
pensar o aumento do espaco de fase. Estes graus de liberdade adicionais
sao chamados de pares de fantasmas de BFV. Para cada vinculo de pri-
meira classe introduzimos um par de fantasmas (7;, P?), mas com paridade
de Grassman oposta ao correspodente vinculo de primeira classe, que satisfaz
a seguinte algebra

(P77} = =&, (2.38)

e 0s outros colchetes de Poisson generalizados nulos. Portanto, nosso novo
espago de fase é (z, p, \*, I1,; n°, P;). Neste novo espago de fase, o nimero de
graus de liberdade ¢ dado por 2(N — M).

Neste espaco de fase estendido, a simetria original de gauge ¢ substituida
por uma simetria global gerada pela seguinte carga fermidnica Qg

) 1 . )
Qp=n'G; — 577]77kf;k73i7 (2.39)

que é anticomutativo e por construcao satisfaz

{@B,Qp} = 0. (2.40)

Esta carga fermionica recebe o nome de carga BRST. Esta carga gera as
seguintes transformacoes

Spr = {z,Gi}n'
opp = {p,Gi}ni

SpAT = (2.41)
5BHa == O
opn' = S fun'n

(SBPi = —Gi+ Z];U]Pk
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Podemos agora escrever a acao invariante por BRST

Sup = / dr(ip — X'l +7P: — H — {0, Qp}), (2.42)

onde ¥ é uma funcao fermionica arbitraria.

As equacoes de movimento provenientes desta acao devem ser suplemen-
tadas por condicoes de fronteira que sejam invariantes pela simetria de BRST.
Existem varias condicoes invariantes que poderiamos adotar. Vamos intro-
duzir um conjunto muito usado na literatura, e para implementa-lo, vamos
primeiro decompor o par de fantasmas da seguinte forma

n = (P.C%,
Pi = (C’aaﬁa)a (243)

que satisfazem as seguintes relagoes

{Pavca} = _17
{c*,P,} = —1. (2.44)

Podemos agora definir as condicoes de fronteira invariantes de BRST dadas
por

I,(m) = 0, IL.(7v) = 0,
C*m) = 0, C(1n) =0,
Cu(mo) = 0, Cu(ty) =0, (2.45)
(1) = o, x(Tn) = xN.

Podemos definir agora o teorema BFV.
Teorema BFV

O propagador é dado por

Z('TN7$O) = /D;Lexpz (/ dT('Tp - AaHa + ﬁac'va - C_(a/]ja - H + {\IijB})) )

(2.46)
¢ independente de U e Dy = DxDpDADIIDPDPDCDC é a medida de
Liouville. As diversas escolhas de gauge sao obtidas por diferentes escolhas
da funcao arbitraria W. A demonstracao deste teorema pode ser encontrada

em [57, 78, 79).



Capitulo 3

Quantizacao BRST da Particula
Relativistica

3.1 Introducao

Neste capitulo, vamos analisar o caso de uma particula relativistica livre, de
massa m, num espaco de Minkowski em d dimensoes. A acdo que a descreve
é

S = —m/TQdT\/—x'Q(T), (3.1)

e 7 parametriza a linha mundo da particula relativistica. E a posi¢ao no
espago-tempo é descrita por z#(7) com p = 0,1,...d — 1. Adotaremos a
convencao 7, = diag(—1,1,1....1) para a métrica. Esta acdo é invariante
por reparametrizacao da linha mundo definida pelas transformacoes

T—7="7(7),
(1) — (T) = 2H(71), (3.2)

ou seja, as coordenadas se transformam como escalares. As equacgoes de

movimento sao
d ma,,(T) _0 (3.3)
dr —i2(7) ’

sujeitas as condigoes de contorno z# (1) = zf e zt(m) = 24 .

Passamos a formulacao hamiltoniana calculando o momento canénico

15
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0L
pu(T) = Dk’
. /
- = (3.4)
—(r)
e utilizando a expressao acima, obtemos o vinculo primério
L 2
Entao a hamiltoniana canonica é
H = p,a"—L,
= m—jjl‘x'u — L,
=3 (7)
= 0, (3.6)

e, neste caso, a evolucao temporal do sistema serd governada pela hamilto-
niana total Hp

Hr = H4+ 7)o
= 7)o, (3.7)

onde A é o multiplicador de Lagrange. Impondo-se a consisténcia temporal
do vinculo (3.5) temos

¢ = Mo,0} ~0, (3.8)

0 que permite concluir que ¢ é tnico e de primeira classe. Reescrevendo a
acao na forma hamiltoniana obtemos

S = / dr (pux'“ - 5)\(7')(]92 + m2)) : (3.9)
T1
As transformacoes de gauge gerados por (3.5) sao
s = e,

op, = 0, (3.10)
OA(T) = €(7),
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onde €(7) é o parametro da transformacdo. Tomando a variagdo da agao

58 = / dT% (e(ﬂ%(p? - mQ))

= e(7)%(p2—m2) 2, (3.11)

T1

concluimos que a invariancia impoe o anulamento dos parametros de gauge
nos extremos.

Vamos agora considerar o formalismo BFV. Num primeiro momento in-
troduzimos um grau de liberdade II conjugado ao multiplicador de Lagrange
A, satisfazendo o seguinte colchete de Poisson

(0O} = 1, (3.12)

e para nao alterarmos o contetddo fisico da teoria impomos

Il = 0. (3.13)

Este vinculo adicional (3.13) forma um sistema de primeira classe com o
vinculo ¢, que serd denotado por G, a = 1,2 da seguinte forma:

G1 == H, GQ == (b, (314)

satisfazendo a seguinte algebra:

{Go, Gy} = 0, a,b=1,2 (3.15)
(H,G,} = 0, (3.16)

onde H é a hamiltoniana canonica. ~ B

Num segundo passo, introduzimos um par de fantasmas (C,P) e (P,C)
associados aos vinculos dados em (3.14), respectivamente, satisfazendo os
seguintes colchetes de Poisson:

{C,P} = {P.C}=-1, (3.17)
e com os outros colchetes de Poisson nulos. A carga de BRST é

1
Qg =3C (p* +m?) + PIL, (3.18)

e gera as seguintes transformacoes de BRST
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ozt = CpH, opt =0,
SN = P, Sl=0,
oC = 0, 6C = 11,

1
P = —§(p2+m2), 6P = 0. (3.19)

Vamos analisar algumas escolhas de gauge no formalismo BFV.

3.1.1 Condiciao Covariante de Gauge \(7) = f(\)

O primeiro caso a ser analisado é o da condicao covariante de gauge e esta é
implementada pela seguinte funcao grasmaniana

U =CFf(\)+ P, (3.20)
onde f(A) é uma funcao arbitraria dos multiplicadores de Lagrange. Calcu-
lando o colchetes de Poisson de W com a carga de BRST temos

{U,Qp} = —f(NI+CPf (\)+PP— %(pQ +m?), (3.21)

em que f ()\) é a derivada de f em relagdo a A. A acio efetiva é

S, — / dr(pi* + 1A+ PC + CP — (VI + CPS (A)

T1

+PP — %(p2 +m?)). (3.22)

As equagbes de movimento sao

o= A, Pt =0,

¢ = -P, (=P

. . , _ 1

A= f(N), II=f\I+CPf ()\)—ﬁ(p2+m2). (3.23)

Resolvendo estas equagdes para o caso em que f(A) = 0 e utilizando as
condigoes de contorno (2.44), obtemos as seguintes solugoes
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) =t D), ) = 50

C(r) =0, C(r) =0,

P(r) =0, P(r) =0,

Ar) =, T(r) =0, (3.24)

onde Az = xh — 2! e g ¢ uma constante. Uma das consequéncias que pode-
mos concluir é que o vinculo ¢ é satisfeito em qualquer instante. Utilizando
a solugao para p* obtemos que (Ax)? = m?(A7)2

0

3.1.2 Condicao de Gauge Canénico x° — 7 =10

Para analisarmos esta condi¢ao de gauge escreveremos z* = (2°, %), onde z°
é componente temporal e & corresponde as d — 1 coordenadas espaciais. A
funcao grasmaniana que implementa este gauge é

U= %(wo —7)C + \P, (3.25)

onde (§ é uma constante real diferente de zero. Calculando-se o colchete de
Poisson temos

1

_ _ A
BCC'po + PP + 5(pﬁ — 72 —m?). (3.26)

(0,05} = %n(:po 1

Neste caso, a acao efetiva é

T2 . . _ . _ . 1
gef:/ dr(—p"8" + - &+ 1+ PO+ OP 4 SH(" —7)

T1

1~ _ A
+BCCp0 + PP + 5(]93 - ]52 - m2))
Para obtermos a fixagao de gauge desejada temos que fazer a seguinte mu-

danca de varidveis invariante por BRST Il — B e C' — BC que reescreve a
acao da seguinte forma

Sefz/ dr(—p°3° + 5+ & + BIIA + PC + BCP + T(2° — 7)

T1

- A
+CCpy + PP+ (5 — 7 — m”)).
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Tomando o limite 3 — 0, e renomeando II — [ e C' — C, podemos escrever
a acao efetiva como

Sef = / dr(—p°2° + - 7+ CP+ CCpy — (2" — 7)

+A(ps — p* — m?) + PP). (3.27)

As equagbes de movimento neste gauge sao

i = N, 7=\,
po = II, 7=0, (3.28)
b — —Cpo, CzP,

2 -7 = 0, pg—ﬁg—mzzO.

Resolvendo as equacoes de movimento utilizando as condigoes de contorno
dadas por (2.45), obtemos as solucoes

(1) =T, T(T) =71 + %(T —7),
AT
AVH

Po = £V p* +m?, P=x

1
A1) = , II(7) = 0,
)= iye T0)
C(t) =0, C(r) =0,
P(r) =0, P(r)=0 (3.29)

Estas solucoes descrevem a mesma situacao fisica do caso covariante.

3.1.3 Condicao de Gauge do Cone de Luz 27 — 7 =0

Para estudarmos esta condicao introduziremos o sistema de coordenadas do
cone de luz, definindo

(1,0 + l‘d_l),

(2% — 2%71). (3.30)

Sl Sl
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Neste caso podemos escrever x# = (z, 27, Z) onde & corresponde a d — 2
coordenadas espaciais. A métrica de Minkowski neste sistema de coordenadas
possui as seguintes componentes nao nulas

77+7 = 777+ = —17 772] = 6” Z,] = 1’2, d — 2, (331)

A condicao de gauge do cone de luz é implementada pela seguinte funcao
grasmaniana

U = %(ﬁ —7)C + AP, (3.32)

onde 3 é uma constante real diferente de zero. Calculando-se o colchete de
Poisson

1

BC”C]f“ + PP

1
{\I/,QB} = EH<$+ — 7') +
_ 1
AP = 50+ m).
Neste caso, a acao efetiva é

Sey = / dr(—p*a~ —p it +§- 7+ A+ PC + CP

T1

1 1~ _ 1
+BH($+ —7)+ ECCN + PP+ Aptp — 5(]92 +m?)))

Para obtermos a fixacao de gauge desejada temos que fazer a seguinte mu-

danca de variaveis invariante por BRST II — ﬁf[ e C — ﬁCZ’ que transforma
a acao efetiva da seguinte forma

Sef_/ dr(pit +pti~ — §- i+ BT+ PC + BCP

5 ~ _ 1
+I(2zt —7)+ CCpT + PP + Aptp™ — 5(132 +m?)),

Novamente tomamos o limite 5 — 0, e renomeando II — Il e C — C,
podemos escrever a acao efetiva como

T2 .
Sef = / dr(p~it +pta” —§- T+ PC+ Uzt — 1)

T1

_ _ 1
+CCpt +PP + Aptp — 5(172 +m?))). (3.33)
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As equagoes de movimento sao

- = \p~ —CC, it = —\pt,
T = Ap, pt =0,
p_ - Ha ﬁ: 07
P = —Cph, C="P,
P 0, Cpt =0,
1
-1 = 0, pp — 5(172 +m?) =0, (3.34)
cujas solugoes sao
Ag—
(1) =1, x (1) =] + Aa: (1 —m),
. . AT Az™
x<7_)_x1+A_7_(7—_7—1)7 p+: AT )
_ PP 4m? . A7
p - 2p+ ) p - 7_7
1
A(T) = o II(r) = 0,
C(r) =0, C(r) =0,
Pr)=0,  P(r)=0 (3.35)

Novamente estas solucoes descrevem a mesma situacao fisica dos casos ante-
riores.

3.2 Admissibilidade das Condig¢oes de Gauge

No final da década de 80 Govaerts |63, 64, 65, 73| analisou a implementacao
do formalismo BFV para a teoria da particula relativistica e sugeriu que a
amplitude de transicao calculada nao era independente da escolha da funcao
grasmaniana arbitraria W. Para demonstrar este resultado ele definiu um
critério que classificava quais funcoes ¥ eram admissiveis, ou seja, quais
condicoes de gauge poderiam ser implementadas .

Como foi descrito na secao 1.2, a existéncia de vinculos de primeira classe
divide o espago de fase em classes de equivaléncia, que também chamamos
de orbitas de gauge. No caso da particula relativistica, usaremos o espago
das orbitas no espaco dos multiplicadores que chamaremos de espaco de Tei-
chmuller. Podemos agora definir um critério neste espaco
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e Uma fixacdo é dita admissivel, se esta define uma hipersuperficie no
espaco de Teichmuller que intercepta todas as 6rbitas uma tnica vez.
Caso contrario diremos que é nao admissivel e que possui o problema

de Gribov [66] .

