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Abstract: We numerically construct compact stars in the scalar–tensor theory of gravity with

non-minimal derivative coupling of a scalar field to the curvature and nonzero cosmological

constant. There are two free parameters in this model of gravity: the non-minimal derivative

coupling parameter ℓ and the cosmological constant parameter ξ. We study the relationship

between the model parameters and characteristic of the neutron star, which allowed us

to limit the permissible range of ξ and ℓ. In particular, in the case ξ = −1, the external

geometry of the neutron star coincides with the Schwarzschild–anti-de Sitter geometry,

while the internal geometry of the star differs from the case of the standard gravity theory.

Many realistic equations of the state of neutron star matter were considered. In general, the

neutron star model in the theory of gravity with a non-minimal derivative coupling does

not contradict astronomical data and is viable.

Keywords: neutron stars; realistic equations of state; modified theories of gravity; non-

minimal derivative coupling

1. Introduction

1.1. Mass and Radius of a Neutron Star

The concept of neutron stars was suggested by Baade and Zwicky in 1932 [1] and was

discovered many years later in 1967 as rapidly rotating stars with strong magnetic fields,

now known as pulsars [2]. Since the discovery of neutron stars, methods for observing them

have been improved, and knowledge about their nature has changed. Detailed reviews of

the neutron stars can be found in [3–9].

Neutron stars belong to the class of compact stars, as the white Little Persons and quark

stars [10], which are so far undetected. It is generally accepted that a canonical neutron star

has a mass M = 1.4 M⊙ and radius R = 10 km. The density at the center of a neutron star

can exceed the nuclear saturation density ρsat = 2.8× 1014 g cm−3 by 5–10 times. The nature

of such matter is still not clear, and there are various models to describe it. The structure of

a neutron star is described by the Tolman–Oppenheimer–Volkoff equations [11,12]. The

Tolman–Oppenheimer–Volkoff equations connect such macroscopic parameters of a star

as mass and radius with microphysics, which is described by the equation of the state of

super-dense matter.

Twenty years ago, estimates of the mass of radio pulsars showed a narrow distribution

interval of about 1.35 ± 0.04 M⊙ [13]. Thanks to more recent studies [14–16], we know

now that neutron star masses span a wide range, between 1.2 and at least 2 M⊙. Evidence

for neutron stars with more than two and almost three solar masses was found. The

most massive neutron stars presently known in light of recent findings can be found
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in [17]. It is generally accepted that the radius of a neutron star takes values in the range

10–14 km [14]. For example, in the work [18], one finds that the radius of a 1.4 M⊙ neutron

star is R = 11.0+0.9
−0.6 km (90% credible interval).

1.2. Neutron Stars in Modified Theory of Gravity

Today, modified theories of gravity have attracted significant attention. Modifications

are often introduced to build cosmological models and explain phenomena in the universe

on large scales, including dark matter or the accelerated expansion of the universe. Reviews

on modified theories of gravity, including the motivations to consider extensions of general

relativity, can be found in [19–24].

In context of the modification of general relativity, one needs to consider not only

cosmological problems but stellar structures too. Due to the fact that neutron stars have

a very strong gravitational field and are composed of super-dense matter, they provide

information about both the theory of gravity and nuclear interactions that we cannot obtain

from laboratory tests. Observations of neutron stars offer opportunities for measuring the

effects of general relativity, as well as testing its modifications. Neutron star solutions have

been constructed in various alternative theories of gravity [25–41]. For a recent review of

compact star models in modified theories of gravity, see [42–45] and the references therein.

1.3. Neutron Stars in the Theory of Gravity with Non-Minimal Derivative Coupling

Horndeski’s theory [46–48] is the most general scalar–tensor theory of gravity having

second-order field equations in four dimensions. There are four arbitrary functions in

the theory. By taking these functions appropriately, one can reproduce any second-order

scalar–tensor theory as a specific case, including quintessence and k-essence, f (R) gravity,

Brans–Dicke theory, Einstein–dilaton–Gauss–Bonnet gravity, etc. Both cosmological and

astrophysical aspects (including neutron stars) of Horndeski’s theory have been widely

studied (for a review, see [49] and the references therein).

The interesting subclass of Horndeski’s gravity is the theory of gravity with non-

minimal derivative coupling of a scalar field with the Einstein tensor with the action

S =
∫

d4x
√

−g

[

1

2κ
(R − 2Λ0)−

1

2

(

αgµν + βGµν

)

∇µϕ∇νϕ

]

+ S(m), (1)

where S(m) is the action for ordinary matter fields, which is supposed to be minimally

coupled to gravity in the usual way. The real parameter α corresponds to the usual kinetic

term of the scalar field ϕ, while β determines the modified part of the kinetic term. The

theory (1) has very interesting cosmological properties [50–54], admitting black hole [55–61]

and wormhole [62,63] solutions.

