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ABSTRACT: We use a suite of the most recent cosmological observations to test models of
dynamical dark energy motivated by quantum gravity. Specifically, we focus on hilltop
quintessence scenarios, able to satisfy theoretical constraints from quantum gravity. We
discuss their realisation based on axions, their supersymmetric partners, and Higgs-like string
constructions, including dynamical mechanisms to set up initial conditions at the hilltops.
We also examine a specific parameterisation for dynamical dark energy suitable for hilltop
quintessence. We then perform an analysis based on Markov Chain Monte-Carlo to assess
their predictions against CMB, galaxy surveys, and supernova data. We show to what extent
current data can distinguish amongst different hilltop set-ups, providing model parameter
constraints that are complementary to and synergetic with theoretical bounds from quantum
gravity conjectures, as well as model comparisons across the main dark energy candidates
in the literature. However, all these constraints are sensitive to priors based on theoretical
assumptions about viable regions of parameter space. Consequently, we discuss theoretical
challenges in refining these priors, with the aim of maximizing the informative power of current
and forthcoming cosmological datasets for testing dark energy scenarios in quantum gravity.
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1 Introduction

One of the most significant and challenging problems in contemporary fundamental physics is
to understand the microscopic nature of the Dark Energy (DE) that dominates our Universe
today, driving its current accelerated expansion. From one perspective, DE may appear a
low-energy problem, since the observed DE scale is small, lying around the milli-eV. However,
the fact that vacuum energy — an ultraviolet sensitive quantum phenomenon — behaves



as DE once included in Einstein’s General Relativity, frames the problem as a high-energy
one. This makes it all the more exciting that cosmological observations are probing the
behaviour of DE with an ever-increasing degree of precision, possibly opening a path to
connect quantum gravity to observations. In this paper, we consider classes of quintessence
models for DE that are currently allowed by quantum gravity considerations, and we test
them against the most recent cosmological data. At the same time, we identify trends that
current cosmological results indicate for DE model building in quantum gravity.

String theory provides an excellent framework for the DE problem (for reviews, see
e.g. [1, 2]). The simplest candidate for DE has long been considered to be a positive vacuum
energy (corresponding to a de Sitter vacuum), which, however, must be fine-tuned to a
level of one part in 10'?° — the so-called cosmological constant problem. The supposed
String Landscape of exponentially large numbers of finely-spaced metastable de Sitter vacua,
together with eternal inflation to populate them, lended itself to an anthropic explanation of
this fine-tuning (see e.g. [3] for a review). However, despite impressive technical progress,
after two decades of effort there is still no consensus on a single example of an explicit,
well-controlled de Sitter vacuum in string theory. Instead, a number of obstructions are
invariably met in the hunt for metastable de Sitter string vacua, including challenges in
satisfying global and local constraints, tachyonic instabilities, and a lack of parametric or
even numerical control in the perturbative expansions used.

At the same time, there has been a growing focus on the expectation that, in string
theory and quantum gravity, not everything goes: not every effective field theory (EFT)
can be ultraviolet completed into a theory of quantum gravity and those EFTs that are not
consistent with quantum gravity are deemed to be in the Swampland. In mapping out which
EFTs lie in the Swampland, and which are safely in the Landscape, a number of Swampland
Conjectures have been put forward (for recent reviews see e.g. [4-6]). Among them, the de
Sitter Swampland Conjecture proposes that (meta)stable de Sitter vacua are inconsistent
with quantum gravity. In terms of a string compactification’s low energy EFT ingredients,
it is supposed that the scalar potential of the string moduli (describing sizes, shapes and
positions in the extra dimensions, and the string coupling) should satisfy [7, §]:

a 1 a /
vVerv,v > c or min(V*V,V) <_ 02 ’ (1.1)
\% Mp; \% Mg,

where “min()” denotes the minimal eigenvalue and ¢ and ¢’ O(1) positive constants. Whilst
there exist physical arguments for these inequalities to hold in asymptotic regions of the
moduli space [8] — where large moduli correspond to weak couplings in the corresponding
perturbative expansions — the conjecture speculates that it holds everywhere in moduli
space. This is not uncontroversial, but it is based on the empirical evidence previously
discussed, together with conceptual issues with observers in de Sitter space, such as how
to define an S-matrix in this context [9-11].

Conjecture (1.1) rules out a metastable de Sitter vacuum as the explanation for DE, as
we cannot have simultaneously V,V =0, V > 0, and eigenvalues(V*V;V') > 0. The main
alternative model for DE is slow-roll quintessence, and a priori it would be natural to expect
that quintessence candidates are found amongst the string moduli. Although the conjecture
is in tension with the simplest realisations of slow-roll inflation for the early Universe — the



left-hand-sides of (1.1) corresponding directly to the potential slow-roll parameters, ey and
Ny, which need to be small in single-field slow-roll inflation (but see e.g. [12] for potential
counter-examples) — it leaves some room to play within the context of late-time quintessence,
depending on the values of ¢ and ¢’. Indeed, whereas around 60 e-folds of inflation in the
early Universe are required to solve the horizon problem, the late-time accelerated expansion
has been occurring for less than one e-fold of expansion, suggesting a viable window in (1.1).
It is important to note, however, that quintessence alternatives remain challenging to obtain
in string theory, as they must also satisfy several phenomenological constraints, as well as
address the cosmological constant problem.

Keeping these caveats in mind, three distinct classes of simple slow-roll quintessence
potentials then come to mind: plateaus, runaways, and hilltops. Plateaus, corresponding
to both first and second derivatives of the potential being small, are in tension with (1.1);
moreover, they are as difficult to obtain from string theory as metastable dS vacua. Runaway
potentials are ubiquitous in string theory, and have both parametric control and a suppressed
vacuum energy emerging at the asymptotics of field space. However, generally these potentials
turn out to be too steep to source a slow-roll! accelerated expansion [13, 14], consistently
with the expectation from (1.1) that the slow-roll parameters should be large. Moreover, the
small window that could be consistent with (1.1) and slow-roll quintessence does not agree
with observations. In fact, string compactifications generically lead to asymptotic exponential
potentials, V(¢) = Vpe™*?, which satisfy the conjecture with A > /2. Such potentials can
source a transient late-time accelerated expansion that follows epochs of radiation and matter
domination, provided that A < /3 [15], but this parameter space turns out to be ruled out
by the most recent cosmological data [16-18]. It is worth emphasising that these results
demonstrate a powerful synergy between quantum gravity considerations and cosmological
observations: by themselves quantum gravity would allow exponential quintessence with
V2 < A < /3 and observations would allow exponential quintessence with A < 0.537 [16];
taken together, exponential runaway quintessence is currently disfavoured. It remains to
consider the option of hilltop potentials: this is our aim in this work.

We focus on hilltop quintessence scenarios and explore the interplay between quantum
gravity constraints and the most recent cosmological datasets. The models we consider can
be made consistent with Conjecture (1.1) as well as other swampland conjectures; moreover,
they are expected to arise naturally within string theory. Specifically, we consider axion
hilltops, hilltops for a saxion within 4D N = 1 supergravity, and a Higgs-like potential that,
close to the hilltop, plays the role of a generic quadratic hilltop. In section 2, we present these
general models, motivating their initial conditions; in particular we provide a novel dynamical
mechanism to set up the initial conditions for the axion hilltops. After also discussing the
connections of the models with string theory and particle physics, in section 3 we review
how they can be analysed in a unified way using an appropriate parameterisation of the
quintessence equation of state, put forward by Dutta and Scherrer [19] (considering also its
generalisation for more general thawing quintessence models by Chiba [20]).

! Any potential can have some amount of accelerated expansion simply by tuning initial conditions such
that the scalar starts by rolling up its potential.



After presenting these general models, motivating their initial conditions, and discussing
their connections with string theory and particle physics in section 2, in section 3 we review
how they can be analysed in a unified way using an appropriate parameterisation of the
quintessence equation of state, put forward by Dutta and Scherrer [19] (considering also its
generalisation for more general thawing quintessence models by Chiba [20]). We test this
general parameterisation against our concrete scenarios and also show that it provides a
useful analytical understanding of the degree of fine-tuning of initial conditions necessary
to be consistent with observations.

We are then ready, in section 4, to test our string-motivated hilltop models — together
with general hilltops using the Dutta-Scherrer parameterisation — against a suite of recent
cosmological data, from CMB observations, galaxy surveys, and Type A supernovae data.
We find the best-fit and mean values and bounds for the fundamental parameters in our
models and investigate how these observational constraints stand against independent bounds
from quantum gravity considerations. Furthermore, we identify which model is preferred by
the data, comparing also to the fits of the ACDM model, the exponential runaway model,
and the wow,CDM model — the latter corresponding to the alternative Chevakkier-Polarski-
Linder (CPL) parameterisation [21, 22], assuming that the equation of state parameter
evolves linearly with the scale factor. We summarise our results in section 5, where we also
discuss the most important model-building challenges to be addressed in order to extract
the maximal information on quantum gravity scenarios from current and forthcoming data
sets. A number of technical appendices follows.

2 Quintessence in string theory

In this section we introduce the quintessence models whose cosmologies we study. Importantly,
these models are consistent with string theory expectations, but have different interpretations
within string theory, and thus distinct associated microscopic parameters with specific
interplays with particle physics. After motivating and presenting the models we analyze
the associated cosmological equations that will be used in the following sections to confront
them with data.’