Podemos classificar entao o problema de Gribov em dois tipos. O problema
de Gribov de tipo I é de carater local e acontece quando uma o6rbita € inter-
ceptada mais de uma vez. Um problema de Gribov do tipo II é de carater
global e acontece quando nem todas as 6rbitas sao interceptadas.

Para caracterizar o espaco de Teichmuller no caso da particula relativis-
tica devemos encontrar uma quantidade invariante de gauge nesse espaco.
Para tal introduzimos o tempo préprio dado por

T - / e (3.36)

T1

que é invariante pelas transformacgoes finitas de gauge

zh(r) = () + h(r)p"(7),
pt = p
X(r) = Ar)+ 20

dr '’

(3.37)

que sao obtidas a partir das transformacoes infinitesimais dadas em (3.10).
Utilizando essas transformagoes podemos concluir que:

e Se dois multiplicadores A;(7) e Ao(7), com tempos proprios dados por
T1 e Ty respectivamente forem equivalentes de gauge, entao 177 = Ts.

e [ sempre possivel encontrar uma fungio h(7) que relaciona um multi-
plicador A\;(7) com um multiplicador constante Ag.

Esses dois resultados nos permitem concluir que o espago de Teichmuller
para a particula relativistica é dado pelo conjunto R dos ntimeros reais. Va-
mos analisar diversas condicoes de gauge, seguindo os proximos passos para
determinar sua admissibilidade.

1. Resolvendo a equacdo A = f(\) para uma determinada funcio f(\) a
fim de obter o multiplicador de Lagrange A em funcao de uma constante
de integragao Ay;

2. A partir da solucdo encontrada acima, calculamos o tempo proprio;
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3. Avaliamos qual o comportamento do tempo proprio ao variarmos nossa
constante de integracdo Ay no intervalo [—oo, +00]. Se o dominio de T
também for [—o0, +00] dizemos que a condi¢ao de gauge é admissivel,
caso contrario, diremos que sofre do problema de Gribov.

Vamos analisar algumas escolhas particulares para a fungao f(\) descrita em
|64],[73].

e O primeiro caso analisado foi f(\) = 0, gerando a seguinte fixagao de
gauge

A=0. (3.38)

Resolvendo a equagao acima, obtemos

A(T) = Ay, (3.39)

onde Ay é uma constante de integracao real. Ao calcularmos o tempo proprio
utilizando a equacdo (3.36) obtemos

Variando Ay no intervalo [—oo, +00|, observamos que 7T varia no intervalo
[—00, +00]. Portanto esta escolha de gauge é admissivel.

e Uma segunda condigiao de gauge é obtida tomando f(\) = a)?, onde
« é uma constante real positiva. Neste caso a fixagdao é dada por

A =a)\. (3.41)
Resolvendo esta equacao obtemos a seguinte solucao
V14203 (7y — 7y

onde \y é uma constante de integracao real. Ao calcularmos o tempo préprio
obtemos

A(T) (3.42)

T(\w) = (V14 2aATNE — 1]‘ (3.43)

Oé)\N
Variando Ay no intervalo [—oo,+oco] encontramos que o dominio de T' ¢
dado pelo intervalo [—\/(M—T), \/(QA—T)] Como nao obtemos o intervalo

(0% (0%
[—00, +o0], a fixagdo de gauge nao é admissivel pelo critério de Govarts,
ou seja, essa condicao sofre do problema de Gribov do tipo II, pois ela nao
intercepta todas as oOrbitas.
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e Uma terceira condigao gauge é a do tipo candnica
' =1 (3.44)

Neste caso obtemos o multiplicador de Lagrange através das equacgoes de
movimento (3.28) , obtendo

A7) = —, (3.45)

onde pg = \/p? + m? = cte e que p fard o papel de uma constante de inte-
gracao real. Calculando o tempo proprio

TO) = —2T (3.46)

VPR A+ m?
Levando em conta que p? pode variar no intervalo [0, co] concluimos que T
varia no intervalo [0, %] Novamente o intervalo de dominio de 7" nao é
[—00, 00| e portanto a condigdo ndo é admissivel e possui um problema de
Gribov do tipo II.

e A dltima escolha de gauge é a do cone de luz. O multiplicador de
Lagrange encontrado pelas equagoes (3.34) é

1
O tempo proprio entao é dado por
A
T\ = p—f, (3.48)

onde p* é uma constante que varia no intervalo [—o00, co]. Neste caso, o tempo
proprio ir& variar no intervalo [—oo, oo] e portanto nao possui problema de

Gribov.

3.3 Propagador para a Particula Relativistica
no Gauge A = f()\)

Podemos construir o propagador

Z(ah, xh) = / DpDxDADIIDCDCDPDP exp(iS.;), (3.49)

onde S.r é dada pela expressao (3.22).
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Vamos escrever este propagador na forma de uma integral de trajetéria
discretizada. Para isso dividimos o intervalo entre 7 e 7, em N intervalos
infinitesimais ¢ = 27. Utilizamos também neste processo as condicdes de
contorno dadas em (2.44). Podemos entdo escrever a acdo dada em (3.22)
em sua forma discretizada

N-—1
Ser = Y _(puiletyy — ) = N[y — L) = Pi(Cipa — Ci) + Pi(Cigr — C)
=0
_ AT 1, o AT Nl , - AT AT
+77¢73iW + )\za(pi +m )W) + Z(fi(Ai)Ci,PiW — fi()\i)HiW) (3.50)

=1

3.3.1 Invariadncia da Acao Discretizada

Nesta secao estudamos o efeito da discretizacao sobre a invarianca BRST
da acao no caso da particula relativistica no gauge covariante. O desenvolvi-
mento utilizado em nosso trabalho baseia-se nos resultados dados em |70, 71].
Em primeiro lugar discretizamos as transformacoes BRST de forma ingénua,
obtendo

oz = Cipf, opt =0,
5752 = —%(p? +m2), 5/\1 = —Pi,
oI, = 0, 5P; = 0. (3.51)

Variando a agao (3.50) em relagao as transformagoes (3.51) obtemos

i

0Sef = (Ci+1(p§+1 + m2) - Ci(p? + mQ) — Ciy1(piv1 — pz')Q)

=0

i

_Ci+l<pi+1 - pi)2

I
i

mostrando que a acdo deixa de ser invariante. A fim de restaurarmos a
invariancia, modificamos as transformagoes discretizadas (3.51) de forma que
ao tomarmos o limite do caso continuo obtemos as transformacoes usuais de
BRST. As transformacoes modificadas ficam iguais a
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st~ G (P}’ +2pé11)’ S = 0.

5C; = 0, 6C; =TI,

P = — %(pf +m?), o\ = —P;,

S, = 0,  6Pi=0. (3.52)

Estas transformacoes sao nilpotentes.
Variando a agao efetiva dada por (3.50) em relagao a (3.52) obtemos

N—
6Sef = Z i+1 p7,+1 +m ) Cz(pzz + m2)

=0

=

(3.53)

levando em conta as condig¢oes de contorno para os C' dadas em (2.45).

3.3.2 Propagador Discretizado para o Gauge Covari-
ante A\ = f()\)

Discretizando a expressao do propagador (3.49) obtemos

N-1 N-1 N-1 N-1

N-1
Z(xly, ) = lim / H dpyi H da! H i [T ar; T api I ¢
1=0 =1 1=0

=1

N-1 N-1 N-1
dP; dCjexpi (Z[Pui(ﬁﬂ — o)) = Ni(iyy —11;) — Pi(CiJrl - Ci)

=0 i—1 i=0
_ _ AT 1 AT
+Pi(Ciy1 — C) +Pi(Ciyr — C;) + Pipz'W — )‘za(p? + WQ)W]
N—-1
A A
+ - fz(/\z)HzWT)) : (3.54)
=1

Para fazermos os célculos, note que podemos utilizar o seguinte resultado

=2

—1 N

1

-
Il
o

i
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Pelas condicoes de contorno para os C, o termo de fronteira se anula. Inte-
grando nos C; obtemos

2o =t [ T s T] ot TLax [T am. I o
IRy i=1 i=0 i=1 i=0
N-1 B N-1 - N—-1 B - N-1
dC; H dP; 6(Pi — Pi—1) expi <Z[pm(x5+1 zf) — ATy — 1I;)
=1 =0 =1 i=0
_P(C’ _C’)+757DAT _)\1< 2_|_ 2>AT]+NZ_1(]U()\)OPAT
e A
AT
_fi()\i)HiW)) : (3.56)

Integrando N — 1 vezes em P; ficamos com uma integral ordinaria em Py_;.
Usando a seguinte propriedade

N—-1 ~ - N-1 B
=0 i=1

podemos integrar C; obtendo:

Z(aly, xp) = lim / H dpi H def [T dni H dIl; H dP /dPN !
=0 i=1 =0
N-1 Ar N—-1
O(Pim1 — Pi(1 = f (Ai) 7)) expi Py — af) = MMy — 1)
1=1 =0
_ A 1, L A7 A7
PP = N+ ) ) = 3RO (3:59)
Integrando em P; obtemos o seguinte resultado
, AT
Po =Pl = f(M)—)
, AT
7)1 - 7)2(1 - f (Ag)w)
A
Pr_s = Py_1(1— f'(An_1) NT). (3.59)
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Utilizando a expressao acima, podemos escrever o termo abaixo da seguinte
forma N-1 N-2 N-1

AT AT
Pi— =1 1— P 3.60
> Py =iy, [l ronene 6w

Substituindo o resultado acima na expressao do propagador e integrando em
Pn_1 e Py_1 obtemos

N-1 N-1 N-1 N-1

N—-2 N-—
Z(aly,xp) = lim /HdeHd:ci‘Hd)\lHdHZ +> JJa

,_.

i=1 j=i+1
AT AT 1
—f'(N)— N )~ N ) expi (Z[P Tpit1 — Tpi) — NIl — 1IL) — A@(Pf
N-

- ; an%) . (3.61)

Para fazer as integracoes que faltam, usamos os resultados abaixo

N-1 N-1
Z Puil Z+1 ) = — Z 2 (ppi — Pui—1) — PoTo + PN-1TN,
=0 =1
~1 N-1
A (T — I1,) = LA = i), (3.62)
i=0 i=1
Integrando em x!" obtemos
N-1 N-1 N-1
Z($N,1‘0 _A}Ellw/ndpuz];[d)\z];!:dnz];!:épm p,uz 1
N—2 N-1 N-1
AT AT
=1 j=1+1 =1
N-1

(3.63)
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Integrando em p,, conseguimos

N-1 N-2 N—1
Z(aly, o) = lim / dpuo/ H d\; H arni+>  JJ ¢
i=1 j=i+1
—F'(\ )E)]H sz (O — N +fA()\_)HA£
N N expz — 7 i—1 7 ANAY 1 N
N-1
1 A
S AR+ mA) S +pqu$u> ' (3.64)
—~ 2 N
Integrando em II; obtemos
N-1 N-2 N-1
. * L VAT AT
Z () = lim . APuo H dAi(1 + Z 1 (L—f (Ai)W))W)
=0 =1 j=i+1
N-1 N-1
A 1 A
o(=Ai(1 - fi()‘i)WT) + Ai1) expi < )xla(pg + mQ)WT + pMOAx“) (3.65)
i=1 i=0
Escrevendo
N-1
AT
T = Ai—. .
> Ay (3.66)
=0
Integrando em \; obtemos
AT
Ao = A1 — f(/\l)W
AT
A1 = Ag f(/\z)W
AT
A2 = A3 — f(A3)—+ N
AT
)\N_Q = )\N—l — f(/\N_1>W7 (367)

que reduz a integracao em \; a uma integral em Ay_;. Utilizando a relagao
(3.66) podemos calcular a seguinte relagao

N—2 N—1
AT

dT = — 1+> 1 (1—f’(A)?VT) dA\n_1, (3.68)

i=1 j=i+1
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0 que permite reescrever o propagador da seguinte forma

Z (2, xp) / dpMO/ dT expi ( —(pg +m?) +pu0Ax“) : (3.69)

que é independente de f(\). Entretanto ndo conseguimos determinar o domi-
nio D de integragao em 7. Para obtermos esta informacao devemos calcular
explicitamente o Jacobiano abaixo

N—-2 N-1 AT
J = lim 1+ JIa-r ~ (3.70)
=1 j=i+1

Portanto, o dominio de T" depende da f()\). Para fun¢oes que sdo admis-
siveis classicamente, o dominio D seré o intervalo [—o00, 00| e o propagador
calculado em (3.69) é igual ao obtido por [61, 68] . Em caso contrério, o
propagador sofrerd de problema de Gribov.

Analisando a expressao (3.66) com a ajuda das relagoes (3.67 ), podemos
concluir que o dominio de integracao do tempo préprio T' depende da fungao
f(A). Esse resultado nos permite concluir que nao é possivel garantir a
inexisténcia de problemas de Gribov e portanto o critério de Govaerts esta
correto quando aplicamos condigoes de gauge covariantes.