Black hole solutions in Horndeski’s theory were intensively considered in the liter-

ature. In 2013, Hui and Nicolis [55] have proved a no-hair theorem (with the no-hair

meaning a trivial scalar field solution in this case) for shift-symmetric Horndeski gravity,

i.e., the subclass of the Horndeski action which remains invariant under a transformation

ϕ → ϕ + const of the scalar field. The theorem is applicable to vacuum, static, spherically

symmetric and asymptotically flat black holes. In this case, it is proved that the scalar

field of the black hole solution must be constant, and by exploiting the shift symmetry, we

can set its value to zero. Consequently, black holes cannot sustain non-trivial scalar field

profiles in this case. However, hairy solutions can be obtained by violating some of the

assumptions that enter the proof of the no-hair theorem. In particular, for the non-minimal

derivative coupling theory, we found hairy solutions with ϕ(t, r) = qt + F(r) [59]. Among

the solutions constructed in this way, the non-minimally coupled theory with β = Λ0 = 0

admits a “stealth” solution, where a Schwarzschild black hole metric supports a non-trivial,
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regular scalar field configuration which does not backreact in spacetime. Non-trivial scalar

fields are also possible in the case of non-asymptotically flat black hole solutions [56–58]. In

paper [56], a solution was found that describes black holes in the special case β = Λ0 = 0.

This solution was later generalized to the arbitrary case β, Λ0. Black hole solutions with

AdS asymptotics were also obtained [59], where the effective cosmological constant is given

by geometric coupling constants in the action.

Neutron stars in the theory of gravity with non-minimal derivative coupling have

also been widely explored [64–68]. An overview of solutions describing neutron stars can

be found in the literature [67,69]. In work [69], a no-hair theorem was presented for the

spherically symmetric and static star configurations in shift-symmetric Horndeski theories

with minimal matter coupling. It was noted [69] that the regular spherically symmetric

and static solution with an asymptotically flat spacetime in the shift-symmetric Horndeski

theory with a minimally coupled matter sector with the action that is analytic around a

trivial scalar field configuration has a constant scalar field and, in particular, star solutions

are identical to their general relativity counterpart. However, there is possibilities to escape

the assumption of the no-hair theorem and consider neutron stars in the asymptotically de

Sitter universe, with a time-dependent scalar field, etc. [64–66].

Spherically symmetric neutron star solutions in the theory (1) with α = Λ0 = 0 with

a scalar field are linear in times ϕ = qt + F(r). Moreover, a usual equation for the matter

fluid with a polytrope equation of state was constructed in [64]; in this case, the external

geometry is identical to the Schwarzschild metric, but the interior structure is considerably

different from standard general relativity. Subsequently, this solution was generalized.

Slowly rotating stars were considered in the theory with α = Λ0 = 0 using several realistic

equations of state [65,66].

Previously, we construct neutron star configurations with AdS asymptotics within the

framework of the full theory (1) without imposing any restrictions on the parameters Λ0

and α [70]. However, the previous work considered the simplest polytrope equation of

state. Now, our goal is to explore neutron star configurations in the full theory (1) and the

realistic equation of the state of neutron star matter. This paper is organized as follows. In

Section 2, we derive general equations describing an internal configuration of a neutron

star in the theory of gravity with non-minimal derivative coupling. The external vacuum

solution is presented in Section 3. Section 4 describes the numerical integration scheme and

presents the main results describing the parameters of neutron stars for a set of realistic

equations of state.

2. Basic Equations

2.1. Action and Field Equations

In this section, we will present the basic equations. We will use the notation of our

previous work [70]. A detailed calculation can be found in the mentioned article. Here,

we will briefly present the equations in a form convenient for numerical integration. A

gravitational theory (1) can be represented as

S =
∫

d4x
√

−g

[

1

2κ
(R − 2Λ0)−

1

2

(

ε1gµν + ε2ℓ
2Gµν

)

∇µϕ∇νϕ

]

+ S(m), (2)

where ℓ is a characteristic length characterizing the non-minimal derivative coupling

between the scalar field and curvature, and ε1,2 = ±1. We will consider matter in the form

of a perfect fluid with the stress–energy tensor

T
(m)
µν = (ϵ + p)uµuν + pgµν, (3)
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where uµ is a unit time-like 4-vector, uµuµ = −1, ϵ is energy density, and p is isotropic

pressure. The spacetime of a neutron star we will describe by the static spherically

symmetric metric is as follows:

ds2 = −A(r)d(ct)2 +
dr2

B(r)
+ r2

(

dθ2 + sin2 θdφ2
)

. (4)

Assuming also that ϕ = ϕ(r), ϵ = ϵ(r), and p = p(r), we can write down nonzero

independent components of the gravitational field equations and scalar field equations in

the following form [70]:

dB

dx
= −

1

∆

[

(

(1 + εξ)x4 + (ε − 5ξ)x2 + 2
)

B +
(

(1 − εx2)E + 2(3 − εx2)P
)

x2B

− (1 − εx2)2
(

2 − (ε + ξ)x2 − x2E
)

