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Abstract: In a modified chromomagnetic interaction model, assuming X(4140) to be
the lowest 171 ¢sé5 tetraquark and treating it as the reference state, we systematically
investigated the masses of the triply heavy tetraquark states QQQ7 (Q = ¢,b;q = u,d, s).
Because of their higher masses, no stable tetraquarks were found. Using a simple scheme,
we also estimated the partial widths of the rearrangement decay channels and relevant
ratios. A compact triply heavy tetraquark candidate would be favored if its observed mass
and partial width ratios were comparable with our predictions. We hope that the present
work will be helpful for further studies.

Keywords: tetraquark; chromomagnetic interaction; spectrum; decay

1. Introduction

Since the observation of the exotic X(3872) by the Belle Collaboration in 2003 [1],
tens of charmonium-like and bottomonium-like states with the names X, Y, or Z have
been identified over the past two decades [2-12]. In particular, charged charmonium-
like or bottomonium-like states were found, such as Z.(3900) [13-16], Z.(3885) [17,18],
Z:(4020) [19,20], Z.(4025) [21,22], Zcs(3985) [23], Zs(4000) [24], Zs(4220) [24],
Z,(10,610) [25], and Z,(10,650) [25], which cannot be classified as excited heavy quarkonia
and are explicitly exotic. Their properties may be understood in configurations such as
the compact tetraquark [26-28] and the meson—antimeson molecule [29-32]. In 2020, the
LHCb Collaboration observed a broad structure that ranged from 6.2 to 6.8 GeV and a
narrow one located around 6.9 GeV in the J/¢]/1{ channel, while the latter was called
X(6900) [33]. They are good candidates for fully heavy tetraquark states. More candidates
were announced in [34-36]. It is essential to study the exotic structures from broader and
deeper perspectives [37-47].

In addition to the hidden heavy case, open heavy exotics have been observed in recent
years. In 2016, the D0 Collaboration reported the observation of the singly bottom X (5568)
in the BY7t* channel [48]. This four-quark state is about 200 MeV below the BK threshold.
However, the LHCb Collaboration [49] and the CMS Collaboration did not corroborate
the presence of this state, casting doubt on its existence. In 2020, the LHCb observed an
exotic peak in the D~ K™ channel [50,51]. To fit the experimental data, the collaboration
introduced two resonances named T,50(2900)° (] = 0) and T, (2900)° (J = 1), whose
minimal quark content is uds¢. In 2023, they observed another two singly charm tetraquark
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states: T%;(2900)° and T%,(2900) " [52,53]. In the double-charm case, the LHCb also
produced a new finding. In 2021, they reported the observation of a narrow state named
T+ (3875) in the D°D%7" mass spectrum, just below the D** DO threshold [54,55]. This
state has a minimal quark content of cciid and is a good candidate for the theoretically
anticipated double-charm tetraquark T, [45].

Until now, possible singly, doubly, and fully charm tetraquark states have been ob-
served. The existence of triply heavy tetraquarks is also possible. Distinguishing between
compact states and hadronic molecules is often challenging for researchers. However,
in the case of the fully heavy-state QQQQ (Q = ¢, b), the meson exchange interaction
may be suppressed, while the short-range one-gluon exchange interaction should play a
dominant role in the binding force. It is very likely that the observed X(6900) is a compact
tetraquark. The situation is similar for the triply heavy QQQq (9 = u, d, s) states. If such
a state were observed in future experiments, understanding its properties in a compact
picture is highly feasible. The authors of [56,57] considered the possibility of fully heavy
four-quark molecular states using heavy meson exchange forces. If such interactions do
play an important role, triply heavy four-quark molecular states should also be possible.

To date, there have been several theoretical explorations of triply heavy tetraquark
states using various methods. With the assumption that the input X(3872) is a tetraquark
state, triply heavy tetraquark spectra were studied in [58] using a chromomagnetic inter-
action (CMI) model, and some stable states were found. A different CMI model adopted
in [59] also gave some stable states. However, unstable states were obtained with an ex-
tended CMI model in [60]. From calculations utilizing lattice QCD [61,62], shallow bound
uchb and scbb states are possible. A study that used the QCD sum rule [63] indicated that
narrow resonances are possible, while a recent calculation [64] gave heavier cccj/bbbg
(9 = u, d, s) states. Nonstrange multiquarks, as compact topological molecules, were stud-
ied using a holographic approach in [65], which revealed that the QQQ states are unbound.
Stable candidates were obtained in the ccé7i sector using an AdS/QCD potential model [66].
Using the MIT bag model, ref. [67] indicated that all the triply heavy tetraquarks are above
the corresponding meson-meson thresholds. The authors of [68] also drew the conclusion
that there are no stable QQQ7 states by employing an extended relativized quark model. A
similar conclusion was obtained in [69], where pure and chiral constituent quark models
were employed. With their constituent quark models, the authors of [70,71] found that
bound ccéii states are possible when coupled channel effects are considered. In addition to
mass calculations, the authors of [72] employed two models, namely, the effective Hamilto-
nian in the diquark-antidiquark picture and the nonrelativistic quark model, to study the
decay properties of bbéefi (n = u, d) states.

When determining the spectra of triply heavy tetraquark states with a CMI model,
in [59], we utilized meson—meson thresholds as reference scales. Several states below the
corresponding lowest meson—-meson thresholds were found, which indicates that they
may be stable; e.g., the lowest 11 ccbii was below the B.D* threshold. However, the
obtained tetraquark masses may have been underestimated [59,73,74]. To reduce the
estimation uncertainty, following the study method for tetraquarks adopted in [73-76], we
reconsidered the QQQ7 (g = u,d, s) spectra by treating 17" X (4140) [6,7] as the reference
tetraquark state. Since the inner structures between the meson—meson and compact states
are different, the masses estimated using this method should be more reasonable. We
also discussed the two-body rearrangement decays, which were not considered in [59], by
employing a simple scheme.

This paper is organized as follows: In Section 2, we present the formalism containing
the mass formulae, color-spin base vectors, CMI matrices for different systems, and scheme
to study the rearrangement decays. In Section 3, we collect the parameters for the calcula-
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tion and the numerical results, including the spectra and rearrangement decay widths. We
provide a discussion and a short summary in the last section.

2. Formalism
2.1. Spectrum Calculation

In this work, we employed the CMI model to study the S-wave triply heavy tetraquark
states. The model Hamiltonian reads as

HZZWI,‘"FHCM]szi—zci]'/\,")\j(ﬂ"a’]’. 1)
; 7 i<i

Here, m; is the effective mass of the ith quark component, which contains contributions
from the kinetic energy, color-Coulomb potential, and color confinement. The effective
parameter C;; reflects the coupling strength between the ith and jth quark components. A;
and o; are the Gell-Mann and Pauli matrices, respectively, for the ith quark. For antiquarks,
A; should be replaced with —A}. The chromomagnetic term Hcyy induces mass splittings
for the tetraquark states. With the constructed color-spin base vectors, the CMI matrix
(Hcpmp) can be obtained; diagonalizing it gives the mass formula for a compact tetraquark:

M =Y "m;+ Ecmr, (2)
7

where Ec)yj indicates the eigenvalue of (Hcyj) corresponding to this state.

Since the effective quark masses are extracted from the spectra of conventional
mesons and baryons, they may not be suitable for tetraquark states. From previous
studies [45,73-76], we found that the values calculated using Equation (2) tend to be larger
than the possible tetraquark masses. This discrepancy is primarily attributed to the val-
ues of effective quark masses, which may not accurately reflect the interactions within
tetraquark states. Each hadron has quark masses tailored to its specific structure, and the
extracted values may not be directly applicable to multiquark systems. The overestimated
tetraquark masses from Equation (2) are regarded as the theoretical upper limits in the
following discussions.