Entretanto, este propagador nao é causal, pois nao se anula se 7, < 7.
Para implementarmos a causalidade devemos calcular o seguinte objeto

Zp(xhy, zh) =< 29|0(T) |1 >, (3.71)

onde O(T) é a fun¢do degrau de Heaviside. Escrevendo a integral de traje-
toria deste objeto obtemos

Zp(xhy, zf) :/DpD:UD)\DHDCDC’DPDﬁ@(T) exp(iSer).  (3.72)

Discretizando a expressao acima temos

N-1 N— N-1 N—-1 N-1 N-1
Z(x%, 2h) = lim / I v H o 1T ax [T dim [T ap; 11 d¢;
=0 = =0 =1 1=0 =1
N—-1 B N—-1 N—-1 AT N—-1
dP; [[ dcio(d )\iw)expi( ity — 2ty — \i(Ty, — IL,)
=0 i=1 =0 =0
_ _ _ A 1 A
—Py(Crar — C)) + Pi(Cipr — Cy) + PZPZ-WT — Az (P + mQ)WT]

+ ' Lf{(N)CiPi— — f’L()\’L)H’L_]> : (3.73)
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Comparando a expressao (3.73) com (3.54) concluimos que a tnica diferenca
entre elas é o termo da funcao de Heaviside. Integrando na mesma ordem
feita anteriormente chegamos ao seguinte resultado

Zhat) = [ dpa [ dTOT)expi(T5 05+ ) + padse?)
o o 1
= / dpu()/ dT expi(T§(pg +m?) + pulxt),  (3.74)
—o0o 0

que é uma representacao do propagador de Feynman Ap(zy — x1) obtido em
[61].

3.4 Propagador para a Particula Relativistica

no Gauge ' — 7 =0

O propagador neste gauge é dado por

Z(2%, 23: Zn, To) = / DpoDpDz’ DEDADIIDCDCDPDP exp(iS.;), (3.75)

onde agora S.¢ é dado por (3.27)

De forma andloga ao caso da condicao de gauge covariante da secao ante-
rior, discretizamos a acao efetiva dada em (3.27) utilizando as condicoes de
contorno (2.44) obtemos

N-1 N-1

R N _ . AT

Sef = ;(—pm(xgﬂ - [L’?) +pi(xi+1 - l'z) + Pi(ci+1 — C’l)) — - (CZCZPOzW

+1T; (20 — ,)E)_FNl(—)\-( 2 — (PP + 2)& 7573&) (3.76)
(2 aj’b 7_1 N g 7 pOZ p’L m N 1 7 N .

Aplicando as transformagoes discretizadas dadas em (3.51), observamos que
a agdo discretizada (3.76) também perde a invariancia apds a discretizagao.
E possivel mostrar que as modificacbes na transformacoes discretizadas sao
as mesmas do gauge covariante. Portanto as transformacoes discretizadas
que mantém a invariancia da acao acima sao as mesmas dadas na equacao
(3.52).

Podemos entao escrever o propagador como
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N-1
Z(2%, 2Q: By, Ty) = lim / Hdpmdplndmodaz‘l HdAZ HdHl

N-1 N-1 N-1  N-1 N-1
dpz dC’Z H d’]5z dCl exXp1 (Z[—pOz(QT?Jrl — I,L) +pi<Ii+1 — 11_3”1)
=0 =1 =0 =1 =0
N-1
_ _ AT A
+Pi(Civ1 — C3)] — 2 (C’ioipm N + I (27 — 73) NT)
N-1
AT AT
M ((p% — (p?
#3006t ) T+ PR )) (3.77)

Fazendo todas as integracoes chegaremos ao seguinte resultado

> 1
Z (29, a%; Ty, T1) = A}im dpo— exp(ipp AT) (exp(woAT)
—00 J_ o 0
+(=1)N exp(—woAT)) . (3.78)

0 que mostra uma dependéncia do ntimero de intervalos utilizados na discre-
tizacao. Uma forma de resolver este problema é introduzirmos uma funcao
sinal (pp) na condi¢do de gauge. Esta mudanga nao altera o resultado do

propagador calculado no caso continuo. Portanto a nova funcao grasmaniana
fica

v = %e(po)(xo —7)C + AP, (3.79)

que ira corresponder a seguinte acao efetiva discretizada

N-1

N-1
- N LB . A
Sef = ;[—pm‘(x?“ - I?) +pz'(Iz’+1 - l’z) + Pz‘(Ci-H - Cz)] - ;[Cicﬁ(pm)prT
0 AT, = 5 5 AT AT
+1Lie(poi) (7 — Ti)W] + > [=Nilp — (57 +m )W + P;P; ] (3.80)

I
=)

i

Como a tnica modificagao foi a insercao da funcao sinal, podemos concluir
que esta nova acao efetiva é invariante pela mesmas transformacoes de BRST

discretizadas do que aquela dada em (3.76). Portando, o propagador é escrito
como
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N-1

N-1
Z(2%, x5 T, To) = hm / H dpo;dp; H dzddz; H d\; H dll; H dP;

N-1 N-1 N-1 N-1 .
déz H d’ﬁz dC’Z expi <Z (—pgi(l’?+1 — .77?) +ﬁi(fi+1 — fz) + ,PZ'(CZ'_H — CZ))

i=1 i=0 i=1 i=0
N-1 N-1
_ AT A
_ 2 <CiCi6(pm-)p0z N + Tie(pog ) (29 — 7;) ) + 2 ( ((p2 — (P +m2)WT
_ AT
iFi . 3.81
) o
Integrando em II; obtemos
| N-1
yN -1
§(z? — ). (3.82)
‘6(p01) g
Integrando em ¥ temos
N-1 N-1 N-1  N-1
Z(ay 0l Fy.Bo) = lim / H dpup [ ] a: J] ax JT ap. ] a0
N-1  N-1 N-1 )
H dP; | | dCiexpi (Z (=poi(Tiv1 — 1) + Pi(Zis1 — Ti) + Pi(Cigr — C3))
i i=1 i=0

_ Ar =2 AT - AT
- CiCilpoi| —— + [_/\i ((p% — (77 +m?)) — + P'P‘W]) (3.83)

Integrando em C; e C; obtemos

AT i
A T ol (384
i=1

Portanto temos
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N-1

N-1 N—-1
Z(@y, g ¥y, To) = lim / H dposdp; H d7; H ) H ap; [ dP:
=0

=

AT pl — AT
(= N )N H [Poi| exp i (Z[—pOi(TiH —7) + BT — T) = Nl — (B +m?))—
i=0

mip,.%). 59

Integrando em P; e P; obtemos o seguinte termo

AT N

() (3.86)

Portanto temos

N-1
Z(:E?V,:L‘g;fN,mo = lim /Hdpoldpzndxz

N—oo

AT pl -
N N e H |poi| exp i ( [=poi(Tivr = 70) + Bi(@ip1 — Ti) = Nipl—
i=1 i=0

@+ ) ) (3.87

Agora podemos usar os seguintes fatos

‘6<poi)| = 17
AT
(Ti+1 - Ti) = Wa (3-88)

e integrando em \; obtemos

N-1

N-1
. AT
Z(':C(]JVJ xgu TN, :UO - hIIl / H dedez H dxz H |pOz

ﬂé(@zi—@%m%%) exm<2< P+ Fos - >>) (3.89

=0

Utilizando a seguinte propriedade abaixo
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T (- 6+ 07 ) = NH|pm( (i + /P F)

1=0

+8(pos — VPP + m2)) . (3.90)

Podemos integrar em py; ficando

Z(f?\hxg;fmﬁo - hm / H dpz H dxz_ eXpZ sz xz—i—l - l’z (eXp( szT>
+ exp(—w;AT)), (3.91)

onde w; = /p? + m?.

Fazendo uma integracao por partes, podemos escrever

N—1 N-1
Z@(fi—&—l —T;) = Z(p — Di—1)Ti — PN-1ZN + PoTo- (3.92)
i=0 i=0

Ao substituirmos esta relagdo em nossa expressao e integrando em &; obtemos

L 1 e o g
Z(a'y, w0; T, o) = lim / H dpi— H 0(pi — Pi1) expi (Pn—1Zn — Do)
(exp(w; AT) + exp(—w;AT)) . (3.93)

Ao integrarmos em N — 1 vezes em p; obtemos o propagador

oo

Z (2%, 23; Ty, ) = / dpy— exp i (BAT) (exp(woAr)

) 0

+exp(—woAT))

que é uma representagao da fun¢do A; de Schwinger obtida em [68, 69]. Isto
nos permite concluir que nao existe um problema de Gribov neste gauge.
Analogamente ao caso covariante, nao obtemos o propadador causal. Para
obtermos o propagador causal, calculamos o objeto da seguinte forma

ZF(CL'?V, ZL'(O), fN,fo) =< $2|@(T)|3171 >, (394)
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com o tempo proprio dado por (3.45). Discretizando este propagador
N-1 N-1 N-1  N-1 N-1
Z(a, af; Ty, Fo) = lim_ / 11 dpo;dp; 11 dzddz; 11 dX; 11 dI1; 11 dP;

N-1 N-1 N-1 N-1

_ _ 1A (= Lo
dC; H dP; dCi@(Z —WT) expi (Z[—pm(xgﬂ —2)) + Pi(Tip1 — T)

i=1 i=0 i=1 i—o Poi

i=0
N-1
_ _ A A
+Pi(Ciy1 — C3)] — (Cicie(poi)pOiWT + Hie(pOi)(x? - Tz)%)
i=1
N-1
AT~ AT
“M\(p? — (72 P Yl D=
+;[ Ailp; = (7 +m*) 5 + PP ]>. (3.95)

As integracoes sao feitas na mesma ordem do caso do propagador anterior.
Quando integramos em p,; usando a propriedade (3.90) a integral ira se
dividir em duas partes.

L. At [ 1 e
Z($(J)Va$8§$N7$O) = 9(—)/ dpo— exp i (PoAZ + woAT)
Wo — o0 Wo

A o 1
0(E0) [ i expi (AT~ woA7). (3.96)

—Wo —c0 0

que é uma representacao do propagador de Feynman obtida em [68].

3.5 Propagador para a Particula Relativistica

no Gauge " — 7 =0

O propagador neste gauge é dado por

Z(xg,x) w0y, 1 o, Ty) = /Dp+Dp_DﬁDa:+Da:_DfD)\DHDCDC_’
DPDP exp(iSey), (3.97)

onde S.r é dada pela expressao (3.33). Este caso é semelhante ao caso do
gauge canonico anterior. Devemos implementar a condicao de gauge com
uma fun¢ao sinal e(p*) adicional a condigdo de gauge. Portanto a fungao
Grasmaniana ¢ dada por

U= —c(ph)(zt —7)C + \P. (3.98)
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A acao discretizada é dada por

N-1
Sep = (_p;r(x;H —x;) — p_(l’;ﬁrl - x;L) + (T — ) + 752‘(01'“ — Cz))
i=0
N—1 N-1
A AT 1 AT
_ VoA S i ) + _ _ 22D
;[0101|p1 ’ N + H16<p7, )(xz TZ + pars ( pz pz 2(pz +m )) N
A
+PP; T) (3.99)

Ao analisarmos a invariancia desta acdo discretizada obtém-se os mesmos
resultados anteriores, de forma que as transformacoes discretizadas que man-
tém a invariancia sdo as mesmas dadas em (3.52). Discretizando o propaga-
dor obtemos

Z(xN, 05 Ty, Tg s TN, To) = hm /H dptdp~dp; H dz; dr~dT; Hd)\

N-1 N-1 N-1 N-1

N—1
P, H dcC; H dP; H dC;expi Z[—pj(:c;rl — ;)
i—1 i—0

=1 1=0 =1 1=0

QU
=
QL

o R _ 1 AT
—p (27, — 27) + Pi( @i — 7)) + Pi(Cipr — Co) + (=Ni(pi oy — 5(25? + mQ))W
_ AT i AT
+PiPi—)] = D _IC:Cilp! !— + e (p?) (@ =) 7] (3.100)
=1
Integrando em II; obtemos
1 N -
— WU o = 7). 3.101
e Lo - (3.101)

Integrando em ;" temos
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Z(x, ] xy, T TN, To) = lim / H dp; dp; dp; H dx; dZ; H d\;

N—oo

Z[_pﬂx;ﬂ —x;)—p (T — 1)

N-1 N-1 N-1 N-1 <N 1
=0

N-1 -1

+7i(Ziv1 — ) + Pi(Cipa — C)] + Z CzCz|p,+|W + [Ai (pjpi_
=1

AT - A
Loy mz)) =T 7%-7%-%]) . (3.102)

2

I
o

2 N

Integrando em C; e C; obtemos

AT phls
(W)Nfl I o1 (3.103)
=1

Portanto temos

Z(ah, af;xy, vy Tn, Do) = lim / H dp; dp; dp; H dx; dT; H d\;

N—oo

N-1 N-1 N-1
H dP; H dP;expi (Z[—pﬂxﬁl — ;) —p (T — 7") + Pi(@ia — T)

i=0 i=0 i=0
1 A AT
N (pipy = s+ m?) ) S+ PP+ (3.104)
2 N
Integrando em P; e P; obtemos o seguinte termo
AT
= 3.105
() (3.105)
Portanto temos
N-1 N-1
Z(xh, T8 TNy To s T, To) = ]\}lm / H dp; dp; dp; H dz; dT; H d\;
> i=1 1=0

- N N-1
1 N o~ AT v AT ) _ _
fe(pfﬂ (A_T)N 1(w)N 111 !PT’(W) €xXp1 (ZO[—PT(%H — ;)
1
2



3.5: Propagador para a Particula Relativistica no Gauge x* — 7 =10

40

Agora podemos usar os seguintes fatos:

el = 1,

(Tiy1 — ) = N (3.107)
e integrando em \; obtemos
Z(xh, a5 w20 TN, Do) = A}g&/ H dp; dp; dp; H dx; dT;

N-1

AT AT . _ _
H|p NH ((wipy — P2+m>>N>ewa<—pf<xi+1—xi>

i=0
AT

—p Tt PiTi — T). (3.108)

Integrando em p; obtemos

I (wp@' ) %@?*m%&) — (T s - PR,

D,
1=0 N AT =0 |pj_| 2p+

que substituindo na integral temos

N—o0

N-1 9
. - - pr+m? At .
exp i (Z(—pi(fml —z;) = (55— + Pi(Tip1 — ﬂfﬁ) . (3.110)

2y, vy T To) = Jim / Hdpmpz de—% -

— )~
— 2p; N

Fazendo uma integracao por partes podemos escrever

z
L

S i, —ar) = Y -

1

i —PN_1TN T Do Tg
K2

P
£

—_

Zﬁi(fi-&-l_fi) = (Pi — Pim1)@; — Pn—1ZN + Podo.  (3.111)
i=0

I
=)

%

Ao substituirmos esta relacao

em nossa expressao e integrarmos em ;e x;
obtemos
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I, 1
2y, w0 T, o) = Jim / Hdpmm| T H(s )
Po
§<pi+ _p;r 1)eXPi([_PN71$N +po xy + PN-1ZN — PoTo

2 A
—§ B m? T]) (3.112)
2p;
1=0 g

Ao integrarmos em N — 1 vezes em p; e p; obtemos o propagador

[e.9]

+ ot - 7 20\
Z($N7x07xNax07xNax0) _/

—00

L1 . _
dpg dpo— expi ([—pg Az
‘po |
]5? +m?