]

, (5)

dP

dx
= −

(E + P)(1 Bεx2)

2xB
, (6)

dA

dx
=

A(1 Bεx2)

xB
, (7)

Ψ
2 = −

x2(ε − ξ + P)

ε2B (1 − εx2)
, (8)

where ε = ε1/ε2,

∆ = x(1 − εx2)
(

2 − (ε + ξ)x2 + x2P
)

,

and dimensionless values

ξ = Λ0ℓ
2, x =

r

ℓ
, E = κℓ2ϵ, P = κℓ2 p, Ψ

2 = κℓ2

(

dϕ

dr

)2

. (9)

Equations (5) and (8) of the system contain the denominator (1 − εx2). In the case where

ε > 0, this value can decrease to zero. Therefore, the solution of (5)–(8) will be divergent.

Subsequently, in order to provide a regularity of solutions, we will consider a choice

ε = ε1/ε2 = −1. The choice ε = −1 means that ε1 and ε2 have different signs, and the usual

kinetic term αgµν∇µϕ∇νϕ and the modified term βGµν∇µϕ∇νϕ enter into the Lagrangian

(1) with different signs. Despite this, the sign ε2 = ±1 in (8) is still undefined. ε2 can be

obtained from the requirement of the positivity of Ψ
2, from which it follows that condition

ε2(1 + ξ −P) ≥ 0 must be satisfied.

2.2. Equation of State

To make the system of four field Equations (5)–(8) complete, one needs to add an

equation of state relating the pressure and the energy density. In this work, we will use

polytropic and 31 realistic equations of state.

2.2.1. Polytropic Equation of State

In the previous work [70], we considered the polytropic equation of state to construct

neutron stars in the model (2)

p = KρΓ

0 , ϵ = ρ0c2 +
p

Γ − 1
, (10)

where ρ0 is baryonic mass density, Γ is the adiabatic index, and K is the polytropic constant.

In particular, we used Γ = 2 and K = 1.79 × 105 cgs. This equation of state is widely used

to model neutron star configurations, it is used in general relativity [5,71] and it is used in



Symmetry 2025, 17, 910 5 of 19

various modified theories of gravity [29,36–41], including Horndeski’s theory [64,66–68].

However, Equation (10) is the simplest model equation of state which is not able to describe

the whole complexity of the neutron star structure. For this reason, in the present work, we

will consider a set of more realistic (though still model) equations of state.

2.2.2. Realistic Equation of State

It is generally accepted that the equation of state has a one-parameter character. Many

equations of state have been proposed by considering different kinds of interactions into

account. Equations of state are usually given in the form of tables. However, using the

table is not always convenient, especially for considering the modified theory of gravity. In

some cases, it is convenient to use a piecewise polytropic approach [72,73] or an analytical

representations of equation of state [74–77]. Here, we use the analytical representations of

31 unified equations of state, presented in the works [74–77]. A standard abbreviation is

used for equations of state; detailed references can be found, for example, in review [78].

The equation of state can be represented as a function of density from pressure, i.e.,

p = p(ρ). Analytical representations of FPS (Friedman–Pandharipande–Skyrme) and SLy

(Skyrme–Lyon) equations of state [79,80] are derived in the work [74]. The parametriza-

tion reads

ζ =
a1 + a2ξ + a3ξ3

1 + a4ξ
f0(a5(ξ − a6)) + (a7 + a8ξ) f0(a9(a10 − ξ)) (11)

+ (a11 + a12ξ) f0(a13(a14 − ξ)) + (a15 + a16ξ) f0(a17(a18 − ξ)),

where

ξ = lg(ρ/g cm−3), ζ = lg(p/din cm−2), f0(x) =
1

1 + ex
, (12)

and ai-given constants [74]. Here, ρ represents full energy density, including the rest

energies of the matter constituents divided by c2, i.e., ρ = ϵ/c2. Function p(ρ) fits the

original tables [79,80] in density from 105 g cm−3 to 1016 g cm−3 within a typical error of

1–2%. In the dimensionless form, we have

ζ = log10

(

P

κℓ2

)

, ξ = log10

(

E

κc2ℓ2

)

. (13)

We also use unified Brussels–Montreal–Skyrme equations of state in our work, labeled

BSk19, BSk20, and BSk21 [81,82] and BSk22, BSk24, BSk25, and BSk26 [76]. At the much

higher densities, they differ greatly in their stiffness. It was argued that the real equation

of state can probably not be much stiffer than BSk26, and certainly not much softer than

BSk22, BSk24 or BSk25. Analytic parametrization of p(ρ) reads [76,77]

ζ =
a1 + a2ξ + a3ξ3

1 + a4ξ
f0(a5(ξ − a6)) + (a7 + a8ξ) f0(a9(a6 − ξ)) + (a10 + a11ξ) f0(a12(a13 − ξ))

+(a14 + a15ξ) f0(a16(a17 − ξ)) +
a18

1 + a2
19(ξ − a20)2

+
a21

1 + a2
22(ξ − a23)2

, (14)

which fits the numerical tables [81,82] for 6 ≤ ξ ≤ 16 with a typical error of 1%.

