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1 Introduction

The four-point Coon amplitude, discovered in 1969 by D. D. Coon [1–3], is a deformation
of string theory’s famous Veneziano amplitude [4] with a non-linear Regge trajectory and a
free deformation parameter q ≥ 0. At q = 1, Coon amplitudes become tree-level open string
amplitudes. The early studies of Coon amplitudes in the 1970s were phenomenologically
motivated, in parallel with the height of dual-resonance models for the strong interaction
and the birth of string theory [5]. During this period, Coon and his collaborator M. Baker
discovered a putative N -point generalization of the four-point Coon amplitude, valid for
q > 1 [6]. Despite this initial flurry of research, interest in Coon amplitudes died off by the
mid 1970s. In the late 1980s, L. J. Romans independently rediscovered the original four-point
Coon amplitude along with its putative N -point generalization [7, 8].1 Throughout the
following two decades, Coon amplitudes were again forgotten. Then in 2016, Coon amplitudes
reappeared in the context of the modern S-matrix bootstrap program [9].

In the last two years, Coon amplitudes have received a burst of renewed interest, beginning
with F. Figueroa and P. Tourkine’s 2022 paper [10]. Several groups have studied the low-energy
expansion of Coon amplitudes [10, 11], the unitarity properties of Coon amplitudes [10–14],
various extensions and generalizations of Coon amplitudes [15–20], and possible physical
models realizing the Coon spectrum [21–23].

It is now a well-established result that the four-point Coon amplitude with q > 1 is
non-unitary [10–13]. In contrast, the four-point Coon amplitude with q < 1 seems to satisfy
the constraints of unitarity on its poles (below a q-dependent critical dimension) [10–13].
There is, however, an open question regarding the unitarity properties of the branch cut
in the four-point Coon amplitude with q < 1. In [14], it was shown that the imaginary
discontinuity along the branch cut does not decompose into a positively weighted sum of
partial waves. The author of [14] discusses possible interpretations of this fact and presents
several strategies for excising the negativity from the partial wave coefficients. In any case,
even though Coon amplitudes with q ̸= 1 may violate unitarity, the q → 1 limit is necessarily
unitary by the no-ghost theorem of string theory [24–26]. For now, we set aside these issues
of unitarity and set our sights on the general N -point Coon amplitude in an arbitrary number
d ≥ 3 of spacetime dimension.

Despite all the recent work, there is still no definitive formulation of the N -point Coon
amplitude valid for all values of the deformation parameter q ≥ 0. The N -point amplitude
discovered by Baker, Coon, and Romans is only valid for q > 1. For q < 1, there is a single
paper from 1975 which proposes a worldsheet-integral-esque formula for the N -point Coon
amplitude [27], but it is not clear whether this formula is consistent.

Moreover, there is no definitive field theory or string theory realization of the Coon
amplitude (besides, of course, string theory at q = 1). Accumulation point spectra like
those exhibited by Coon amplitudes with q < 1 were recently found in a setup involving
open strings ending on a D-brane [21]. Accumulation point spectra have also appeared in
various contexts in the modern S-matrix bootstrap program [28], so it is imperative to better
understand the Coon amplitude’s physical origins.

In this paper, we study the N -point Coon amplitude discovered first by Baker and
Coon in the 1970s [6] and then again independently by Romans in the 1980s [7, 8]. The

1Romans’ first paper [7] on Coon amplitudes was never published, but the preprint can be found here.
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formula for this N -point “Baker-Coon-Romans” amplitude is remarkably compact. Moreover,
the Baker-Coon-Romans amplitude retains several important physical properties of string
amplitudes, namely duality and factorization, with q-deformed versions of the string spectrum
and Regge trajectory. In several ways, the N -point Baker-Coon-Romans formula is simpler
than its q → 1 limit, the corresponding N -point open string disk integral. In principle, we
may thus perform a computation at q ̸= 1 and then take the q → 1 limit to indirectly study
string theory. For this reason alone, Coon amplitudes are worthy of study.

Unfortunately, the naive formula for the N -point Baker-Coon-Romans amplitude only
converges for q > 1. At four points, the amplitude admits a straightforward extension to
all q ≥ 0 which reproduces the usual expression for the four-point Coon amplitude. At five
points, however, there are inconsistencies with factorization when pushing q < 1.

Despite these issues, the five-point Baker-Coon-Romans amplitude is still interesting. In
this paper, we find a new relation between the five-point Baker-Coon-Romans amplitude
and C. Cheung and G. Remmen’s recently discovered four-point “basic hypergeometric” (or
“hypergeometric Coon”) amplitude [17, 20], firmly placing the latter within the broader
family of Coon amplitudes.

In this paper, we also compute the q → ∞ limit of the N -point Baker-Coon-Romans
amplitudes and discover an exact correspondence between these amplitudes and the tree-level
amplitudes of a particular field theory. The field theory is that of a scalar field transforming
in the adjoint representation of a global symmetry group with an infinite set of non-derivative
single-trace interaction terms and no higher-derivative interactions. This correspondence
at q = ∞ is the first definitive realization of the Coon amplitude (in any limit other than
q = 1) from a field theory described by an explicit Lagrangian.

It is also known that Coon amplitudes at q = 0 are described by a field theory [10, 11],
but the exact form of this field theory in unknown. Using our exact results at q = ∞ and
the four-point Coon amplitude at q = 0, we conjecture that the field theory at q = 0 is given
by a similar adjoint scalar theory with a slightly different set of interactions. Our results
take a major step towards realizing the Coon amplitude for general q in terms of a definitive
field theory or worldsheet model.

In the remainder of this section, we recall some basic facts about Coon amplitudes, and
we describe the field theory whose amplitudes reproduce the Coon amplitudes at q = ∞.

1.1 Preliminaries

Coon amplitudes describe an infinite spectrum of particles with mass-squared m2
n and spins jn

with 0 ≤ jn ≤ n for integer n ≥ 0 (as well as particles in more general representations of the
Lorentz group like the anti-symmetric tensor Bµν of string theory). The Coon spectrum has
three adjustable parameters µ2, δ, and q related to the masses by

m2
n = µ2

(1− qn

1− q
+ δ

)
= µ2[n]q + m2

0 , (1.1)

where m2
0 = µ2δ is the lowest mass-squared and [n]q are the q-deformed integers,

[n]q = 1− qn

1− q
= 1 + q + · · ·+ qn−1 , (1.2)

– 3 –
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which become the usual integers in the limit q → 1. The dimensionful parameter µ2 sets
the mass scale of the theory and can be arbitrarily adjusted through a choice of units. The
dimensionless parameter δ (or equivalently the dimensionful m2

0) is physical and sets the
Regge intercept of the spectrum. Unitarity constrains −1 ≤ δ ≤ 1

3 [10, 16]. The dimensionless
deformation parameter q is taken to be non-negative. When q < 1, the spectrum has a
finite accumulation point m2

∞ = (1− q)−1µ2 + m2
0. When q ≥ 1, the spectrum is unbounded.

Unitarity constrains q ≤ 1 [10–13]. At q = 1, the Coon spectrum reproduces the spectrum
m2

n = µ2(n + δ) of string theory. The deformation away from the string spectrum may be
understood using the mathematical theory of q-deformations or q-analogs [29]. Along these
lines, the four-point Coon amplitude can be understood as a simple q-deformation of the
Veneziano amplitude [11].

There are some inconsistencies in the literature with the deformation parameter q. The q

defined here (and in all of the modern literature, e.g. [10, 11, 15]) is actually q−1 in much
of the early literature (e.g. [1, 6–8]). We have defined q so that the Coon spectrum is given
by (1.1) for all values of q ≥ 0. In Coon’s original work, there are two distinct four-point
Coon amplitudes, each defined for 0 ≤ q ≤ 1, which match at q = 1 [3]. In [11], it was shown
that these two Coon amplitudes can be written as a single function defined for all q ≥ 0 by
taking one of the two amplitudes and replacing q 7→ q−1.

In this paper, we only consider the scattering of scalars in the lowest mass-level m2
0

of the Coon spectrum in d ≥ 3 spacetime dimensions. In general, these scalars may be
massless, massive, or tachyonic. We further assume that these scalars transform in the
adjoint representation of some global flavor symmetry group G so that the full N -point
Coon amplitudes are given by sums of ordered N -point partial amplitudes multiplied by
single-trace Chan-Paton factors, just as in tree-level open string theory [30, 31]. In string
theory, multi-trace Chan-Paton factors only appear at loop level. Since Coon amplitudes
become tree-level open string amplitudes in the limit q → 1, we can only have single traces,
regardless of the group G. This decomposition into partial amplitudes and single-trace
structures is also shared by tree-level gluon amplitudes in Yang-Mills theory [32–35].

Hence, the Coon amplitude for N scalars of mass-squared m2
0 transforming in the adjoint

representation of the group G is given by

A(N)
q; G =

∑
σ∈SN /ZN

Tr(T aσ(1)T aσ(2) · · ·T aσ(N))A(N)
q (σ(1), σ(2), . . . , σ(N)) , (1.3)

where the sum is over elements σ of the permutation group SN modulo the group of cyclic
permutations ZN acting on the labels (1, 2, . . . , N) (or equivalently over elements of the
permutation group SN−1 acting on the labels (2, . . . , N) with the first label fixed). The
matrices T a are the generators of the group G in the defining representation normalized
by Tr(T aT b) = δab, and a, b, . . . are adjoint indices. The partial amplitudes A(N)

q depend
on a cyclic ordering of the labels (1, 2, . . . , N).

For q > 1, these N -point partial amplitudes with the canonical ordering (1, 2, . . . , N) are
given by the Baker-Coon-Romans formula, which we introduce in section 3. For q = 1, the
N -point partial amplitudes may be computed using worldsheet perturbative string theory.
For q < 1, there is no general formula or method to calculate the N -point partial Coon
amplitudes. We discuss this subtlety in section 4.
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1.2 The q = ∞ field theory

The limits q → ∞ and q → 0 can be roughly interpreted as integrating out the infinite tower
of excited states in the Coon spectrum, leaving only the lightest scalar with mass-squared m2

0.
The resulting theories should then be field theories described by a Lagrangian.

For the unitary group G = U(NF ) (with arbitrary NF ≥ 2), the field theory at q = ∞
is given by the following Lagrangian,

LAS = −1
2 Tr ∂µϕ ∂µϕ − 1

2 m2
0 Trϕ2 −

∑
n≥3

1
n

g̃n−2 Λn+d− 1
2 nd Trϕn , (1.4)

where the scalar field ϕ = T aϕa transforms in the adjoint representation of the global flavor
symmetry group U(NF ). The coupling constant g̃ is dimensionless, and Λ is a mass scale.
This Lagrangian can be resummed as follows,

LAS = −1
2 Tr ∂µϕ ∂µϕ − 1

2(m
2
0 − Λ2) Trϕ2 + Λd

g̃
Trϕ/Λ

d−2
2

+ Λd

g̃2 Tr ln(1− g̃ ϕ/Λ
d−2

2 ) , (1.5)

and is amenable to a semiclassical analysis. In appendix B we demonstrate that the field
theory defined by this Lagrangian has a stable vacuum (at least classically) and is thus a
viable theory in its own right.

The N -point tree-level amplitudes of this adjoint scalar theory are exactly equal to the
N -point Baker-Coon-Romans amplitudes in the limit q → ∞. That is,

lim
q→∞

A(N)
q; U(NF ) = A(N) tree

AS; U(NF ) . (1.6)

For the special unitary group G = SU(NF ), a similar equality holds at large NF ,

lim
q→∞

A(N)
q; SU(NF ) = A(N) tree

AS; SU(NF )

(
1 +O

(
N−1

F

))
. (1.7)

We prove these equalities in section 5. Then in section 6, we provide evidence for a conjecture
about a similar field theory at q = 0.

1.3 Outline

This paper is organized as follows. In section 2, we review the basic details of N -point
scattering amplitudes. (Some technical details are included in appendix A.) In section 3, we
introduce the N -point Baker-Coon-Romans partial amplitudes, review their properties, and
compute the q → ∞ limit. In section 4, we discuss the subtleties involved with extending the
Baker-Coon-Romans formula to q < 1. In section 5, we compute the amplitudes of the adjoint
scalar theory defined in (1.4), and we prove the equalities (1.6) and (1.7). Finally, in section 6,
we discuss some open problems and present a conjecture for the field theory at q = 0. In
appendix B we perform a brief classical analysis of the adjoint scalar theory defined in (1.4).