To reduce the uncertainties and obtain more reasonable tetraquark spectra, one may
adopt a modified mass formula by introducing a reference state that has the same quark
content as the studied tetraquark:

M = [Myer — (EcmD)ref] + Ecmir- 3)

Here, M,,r and (Ecmi)re £ denote the measured mass and the calculated CMI eigenvalue
for the reference state, respectively. One of the choices for the reference scale M, for
a considered system is a meson-meson threshold. However, previous studies [59,73,74]
indicated that such a choice is not unique and may result in tetraquark masses lower
than the measured values. The reason should be that interactions between constituent
quarks in compact multiquark states are complex and cannot be fully reflected in a simple
hadron-hadron state. We regard the underestimated tetraquark masses from Equation (3)
as the theoretical lower limits in the following.

To obtain more reasonable values, it is necessary to choose a reference scale for all
tetraquark mass estimations. Considering that the dynamics of two tetraquark states are
comparable, it is reasonable to select a tetraquark candidate to determine the scale. In
previous studies [73-76], we treated X (4140) as the reference by assuming it to be the
lowest 17 compact ¢scs state. In this work, we again adopted this assumption. The
considerations were as follows: First, X(4140) as a /¢ resonance was confirmed by
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different experiments with the determined quantum numbers J°¢ = 1**. Second, the
exotic state X (4274) was observed in the /¢ channel by CDF and LHCb [24,77] with the
same quantum numbers as X (4140). These states can be interpreted consistently as partner
states in the compact ¢s¢s picture [78,79]. Additionally, from discussions on the reference
state selection problem in [75], we found that adopting X (4140) as the reference can give
more reasonable interpretations for other cs¢5 states. Now, a second modified mass formula
reads as

M = Mx140) — (Ecm1) x(4140) + Ecmr + an] —mj)
ij

4)

=m+ Ecmr + an ij-

ij

Here, Mx(4140) and (Ecm1) x(4140) are the measured mass and calculated CMI eigenvalue
of X(4140), respectively. The quark contents are different for triply heavy tetraquarks and
the hidden-charm X(4140). This modified formula means that we used the quark mass gap
Ajj = m; — m; rather than the quark masses themselves, as well as the integer number 7;;
to parameterize the scale difference. The value of A;; was extracted from the conventional
hadron masses. Explicitly, the mass formulae for the systems considered in this study were

Mccc'ﬁ =m+ <HCMI> + Acs - AS}’!/

Meees = 1+ <H > + Acs,

M, = 1+ <HCMI> + Dps — Dsn,

M s = 1M+ <HCMI> + Aps,

Mppen = 11t + (Hemr) + 28ps — Den, )
Mypes = 11+ <HCMI> + Ape + Dy,

Mypps = 1+ (Hemr) + 28ps + Bpe — Ben,

Mypps = 1+ (Hemr) + 28pc + By,

Mpeen = Mecgnr - Mpees = Mecps,s

Mypi = Mpben,  Myeps = Mppes-

Although the formulae for different systems may have been the same, the number of states
and the mass spectra were not. We discuss the results calculated with these formulae.

2.2. Color-Spin Base Vectors and CMI Hamiltonians

It is essential to establish color ® spin base vectors to obtain the CMI matrices. We
chose the diquark-antidiquark configuration to describe the bases. They were the same as
those in [59]:

¢1x1 = |(Q1Q2)5(Qs74)7)2012,
P1x2 = [(Q1Q2)9(Q3d4)9)1012,
¢1xs = [(Q1Q2)9(Q3d4)9)0d12,
P1xa = [(Q1Q2)5(Q3d4)§) 1012,
$1x5 = [(Q1Q2)5(Q3d4)$)1,
$1x6 = [(Q1Q2)5(Q34)4)0, ©)
$ox1 = [(Q1Q2)7(Q3d4)7)2,
$2x2 = [(Q1Q2)7(Q3d4)7)1,
$2x3 = [(Q1Q2)7(Q3d4)7)0,
$2xs = [(Q1Q2)7(Qada)3)1,
$2x5 = [(Q1Q2)5(Q3d4)3)1612,
P2x6 = [(Q1Q2)3(Q374)3)0012,
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where ¢ and ) are color and spin base vectors, respectively, and the notation on the right-
hand side is | (Q Qz)gzli‘;r(ng"4)§‘;l£[>spin. The 61, symbol arises from the Pauli principle. It
is set to 0 if Q; and Q> are identical; otherwise, it is equal to 1. This convention means that
the corresponding base vector does not exist for states with Q; = Q». Therefore, we could
categorize the studied systems into two groups: one contained ccQgf and bbQg systems,
and the other contained bcQg. The first group involved six base vectors, but all twelve
bases were involved in the second group.

To express the matrices succinctly, here, we define &« = Cjp + C34, v = C1o — Ca4,
B =Ci3+CiytCo3+Cp 6= Ci3—Cry+Co3—Cpy, p = Ci3—Crqg— Co3+ Co4, and
v = C13+ C14 — Co3 — Cp4. For the 2™, 17, and 0" states in the first group, the corresponding
CMI matrices were 3 (2 + B) with the base vector (¢2x1)7,

a-p) VB W
§2y—a) -2V2B (7)
%(zx +27)

with the base vector (¢2)x2, p2Xa, $1x5)", and

4o

with the base vector (¢x3, $1xs)"- For the 2T, 1%, and 07 states in the second group, the
corresponding CMI matrices were

—%Dé + %‘B —2\/274 (9)
22a+p) )
_%,x_ % g\/i(s _%O 2v 2v/2u —4v 46
fa—29) 1y vy 0 ~2V2p
fa+2y) 46 —2v/28 0 (10)
je—p) V2 v |
Sy —w) 3H
—3(a+29)
and
Ae—p) —3VE AVEe 2V6p
—8a 2v6p 0 an
—3(a+56) —¥V3pu
4o

Their base vectors were (¢1x1,¢2x1)7,  (P1X2 P1X4, P1X5, P2X2, P2Xa, P2x5)T, and
(P2x3, P2X6, P1X3, P1X6) T, respectively. Since each CMI matrix was symmetric, here, we

only write down the upper triangular part.

2.3. Rearrangement Decay

Our study also involved the rearrangement decays, which were found to be helpful
in understanding exotic hadron structures by combining information from spectra and
decay widths [73,75,80,81]. The simple scheme that we adopted was just to estimate the
scattering amplitude M by taking the decay Hamiltonian as a constant Hyec,y = C. Then,
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the amplitude was written as M = (final|Hgecay|initial) = C(final|initial), and the decay
width was

2P

T =|M| SV (12)
where M is the initial tetraquark state mass, and p is the three-momentum of a final meson
in the center-of-mass frame. To obtain the M values, we needed the flavor—color-spin
wave functions of |initial) and |final). The final state had two possible configurations:
(Q1Q3)'(Q274) ¢ and (Q144)'(Q2Q3)'¢. They could be expressed as superpositions of
the base vectors given in the last subsection with different coefficients. Supposing that
|initial) = Y12, x;ip; and |final) = Y12, y;1;, where ; is the ith base vector, we obtained
M = CY2, xjy; and T immediately.

3. Spectra and Widths of Triply Heavy Tetraquarks
3.1. Model Parameters

The effective quark masses and coupling parameters were extracted from the con-
ventional hadron masses [82]. One can find details about the extraction procedure in
[74,76,78]. The quark masses that we obtained were m, = 1724.1 MeV, m;, = 5054.4 MeV,
my, = 361.8 MeV, and m; = 542.4 MeV. The coupling parameters are listed in Table 1. Note
that the quark masses were adopted only when the upper limits for the tetraquark masses
with Equation (2) were estimated.

Table 1. Effective coupling parameters C;; in MeV units.