Equations (11) and (14) differ in the numbering of parameters ai and numerical value

of ai.

In the work [75], an analytical unified representation for 22 equations of state of dense

matter in neutron stars was presented: AP1–4, engvik, gm1nph, gm2nph, gm3nph, mpa1,
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ms00, ms2, ms1506, pal2, pclnphq, wff1, wff2, wff3, wff4, schaf1, schaf2, prakdat, ps. The

function is

ζ = ζlow f0(a1(ξ − c11)) + ζhigh f0(a2(c12 − ξ)), (15)

where

ζlow = [c1 + c2(ξ − c3)
c4 ] f0(c5(ξ − c6)) + (c7 + c8ξ) f0(c9(c10 − ξ)), (16)

ζhigh = (a3 + a4ξ) f0(a5(a6 − ξ)) + (a7 + a8ξ + a9ξ2) f0(a10(a11 − ξ)), (17)

describe the low- and high-density regimes, respectively; the values of the fit parameters ci

and ai for 5 ⩽ ξ ⩽ 16 are given in the tables [75].

Some equations of state becomes superluminal above critical density ρ ⩾ ρcaus, i.e.,

the speed of sound v

v2 = c2(∂P/∂ϵ)S (18)

which is larger than the speed of light c, with ρcaus representing causality limits. For

example, in the case of BSk24, the equation of state ρcaus = 2.69 × 1015 g cm−3. Apparently,

in the case ρ ⩾ ρcaus, the equation of state does not give a complete description and causality

breaks down, as was discussed in [77].

2.3. Boundary Conditions

Equations (5)–(7) form a closed system of ordinary differential equations for functions

A(r), B(r) and p(r), where the pressure and the energy are related by the equation of state

p = p(ρ). The scalar field ϕ can be found using Equation (8). Boundary conditions are

usually determined at the center of a star r = 0

B(0) = 1, p(0) = pc, (19)

where pc is the central pressure, and the value of A(0) will be fixed after matching internal

and external solutions at the star boundary. Therefore, the only free parameter is the value

of the pressure in the center of the star, pc.

3. External Vacuum Solution

At the boundary of the star, the internal solution is continuously matched to the

external vacuum solution. In this section, we briefly discuss the vacuum solution. Vacuum

solution (p = 0 and ρ = 0) of the system (5)–(7) has the form

B(x) =
(x2 + 1)2

(

(1 − ξ)x2 + 2
)2

F(x), (20)

A(x) = 3C2 F(x), (21)

Ψ
2 =

x2(1 + ξ)

ε2B (1 + x2)
, (22)

where

F(x) = (1 − ξ)(3 + ξ) +
1

x

(

(1 + ξ)2 arctan x + C1

)

+
x2

3
(1 − ξ)2,

and C1 and C2 are constants of integration. The asymptotical behavior of B(x) and A(x) at

x → ∞ has the following form:
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B(x) =
x2

3
+

7 + ξ

3(1 − ξ)
+

C1 +
1
2 (1 + ξ)2π

(1 − ξ)2

1

x
+O(x−2), (23)

A(x) = 3C2(1 − ξ)(3 + ξ)

[

1 +
1 − ξ

3(3 + ξ)
x2 +

C1 +
π
2 (1 + ξ)2

(3 + ξ)(1 − ξ)

1

x

]

+O(x−2), (24)

Ψ
2(x) =

3(1 + ξ)

ε2x2
+O(x−4), (25)

and corresponds to anti-de Sitter–Schwarzschild spacetime geometry outside the star.

In the case where t is the time of a distant observer, the constant before the bracket in

Equation (24) must be equal to 3C2(1 − ξ)(3 + ξ) = 1, which allows us to determine the

value of C2. The metric functions A(x) and B(x) must have the same sign. Therefore,

constant C2 = [3(1 − ξ)(3 + ξ)]−1 is positive, or

−3 < ξ < 1 . (26)

Substituting the constants of integration C2 and using the dimensional radial coordinate

r = ℓx, we obtain the following asymptotic behavior:

A(r) ≈ 1 −
rg

r
+

|ΛAdS|

3
r2, (27)

where

rg =
2GM

c2
= −ℓ

C1 +
π
2 (1 + ξ)2

(3 + ξ)(1 − ξ)
, (28)

and

ΛAdS = −
1 − ξ

3 + ξ

1

ℓ2
. (29)

Here, we would like to emphasize that the condition (26) provides the negativity of ΛAdS

given by (29). Therefore, ΛAdS is an effective negative cosmological constant, and the

vacuum solution (27) corresponds asymptotically to the anti-de Sitter–Schwarzschild space-

time. (Static spherically symmetric vacuum solutions were obtained and are considered in

detail in refs. [56–61,70].) Equation (28) gives the so-called asymptotic mass of the neutron

star. Constant C1 is found from the condition of continuity on B(r)

Bin(R) = Bout(R),

where Bin(R) and Bout(R) are the values of the interior and exterior functions at the bound-

ary of the neutron star r = R. Substituting the value of the constant C1 into Formula (28),

we find the asymptotic mass M.