– 5 –
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2 N -point scattering

In this section, we review the basic details of N -point scattering amplitudes relevant for our
subsequent discussion of the N -point Baker-Coon-Romans amplitude. Some useful reviews
of scattering amplitudes with far more detail include [32–35].

Our conventions are as follows. We work in arbitrary spacetime dimension d ≥ 3. We use
the mostly-plus signature ηµν = diag(−1, 1, . . . , 1) so that the on-shell relation is p2

i = −m2
i .

We use all incoming momenta so that the statement of momentum conservation for N -point
scattering is simply p1 + p2 + · · ·+ pN = 0.

2.1 Kinematics

The kinematic invariants or Mandelstam variables for N -point scattering are defined by

si1i2···in = −(pi1 + pi2 + · · ·+ pin)2 , (2.1)

with 1 ≤ iℓ ≤ N and each iℓ unique. These variables may be interrelated using momentum
conservation and on-shell relations. For N -point scattering, there are 1

2N(N − 3) independent
Mandelstam variables.

For the scattering of four identical scalars with mass-squared m2
0, the Mandelstam

variables are written as

s = s12 = s34 = 4E2 ≥ 4m2
0 ,

t = s23 = s14 = −2(E2 − m2
0)(1− cos θ) ≤ 0 ,

u = s13 = s24 = −2(E2 − m2
0)(1 + cos θ) ≤ 0 . (2.2)

These three variables satisfy the on-shell relation s + t + u = 4m2
0, leaving two independent

variables. Here E and θ are the center-of-mass energy and scattering angle, respectively. The
inequalities refer to the physical scattering regime with real sij .

2.2 Planar channels

Each Mandelstam variable corresponds to a scattering channel. A channel is a partition of
the external particles into two disjoint sets of two or more particles each. We are primarily
concerned with so-called planar channels formed from sets of consecutive particles. We
denote the planar channel formed from the set of consecutive particles {i, i + 1, . . . , j − 1, j}
with 1 ≤ i < j ≤ N by the ordered pair (i, j). Because of momentum conservation, a channel
cannot be distinguished from its complement. Hence,

(i, j) = {i, . . . , j} = {1, . . . , i − 1, j + 1, . . . , N} , (2.3)

and we can restrict j ≤ N − 1 without loss of generality. The set C(N) of independent planar
channels for N -point scattering is given by

C(N) = {(i, j) : 1 ≤ i < j ≤ N − 1 , (i, j) ̸= (1, N − 1)} , (2.4)

with (1, N − 1) excluded since this does not represent a partition of the particles into two
sets of two or more particles each. The set of planar channels has order

|C(N)| =
N−2∑
i=1

N−1∑
j=i+1

(1− δ(i,j),(1,N−1)) =
1
2N(N − 3) , (2.5)

– 6 –
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which is equal to the number of independent Mandelstam variables. The Mandelstam variable
corresponding to the planar channel (i, j) will be denoted by

s(i,j) = si···j = −(pi + · · ·+ pj)2 . (2.6)

The corresponding set of independent Mandelstam variables is given by

S(N) = {s(i,j) : (i, j) ∈ C(N)} . (2.7)

For N = 3, 4, 5, 6 (the cases which we explicitly consider in this paper), we have

S(3) = ∅ ,

S(4) = {s, t}
= {s(1,2), s(2,3)} ,

S(5) = {s12, s23, s34, s45, s51}
= {s(1,2), s(1,3), s(2,3), s(2,4), s(3,4)} ,

S(6) = {s12, s23, s34, s45, s56, s61, s123, s234, s345}
= {s(1,2), s(1,3), s(1,4), s(2,3), s(2,4), s(2,5), s(3,4), s(3,5), s(4,5)} , (2.8)

where we have presented each set in both the “i · · · j” notation and the “(i, j)” notation. The
N = 3 set is empty because there is no kinematic freedom at three points.

2.3 Overlapping and non-overlapping channels

Any pair of channels are either overlapping or non-overlapping. Two channels are non-
overlapping if one channel contains or is disjoint from the other. Otherwise they are
overlapping. At five points for example, the planar channel (1, 2) = {1, 2} = {3, 4, 5} is
overlapping with

(2, 3) = {2, 3} = {1, 4, 5} and (2, 4) = {2, 3, 4} = {1, 5} (2.9)

and non-overlapping with

(1, 3) = {1, 2, 3} = {4, 5} and (3, 4) = {3, 4} = {1, 2, 5} . (2.10)

In this example, we have written each channel using both the ordered pair notation and
the set notation to be as clear as possible.

Given these definitions, we may define the following sets whose elements are subsets
of the full set of planar channels C(N):

• O(N), the set of pairs of overlapping planar channels

• N (N)
[n] , the set of n-tuples (with n ≥ 2) of mutually non-overlapping planar channels

For later convenience, we also define

N (N)
[1] =

{
{(i, j)} : (i, j) ∈ C(N)} . (2.11)

– 7 –
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Although the preceding sentences implicitly define these sets, it will be useful to have explicit
expressions which list their elements without double-counting. We derive these expressions
in appendix A. The reader, however, should not be concerned with the expressions themselves.
In appendix A, we also derive two useful results. First, the set of overlapping pairs of
planar channels has order

|O(N)| = 1
24N(N − 1)(N − 2)(N − 3) . (2.12)

Second, the sets N (N)
[n] with n ≥ N − 2 are empty. In other words, there are at most N − 3

mutually non-overlapping planar channels in N -point scattering.

3 The Baker-Coon-Romans formula

In this section, we review the general properties of the Baker-Coon-Romans N -point partial
amplitude [6, 7] and compute its q → ∞ limit. In particular, we review the amplitude’s
convergence properties, its spectrum, its duality properties, and its factorization properties.

3.1 N-point Baker-Coon-Romans partial amplitudes

Despite fitting on just two lines, the Baker-Coon-Romans formula contains a lot of physics.
The N -point Baker-Coon-Romans partial amplitude for the canonical ordering (1, 2, . . . , N)
is given by

A(N)
q (1, 2, . . . , N) = −gN−2µN+d− 1

2 Nd[(1− q)(q−1; q−1)∞
]N−3

×
∑

nI≥0 , I∈C(N)

{ ∏
J∈C(N)

anJ
J

(q−1; q−1)nJ

∏
{K,L}∈O(N)

q−nKnL

}
. (3.1)

Here g is a dimensionless coupling constant, µ is the mass scale which appears in the Coon
spectrum (1.1), and (x; q)n = ∏n−1

ℓ=0 (1− xqℓ) is the q-Pochhammer symbol. Our normalization,
i.e. the first line of (3.1), differs from the previous literature [6, 7] but is chosen to facilitate
various limits. The uppercase Latin letters I, J, K, L ∈ C(N) denote planar scattering channels,
and O(N) is the set of overlapping pairs of planar channels defined in the previous section.
Finally, aI is a dimensionless affine transformation of the Mandelstam variable sI defined by

aI(sI) = 1 + (q − 1)sI − m2
0

µ2 , (3.2)

which satisfies aI(m2
n) = qn. At N points, there are |C(N)| = 1

2N(N − 3) independent
summation variables nI , and the two products within the curly brackets on the second
line respectively contribute |C(N)| = 1

2N(N − 3) and |O(N)| = 1
24N(N − 1)(N − 2)(N − 3)

factors to the summand. We now examine (3.1) for the first few values of N .

3.1.1 N = 3

The only consistent three-point amplitude is a constant [32–35]. At three points, there are
no independent Mandelstam variables, and C(3) = O(3) = ∅. Thus, only the prefactor on the

– 8 –
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first line of (3.1) contributes, and the three-point Baker-Coon-Romans partial amplitude
is simply given by a constant,

A(3)
q (1, 2, 3) = −gµ3−d/2 , (3.3)

as expected. This amplitude is independent of q and exactly matches the three-point
partial amplitude computed from an adjoint scalar field theory with a cubic interaction
term LAS ⊃ −1

3gµ3−d/2 Trϕ3.

3.1.2 N = 4

At four points, there are two independent planar channels (1, 2) and (2, 3) and one pair of
overlapping planar channels {(1, 2), (2, 3)}. Thus, the second line of (3.1) becomes a double
sum with 2 + 1 = 3 total factors in its summand. The four-point Baker-Coon-Romans partial
amplitude is then given by

A(4)
q (1, 2, 3, 4) = −g2µ4−d(1− q)(q−1; q−1)∞

×
∑

n(1,2)≥0

∑
n(2,3)≥0

a
n(1,2)
(1,2)

(q−1; q−1)n(1,2)

a
n(2,3)
(2,3)

(q−1; q−1)n(2,3)

q−n(1,2)n(2,3) , (3.4)

with aI defined in (3.2). We analyze this expression in more detail in section 4.

3.1.3 N = 5

At five points, there are five planar channels {(1, 2), (1, 3), (2, 3), (2, 4), (2, 5)} and five pairs
of overlapping planar channels. Thus, the second line of (3.1) contributes a sum over five
variables with 5 + 5 = 10 total factors in the summand. The five-point Baker-Coon-Romans
partial amplitude is then given by

A(5)
q (1, 2, 3, 4, 5) = −g3µ5−3d/2[(1− q)(q−1; q−1)∞

]2
×

∑
n(1,2)≥0

∑
n(1,3)≥0

∑
n(2,3)≥0

∑
n(2,4)≥0

∑
n(3,4)≥0

×
a

n(1,2)
(1,2)

(q−1; q−1)n(1,2)

a
n(1,2)
(1,3)

(q−1; q−1)n(1,3)

a
n(1,2)
(2,3)

(q−1; q−1)n(2,3)

×
a

n(1,2)
(2,4)

(q−1; q−1)n(2,4)

a
n(1,2)
(3,4)

(q−1; q−1)n(3,4)

× q−n(1,2)n(2,3)−n(2,3)n(3,4)−n(3,4)n(1,3)−n(1,3)n(2,4)−n(2,4)n(1,2) , (3.5)

with aI defined in (3.2). We analyze this expression in more detail in section 4.

3.1.4 N = 6

At six points, there are nine planar channels and fifteen pairs of overlapping planar channels.
Thus, the second line of (3.1) contributes a sum over nine variables with 9 + 15 = 24 total
factors in the summand. The explicit expression for the six-point Baker-Coon-Romans partial
amplitude is quite large, so we omit it and now return to the general case.
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3.2 Convergence

The convergence properties of the Baker-Coon-Romans formula were first discussed in the
original works [6, 7]. Here we review the convergence properties of the general N -point
Baker-Coon-Romans formula (3.1) using the ratio test. (It is also worth noting that the
q-Pochhammer symbols on the first line of (3.1) only converge for q ≥ 1.) The summation
over each variable nI converges if q > 1 and |aI | < 1. For fixed q > 1, the latter condition is
satisfied within an open set on the complex sI plane. Outside of this region, the Baker-Coon-
Romans partial amplitude (3.1) is defined by an analytic continuation in the Mandelstam
variables sI (excluding of course the infinite sequence of simple poles in the complex sI plane
at sI = m2

n). This process of analytic continuation in the kinematic variables is familiar to
string theory amplitudes [36]. For example, the four-point tree-level open string amplitude
(i.e. the Veneziano amplitude) is most properly defined from a worldsheet disk integral with
imaginary values of s and t. The integral evaluates to Euler’s beta function and can then be
analytically continued to physical real-valued s and t. Similarly, the four-point and five-point
Baker-Coon-Romans amplitudes can be written in terms of known special functions, and
these special functions provide the analytic continuation to physical values of the Mandelstam
variables [7]. We discuss these special functions in more detail in section 4. At higher points
we assume that there is no obstruction to a similar analytic continuation in the Mandelstam
variables [7]. Continuation to q < 1 is a different story which we discuss in section 4.