—( VAT + ﬁAf]) , (3.113)
2p;
que é uma representacao da funcao A; de Schwinger nas coordenadas do cone
de luz obtido em [69].
Este resultado também nos permite concluir que o resultado obtido por
Govaerts para o gauge canonico também nao estd correto e portanto este
gauge também nao possui problema de Gribov.

O propagador de Feynman é dado por

Zp(xh, 28 TN, To s T, To) =< 22|O(T) |2y >

- / DpDxDADIIDC DC DPDPO( / A7)

T1

exp(iSey), (3.114)

onde S,y é dada por (3.33) e T' = fTQ L dr. Ao passarmos para o caso discre-
tizado introduzimos a funcao sinal de pt adicional. Portanto o propagador
é dado por



3.5: Propagador para a Particula Relativistica no Gauge x* — 7 =10 42

Z(xh, a8y, vy TN, Tp) = hm /Hd]ﬁdp dp; Hd:c*dx dz;

N—

2
L

N-1 N-1 - —

N—
d\ [ dimi T dp: T 4¢: H dP; H dCl@

1=0 1=

1

1A
+

.

=0 i=1 = i=1 0

1
N—-1
expi ( (~pf ey — ) =0 (afyy — &)+ FilFon — T)

=0
5 — AT
+Pi(Ciy1 — Z CC|pj_|—+H€(pl )( i —Ti) N )]
=1
N—-1
1 AT - AT
—_\. +o- _ 2 (72 2y) =0 D=
+;[ Ai (pl pi — 5P +m )) ~ + PP N])- (3.115)

Fazendo todas as integrais na mesma ordem do caso anterior, obtem-se

[e.9]

1
Z(xy, o ; TN, To) = @(AT)/ dpardeW expi (—pg Az~ + pAT
0

2 2
(& 2;” )AT> : (3.116)

—00

que é uma representacao para o propagador de Feynman nas coordenadas do
cone de luz [69].



Capitulo 4

Quantizacao BRST e Simetria de
Gauge Sp(2,R)

4.1 Introducao

Neste capitulo iremos estudar um modelo que possui uma simetria de gauge
Sp(2,R) no espago de fase que atua em XM e PM com M = (/,1,0,1,....d—1
. Além desta simetria de gauge, o modelo ainda possui uma simetria global
manifesta SO(d, 2) que age linearmente em X quando o espaco possui duas
coordenadas temporais. Devido a essa simetria de gauge esta teoria é equi-
valente a uma teoria com uma tnica coordenada temporal. Entretanto a
escolha do tempo fisico nao é tunica. Para cada escolha de gauge associa-
mos uma hamiltoniana diferente. Essas diversas escolhas dao origem, por
exemplo, & descricao da particula relativistica em d dimensoes, atomo de
hidrogénio em d — 1 dimensoes espaciais e oscilador harmoénico em d — 2
dimensdes espaciais, como foi descrito por Bars em [19, 20, 21]. Como os
sistemas fisicos acima mencionados provém da mesma teoria em d+ 2 dimen-
soes concluimos que houve uma descricao unificada desses sistemas por meio
do modelo com simetria de gauge Sp(2,R). Esta formulagao é chamada de
Fisica com Dois Tempos (Two-Time Physics). Devido a esses fatos, iremos
aplicar o formalismo BFV a fim de compreendermos melhor esta teoria. Até
a secao 4.2 iremos descrever os resultados obtidos por Bars e colaboradores.

4.2 Formulacao Classica
Vamos considerar uma particula em movimento num espaco com coordenadas

XM(r)y = (XM(7), XM (7)) com M,=(/,1',0,1,...d — 1, que apresenta uma
simetria de gauge Sp(2,R) implementada da seguinte forma

43
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5sz]V[(T) = eikwkl<T>Xl]\/[7 l.aja k= 17 2 (41)
onde w*(7) sdo os parametros da transformacao de gauge, simétricos em ki,
e €; ¢ o simbolo de Levi-Civita. Introduzindo um campo de gauge AY(7),
simétrico em ¢j que transforma-se como

6, A (T) = 0,07 (1) + W (T) e AY (1) + W™ (1) e A (1), (4.2)

podemos definir a derivada covariante da seguinte forma

D XM(7) = 0. XM(7) — e A (1) XM (7). (4.3)

A acdo invariante pela simetria definida acima, proposta em [20, 19, 21| é

1 /™ .
S = 5/ dr (DTXlZW) EUXJNHJWN

T1

72 1 ..
— / dr (&X{”Xév — §A”XiMXjN) NAMN, (4.4)

onde a métrica do espaco-tempo 7,y € plana com assinatura arbitraria.
Passamos para o formalismo hamiltoniano calculando os momentos cano-
nicos

oL M
Pu = aXlM:Xz’
oL
P, = —— —0. ij=1,2 45
J aAij J ( )

Observando as relagoes dadas por (4.5) associamos a coordenada X2 com o
momento canonico de XM . Portanto a partir de agora denotaremos XM =
XM e PM = XM Além dessa identificacdo, o sistema ainda possui vinculos
de primeira classe dados por

1
¢1 = _§X27
¢2 - _PX7
1
¢y = —§P2, (4.6)

e satisfazem a seguinte algebra
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{¢a7¢b} = fgb¢d7 a’ab7d:17273 (47)

com as seguintes constantes de estrutura

f112 = —f211 = —2
f123 - _f??l =-1
fos=—fn=-2 (4.8)

Além da simetria de gauge, este modelo possui uma simetria global mani-
festa SO(d,2). Utilizando o teorema de Noether obtemos os seus geradores

LMY = xMpN . pMXN (4.9)

que satisfazem a seguinte algebra

{L]V[N7 LRS} — HJWRLNS 4 UNSLMR o T]NRL]V[S - nMSLNR' (410)

Estes geradores LMY sdo invariantes por transformacoes de gauge.
Ao resolver os vinculos (4.6) podemos considerar :

e que supondo a métrica do espaco tempo 7,y euclidiana, encontramos
a seguinte solucao

XM(r)y =0,

PM(t) =0, (4.11)
e consequetemente LMY = 0. Como esses geradores sdo os invariantes de
gauge da teoria, concluimos que a teoria definida pela soluc¢ao acima é trivial.

e que se supusermos a métrica do espaco tempo sendo de Minkowski,

obtemos
X7 = X; X", i=1,2,...d+1
PX° = PX",
P2 = PP, (4.12)

Podemos definir os seguintes vetores X = (X1, Xo, .. Xg41) € P= (P, Py,
Estes correspodem a parte espacial de um vetor no espaco com d + 2 dimen-
soes. Calculando o poduto escalar X - P obtemos

Piy).
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X - P =|X|.|P|cos# (4.13)

onde 6 é o angulo entre os vetores X e P. Utilizando o resultado dado em
(4.12) podemos escrever

= +1 (4.14)

ou seja, os vetores X e P serao paralelos ou antiparalelos. Isto acarreta
que os geradores L sao nulos e consequentemente estao definindo uma teoria
trivial.

e A fim de encontramos uma teoria nao trivial, ou seja, com L # 0
devemos considerar uma métrica plana nyy = diag(—1,1,1,....., —1),
ou seja, com uma coordenada temporal extra. Neste caso a solucao
para os vinculos ¢ dada por

X2+ X =X, X! i=1,2,,..d
X()/P(]/ + X()Po == HXZ
Py + Py = PP

De forma andloga ao caso anterior podemos definir os vetores X = (X1, X, .. X4)

e P = (P, Py, ...P;). Considerando o produto escalar entre estes dois vetores,
podemos concluir que

X.-P
cosf) = —— 4.15
eI (4.15)
onde 6 ¢ o angulo entre os vetores. Utilizando as equagoes dos vinculos
obtemos

X()PO + XQ/PO/
VXE+ X2\ /P2+ P2

Da expressao acima notamos que estes vetores nao sao paralelos, o que
acarreta que os geradores LMY #£0, ou seja, definem uma teoria nao trivial.

Poderiamos considerar extensoes dessa teoria com mais de uma coorde-
nada temporal extra, entretanto, neste caso, a simetria de gauge Sp(2,R)
nao definird uma teoria quantica unitaria, pois nao removera todos os esta-
dos de norma negativa que surgirao pela adicao de mais de duas coordenadas
temporais. Para definirmos teorias com mais de duas coordenadas temporais
devemos encontrar uma nova simetria de gauge que remova todos os estados
de norma negativa presentes na teoria quantica.

cosf =

(4.16)
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Reescrevendo a acao na forma hamiltoniana

& 1 , 1
S = / dr (&XMPN — FATXHXN — ARX PN — §A22PMPN) TMN -

(4.17)
Podemos escrever as transformacoes de gauge geradas pelos vinculos de pri-
meira classe (4.6) como

6, XM = W) XM 4 WB(r)PM (1),

6, PM = —wH(r) XM — u2(r)PM(7),

S A = 0w (1) 4+ 2w (1) A — 20w (1) A

SLA2 = 9,027 + Wl (1) A — WP2(r) AL,

6.,A2 = 0,w(1) + 2wH (1) A% — 2w (1) A" (4.18)

Variando a agdo (4.17 ) com relacdo a (4.18 ) obtemos

(T d (1 o 1oy 2
S = /T1 deT <2w (T)P S ()X

T2

1

- (1&2(7)132 - -wll(T)X2>

. , (4.19)

T1

demonstrando que a invariancia da acao impoe o anulamento nos extremos
dos parametros w??(7) e w!'(7). Esse comportamento ¢ anilogo ao resultado
obtido no caso da particula relativistica em relacao a invariancia da acao.
Uma outra informacgao que inferimos a partir da expressao acima é que o pa-
rametro w??(7) esté4 relacionado com uma invariancia por reparametrizacao,
enquanto que os parametros w'! (1) e w!'?(7) estao relacionados com as sime-
trias locais que permitem reduzir o espaco com duas coordenadas temporais
a espacos com uma tnica coordenada temporal efetiva.

Vamos analisar os resultados obtido por Bars [19, 20|, nas proximas sec-
¢oes para os casos que descrevem a particula relativistica e o oscilador harmo-
nico.

4.2.1 Particula Relativistica Livre

Vamos mostrar uma solucao que descreve a particula relativistica livre sem
massa em um espaco com d dimensoes espaco-temporais. Para isso devemos

escolher o sistema de coordenadas X = (X*l,X_/,XJ“, X7, X% no espaco
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tempo. As coordenadas do cone de luz sdo definidas em (3.30) e as compo-
nentes da meétrica sdao nt'~ = nt~ = —1 nas coordenadas do cone de luz
e 1 = Y para as d — 2 coordenadas espaciais restantes. Escolhendo as
seguintes condicoes de gauge Xt =1, P =0e X = 7, podemos resolver
os vinculos a fim de eliminarmos os graus de liberdade nao fisicos da teoria,
obtendo

1 .
XM = (1, §X2,0,X‘,X’)
P2

PM = (0,X-P—X"P", P, 2P+,Pl). (4.20)
Substituindo a solugao obtida acima na agao (4.17)
o P2
S = /dT (aTXZPl —9.X" Pt - 2P+) , (4.21)

que corresponde a acao de uma particula relativistica de massa nula em d
dimensoes. Portanto, podemos quantizar a teoria nesse gauge utilizando
os graus de liberdade fisicos presentes na agdo dada por (4.21). Tomando
7 = 0, podemos construir operadores hermitianos da algebra de SO(d,2),
neste gauge, da seguinte forma

, . PiXipI
L=X"pP - — L t=-(X"Pt+PrX"),
2pT 2
! 1 11 ! P2
L=t =_-X?p* LT~ =P* )
2 ’ ’ 2P+’
L+Z:PZ, L+— :_(szz_i_PzXz_X—P-‘r_P-i-X—)’
2
; 1 X~
L'~ = Spﬁ(xﬁﬂ + P’X? — 2a) — - (XP+PX)+ X PtX-,
11 1 1.
L™= SXIPXT = S(X - P)X' = SX(P - X) 4+ 5 X' (X P

onde a constante o provem do fato de levarmos em conta o ordenamento de
X e P . Para determinar seu valor, impomos que os operadores associados
aos geradores de SO(d,2) obedecam & algebra dada em (4.10).