2.1 dS minima, plateaus, runaways, maxima and saddles vs the swampland

As discussed in the introduction, the swampland conjectures on the properties of scalar
potentials in string theory (1.1) (and the difficulties in constructing controlled metastable dS
string vacua that themselves motivated the conjectures) suggest that the current acceleration
of the universe cannot be attributed to a small positive cosmological constant. The same
swampland constraints (1.1) are also in tension with a slow-roll quintessence characterised by
a scalar potential with a plateau. We have also reviewed how the conjecture (1.1) suggests
that runaways are typically too steep to source slow-roll accelerated expansion, and the small
window that is allowed is ruled out by observations.

2In the recent paper [23], model-independent cosmological constraint on ¢ are explored, finding larger-than-
one values for this quantity. However, the analysis of [23] does not include hilltops, and the parameter ¢’ is
not considered individually. Specifically, [23] focuses on the combined quantity T' = —¢’/c? in the range T' > 1,
which excludes hilltop scenarios (and exponentials, which have I" = 1).



The task is to determine quintessence scenarios that address the previous issues. It is
interesting to note that dS maxima and saddles generically satisfy the swampland constraints
in (1.1) and, moreover, seem to be easier® to find in string constructions compared to dS
minima, plateaus and slow-roll runaways. In the following, we will use the term dS “hilltops”
to refer to both dS maxima and dS saddles. If one considers a modulus close to a dS
hilltop, it can remain frozen by Hubble friction during the epochs of radiation and matter
domination, acting as a small cosmological constant, until it only recently starts to slowly
roll down its potential sourcing dynamical dark energy. This provides a string-motivated,
(thawing?) dynamical dark energy candidate,” towards which — tantalizingly — recent data
seem to hint [28-30].% Nevertheless, we stress that the scenarios we discuss do not solve deep
theoretical issues as the cosmological constant problem, since they do not directly explain the
small size of dark energy density and how the Standard Model contributions are suppressed.

2.2 String models of hilltop quintessence

We will consider three classes of string theory hilltop models, with the quintessence field
descending from string moduli or matter fields. Within string theory, two types of moduli
— both amongst the most generic predictions of the field content of string scenarios — can
be identified as hilltop quintessence candidates:’

1. Axion hilltops. Axions descend from the dimensional reduction of higher dimensional
p-forms, giving rise to the so-called string axiverse® [37]. Their scalar potential can be
generated by non-perturbative effects such as instantons, with the leading contribution

V(O)=W (1 — cos (?)) , (2.1)

where f is the axion decay constant, or shift-symmetry breaking scale, and Vj has an

taking the form:

exponential suppression in the instanton action, Vp ~ M#*e~nst | with M the scale of
the instanton physics. Both 1/f and Sis typically go as the saxionic superpartner
for the axion, leading to fSinst ~ *Mp) with z an order number [34]. Also, we have
assumed (some resolution to the cosmological constant problem and) a Minkowski
minimum at 0, = 0, whilst there is a dS maximum at Oy = 7f.

Depending on the value of the decay constant, axion dark energy can occur either
(i) close to the minimum of the potential at # = 0, and up to its inflection point at
0 = wf/2, which requires f > Mpy, or (ii) near the hilltop at Oyax = 7f, which allows

3Tt should, however, be acknowledged that so far all explicit top-down constructions of dS maxima and
saddles involve some size moduli that are smaller than the string-length, implying that they might be spoiled
by large o’ corrections; see e.g. [24-26]. On the other hand, as we will discuss below, one can make rather
general arguments for their existence.

“Hilltop quintessence is an example of thawing quintessence where wg starts close to -1 and then increases,
as opposed to freezing quintessence where wy starts above -1 and decreases towards it.

5See [27] for a recent work on interacting dark energy bounds after DESI.

50f course, we have to wait for future more precise data to have a conclusive answer regarding the dynamical
behaviour of dark energy.

"Generally, more moduli could be rolling over their potential — however we focus on the simplest case of a
single dynamical field.

8For carly work on axions as quintessence in field theory see e.g. [31-36].



for f < Mp;. We are interested in the latter case, since it allows for values of the decay
constant that are usually found in string theory constructions.

Indeed, f has been argued to be always f < O(1)Mp; by the so-called weak gravity
conjecture [38], which for axions implies that there must exist an instanton whose action

satisfies:?
M
Sinst S 7’” , (2.2)

In the strong version of the WGC this instanton must be the one with smallest action
i.e. the leading effect. To keep control of the instanton expansion assumed in (2.1),
we require Sipnst > 1 and thus f < Mp;. In the case that St > 1, the exponential
suppression in Vj naturally realises the necessary hierarchy between the dark energy
potential and the leading-order potential that fixes the volume moduli.

As pseudo-scalars, axions can evade stringent fifth force constraints even if they are
extremely light. Furthermore, their approximate shift symmetries restrict their allowed
couplings and protect the axion mass and potential energy density, which are otherwise
UV sensitive quantities. An important open question is why initial conditions would be
fine-tuned close to the hilltop. One possible mechanism'? to achieve this is if in the
early Universe, the leading non-perturbative effects that are active stabilise the axion in
a Minkowsi or adS minimum, and at some later time a further non-perturbative effect
dynamically comes into play, turning this minimum into a (nearby) dS maximum (see
appendix A.2 for a working example).

2. Saxion hilltops. Geometric string moduli, corresponding to sizes and shapes of the
extra dimensions and positions within them, as well as the dilaton, also arise generically
in string compactifications and are often associated with some small expansion parameter
in the low-energy effective field theory description assumed. They also have potentials
that include dS maxima and saddles; indeed, one can formulate rather general arguments
for the existence of such hilltops. Consider, for example, a compactification that stabilises
all moduli in a regime of parametric or numerical control to a supersymmetric AdS
vacuum, with one modulus lighter than the others. If the leading correction to the
potential at asymptotic values of the light modulus is positive, then a dS maximum
must exist to the right of the AdS minimum, and thus also under control [42]. The
setup becomes a priori more complex if there is more than one light modulus, since
then the minimum may not be accompanied by an extremum in all directions. It is
therefore interesting to note that the recent explicit constructions [43] of supersymmetric

9There is a large literature that attempts to obtain super-Planckian decay constants, usually involving mul-
tiple axions for which there exists a generalised mutifield weak gravity conjecture (WGC). The axion alignment
mechnism [39] invokes two (or more) axions and a fine-tuning between their axion decay constants that produces
a large effective axion decay constant. In N-flation [40], a large number N of axions, each with axion decay
constant f, lead to an effective axion decay constant fog = v/N f. However, both axion alignment and N-flation
require some extra model building to satisfy the multifield WGC, and in any case violate the strong WGC. See
e.g. [4] for a further discussion of the literature, including top-down model building attempts, where the chal-
lenges encountered may well seem consistent with a quantum gravity censorship of large axion decay constants.

198ee [41] for an alternative dynamical mechanism for the QCD axion.



AdS minima in type IIB flux compactifications with many moduli — which are under
numerical control'! — have been found to be accompanied by dS maxima.

For concreteness, in the following, we consider a specific, simple saxion hilltop model
that is well-motivated from supergravity and was studied recently in [44]. This model
starts with a supersymmetric Minkowski setup with one flat direction, which is lifted
by a leading-order supersymmetry-breaking non-perturbative contribution, with details
given in appendix A. The corresponding scalar potential, expressed in terms of the
canonical normalised field, is given by:

V() = Voe V2 e 200 (—2 4 402220 4 40eV?) (2.3)

with a a constant that depends on the type of non-perturbative effect in play. For
example, for gaugino condensation in a hidden SU(N) gauge group (from wrapped
D7-branes) in type IIB string models, we have o = 27 /N. The scalar potential (2.3)
has a maximum at:

gbmax = \}5 log (\/150[> ) (24)
which lies in a “weak-coupling” regime, say ¢max =, 0.4 for the canonically normalised
field,'? for around o < 0.4, or N > 16. Note that geometrical and topological constraints
imply that N cannot be arbitrarily large,'® but we can safely take, say, N < 0(100).
On the other hand, as discussed in appendix A, we can in any case expect at best
numerical control of the expansion in the non-perturbative effects at the hilltop.

Although the exponential suppression in the saxion potential energy turns out to cancel
at ¢max, its scale can match the observed dark energy by being multiply exponentially
suppressed in the vevs of the supersymmetrically stabilised moduli [24]. Saxions do
not enjoy a shift symmetry like the axions, but constraints from time variation of
fundamental constants, fifth forces and radiative corrections can potentially be avoided
if the quintessence couples only indirectly, via gravity and with some further geometric
suppression, to the Standard Model and the supersymmetry breaking sector. The fine-
tuning of initial conditions could be explained e.g. via high temperature effects [47] or
some other dynamics [48] turning the maximum into a transient minimum analogously
to symmetry restoration in the Higgs potential; alternatively, anthropic arguments

" Note that — even though the solutions in [43] include some two-cycle volumes that are small (cf. footnote 3)
— it has been checked explicitly that e.g. the worldsheet instanton expansions are under control. Moreover,
whilst control of the dS minima (a.k.a. “KKLT vacua”) in [43] is under question because the concrete examples
have gs M < 1, this regime is only of concern in the presence of a warped throat, in which case the supergravity
expansion breaks down. The warped throat is a necessary ingredient for the KKLT dS minimum, but not for
the precursor supersymmetric AdS vacuum of interest here.

12This corresponds to the original field Ymax > 1.8 (see (A.5)).