3.3 Spectrum

The spectrum of the Baker-Coon-Romans formula was discussed in [6, 7, 37]. Here we
briefly review the fact that (3.1) correctly describes the Coon spectrum (1.1). To do so,
we use the q-binomial theorem [29], which relates infinite series involving q-Pochhammer
symbols as follows,

(ab; q)∞
(a; q)∞(b; q)∞

=
∞∑

n=0

an

(q; q)n (bqn; q)∞
=

∞∑
n=0

bn

(q; q)n (aqn; q)∞
. (3.6)

The series in (3.6) converge when |q|, |a|, |b| < 1.
Now, the Coon spectrum should appear as a sequence of simple poles at each m2

n in
any planar scattering channel. We may isolate the contribution to (3.1) from any particular
planar channel I as follows,

A(N)
q (1, 2, . . . , N) ∝

∑
nI≥0

anI
I

(q−1; q−1)nI

∏
J∈O(N)

I

q−nInJ =
∑

nI≥0

(
aIq−ñI

)nI

(q−1; q−1)nI

. (3.7)

Here O(N)
I is the set of planar channels overlapping with I, and ñI is a non-negative integer

given by the sum of summation variables for the planar channels which overlap with I,

ñI =
∑

J∈O(N)
I

nJ ≥ 0 . (3.8)

We can use the q-binomial theorem (3.6) with a = aIq−ñI and b = 0 to perform the sum
over nI and find

A(N)
q (1, 2, . . . , N) ∝ 1

(aIq−ñI ; q−1)∞
∝ 1∏∞

n=0(sI − m2
n+ñI

) , (3.9)
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which has simple poles at sI = m2
n for each integer n ≥ 0 (since ñI ≥ 0). The residues of

these poles are polynomials in the overlapping Mandelstam variables,

A(N)
q (1, 2, . . . , N) ∼ 1

sI − m2
n

(
degree-n polynomial in sJ with J ∈ O(N)

I

)
, (3.10)

which indicates the exchange of particles of mass-squared m2
n and spin jn with 0 ≤ jn ≤ n

as claimed in (1.1). When the residue is a polynomial in more than one of the overlapping
Mandelstam variables sJ , the decomposition in terms of irreducible representations of the
Lorentz group also includes representations corresponding to more general Young tableaux.
This feature is evident in the spectrum of string theory which has an excitation corresponding
to the anti-symmetric tensor Bµν whose representation is not labeled by a spin in the canonical
sense.2 These details are discussed in [37] for the Coon amplitude with q > 1 and in [38]
for the dual resonance model (i.e. string theory) at q = 1.

3.4 Duality

The duality properties of the Baker-Coon-Romans formula were first discussed in Baker,
Coon, and Romans’ original works [6, 7]. Here we briefly review the fact that N -point
Baker-Coon-Romans partial amplitude is duality invariant in the sense of dual resonance
models [5]. A more detailed proof is given in [7]. Duality invariance refers to invariance
under combined cyclic and anti-cyclic permutations of the external particles. For N -point
scattering, duality transformations are generated by the cyclic shift ϕ and the reflection θ,

ϕ : (1, 2, . . . , N) 7→ (2, . . . , N, 1) ,

θ : (1, 2, . . . , N) 7→ (N, . . . , 2, 1) , (3.11)

which satisfy ϕN = θ2 = (ϕ ◦ θ)2 = 1. The Baker-Coon-Romans formula (3.1) only depends
on the external particle labels through the sets of planar channels C(N) and overlapping
planar channels O(N). Both C(N) and O(N) are invariant under duality transformations.
One can explicitly verify this fact using the formulae for these sets in appendix A. Thus,
we conclude that the Baker-Coon-Romans partial amplitude (3.1) is invariant under any
duality transformation.

3.5 Factorization

The factorization properties of the Baker-Coon-Romans formula were discussed in detail
in [6, 7, 37, 39, 40]. Here we briefly review the high-level results. Factorization refers to
the property that tree-level amplitudes factorize into products of lower-point amplitudes on
their poles. We can schematically demonstrate the factorization of the Baker-Coon-Romans
N -point partial amplitude (3.1) on any given planar channel using the q-binomial theorem.
Because (3.1) is invariant under duality transformations, it is sufficient to consider only the
planar channels (1, M) with M = 2, 3, . . . , ⌊N/2⌋. Schematically, the Baker-Coon-Romans

2We thank L. Lindwasser for clarifying this subtlety.
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partial amplitudes should obey,

A(N)
q (1, 2, . . . , N) ∼

∑
n,ℓ

Ã(M+1)
q (1, 2, . . . , M, Xn,ℓ)

× Nn,ℓ

s(1,M) − m2
n

× Ã(N−M+1)
q (−Xn,ℓ, M, M + 1, . . . , N) , (3.12)

where the sum is over states (i.e. over mass-squared m2
n and spins ℓ) in the Coon spectrum (1.1)

exchanged in the (1, M) channel. Here Nn,ℓ is the numerator of the propagator for a particle
of mass-squared m2

n and spin ℓ. The (M + 1)-point and (N − M + 1)-point Coon amplitudes
Ãq respectively describe the scattering of M and N − M massless scalars with one massive
spinning state (labeled by Xn,ℓ). Using the q-binomial theorem (3.6) to perform the sum over
n(1,M) in (3.1) produces exactly this factorization. In fact, the Baker-Coon-Romans formula
itself exhibits the full factorization of an N -point tree-level amplitude into a product of
three-point amplitudes. For more details, we refer the reader to [7, 37, 39, 40]. Of particular
interest is [39, 40], where thrice-iterated factorization was used to derive the most general
three-point Coon amplitude for any three massive spinning states.

3.6 q → ∞

Although the q → ∞ limit has been computed for some lower point Coon amplitudes [7],
the general result is yet unknown. For the first time, we compute the q → ∞ limit of the
N -point Baker-Coon-Romans partial amplitude (3.1).

This limit only makes sense if we simultaneously take µ → ∞ with both m2
0 and a

new scale Λ2 = q−1µ2 fixed so that the dimensionless quantities aI defined in (3.2) remain
finite. This combined limit of q → ∞ and µ → ∞ sends m2

n → ∞ for all n ≥ 1 which
effectively integrates out all the particles in the Coon spectrum except for the lowest-lying
scalars with mass-squared m2

0. From this perspective, we expect the resulting amplitudes to
correspond to a field theory describing the self-interactions of these scalars. We also define a
new dimensionless coupling constant g̃ = q(6−d)/4g which we keep fixed in the limit q → ∞
so that the combination g̃Λ3−d/2 = gµ3−d/2 (and thus the three-point Coon amplitude (3.3))
remains finite. For d < 6, this limit corresponds to a weak coupling limit in g. For d > 6,
this limit corresponds to a strong coupling limit in g.

In summary, we are considering the limit

q → ∞ with fixed m2
0, Λ2 = q−1µ2, and g̃ = q(6−d)/4g . (3.13)

We can take this limit directly from the Baker-Coon-Romans formula (3.1). We find

lim
q→∞

A(N)
q (1, 2, . . . , N) = (−)N g̃N−2ΛN+d− 1

2 Nd

×
∑

nI≥0 , I∈C(N)

{ ∏
J∈C(N)

ãnJ
J

∏
{K,L}∈O(N)

δnKnL,0

}
, (3.14)

where we have defined ãI = limq→∞ aI = 1 + (sI − m2
0)/Λ2. We recall that uppercase Latin

letters I, J, K, L ∈ C(N) denote planar scattering channels, and O(N) is the set of overlapping
pairs of planar channels defined in the previous section. We have replaced the factors of q−nKnL
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with the Kronecker deltas δnKnL,0 since limq→∞ q−nKnL = 0 vanishes unless nKnL = 0. We
can then replace these deltas with Kronecker deltas of a single summation variable using
δnKnL,0 = δnK ,0 + δnL,0 − δnK ,0δnL,0. If we ignore the Kronecker deltas, the remaining sums
are all geometric series, ∑

nI≥0
ãnI

I = 1
1− ãI

= − Λ2

sI − m2
0
= − 1

sI
, (3.15)

where we have defined the dimensionless Mandelstam variable sI = (sI − m2
0)/Λ2. The

Kronecker deltas, however, complicate things. Before tackling the general case, we explicitly
examine the first few values of N .

3.6.1 N = 4

For N = 4, the expression (3.14) becomes

lim
q→∞

A(4)
q (1, 2, 3, 4) = g̃2Λ4−d

∑
n(1,2)≥0

∑
n(2,3)≥0

ã
n(1,2)
(1,2) ã

n(2,3)
(2,3) (3.16)

×
(
δn(1,2),0 + δn(2,3),0 − δn(1,2),0δn(2,3),0

)
.

Performing the sums is straightforward and yields

lim
q→∞

A(4)
q (1, 2, 3, 4) = −g̃2Λ4−d

( Λ2

s − m2
0
+ Λ2

t − m2
0
+ 1

)
, (3.17)

which is precisely the four-point partial amplitude computed from an adjoint scalar theory
with both cubic and quarter interaction terms. We revisit this observation in section 5.

3.6.2 N = 5

For N = 5, the calculation is more involved. In this case, the expression (3.14) becomes

lim
q→∞

A(5)
q (1, 2, 3, 4, 5) = −g̃3Λ5−3d/2 ∑

n(1,2)≥0

∑
n(1,3)≥0

∑
n(2,3)≥0

∑
n(2,4)≥0

∑
n(3,4)≥0

× ã
n(1,2)
(1,2) ã

n(1,3)
(1,3) ã

n(2,3)
(2,3) ã

n(2,4)
(2,4) ã

n(3,4)
(3,4)

×
(
δn(1,2),0 + δn(2,3),0 − δn(1,2),0δn(2,3),0

)
×
(
δn(2,3),0 + δn(3,4),0 − δn(2,3),0δn(3,4),0

)
×
(
δn(3,4),0 + δn(1,3),0 − δn(3,4),0δn(1,3),0

)
×
(
δn(1,3),0 + δn(2,4),0 − δn(1,3),0δn(2,4),0

)
×
(
δn(2,4),0 + δn(1,2),0 − δn(2,4),0δn(1,2),0

)
. (3.18)

We can use δ2
n,0 = δn,0 to simplify the string of Kronecker deltas. After this simplification,

it is straightforward to perform the sums, and we find

lim
q→∞

A(5)
q (1, 2, 3, 4, 5) = −g̃3Λ5−3d/2

(
1

s12s34
+ 1

s23s45
+ 1

s34s51
+ 1

s45s12
+ 1

s51s23

+ 1
s12

+ 1
s23

+ 1
s34

+ 1
s45

+ 1
s51

+ 1
)

, (3.19)
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where sI = (sI −m2
0)/Λ2. This expression is precisely a five-point partial amplitude computed

from an adjoint scalar theory with cubic, quartic, and quintic interaction terms. Again,
we revisit this observation in section 5.

3.6.3 N = 6

For N = 6, we again begin with (3.14). We first use the set of overlapping pairs of planar
channels O(6) tabulated in appendix A to explicitly write out the string of Kronecker deltas.
We then use δ2

n,0 = δn,0 to simplify the string. Finally, we perform the remaining sums and find

lim
q→∞

A(6)
q (1, 2, 3, 4, 5, 6) = −g̃4Λ6−2d

(
1

s12s34s345
+ (5 cyclic perms.)

+ 1
s12s45s345

+ (5 cyclic perms.)

+ 1
s12s34s56

+ (1 cyclic perm.)

+ 1
s12s123

+ (5 cyclic perms.)

+ 1
s12s345

+ (5 cyclic perms.)

+ 1
s12s34

+ (5 cyclic perms.)

+ 1
s12s45

+ (2 cyclic perms.)

+ 1
s12

+ (5 cyclic perms.)

+ 1
s123

+ (2 cyclic perms.) + 1
)

, (3.20)

where sI = (sI − m2
0)/Λ2 and “(m cyclic perms.)” denotes the m unique terms obtained by

cyclically permuting the particles labels of the preceding term. As before, this expression is
precisely a six-point partial amplitude computed from an adjoint scalar theory with cubic,
quartic, quintic, and now sextic interaction terms. Once more, we revisit this observation
in section 5.