Observando a estrutura destes operadores, podemos dividi-los nos seguintes
subconjuntos: o primeiro subconjunto ¢ L = (LY L™ L~ L*t7) que forma
uma algebra de Lorentz SO(d — 1,1) em d dimensdes espago-temporais e o
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segundo forma o subgrupo das translacdes p* = (L'~ L*'*, L*""). Portanto
o conjunto (L*, p*) forma uma algebra de Poincaré 1.SO(d—1,1). O subcon-
junto K#* = (L="*,L~"=,L™"%) gera as transformacées conformes especiais e
D = Lt ~corresponde ao operador de dilatacio. Uma outra possibilidade de
decomposicio do grupo SO(d,2) é SO(d — 2) ® SO(2,2). Na proxima se¢ao
analisaremos esta segunda decomposigao.

4.2.2 Oscilador Harmonico em d — 2 Dimensoes

A base de uma teoria quantica é a escolha da hamiltoniana que sera diago-
nalizada. Como o modelo possui duas coordenadas temporais, a escolha do
tempo fisico corresponde a uma escolha da hamiltoniana como uma combi-
nacao de geradores do grupo SO(d,2). No caso da particula, escolhemos os
geradores (L', L*"" L*'~) para serem diagonalizados. Nesse caso a hamil-
toniana é dada por L'~ = % e os estados no espaco de Hilbert sao descritos
pelos vetores |PT, P* >. Entretanto existem outras possibilidades de escolha
para a hamiltoniana em rela¢ao aos geradors de SO(d,2). Por exemplo es-
colhendo o conjunto (L%, L*'*, (L*'~ 4 L~*)) onde L¥ descreve o momento
angular em d — 2 dimensées, L*'* correspnde ao momento na direcdo do
cone de luz e que fard o papel de massa, enquanto que o ultimo gerador
H=L""+L"*t = 21% + 3Pt X? correspondera & hamiltoniana de um
oscilador harmoénico em d — 2 dimensoes. O espectro desta hamiltoniana é
semelhante ao de um oscilador harmoénico em d — 2 dimensoes, em que a

massa ¢ dada por P e frequéncia w = 1, é dado por

E,=[n+ %(d ~92)], (4.23)

Gostariamos de relacionar o nimero quantico [ do momento angular em
d—2 dimensobes e o numero quantico n com a representagao do grupo SO(d, 2).
Para isso utilizaremos as representacoes dos subgrupos SO(d —2) e SO(2,2)
para descrever a representagao do grupo SO(d, 2). Da mesma forma podemos
escrever SO(2,2) = SL(2, R)L ® SL(2, R)g. O proximo passo ¢ mostrar que
a hamiltoniana canoénica do oscilador corresponde a um gerador compacto
de SL(2, R)g. Para isso escrevemos os geradores de SL(2, R)g da seguinte
forma

1 /
Gap = §(L+ T—L),
Gor + Gip= LT,

Gor — Gir= L7, (4.24)
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Susbstituindo as expressoes dos geradores correspondentes obtem-se

Gar = Z(}‘(’.zﬂﬁ X),
1, P2 1
= — —pPTX?
1, PP 1,
== —PTX?). 4.2
Gir 2(2P+ 5 ) (4.25)
De forma que podemos concluir que
H = 2GqR. (4.26)

Calculando o operador de Casimir de SL(2, R)r podemos concluir que

Cy(SL(2,R)r) = Gop— Gig—Gap
1 1
—L?+ —(d—2)(d - 4.27
onde L? é o operador de Casimir para o subgrupo de SO(d — 2). Observe

também que

C2<SL<27 R)R)’jum > = jR(jR + 1)j7m >,
QGQR]j,m > = 2mR|j,m > . (428)

Como Ggp é positivo definido, a representacao de SL(2, R) g é dada pela série
positiva discreta caracterizada por

mpr = jr+1+n,, n, =0,1,2,3,.. (4.29)

onde n, é positivo e interpretado como o nimero quantico radial do oscilador
harmoénico. Entretanto devemos encontrar quais sao os valores permitidos
para jr. Da expressdo (4.27) observamos que esse niimero quantico esta
relacionado com o momento angular orbital em d — 2 dimensoes da seguinte
forma

n = [+ 2n,
1 1
mgr = §n+1(d—2)
1 1 3
Jr = jr=zl4+-d—-. (4.30)
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Portanto os estados fisicos sao descritos no espaco de Hilbert pelos vetores
15 JLP*, jrymr >.

Entao mostramos que tanto a particula relativistica sem massa em d
dimensoes como o oscilador harmoénico em d — 2 dimensoes sao descritos pela
mesma teoria com simetria de gauge Sp(2, R).

4.3 Quantizacao BRST Com Simetria de Gauge
Sp(2,R)

Vamos considerar o formalismo BFV para a teoria Sp(2, R) [74]. Em primeiro
lugar adotamos a seguinte notagao A% = (Al A2 A?2) com a = 1,2,3.
Introduzimos os graus de liberdade II, conjugados aos multiplicadores de
Lagrange A® satisfazendo os colchetes de Poisson

{A% 11} = 4. (4.31)
Para nao modificarmos o contetdo fisico impomos como vinculo

1, = 0. (4.32)

O sistema formado pelos vinculos dados por (4.6) e (4.32) é um sistema de
primeira classe, que serd denotado por

Gla = ¢a G2a = Haa (433)

e satisfaz a seguinte algebra

{G1a,Gi} = [%Gra,
{G2a7 G2b} = 07
{G14,G} = 0. (4.34)

onde f¢ ¢ dado por (4.8). ) )
Num segundo momento, introduzimos pares de fantasmas (C*, P, ) e (P%,C,)
associados aos vinculos dados em (4.33) satisfazendo os colchetes de Poisson

{C Py} = {P*,Cp} = —0}. (4.35)
A carga de BRST ¢

1 _
Qp = Croy 4+ C?¢py + C3¢p3 + P, + P, + P35 + 5fgd(J”(JdPa, (4.36)
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e gera as seguintes transformacoes de BRST

6XM:—02XM—CSPM, (SP]\/[:CJXM—‘—CQPNI,
A" =P, 0ll, =0,
§C, = —I1,, P =0,
1 _ _ _
00" = =5 fuaC"Pa: 6Pu =~ — [4C"Pa. (4.37)

Vamos agora estudar a implementacao da quantizacao BRST. A condigao de
gauge é implementada pela seguinte funcao grasmaniana

1~ 1, _ _ _
U= BAlcl + BA%*Q + AYPy 4 A?P,y 4 APs, (4.38)

onde 3 é uma constante real diferente de zero. O colchete de Poisson entre
a carga de BRST e a fun¢ao grasmaniana é dado por

1 - 1 1 = 1 _ _
{V,@5} = 5??101 - BAlﬂl — BPQCQ - BAZH2 + PPy + PPy

_ 1 _ _ _ _
+PPy — AN (GX* = 207P; — CPy) + A* (=P - X — 20°P3 + 2C'Py)

1 _ _
+AY (PP 4 20°Py + C' ), (4.39)

e a acao efetiva fica

Sef = / dr <PMXM + P, C 4+ P,C?% + 75303 — LAY — T, A% — H3A3

T1

~CyP! — CoP? — CyP? — %Plél = %Aln1 + %PQQ - %AQIL + PP

_ _ 1 _ _ _ _
+ P3Py + PPy + A1(§X2 — 20%P, — C¥Py) + A%(P - X — 2C*P5 + 20 P))
+A3(%P2 +20?P5 + 01P2)> : (4.40)

De forma analoga ao gauge canonico da particula relativistica discutido no
capitulo anterior, fazemos a seguinte transformacao invariante por BRST

I, — Bl
[y — Bl,
Cy — BCh,
(72 - 562,
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de forma a reescrever a acao efetiva como

S, = dr ( Py XM 4+ PiC + PrC?% + P3C° — BILA' — BII,A?
f

_TIL,A® — BCyPY — BCyP? — CyPP — %Plél _ %Alﬁ1 + %7%*2
—%AQIZIQ + PPy + P*Py + PP + Al(%XQ —202P; — C3Py)
+A%(P- X —2C%Ps +2C*P)) + %,43(132 + 202P5 + C%)) . (4.41)
Tomando o limite 5 — 0

S, = / Cr (PuXM 4 PUC 4 P DL T AT G

—P'Cy — A, + P2Cy — ATy + PPy + PPy + PPPs + Al(%Xz

—2C°%P; — C*Py) + A%(P - X — 20°P5 + 2C*Py) + %A3(P2

+2C%P3 + C'Py)) , (4.42)

Fazendo a seguinte transformagao invariante por transformacoes de BRST
dada por

ﬁl _>H17 ﬁ? _>H27
Cl —>C_'17 C_Y2 —>C_(2>

a acao efetiva ¢é escrita da seguinte forma

Se = dr PMXM + 75101 + 75202 + 75303 - H3A3 - égpg
f

—P'Cy — Ay + P*Cy — A’y + PPy + P?Py + P*P3; — CPy
+A1(%X2 L 9CPP, — CFPy) 4 AP X — 2C¥Py + 20P))

JFA?’(%P2 + 2C*P3 + 01732)) : (4.43)

As equagbes de movimento sao
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PM o oatxM _og2pM
XML A2XxM L A3pM =
Py — 242D, — AP, = 0
Py + 24P, — 243D, = 0
Py — APy + 24P, = 0
C' — Pt —24'C? 4 24%C* = 0
C?2+P2—AlCP 4+ A3Ct = 0
C® — P34+ 24%C? —24%C" = 0
P =0 a=1,2
Cs—Ps = 0
A° = 0 a=1,2
Cot+Py = 0
A = 0
Ci+P. = 0
PP = 0
—H3+%P2+202P3+Cl732 =0
Hl—%X2+202751+C3752 = 0
HQ—%P~X—2C1P1+2C3P3 =0 (4.44)

Utilizando as condiges de contorno dadas em (2.45) encontramos as se-
guintes solucoes

AXM
XM(r) =X + (1 —11),
AT
A’(1) = Aj,
AXM
pY =
AT
Al = A% =

Ci=Cy=03=0
Cl=C2=C%=0
Pl=P>=P3=0
Py=Py =Py =0
M, =1, =11 =0 (4.45)



4.4: Propagador no Formalismo BFV 95

onde A3 é uma constante real. Observando as solugoes notamos que essas sao
semelhantes as encontradas para uma particula relativistica em d dimensoes
dadas por (3.24).

4.4 Propagador no Formalismo BFV

O propagador, no formalismo BFV é dado por

Z(Xh, X = / DXMDPMDA'DA?DA? DI, DI, DI,
DC,DCyDCsDC' DC?*DC?*DPyDPyDPsDP DP? exp(iSes), (4.46)

com S,y é dado por (4.43). Para calcularmos este propagador, discretizamos
a integral de trajetoria utilizando as condig¢oes de contorno dadas em (2.45).
Entretanto, antes de calcularmos o propagador explicitamente, devemos ana-
lisar o efeito da discretizacao sobre a invariancia da acao discretizada. Isso
serd discutido na préxima secao com detalhes.

4.4.1 Invariancia da Acao Discretizada

A acao dada em (4.43) é discretizada da seguinte forma

N—1 N N-1
Ser =) (PMZ(X% XM+ PulCly = CH + Y PulCEy — CF)

=0

+Pai(CRhy = CF)) + > _[Cai(PPy — P) + Tas (A7) — A7)

A N-1 - N-1 B B
+=5 (— > (P!Cui+ P}Cy) — Z PP~ > (P?Pai+ PiPs)
; i=1
N-1 N N-1
+ Z(A}HM + AZHQZ Z A X2 - 2027)12 05)7521) - Z A§<PMZX1A/[
=1 =1

+2C} Py — 2C¥Py;) — Z ABEP2 — 1Py + 2037331-)) : (4.47)
=1

Discretizando de forma ingénua as transformagoes de BRST dadas em (4.37),
podemos escrever
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oXM =-crxM—cipM,  spM=ClXM+crpM,
AT = o, ST = 0
6C;, = —1I1,, 0P =0
1 _ _ —
6CE = =3 F4CPia 0Pia = —ai — fapC"Pas (4.48)

Variando a agdo (4.47) em relacao (4.48) obtem-se

N-1
3
(SSef — Z (C’ilXiXH_l - §CZIX12 — (Cz?-l—l — CQ)PZ(XZ

%
=0

+1 XZ)

, 1 1 _ .1 .
—C PP + 505’133 + Gl PP+ 501’1—&-1)(1'2 + fayPai(C7CEy — §Czb+10i+1

1 b va
40, (4.49)

ou seja, a acao perde a invariancia ap6s o processo de discretizacao. Para
restaurarmos a sua invariancia devemos modificar as transformacoes de forma

que no limite do continuo obtenhamos as transformacoes usuais de BRST
(4.37). Introduzindo modifica¢des de ordem zero em 57 nas transformagdes,
como foi feito no caso da particula, nao foi possivel restaurar a invariancia
da agao discretizada. Nesse caso, precisamos introduzir termos de ordem %

nas transformacoes. As transformacoes de BRST discretizadas modificadas
ficam da seguinte forma

1 A 1
XM = XM~ JCHPM + P + T (Glatxt + azpict )

1 AT (1 ,
6PM = SO, + XM + C2PM + — (57%-10(%1 + X0 + PERY

1 .
— ARG, + XM) - AICEPM + AXCIXH, + JXM) 4 ACLPY).
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_ 1 A _
0P1s = 5 X2 — (Cy + C2)Pui - (Cf’+1 + P+ < (—PPy

1 .- _ _ _ _
— 5 PiPoi + ALCI Py + ATCI Py — AICI P A?CEP%> ,

_ B A B
57)2’ PM’L z+1 (CzlJrl + Cl>Plz (Cf?+1 + C?)Pgl + WT (P}Plz
— PPy — 2ALCFPy; + 2A2CH Py + 2A2CE Py — 2A3CHPy;)

N
+P?*Py; — A;C7Poy — A;C; Py + A;ClPo; + AJC!Ps;) (4.50)

1 1 _ A
§Ps; = 5P2 - §(C§+1 4 CY)Pyi + (C2y + C2) Py + — ( PPy

As outras transformacoes de BRST pemanecem inalteradas. Estas trans-
formacoes sao nilpotentes on-shell como é demonstrado no apéndice.