13E.g. for gaugino condensation from wrapped D7-branes in type IIB, [45] (see also [46]) found that
N < O(10)h"! with h"! related to the number of size moduli of the compactification (more explicitly, h'! is
the Hodge number of the Calabi-Yau manifold counting for the number of Kéhler moduli).



might be relevant, since without fine-tuning to the hilltop, the saxion would runaway

to decompactification or decoupling and an unviable universe.'*

In what follows, we explore hilltop quintessence using the two concrete moduli examples
above — the axion hilltop and the supergravity saxion hilltop — together with a more
generic Higgs-like quadratic hilltop, which can approximate any quadratic hilltop near the
top, and which might descend from a stringy saxion modulus, stringy axion modulus, or
a stringy matter field:

3. Higgs-like hilltops. The dynamics from any quadratic hilltop potential can be
approximated by using a Higgs-like potential

V(o) = Vo (1 . LZLD | (25

This potential is bounded from below by having a quartic term compared to the more
standard quadratic field theory hilltops. This — and any other terms that might appear
in the Taylor expansion of the hilltop potential about its maximum — will not affect
the dynamics for as long as the field stays sufficiently close to its hilltop.

Should the field ¢ explore a significant part of its field-range, the swampland distance
conjecture [50] would limit ¢ < O(1)Mpy. In hilltop quintessence scenarios, ¢ remains
frozen for most of the cosmological history, allowing this constraint to be relaxed.

We focus on the cosmological aspects of the hilltop quintessence models, from the cosmological
evolution and comparison with cosmological observations in the CMB, galaxy surveys and
type TA supernovae catalogues, to a discussion on the initial conditions and implications for
inflation and reheating. We aim to ascertain to what extent theoretical and observational con-
straints might favour a specific model of hilltop quintessence, and what insights observational
constraints give into the microscopic parameters of stringy hilltop quintessence models.

2.3 Cosmological equations for hilltop quintessence

We now set up the equations of motion that describe the background cosmological evolution
for the models of interest. We consider a universe whose dark energy (DE) component is
described microscopically by one of the hilltop quintessence fields introduced above, with a
canonical kinetic term and a scalar potential functional V' (¢), minimally coupled to gravity.
We further include radiation and (dark) matter and — though we do not consider the detailed
string theory model building required to achieve it — we assume that they are decoupled
from the quintessence field. Given theoretical expectations and observational prospects, we
also allow for non-zero curvature of the 3D space slices at this stage.!®

!4These arguments do not work in the same straightforward way for axions. E.g. the axion’s remnant
discrete shift symmetry implies that axion-matter couplings are such that finite temperatures, and other
dynamical effects, typically only change the effective axion-mass and not the position of the minima in axion
potentials (see e.g. [47, 49]). Also, relaxing initial conditions away from the hilltop would lead to the axion
rolling down to a minimum whose vacuum energy is of similar magnitude to that at the maximum and hence
equally anthropically viable.

5For completeness, in appendix C we collect the cosmological evolution including curvature.



The 4D FLRW metric with arbitrary curvature given is given by:

dr?

1— kr2

ds® = —dt* + a*(t) ( + 1% |df? + sin® 9d<p2D , (2.6)
where k£ = 0,+1 denotes the curvature of the 3D slices. The energy momentum tensor is
described by a set of perfect fluids describing the radiation, matter, quintessence, and effective
“curvature fluid” components. The energy density and pressure, p;, p;, for these components
are related by their equation of state parameter, w;, as:

bi = Wip;, (2'7)

where i = r,m, ¢, k runs over radiation, matter, quintessence, and curvature; w, = % and

wy, = 0, whilst for the scalar:
¢* ¢’ P
2 2 P
and for the curvature component:
3k k 1
pk:_ﬁa pk=$, wk:—g- (2.9)

We can now write down the cosmological equations of motion for this system, which
are given by (we set kK = 87Gy = 1 for now):

H? = ”;ﬁ , (2.10a)
4 _ _Peft (1 + Bwes) , (2.10b)
a 6
¢p=—-3Hp—Vy. (2.10¢)
In the last equation, Vi = 04V. Moreover, we defined
Peff = sz y DPeff = Zpi 5 Peff = Weff Peff - (211)
i i
From this definition it is clear that
Wet = Y wili, (2.12)
i
where 4
Q= (2.13)

"3H?T
Moreover, from (2.10b), we learn that acceleration requires weg < —1/3.

3 Parameterisation of the equation of state for hilltop models

In all hilltop quintessence models, the quintessence field is initially frozen by Hubble friction
close to the hilltop and starts to slowly roll, as the Universe expands and Hubble friction
falls, in recent times. All hilltop quintessence potentials are therefore well-approximated



for the full cosmological history by their behaviour close to the hilltop, i.e. their Taylor
expansion around the maximum up to second order. It is therefore not surprising that all
hilltop models can be described in a universal way. In fact, Dutta and Scherrer have derived
in [19] a parameterisation of the equation of state parameter for hilltop quintessence models,
and Chiba has shown in [20] that this parameterisation can actually be extended to more
general thawing quintessence models.

In this section, we first outline the derivation of the Dutta-Scherrer(-Chiba) (DS(Ch))
parameterisation and then test how it fairs for the specific hilltop models in our focus, showing
that it performs much better than the more commonly used CPL parametersation [21, 22].
For comparison, we also test the DSCh parameterisation against a quintessence model without
hilltop, specifically with an exponential potential. Finally, we use the DS parameterisation
to obtain a bound on the initial displacement from the hilltop, which, as expected, depends
on the curvature at the hilltop. As we will show, this subsequently leads to a bound on
the scale of inflation or reheating.

3.1 Derivation of the Dutta-Scherrer(-Chiba) (DSCh) parameterisation

Dutta and Scherrer obtained their parameterisation of the equation of state parameter for
hilltop quintessence by computing the general solution to the scalar field in a flat universe
whose dynamics is dominated by the scalar and matter. We now outline the calculation
of DS [19], pointing out along the way how the derivation also applies in the presence of
curvature, so long as the curvature is subdominant, as it is in our observed universe. As
already mentioned, the beauty of the DS parameterisation is that it is analytically justified
for generic hilltop potentials, which can all be approximated by the same Taylor expansion
around the maximum as:

V(9) % V(Bmae) + 5V () (6~ i) (31)

To begin, we consider the scalar field equation, (2.10c), in the background of matter
and the hilltop potential energy, which corresponds to an effective cosmological constant
A = V(¢pmax). That is, we assume that the rolling of the scalar field away from its hilltop
hardly affects the overall background expansion of the Universe, and moreover, that radiation
and curvature are negligible during the epochs of interest. Note that the energy density from
the curvature grows more slowly than that from radiation and matter as one tracks backwards
in time, so if the curvature is subdominant today — as it is — then it was subdominant
throughout the history of the universe. Given our assumed background cosmology, which is
effectively a flat ACDM (i.e. neglecting the subdominant radiation, curvature and time-varying
quintessence), the expansion as a function of time is given by:

at)  |[1—Qap
Qa0

1/3
] sinh?/3(t/ty) (3.2)
ag

where ag is the scale-factor today, we denoted the present-day density parameter from the
hilltop potential energy as €25 9, and defined

2 2
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with Vijax = V(Pmax). Let us now define a new variable u(t) as follows [19]:

u(t) = (¢ - ¢max)a3/2(t) . (34)
In terms of u, the equation for ¢ (2.10c) becomes
3 [a 1
T ey 2 32y, — 0 '
i 2u{@+2 ]—I—a Ve=0 (3.5)

Using (2.10a) and (2.10b), this becomes

3
it + Supe + 0¥V, =0, (3.6)
where remember that we are assuming that peg includes only the contribution from the hilltop
maximum (with wy = —1) and matter (with w,, = 0) and therefore:
Peff =~ —Viax - (37)

Recalling the expansion (3.1), and writing Vi, = V" (¢max), we have Vg = VI (¢ — dmax)-
Therefore, (3.6) can be reduced to:

3
i+ u {vm -3 vmax} ~0. (3.8)
Defining
by = %vmax v (3.9)

the general solution to (3.8) is given by
u(t) = A sinh(kyt) + B cosh(kyt). (3.10)
To fix the integration constants, consider an initial, finite value for ¢ at t = 0:

¢(0) = ¢z = (Z)max + AQSZ . (311)

Then (3.4) together with (3.2) requires B = 0 in (3.10), and also fixes the value of A in terms
of A¢;, giving the final solution for ¢ = ¢y + u/a’/?:

Ag; sinh(kyt)

¢ = bmax + = SNt

(3.12)

where we defined
K = kyty. (3.13)

The next step is to find an expression for the equation of state parameter associated
to ¢ as a function of a, wg(a). First notice that
12 12
Po Vinax

(3.14)
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where we used the approximation that ps ~ Viax. Normalising this expression to the
present-day value of wgy, denoted by wp, and using the solutions for ¢ and the scale factor a,
egs. (3.12) and (3.2), one arrives at the final expression as in [19]:

2

1+wy(a) _ ( ¢ )Ml) l(K = P)(+ F(@)* + (K + Fla)(Fla) - DX]" oo

l+w,  \ao (K — Fo)(1+ Fo)K + (K + o) (Fo — DK ’

where, approximating 25 o ~ g :

4 "
K= ,/1—53““, (3.16a)

Fla) = J 14+ (“) - (1_9‘“> . Fo=Fl(ap). (3.16D)

a Q(b,()

We see that the parameterisation involves two free parameters: K, which depends on the
curvature of the potential around the hilltop as in (3.16a); and wg, which depends on K and
the initial displacement of the scalar field from its maximum, Adg;, as:

2
140\ -0\
(K — Fp) (W) +(K+Fp) (m) ] . (3.17)

Chiba’s generalization of (3.15) [20] purports to extend the validity of the parameterisation

3 A¢? (1-0Q40)
16 K2 Qg

1+wy =

beyond hilltops to general thawing quintessence models by allowing the field to start at some
arbitrary initial value, ¢;, and keeping all terms in the Taylor expansion of the potential
around V' (¢;) up to second order (cf. (3.1)). Formally, this parameterisation ends up coinciding
with (3.15), but with K in (3.16a) defined via the initial values of V;” and V;, rather than
their values at the maximum. On the other hand, it is not obvious why — if both first
and second order terms in the Taylor expansion are significant — third order terms and
beyond can be neglected.