3.6.4 General N

We now return to the case of general N . We begin with (3.14). The trickiest part of this
calculation is making sense of the following product of Kronecker deltas,

∆(N) =
∏

{K,L}∈O(N)

δnKnL,0 , (3.21)

where the product runs over all unique pairs of overlapping planar channels. The factor ∆(N)

is equal to a sum of products of deltas δnI which vanishes unless the summation variables
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satisfy nK = 0, nL = 0, or nK = nL = 0 for every pair of overlapping planar channels K

and L. In other words, only summation variables corresponding to mutually non-overlapping
channels can simultaneously be non-zero. At most N − 3 planar channels can be mutually
non-overlapping in N -point scattering, so ∆(N) is equal to a sum of terms with at least
1
2N(N − 3)− (N − 3) = 1

2(N − 2)(N − 3) and at most 1
2N(N − 3) factors of unique deltas

δnI . The terms with the fewest δnI (i.e. the terms which can support the largest number
1
2(N − 2)(N − 3) of non-zero nI) are given by

∆(N) =
∑

X∈N (N)
[N−3]

∏
I∈C(N)/X

δnI ,0 + · · · , (3.22)

where we have used the fact that elements of the set N (N)
[N−3] are (N − 3)-element subsets

of the set of planar channels C(N). The string of Kronecker deltas in (3.22) double counts
contributions to the sum with 1

2(N − 2)(N − 3)− 1 non-zero nI , so we must subtract the
appropriate sums of products of deltas with all (N − 4)-tuples of mutually non-overlapping
planar channels excluded,

∆(N) =
∑

X∈N (N)
[N−3]

∏
I∈C(N)/X

δnI ,0 −
∑

X∈N (N)
[N−4]

∏
I∈C(N)/X

δnI ,0 + · · · . (3.23)

The expression (3.23) then double counts contributions with 1
2(N − 2)(N − 3)− 2 non-zero

summation variables, so we must add a similar set of terms. This pattern continues until we
add or subtract the product of all 1

2N(N −3) Kronecker deltas. After the dust settles, we find

∆(N) = (−)N−1 ∏
I∈C(N)

δnI ,0 +
N−3∑
n=2

(−)N−1−n
∑

X∈N (N)
[n]

∏
I∈C(N)/X

δnI ,0 , (3.24)

which we then use in (3.14) to find

lim
q→∞

A(N)
q (1, 2, . . . , N) = −g̃N−3ΛN+d− 1

2 Nd

(
1 +

N−3∑
n=1

∑
{I1,...,In}∈N (N)

[n]

1
sI1 . . . sIn

)
, (3.25)

where sI = (sI − m2
0)/Λ2. The expression (3.25) is our final result for the q → ∞ limit of

the N -point Baker-Coon-Romans partial amplitude. In section 5, we prove that the adjoint
scalar field theory described in section 1 has precisely the same tree-level amplitudes.

4 Taking q < 1

In this section, we discuss the subtleties involved with extending the Baker-Coon-Romans
formula (3.1) to q < 1. Although the Baker-Coon-Romans formula only converges for q > 1,
there is a straightforward procedure to extend the four-point formula to q < 1 using the
q-gamma function. At five points and higher, however, we encounter various difficulties.

– 15 –



J
H
E
P
1
0
(
2
0
2
4
)
0
1
0

4.1 Four points

We begin our discussion with the four-point Baker-Coon-Romans formula (3.4). For now, we
assume that q > 1 so that the sums in (3.4) converge. The sum over n(2,3) can be performed
using the q-binomial theorem (3.6) with a = a(2,3)q

−n(1,2) and b = 0. The remaining sum
over n(1,2) can then be performed using the q-binomial theorem (3.6) with a = a(1,2) and
b = a(2,3), yielding the following compact expression,

A(4)
q (1, 2, 3, 4) = −g2µ4−d(1− q)

(q−1; q−1)∞(a(1,2)a(2,3); q−1)∞
(a(1,2); q−1)∞(a(2,3); q−1)∞

. (4.1)

This expression is manifestly duality invariant (i.e. invariant under s ↔ t), and the two
q-Pochhammer symbols in the denominator respectively contain the s-channel and t-channels
poles at each m2

n. Now, is this expression valid for q < 1? As written, the q-Pochhammer
symbols diverge for q < 1, but we may write this expression in terms of a particular special
function, the so-called q-gamma function, which allows us to take q < 1.

4.1.1 The q-gamma function

In mathematics, a q-analog of a theorem, function, identity, or expression is a generalization
involving a deformation parameter q that returns the original mathematical object in the
limit q → 1. Many special functions and differential equations have well-studied q-analogs
dating back to the nineteenth century [29]. The q-analog of the gamma function Γ(z) is called
the q-gamma function Γq(z) [29] and is defined for complex q and z as follows,

Γq(z) =


(1− q)1−z (q ; q)∞

(qz; q)∞
|q| < 1

q
z(z−1)

2 (q − 1)1−z (q−1; q−1)∞
(q−z; q−1)∞

|q| > 1
. (4.2)

The q-gamma function becomes the ordinary gamma function as limq→1± Γq(z) = Γ(z). The
piecewise definition ensures that the q-gamma function obeys a functional equation,

Γq(z + 1) = [z]q Γq(z) , (4.3)

analogous to that of the gamma function, Γ(z + 1) = z Γ(z) [41]. The piecewise definition
also implies the following relationship between Γq(z) and Γq−1(z),

Γq−1(z) = q−
1
2 (z−1)(z−2) Γq(z) . (4.4)

We now use the definition of the q-gamma function (4.2) to write (4.1) in terms of Γq(z).
After some simple algebra, we find the following expression which is valid for all q ≥ 0,

A(4)
q (1, 2, 3, 4) = g2µ4−d qσ(1,2)σ(2,3)−1 Γq(−σ(1,2))Γq(−σ(2,3))

Γq(− σ(1,2) − σ(2,3))
, (4.5)

where we have defined the q-deformed Regge trajectory,

σI = ln aI

ln q
= ln[1 + (q − 1)(sI − m2

0)/µ2]
ln q

. (4.6)
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Up to a normalization convention, this form of the four-point Coon amplitude is exactly
the form analyzed in [11] for all q ≥ 0. In the limit q → 1, it reproduces the Veneziano
amplitude [4] exactly as expected,

lim
q→1

A(4)
q (1, 2, 3, 4) = g2µ4−d Γ

(
−(s − m2

0)/µ2)Γ(−(t − m2
0)/µ2)

Γ
(
−(s + t − 2m2

0)/µ2) . (4.7)

Many other properties of (4.5) are discussed in [11]. Although we began with the four-point
Baker-Coon-Romans formula which is only valid for q > 1, we have ultimately arrived at an
expression (4.5) valid for all q ≥ 0. The trick was the q-gamma function, which provided
a continuation of sorts in q.

4.1.2 The loss of meromorphicity

The continuation of the four-point Coon amplitude to q < 1 introduces a peculiar property.
Conventional wisdom says that tree-level scattering amplitudes should be meromorphic
functions of the relevant Mandelstam variables (in this case s and t). However, the prefactor
qσ(1,2)σ(2,3) in (4.5) is explicitly non-meromorphic in s and t. This factor introduces branch
cuts in the complex s-plane and t-plane starting at the accumulation point of the Coon
spectrum m2

∞ = (1− q)−1µ2 + m2
0. When q ≥ 1, the Coon spectrum is unbounded, the

accumulation point vanishes, and the four-point Coon amplitude is meromorphic. The
non-meromorphicity of the four-point Coon amplitude with q < 1 (and the interplay of this
property with unitarity) has been discussed at length in [10, 11, 14]. The four-point Coon
amplitude with q < 1 may be unitary, but it is non-meromorphic. On the other hand, the
four-point Coon amplitude with q > 1 is meromorphic but non-unitary. Only the Veneziano
amplitude at q = 1 is both meromorphic and unitary. In any case, we have demonstrated
how this non-meromorphicity arises through the definition of the q-gamma function when
continuing the four-point Baker-Coon-Romans formula from q > 1 to q < 1. In contrast,
Coon originally introduced the factor qσ(1,2)σ(2,3) by hand to ensure that the four-point Coon
amplitude with q < 1 had polynomial residues on its poles [2, 3].

4.1.3 q → 0

With (4.5) in hand, we may now compute the q → 0 limit of the four-point Coon amplitude.
Taking q → 0 alone collapses the Coon spectrum (1.1) to a scalar of mass-squared m2

0 plus
an infinite number of particles with mas-squared m2

0 + µ2. To interpret q → 0 as a field
theory limit, we must also take µ → ∞ (with m2

0 fixed) so that these heavy particles are
effectively integrated out, leaving only the lowest-lying scalar with mass-squared m2

0. From
this perspective, we expect the resulting amplitudes to correspond to a field theory describing
the self-interactions of these scalars. In close analogy with the q → ∞ limit, we define a
new scale Λ2 = qµ2 and a new dimensionless coupling g̃ = q(d−6)/4g which we keep fixed in
the limit q → 0 so that the combination g̃Λ3−d/2 = gµ3−d/2 (and thus the three-point Coon
amplitude (3.3)) remains finite. For d < 6, this limit corresponds to a weak coupling limit
in g. For d > 6, this limit corresponds to a strong coupling limit in g.

In summary, we are considering the limit,

q → 0 with fixed m2
0, Λ2 = qµ2, and g̃ = q(d−6)/4g . (4.8)
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In this limit, the non-meromorphic prefactor is simply qσ(1,2)σ(2,3) → 1. To correctly compute
the limit of the q-gamma functions, we first write them as infinite products using (4.2). After
some straightforward manipulations, we find

A(4)
q (1,2,3,4)=−g̃2Λ4−d qσ(1,2)σ(2,3)

(
µ2

s−m2
0
+ µ2

t−m2
0
−(1−q)

)

×
∏
n≥1

(1−qn+1)
(
1−
[
1+(q−1) s−m2

0
µ2

][
1+(q−1) t−m2

0
µ2

]
qn
)

(
1−
[
1+(q−1) s−m2

0
µ2

]
qn
)(

1−
[
1+(q−1) t−m2

0
µ2

]
qn
) . (4.9)

The entire second line of this expression becomes one as q → 0. The first line, however,
requires some hand-waving. If we assume that the combinations µ2/(s − m2

0) and µ2/(t − m2
0)

remain finite (even though we are taking µ → ∞), then we have

lim
q→0

A(4)
q (1, 2, 3, 4) = −g̃2Λ4−d

(
µ2

s − m2
0
+ µ2

t − m2
0
− 1

)
. (4.10)

The resulting amplitude is essentially the same as the q → ∞ limit of the four-point Coon
amplitude (3.25) but with the sign of the four-point term reversed. We revisit this observation
in section 6. For now, let us turn to five points.

4.2 Five points

We begin our discussion with the five-point Baker-Coon-Romans formula (3.5). For the sake
of clarity, we label the five five-point planar scattering channels using the manifestly cyclic
invariant notation C(5) = {12, 23, 34, 45, 51}. Following the four-point strategy above, our
goal is to write (3.5) in terms of known special functions. Again, we first assume that q > 1
so that the sums in (3.5) converge. We can perform the sums over n23, n34, and n51 using
the q-binomial theorem (3.6) three times in succession to find

A(5)
q (1, 2, 3, 4, 5) = −g3µ5−3d/2(1− q)2[(q−1; q−1)∞

]2 ∑
n12≥0

∑
n45≥0

× (a23a34q−n12−n45 ; q−1)∞
(a23q−n12 ; q−1)∞(a34q−n45 ; q−1)∞(a51q−n12−n45 ; q−1)∞

× an12
12

(q−1; q−1)n12

an45
45

(q−1; q−1)n45
. (4.11)

Because the two remaining summation variables n12 and n45 each appear in four different
q-Pochhammer symbols, we cannot use the q-binomial theorem in a straightforward way.
Instead, we can use the q-binomial theorem in reverse to reintroduce the sum over n51,

(a23a34q−n12−n45 ;q−1)∞
(a51q−n12−n45 ;q−1)∞

=
∑

n51≥0

an51
51

(q−1;q−1)n51
(a23a34/a51;q−1)n51q−n12n51−n45n51 . (4.12)

We can then use the q-binomial theorem to perform the sums over n12 and n23, leaving only
the sum over n51. After some straightforward algebra, we find

A(5)
q (1, 2, 3, 4, 5) = −g3µ5−3d/2(1− q)2

× (q−1; q−1)∞(a12a23; q−1)∞
(a12; q−1)∞(a23; q−1)∞

(q−1; q−1)∞(a34a45; q−1)∞
(a34; q−1)∞(a45; q−1)∞

×
∑

n51≥0

(a12; q−1)n51(a45; q−1)n51(a23a34/a51; q−1)n51

(a12a23; q−1)n51(a34a45; q−1)n51(q−1; q−1)n51
an51

51 . (4.13)
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Now, is this expression valid for q < 1? The two combinations of q-Pochhammer symbols in
the second line are exactly equal to those which appear in the fully-summed expression for
the four-point Coon amplitude, and we know how to continue these factors to q < 1 using
the q-gamma function. The third line (i.e. the sum over n51) can similarly be written in
terms of another special function, the so-called q-hypergeometric (or basic hypergeometric)
function 3Φ2.