C,']' c b Cij_ c b
n 4.0 1.3 n 6.6 2.1
s 4.3 1.3 S 6.7 2.3
c 3.2 2.0 c 5.3 3.3
b 1.9 b 2.9

Our results from Equation (4) rely on the effective quark mass gaps Acs, Asy, Aps, Dpe,
and A.;, which can also be extracted from the conventional hadron masses. The values
Ny, = 3340.2 MeV, A, = 1280.7 MeV, and A, = 90.6 MeV were fixed in [73,74]. Table 2
shows the extracted Acs and Ay by using various hadrons. We adopted A5 = 1180.6 MeV
and Aps = 4520.2 MeV in our calculations. The X(4140) mass was taken to be 4146.5 MeV [82].
The corresponding CMI eigenvalue was —85.5 MeV, and then we obtained /1 = 4232.0 MeV. To
estimate the lower limits for the tetraquark masses with Equation (3) and calculate the decay
widths, we also needed the following meson masses: M(D) = 1867.2 MeV, M(D*) = 2008.6
MeV, M(D;s) = 1968.3 MeV, M(D}) = 2112.2 MeV, M(7.) = 29839 MeV, M(]/¢) = 3096.9
MeV, M(B) = 5279.5 MeV, M(B*) = 5324.7 MeV, M(B;) = 5366.9 MeV, M(B;) = 54154 MeV,
M(n) = 9399.0 MeV, m(Y) = 9460.3 MeV, M(B,) = 6274.9 MeV, and M(B}) = 6344.9 MeV.
Note that the mass of the undiscovered B} was calculated within the CMI model.

Even though we employed an oversimplified scheme to study the rearrangement
decays, we still encountered the problem of determining the value of constant C because it
may be different from system to system, and its determined value depends on the consid-
ered decay channels. For the cscs system, C is around 7.3 GeV [75] when the assumption
that the total decay width of X(4140) is equal to the sum of the partial widths of the
rearrangement decay channels is used. For the ccc¢ case, C is around 15 GeV if X(6600) is
treated as the ground scalar tetraquark and M = 6552 MeV and @', = 124 MeV [83]
values are used, along with a similar decay assumption. At present, since no triply
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heavy tetraquark candidate has been observed, we just present the width results
with C = 14,954.7 MeV.

Table 2. Quark mass gaps A¢s and Ay (units: MeV) determined from various conventional hadron

masses.
Hadron Hadron Acs Hadron Hadron Aps
I/ ¢ 1049.4 Y ¢ 42375
“ “ 4041.7
]/#)(776) Dg (Ds) 992.2(993.2) Y(nb) B (Bs) (4041.8)
X X 1180.6 . " 4520.2
b*(D) K*(K) (1179.4) B*(B) K*(K) (4518.8)
D; ¢ 1106.6 B ¢ 4433.8
B. Bs 924.1 B. Ds 42522
Ac A 1170.8 Ay A 4503.8
X X 1176.2 X “ 4506.1
Ze (Xe) ZH(E) (1178.4) 5 (Xp) z (%) (4509.5)
- o (m 1137.3 - % (m 4463.2
—c (‘—‘c) = (‘—‘) (1159.1) ‘—‘b(‘—‘b) = (‘—‘) (4483.7)
QF (@) 1100.3 Qy @] 4415.5
Eee g 1112.2

With the above determined parameters, the numerical results for the mass spectra and

rearrangement decay widths of the triply heavy tetraquarks ccQg, bbQq, and bcQg could

be calculated. We display the relative positions for all the considered states in Figure 1.

Details about their masses and widths are listed in Tables 3-8.

Table 3. Numerical results for the ccQg systems in MeV units. The lower limits for the tetraquark

masses in the seventh column were calculated using the reference meson-meson states J/¢D, | /{Ds,

B.D, and B.D; for the ccéfi, ccs, ccbii, and ccbs systems, respectively. The tetraquark masses in the

sixth column were calculated by using X(4140) as the reference state. The corresponding (Hcpr)

base vectors are given in Section 2.2.

System TP (Hemr) Eigenvalue Eigenvector Mass Lower Limit Upper Limit
ccéii 2+ ( 509 ) ( 509 ) [ {1.00} } 5372.0 5092.4 5585.0
—-125 —-49 -104 61.4 {-0.07, —0.62,0.78} 5382.5 5102.9 5595.5
1" —49 235 —673 -11.3 {0.99, —0.16, —0.04} 5309.8 5030.2 5522.8
—-104 —67.3 7.5 —78.7 {-0.15,-0.77, —0.62} 5242.4 4962.8 5455.4
o+ < —44.3 116.6 > 114.5 ) { {-0.59,-0.81} ] 5435.5 5155.9 5648.6
116.6  28.8 —129.9 {-0.81,0.59} 5191.1 4911.5 5404.2
ccts  2F ( 520) ( 520 ) [ {1.00} ] 5463.7 5196.1 5766.7
-12.0 =53 -—112 60.9 {-0.08, —0.61,0.79} 5472.5 5205.0 5775.6
1+ -53 259 —679 —10.6 {0.98,-0.17, —0.04} 5401.0 5133.5 5704.1
112 —679 7.1 —81.0 {-0.16, —0.77, —0.62} 5330.6 5063.1 5633.7
o+ < —44.0 117.6 > 116.3 ) ) { {-0.59, —0.81} ] . 5527.9 5260.4 5831.0
117.6  30.0 —130.3 {-0.81,0.59} 5281.4 5013.9 5584.4
cchii 2+ ( 384 ) ( 384 ) [ {1.00} } 8699.1 8338.9 8902.8
—-144 -124 -264 62.8 {-0.16, —0.63,0.76 } 8723.5 8363.3 8927.2
1+ -124 -19 —56.0 —-2.0 {0.87,—-0.45, —0.19} 8658.7 8298.5 8862.4
—264 -56.0 11.1 —66.0 | {—047,-0.63,-0.62} | 8594.6 8234.5 8798.4
o+ < —40.8 97.0 > 90.0 > { {-0.60, —0.80} ] 8750.6 8390.5 8954.4
97.0 18.0 —112.8 {-0.80,0.60} 8547.9 8187.7 8751.6
cchs 2+ ( 387 ) ( 387 ) [ {1.00} } 8789.9 84419 9083.7
—-14.7 —-128 272 63.5 {-0.16, —0.63,0.76 } 8814.7 8466.7 9108.5
1+ -128 —-19 —56.6 -1.7 {0.87,—0.46, —0.20} 8749.5 8401.5 9043.3
—-272 -56.6 11.1 —67.2 {-0.47,-0.63, —0.62} 8684.0 8336.0 8977.8
o+ < —41.3 98.0 > 90.7 > { {—-0.60, —0.80} ] 8842.0 8493.9 9135.7
98.0 18.0 —114.0 {-0.80,0.60} 8637.2 8289.2 8931.0
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Table 4. Rearrangement decays for the ccéfi, ccc3, ccbii, and ccbs states. The numbers in the parenthe-
ses are (100| M |?/C?,T). The tetraquark mass, partial width T, and total width s, values are given

in MeV units.

System ]P Mass Decay Channels Lsum
ccci J/yD*
2t [ 53720 | [ (333,1682) ] [ 1682 ]
J/¢D* J/yD neD*
1+ gggé'g (49.6,254.5) (1.3,8.0) (2.9,17.6) ?2(9)'(1)
a4 (0.2,0.8) (11.4,66.0) (21.8,122.3) 10,8
: (0.2,0.7) (29.0,153.6) (17.0,86.4) :
J/yD* neD
o+ [ 5435.5 } (54.9,302.0) (0.1,0.8) { 302.8 }
5191.1 (3.5,10.5) (41.6,247.6) 258.1
cccs ]/IPD:
2t [ 54637 ] [ (33.3,161.1) | [ 1611 ]
]/ D¢ J/¢Ds neDg
1+ ggi'g (49.6,243.2) (1.3,7.8) (3.1,18.2) fg?'g
23306 (0.2,1.0) (11.3,63.4) (21.8,117.5) 2901
: (0.2,0.6) (29.0,147.6) (16.7,80.9) :
J/¢Dg HeDs
o+ [ 5527.9 } (54.9,291.0) (0.1,0.8) { 291.8 }
52814 (3.4,9.4) (41.6,238.8) 248.2
cchi B} D*
2t 86991 ] | (33;3.3:,]__2)33.5) ] . - [ 825 ]
c c c
1+ SZég'; (48.5,123.6) (0.4,1.2) (3.8,10.5) 19305 f
82046 (0.5,1.3) (2.1,5.8) (32.0,83.2) 84
: (1.0,2.1) (39.2,102.1) (5.9,14.2) '
B:D* B.D
o+ [ 8750.6 } (54.7,144.0) (0.1,03) { 144.3 }
8547.9 (3.6,6.8) (41.6,112.9) 119.7
cchs B:D:
2t [ 87899 ] [ (333,80.6) | [ 80.6 ]
B:D; B:D; B.D;
T it (48.4,120.9) (0.4,1.2) (3.8,10.5) o
86840 (0.6,1.3) (2.0,5.5) (32.0,81.7) 1160
' (1.0,2.1) (39.3,100.5) (5.8,13.5) '
B:D* B.D
o+ [ 8842.0 } (54.7,141.1) (0.1,03) { 141.4 }
8637.2 (3.6,6.6) (41.6,110.9) 1174

Table 5. Numerical results for the bbQ7 systems in MeV units. The lower limits for the tetraquark
masses in the seventh column were calculated using the reference meson-meson states B B, BT BY,
YB, and YBS for the bbéf, bbes, bbbii, and bbbs systems, respectively. The tetraquark masses in the
sixth column were calculated using X(4140) as the reference state. The corresponding (Hcps) base

vectors are given in Section 2.2.