It is interesting to compare the DSCh parameterisation with the commonly used linear
CPL parameterisation [21, 22], with parameters wg and wy:

we(a) = wo + (1 — a)w,, (3.18)

which — though it lacks the analytical justification of the DS parameterisation for hilltops —
is based on a Taylor expansion of the equation of state parameter itself, where the leading term
is the linear one. In the following, we test the DS(Ch) (3.15) and CPL (3.18) parameterisations
against both hilltop models and the exponential runaway potential, using the modification
by Chiba [20] for the latter. A comparison of different phenomenological parameterisations
was performed in [51] for a particular hilltop model with V(¢) = Vp e “?(1 + a¢), while the
DSCh parameterisation was analysed against recent data in [52].

3.2 Testing the DS parameterisation for hilltop quintessence models

In this section, we test the DS [19] parameterisation against the explicit hilltop models
presented in section 2. For comparison, in the next subsection 3.3, we test the parameterisation
also against the exponential dark energy model, using the Chiba [20] generalisation.
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We start by checking how the parameter K in the DS parameterisation is related to the
more fundamental parameters in the different models that we are interested in analysing:

1. Axion hilltops. The scalar potential is given by (2.1) and for hilltop quintessence,
we are interested in the case f < 1, which is also consistent with typical values found
in string theory and suggested by swampland constraints [38]. For this model, the
parameter K is given by:

Ky = 1+32]82. (3.19)
Thus for f <1, Kax 2 /5/3 ~ 1.3. In figure 1 we compare the true evolution of the
equation of state parameter obtained using CAMB with the DS and CPL parameterisations,
for the best-fit value of the decay constant using DESI year one data plus Union3
supernova data, f = 0.15 (see table 6 in appendix B), and for f = 0.5. As we commented
before, since the spatial curvature k is subdominant throughout the cosmological
evolution, adding a small non-zero k& does not change the results. We collect the
evolution with non-zero spatial curvature in appendix C.

As we can see from the figure 1, the DS parameterisation works very well through
the full cosmological evolution, well beyond the reach of current and near-future Dark
Energy surveys; indeed, the derivation of the DSCh parameterisation suggests that
it should work as soon as radiation is negligible (and recall that z., ~ 3400). In the
figures, the evolution starts in the matter domination epoch from z,, = 3000. For the
CPL parameterisation we fit the linear behaviour to obtain suitable values of wq, wg. It
is very clear that the linear parameterisation (3.18) is not appropriate for axion hilltop
quintessence throughout the evolution; rather it works only for small red-shifts as f
decreases. We will see the same pattern also for the other hilltop potentials below.

Finally, in figure 2, we compare the evolution of the dark energy equation of state for
different initial conditions as indicated in the plot.

2. Saxion hilltop. The potential of this model is given by (2.3) [44], where typical values
for o are %’r with, recall, N an integer that we assume to be N < O(100). Interestingly,
for this model, K is independent of the potential parameters! Indeed,

[19 + 8v2
Kougra = +3\f ~ 3.179, (3.20)

and thus the curvature at the maximum is independent of a and the evolution will
mostly be dependent on ¢;. To better understand the constraints on « in this case, it
is useful to write the potential as follows:

e~ V2

V=
3

Wa |fL0—CZ2 K2P2 . <¢jax - 1>2+a3 k3¢5 <¢j;x - 1>3+... . (3.21)

where we restored Planck units k = 1/Mpy, a,, are numerical constants independent
of a given by ag = 12, as = 12(2 + v/2) and a3 = 32, and recall that ¢y is given
in terms of a by (2.4). Note that ¢nax can be positive or negative, depending on the
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Figure 1. Evolution of the equation of state parameter for the axion hilltop for different values of
f, and its comparison to the DS (3.15) and CPL (3.18) parameterisations. The initial value for 6 is
given at the top of the plots and for the DS parameterisation we used the values of {249 and wy as
indicated to the right, as obtained from the evolution with CAMB. The CPL parameters are obtained
by fitting the linear behaviour between a = 0.9 and a = 1.
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Figure 2. Evolution of the equation of state parameter for the axion hilltop for different initial

conditions 6;.

value of a (see eq. (2.4)). In particular for o > 1/v/2, ¢max < 0. On the other hand,

Pmax becomes super-Planckian for oo < 0.17 ~ g—g As we mentioned before, « is also
constrained by ensuring theoretical control to o < 0.4. Therefore in the next section
we will focus on « € (%, %’T)

From the expansion around the maximum (3.21), we also see that contrary to the
axion and field theory Higgs-like model, there is a non-zero cubic contribution. Thus,
for ¢/¢pmax < 1, the cubic term changes sign, as the potential becomes steeper (and
unbounded) on the left hand side. (On the other hand, the axion and Higgs potentials
have the same curvature to either side). Due to the cubic contribution, we expect the DS
parameterisation to be a little less accurate in this case, compared to the axion and Higgs.

In figure 3 we compare the evolution of the equation of state with the DS and CPL
parameterisations, using the best-fit value for the parameter o obtained from DESI year
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@ —0.901
3
—0.951
—1.001

0.0 0.2 1.0

Figure 3. Evolution of the equation of state parameter for the supergravity hilltop and its comparison
to the DS (3.15) and CPL (3.18) parameterisations. The initial value for the saxion is given at the top
of the plot. For the DS parameterisation we used the values of Q49, wy obtained from the evolution
with CAMB as indicated to the right, while we fit the linear behaviour between a = 0.9 and a = 1 to
obtain (wo, wg).
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Figure 4. Evolution of the equation of state parameter for the supergravity hilltop for different initial
conditions ¢;.

one data plus Union3 supernova data i.e. a = 0.37 ~ %r (see table 7 in appendix B).

From the figure we see that the DS parameterisation does slightly worse here compared
to the Axion (see figure 1) and Higgs (see figure 5) cases, through the full cosmological
evolution, whereas the linear parameterisation breaks down rather quickly.

In figure 4, we compare the evolution of the dark energy equation of state for the saxion

model, for different initial conditions.

3. Higgs-like hilltop. The potential for this model is given by (2.5), where recall that
in order to avoid issues with the numerical and cosmological analysis, we completed
the quadratic hilltop to a Higgs-like potential. For this potential, K is given by

/ 16
Kiiges = 11+ —5 . 3.22
Higgs + 3¢(2) ( )
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Figure 5. Evolution of the equation of state parameter for the Higgs-like hilltop (2.5) and its
comparison to the DS (3.15) and (3.18) parameterisations. For DS we used Q40, wo as obtained from
the evolution with CAMB, while we fitted the linear behaviour between a = 0.9 and a = 1 for the CPL
to obtain (wp,w,) as indicated to the right. The initial value for the scalar field is indicated at the
top of the plot.
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Figure 6. Evolution of the equation of state parameter for the Higgs-like hilltop for different initial
conditions, ¢;.

If we expect ¢p to be less than or at most one (recall we are using Planck units), ¢o < 1,
then Kiggs 2 /19/3 ~ 2.5.

In figure 5 we compare the evolution of the equation of state with the DS and CPL
parameterisations, for the best-fit value of ¢y = 0.69 using from DESI year one data plus
Union3 supernova data (see table 8 in appendix B) and for ¢9 = 1.3. Again, we learn
that the DS parameterisation works very well through the full cosmological evolution
also in this example, whereas the CLP parameterisation works only for smaller redshifts.

Finally in figure 6 we compare the evolution of the equation of state for the field theory
model for different values of ¢;.
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Figure 7. Evolution of the equation of state parameter for the exponential potential (3.1) and its
comparison to the DSCh and CPL parameterisations. For the latter we used Q40, wo obtained from
the evolution with CAMB, while for CPL we fitted the linear behaviour between ¢ = 0.5 and a = 1 to
obtain the parameters, indicated to the right.

3.3 Comparison: testing DSCh parameterisation in exponential quintessence

For comparison, having verified the success of the DS parameterisation for various explicit
hilltop models, we now test how its generalisation by Chiba fares with a potential that does
not have a maximum. We do this using an exponential potential, whose cosmology has
recently been studied in [16, 17, 53]:

V=Vye . (3.23)

Recall that the DSCh parameterisation corresponds to (3.15) where Viax, Vi, in K are
replaced by V; = V(¢;),V/ = V"(¢;). Though in general K will depend on ¢;, for the

exponential case, it is independent of it, becoming purely dependent on A:

4 2
Kexp = {1 — % (3.24)

Note that K gxp can be negative, giving rise to oscillatory behaviour in the parameterisation [20)].