4.2.1 The q-hypergeometric function

The q-hypergeometric functions rΦs are the q-analogs of the hypergeometric functions rFs.
Like their undeformed q = 1 counterparts, these special functions have a long history in the
mathematics literature with entire books devoted to tabulating their properties [7, 29].

The q-hypergeometric function rΦs has r + s + 1 arguments (a1, . . . , ar, b1, . . . , bs, z)
(in addition to the deformation parameter q) and is defined by the following series when
convergent (and elsewhere by analytic continuation),

rΦs

[
a1 a2 ··· ar
b1 b2 ··· bs

; q ; z
]
=

∞∑
n=0

(a1; q)n · · · (ar; q)n

(b1; q)n · · · (bs; q)n(q; q)n

(
(−)n q(

n
2)
)1+s−r

zn . (4.14)

If 0 < |q| < 1 and r ≤ s, then the series converges absolutely for all z. If 0 < |q| < 1 and
r = s + 1, then the series converges absolutely for |z| < 1. If 0 < |q| < 1 and r > s + 1,
then the series diverges for all z ̸= 0 (unless it terminates). If |q| > 1, then the series
converges absolutely for |z| < |b1 · · · bsq/a1 · · · ar| and diverges for |z| > |b1 · · · bsq/a1 · · · ar|
(unless it terminates).

The usual hypergeometric function rFs has r + s + 1 arguments (a1, . . . , ar, b1, . . . , bs, z)
and is defined by the following series when convergent (and elsewhere by analytic continuation),

rFs

[
a1 a2 ··· ar
b1 b2 ··· bs

; z
]
=

∞∑
n=0

Γ(a1 + n)
Γ(a1)

· · · Γ(ar + n)
Γ(ar)

Γ(b1)
Γ(b1 + n) · · ·

Γ(bs)
Γ(bs + n)

zn

n! . (4.15)

If r ≤ s, then the series converges absolutely for all z. If r = s + 1, then the series converges
absolutely for |z| < 1 and for |z| = 1 if Re(b1 + · · · + bs − a1 − · · · − ar) > 0. If r = s + 1
and |z| > 1 or r > s + 1 and z ̸= 0, then the series diverges (unless it terminates). The
hypergeometric and q-hypergeometric functions are related by

lim
q→1 rΦs

[
qa1 qa2 ··· qar

qb1 qb2 ··· qbs ; q ; (q − 1)1+s−r z
]
= rFs

[
a1 a2 ··· ar
b1 b2 ··· bs

; z
]

. (4.16)

The analytic continuations of their series definitions can be explicitly defined using various
contour integrals [29, 42].

When r = s + 1, these functions have several nice properties. For example, the
q-hypergeometric function rΦr−1 with deformation parameter q−1 is related to rΦr−1 with
deformation parameter q as follows,

rΦr−1
[

a1 a2 ··· ar

b1 b2 ··· br−1 ; q ; z
]
= rΦr−1

[
a−1

1 a−1
2 ··· a−1

r

b−1
1 b−1

2 ··· b−1
r−1

; q−1 ;
(a1···ar

b1···br−1

)
q−1 z

]
. (4.17)

Many more properties can be found in [29].
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Using the definition (4.2) of the q-gamma function, the definition (4.14) of 3Φ2, and
the identity (4.17) we can now rewrite the partially-summed five-point Baker-Coon-Romans
formula (4.13) as follows,

A(5)
q (1, 2, 3, 4, 5) = −g3µ5−3d/2qσ12σ23+σ34σ45−2 Γq(−σ12)Γq(−σ23)

Γq(− σ12 − σ23)
Γq(−σ34)Γq(−σ45)
Γq(− σ34 − σ45)

× 3Φ2
[

q−σ12 q−σ45 q−σ23−σ34+σ51

q−σ12−σ23 q−σ34−σ45 ; q ; q
]

, (4.18)

where we have reintroduced the q-deformed Regge trajectories σI defined in (4.6). This
expression now provides a clear definition for the five-point Coon amplitude with q < 1
since the q-gamma function and the q-hypergeometric function are defined for all q through
the relations (4.4) and (4.17).

The five-point Coon amplitude was first written in the form (4.18), i.e. in terms of 3Φ2,
by Romans [7]. However, Romans did not arrive at this equation from the Baker-Coon-
Romans formula (3.5). Instead, Romans postulated the five-point expression (4.18) by simply
q-deforming the five-point tree-level string amplitude, which can similarly be written using
the gamma function and the hypergeometric function 3F2. Examining the four-point Coon
amplitude and this five-point amplitude then led Romans to the general N -point Baker-Coon-
Romans formula (3.1) which reproduced (4.5) at four points and (4.18) at five points. To
see this logic in reverse, we can take the q → 1 limit of (4.18). We find

lim
q→1

A(5)
q (1, 2, 3, 4, 5) = −g3µ5−3d/2Γ(−s12)Γ(−s23)

Γ(−s12 − s23)
Γ(−s34)Γ(−s45)
Γ(−s34 − s45)

× 3F2
[
−s12 −s45 −s23−s34+s51

−s12−s23 −s34−s45 ; 1
]

, (4.19)

where we have used the dimensionless Mandelstam variables sI = (sI − m2
0)/µ2 to keep the

expression compact. As expected, (4.19) is precisely the five-point tree-level open string
amplitude [43–48].

Although we began with the five-point Baker-Coon-Romans formula which is only valid
for q > 1, we have ultimately arrived at an expression (4.18) valid for all q ≥ 0. This time,
the trick was the q-hypergeometric function, which provided a continuation of sorts in q.

4.2.2 Relation to Cheung-Remmen’s A(4)
r and A(4)

q,r

Before we examine the properties of (4.18), let us note a curious relation between the five-
point Coon amplitude and the four-point “hypergeometric” and “basic hypergeometric” (or
“hypergeometric Coon”) amplitudes recently discovered by Cheung and Remmen [17, 20].
In [17], Cheung and Remmen bootstrapped four-point scattering amplitudes directly from
an input mass spectrum and several physical constraints.

For the string spectrum m2
n = m2

0 + µ2n, their procedure yields the hypergeometric
amplitude A(4)

r , a one-parameter generalization of the Veneziano amplitude with a new
real-valued deformation parameter r. In the limit r → 0, the hypergeometric amplitude
becomes the Veneziano amplitude.

For the Coon spectrum (1.1), the same procedure yields the basic hypergeometric
amplitude A(4)

q,r , a one-parameter generalization of the four-point Coon amplitude with a new
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real-valued deformation parameter r. In the limit r → 0, the basic hypergeometric amplitude
becomes the four-point Coon amplitude. Since the Coon amplitude is itself a one-parameter
deformation of the Veneziano amplitude, the basic hypergeometric amplitude can also be
thought of as two-parameter generalization of the Veneziano amplitude.

Like the Coon amplitude, the hypergeometric and basic hypergeometric amplitudes are
more precisely partial amplitudes which depend on an ordering of the external states. For
the canonical ordering (1, 2, 3, 4), these two amplitudes are given by

A(4)
r (1,2,3,4)= g2µ4−d Γ(−s12)Γ(−s23)

Γ(−s12−s23) 3F2
[
−s12 −s23 r
−s12−s23 r+1 ; 1

]
,

A(4)
q,r(1,2,3,4)= g2µ4−dqσ12σ23−1 Γq(−σ12)Γq(−σ23)

Γq(−σ12−σ23) 3Φ2
[

q−σ12 q−σ23 qr

q−σ12−σ23 qr+1 ; q ; q
]
. (4.20)

Our expressions differ from those in [17] by a few trivial normalization factors. With
our conventions, we can immediately identify a set of relations between the four-point
hypergeometric and basic hypergeometric amplitudes on one hand and the five-point string
and Coon amplitudes on the other. The hypergeometric and basic hypergeometric amplitudes
are simply the five-point string and Coon amplitudes evaluated at particular values of the
kinematic variables s34, s45, and s51. Specifically, we have

A(4)
r (1, 2, 3, 4) = g−1µd/2−1 s45 ×A(5)(1, 2, 3, 4, 5)

∣∣∣∣s34=−1
s45=−r
s51=−1

,

A(4)
q,r(1, 2, 3, 4) = q g−1µd/2−1 s45 ×A(5)

q (1, 2, 3, 4, 5)
∣∣∣∣σ34=−1
σ45=−r
σ51=−1

, (4.21)

where sI = (sI − m2
0)/µ2 and σI is defined in (4.6). Here A(5) = limq→1 A(5)

q is the five-
point tree-level open string amplitude. The relation between the four-point hypergeometric
amplitude and the five-point string amplitude was first observed in [17], but the relation
between the four-point basic hypergeometric amplitude and the five-point Coon amplitude is
a new result which firmly places A(4)

q,r within the broader family of Coon amplitudes.
The relationships between these six amplitudes (the five-point Coon amplitude A(5)

q ,
the five-point tree-level open string amplitude A(5), the four-point basic hypergeometric
amplitude A(4)

q,r , the four-point hypergeometric amplitude A(4)
r , the four-point Coon amplitude

A(4)
q , and the four-point tree-level open string amplitude A(4)) can be summarized in the

following commutative diagram:

A(5)
q A(4)

q,r A(4)
q

A(5) A(4)
r A(4)

s.k.

q→1

r→0

q→1 q→1

s.k. r→0

(4.22)

Here s.k. refers to the special kinematic values given in (4.21). The commutativity of this
diagram simply follows from the expressions for each amplitude. These relations clarify some of
the properties of the hypergeometric amplitude described in [17, 20]. For example, in [20], the
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critical dimension of the hypergeometric amplitude with m2
0 = −1/α′ was found to be equal

to that of bosonic string theory dc = 26, but this fact simply follows from the relation between
A(4)

r and the five-point tree-level string amplitude. Similarly, the transcendental structure
of the low-energy expansion of A(4)

r observed in [17] simply follows from the well-known
transcendental properties of tree-level string amplitudes [49–51].

4.2.3 The loss of meromorphicity

The continuation of the five-point Coon amplitude to q < 1 again introduces the peculiar
property of non-meromorphicity. The two qσσ factors on the first line of (4.18) are non-
meromorphic in the Mandelstam variables, but these non-meromorphicities only appear
for q < 1. When q > 1, these factors cancel against similar non-meromorphic factors in
the definition of the q-gamma function so that the full amplitude is meromorphic. The
meromorphicity properties are thus similar to those of the four-point Coon amplitude
discussed above.

4.2.4 The loss of factorization

Unfortunately, meromorphicity is not the only property which disappears when q < 1. The
factorization (and duality) properties of the five-point Coon amplitude are also a problem.
Duality invariance implies that five-point Coon amplitude should have simple poles in all
five planar scattering channels. The s12, s23, s34, and s45 poles are clearly exhibited by the
four gamma functions in (4.18), but the s51 poles seem to be nowhere in sight! For q > 1,
the s51-channel poles are hiding within 3Φ2. In fact, we can use a particular identity [52]
obeyed by the 3Φ2 functions to explicitly exhibit the poles in any four of the planar scattering
channels, with the remaining channel’s poles hidden within the 3Φ2 function. In [7], Romans
used this identity to prove the duality-invariance of the five-point Coon amplitude with q > 1
written in the form (4.18). Moreover, we derived (4.18) from the five-point Baker-Coon-
Romans formula which exhibited factorization and duality invariance for all q > 1, so there
should be no problem with (4.18) in this regime. The trouble only arises with q < 1. In
this case, we can simply take s51 → m2

0 (and thus σ51 → 0) in (4.18). We expect to find
a simple pole ∼ 1/(s51 − m2

0), but the result is finite. We can double-check this result by
reviewing the convergence conditions for the q-hypergeometric function, but there is no way
to recover an s51 pole when q < 1.

We conclude that the five-point Coon amplitude with q < 1 no longer factorizes on
the s51 channel and is no longer duality-invariant. We suspect that this phenomenon arises
because the various sums and limits do not commute. In other words, it must be the case
that the radius of convergence of some intermediate sum that led to the expression (4.18)
was incompatible with q < 1. Perhaps some piecewise definition of the q-hypergeometric
function (in analogy with the q-gamma function) is instead needed. In any case, it does not
seem like our simple special function approach suffices to define a fully consistent five-point
Coon amplitude with q < 1. What worked at four points does not extend to five.