In the case where ξ = −1, the solution exactly represents the anti-de Sitter–

Schwarzschild black hole as follows:

A(r) = B(r) = 1 −
rg

r
+

|ΛAdS|

3
r2, Ψ

2(r) = 0, (30)

where ΛAdS = −1/ℓ2 and the integration constants are fixed as C1 = −4rg/ℓ = −8MG/c2ℓ

and C2 = 1/12.
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In the classical theory of gravity, the nucleon and asymptotic mass coincide due to

Einstein’s equations. However, in this case, the nucleon mass Mb will differ from the

asymptotic one and is calculated using following formula:

M0 = 4π
∫ R

0
A1/2B−1/2ρ r2 dr. (31)

The sign ε2 = ±1 can be determined from the requirement of the positivity of Ψ
2 (22).

Generally, when ξ ̸= −1, we obtain

(i) − 3 < ξ ≤ −1, ε2 = −1;

(ii) − 1 < ξ < 1, ε2 = +1.

4. Internal Solution

4.1. Scheme of Numerical Integration

We were numerically solving the system of Equations (5)–(8) using various values

of the model parameters ξ and ℓ. Pressure P and energy E are related by one of the

equations of state (11)–(15). The scheme of numerical integration we used was the following:

First, we obtained numerical solutions P(x) and B(x) from Equations (5) and (6) using the

following boundary conditions: B(0) = Bc = 1, P(0) = Pc. In the case of the polytropic

equation of state, Pc = κℓ2KρΓ

0c; in the case of realistic equations, Pc = κℓ210ζ(ξc), where

ξc = log10(ρc/κℓ2). The radius r = R of the star is defined as P(R) = 0. From the

continuity condition Bin(R) = Bvac(R), where Bin(x) is the internal numerical solution

and Bvac(x) is the external vacuum solution (20), we determine the value of the constant

C1. By substituting C1 into Equations (28) and (29), we find the asymptotic mass M and

the effective cosmological constant ΛAdS. By substituting numerical solutions P(x) and

B(x) into Equations (7) and (8), we find Ψ
2(x) and A(x). The boundary condition for

Equation (7) is the continuity condition Ain(R) = Avac(R), where Avac(x) is the vacuum

solution given by Equation (21).

4.2. Results of Numerical Integration

4.2.1. The Special Case ξ = −1

In the special case where ξ = −1, i.e., ΛAdS = −ℓ−2, the vacuum solution (30)

takes a particularly simple form that corresponds to a Schwarzschild–anti-de Sitter black

hole. Also note that ε2 = −1 due to Equation (8); hence, ε1 = +1 due to the relation

ε = ε1ε2 = −1. In Figures 1–5, we represent the results of numerical integration.

The typical behavior of functions A(r), B(r), ρ(r) and Ψ
2(r) inside and outside the star

is shown in Figures 1 and 2. Figure 1 shows the r dependence of this functions in the case

ℓ = 20 km and the central baryonic mass density ρc = 1015 g/cm3 for different equations

of state. For convenience, 31 equations of state were divided into three groups. Each

column of the figures shows functions for this set of equations of state. The correspondence

between the curve color and the equation of state is clarified in the legends at the top of the

figure. The solid line corresponds to the internal solution, the dotted line corresponds to

the external vacuum solution. The internal and vacuum solutions are continuously glued

at the boundary of the star r = R. The matter density monotonically decreases and equals

zero at the boundary of the star. The solution of Ψ
2 equals zero outside the star as well.

As already mentioned, in the case where ξ = −1, the vacuum solutions of A(r) and B(r)

coincide, but the internal solutions differ.
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Figure 1. Plots of A(r), B(r), ρ(r) and Ψ
2(r) are shown for different equations of state in the case

ξ = −1, ℓ = 20 km and the central mass density ρc = 1.0 × 1015 g/cm3. The dotted line marks the

vacuum solution.

Despite the diversity of equations of state, many conclusions will be common for each

of them. Therefore, we will consider one illustrative example to demonstrate these common

properties. Next, we chose BSk equations only for the sake of demonstrativeness. Figure 2

shows the r dependence of the functions A(r), B(r), ρ(r) and ψ2(r) in the case of the

BSk19 equation of state, ρc = 1015 g/cm3 and ℓ = 10, 20 and 40 km. The correspondence

between the curve style and ℓ is given in the legend; the black curve corresponds to the

unmodified theory of gravity (GR). As the parameter ℓ increases, the curves shift towards

to the unmodified solution (GR), the scalar field tends to zero, and the radius of the star

increases. Other equations of state have a similar appearance.
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Figure 2. Plots of A(r), B(r), ρ(r) and Ψ
2(r) for the BSk19 equation of state in the case ξ = −1, where

the central baryonic mass density ρc = 1.0 × 1015 g/cm3, are shown for three different values, ℓ = 10,

20 and 40 km. The dotted line marks the vacuum solution.