4.4.2 Propagador

Discretizando o propagador dado em (4.46) obtemos

Z(Xy, X3") = lim / H dpM H dxM HdAl H dA? HdA3 H dIly;

N-1 N-1 N

dTTy;dITs; H dC} T] dCidCidCdCydCs; H dp; [ aP? I ] aP; H dPy;

i=1 =1 =0 =1 =1 =0
N-—1

H dﬁgldﬁgl eXp(iSef), (451)

=0

onde S.r ¢ a acdo discretizada dada em (4.47).
Integrando o propagador em relacao a Ily; e IIy; chegamos a

AT N
1 _ N-1 1
o5 = G0 Lo,
N-1 N—1
AT N
2 _ N—1 2
[Touy) = (" Lot (152)

Integrando em A} e A? encontramos
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Z(XM xM) = lim / H apM H dXMdALdAL, HdA3 H dI1s; Hd(]1

N-1 N-1 N N N-1
[ dcidciacdCodCs; H dp; [ aP? [T dP} [[ dPu [ ] dPaudPs:
1=1 =0 i=1 i=1 =0 =0
AT N-1 N
(W)_Q(N_l) expt (Z[PMl( i+l z + Z Cil—&-l - Czl)]
1=0 =0

=2

N-1
+ 2[752i(c¢2+1 —-C}) + 7531’(C§+1 -]+ (é3i(73§+1 - P;)
=0

i=1

N—

A 1 B - N B N-1 B
Hls(Af = A7) + WT (‘ (P} Cyi + PCos) — Z PPy + Z(PZ?PQZ'
1 — —

1=

+P;Psi) — —(AlX2 + Ay Z A3 P? — ClPy + 2037731-))) . (4.53)

Integrando a expressao acima em relagao a Cy; e em seguida em P} chegamos
a

Z(Xy, X3") = lim / H dpM H dXMdALdAL, HdA3 H ds; Hd01

N-1 N-1 N N N-1
[[ dcidciaCodCsapyapy T dP? [ dPE [ [ dPu [ [ dPadPs
=1 =1 i=1 =0 =0
AT N-1 N B
(W)_(N_l) expi (Z[P]VM(XZ-H XZ]W) + Z Pli(0i1+1 — Czl)]
=0 1=0
N-1

N—1
+ 2[7521'(01‘11 — C}) + Pui(Cyy — CH + (Cai(Py — P)
i—0 '

A N-1 - - - N—-1 B
i (A7 — A7) + WT <_ (P?Cyi) — PyPio — PyPin + Z(P?Pzi
i=1 i=1
+PiPs;) + (A X2+ ANX Z A3 — O} Py — 2037%,0)) . (4.54)

Integrando o resultado acima em relagao a Cy; e em seguida em 773 obtemos
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N

Z(XN, X3") = lim_ / H dPM H dXMdaAtdAl HdAf’ H dITs; Hdcl

N—-1 N N-1 N-1
H dC2dC3dCydPLdPY H dP: [ dPu H dPy;dPs; expii (Z Pui(X,

=1 =0 =
N-—1

-XM) + Z P(Clia = C) + 3 [PulCliy = CF) + Pl Ty = )
N =0
AT

+ Z (Csi((PFyy — P}) + i (A7, — AY)) + N

((=PyP1o — PyPin + Ay Xx)

N-1 -1
1 _ _
3 T Al 2 1 2 3(Zp2 _mlp. 2D, .
+; (P3Py;) (AX + AL X3 Z:AAQPZ Ci Py — 2C7 Py
—2C7Py))) (4.55)

Integrando em P; e Py, concluimos que Pyg = Piy = 0 e podemos escrever
a expressao do propagador como

Z(XM xM) = Jim / H dpM H dXMdALdAL HdA3 H dH;»anC’l
N-1 N-1

H dC2dC3dCy; H dP} 1] dPu H szZdP;Z Zexpi <Z Pyri(X

=1 =1
N-1

N—1

—XiM) + Z P Czl+1 —Cj) + Z [Pai Oz2+1 C?) + 7331'(01'3“ - C7)]
i=1 =0

N—1

N-1
Z 032 1,+1 Pf) + HSi(A?Jrl <+ Z 7)37332 A1X2
=1

=1
Z A3 — C} Py — 2037@)) . (4.56)

Integrando em Py;(i = 1,..N-1) e em seguida em C} podemos reescrever o
propagador como
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N-1 N-1
st = g /nwnm o T [ iy T

N—o00
N-1
dC3dCsy, HdP3 11 dpzldpgl 2expi <Z Por(XM, — XMy Z [Pai(CZ,
=1 =0 1=0
B N-1 N-1
—CF) + P3i(CPyy — CY)] + ; [Cai(Piy = PP) + T (AL, — N Z (P Psi)

=1
S (AX? 4 ANXR) — S(ANX? 4 ALXR) — S 4B P2~ ChP - 203%01)4.57)

Integrando em Il3; escrevemos

N—o0

N-1
Z(XM¥ XM = lim / H dpM H dXMdALdAL HdA3dCN [ dczdc
=1

N-1

N-1 N-1
A
dCs; HdP3 [ dPuidPs; H 5(A3, | — A3 NT )2 expi <§ Pari(XM,
=0

N—1 N-1
XM+ z Poi(Cly = C2) + Pl Cla = D) + 3 [Py = PY)

)
=1

AT i, _ 1

—2037?32:))) . (4.58)

Integrando em A? obtemos

[\DI»—t

N-1 N-1
Z(XM xM) = lim / H dPM 1] dX}"dAjdANdAXdCy [ dCidC?dcs,

i=1 i=1

N-1
H dp;? H dp2zd733z >expi (Z Pyri(X 'H—l - XM+ Z [Pa; Cz2+1

1=0

=

—1 N—-1
—CH) +Psu(Cly —CH + ) [Cou(Phy —PH+ = (+ > (PIPsi)
=1

=1

N—
—%(Agxg + AL X2) Z — CN P — 202Ps; )) (4.59)
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Agora integrando em Py;(i = 1,..N — 1) e C? mostramos que

A
C2=C2+ NT Aok
A
C2=C2+ NT Aok
A
2, = TA3 cl. (4.60)

Portanto podemos reescrever o propagador da seguinte forma

N-1 N-1

Z(XY¥ XMy = lim / H dPM T] dxdAjdANdASdCy H dC3dCs;

N—o0
=1

N N-—1 N-—1

_ AT ] _
1147 T dPyid— )? expii ( > [Pa(XY, = XM) + PGy, = CF)]
= 1=0

1=0

N-—1 AT N—-1 ~
+P20A AT + Z 031 H—l P,Lg) + — (Z(PSP&)

N
i=1 =1
1 e A7
S bt - S e s e
=1
Integrando em C} e Py encontramos
N-1 N-1
Z(XN, X3") = lim / H dPM [T dxMdAjdAyd A, H dC3dCs HdP3
=1 =1
N-1 N B
H dPp V2AY AT expi (Z Pui( XM, — XM + Py (C2, — CF))
=0 =0
N—-1 AT N—-1 N-1 1
+ Pl — P +— (Z (P} Ps;) — A1X2 + AV XE) — ZA?V(§P2
=1 =1 =1
A
2 NTA3 C}ﬂ’m))) . (4.62)

Integrando em C'3; e em 7713 podemos escrever
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62
N-1 N-1 N—1

Z(XM xMy = lim / 1 P ] dxdAjdANdAY dCy T dCPaPy,
=0 =1 =1

= Ar phly _

H dp3i(W)2dA?vAT exp 1 (Z[+PMi(X¢J\4/{1 — XM+ Pai(CYyy = O

=0 i=0

AT N-1 B 1 N—-1 1
s (Dm&) - SUAXE + ALXE) = Y AV
i=1 =1
A _
—2WTA}3VC}V7730)) : (4.63)

Integrando em C? e Ps; obtemos
N-1

A
[] axMdabaaraat dPlapu( 552 A% A

N—-1
204X} = i [ ] ar
1=0 =1

N-1
‘ AT _ 1
expi ( g PMi(XZ-]\fl - XM+ N (731?{/7330 - §(A(1)X02 + ANXE)
i=0

- i A?v(%Piz) - Q%M%)Qc}v%ou\f - 1))) : (4.64)

3 ‘14 Pl
Integrando Py, e em seguida Ps, podemos escrever

N-1 N-1
A
Z(x3, X3 = lim / IT22" I1 dedAgdA}VdAi’v(WTf
=0 =1
= 1 AT
A3 (A7) expi (Z Pu( XM, — XM + 5(A})Xg + A}VX?V)W
=0

s 5 1 o AT
— ZAN(ﬁpi )W> (4.65)

i=1

Integrando em XM e PM obtemos

AT
N

Ar 1 1 1
expi <WT(—§A?V_1P02AT — 5A}VXJQV - §A(1JX§) + POMAXM.) (4.66)

Z(XN, Xo") = lim [ dPy"dAJdANdAY(

N—oo

)2 AN (AT)?
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Integrando em A} e AL encontramos

Z(XY, XM) = §(X2)5(X3) / AP A% A% (A
expi <P5” AXyy — %AP@M) : (4.67)

Fazendo a seguinte mudanca de varidveis A3 = AAT podemos reescrever o
propagador

1
Z(XN, XM = 6(X2)6(XE) / AP d\ Nexpi (POMAXM — 5AP2> :

(4.68)
Integrando em P escrevemos o propagador como

Z(XM xMy = 5(X§)6(X]2V)/d)\ A7 exp —i (%(AXM)Z) . (4.69)

Vamos agora mostrar que o propagador obtido acima satisfaz os vinculos.
Aplicando o vinculo X2 no propagador obtido concluimos que

D 1
S(X2)0(X3) / X2dA A7 exp —i (ﬁ

e portanto se anula devido & propriedade da funcao delta.
O segundo vinculo aplicado no propagador pode ser escrito como

(AXM)2) =0. (4.70)

Utilizando a representagao na qual P} = aXLM obtemos para o primeiro
0
termo
x 9z~ ixv 9 sx2e(x2) [ar a3 (Eax,- x
ZOW —ZOW(O)(N> 2€Xp—25 0" AN
0
= 2X25/(X§)(5(X]2V)I+(5(X02)5(X12V)8X—M[, (4.72)
0

onde I é a parte que contém a integral em \. Fazendo a derivada da expressao
de I chegamos a

0 , _(D_ (1
WI: —IX%/CM A~V exp —i (5/\X0-XN>. (4.73)
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A fim de reescrevermos a expressao acima de uma forma mais conveniente,
é preciso observar que

D 1 1 d ()
—(5-1 P ) — (%)
/d)\ A exXp —1 (2)\X0 XN> XOXN dOz /d)\ AT

1
exp —1 (—aXo . XN)

o (4.74)

a=1

Fazendo a transformacao A — a\ no lado direito da igualdade obtemos

1 d (D) D 1
d\ A2 g2 -1 | =AXp- X 4.75
e | P e oo () | e
Derivando em relacao a a obtemos
1 1 D (D)
dr A~ —i | =AXp- Xy ) = 1—— A2
/ Vexp ’(2 0 N) XXy | 2)/ "
1
", Xo- X 4.76
exp i (2A X ) (1.76)
Portanto podemos concluir que
0 Xy D
I=—~ (1-2)1I 4.77
oxM XOXN( 2 )L ( )
0 que permite escrever
0 D
M
1 X 8XMZ —i(1+ 5 —)I (4.78)
O segundo termo é facilmente encontrado, obtendo-se
0 , D
aXAXMZ(xZ,ml) +i(1 + 5)1. (4.79)
Portanto concluimos que

= 0, (4.80)
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o que demonstra que o propagador satisfaz o segundo vinculo.
Finalizando nossa anélise, vamos verificar o altimo vinculo dado por

0°Z
- 0X3
-~ 9 (XZ(S’(X?)(S(X?)I+5(X2)5(X2)i1)
ox{! 0N O oX T
—[2(D +2)8"(X5)8(XR)T + 46" (X3)0(X3) +
2
AT IO X! T + X5
= 0, (4.81)

P*Z(xy,a) =

0 que nos permite concluir que o propagador satisfaz a todos os vinculos.

4.4.3 Propagador da Particula Relativistica em d Di-
mensoes

Introduzindo o sistema de coordenadas do cone de luz e escolhendo XJ’ =
X =1 podemos reescrever o propagador (4.69) da seguinte forma

;1 ;1
Z(Xy: Xg) =0(=Xy +3 25(-Xy +§X?V)/dM§
exp —1 (% . AXuAX“) , (4.82)

onde yt =0....d — 1 . E integrando em X~ obtemos

Zy(X4 X5 = [ aXgaxy 20t o), (4.83)

e substituindo a expressido (4.82) temos
1
Zep (X1, XE) = d\ A7 exp —i (5 : AXMAX“> : (4.84)

que é o propagador para uma particula relativistica em d dimensoes. Este
resultado é analogo ao calculado em [61]
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4.4.4 Propagador para o Oscilador Harmoénico em d — 2
Dimensoes

Vamos considerar o propagador (4.69) dado por
2oy (X8 X0) = [ X5 X 50003 [ an?

exp —i (%(AXMV) : (4.85)

Sabendo que AXM = X — XMpodemos reescrever a expressao acima
€como

2oy (X8 X0) = [ X5 aX 500003 [ an?