4.2.5 q → 0

We conclude this subsection by computing the q → 0 limit (with fixed m2
0, Λ2 = qµ2, and

g̃ = q(d−6)/4g) of the expression (4.18) for the five-point Coon amplitude to exhibit the
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problems with factorization described above. We begin by rewriting (4.18) in terms of two
four-point Coon amplitudes (4.5),

A(5)
q (1, 2, 3, 4, 5) = −

(
gµ3−d/2)−1 ×A(4)

q (1, 2, 3, 4)×A(4)
q (3, 4, 5, 1)

× 3Φ2
[

q−σ12 q−σ45 q−σ23−σ34+σ51

q−σ12−σ23 q−σ34−σ45 ; q ; q
]

. (4.23)

The q → 0 limit of the four-point Coon amplitude is given in (4.10), the q → 0 limit of 3Φ2 is
simply one, and the combination gµ3−d/2 = g̃Λ3−d/2 is finite in this limit. Hence,

lim
q→0

A(5)
q (1, 2, 3, 4, 5) = −g̃3Λ5−3d/2

(
µ2

s12 − m2
0
+ µ2

s23 − m2
0
− 1

)
×
(

µ2

s34 − m2
0
+ µ2

s45 − m2
0
− 1

)
. (4.24)

As we predicted, factorizaiton is violated, and the s51 poles are nowhere to be found.

4.3 Higher points

Even if we ignore the problems with factorization at five-points, there seems to be no hope
of extending this special function procedure to N ≥ 6 points. The six-point tree-level open
string amplitude cannot be cleanly written in terms of a well-known special function, so
a q-deformed special function representation is unlikely to exist [7]. This hiccup does not
mean that a continuation of the Coon amplitude to q < 1 does not exist. Instead, we have
learned that such a continuation requires a new formulation.

5 U(NF ) adjoint scalar amplitudes

In this section, we compute the N -point tree-level amplitudes of the U(NF ) adjoint scalar
theory introduced in section 1 and defined by the following Lagrangian,

LAS = −1
2 Tr ∂µϕ ∂µϕ − 1

2 m2
0 Trϕ2 −

∑
n≥3

1
n

g̃n−2 Λn+d− 1
2 nd Trϕn . (5.1)

The scalar field ϕ = T aϕa transforms in the adjoint representation of the global flavor
symmetry group U(NF ). The matrices T a (with adjoint index a = 0, 1, 2, . . . N2

F − 1) are
the generators of U(NF ) in the defining representation, normalized by Tr(T aT b) = δab. The
coupling constant g̃ is dimensionless, and Λ is an arbitrary mass scale which gives the
n-point couplings the usual mass dimensions [gn] = n + d − 1

2nd in d spacetime dimensions.
As described in (1.6), the N -point tree-level amplitudes of this adjoint scalar theory are
exactly equal to the N -point Baker-Coon-Romans amplitudes in the limit q → ∞. We
demonstrate this equality explicitly.

5.1 Feynman rules

We begin by writing out the Feynman rules for the scalar field ϕa. We first rewrite the
Lagrangian (5.1) as

LAS = −1
2δab(∂µϕa)(∂µϕb)− 1

2m2
0 δabϕaϕb

−
∑
n≥3

1
n

g̃n−2 Λn+d− 1
2 nd Tr(T a1 · · ·T an)ϕa1 · · ·ϕan . (5.2)
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The propagator is given by

a b

p

= iδab

−p2 − m2
0 + iε

. (5.3)

The n-point vertex is given by −i 1
n g̃n−2Λn+d− 1

2 nd Tr(T a1 · · ·T an) summed over all the n!
permutations of the indices a1, . . . , an. Collecting the cyclic permutations together cancels
the factor of 1

n , so we have

a1

a2 a3

an

..
. = −ig̃n−2Λn+d− 1

2 nd
∑

σ∈Sn/Zn

Tr(T aσ(1)T aσ(2) · · ·T aσ(n)) , (5.4)

where the sum is over elements σ of the permutation group Sn modulo the group of cyclic
permutations Zn acting on the labels (1, 2, . . . , n) (or equivalently over elements of the
permutation group Sn−1 acting on the labels (2, . . . , n) with the first label fixed). For
concreteness, we list the first few vertices.

• The three-point vertex is given by a sum over (3− 1)! = 2 terms,

a1

a2 a3

= −ig̃Λ3−d/2[Tr(T a1T a2T a3) + Tr(T a1T a3T a2)
]
. (5.5)

• The four-point vertex is given by a sum over (4− 1)! = 6 terms,

a1

a2 a3

a4

= −ig̃2Λ4−d[ Tr(T a1T a2T a3T a4) + Tr(T a1T a2T a4T a3)
+ Tr(T a1T a3T a2T a4) + Tr(T a1T a3T a4T a2)
+ Tr(T a1T a4T a2T a3) + Tr(T a1T a4T a3T a2)

]
. (5.6)

Any tree-level amplitude in this theory is given by a sum of products of traces with
factors from the appropriate propagators and couplings. It is not difficult to compute these
amplitudes by hand. However, because our symmetry group is U(NF ), there is a remarkable
simplification. Using the completeness relation for the U(NF ) generators T a (which form
a complete set of NF × NF Hermitian matrices), we may combine any products of traces
connected by a propagator as follows,

(T a)i
j(T a)k

ℓ = δi
ℓδk

j =⇒ Tr(XT a) Tr(T aY ) = Tr(XY ) . (5.7)

In the end, only single traces remain. These single traces can be stripped off, and the tree-level
amplitudes can be written as a sum over partial amplitudes which depend on a particular
cyclic ordering of the external states [32–35],

A(N) tree
AS; U(NF ) =

∑
σ∈SN /ZN

Tr(T aσ(1)T aσ(2) · · ·T aσ(N))A(N)
AS (σ(1), σ(2), . . . , σ(N)) . (5.8)
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The partial amplitude for a given ordering can then be computed from planar ordered
Feynman diagrams using the following ordered Feynman rules,

p

= i

−p2 − m2
0 + iε

,

1

2 3

n

..
. = −ig̃n−2Λn+d− 1

2 nd . (5.9)

Since the cyclic order of the external states is fixed, we can ignore symmetry factors when
computing these partial amplitudes. Each unique topology contributes a single term.

In the remainder of this section, we explicitly compute the four-point, five-point, and
six-point partial amplitudes before deriving a general expression for the N -point case.

5.2 Four points

The four-point partial amplitude for the canonical ordering (1, 2, 3, 4) is given by a sum of
three ordered Feynman diagrams,

iA(4)
AS(1, 2, 3, 4) =

1

2 3

4

+
2

3 4

1

+
1

2 3

4

. (5.10)

The first diagram is an s-channel diagram, the second is a t-channel diagram, and the third
is a four-point contact term. Using the ordered Feynman rules, we find

A(4)
AS(1, 2, 3, 4) = −g̃2Λ4−d

( Λ2

s − m2
0
+ Λ2

t − m2
0
+ 1

)
, (5.11)

which is precisely the expression for the four-point Baker-Coon-Romans partial amplitude
in the limit q → ∞ given in (3.17).

5.3 Five points

The five-point partial amplitude for the canonical ordering (1, 2, 3, 4, 5) is given by a sum
of eleven ordered Feynman diagrams,

iA(5)
AS(1, 2, 3, 4, 5) =

1

2 3

45

+
2

3 4

51

+
3

4 5

12

+
4

5 1

23

+
5

1 2

34

+
1

2 3

4

5

+
2

3 4

5

1

+
3

4 5

1

2

+
4

5 1

2

3

+
5

1 2

3

4

+ 1

2 3

4
5

. (5.12)

Each line contains diagrams related by cyclic permutations of the external labels. The five
diagrams on the first line each have two three-point vertices and two propagators. The
five diagrams on the second line each have one three-point vertex, one four-point vertex,
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and one propagator. The final diagram is a five-point contact term. Using the ordered
Feynman rules, we find

A(5)
AS(1, 2, 3, 4, 5) = −g̃3Λ5− 3

2 d

(
1

s12s34
+ 1

s23s45
+ 1

s34s51
+ 1

s45s12
+ 1

s51s23

+ 1
s12

+ 1
s23

+ 1
s34

+ 1
s45

+ 1
s51

+ 1
)

, (5.13)

where sI = (sI − m2
0)/Λ2. This is precisely the expression for the five-point Baker-Coon-

Romans partial amplitude in the limit q → ∞ given in (3.19).

5.4 Six points

The six-point partial amplitude for the canonical ordering (1, 2, 3, 4, 5, 6) is given by a sum of
forty-five ordered Feynman diagrams (which thankfully can be typeset on a single page),

iA(6)
AS(1, 2, 3, 4, 5, 6) =

1

2 3

456

+
2

3 4

561

+
3

4 5

612

+
4

5 6

123

+
5

6 1

234

+
6

1 2

345

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
4

5 6 1

23

+
5

6 1 2

34

+
6

1 2 3

45

+ 1

2 3

4

56

+ 2

3 4

5

61

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
4

5 6 1

23

+
5

6 1 2

34

+
6

1 2 3

45

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
4

5 6 1

23

+
5

6 1 2

34

+
6

1 2 3

45

+
1

2 3

456

+
2

3 4

561

+
3

4 5

612

+
4

5 6

123

+
5

6 1

234

+
6

1 2

345

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
4

5 6 1

23

+
5

6 1 2

34

+
6

1 2 3

45

+
1

2 3 4

56

+
2

3 4 5

61

+
3

4 5 6

12

+
1

2
3

4

5
6

. (5.14)
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Again, each line contains diagrams related by cyclic permutations of the external labels.
The fourteen diagrams on the first three lines each have three three-point vertices and three
propagators. The twenty-four diagrams on the fourth through seventh lines each have two
three-point vertices, one four-point vertex, and two propagators. The six diagrams on the
eighth line have one five-point vertex, one three-point vertex, and a single propagator. The
three diagrams on the ninth line have two four-point vertices and a single propagator. The
final diagram is a six-point contact term. Using the ordered Feynman rules, we find

A(6)
AS(1, 2, 3, 4, 5, 6) = −g̃4Λ6−2d

(
1

s12s34s345
+ (5 cyclic perms.)

+ 1
s12s45s345

+ (5 cyclic perms.)

+ 1
s12s34s56

+ (1 cyclic perm.)

+ 1
s12s123

+ (5 cyclic perms.)

+ 1
s12s345

+ (5 cyclic perms.)

+ 1
s12s34

+ (5 cyclic perms.)

+ 1
s12s45

+ (2 cyclic perms.)

+ 1
s12

+ (5 cyclic perms.)

+ 1
s123

+ (2 cyclic perms.) + 1
)

, (5.15)

where sI = (sI − m2
0)/Λ2 and “(m cyclic perms.)” denotes the m unique terms obtained by

cyclically permuting the particles labels of the preceding term. This is precisely the expression
for the six-point Baker-Coon-Romans partial amplitude in the limit q → ∞ given in (3.20).

5.5 N points

It would be straightforward to continue with an explicit calculation of the seven-point partial
amplitude, but typesetting the ordered Feynman diagrams and the final expression would
be quite difficult. Instead, we turn to the general N -point case.

We begin with a simple observation from the four-point, five-point, and six-point calcu-
lations. In these three cases, the N -point partial amplitude is given by an overall factor of
−g̃N−2ΛN+d− 1

2 Nd multiplying 1 plus a sum of (dimensionless) propagators. The term without
any propagators corresponds to the N -point vertex. Each term in the sum of propagators
correspond to a unique set of mutually non-overlapping planar channels, i.e. the elements
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of the set N (N)
[n] defined in section 2 for 1 ≤ n ≤ N − 3. At four points, we simply have a

sum over planar channels. At five points, we have a sum over planar channels and pairs
of non-overlapping planar channels. At six points, we have a sum over planar channels,
pairs of non-overlapping planar channels, and triples of non-overlapping planar channels. At
higher points, the pattern continues. Crucially, the ordered Feynman diagrams with the
canonical ordering (1, 2, . . . , N) are in one-to-one correspondence with the sets of mutually
non-overlapping planar channels. Given a set of mutually non-overlapping planar channels,
one can uniquely construct an ordered Feynman diagram. Hence, we can write the N -point
partial amplitude as a sum over elements of the sets N (N)

[n] . Collecting the powers of i, g̃,
and Λ from the ordered Feynman rules, we find

A(N)
AS (1, 2, . . . , N) = −g̃N−2ΛN+d− 1

2 Nd

(
1 +

N−3∑
n=1

∑
{I1,...,In}∈N (N)

[n]

1
sI1 . . . sIn

)
, (5.16)

which is precisely the expression for the N -point Baker-Coon-Romans partial amplitude in
the limit q → ∞ given in (3.25). Summing the partial amplitudes over trace structures then
leads to the equality (1.6) between the full amplitudes in either theory. In other words, we
have shown that the N -point tree-level amplitudes of the U(NF ) adjoint scalar theory are
exactly equal to the N -point Baker-Coon-Romans amplitudes in the limit q → ∞.