11,940.0

11,590.1

12,144.0

System  J (Hemr) Eigenvalue Eigenvector Mass Lower Limit Upper Limit
bben 2t (130.1) (130.1) [ {100} ] (120209 ) (11,6709 )  ( 12,2248 )
1.3 45 9.6 23.1 {0.27,—-0.48,0.83} 12,013.9 11,663.9 12,217.8
1+ 45 -269 =305 14 {0.95,0.29, —0.13} 11,992.2 11,642.2 12,196.1
9.6 —30.5 2.3 —47.8 {0.18, —0.82, —0.54} ( 11,9429 11,593.0 12,146.9
o+ ( -131 529 ) ( 61.3 ) [ {0.58,0.81} } ( 12,052.0 ) 11,702.1 > < 12,256.0 )
529 236 -50.7 {-0.81,0.58}
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Table 5. Cont.

System  JP (Hemr) Eigenvalue Eigenvector Mass Lower Limit Upper Limit
bbes  2F (315) (315) [ {1.00} ] (121229 ) (11,7629 )  ( 12,4068 )
1.6 3.8 8.0 22 7 {0.23, —0.49, 0 84} 12,114.2 11,754.1 12,398.0
1+ 38 —293 =317 {0.96,0.24, —0.12} 12,093.0 11,7329 12,376.8
8.0 —-31.7 1.9 —50 1 {0.14, —0.84, —0. 53} 12,041.3 11,681.3 12,325.2
o+ ( —133 549 ) ( 63.8 ) [ {0.58,0.81} ( 12,155.3 ) 11,795.2 < 12,439.1 )
549 248 —52.4 {-0.81,0. 58} 12,039.1 11,679.1 12,322.9
bbb 2t (219 ) (219 ) [ {100} ] (153528 ) (147798 )  ( 155469 )
—4.8 3.0 6.4 29 4 {0.09, —0.62, 0 78} 15,360.3 14,787.3 15,554.4
1+ 3.0 -53 283 -3.5 {0.97,0.25,0.09} 15,327.5 14,754.5 15,521.5
6.4 —28.3 5.9 —30.2 {0.25,-0.74, —0.62} 15,300.8 14,727.8 15,494.8
o+ ( —18.1 49.0 > ( 48.7 ) { {-0.59, 081} ( 15,379.7 ) 14,806.6 ) < 15,573.7 )
490 128 —54.0 {-0.81,0.59} 15,276.9 14,703.9 15,471.0
bbbs  2* (224 ) (224 ) [ {100} ] (154541 ) (148709 )  ( 157280 )
-53 2.3 4.8 30.4 {0.06, —0.63, 0 77} 15,462.0 14,878.9 15,736.0
1+ 2.3 —53 294 —4.6 {0.98,0.18,0.07} 15,427.1 14,844.0 15,701.0
4.8 —29.4 5.9 —30. 6 {0.19, —0.75, —0.63} 15401.1 14,8179 15,675.0
ot ( —-19.2 509 ) ( 50.2 { {-0.59, 081} ( 15,481.9 14,898.7 15,755.8 )
509 128 —56.6 {-0.81,0.59} 15,375.1 14,791.9 15,649.0

Table 6. Rearrangement decays for the bbéfi, bbés, bbb, and bbbs states. The numbers in the
parentheses are (100|M |2 /C2, I'). The tetraquark mass, partial width I, and total width T, values
are given in MeV units.

System JP Mass Decay Channels Csum
bben B~ B*
2+ [ 12,0209 ] [ (33 3 59 0) ] [ 59.0 ]
B~ B B; B*
1+ 12,013.9 (46.1,80.8) (9.6,17.8) (0.8,1.6) 16010'92
11,992.2 (3.9,6.6) (17.4,31.6) (12.6,23.7) 750
11,942.9 0 1, 01 (14.7,25.0) (28.2,49.8) :
B: B
o+ 12,052.0 553 101.6) (02,0.4) [ 102.0 }
11,940.0 (3.1,4.8) (415,77.7) 82.5
bbes B:~ B0
2+ [ 12,1229 | [ (333,59.2) | [ 592 ]
BB B:~ B B B
100.9
1+ 12,1142 (47.0,82.7) (8.6,16.1) (1.1,2.2) 29
12,093.0 (2.8,4.9) (17.1,31.2) (13.9,26.1) e
12,0413 0 1,02) (16.0,27.3) (26.7,47.1) :
B* B*O B.B?
0+ 12,155.3 (55.3,102.0) (02,0.4) [ 1024 }
12,039.1 (3.0,4.8) (41.5,77.9) 82.7
bbbn YB*
2+ [ 153528 | [ (33.3,50.1) | [ 50.1 ]
YB* B B
81.0
1+ 15,360.3 (49.4,74.7) (3.0,4. 7) (1.0,1.6) =16
15,327.5 (0.3,0.4) 25 1,38.4) (8.3,12.8) 703
15,300.8 0 (0.3,0. 5 13 6,20.4) (32.4,49.4) :
YB* ﬂbB
o+ 15,379.7 (54.9,84.3) (0.1,02) { 845 }
15,276.9 (34,4.8) 41 6,64.6) 694
bbbs YB;°
2+ [ 15454.1 | [ (33.3,50.2) | [ 502 ]
YB;" YBY 75BS°
1+ 15,462.0 (49.5,75.1) (2.5,4.0) (1.1,1.8) 222
15,427.1 (0.1,0.2) (23.3,35.7) (10.1,15.7) 208
15,401.1 (0.3,0.5) (15.9,23.9) (30.4,46.4) :
YB;° 1y B
o+ 15481.9 (54.9,84.4) (0.1,02) { 84.6 }
15,375.1 (3.5,4.9) (41.6,64.7) 69.6
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Table 7. Numerical results for the bcQgj systems in MeV units. The tetraquark mass lower limits in the seventh column were calculated using the reference
meson-meson states B, D, B D, YD, and YDJ for the bcéfi, becs, bebii, and bebs systems, respectively. The tetraquark masses in the sixth column were calculated
using X (4140) as the reference state. The corresponding (Hcp;) base vectors are given in Section 2.2.