1
exp —i (ﬁ(X?V + X3 - 2X}§X{)‘)> : (4.86)

Devido as funcgoes deltas da expressao acima, podemos concluir que os
termos quadraticos se anulam, e podemos reescrever

Zop(X0, X1 = / dXg dX 5(X2)5(X2) / DANE exp —i G(X%XOM))
(4.87)

Escolhendo o sistema de coordenadas XM = (X+', X', X+, X, X) onde

o vetor X possui d—2 componentes e fazendo a seguinte mudanca de variavies
a= % obtemos

Zeop (X5, X5 Xy, Xq s Xy, X§) = / dXy dXy 0(-2X5 Xy —2X{ Xy + X7)
O(—2X4 Xy —2X X5 + X3) / da o Vexp (—m(—Xj{,'XO_' - XXy
CXEXG — X X+ X'O)Z}'V)) . (4.88)

/ / ~ . /! !
Tomando X} e X fixos mas nao constantes e integrando em X; e Xy
podemos reescrever o propagador da seguinte forma
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i 1LX7N =
Zep(Xi, Xo s Xy, Xo 3 X, Xo) = /da az™! exp —ix <<§(X—(L) X3
N

1 (X7 X7 Xx¢ Xt Xt
BN 1D G i B [ g ey juiet SR ) D 9. €%
2 <X+> " <X+ X+) " (X; X5) 0

+X’0X}V> . (4.89)
Fazendo em seguida uma translacao em X~ dada por
X-  1X?
X =—+4+-—=— 4.
X+ + 4 X+’ (4.90)

o propagador fica

+ +. v— v-— ; ; d_q . 1 XS_/ XS_/ =9
Zef(XN,XO ;XN,XO 7X}LV7X8) = /dC(O[2 exp —ix Z F + F XN
N N

L) - (g (R ) s (20X
4\ X X X5 Xy, x5 Xy

+)Z’0)?N> . (4.91)

Entao podemos definir

-1

1\3\&.

Zop (X3, X Xy Xo s Xy, X0 :/dX dXy /da a
(1 (xS X\ 5y 1| (X XN 2
—ia | = 20| X242 N X,

X7 Xt X5 Xt - I .
+<—0— )X +< N——N)X5+X0XN+po+Xo_

X+’ Xt
L X ) (4.92)

2 . , . !

No caso da particula relativistica, escolhemos fixar X = 1 nos extremos.
Para obtermos o propagador do oscilador harmonico devemos fazer a seguinte
escolha a fim de definir o tempo fisico

+ +
X, X

0 0 AT). 4.93
X = XE - op(wan) (4.93)
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Substituindo a expressao acima no propagador e usando as definicoes das
funcoes hiperbolicas é possivel escrever

Zep (X530 X3 Xy, Xos Xy, X) = /dffo_df% da a5

1 — - -
exp —i (§[cosh(wAT)(X]2V + X7) + 2X X ] + sinh(wAT) X
+sinh(wr) Xy + pd Xy + p}XE) : (4.94)

Integrando em X; obtemos

Zop (X3, X Xy X, X8) = /df(]\,alozozg1(5(1)5r — asinh(wAT))
1 — — ~

exp —ia (§(cosh(wAT)(X]2V + XJ) + 2X5 X 5) + sinh(wr) Xy

0 Xy (4.95)

Integrando em « obtemos

L Py 452
| sinh(w7)| " sinh(wAT)

Zeg (X3 X3 Xys Xy, Xg) = /dXN
. ch 1 2 72 +yv—

exp —i (m(5[e03h(WAT)(XN + X§) +2XNXy)

+(f + )X (4.96)

Integrando em X{, obtemos

- ) ) 1 p+ d—2
Zop( X, X5 X4, X0 = 0 2 5(pk —pd
f( N>»“*0»“*N> O) \sinh(wT)\(sinh(wAT)) 2 ( N pO)

+
s Po 1 72 52 +y—
exp —i (—sinh(wAT) (2 [cosh(wAT) (X} + Xj) + 2XNXN) . (4.97)

Portanto o propagador do oscilador harménico invertido ¢ dado por

Zo = ipg Zep(Xn, Xo 3 Xiy, X0) (4.98)
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Para obtermos o oscilador harménico usual devemos fazer a transformacao
w — iw. Essa transformcao equivale a esolhermos o tempo fisico utilizando
a seguinte relacao
+ +
Xo Xy

- = —— = exp(twAT), 4.99
X7 T Xo xp(iwAT) (4.99)

o que torna as coordenadas X*'e X+ complexas e isto nio ¢ aceitavel

Uma outra observacao é que o espectro do oscilador harménico invertido
obtido é continuo da mesma forma que a particula livre. Representa um
sistema instavel, porém bem conhecido [80]. Isto é diferente do resultado
obtido por Bars e que foi descrito na secao 4.2.

Como conclusao final deste capitulo, calculamos o propagador de uma
particula relativistica sem massa em d dimensoes e o propagador de um osci-
lador harmonico invertido em d — 2 dimensoes espaciais partindo da mesma
teoria de gauge.



Capitulo 5

Conclusao e Perspectivas

Neste trabalho [74] introduzimos o formalismo BFV para uma teoria com
simetria de gauge Sp(2,R) e calculamos o propagador de uma particula que
se propaga num espaco-tempo com d + 2 dimensoes. Para avaliarmos quais
sistemas em dimensoes mais baixas podem ser descritos pela teoria, escolhe-
mos dois valores para a componente X*'. Se tomarmos Xt = 1 descrevemos
uma particula relativistica sem massa num espaco tempo com d dimensoes.
Entretanto, escolhendo X'e X* como em (4.93), descrevemos um oscilador
harmonico invertido em d — 2 dimensoes espaciais. Com este resultados pu-
demos concluir que a teoria Sp(2,R) descreve esses dois sistemas descritos
acima num espacgo tempo em dimensao mais baixa e que aparentemente nao
estavam correlacionados.

Um outro resultado obtido nesse trabalho foi a analise de um critério de
admissibilidade proposto por Govaerts que mostrava que existiam escolhas
da funcao arbitraria ¥ que nao eram equivalentes. Como consequéncia, pode-
riam aparecer problemas de Gribov na teoria. Isso acarretava que nem todos
os propagadores calculados por meio do formalismo BFV eram equivalentes.
Ao calcularmos o propagador discretizado chegamos a uma expressao para
o jacobiano na medida da integral de trajetoria. E ao calcularmos explici-
tamente esse jacobiano no limite de N grande mostramos que o resultado é
uma constante.

Um outro resultado obtido foi a demonstracao que a acao discretizada
perde a invariancia de BRST em relagao as transformacoes discretizadas.
Mostramos que é necessario uma modificacao das transformacoes de BRST
discretizadas para restaurar a invariancia. Em funcap da estrutura da te-
oria foi necessario introduzir termos de ordem % nas transformacoes. A
nilpoténcia das transformacoes de BRST discretizadas também foram anali-
sadas. Como resultado dessa andlise mostramos que a nilpoténcia é realizada
somente on-shell.
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Como perspectivas futuras desse trabalho podemos citar algumas linhas
de estudo:

e estudar a generalizagao para teorias de campos. Bars e colaboradores
desenvolveram generalizagoes para segunda quantizagao do modelo 28,
29, 30]. Uma das aplicagoes foi a formulacao de um modelo em seis
dimensoes com simetria global SO(4,2) que para uma escolha de gauge
descreve o modelo padrao das particulas [81]. Uma generalizacao de
nosso trabalho é introduzir a formulagao de integral de trajetéria nessa
formulagao para este modelo.

e Estudar generalizacoes que envolvam o formailismo com dois tempos
para teoria de cordas e teoria M |25, 24, 82, 33, 36|.



Apéndice A

Nilpoténcia das Transformacoes
de BRST

Como foi descrito no Capitulo 4 as transformacoes de BRST discretizadas
dadas em (4.48) nao mantém a invarianca da agao discretizada (4.47). Para
restaurar a invariancia, modificamos as transformacoes de BRST discretiza-
das de forma que no limite do continuo estas se reduzem as transformacoes
usuais do continuo. No Capitulo 3, aplicamos estas idéias ao caso da particula
relativistica. Nesse caso, somente os termos cinéticos da acao foram levados
em conta para determinar quais modificacoes deveriam ser introduzidas nas
transformacoes.

Entretanto, no caso da teoria Sp(2,R), devemos analisar todos os termos
presentes na acao discretizada. Por esse motivo, as modificagoes nas trans-
formacdes devem conter termos de ordem 57. Isso nos permite escrever as

N
transformacoes da seguinte forma

8¢ = dod + 016, (A.1)
onde §y é termo da transformacao de ordem zero em % e b a modificacao
de ordem 47 . As transformacoes de BRST dadas em (4.50) podem ser
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reescritas como
) 1
oo X} = —CIXM = CIRM + SCH(PM = PYY),

AT 1

XM =
1 1 N[2

ALXMC3 ¢ A2PMC3]

1
0P = CiXM + CEPM + SO (X, — X)),
AT
N
+AICH XN, +

5PN = STLPHXM, + XM) 4 PEPM — ALCH(XN, + X)) — AlCPPY

1

] _ _ 1 _

oo P = §Xf — 207 P1; — CFPoi — (CFy — CF)Prs — 5(05;1 — C}) Py
1

+§(Xz2+l - X'?)v

L A _ _ _ _
5, Py; = NT [—P2P,; — 7>§‘>7>2i +ALCRPy, + A2CP — ABCIPy, — ABCEPy,

(5075% = R . )(z + 20217511 — 201375& + (CZ-I_H + 011)7511 — (02-34_1 + 013)7531
+P - (X — X)),

- A _ _ _ _ _ _
51 Pai = WT[P}PM + PPy — 2ALCEPy, 4+ 2420 Py + 2A2C3 Py — 2AC2 Py,

= 1 _ _ 1 _ _
0Pz = —P-2 + 20}7727; + 2037737; + §(Czl+1 + C})PQ@ + (Ci2+1 + CE)P:J,Z,

2
~ A _ _ _ _
51733,‘ == T[ P 7321 + 73273& Azl CZQPQ@ - AJCE,P?)Z + A?CILPZZ + A;))CZLPBZ]»
(SUIPZQZO, &:1,2,3
0P =0,
50A? == Pia,
glA? == 0,
50Hai = 07
glnai = 07

1

50051 = _§fl;1dczbczda
0, C* =0,
506(17; Haz

0,C,; = 0. (A.2)
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Vamos demonstrar a nilpoténcia destas transfomacoes on-shell. As equa-
¢oes de movimento que provém da acao discretizada sao

AT

(PM —BM) + W[—A}XM — A*PM] = 0,
A =0,  a=12
P = 0,
M M At 2y M 3pM]  _

(X —X;7) + W[_Ain‘ — AP = 0,
A 1 _ _

WT[HM - 3X2 F207Pu + CPPa) = 0,
A _ _

WT[Hzi — P X; = 20!Py; + 203 P, = 0,
A 1 _ _

— (I3 — Mi—q) + WT[—§P¢2 — Py = 207Ps] = 0,

A
(Chy = CY + S [P = 24107 +242CY] = 0,
A
(C2, —C?) + WT[PE ALy A3 = o,
) ) A ) )

(CP1 = C) + S [P} — 24203 1+ 243C7) = 0,
L A _ _

(Pri = Prica) + WT[—?Agpli — AiPa] = 0,
_ _ A _ o =

(P2 — Pai—1) + WT[?A}PM —2APy] = 0,
L A _ _

(P3i — Psi1) + WT[A}'P% - 2A?,P3i] = 0,
AT _

W[Cli +Pul = 0,
AT _

W[O% + Pyl = 0,
_ AT

(CS'Hrl 013) - WPSZ = 07

(P3i — P3i—1) = 0,

(47, —47) = 0, (A.3)

A nilpoténcia é escrita como

¢ = 856+ 80biep + 51806 + 576
056 + 60016 + 81006, (A4)
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onde ¢ representa uma coordenada do espaco de fase extendido. No resul-

tado acima usamos o fato de que 5% é da ordem de (%)2 e portanto pode ser

desprezado em todos os célculos . Vamos analisar cada uma das transforma-
¢oes modificadas dadas em (4.51). A primeira transformacao a ser analisada
& ade XM. A nilpoténcia ¢ dada por
O2XM = 52XM 4 506, XM 4+ 5,6, X M. (A.5)
O primeiro termo fica
1
RXM = 8[-C2x} — C3PM + SCH(PY - PY,)]. (A.6)

Aplicando as transformagoes obtemos

1
AN = =00 CEX M + CPO X[ = 6CI P + Cla P + S00CH (P + P)
1
—5CH 6P = 0Py, (A7)

Substituindo as transformagcoes obtemos

1
00 X7 = CiCIX)" + CLCERM + SCICH(PY — PLy) + 207 CPRY + CRCi XY
1 1
FCIC2PM 1 LCICH (XM, — XM) — CRCHPM — PY,) — LCiCix)
1 1 1 1
—SCICEPM — ZCRCHXM, - XM) — SCICL XM, - SO P,
1
— O (XM — XM, (4.8)
Simplificando a expressao acima podemos escrever
1 1
00X} = +5CICH(PY = PYY) + 5CPCH (X, = X)) = CRCi(PY = PL)
1 1 1 1
~5CRCIXY — ZC3C2PM - JCRCH(KH, - X¥Y) - SO3CE XM,
1 1
—50503—131—\41 - 103011—1(X1-M - X)) (A.9)
Reescrevendo os seguintes termos como