5.6 SU(NF )

Before concluding this section, we briefly discuss the adjoint scalar theory with SU(NF )
global symmetry group (with arbitrary NF ≥ 2). The unitary and special unitary groups
differ only by 1/NF corrections, so at large NF we expect to find a similar equality between
the tree-level SU(NF ) adjoint scalar amplitudes and the Baker-Coon-Romans amplitudes
in the limit q → ∞.

The Feynman rules for the SU(NF ) theory are the same as those for the U(NF ) theory.
Only the U(1) ⊂ U(NF ) generator T 0 ∝ 1 needs to be thrown out. The remaining SU(NF )
generators T a (which form a complete set of NF × NF traceless Hermitian matrices), obey
the completeness relation

(T a)i
j(T a)k

ℓ = δi
ℓδk

j − 1
NF

δi
jδk

ℓ , (5.17)

which allows us to combine any products of traces connected by a propagator as follows,

Tr(XT a) Tr(T aY ) = Tr(XY )− 1
NF

Tr(X) Tr(Y ) . (5.18)

In the end, both single and multi-trace structures remain in the tree-level amplitudes, but
multi-traces are suppressed by 1/NF . At leading order in 1/NF , the single traces can be
stripped off, and the tree-level amplitudes can be written as a sum over ordered partial
amplitudes just as in the U(NF ) case. These partial amplitudes are precisely equal to those
calculated in the U(NF ) theory. Hence,

A(N) tree
AS; SU(NF ) = A(N) tree

AS; U(NF ) +O
(
N−1

F

)
. (5.19)
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Summing the partial amplitudes over trace structures and then using (1.6) leads to the
equality (1.7) (at leading order in 1/NF ) between the full SU(NF ) adjoint scalar amplitudes
and the Baker-Coon-Romans amplitudes in the limit q → ∞.

6 Discussion

In this paper, we studied the N -point Baker-Coon-Romans amplitude. We reviewed its
convergence, duality, and factorization properties, and we computed its q → ∞ limit.
Although the Baker-Coon-Romans formula is only valid for q > 1, we showed that the
four-point case admits a straightforward extension to all q ≥ 0 which reproduces the usual
expression for the four-point Coon amplitude. At five points, we carried out a similar
procedure but found inconsistencies with duality and factorization when q < 1. Despite these
issues, we found a new relation between the five-point Baker-Coon-Romans amplitude and
the four-point basic hypergeometric amplitude, analogous to the known relation between
the five-point tree-level open string amplitude and the four-point hypergeometric amplitude.
Finally, we discovered an exact correspondence between the q → ∞ limit of the Baker-Coon-
Romans amplitudes and the field theory amplitudes of a scalar transforming in the adjoint
representation of a global symmetry group with an infinite set of non-derivative single-trace
interaction terms. This correspondence at q = ∞ is the first definitive realization of the Coon
amplitude (in any limit) from a field theory described by a Lagrangian.

Despite our results and the recent burst of interest in Coon amplitudes, there are still
many open problems and possible future directions in the study of Coon amplitudes.

For instance, there is still no consistent formulation of the general N -point Coon amplitude
with q < 1. Although there are no problems with the Baker-Coon-Romans formulation at
four-points, we failed to derive a duality-invariant five-point Coon amplitude with q < 1 from
the five-point Baker-Coon-Romans formula. There is, however, an old proposal in [27] for an
N -point Coon amplitude with q < 1, but it is unclear whether this formulation is consistent.
We hope to analyze this old proposal in future work.

Orthogonally, we have only scratched the surface of the field theory limit of the Coon
amplitude. Although we have identified the field theory in the strict q → ∞ limit, we have
not discussed any of the higher derivative interactions which should arise from integrating
out the higher mass particles in the Coon spectrum. Moreover, we have said nothing of
the field theory limit at finite q. Fortunately, we have data at q → ∞, q = 1, and q → 0.
The q → ∞ Lagrangian is given in (1.4) and is valid up to O(q−1) and higher-derivative
corrections. At q = 1, the Coon amplitude reduces to a tree-level open string amplitude,
and it has been long known that the field theory limit (i.e. the low-energy or α′ → 0 limit)
of the relevant dual resonance model is a ϕ3 theory with no higher-point non-derivative
interactions [53]. At q → 0, we only have reliable data from the four-point amplitude (4.10),
which has the same structure as the four-point q → ∞ amplitude but with the sign of the
four-point interaction reversed. If we restore the hidden powers of q within the coupling
constant g̃ and the scale Λ in favor of the original coupling g and scale µ, then we can rewrite
the Lagrangians at q → ∞, q = 1, and q → 0 as follows,

Lq→∞ = Lfree −
∑
n≥3

1
n

qn−3[1 +O(q−1)
]
gn−2µn+d− 1

2 nd Trϕn + (h.d.) +O(q−1) ,
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Lq=1 = Lfree −
1
3gµ3−d/2 Trϕ3 + (h.d.) ,

Lq→0 = Lfree −
4∑

n=3

1
n
(−q−1)n−3[1 +O(q)

]
gn−2µn+d− 1

2 nd Trϕn +O(ϕ5) + (h.d.) +O(q) ,

(6.1)

where (h.d.) refers to higher-derivative corrections and

Lfree = −1
2 Tr ∂µϕ ∂µϕ − 1

2 m2
0 Trϕ2 . (6.2)

From this evidence, we conjecture that the low-energy field theory limit of the Coon amplitude
with generic q is given by the following Lagrangian,

Lq = Lfree −
∑
n≥3

1
n
(q − q−1)n−3gn−2µn+d− 1

2 nd Trϕn + (h.d.) . (6.3)

This conjecture matches all of our data at q → ∞, q = 1, and q → 0. Just like the q → ∞
Lagrangian (1.4), this Lagrangian can be resummed, yielding a logarithmic interaction term
which may be amenable to a semiclassical analysis. We leave this analysis to future work.
Perhaps this conjecture can even lead to a consistent formulation of the Coon amplitude
with q < 1. We hope to address these questions in future work.

Even if our conjecture is wrong or if there is no consistent Coon amplitude with q < 1,
the correspondence at q → ∞ is an exact result. Thus, it would be interesting to further
study the adjoint scalar field theory (1.4) which lives at q = ∞. To this end, we present a
brief classical analysis of this theory in appendix B.

It would also be interesting to study the transcendental properties of the low-energy
expansion of the N -point Coon amplitudes at generic q as was done for four-point string
amplitudes in [49–51], for the four-point Coon amplitude in [11], and for the four-point
hypergeometric amplitude in [17].

In many ways, the Coon amplitude remain mysterious. We hope the current flurry of
interest answers the most pressing open questions before the Coon amplitude fades back
into the literature.
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A Overlapping and non-overlapping sets

In this appendix, we derive explicit expressions for the sets of overlapping and non-overlapping
planar channels defined at the end of section 2.
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A.1 Ordering the planar channels

We begin by recalling the set of planar channels C(N) given in (2.6). For N = 3, 4, 5, 6 (the
cases which we explicitly consider in this paper), the sets of planar channels are given by

C(3) = ∅ ,

C(4) = {(1, 2), (2, 3)} ,

C(5) = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)} ,

C(6) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} . (A.1)

For general N , the elements of C(N) may be ordered as follows:

(i, j) = (k, ℓ) ⇐⇒ i = k and j = ℓ

(i, j) < (k, ℓ) ⇐⇒ i < k or (i = k and j < ℓ)
(i, j) > (k, ℓ) ⇐⇒ i > k or (i = k and j > ℓ) (A.2)

It will also be convenient to visualize this set as follows:

(1, 2)
(1, 3) (2, 3)

...
... . . .

(1, N−2) (2, N−2) · · · (N−3, N−2)
(2, N−1) · · · (N−3, N−1) (N−2, N−1)

(A.3)

The ordering defined in (A.2) proceeds down each column of (A.3), from left to right.

A.2 Overlapping pairs

To construct an explicit expression for the set O(N) whose elements are the two-element
subsets {(i, j), (k, ℓ)} ⊂ C(N) with (i, j), (k, ℓ) overlapping, we begin by considering a single
planar channel. Given any planar channel (i, j) ∈ C(N), we may partition the full set of
planar channels into the disjoint sets of its overlapping channels O(N)

(i,j) and non-overlapping
channels N (N)

(i,j),

C(N) = {(i, j)} ∪ O(N)
(i,j) ∪N (N)

(i,j) . (A.4)

The sets of overlapping and non-overlapping planar channels can be further partitioned into
sets of channels “less than” and “greater than” (i, j) using the ordering defined in (A.2),

O(N)
(i,j) = O(N)

<(i,j) ∪ O(N)
>(i,j) , N (N)

(i,j) = N (N)
<(i,j) ∪N (N)

>(i,j) . (A.5)

The four sets O(N)
<(i,j), O

(N)
>(i,j), N

(N)
<(i,j), N

(N)
>(i,j) are all mutually disjoint. We may write down

explicit expressions for these sets using the visualization of C(N) given in (A.3) (now with
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some additional detail):
(1,2)
(1,3) (2,3)

...
... . . .

(1,i−1) (2,i−1) ··· (i−2,i−1)
(1,i) (2,i) ··· (i−2,i) (i−1,i)
(1,i+1) (2,i+1) ··· (i−2,i+1) (i−1,i+1) (i,i+1)
(1,i+2) (2,i+2) ··· (i−2,i+2) (i−1,i+2) (i,i+2) (i+1,i+2)

...
...

...
...

...
...

... . . .
(1,j−1) (2,j−1) ··· (i−2,j−1) (i−1,j−1) (i,j−1) (i+1,j−1) ··· (j−2,j−1)
(1,j) (2,j) ··· (i−2,j) (i−1,j) (i,j) (i+1,j) ··· (j−2,j) (j−1,j)
(1,j+1) (2,j+1) ··· (i−2,j+1) (i−1,j+1) (i,j+1) (i+1,j+1) ··· (j−2,j+1) (j−1,j+1) (j,j+1)
(1,j+2) (2,j+2) ··· (i−2,j+2) (i−1,j+2) (i,j+2) (i+1,j+2) ··· (j−2,j+2) (j−1,j+2) (j,j+2) (j+1,j+2)

...
...

...
...

...
...

...
...

...
...

...
... . . .