System JP (Hemr) Eigenvalue Eigenvector Mass Lower Limit  Upper Limit
beci o+ < 4997 =71 ) < 53.2 > {—0.89,0.45} ( 8713.9 ) < 8353.7 ) ( 8917.6 >
-71 391 35.5 {—0.45,-0.89} 8696.2 8336.0 8899.9
—65.7 —047  30.64 7.07 26.00 —0.40 58.8 {0.04,0.75,0.28,0.20, —0.17, —0.54 } 8719.4 8359.3 8923.2
—047 1333 8.33 26.00 0.00 —48.93 37.8 {0.09, -0.24,0.77, —0.07, —0.54,0.21} 8698.4 8338.3 8902.2
1+ 30.64 8.33 267 —040 —4893  0.00 4.6 {0.14,0.12,0.04, 0.85,0.10,0.48} 8665.3 8305.2 8869.0
7.07 26.00 -040 -7.07 -019 1226 —26.7 {0.67,-0.03,0.35, —0.16,0.63, —0.05} 8633.9 8273.8 8837.7
26.00 0.00 —4893 —-0.19 —26.67  3.33 —58.4 {-0.12,0.60,0.03, —0.44,0.07,0.65 } 8602.3 8242.1 8806.0
—040 —4893  0.00 12.26 3.33 —5.33 —104.8 {0.71,0.08, —0.45, —0.09, —0.52,0.07 } 8555.9 8195.7 8759.6
-30.13 -5.77 14.14 84.75 86.2 {0.59, —0.05, —0.04,0.81} 8746.8 8386.7 8950.6
o+ —577 —4800 8475 0.00 7.3 {0.09,0.83,0.55,0.01} 8668.0 8307.8 8871.7
14.14 8475 —12333 —1443 —884 {0.79,-0.17,0.14, —0.58} 8572.2 8212.1 8776.0
84.75 0.00 —14.43 24.0 —182.5 {-0.17,-0.53,0.82,0.13} 8478.1 8118.0 8681.9
becs o+ 5027 —6.79 < 53.7 > {—0.89,0.45} < 8805.0 > ( 8456.9 > < 9098.7 >
—6.79  40.27 36.8 {—0.45,-0.89} 8788.1 8440.0 9081.8
—67.07 —-1.89  30.17 6.79 25.60 —1.60 60.0 {0.03,0.76,0.25,0.19, —0.15, —0.56 } 8811.3 8463.2 9105.0
—-1.89 1453 8.00 25.60 0.00 —49.78 379 {0.09, -0.21,0.79, —0.08, —0.54,0.18} 8789.2 8441.1 9082.9
1+ 30.17 8.00 227 —1.60 —49.78  0.00 4.3 {0.10,0.13,0.03,0.86,0.05,0.47 } 8755.6 8407.6 9049.3
6.79 25.60 -160 —6.67 —075 1207 —28.9 {0.68, —0.03,0.35, —0.10, 0.63, —0.05} 8722.4 8374.3 9016.1
25.60 0.00 —49.78 —0.75 29.07 3.20 —575 {-0.11,0.60,0.05, —0.44,0.10,0.65 } 8693.8 8345.7 8987.5
—-1.60 —49.78  0.00 12.07 3.20 —4.53 —106.4 {0.71,0.10, —0.45, —0.09, —0.53,0.09} 8644.8 8296.8 8938.6
—30.13 554 13.58  86.22 88.3 {0.59, —0.04, —0.03,0.81} 8839.6 8491.5 9133.3
o+ —554 —-5040  86.22 0.00 6.2 {0.09,0.83,0.55,0.00} 8757.5 8409.5 9051.2
13.58 8622 —125.73 13.86 —89.8 {0.79, -0.16,0.13, —0.58} 8661.5 8313.4 8955.2

86.22 0.00 —13.86 25.20 —185.8 {-0.16,—-0.53,0.82,0.12} 8565.4 8217.4 8859.2
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Table 7. Cont.

System JP (Hemr) Eigenvalue Eigenvector Mass Lower Limit Upper Limit
bebii o+ 4527  —11.60 ( 51.2 ) {—0.89,0.46} ( 12,042.0 > ( 11,468.9 ) ( 12,2459 )
—-11.60  28.67 22.7 {—0.46,-0.89} 12,013.5 11,4404 12,217 .4
—54.07 -11.79 23.10 11.60 19.60  —10.00 514 {0.03,0.50,0.61,0.05, —0.49, —0.37} 12,042.1 11,469.0 12,246.1
-11.79 253 13.67 19.60 0.00 —42.14 32.3 {-0.03,0.60, —0.46,0.23,0.41, —0.46 } 12,023.1 11,450.0 12,227.0
1+ 23.10 13.67 627  —10.00 —42.14  0.00 —3.5 {0.02,0.08, —0.03,0.89, —0.18,0.41} 11,987.3 11,414.2 12,191.2
11.60 19.60 —10.00 -11.07 —4.71 9.24 -17.5 {0.66, —0.06,0.46,0.12,0.58,0.00} 11,973.2 11,400.1 12,177.2
19.60 0.00 —4214 —471 =507 5.47 —433 {-0.35,0.52,0.23,—0.25,0.32,0.62} 11,947.5 11,374.3 12,151.4
—10.00 —42.14  0.00 9.24 547  —1253 —93.3 {0.67,0.33, —0.38, —0.27, —0.36,0.31} 11,897.5 11,324.4 12,101.4
-3093 947 23.19 73.00 68.5 {0.58,—0.12, —0.08,0.80} 12,059.3 11,486.2 12,263.2
o+ —9.47 —2640 7299 0.00 17.5 {0.17,0.83,0.52,0.06} 12,008.3 11,435.2 12,212.2
23.19 7299  -103.73 —23.67 -72.7 {0.73,-0.29,0.28, —0.55} 11,918.1 11,345.0 12,122.0
72.99 0.00 —23.67 13.2 —161.2 {-0.31,-0.46,0.80,0.24} 11,829.5 11,256.4 12,033.5
bebs o+ 46.27 —11.31 < 51.9 > {—0.90,0.44} < 12,143.3 > ( 11,572.2 ) < 12,427.2 >
-11.31  29.07 23.5 {—0.44,-0.90} 12,114.9 11,543.8 12,398.8

—13.20 2.53 13.33 19.20 0.00 —42.99 {—0.03,0.60, —0.46,0.22,0.40, —0.46 } 12,1249 11,553.8 12,408.7

1+ 22.63 13.33 6.27 —-11.20 —42.99 0.00 {-0.03,0.08, —0.07,0.88, —0.23,0.39} 12,087.7 11,516.6 12,371.6
11.31 1920 —-11.20 -1147 —-5.28 9.05 {0.67, —0.06,0.45,0.21,0.55,0.00} 12,072.2 11,501.1 12,356.1
19.20 0.00 —4299 528 507 5.33 {-0.33,0.52,0.26, —0.23,0.34,0.62} 12,048.7 11,477.6 12,332.6
—11.20 —42.99 0.00 9.05 5.33 —12.53 {0.66,0.34, —0.37, —0.28, —0.36,0.32} 11,996.6 11425.4 12,280.4
—31.73 —9.24 22.63 74.46 {0.58, —0.12, —0.08,0.80} 12,161.0 11,589.9 12,4449

—-9.24 —-2640 74.46 0.00 {0.17,0.84,0.52,0.06} 12,109.7 11,538.6 12,393.6

22.63 7446  —105.73 —23.09 {0.74,—-0.28,0.28, —0.55} 12,016.3 11,445.1 12,300.1

74.46 0.00 —23.09 13.20 {-0.30,—0.46,0.80,0.23} 11,928.2 11,357.0 12,212.0

ot

—55.07 —13.20 22.63 11.31 1920 —11.20 [ 51.9 ] {0.02,0.50,0.61,0.03, —0.49, —0.37} 12,143.3 11,572.2 12,427.2
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Table 8. Rearrangement decays for the bcéfi, bees, bebii, and bebs states. The numbers in the parentheses are (100| M |2/C2,T). The tetraquark mass, partial width T,
and total width T, values are given in MeV units.