More detailed information about neutron star configurations can be extracted from

a mass/radius diagram. As an example, we will choose the BSk24 equation of state. For

this purpose, different values ℓ for the BSk24 equation of state are presented in Figure 3:

(a) the dependence of the neutron star mass M on central density ρc, (b) the dependence

of the neutron star radius R on central density ρc, and (c) the mass/radius diagram. The

correspondence between the curve style and the ℓ value is given in the legend; the black

curve corresponds to the unmodified theory of gravity (GR). Also, Figure 3d shows the

dependence of the sound speed v on the density ρ for the BSk24 equation of state. Densities

at which the sound speed exceeds the speed of light are marked in gray in Figure 3a,b,d.

Here, we would like to remind the reader that the hydrostatic stability of a star

needs to fulfill the condition dM/dρ > 0. Therefore, in Figure 3a, unstable configurations

correspond to the parts of curves to the right of their maxima, and in Figure 3c to the left

of their maxima. The same feature is also shown in Figures 4–7 for all diagrams. For this

reason, we could only draw the curves on the mass/radius diagram up to their maxima.

However, we used the other strategy. Namely, we fixed the parameters ξ and ℓ, and we also

chose the specific equation of state. Then, we constructed a mass/radius diagram using the

same range of values of the central density ρc for all sets of the parameters and equations

of state. In practice, we considered the range 1014 g/cm3 ⩽ ρc ⩽ 1016 g/cm3. This strategy

allowed us to isolate and remove obviously non-physical configurations.
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(a) (b)

(c) (d)

Figure 3. Parameters of the stars in the case ξ = −1, ℓ = 0.2, 0.5, 1, 2, 5, 10, 20, and 100 km

for the BSk24 equation of state: (a) Mass M dependence from the central density ρc; the solid line

corresponds to the asymptotic mass Ma and the dashed dotted line to the baryonic Mb mass. (b) The

dependence of the star radius R from the central density ρc. (c) The mass/radius diagram in the

range 1014 g/cm3 ⩽ ρc ⩽ 1016 g/cm3. (d) The sound speed v/c dependence from the density ρ.

The correspondence between style of lines and values ℓ is given in the legends; the black curve

corresponds to Einstein’s theory of gravity (GR). The gray area in the figures corresponds to the

density at which the equation of state becomes superluminal.

One more restriction for possible models of neutron stars comes from the model

equations of state that are used for describing the inner structures of stars. The point is

that the speed of sound, v2 = c2(∂P/∂ϵ)S, could become larger than the speed of light for

some values of density ρ. This provides restrictions for possible values of ρc, since it is

obvious that the models with v > c contradict the principle of causality. In Figure 3d, we

show the dependence of v2/c2 on ρ for the BSk24 equation of state. One can see that there

is a domain ρ > ρcaus ≈ 2.69 × 1015 g/cm3 such that v > c (highlighted in gray). (Note

that the causality limits for the BSk22-26 equations of states were discussed in [77].) The

same domain in gray is shown in Figure 3a,b, and one can see that the configurations with

small values of the non-minimal coupling parameter ℓ ≲ 10 km are non-physical. For

example, let us discuss the graph with ℓ = 2 km in Figure 3a. Its part corresponding to

M > M⊙ is located at densities significantly exceeding the permissible range of central

densities. On the other hand, the permissible range of central densities corresponds to

masses significantly smaller than M⊙. Thus, the case encompassing small values of the

non-minimal coupling parameter ℓ takes us away from the applicability area of the equation
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of state or observable range of neutron star masses. For this reason, we will consider only

the relatively large values of the non-minimal coupling parameter ℓ ⩾ 10 km.

ℓ = 10 km ℓ = 40 km ℓ = 100 km GR

R [km] R [km] R [km] R [km]

Figure 4. The mass/radius diagram for different equations of state in the case ξ = −1 and ℓ = 10, 40

and 100 km. The left column with pictures corresponds to ℓ = 10 km, the next column corresponds

to ℓ = 40 km and the third column corresponds to ℓ = 100 km; the right column corresponds to

the unmodified theory of gravity (GR). The top row of these figures corresponds to the polytrope,

FPS, SLY, BSk19–22, and BSk24–26 equations of state; the middle row corresponds to AP1–4, engvik,

gm1nph, gm2nph, gm3nph, mpa1, and ms00; and the bottom row corresponds to ms2, ms1506, pal2,

wff1, wff2, wff3, wff4, schaf1, schaf2, prakdat, and ps. The correspondence between the equation of

state and the curve style is indicated on the left.