In this case, one should replace K — iK with K = (/4V/"/3V; — 1 in (3.15). Interestingly,
K2_ < 0for A >+/3/2 ~ 0.866. In figure 7 we compare the evolution of the equation of state

ex
Wit}f the DSCh and CPL parameterisations for different values of A. As we can see from the
comparison, the DS parameterisation works rather well for Kgxp > 0, but it does not do well
for K2, < 0. For K2, > 0, the DSCh parameterisation works out to larger redshifts than
the linear CPL parameterisation, but for Kgxp < 0 the CPL parameterisation does better.
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3.4 Bounds on — and from — the initial conditions

As we have anticipated, a problem particular to hilltop quintessence is the fine-tuning of
initial conditions close to the dS maximum. Intuitively, the higher the curvature of the hilltop,
the closer to the hilltop ¢ needs to start in order to drive cosmic acceleration. Even if such
initial conditions can be selected via some physical mechanism in the early universe before
big bang nucleosynthesis — e.g. dynamically or anthropically — they need to subsequently
survive quantum diffusion effects. The DS parameterisation provides us with an analytical
expression for the initial displacement from the top of the potential, A¢;, in terms of the
curvature of the potential at the hilltop, K, the equation of state parameter today, wg, and
the density parameter for quintessence today, 24 0:

Adi = 4K Qg1 L1 (=950 7 .
Z » 3 (Koo —1) (1+vQ0)™ + (K /o +1) (1 — /20)~

(3.25)
Note that as wg increases from —1 to 1, A¢; also grows, and as €24 increases from 0 to 1,
A¢; decreases. Although the overall dependence on K is complex, it is clear that the larger
the value of K (function of the hilltop curvature in (3.16a)), the larger the curvature, and
therefore, the smaller initial displacement from the hilltop (smaller |Ag;|) is expected. We
make manifest such behaviour with figure 8, where we plot the K-dependence of |A¢;| using
the best-fit values for wy and Qg4 (see table 9) from the cosmological analysis described in
subsection 4.4, together with the derived 1o and 20 limits on the derived parameter |A¢;|.
In the same plot we include the predictions for different hilltop quintessence models.

The 20 tail extending towards larger |A¢;| in figure 8 is expected, since very small
curvature is still allowed when ¢; is far away from the hilltop, and, in fact, this tail follows
the analytical curve. This asymmetric part in 20 eventually leads to the skewed posterior
distribution for small K values shown in figure 12 in next section.

Once the best-fit value of the displacement from the hilltop inferred from the cosmological
data has been found, this in turn sets an upper bound on the Hubble scale at the end of
reheating, if we assume that the initial conditions were set up by this time. Indeed, for
quantum diffusion at around the time of reheating — and thus any time thereafter — not
to kick ¢ too far away from the value inferred from observations, we require:

Hy, < 21A¢; . (3.26)

For example, choosing the mean values for the DS parameterisation in table 4 for the data
combination with Union3, we obtain an upper bound on the reheating scale, Hy}, < 0.06 Mp;.
We will obtain analog bounds in our model-by-model analyses below.

4 Cosmological analysis

We modify the cosmological Boltzmann code CAMB to implement the three hilltop models as
well as the DS parameterisation described above. For each model, we perform a Markov Chain
Monte-Carlo (MCMC) analysis of the parameter space, varying two model specific parameters
(described below) alongside the baseline cosmological parameters {Qyh2, Qch?, Ho, 7, As, ns }
for which we adopt wide uniform priors. We make use of the following datasets:
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Figure 8. Analytic results for A¢; obtained from eq. (3.25) for the hilltop quintessence models, and
posterior contours furnished by a MCMC analysis in the K-|Ag;| plane. The analytic results are
represented in dark grey line using best-fit values for €24 ¢ and wy from the data combination with
Union3. Dark blue shapes indicate the points corresponding to the best-fit values (see tables 6-8) for
model parameters (¢o and f): circle for axion model, star for sugra model and triangle for the field
theory model. In the same figure, we show with blue contours the 1o and 20 bounds in the K — |A¢;|
plane from the constraints on the DS parameterisation for the data combination with Union3. See
figure 19 in the appendix for the analogous figure including constraints from all the data combinations.

1. CMB from Planck 2018:

- Planck 2018 low-¢ temperature and polarisation likelihood [54].

- Planck high-¢ CamSpec TTTEEE temperature and polarization likelihood using
NPIPE (Planck PR4) data [55].

- Planck 2018 lensing likelihood [56].
Hereafter, we collectively refer to all the Planck CMB likelihoods as ‘CMB’.
2. BAO likelihoods from DESI DR1 [29, 57, 58]
3. Pantheon+ [59], Union3 [60] and DES-Y5 [28] type Ia supernovae likelihoods.

We sample the likelihoods using the MCMC sampler [61, 62|, provided in Cobaya [63]. Our
convergence criteria for the MCMC chains is reached at the value R — 1 = 0.02 for the
Gelman-Rubin diagnostic. The constraints and posterior distribution plots for each model
are generated using the GetDist package [64]. We also run the Py-BOBYQA [65, 66] minimizer
via Cobaya to obtain the maximum likelihood point and the corresponding x? values.
Recent results from the DESI BAO analysis [29], alone as well as when combined with
supernovae data from Pantheon+ [59], Union3 [60] and DESY5 [28], exhibit a preference
for dynamical dark energy with a fairly rapid evolution in the recent past [29, 67—69]. The
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significance of this deviation from ACDM ranges from 2 — 40, depending upon the supernovae
dataset chosen.!® When it comes to the quintessence models considered here, these datasets
allow us to provide constraints on the underlying model parameters as well as test whether
these models can provide a better fit to the data compared to ACDM, or to the CPL
parameterisation [90-92].

4.1 Axion hilltop

For the axion model discussed in section 2.2 we sample the axion decay constant f and the
initial field value 0; rescaled by f, i.e. 6;/f, for f < 2. The results are plotted in figure 9 and
68% limits summarised in table 1 for the parameters'” {f,0;/f, Quh?, Q.h?, Hy}. Focusing
on the 1D marginalised constraints for the parameter f, we notice a preference for larger
(f 2 1) values in the Pantheon+ dataset, which decreases progressively as we change the
supernovae dataset to Union3 or DESY5. In addition, from the constraints in the (f-6;/f)
plane using the DESY5 SN dataset, we learn that for smaller f, the allowed values of 6;/f
are squeezed to a small region around 7, while for larger f the region around 6;/f = 7 is
excluded. This happens because for larger f (smaller slope), one has to start farther away
from the hilltop (maxima) to obtain dynamical dark energy at the present epoch. These
effects are much less pronounced for the other SN datasets, reflecting the fact that these do
not deviate from ACDM as much as DESY5. In other words, for the DESY5 dataset, the
preferred field evolution in the axion model requires either the field starting far away from
the maximum, if f is large, or the field starting close to the maximum, if f is small.
Table 1 indicates that the combined data sets give a lower bound on f at around f = 0.7
(68% C.L), and including the DESY5 data gives a mean value f = 0.88702]. Note that the
lower-limits and means presented here derive from a Bayesian analysis of the model against
the cosmological data, thus they are highly prior-dependent. As we can see in both figure 9
and table 1, the data are not particularly constraining when it comes to the parameters
f, 0;/f and — as long as this is the case — the prior dependence of the limits is expected to
remain. On the other hand, refinement of the theory priors on f (or even 6;) will lead to
tighter constraints on these parameters. If evidence for dynamical dark energy persists, the
parameter region f > 1 with 6; close to the maximum will be strongly disfavoured.
Motivated by the swampland constraints discussed in section 2, which suggest f <
O(1)Mp;, we have assumed the prior that f < 2Mpi, restoring Planck units. It would
be important to refine the order one constants that appear in the swampland constraints.
Nevertheless, the values of f favoured by our analysis are rather large from the string theory
point of view and they could only be pushed further up by extending the priors to allow larger
values for f, until the data is sufficiently constraining to make the fits prior-independent. In
particular, for such large values of'® f > 0.7Mp), the weak gravity conjecture (2.2) implies

18Different interpretations of these results as well as their various cosmological implications are also discussed
in [70-89].

TFor each model studied in this section, the results for the full set of parameters including the best-fit
parameter combinations are presented in appendix B. In this section, we focus mainly on the dark energy
model specific and the cosmological background parameters as, in any case, the constraints on the other
cosmological parameters do not differ significantly across the different models or the different datasets.

18Large values of f also imply large values for §; in Planck units. The distance conjecture [50] generally puts
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Parameter +Pantheon-+ +Union3 +DESY5

f > 0.946 > 0.779 0.881021
0;/f — — < 2.62
Qch? 0.11842 + 0.00081 | 0.11842 4 0.00083 | 0.11847 + 0.00086
Qph? 0.02227 + 0.00012 | 0.02227 4 0.00013 | 0.02227 + 0.00013
Hy 67.4970:51 67.2375-88 66.797573

1.1 0.93 0.40
0; 3171 2.7319% 2.11795

Table 1. Axion model: parameter means and 68% limits for the addition of the different supernovae
datasets to the CMB+DESI combination.

that the instanton that generates the scalar potential has action Singt < 1.4. This means
that an additional source of exponential suppression is needed to achieve the hierarchically
small scale of Dark Energy — e.g. in the form of polyinstantons as discussed in [93, 94].
Recalling also that control of the instanton expansion requires Sinst = 1, theoretical and
observational constraints combine to give a very narrow window of possibilities that would
have to rely on numerical control.

Finally, it is interesting to consider the implications of the observational constraints on
the initial conditions for the inflationary or reheating scale, by demanding that the initial
conditions are safe from quantum diffusion at the time of reheating. Following section 3.4,
and using the mean values for 6; and f from the CMB+DESI4+DESY5 data in table 1 for
illustration, we find, restoring Mp;:

Hy < 27T(7Tf — QZ) =4.1Mpy, (4.1)

that is, there is no effective constraint on the reheating scale.