(1,N−2) (2,N−2) ··· (i−2,N−2) (i−1,N−2) (i,N−2) (i+1,N−2) ··· (j−2,N−2) (j−1,N−2) (j,N−2) (j+1,N−2) ··· (N−3,N−2)
(2,N−1) ··· (i−2,N−1) (i−1,N−1) (i,N−1) (i+1,N−1) ··· (j−2,N−1) (j−1,N−1) (j,N−1) (j+1,N−1) ··· (N−3,N−1) (N−2,N−1)

Here the red channels are those which overlap with (i, j), and the blue channels are those
which do not. Examining the visualization above, we find the following explicit expressions
for the two sets of overlapping channels,

O(N)
<(i,j) = {(k, ℓ) : 1 ≤ k ≤ i − 1 , i ≤ ℓ ≤ j − 1} ,

O(N)
>(i,j) = {(k, ℓ) : i + 1 ≤ k ≤ j , j + 1 ≤ ℓ ≤ N − 1} , (A.6)

and for the two sets of non-overlapping channels,

N (N)
<(i,j) = {(k, ℓ) : 1 ≤ k ≤ i − 1 , k + 1 ≤ ℓ ≤ i − 1}

∪ {(k, ℓ) : 1 ≤ k ≤ i − 1 , j ≤ ℓ ≤ N − 1 , (k, ℓ) ̸= (1, N − 1)}

∪ {(k, ℓ) : k = i , k + 1 ≤ ℓ ≤ j − 1} ,

N (N)
>(i,j) = {(k, ℓ) : k = i , j + 1 ≤ ℓ ≤ N − 1 , (k, ℓ) ̸= (1, N − 1)}

∪ {(k, ℓ) : i + 1 ≤ k ≤ j , k + 1 ≤ ℓ ≤ j}

∪ {(k, ℓ) : j + 1 ≤ k ≤ N − 2 , k + 1 ≤ ℓ ≤ N − 1} . (A.7)

The set of distinct pairs of overlapping channels O(N) can now be constructed by considering
each channel (i, j) ∈ C(N) and forming the set of overlapping pairs {(i, j), (k, ℓ)} with
(k, ℓ) > (i, j) so that each pair is counted just once. In other words,

O(N) =
{
{(i, j), (k, ℓ)} : (i, j) ∈ C(N) , (k, ℓ) ∈ O(N)

>(i,j)

}
=
{
{(i, j), (k, ℓ)} : 1 ≤ i < k ≤ j < ℓ ≤ N − 1

}
, (A.8)

where we have used (2.6) and the second line of (A.6) to write the second equality. The
number of distinct pairs of overlapping channels is then given by,

|O(N)| =
N−2∑
i=1

N−1∑
j=i+1

j∑
k=i+1

N−1∑
ℓ=j+1

1 = 1
24N(N − 1)(N − 2)(N − 3) , (A.9)

which grows more quickly than the number of planar channels |C(N)| = 1
2N(N − 3).
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A.3 Non-overlapping n-tuples

To construct an explicit expression for the set N (N)
[n] whose elements are the n-element

subsets {(i1, j1), . . . , (in, jn)} ⊂ C(N) with all (iℓ, jℓ) non-overlapping, we begin with the
set of non-overlapping pairs of planar channels (i.e. the case with n = 2). We can list
each distinct pair of non-overlapping planar channels once and only once, just as in our
construction of O(N) above, by

N (N)
[2] =

{
{(i1, j1), (i2, j2)} : {(i1, j1)} ∈ N (N)

[1] , (i2, j2) ∈ N (N)
>(i1,j1)

}
. (A.10)

The sets of non-overlapping n-tuples with n ≥ 3 are then defined recursively by,

N (N)
[n] =

{
{(i1, j1), . . . , (in, jn)} : {(i1, j1), . . . , (in−1, jn−1)} ∈ N (N)

[n−1] ,

(in, jn) ∈
n−1⋂
ℓ=1

N (N)
>(iℓ,jℓ)

}
. (A.11)

The sets N (N)
[n] with n ≥ N − 2 are empty. In other words, there are at most N − 3 mutually

non-overlapping planar channels in N -point scattering.

A.4 Examples

We conclude this section by tabulating the non-empty sets defined above for N = 3, 4, 5, 6.
Pairs of overlapping planar channels first appear at N = 4:

O(4) =
{
{(1, 2), (2, 3)}

}
,

O(5) =
{
{(1, 2), (2, 3)}, {(1, 2), (2, 4)}, {(1, 3), (2, 4)}, {(1, 3), (3, 4)}, {(2, 3), (3, 4)}

}
,

O(6) =
{
{(1, 2), (2, 3)}, {(1, 2), (2, 4)}, {(1, 2), (2, 5)}, {(1, 3), (2, 4)}, {(1, 3), (2, 5)},

{(1, 3), (3, 4)}, {(1, 3), (3, 5)}, {(1, 4), (2, 5)}, {(1, 4), (3, 5)}, {(1, 4), (4, 5)},

{(2, 3), (3, 4)}, {(2, 3), (3, 5)}, {(2, 4), (3, 5)}, {(2, 4), (4, 5)},

{(3, 4), (4, 5)}
}

. (A.12)

Pairs of non-overlapping planar channels first appear at N = 5:

N (5)
[2] =

{
{(1, 2), (1, 3)}, {(1, 2), (3, 4)}, {(1, 3), (2, 3)}, {(2, 3), (2, 4)}, {(2, 4), (3, 4)}

}
,

N (6)
[2] =

{
{(1, 2), (1, 3)}, {(1, 2), (1, 4)}, {(1, 2), (3, 4)}, {(1, 2), (3, 5)}, {(1, 2), (4, 5)}

{(1, 3), (1, 4)}, {(1, 3), (2, 3)}, {(1, 3), (4, 5)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)},

{(1, 4), (3, 4)}, {(2, 3), (2, 4)}, {(2, 3), (2, 5)}, {(2, 3), (4, 5)}, {(2, 4), (2, 5)},

{(2, 4), (3, 4)}, {(2, 5), (3, 4)}, {(2, 5), (3, 5)}, {(2, 5), (4, 5)}, {(3, 4), (3, 5)},

{(3, 5), (4, 5)}
}

. (A.13)
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Triples of non-overlapping planar channels first appear at N = 6:

N (6)
[3] =

{
{(1, 2), (1, 3), (1, 4)}, {(1, 2), (1, 3), (4, 5)}, {(1, 2), (1, 4), (3, 4)},

{(1, 2), (3, 4), (3, 5)}, {(1, 2), (3, 5), (4, 5)}, {(1, 3), (1, 4), (2, 3)},

{(1, 3), (2, 3), (4, 5)}, {(1, 4), (2, 3), (2, 4)}, {(1, 4), (2, 4), (3, 4)},

{(2, 3), (2, 4), (2, 5)}, {(2, 3), (2, 5), (4, 5)}, {(2, 4), (2, 5), (3, 4)},

{(2, 5), (3, 4), (3, 5)}, {(2, 5), (3, 5), (4, 5)}
}

. (A.14)

Quadruples of non-overlapping planar channels first appear at N = 7, but we do not explicitly
need these sets in this paper.

B Classical analysis of the adjoint scalar theory

In this appendix, we briefly analyze the adjoint scalar theory Lagrangian (1.4) and show
that it has a stable vacuum (at least classically). We begin by recalling the resummed
expression for the Lagrangian,

LAS = −1
2 Tr ∂µϕ ∂µϕ − 1

2(m
2
0 − Λ2) Trϕ2 + Λd

g̃
Trϕ/Λ

d−2
2

+ Λd

g̃2 Tr ln(1− g̃ ϕ/Λ
d−2

2 ) . (B.1)

The scalar field ϕ = T aϕa transforms in the adjoint representation of a global flavor symmetry
group G. The coupling constant g̃ is dimensionless.

There are two distinct dimensionful parameters in this Lagrangian. The first parameter
m2

0 is the mass-squared of the lightest scalar in the corresponding Coon amplitude which
may be tachyonic, massless, or massive. At tree-level, all three choices are consistent. The
N -point amplitudes computed in section 5 are valid for tachyonic, massless, and massive
scalars. The second parameter Λ2 is related to the parameters q and µ2 of the corresponding
Coon amplitude by Λ2 = q−1µ2 in the limit q, µ → ∞ with Λ2 fixed. Thus, Λ2 is manifestly
positive but is otherwise a free parameter introduced by the double-scaling limit of the Coon
amplitude. More correctly, the dimensionless ratio m2

0/Λ2 is a free parameter which can
naively be positive, negative, or zero, depending on the sign of m2

0. When considering only
the tree-level adjoint scalar amplitudes, all three sign choices and all magnitudes appear
consistent. Because we are working strictly at tree-level, there is no need to introduce a
cut-off or to interpret Λ2 as a cut-off scale (which would restrict |m2

0| < Λ2). Hence, we can
safely consider the range |m2

0| ≥ Λ2. Considering this theory at loop-level would necessarily
change our conclusions, but such an analysis is beyond the scope of this work (in part because
the Coon amplitude is only well-defined at tree-level). We now turn to a classical analysis
of the Lagrangian to further probe the stability of the theory.

To simplify our discussion, we can consider the case without a global symmetry group.3
The resultant amplitudes are simpler and do not decompose into partial amplitudes with

3Here we follow the precedent of [54], in which the authors study a field theory realization of p-adic string
theory and in their field theory analysis consider only the case without Chan-Paton factors. We thank our
JHEP reviewer for this suggestion.
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trace factors (i.e. Chan-Paton factors) as described in section 1. The simplified Lagrangian
is given by

Lφ = −1
2∂µφ ∂µφ − 1

2(m
2
0 − Λ2)φ2 + Λd

g̃
φ/Λ

d−2
2 + Λd

g̃2 ln(1− g̃ φ/Λ
d−2

2 ) , (B.2)

where φ is now a real scalar field. To keep the Lagrangian real-valued, the scalar field
can only take values in the range φ ∈ (−∞, φm) with φm = g̃−1Λ d−2

2 . The equation of
motion for φ is highly non-linear but can be simply written in terms of the dimensionless
combination φ/φm = g̃ φ/Λ d−2

2 ,

(∂2 − m2
0)(φ/φm) = Λ2 (φ/φm)2

1− (φ/φm) . (B.3)

The field potential V (φ) is non-meromorphic (due to the logarithm) and given by
g̃2

Λd
V (φ) = 1

2
(
m2

0/Λ2 − 1
)
(φ/φm)2 − (φ/φm)− ln(1− φ/φm) . (B.4)

The potential has critical points at φ = 0 and φ = φc = φm(1− Λ2/m2
0)−1. The potential

tends to +∞ as φ → φm and to ±∞ as φ → −∞. The dimensionless ratio m2
0/Λ2 controls

the qualitative features of the potential (including the sign of that latter limit).
In figure 1, we plot V (φ) vs. φ for various values of m2

0/Λ2, recalling that all values
of m2

0/Λ2 naively seem consistently when considering the tree-level amplitudes alone. The
qualitative behavior of V (φ) may be summarized as follows:

• If m2
0/Λ2 < 0, then V (φ) has a local minimum (i.e. a metastable vacuum) at φ = φc

with 0 < φc < φm, a local maximum at φ = 0 (the tachyonic extremum of the
non-interacting theory), and a global minimum at φ = −∞. In this case, the theory
exhibits a metastable version of tachyon condensation and is classically metastable with
a positive effective mass-squared given by V ′′(φc) = m2

0(m2
0/Λ2 − 1) > 0.

• If m2
0/Λ2 = 0, then V (φ) is flat at φ = φc = 0 with a global minimum at φ = −∞. In

this case, the theory is classically unstable.

• If 0 < m2
0/Λ2 < 1, then V (φ) has a local minimum (i.e. a metastable vacuum) at

φ = 0, a local maximum at φ = φc < 0, and a global minimum at φ = −∞. In this
case, the theory is classically metastable with a positive effective mass-squared given
by V ′′(0) = m2

0 > 0.

• If m2
0/Λ2 ≥ 1, then V (φ) has a global minimum (i.e. a stable vacuum) at φ = 0. In

this case, the theory is classically stable with a positive effective mass-squared given
by V ′′(0) = m2

0 > 0.
Thus, for a wide range of parameters, the theory is classically stable or metastable. In
each case except for m2

0 = 0, the effective theory has a classical vaccuum with a positive
effective mass-squared, even when the original mass-squared m2

0 was negative. To ensure
full stability, we must demand m2

0/Λ2 ≥ 1 which fixes m2
0 > 0. We recall that Λ2 = q−1µ2

was necessarily positive but essentially a free parameter otherwise. It is also possible that
higher-derivative correction, O(q−1) corrections, or loop corrections stabilize the theory (as
in the case of tachyon condensation in string theory).
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imum at φ = φc > 0 and a local maximum
at φ = 0.
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Λd V (φ)
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Λd V (φ)
m2
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φ = φc < 0.
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g̃ φ/Λ d−2
2
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Λd V (φ)
m2

0/Λ2 = 1.2

(d) If m2
0/Λ2 ≥ 1, then V (φ) has a global mini-

mum at φ = 0.

Figure 1. Plots of g̃2

Λd V (φ) vs. g̃ φ/Λ d−2
2 for various values of m2

0/Λ2 which demonstrate the different
qualitative behaviors for the potential as described in the main text.

Although we have only considered the simplified scalar theory without a global symmetry
group, we can extend our results to the adjoint scalar theory with global flavor symmetry
group U(NF ) by considering the subset of field configurations proportional to the NF × NF

identity matrix ϕ = 1φ. In any case, we have demonstrated that (a simplified version of) the
adjoint scalar theory has a classically stable vacuum and is thus a viable field theory. Of course,
our results hold strictly at tree-level, and loop-level corrections may modify our conclusions.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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