System JP Mass Decay Channels Tsum
been B~ D* B*J/y
ot [ 8713.9 ] [ (97.3,245.8) ] [ (21.8,55.2) [ 301.1 ]
8696.2 (2.1,5.3) (77.7,191.3) 196.6
) ’ B!~ D* ~ B:D B: D* B*J/¢ ) ’
8719.4 (78.2,199.0) r (0.1,0.2) (2.1,5.7) (17.8,45.6) 282.3
1+ 8698.4 (19.4,48.1) (1.3,3.8) (7.6,20.8) (79.1,195.6) 276.7
8665.3 (2.1,49) (1.5,4.4) (16.7,43.9) (1.2,2.8) 177.7
8633.9 (0.3,0.6) (1.0,2.8) (64.7,163.6) (0.3,0.8) 260.6
8602.3 (0.5,1.0) (26.1,68.7) (8.4,20.4) (0.9,1.7) 2339
8555.9 (0.1,0.2) L (69.5,173.3) | (0.4,0.8) (0.4,0.8) 278.9
B!~ D* B D B*J/¢ B,
8746.8 [ (61.5,161.5) ] (0.1,0.2) [ (49.3,130.8) ] (0.3,0.8) 293.2
0" 8668.0 (36.8,87.5) (1.2,3.6) (45.2,106.1) (3.6,10.8) 208.0
8572.2 (2.4,4.8) (23.4,65.3) (4.4,8.2) (60.8,161.9) 240.2
8478.1 (0.1,0.1) | (75.9,190.2) | (1.3,1.5) (35.4,80.0) 271.8
) . - BiTDit BI/y ) .
ot 8805.0 (97.3,240.1) (21.8,54.3) 294.3
| 8788.1 | (21,5.2) | (77.7,1885) | | 193.7 |
B;~D:* B:~Df B Di* BJ/y
8811.3 (76.2,189.5) r o (0.1,04) (2.3,6.2) (21.3,53.7) 278.1
1+ 8789.2 (23.2,56.1) (1.3,3.8) (8.1,21.7) (75.9,184.6) 276.0
8755.6 (1.4,3.3) (1.7,4.8) (20.7,53.2) (1.3,3.0) 172.6
8722.4 (0.3,0.6) (0.7,1.8) (61.6,151.7) (0.3,0.7) 256.1
8693.8 (0.5,1.0) (24.9,64.6) (7.1,16.9) (0.9,1.7) 230.4
8644.8 (0.1,0.1) (72.3,176.0) (0.2,0.4) (0.4,0.7) 276.1
~ BIDIT B DY BTy By
8839.6 (60.1,154.6) (0.1,0.2) (50.5,132.3) (02,0.7) 287.8
0* 8757.5 (37.7,87.0) (1.1,3.3) (44.3,102.0) (3.8,11.1) 203.3
8661.5 (2.4,4.7) (24.4,66.7) (4.4,8.0) (59.3,155.5) 234.8
8565.4 (0.1,0.1) | (743,1812) | (12,1.3) (36.5,81.0) 263.7 |
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Table 8. Cont.

System JP Mass Decay Channels Tsum
bebii YD* B*Br*
o+ [ 12,0420 ] [ (98.5,174.4) | (21.3,38.6) [ 213.0 ]
12,013.5 (1.9,3.3) (79.1,138.6) 141.9
i i YD* i YD i npD* B*B:* B*B} BB+ i i
r12,042.1 r(98.4,174.3) 7 T (0.0,00) 7 r (0.0,0.0) (1.3,2.3) 1 (2.8,5.5) (5.9,11.3) 193.5 7
1+ 12,023.1 (1.0,1.8) (0.5,1.0) (8.6,15.8) (93.5,165.9) (0.1,0.2) (1.4,2.7) 187.4
11,987.3 (0.4,0.7) (1.9,3.5) (32.1,57.9) (3.2,5.3) (8.3,15.5) (21.3,38.5) 1214
11,973.2 (0.0,0.0) (0.2,0.4) (50.7,90.2) (0.4,0.7) (1.0,1.8) (57.9,102.7) 195.8
11,947.5 (0.2,0.4) (1.1,2.0) (9.3,16.2) (0.2,0.3) (77.7,138.2) (7.5,12.8) 169.9
L 11,897.5 (0.0,0.0) L (96.1,169.5) | (0.0,0.0) (19,27) | (9.7,16.1) (5.8,9.3) 197.6 |
YD* D B*B}* BB}
N [ 12,059.3 [ (68.2,122.4) ] (0.0,0.0) (41.0,76.0) (03,07) ] 199.2 ]
0 12,008.3 (28.7,49.5) (0.5,0.9) (51.7,89.9) (3.6,7.2) 147.5
11,918.1 (2.2,3.5) (9.5,17.9) (4.4,6.6) (75.9,138.5) 166.4
| 11,8295 (0.0,0.0) | (90.5,160.6) | (3.1,3.8) (19.9,31.9) 196.3 |
bebs YD:+ B:opt
ot [ 12,1433 ] [ (97.8,172.9) ] (23.1,42.1) [ 215.0 ]
| 12,1149 | (2.6,4.4) | (77.2,1359) | | 1403 |
YD;* YDS nyDE* BB * B:"Bf BB+
r12,143.3 r (98.4,173.9) 7 r o (0.0,00) 7 r (0.0,0.0) (1.3,23) 1 (3.3,6.5) (5.2,10.1) 192.9 1
1+ 12,124.9 (1.1,1.9) (0.6,1.2) (8.5,15.7) (92.8,165.2) (0.1,0.2) (1.3,2.4) 186.6
12,087.7 (0.4,0.6) (1.9,3.5) (38.0,68.3) (2.8,4.7) (8.5,15.9) (15.4,27.9) 120.9
12,072.2 (0.0,0.0) (0.4,0.8) (44.6,79.1) (0.5,0.8) (2.4,4.4) (62.5,111.4) 196.5
12,048.7 (0.3,0.6) (0.8,1.5) (8.0,14.0) (0.1,0.2) (77.4,138.1) (9.7,16.7) 171.1
L 11,996.6 (0.0,0.0) L (96.3,169.7) | (0.0,0,0) (1.8,26) | (8.4,14.0) (5.9,9.5) 1954 |
YD;* D5 BB BIB
[ 12,161.0 ] [ (68.2,122.2) ] (0.0,0.0) [ (41.0,76.2) (03,07) ] 199.2 ]
0" 12,109.7 (29.3,50.3) (0.4,0.8) (52.4,91.5) (3.5,7.0) 149.7
12,016.3 (2.2,3.5) (10.0,18.8) (4.0,6.1) (76.3,139.5) 168.0
| 11,9282 (0.0,0,1) | (88.8,157.2) | (3.0,3.7) (20.7,33.5) 1945 |
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5435.5 5527.9 ——— 8750.6
——— 87235
5382.5 5472.5 8699.1
5372.0 5463.7 8658.7
R 5309.8 _ 5401.0 _ 8594.6
S 5242.4 S 53306 S 8547.9
[ () [
2 5191.1 s 5281.4 =
0 . 1 . 0
- (J/4D") o (J/D,) o L.
= . = . ol (B.D)
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Figure 1. Relative positions of the triply heavy tetraquark states and their rearrangement decay channels.

3.2. The cccii, cccs, cchii, and ccbs States

The CMI matrices and their eigenvalues and corresponding eigenvectors, as well as
the masses calculated using Equations (2)—(4), for these four tetraquark systems are given
in Table 3. The masses calculated using X(4140) as the reference state were our predicted
values. The relative positions of these ccQ7 states and related decay channels are illustrated
in Figure 1a—d. For the lower limits calculation, several meson—-meson thresholds could be
adopted. We used the thresholds of | /¢D, | /¥ Ds, B.D, and B.D; for cc¢fi, cccs, cchit, and
ccbs, respectively. Other choices did not affect much. The tetraquark mass upper and lower
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limits in Table 3 are consistent with the results in [59], but the obtained masses used in the
following discussions were between the upper and lower limits. Due to the values being
larger than those in [59], we found no stable tetraquarks in these systems, while stable 2"
ccQq states were found to be possible in [59]. The relevant rearrangement decay channels,
corresponding partial widths, and total widths are listed in Table 4.

The ccéi system had six states, whose masses ranged from 5191.1 to 5435.5 MeV. The
highest and lowest tetraquarks were both [’ = 0 states, and they could decay into the
same channels: J/yD* and 7.D. The rearrangement decays of the higher and lower 0"
states were dominated by the J/¢D* and #5.D channels, respectively. There were three
1" tetraquarks located from 5242.4 to 5382.5 MeV, with /¢ D*, | /D, and 1.D* as their
rearrangement decay modes. The highest state mainly decayed into J/¢D*. Both the
intermediate and lowest states had two dominant channels, namely, | /D and r.D*, but
the I';/yp : I'y,p+ ratios were different. Their predicted values were about 0.5 and 1.8,
respectively. The 27 state was located at 5372.0 MeV, with only one decay mode J/yD*
when only the S-wave channel was considered. When the D-wave decays were also
counted, it could also decay into #.D*, | /¢ D, and #.D.