Note that the axion model has been analysed previously in [95], using the cosmological
data available at that time. Our results with the new datasets are in agreement with their
results, with the slight differences in the constraints on the axion parameters mainly driven
by the new datasets.

4.2 Saxion hilltop

For the saxion model we sample the parameter o € (%—g, %’r), consistent with our theory
discussion in section 2, and the initial field value ¢;, rescaled by ¢max, i-€. ¢;/Pmax. The
results are plotted in figure 10 and the 68% limits summarised in table 2 for the parameters
{o, i/ Pmax, Quh?, Qch?, Ho}.

We interpret these parameter constraints in terms of the series expansion of the Saxion
potential in (3.21), where we learn that « effectively plays the role of the potential’s curvature

through the term ¢pax. Since the field value at the potential maximum is a function of

super-Planckian field ranges in the swampland, but, in our hilltop scenario, the field range actually explored
would be small due to Hubble friction.
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Figure 9. Parameter constraints on the Axion model, eq. (2.1) (68% and 95% contours).

a (2.4), the potential has a higher curvature for smaller o and lower curvature for larger a.
Thus, for smaller a the parameter ¢;/dmax is constrained to be close to one. This manifests
as a somewhat curved degeneracy in the a—¢;/¢max plane in figure 10. Focusing in particular
on the DESY5 contours (green), whilst ¢;/@max moves towards smaller values as o decreases,
it cannot be too close to 1 as otherwise one would not obtain dynamical dark energy at the
present epoch, as is preferred by the DESY5 data. Although current data do not put any
tight constraint on the fundamental parameter «, if e.g. ¢; is forced to be closer to the hilltop
and upcoming surveys continue to see evidence for dynamical dark energy, the preferred
region for o would be driven towards lower values.

Finally, we note the constraints on the reheating scale, by demanding that the initial
conditions are safe from quantum diffusion at that time. Following section 3.4, and using
the mean values for ¢; and a from the CMB+DESI+DESY5 data in table 2 for illustration,
we find, restoring Mp;:

Hy <« 27 <¢i — \2 log (\/;a)> = 0.38Mp;. (4.2)
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Figure 10. Parameter constraints (68% and 95% contours) for the Saxion model (2.3).

Parameter +Pantheon-+ —+Union3 +DESY5
a > 0.521 0.53710 055 0.49 +0.11
®i/ Pmax <123 1.20170971 1.20510 9%

Qch? 0.11838 + 0.00084 | 0.11842 + 0.00083 | 0.11846 -+ 0.00085
Qp,h? 0.02228 4 0.00013 | 0.02228 + 0.00013 | 0.02228 + 0.00012
H, 67.44704 67211582 66.86 + 0.52

b; 0.20970:954 0.241710-9%3 0.327033

Table 2. Saxion model: parameter means and 68% limits for the addition of the different supernovae
datasets to the CMB+DESI combination. The full set of constraints can be found in table 7 and
corresponding plots in figure 16.
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Parameter +Pantheon-+ +Union3 +DESY5

bo > 1.29 >1.24 > 1.17
bi/ bo < 0.142 0.15119973 0.169 + 0.081
Q.h? 0.11838 + 0.00082 | 0.11835 4 0.00084 | 0.11829 & 0.00084
Qph? 0.02228 + 0.00012 | 0.02228 4 0.00013 | 0.02228 & 0.00013

H, 67.297059 66.775% 66.44 + 0.64

b; 0.17413:971 0.23570:9%8 0.2670-1

Table 3. Higgs-like hilltop model: parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB+DESI combination.

4.3 Higgs-like hilltop

For the Higgs-like hilltop,'? we vary the parameter ¢o and the initial relative field value ¢;/do.
In fact these two quantities play a role similar to f, 6;/f in the Axion model, representing
the steepness of the potential and the initial displacement from the maximum. The resulting
parameter posterior distributions can also be interpreted similarly and are plotted in figure 11,
with the 68% limits summarised in table 3. In particular, we notice the same squeezing of
the allowed ¢; when the potential is steep, i.e. for smaller ¢g, as found in the axion model
of section 4.1. The limits from the current cosmological data are strongly prior dependent
and once again, a more precise understanding of the theoretical priors on ¢y and ¢; will be
crucial to constraining the parameter space of this model.

Finally, we estimate the constraints on the reheating scale from quantum diffusion
and the degree of fine-tuning in the initial conditions that the data indicates. Following
section 3.4, and using the mean value for ¢; from the CMB+DESI+DESY?5 data in table 3
for illustration, we find, restoring Mp;:

Hy, < 21 = 1.6Mp , (4.3)

that is, no effective constraint on the reheating scale.

4.4 DS parameterisation analysis

For the DS parameterisation, we vary the parameters K and wg along with the other six CDM
parameters as in the previous sections. The results for the posterior probability distributions
are plotted in figure 12 and the corresponding 68% limits are presented in the table 4. The
full set of posterior distributions and corresponding limits are reported in figure 18 and
table 9, respectively. The 1D posterior distributions of K for all data combinations are
skewed towards smaller values — as expected since smaller curvature is required when the
initial field value is far from the hilltop (see also the discussion around figure 8). For what

19Gee [96] for a cosmological analysis of a pure quadratic hilltop.
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Figure 11. Constraints on the Higgs-like hilltop model (2.5) (68% and 95% contours).

concerns the combination with Pantheon+ results, the large K tail of the 1D posterior is a
consequence of the condition wg ~ —1.0 being preferred when this data set is added.?"

Although a one-to-one match among the posteriors of f and ¢y with that of K is not
expected due to the non-linear relation between these parameters (3.19), and (3.22) — as
well as the complicated mapping between ¢; and wg — the values of K obtained directly from
f and ¢g can nevertheless be compared with the posterior of K from DS parameterisation.
Using the mean values for f and ¢¢ from tables 1 and 3 (for +Union3) leads to K5%" < 1.45,
and Kﬁ“l‘gg; < 2.11, while Kgygra = 3.179 is independent of model parameters.?! However, K
in DS parameterisation is not very tightly constrained for any data combination, as compared
to its prior range, allowing for the values of K from the individual model constraints to
lie within 1o — 30 of their DS counterparts, depending on the data combination under
consideration. This can also be clearly seen in figure 8 in the relative position of the dots (for
model predictions) with respect to the shaded 1o and 20 regions in the K-|A¢;| plane.

A similar analysis for the DS parameterisation can be found in [52], where a number of
parameters including K have been varied, while CDM parameters were kept fixed at CMB

200ur prior range for wo excludes the wy < —1.0 region.
21Using best-fit values for f and ¢o from tables 6 and 8 respectively (for +Union3), viz, K2t~ = 5.3685,
and K&t it = 3.4765.

Higgs

— 25 —



Parameter +Pantheon-+ +Union3 +DESY5

K 7.6120 8.2721 8.47%1

wo < —0.709 —0.11703 —0.351024
Q.h? 0.11830 = 0.00081 | 0.11828 & 0.00086 | 0.11825 + 0.00082
Qh2 0.02226 + 0.00013 | 0.02227 £ 0.00013 | 0.02227 + 0.00013

Hy 67.53 £0.39 66.73 £ 0.59 67.04 £ 0.42

Table 4. DS parameterisation: parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB+DESI combination.

values. This analysis obtained even larger values for K, albeit with large error. Our results
and those in [52] are consistent within 20 error.

Finally, we note that wy itself is also poorly constrained. Due to the weak constraints
on the DS parameters wg, K, the derived constraints on |A¢;| shown in figure 8 also allow
for a large range of values. Since wy is best constrained at around z ~ 0.4 — as manifest
also from the DESI reconstruction plotted in figure 13 below — we also present the derived
constraints on we(z = 0.4) in figure 20 in appendix B as 2D posterior plots from the analysis
of DS parameterisation. In particular, the wo-wg(z = 0.4) plot demonstrates that the
constraints on wg(z = 0.4) are improved by at least an order of magnitude as compared
to the constraints on wg only.

4.5 Model comparison

To compare the quality of the fit to the data provided by the different models, we perform a
model comparison based on the Akaike information criterion (AIC) [97, 98], which also takes
into account the number of free parameters of the model. The AIC value is defined as follows

AIC = 2n —21In Lax, (4.4)

where L.« stands for the maximum likelihood value in the model and n the number of free
parameters. Models with smaller AIC are favoured by the data with the best model having
the lowest AIC value. To compare between models, one looks at the difference in AIC values
with AAIC 9= AIC; — AICs < 2 indicating no preference between Model 1 and Model 2,
whilst AAIC;5 2 5 indicates a strong preference for Model 2 over Model 1.

The AIC values for the different models we have studied are provided in table 5,
where we also consider ACDM, the CPL parameterisation and the exponential runaway
quintessence model. We learn that the preference for the hilltop quintessence models over
ACDM is strongest for the dataset combination CMB+DESI4+DESY5 and weakest for
CMB+DESI+Pantheon+. Out of all the different models studied here, the CPL parameteri-
sation remains the most favoured, irrespective of the dataset combination chosen. However,
its improvement with respect to the DS parameterisation is data dependent, with best
improvement for +Union3 (AAICpg cpr, ~ 8.3) and only mild improvement for +DESY5
(AAICpg,cpr, >~ 3.4). We attribute this improvement to the more rapid evolution of the
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Figure 12. DS parameterisation: parameter means and limits for the addition of the different
supernovae datasets to the CMB+DESI combination.

dark energy equation of state in this model, as well as the phantom-like behaviour in the
past [29], which matches very well the DESI reconstruction of background quantities w(z)
and h(z) = H(z)/Hp, shown in figure 13. As is clear from figure 13, these two features cannot
be produced in the hilltop quintessence models. On the other hand, the redshift evolution
seen here for the hilltop quintessence models is much closer to the DESI reconstruction than
what can be produced in the exponential potential model (compare figure 10 of [16]). At
the same time, table 5 tells us that the overall improvement in the fit compared to the
exponential model is not significant enough to compensate for the additional parameter
introduced by the hilltop models.