In Figures 4 and 5, we present the mass/radius diagrams obtained for different values

of the non-minimal derivative coupling parameter ℓ in the case ξ = −1 for 31 equations

of state.

For indicativeness, the diagrams are presented in two versions: In Figure 4, the

diagrams are grouped by the values of parameter ℓ. In Figure 5, the diagrams are grouped

by the equation of state. Each curve corresponds to the following range of central densities:

1014 g/cm3 ⩽ ρc ⩽ 1016 g/cm3.

In Figure 4, 31 equations of state were divided into three subgroups for convenience.

The top row of the pictures corresponds to the polytrope, FPS, SLY, BSk19–21, BSk22,

and BSk24–26 equations of state; the central row corresponds to AP1-4 engvik, gm1nph,

gm2nph, gm3nph, mpa1, and ms00; and the bottom row corresponds to ms2, ms1506,

pal2, wff1, wff2, wff3, wff4, schaf1, schaf2, prakdat, and ps. The left column of pictures in

Figure 4 corresponds to ℓ = 20 km, the middle column corresponds to ℓ = 40 km, and the

right column corresponds to ℓ = 100 km. The correspondence between the equation of

state and the curve style is indicated on the left.
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R R R

R

Figure 5. The mass/radius diagram in the case ξ = −1 and ℓ = 2, 5, 10, 20, 40, and 100 km for

different equations of state. The black curves correspond to the unmodified theory of gravity (GR).

The red curves of different styles correspond to different values of ℓ.

In Figure 5, the mass/radius diagrams are presented in the case ξ = −1 and ℓ = 2,

5, 10, 20, 40, and 100 km for different equations of state. The black curves correspond to

the unmodified theory of gravity (GR). The red curves of different styles correspond to

different values of ℓ. Finally, the diagrams for all equations of state are given in Figure 6.
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Figure 6. The mass/radius diagram in the case ξ = −1 and ℓ = 10, 20 and 100 km for different

equations of state.

It is worth noting that mass/radius diagrams obtained in our work essentially differ

from those obtained in GR. Neutron stars in the modified theory of gravity have smaller

masses and radii compared to stars in the unmodified theory. As the parameter ℓ increases,

the diagrams shift towards larger masses and larger radii, and in the limit of large values

of ℓ, the relation of mass and radius tends to that in GR. There is a qualitative difference

between the diagrams for large values (ℓ ⩾ 40 km) and small values (ℓ ⩽ 20 km). In the

case of a small ℓ ⩽ 20 km, the mass of the star increases with an increasing radius. Such

behavior corresponds to the so-called bare strange stars or quark stars (see [83] and the

references therein). The essential feature of strange stars is that, for stars with small enough

masses, their radii decrease monotonically with decreasing M, so that R ∝ M1/3. This

feature finds its explanation in the Bag Model for describing quark matter [83]. However,

as we discussed in our previous work [70], the specific ‘strange’ relation between the mass

and radius in our case forms due to the negative cosmological constant ΛAdS given by

Equation (29). In the case of a large ℓ ⩾ 40 km, the form of the diagrams changes, and a

vertical section appears in the diagrams, where the mass of the star increases practically

without an increase in the radius. The values of the masses and radii significantly differ not

only from the case of the unmodified gravity theory but also strongly depend on the choice

of the equation of state. In general, realistic equations of state give larger masses compared

to the polytropic equation that we considered earlier in [70]. The largest masses are given

by ms00 and ms2 (M ≈ 2.5 M⊙), as well as by BSk22, BSk24 and AP3 (M ≈ 2 M⊙). The

smallest masses are given by schaf1 (M < 1.5 M⊙).

Here, we would like to stress that all theoretical results obtained by us above must, of

course, be compared with known observable data. More recent analysis tells us that the

reliably measured maximum mass of a neutron star is 2 M⊙ (see ref. [16]). The constraints

for the measured radii of neutron stars are not so strict. There is currently a consensus

that their radii are within 10–14 km (see [16] and also [14]). Therefore, we should critically

analyze the set of mass/radius diagrams obtained for different model parameters and

equations of state, and exclude some of them from consideration due to being non-physical.

For example, models that do not allow diagrams with masses greater than 2 M⊙ contradict

observations and should be rejected. In particular, based on Figure 5, we can conclude that

the models with equations of state SLy, BSk20–22, BSk24–26, AP3, AP4, engvik, mpa1, ms00,

ms2, wff1, and wff2 are surviving. Moreover, we have already noticed that the models with
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small values of the non-minimal coupling parameter ℓ < 10 km correspond to the radii R

of neutron stars of less than 10 km and hence also contradict observations.

− − − −

− − − −

− − − −

− − −
−
−

−
−

−
−
−

Figure 7. The mass/radius diagram in the case ℓ = 20 km and ξ = −1.4, −1.3, −1.2, −1, −0.8, −0.7,

and −0.6 for different equations of state. The black curves correspond to the unmodified theory of

gravity (GR); the red curves correspond to the case ξ = −1; the green curves correspond to the case

ξ < −1; and the blue curves correspond to the case ξ > −1.