The cchii tetraquarks spanned a range from 8547.9 to 8750.6 MeV, with the J” of the
highest and lowest states being 07. The two 0% tetraquarks had BfD* and B.D decay
channels. The higher state had a dominant B} D* decay mode, while the lower state mainly
decayed into B.D. Three 1" tetraquarks were located in the range of 8594.6~8723.5 MeV.
The dominant decay channels for the highest, intermediate, and lowest states were B} D¥,
B.D*, and B}D, respectively. The 27 state was located around 8700 MeV and should
mainly decay into B D* via an S-wave interaction, but the three other suppressed D-wave
channels B.D*, B¥D, and B.D were also allowed.

When comparing the results for the ccc5 states with those for cccsi, we found that
they had almost the same eigenvalues, eigenvectors, and decay information. The cccs
tetraquarks were about 90 MeV higher than the corresponding ccé7i states, while the decay
widths of ccé5 were slightly smaller than those of the corresponding cccii. The above
features were also observed in the ccbii and ccbs cases. For the cccs (ccbs) tetraquarks, the
dominant decay channels were nearly the same as those of cccii (ccbii), except for replacing
D™ in the final states with DS(*).

3.3. The bbéqi, bbés, bbb, and bbbs States

We list the CMI- and tetraquark-mass-related results for the bbQg states in Table 5.
The relative positions with masses using X(4140) as the reference state are illustrated in
Figure le-h. For the lower limit calculations with Equation (3), the meson-meson thresh-
olds that we chose were those of B- B, B BY, YB, and YBY for bbéfi, bbés, bbbii, and bbbs,
respectively. We obtained values of the lower limits (and upper limits with Equation (2))
similar to those in [59]. The masses predicted in this study were between the lower and
upper limits. Due to the higher spectra (see Figure 1), no stable tetraquark states existed in
the bbQ systems. We present the relevant rearrangement decay channels, corresponding
partial widths, and total widths in Table 6.

The bbcn tetraquarks were distributed in the 11,940.0~12,052.0 MeV mass range,
with the J” of both the highest and lowest states being 0. The two 0™ states could both
decay into BfB* and BB (here, we simply use BC(*) and BS(*) to denote Bg*)_ and Bs(*)o,
respectively). The former (latter) channel was dominant for the higher (lower) tetraquark.
There were three 171 states that ranged from 11,942.9 to 12,013.9 MeV, with three decay
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channels: B} B*, BB, and B.B*. The respective partial width ratios of the dominant decay
channels for the highest, intermediate, and lowest 11 states were

45
Tpepe i Tpep:Tppe =1.0:48:36, (13)
0.5

The 2 state was located around 12.0 GeV, with only one S-wave decay channel: B B*. The
other three channels, namely, BB, B.B*, and B.B, were also allowed if the D-wave decays
were counted.

Like the discussion in the above ccQg case, we compared the bb¢s results with the bbcii
results and found similar features. Our estimation indicated that the bb¢s tetraquarks were
about 100 MeV heavier than the bbc7 states, but they had comparable widths. By replacing
B®) with Bﬁ*) in the final states, we obtained the decay channels of the bbcs tetraquarks
from those of the bbci states. The main decay channel was B} B} for the higher 07 bbcs,
while it was B.B; for the lower one. The partial width ratios of the dominant channels
for the highest, intermediate, and lowest 17 bb¢s tetraquarks were Igegs - I'grp, = 5.1,
FBE‘BQ‘ : FBZ‘BS : chB;‘ =10 :64: 53, and FBZ‘BS : FBCB;‘ = 06, respeétively. The 2Jr
bbes tetraquark could decay into B} B; through S-wave interactions, but it also had the
suppressed D-wave decay channels B Bs, B.B¥, and B.B:;.

The bbbii tetraquarks were distributed in the range of 15,276.9~15,379.7 MeV. The two
07 states had the decay channels YB* and 7, B, with the former (latter) being dominant
for the higher (lower) tetraquark. The 17 tetraquark states had three decay channels. The
highest 1 state mainly decayed into YB*, while the other two mainly decayed into YB and
1,B*. The partial width ratios of the dominant channels for the intermediate and lowest
states were I'yg : I’ 5. = 3.0 and 0.4, respectively. The 27" tetraquark had one S-wave
channel YB* and three suppressed D-wave channels.

As for the bbbs tetraquarks, the decay channels could be obtained from the bbb7i states
by replacing B(*) with Bs(*) in the final states. The partial width ratios of the dominant
channels for the intermediate and lowest 17 bbbs tetraquarks were I'yg_: I8 =23and
0.5, respectively.

3.4. The becni, bees, bebii, and bebs States

The Pauli principle does not place constraints on the tetraquark wave functions, and
the total number of states in each system was twelve. We present the CMI- and tetraquark-
mass-related results in Table 7 and plot the mass spectra using X(4140) as the reference
state in Figure 1i-1. When obtaining the lower limits for the tetraquark masses in Table 7,
we adopted the meson—meson thresholds of B, D, B; D}, YD, and YD; for the beéi, becs,
bebii, and bebs systems, respectively. Similar values for the lower and upper limits can be
found in [59]. For these bcQg systems, an alternative selection of reference meson—meson
states is possible. When the meson-meson thresholds of BJ /¢, Bs] /v, BB, and BsB.
were used to estimate the tetraquark masses in [59], values larger than the lower limits
were obtained, but they were smaller than the predicted values that we obtained here.
Our bcQq tetraquark masses were smaller than the upper limits. As shown in Figure
1, more rearrangement decay channels existed than in the previous cases, and all the
bcQg tetraquarks were unstable. Table 8 lists the decay information in our scheme. One
may calculate the partial width ratios of different channels for a given tetraquark using
this table.

The bcén tetraquarks had masses that ranged from 8478.1 to 8746.8 MeV. For the
highest and second-highest 0" states, the dominant channel partial width ratios were
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I'g:pr : Tpejyy = 1.2and 0.8, respectively. For the second-lowest and lowest 0" states, these
were 'y p : I'g, = 0.4 and 2.3, respectively. There were six 17 bee tetraquarks. From the
highest to lowest, the partial width ratios of their dominant channels were

I“Bng* : FB*]/I/J : FB]/V} =71:1.6:1.0,
FB;**D* : FB;D* : FB*]/l[J =23:1.0:94,

I, e T, T =41:1.0:10.5,

FB;“*D : FB;D* : 1"3*176 : FB]/IIJ =65:19:124:1.0,

Tpip i ey =17,

For the S-wave decays of the two 27 tetraquarks, the higher state had a partial width ratio
of I'gip: : I'gej/y = 4.4, while the lower one mainly decayed into B*J /.

The twelve bccs tetraquark masses were about 90 MeV heavier than those of the bccfi
states. We easily obtained their S-wave decay channels from the bcc7i states by replacing an
n quark with an s quark in the final states. The rearrangement decay properties of these
two systems had similar features.

The bcbii tetraquarks were located in the 11,829.5~12,059.3 MeV mass range, and the
bebs states were about 100 MeV heavier. These two systems’ rearrangement decays were
also similar.

4. Discussion and Summary

Similar to fully heavy tetraquark states, a triply heavy tetraquark’s exotic nature is
easy to identify. In this work, we studied the spectra of triply heavy tetraquark states in a
modified CMI model using a diquark-antidiquark base, with the assumption that X (4140)
was the lowest 17" compact cscs tetraquark state. Two-body strong decays were also
studied in a simple rearrangement decay scheme. We temporarily estimated the widths by
adopting the decay parameter extracted from the width of X(6600), which is considered a
fully charmed compact tetraquark.

The 12 considered systems involved 96 states in total. Some tetraquarks had very
similar masses, posing challenges in distinguishing them based solely on the spectrum.
Fortunately, their dominant two-body decay channels and the corresponding partial width
ratios were different. Therefore, the structures of exotic states could be identified by their
measured masses, quantum numbers, and/or strong decay properties.