C?CilleiJ\ijl = C?Cilxij\ill - C?(Cz‘l - Cilfl)Xizuv
Cgciz—lpi]\—/ll = CECiQIDi]\—/Il - C?(Ci? - 01'2—1)Pz‘M- (A.lO)
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podemos reescrever

S0 XF = 45 CRCHPY — PI) + SCRCHXM, — XM) — CIOX(PM — M)

S CROHXM — XM,) — CRCH(PY — PM) — SCONXM - XM,

FSCAO! — CL)XM — LOICA(PY — ) — SONCE — C2 )P
0301()(}11 XM+ Zof’c}(XiM - XM). (A.11)

Utilizando as equacoes de movimento e desprezando termos quadraticos em
% obtemos

1AT
2N
O segundo termo de (A.5) é dado por

XM = ———ApMClC3. (A.12)

AT (
N
Aplicando a variacdo em cada termo do lado direito da expressdao acima
podemos escrever

So0 XM = 6y~ 1A1XMC3 + = AZPMO3) (A.13)

- 1A
Sob XM = T —F(G0AIXNC + AL XM CF + AIXMECE + 80 AP
+A§503MC§ + A2PM5,C3). (A.14)

Substituindo as transformacoes obtemos

N A 1 3
X = =PI+ A(=CEXY 4 50 (P = P+ PERY

1
+AT GO XL+ X)) + CEPIICE + [ALX]T + AP PY|(-2CC7).(A15)
Utilizando as equagoes de movimento chegamos a

O tltimo termo da nilpoténcia de XM ¢ dado por

. 1
00X = 0n[=CPXY = CPRY + SCH(PY = PE)L (AT)
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Aplicando as transformagoes encontramos

- - - - - 1~

&%Xy:—&@X¥+QﬁX%—&@EM+QERM+f¢ﬂBM—R%)
1 - -

—chwdﬁ4—5ﬁﬁﬂ) (A.18)

Substituindo as transformacoes temos

1o X = G- SAT (AN 4 P+ CIAT

PIPY + A;CH (XL + X)) + AICTPY + ATCH(XE, + X)) — §A?CSJ%MJ

1
—5 P (X + X0

1 1
—5 Ol P (X + X)) = PLIPE, + AL L (X + X))
+A_CL P+ A7 O (XM + X)) - 514?—10@'1—1]31‘]\—41]- (A.19)

Usando as equagoes de movimento obtemos

1AT

0100 XM =
100 2N

—A3PMCICE. (A.20)
Substituindo os resultados encontrados acima podemos concluir

S2XM = 0. (A.21)

A segunda transformagao analisada é para PM. A niltpoténcia é dada por

0*PM = 63 PM + 6001 PM + 6,180 PM. (A.22)

O primeiro termo da expressao é calculado por

1
%szmqu+cﬁﬂ+§qm@g—x%y (A.23)

(]

Aplicando as transformacoes chegamos a

1
5@M:%dx%—@%wﬂm&%W—chM+fﬁwlH XM

+—C%% M= 00 XM). (A.24)
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Substituindo as transformacoes obtemos

1
0P = 220 CPXT + CGIOIX + CLCERY = SCC(RY = PLY)

1 1
CLOIPY — C2CIxXM 4 SCRCHXY, — XM = SOlei(xl, - X))

)

1 1

+501103+1X%1 + Cilcz%rlf)i]\fl - ZLCzICEJrl(Pz]#V»[l - PM)
1 1 1 )

LCICIX)  LOICIRY § LCICHEY - P, (4.25)

Simplificando a expressao acima e em seguida utilizando as equagoes de mo-
vimento, podemos escrever

_AT
N

arpioice - LAT pucips (A.26)

6iPM =
0+ 2NZ

O segundo termo de (A.21) é dado por

~ A
S0P = 8o S (PHX M + XM + PIEY — ALK, + X0

1 1
—AIPMCE - (XY, + XM+ S ANCIRY). (4.27)

Portanto podemos escrever

- A
8001 P = o[ (S0P X, + X)) = Pl (80X + 8oX[) + 6P7 P

—Proob" = 00 A; (X, + X CF = Aj (00X, + 00 X)CY

+AHXM, + XM)60CF — 60 A PMCE — Al PMC? — A2 PM 5O
1 1
+00 AT (XY + EXzM)Oil + AZ (6o XM, + §5XZM)C}1 — A2 (XN + XM C}

1
+300ASCIPM] 4+ AL, CLPM — AYCIG,PM], (A.28)

Substituindo as transformacoes e em seguida usando as equacoes de movi-
mento obtemos

~ 1A
Bobi P = —5 S (~PM PP = 3AIPM CLC)), (A.29)
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cujo tltimo termo da expressao (A.21) é dado por

6100 PM

)

. 1
S[C'XM 4+ o2PM + 50}(}(}{1 — XM (A.30)

Desenvolvendo a expressao acima obtemos

SléoﬂM - SlchZ]M - Cllngz]\/[ + SlCZ-ZP,L»JVI - C,?SlP,LM
1< 1 .~ <
+50CH (X = X1 + S CH 0 X, — 0 X, (A.31)

Substituindo as transformacoes e utilizando as equagoes de movimento ob-
temos

1 AT

5,0, PM =
100 2N

ApMcClic?. (A.32)
De acordo com os resultados obtidos acima, podemos concluir

§2PM = 0. (A.33)

Vamos agora analisar as transformacoes dos momentos dos fantasmas. O
primeiro ¢ dado por

6Py = 5(2)751i + 50517511‘ + 5150751¢~ (A.34)

O primeiro termo da expressao acima é dado por

_ 1 . 1 _
5ePri = 50[§X2 —2C7Py; — C*Py; + §(Xi2+1 — X7) = (C}, — CH)Py;

1 _
—5(Cly = )P (A.35)

Desenvolvendo a expressao acima obtemos

53751Z = 50)(1]\/[)(]\4Z — 25001-27511‘ + 201-250751,‘ — 50037521‘ + 023507521
+(00 X Xnrin — 00 XM Xars) — (86CF 1 — 6C5) Py + (CFy — CF)00Pui

1 _ 1 _
—5(5OC§+1 — CE’)P& + 5(0{11 - 013)507331 (A36)

Substituindo as transformacoes podemos escrever
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_ 1 — 1
0Py = XM (=C2X = CPRM + SCH (B = PY,) + 2C[CPy + 207 (5 X7
+2C7CFPy; + CF(Py - X + 20 Poi — 207 Py + Py - (X, — X) + (Clyy

_ _ 1
—CHPy — (C3y — CP)Pyi + XM (—CH XN, — C2L P + §C?+1(Rﬂf1 — PM)

_ _ 1 _ 1 _
—2C?Py; — C; Py + §(Xi2+1 — X7) = (C?y = CYPyi — §(C§+1 — C)Pyy)

1 _
XM — CIPM 4 LOHEM — B+ (2, O — 20 P
+(CP = CHP - Xi + 207 Py — 203 P + Py - (X1 — Xi) + (CFy — C2) Py
_ 1 _ _ 1
—(C}y = CHPyi) + (CFy — CE)[ng — 2C7Py; — C}Poi + §<Xi2+1 - X7)

1 } _
—(C?y = CHYPu — 5(0511 — CP)Pai] + (C}, G — CECT) P (A.37)

Simplificando a expressao acima e em seguida usando as equagoes de movi-
mento podemos escrever

TP = ST ANCIXE + L P XMPY 4 APPXMC2) (A3

O segundo termo é escrito como

A _ S U S
061 Pri = — (0P Prs = PPy + 505P Pai — 5 P60 Pa

o0 ALCHPy, — ALy CPPy, + ALCSPy; — 8y A2CH Py — A%S6COPo; + A2CP54 Py
+00 A7 CIPy; + A350CPri — AXC 80Py + 80 AL CF Py + A250CEPa;)

— A3C250Py). (A.39)

substituindo as transformacoes e em seguida usando as equacdes de movi-
mento

< = A 1 1 _
0001 Pri = WT[_épMiXiM,Pig - §A?X¢ZO¢1 — CIP} Py
— A} Py XM CF 4 2A3C] CPPy; — CPPPPy; + 2A3CICHP3). (AA40)

enquanto o terceiro termo é dado por

N _ -1 _ _ 1 —
6160P1; = 51[§X2 — 2C7Py; — C)Pai + §(X¢2+1 - X7)— (C}, — CHPyi

1 _
—§(Cf’+1 — C?)Payl. (A.41)
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Desenvolvendo o termo acima

51507511' = [SlX - X — 25101'27511' + 20?517511‘ - 510137521' + 03517521'
(01Xi11 - Xig1 — 01X, - X;) — (0.C7y — 01C7) Py + (CFyy — CF)o1Pui

1 -~ _ 1 N
+§(510§+1 — G} )Py — §(Cf’+1 — C?)01Pa). (A.42)

Substituindo as transformacoes e utilizando as equagoes de movimento ob-
temos

5180P = %[CEPEP% — 2A3CLC2Py; + CPPPPs; — 24°C2C5 Py (A.43)

Observando os resultados acima concluimos que

5Py = 0. (A.44)

A segunda transformacdo para os fantasmas é de Py; . A nilpoténcia seré
dada por

§°Py; = 5(2)752i + 8001 Pai + 0100 Pa;. (A.45)

Calculando o primeiro termo temos

(5875% = 50[3‘ - X+ 2037511' - 20,-37531' - F- (Xi]\ﬁl - XZM) + (Cil—H - Ci1>751i
—(Cly — CP)Pail. (A.46)

que pode ser reescrito como

§3Poi = 00 Pi - X; + Py - 5o X; + 200C} Py; — 2C} 6o Pri — 280C3 Ps; + C260Ps;
—5OB . (X%l — XM) —P;- (60Xi+1 - 50Xi) + (5OCil+1 - 6001'1)7511'

)

—(C}i1 — CH6oPri — (06CFy — 60CF)Psi + (CFy ) — CF)do P (A.47)

Substituindo as transformacoes e usando as equacoes de movimento chega-
mos a

P = SLGACIPXY 4 SPIPY £ PG (A

o segundo termo é calculado por
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0001 Pa; = o[ PiP1; — PPPyi — 2A1CEPy; + 2A7CEPy; + 2A7C Py,
2430, (A.49)
que é reescrito como
0001 Pa; = 80P} Pr; — P}y Pri — S0 PP Psi + PR3 Pai — 200 A1 C2Py; — 2A15,CHPy,
+2A250C3Ps; + 2420380 Ps; — 200 A3C*Ps; — 2A350C* P
+2A3C25Pyy]. (A.50)

Substituindo as transfomacoes na expressao acima e usando as equagoes de
movimento obtemos

Lo A _ _ 1 _
0001 Po; = WT[—QA?C’}CE’P& — A3C2P? +2A°CIC*Py; — 57’37’5’ + C'P Py,
(A.51)
o terceiro termo é calculado por
0100Pai = 61[P; - X; + 20} Py — 2C¥P3; — Py - (Xip1 — X;) +
H(Chy — CPu — (G — CY) Pl (A.52)

Desenvolvendo essa expressao e aplicando as equacoes de movimento

- A 1 _ _ _
5100 Pa; = WT[—QAprin.Moj — CLP3Py; — 2A3CIC2 Py, + 2A3CLC3 Py
(A.53)
Os resultados permitem concluir que
6Py = 0. (A.54)

Por fim, vamos analisar a tltima transformacao dos fantasmas Ps;. A condi-
cao de nilpoténcia é escrita como

6°Py; = 5(2)7532‘ + 6001 Ps; + 6100 Psi. (A.55)

Substituindo as transformacgoes obtemos

= 1 - _ 1 _
03Psi = 0ol P* + CiPai + 2C7 Py + 5(Ciyy = C7) P
(CZ, — CH)Psyl, (A.56)
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que é reescrito como

68Ps3i = 6o P - P + 600} Poy — C} 8 Poi + 280C 7 Ps; — 20750 P

1 _ 1 _ _
+§(5OC}+1 — 600} )Py — 5(C}H — C1)8oPai + (60C2; — 60CF) Py
—(C?, — CF)Psi, (A.57)

e substituindo as transformacoes e em seguida utilizando as equagoes de
movimento obtemos

62Ps; = 0. (A.58)

O segundo termo fica

L 1 . - _ _ _ _ _
0001 Ps; = 50[57?}7721' — P Pai 4 Al CFPoi + A; O3 Py — AZCF Py — ASCHPs]. (A.59)

Substituindo as transformagoes e usando as equacoes de movimento obtemos

5051753i = %[01-1775’7731' + 414?01-101-27531‘ + %A?Pf(jil], (A-60)

e o terceiro termo é calculado pela expressao

L -1 _ _ 1 _ _
0100P3; = 51[532 + G Pai + 2C7 Psi + 5(01'1“ — C})Pyi + (C}1 — CF) Py
(A.61)
Substituindo as transformacoes e usando as equagoes de movimento obtemos

~ _ A 1 _ _
51680Py = — [~5 APP2C} — CIPIPy — 4A}CICI Py, (A.62)
Observando os resultados encontrados para essa tltima transformacao con-

cluimos que

§2Py; = 0. (A.63)

As outras transformacgoes nao se modificam e portanto sao nilpotentes como
no caso continuo. Portanto os resultados obtidos neste apéndice nos permi-
tem concluir que as transformacgoes sao nilpotentes on-shell.
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