4.2.2. The Case ξ ̸= −1

In this section, we will shortly discuss the case ξ ̸= −1. Generally, ξ takes a value

within the interval −3 < ξ < 1. We show mass/radius diagrams for various values of

ξ ̸= −1 in Figure 7. It is seen that the mass/radius diagrams are shifted down and left

in the case −3 < ξ < −1, and they are shifted down and right in the case −1 < ξ < 1 in

comparison to the case ξ = −1. Furthermore, we would like to note that the mass/radius

diagrams in the case ξ ̸= −1 shift into the region of negative asymptotic masses. Despite

this, the baryonic mass (31) of the star remains positive. Obviously, the negativity of

asymptotic mass is not permissible from a physical point of view. Therefore, probably, all

models with ξ ̸= −1 are non-physical. At the moment, we have no answer as to why the
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case ξ = −1 is so degenerate. The study of this problem is beyond the scope of this paper.

However, we intend to consider it in the future.

5. Summary

In this paper, we considered the subclass of Horndeski’s gravity represented by models

with non-minimal derivative coupling of a scalar field with the Einstein tensor and the

cosmological constant Λ0. We numerically constructed neutron star configurations. The

matter had a form of a perfect fluid and obeyed the equation of the state of neutron matter.

In [70], the matter obeyed the polytropic equation of state with the adiabatic index Γ = 2.

The polytropic equation of state does not describe the complexity of matter in neutron

stars. In the present work, besides the polytropic equation, many realistic equations of the

state of neutron star matter were considered. We used the analytical representations of

following unified equations of state: polytrope equation, FPS, SLY, BSk19–22, BSk24–26,

AP1–4, engvik, gm1nph, gm2nph, gm3nph, mpa1, ms00, ms2, ms1506, pal2, wff1, wff2,

wff3, wff4, schaf1, schaf2, prakdat, and ps. The model contained three parameters: ℓ, ε

and ξ. Parameter ℓ is a characteristic length that characterizes the non-minimal derivative

coupling between the scalar field and curvature. ξ = Λ0ℓ
2 is a dimensionless cosmological

constant and takes the values −3 < ξ < 1, which provides the required metric signature.

Note that Λ0 is a ‘bare’ (i.e., unobserved) cosmological constant, and an observed effective

negative cosmological constant ΛAdS appears as a certain combination of Λ0 and the

parameter of non-minimal derivative coupling ℓ. In order to provide the regularity of

solutions, ε must be equal to −1. This means that the usual kinetic term of a scalar field

and the modified term with an Einstein tensor enter into the Lagrangian with different

signs. The results of numerical integration demonstrate the behavior of the metric functions,

scalar field, baryonic density and the mass/radius diagram for different equations of state

and different values of the model parameters, ℓ and ξ.

The case ξ = −1 was analyzed in more detail because, in this case, the vacuum

solution takes a particularly simple form of the Schwarzschild–anti-de Sitter black hole. In

the case of a small ℓ ⩽ 20 km, the mass/radius diagram displays an essential difference

compared with that in general relativity: specifically, the radius decreases monotonically

with decreasing mass. As such, the mass/radius relation corresponds to the so-called bare

strange stars or quark stars in general relativity. The specific ‘strange’ relation between the

mass and radius in our case forms due to the effective negative cosmological constant ΛAdS.

In the case of a large ℓ ⩾ 40 km, the form of the diagrams changes, and a vertical section

appears in the diagram, where the mass of the star increases practically without increasing

the radius. As the parameter ℓ increases, the diagrams shift towards larger masses and

larger radii. In the general case, the relation of the mass and radius tends to that obtained

for the case of the unmodified theory in the limit of large values of ℓ.

The case of small values of the non-minimal coupling parameter ℓ < 10 km takes us

away from the applicability area of the realistic equation of state or the observable range of

stellar masses. In this case, stars with masses more than the mass of the Sun M⊙ correspond

to densities significantly exceeding the permissible range of central densities for selected

equations of state. Oppositely, the permissible range of central densities corresponds to

masses significantly smaller than M⊙.

Applying observable restrictions for the mass and radius of a neutron star, we obtain

the restrictions on the parameter ℓ, namely 10 ⩽ ℓ ⩽ 50 km. In particular, in the case

ℓ ≫ 1 km, the mass/radius diagram approaches the results [64,71] without a kinetic term

of a scalar field in the Lagrangian. In this case, the contribution of the kinetic term is much

lower than the one of the modified term with an Einstein tensor in the Lagrangian, while

the effective negative cosmological constant |ΛAds| = ℓ−2 is small.
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In the general case ξ ̸= −1, the mass/radius diagrams are shifted down and left in the

case ξ < −1, and they are shifted down and right in the case ξ > −1. It is also necessary to

note that mass/radius diagrams are shifted in the region of negative asymptotic masses.

Of course, the baryonic mass of the star remains positive.
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