We also notice that the DS parameterisation fares (marginally) better than the concrete
hilltop quintessence models we considered, with the greatest improvement for +DESY5 with
AAIC0del,Ds ~ 4, and the lowest improvement for +Pantheon+ with AAIC,44e1,ps S 0.6.
One can then also adopt the approach to start from the DS parameterisation, compare it
with data, and infer the preferred values for the curvature parameter K. We can then use
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AIC Axion Sugra Higgs DS ACDM CPL Exp

CMB+DESI4Pantheon+ | 12409.55 | 12409.40 | 12409.07 | 12408.9 | 12406.04 | 12401.70 | 12407.19

CMB+DESI+Union3 11030.07 | 11029.49 | 11030.38 | 11027.9 | 11028.69 | 11019.62 | 11029.00

CMB+DESI4+DESY5 12644.67 | 12645.65 | 12644.89 | 12641.2 | 12649.01 | 12637.79 | 12644.73

Table 5. Comparison between the different models considered in this section.

0.0 1.10
Sugra —— Higgs
—— Axion — DS
—0.51 = 1051
S 10& %:
s 100
~1.51 =
0.951
_2'%.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
z z

Figure 13. The quantities wg(2), and h(z) = H(z)/Hy are plotted for the best-fit hilltop models as
indicated, and compared to the DESI reconstruction (blue line) using CMB+DESI4Union3 data [67].
The CPL parameterisation matches the DESI reconstruction. The shaded regions represent the 95%
confidence regions. At z = 0, wg = —0.65 for the reconstruction, while the values for the hilltop

models are as follows wg = —0.77 for the axion model, wg = —0.83, for the saxion and wy = —0.79 for
exp _

the Higgs-like hilltop. For comparison, wy > = —0.89 for the exponential model (see figure 10 of [16]).

DS _
0

For the DS parameterisation, the best-fit value is wy> = —0.60. The best-fit parameter values for

each model can be found in appendix B.

these results to deduce a preference for specific hilltop scenarios, given that each model
favours its own preferred range of K, depending on each model parameters. The evolution of
the background parameters plotted in figure 13 shows clearly that the DS parameterisation
tracks the predictions from hilltop quintessence models well until very low redshift, z 2 0.1,
beyond which it leads to a faster evolution of w(z).

5 Outlook and future challenges

Embedding models of dark energy in quantum gravity and string theory is a notoriously
difficult task, given stringent theoretical constraints on model building associated with
quantum gravity conjectures, as well as strong phenomenological constraints on light fields.
At the same time, recent and forthcoming cosmological results are going to probe the behaviour
of dark energy with an ever-increasing degree of precision, offering the concrete possibility to
test our understanding of dark energy in quantum gravity with cosmological data.

With the aim of exploiting such opportunities, in this work we considered a class of
dark energy models — hilltop quintessence — which is able to satisfy theoretical bounds
from de Sitter and other quantum gravity conjectures. We examined various realisations of
quintessence hilltops based on axions, their supersymmetric partners, and Higgs-like string
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embeddings. Axion hilltops are widely considered and particularly well-motivated, as their
shift symmetry evades problems with UV sensitivities, fifth-forces and time-variation of
fundamental constants, and a priori — at the hilltop — they can be consistent with the
weak gravity conjecture. Moreover, we have presented a dynamical mechanism by which
hilltop initial conditions could be set up. However, it is important to point out that none of
our scenarios solve the cosmological constant problem, hence from a theoretical viewpoint
they are at least as fine-tuned as the ACDM model.

We studied the cosmological consequences of our three string-motivated hilltop models
and discussed a convenient parameterisation of their associated equation of state. We then
tested their predictions by means of a Bayesian MCMC analysis with recent CMB, galaxy
surveys, and supernova data. We showed to what extent current data can distinguish amongst
hilltop models and impose constraints on their parameters. Interestingly, such experimental
results are complementary to theoretical bounds from quantum gravity conjectures, and we
discussed the consequences of these features for our current understanding of dark energy
in string theory. Notably, observational constraints on the axion decay constant for axion
hilltop quintessence are in tension with the weak gravity conjecture, illustrating how synergies
between constraints from observations and from quantum gravity can rule out otherwise
well-motivated models. So far, model comparisons favour the CPL parameterisation over any
of our hilltops, ACDM, and exponential runaways.??> However CPL is only mildly improved
with respect to the DS parametrisation, especially for the dataset CMB+DESI+DESY5.
At the same time, the limited constraining power of current data means that the model
parameter constraints and comparisons that we obtained are sensitive to our priors, which
are based on theoretical assumptions about viable regions of parameter space. Consequently,
given that our inference from cosmological data strongly depends on theoretical assumptions,
it is imperative to refine our theoretical understanding of the priors, so as to maximize
the informative power of current and forthcoming cosmological datasets for testing dark
energy scenarios in quantum gravity. In doing so, we can also hope that this endeavor will
inspire new ideas and perspectives for tackling fundamental theoretical challenges, such as
the cosmological constant problem in quantum gravity.

Assumptions entering into theoretical priors constrain the size and location of the allowed
region in parameter space associated with a given model. This includes the possible values
of parameters entering in the model Lagrangian and the allowed initial conditions or field
ranges associated with the dynamics of the quintessence scalar. Such information can be
theoretically refined by better specifying the ‘order one’ constants®® entering the de Sitter
conjecture in the inequalities (1.1) and the weak gravity conjecture in (2.2), or by embedding
hilltop quintessence into more complete early universe models, able to accurately specify
their initial conditions. Also, the range of allowed priors can be limited by enriching the
hilltop models to include additional Standard Model matter fields: then, one should take
into account further constraints on the parameter space from limits on fifth forces and the
time variation of fundamental constants. All these theoretical questions can be addressed by

22Gee e.g. [99] for possible maps of the CPL parameterisation to physical quintessence or barotropic dark
energy models, though no quintessence potential will give rise to the phantom behaviour seen in figure 13.
28ee e.g. [13, 100] for work towards fixing these order one constants using dimensional reduction.
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developments of the current theoretical tools at our disposal. We believe that such questions
are very timely, and addressing them will allow us to exploit the synergy between theory
and observations offered by current and forthcoming cosmological probes. We look forward
to continuing this analysis in forthcoming publications.
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A Saxion-axion stringy hilltops

In this appendix we summarise the saxionic hilltop potential we consider in the main text (2.3).
More details can be found in [44] (see also [14]). We also provide a concrete example where the
minima of stringy axions can become maxima upon turning on further subleading corrections,
thus providing a possible dynamical mechanism that tunes the initial conditions of the
axion to the hilltop.

A.1 Saxion hilltops

The model considers some inflationary early Universe scenario that ends in a supersymmetric
Minkowski minimum, where most of the string moduli are stabilised and heavy, except for
a flat direction corresponding to a chiral superfield ®. The Kéhler potential for such flat
direction takes the form:

K =-nln (QJ + @) , (A.1)

where n takes different values depending on the type of modulus. As we will see, we are
interested in n = 1, which may correspond to some (non-overall) volume modulus, or a
complex structure modulus, or the dilaton. The superpotential is given by non-perturbative
effects which lift the flat direction at some scale before BBN. The leading term in the
non-perturbative superpotential is then given by

Wap = Ae™ > (A.2)

Here « is a constant that can arise from different instanton types or gaugino condensation
and can e.g. take values a = 27/N, with N = 1 for an Euclidean D3-brane instanton and
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N > 2 for gaugino condensation with condensing group rank SU(N). The scalar potential
can then be computed using the supergravity formula

V = |[KTDWD;W - 3w (A.3)

where D;W = 0;W + K;W. Writing the complex scalar field component of the chiral
superfield as ® = ¢ + i, we obtain:
V= A72 —2ap, . —n 2 2 2
= 5nr. © ® (n + n(=3 + dap) + dap ) , (A.4)
which, for n = 1, has a dS maximum at:
1
Pmax = @ .

Notice that at the leading order considered, the axion 6 remains a flat direction, but it will

(A.5)

be lifted by subleading non-perturbative terms [44]. Indeed, adding a subleading contribution
Wnpsub = Be—ﬂ‘b (AG)

to the leading contribution (A.2), will generate a minimum for the axion, whilst preserving
the (slightly shifted) maximum in the saxion direction, with |m2 .| < [m2,on|- For example
forn =1, f = 2a, B = —A/20, the axion has a minimum at § = %mfg, m € 7 [44]. Note
that the exponential suppression of the subleading non-perturbative term is only by a factor
V2 at the hilltop, so control of the expansion in non-perturbative effects can be at best
numerical there. It is useful to express the potential in terms of the canonically normalised

field, which for n = 1, is

1
6= M2 log . (A7)
The final potential becomes (2.3).

A.2 Subleading corrections to the axion

Let us focus on the axion in the model considered above. As we saw, the axion is lifted after
adding subleading correction (A.6). Now further subleading corrections of the form

Wsubsub = Ce_’Y(I) ’ (AS)

may turn the minimum of the axion potential at C = 0 into a maximum when C # 0. This
will happen for suitable values of the parameters «, 8,7, and A, B,C. Schematically, the
potential (A.3) including the two subleading corrections, (A.6), (A.8) takes the form

V = g(po)+ f1(p0) AB cos (8 — a)8) + fa(po) AC' cos ((v — @)0) + f3(p0) BC cos ((v — B)0) ,

(A.9)
where g(¢0), fi(¢o) are functions of the saxion (as well as «, 3, ) evaluated at its extremum.
For the case C' = 0 and B < 0, as discussed above, the potential has a minimum at
Omin = %mfg When C' is turned on, this minimum can become a maximum for suitable values
of the parameters. For example, for n = 1 as above, a = 27/16, 8 = 2a, v = 3a,, B = —A/20,
C = A/35 (A =1 for concreteness), the minima for the axion at C' = 0 become maxima for
C # 0. It is also possible that some minima stay minima, while only some become maxima.
Of course, more complex modulated structures can arise.
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Figure 14. Subleading corrections to axion potential (A.9) (in arbitrary units) as described in the
text for (A, B,C) = (1,—A/20,A/35), («, 8,7) = (27/16,2a,3a). The minima become a maxima
when the subleading correction is turned on.

B Constraints for all the parameters of our models

In this section we present the plots and tables with the full set of parameters for the
three hilltop models we considered in the main text, as well as the Dutta-Scherrer (DS)

parameterisation.

B.1 Axion hilltop

Parameter +Pantheon+ ~+Union3 +DESY5
f > 0.946 (1.22) > 0.779 (0.15) 0.8870-21 (0.19)
0;/f — (2.25) — (3.12) < 2.62(3.07)
Q.h? 0.11842 4+ 0.00081 (0.11184) | 0.11842 4 0.00083 (0.118) 0.11847 4+ 0.00086 (0.118)
log(101° A,) 3.045 + 0.014 (3.046) 3.044 + 0.015 (3.048) 3.045 + 0.014 (3.053)
g 0.9664 + 0.0036 (0.9647) 0.9664 + 0.0037 (0.9624) 0.9663 + 0.0037 (0.967)
H, 67.4970:57 (67.35) 67.2310-%5 (66.24) 66.7970 &5 (65.95)
Qph? 0.02227 4+ 0.00012 (0.02223) | 0.02227 £+ 0.00013 (0.0221) | 0.02227 4 0.00013 (0.0226)
Treio 0.057370 9958 (0.0592) 0.05680-095T (0.0586) 0.0573 & 0.0071 (0.061)
0; 3.1711 (2.75) 2.7370-93 (0.483) 2.1119-2% (0.591)

Table 6. Axion model: full parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB-+DESI combination. The values in parentheses denote the best-fit
parameters for this model.
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Figure 15. The complete parameter constraints for the Axion model.
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B.2 Saxion hilltop
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Figure 16. Full parameter constraints for Saxion model.
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Parameter

+Pantheon-+

+Union3

+DESY5

«
®i/ Pmax
Q.h?
Q,h2
log(101° Ay)
ns
Hy

Treio

i

> 0.521 (0.66)
< 1.23(1.43)
0.11836 £ 0.00084 (0.1184)
0.02228 4 0.00013 (0.02228)
3.045 £ 0.014 (3.040)
0.9665 + 0.0037 (0.9650)
67.4470:33 (67.61)
0.0573 £ 0.0070 (0.0552)

0.20915-95% (0.07)

0.53710 045 (0.366)
1.20170971 (1.14)
0.11841 £ 0.00083 (0.1181)
0.02228 £ 0.00012 (0.02223)
3.044 £ 0.014 (3.048)
0.9664 + 0.0037 (0.9644)
67.2170:02 (66.16)

0.0568T0 5052 (0.0574)

0.24115:98% (0.53)

0.49 + 0.11 (0.311)
1.20570:9%8 (1.10)
0.11841 4 0.00085 (0.1175)
0.02228 + 0.00013 (0.02231)
3.044 £ 0.014 (3.045)
0.9664 + 0.0037 (0.9665)
66.86 £ 0.52 (66.31)
0.057270 5058 (0.0572)

0.3210 33 (0.64)

Table 7. Saxion model: full parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB+DESI combination. The values in parentheses denote the best-fit
parameters for this model.

B.3 Higgs-like hilltop

Parameter +Pantheon-+ +Union3 +DESY5
bo > 1.29(1.23) > 1.24(0.69) > 1.17(0.62)
@i/ do < 0.142 (0.106) 0.151+5:973 (0.051) 0.169 =+ 0.081 (0.034)
Q.h? 0.11838 4 0.00082 (0.1188) | 0.11835 4 0.00084 (0.1176) | 0.11829 4 0.00084 (0.1189)
Qph? 0.02228 4+ 0.00012 (0.02221) | 0.02228 4+ 0.00013 (0.00223) | 0.02228 4+ 0.00013 (0.02223)
log(101° Ay) 3.044 £ 0.014 (3.041) 3.046 £ 0.014 (3.044) 3.045 £+ 0.014 (3.033)
g 0.9666 + 0.0036 (0.9641) 0.9667 + 0.0037 (0.9694) 0.9669 + 0.0036 (0.9645)
H, 67297052 (66.98) 66.77 59 (66.30) 66.44 + 0.64 (66.06)
Treio 0.0567 + 0.0071 (0.0555) 0.0576 + 0.0071 (0.056) 0.0576 + 0.0072 (0.0514)
i 0.1747997% (0.1313) 0.23575-95% (0.0035) 0.2670-29 (0.0021)

Table 8. Higgs-like model: full parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB+DESI combination. The values in parentheses denote the best-fit
parameters for this model.
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Figure 17. Full parameter constraints for the Higgs-like model.
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B.4 Dutta-Scherrer parameterisation
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Figure 18. Full parameter plots for the DS parameterisation.
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Parameter +Pantheon-+ +Union3 +DESY5

K 7.6735 (7.49) 8.2727 (6.16) 8.47%% (9.52)

wo < —0.709 (-0.79) —0.11%5-3 (-0.60) —0.357522 (-0.21)
Q.h? 0.11830 4 0.00081 (0.11782) | 0.11828 £ 0.000856 (0.11815) | 0.11825 £ 0.00082 (0.11757)
Qph? 0.02226 4+ 0.00013 (0.02228) | 0.02227 £ 0.00013 (0.02229) | 0.02227 + 0.00013 (0.02230)

Hy 67.53 £ 0.39 (67.76) 66.73 £ 0.59 (65.92) 67.04 £0.42 (67.23)

log(101°Ay) 3.045 4+ 0.014 (3.046) 3.044 + 0.014 (3.045) 3.045 4+ 0.014 (3.043)
Ng 0.9659 £ 0.0037 (0.9687) 0.9661 £ 0.0037 (0.9676) 0.9661 + 0.0036 (0.9665)
Treio 0.0574 £+ 0.0071 (0.0588) 0.0573 %+ 0.0070 (0.0580) 0.0576 % 0.0069 (0.0565)

Table 9. DS parameterisation: full parameter means and 68% limits for the addition of the different
supernovae datasets to the CMB-+DESI combination. The values in parentheses denote the best-fit
parameters for this model.
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Figure 19. Analytical result from eq. (3.25), results for the hilltop quintessence models and posterior
contours from MCMC analysis in the K-|A¢;| plane. The analytical result is in grey lines, where
three different patterns use best-fit values for 4 and wy from different data combinations (solid:
+Pantheon+, dashed: +Union3, dot-dashed: +DESY?5). In the same figure, we show the 1o and 20
bounds from the constraints on the DS parameterisation for all data combinations. Values in the
K-|Ag¢;| plane corresponding to the hilltop quintessence models are indicated by coloured shapes:
circle for axion model, star for sugra model and triangle for the Higgs-like model, using best-fit
values with Union3/Pantheon+/DESY5 for model parameters (¢o and f) denoted by dark blue/dark
red/dark green shapes. All the best-fit values can be found in tables 6-9.
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Figure 20. Derived bounds on wy(z = 0.4) from the MCMC analysis for the DS parameterisation.

C Dutta-Scherrer-Chiba parameterisation, including curvature

In this appendix we collect the evolution of the equation of state including non-zero curvature,
Q) and its comparison with the DS parameterisation, for all the models discussed in the
main text. In all plots we take €2 = 0.005.

6, = (m— 0.02)f
— f=015 — f=05
—0.81 ———= DS: Oy = 0.672, wg = —0.77 = DS: Q4 = 0672, wy = —0.999887 [ —0-999900
r—0.999925
D
3 —0.91 r—0.999950
r—0.999975
—1.01 r —1.000000

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
a a

Figure 21. Evolution of wpg for the Axion model including non-zero curvature and its comparison
with the DS parameterisation.
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Figure 22. Evolution of wpg for the Saxion model including non-zero curvature and its comparison
with the DS parameterisation.

¢ = 0.051¢y
_0.801 — @0 =069 — =13 r—0.992
--== DS: Qy = 0.675,wy = —0.79 ---= DS: Q4 = 0.675,wy = —0.992
—0.851 r—0.994
%’ —0.901 r—0.996
—0.951 r—0.998
—1.001 r—1.000

00 02 04 06 08 1000 02 04 06 08 10
a a

Figure 23. Evolution of wpg for the Higgs-like model including non-zero curvature and its comparison
with the DS parameterisation.
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Figure 24. Evolution of wpg for the Exponential model including non-zero curvature and its
comparison with the DSCh parameterisation.
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