For calculations with the original CMI model, 14 coupling parameters and 4 quark
masses that were extracted from the conventional hadron masses were adopted. However,
these parameters may introduce considerable uncertainty to tetraquark masses because of
differences in the inner structures and interactions between conventional hadrons and com-
pact tetraquark states. Since the values of the effective quark masses are much larger than
those of the effective coupling constants, the quark masses predominate this uncertainty.
To reduce the uncertainty, we introduced modified mass formulae using hadron-hadron
states and multiquark candidates as references [59,73,74]. With these methods, we obtained
lower and more reasonable numerical results than the original CMI model. However, we
have not yet considered the uncertainty from coupling parameters C;;. They are hard to
derive from fundamental theories. Their extraction from tetraquark states is also impossible
due to the lack of awareness of exotic hadrons. The coupling parameter uncertainties are
difficult to reduce right now and, thus, should be studied in future works.

To study the dominant two-body strong decays of triply heavy tetraquark states, we
introduced a simple rearrangement scheme by assuming that the Hamiltonian governing
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the decay processes was a constant parameter. Since there has been no observed triply
heavy tetraquark candidate yet, we temporarily used the parameter extracted from the
width of the possible fully charmed tetraquark X(6600) and estimated each channel’s
partial decay width for all the studied tetraquark states. Note that each system should
have a unique decay parameter, and, thus, the adopted assumption is very crude. The
numerical results that we present may be very different from the real values. However, the
different channels’ partial width ratios may rarely be dependent on this parameter and
offer valuable information to understand exotic state structures.

In Section 2.1, we consider the tetraquark masses estimated with Equation (2) as
theoretical upper limits. Here, we introduce another method to constrain the upper limits.
Suppose that there is a triply heavy hexaquark state QQgQ4g; we can estimate its mass by
using Equation (3) with two reference hadron-hadron states QQQ7 + g7 and QQq + Q4.
Previous experience [74,75,78,84] suggests that the estimated mass of a multiquark state
with a reference system containing one heavy hadron and one light hadron is lighter
than that with a reference system consisting of two heavy hadrons; thus, one obtains the
hexaquark mass relation M; < My, where

M1 = [Mgggs — (Ecmi) ooog) + [Mag — (Ecmi)eg) + (Ecmi) goq074- 15)

M, = [MQQq - (ECMI)QQq} + [MQqq - (ECMI)QW] + (ECMI)QQqu’q'

Setting M; = M, may constrain the upper limit for the QQQj mass. Here, we just
considered the case QQg — E because it is currently the only observed doubly heavy
baryon. Then, the formula to constrain the upper limit reads as

M = Mz, — (Ecmn)z.] — [Mug — (Ecmi)ng]

Qi
+[Mgaq — (Ecmi) ggz] + (Ecmi) cegg- (16)

Considering different meson and baryon states, we obtained the minimum values for
M PPer

ccQq ’ N ~
e, Q¢, Ep, and O, for the baryons in the cccfi, cces, ccbii, and ccbs cases, respectively.

which are collected in Table 9. Here, we chose to use K for the light meson and

Compared with Table 3, the values in Table 9 are smaller than the upper limits but higher
than the masses predicted using X(4140) as the reference. Therefore, the updated upper
limits were reasonable, and the measured ccQg tetraquarks beyond these constraints should
be interpreted as excited states. Note that it would be possible to obtain new constraints
from the (). mass if it were observed.

Table 9. Upper limits for the masses of ccQ7 states estimated with Equation (16) in MeV units.

System

I ccéii cces cchii cchbs
27 5477.7 5638.8 87932 8944.1
1+ 5488.2 5647.7 8817.6 8968.9
5415.5 5576.2 8752.8 8903.7
5348.1 5505.8 8688.8 8838.2
o+ 5541.3 5703.1 8844.8 8996.1
5296.9 5456.5 8642.0 8791.4

In the above discussions, we introduce a reference system to reduce the mass un-
certainty for tetraquark states from effective quark masses. The uncertainties are now
governed by those of the quark mass gaps A;;. Their effects are easy to see from the mass
formula (5). It is clear that the uncertainties of the coupling parameters C;; also affect the
estimated values. We move on to this issue. Because of the complicated quark couplings in
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tetraquark structures, the properties of two-quark interactions become unclear. To reflect
the effects induced by small variations in the coupling parameters, a dimensionless constant

K — aECMI (17)

L To

can be defined [45,73,85]. With this constant, the CMI eigenvalue can be written as

Ecmr = Y_K;iCij. (18)
i<j

One should note that this formula (18) does not mean that Ecy,y is the linear superposition
of the C;js because the value of K;; also relies on C;;. With the K;; amplitudes, one can
roughly understand the influence that the coupling parameters C;; have on the estimated
tetraquark masses. The K;; values that we calculated are listed in Tables 10-12. The results
show that the effect on the tetraquark masses due to the uncertainty of C;; depends on the
states. For example, the uncertainties of C., Ccz, Cei, and Ce, had equal effects on the 2
cccn state mass, while those of Ccz and Cc; had larger effects on the ground 07 ccé7i than
Cec and Cg, did. As for the tetraquark mass uncertainties, they could even be tens of MeV
if those of C.; and C.j; are both 1 MeV. It was also observed that the effects in the n and s
cases were not so different.

Table 10. K factors of CMI eigenvalues for ccéfi, ccés, ccbii, and ccbhs states.

System JP Mass K Factors System ¥ Mass K Factors
ccen Kee Kee Kein Ken cces Kee Kee Kes Kes
2+ ( 5372.0 ) 2.7 2.7 2.7 2.7 2+ 5463 7 ) 2.7 2.7 2.7 2.7
5382.5 3.5 49 6.0 -39 5472 5 3.5 4.8 6.0 —3.8
1+ 5309.8 2.7 —4.6 —0.8 2.4 1t 5401.0 2.7 —4.5 —-0.8 2.3
5242.4 3.2 —-3.0 -7.9 —5.2 5330.6 3.2 -3.0 —-79 —5.2
o+ < 5435.5 > 3.5 7.5 7.5 3.5 ot 5527 9 ) 3.5 7.5 7.5 3.5
5191.1 3.1 —12.8 —12.8 3.1 5281 4 3.1 —-12.8 —12.8 3.1
ccbn Kee Kie Ken Kpn cchs Kee Kie Kes Kps
2+ ( 8699.1 ) 2.7 2.7 2.7 2.7 2+ ( 8789.9 ) 2.7 2.7 2.7 2.7
8723.5 34 4.2 6.5 -39 8814.7 34 4.1 6.5 -39
1+ 8658.7 2.7 —8.7 2.7 0.3 1t 8749.5 2.7 —8.7 2.7 0.3
8594.6 3.2 1.9 —-11.9 —3.1 8684.0 3.2 1.9 —11.9 —3.1
o+ ( 8750.6 > 3.5 7.5 7.5 3.5 o+ ( 8842.0 ) 3.5 7.5 7.5 3.5
8547.9 3.1 —12.8 —12.8 3.1 8637.2 3.1 —-12.8 —-12.8 3.1
Table 11. K factors of CMI eigenvalues for bbé7, bbcs, bbbii, and bbbs states.
System JP Mass K Factors System Mass K Factors
bben Kpp Kype Kpn Ken bbes Kpp Kpe Kps Kes
2+ 12,020.9 ) 2.7 2.7 2.7 2.7 2+ ( 12,1229 ) 2.7 2.7 2.7 2.7
12 013.9 3.6 7.0 1.8 —2.6 12,114.2 3.6 6.8 2.3 —2.7
1+ 11,992.2 2.7 -1.9 —-2.0 1.7 1t 12,093.0 2.7 —2.2 —-2.0 2.0
11,9429 3.1 —-7.8 —2.4 —5.7 12,041.3 3.0 -7.2 —-3.0 —-5.9
o+ < 12,052.0 > 3.6 7.5 7.5 3.6 o+ ( 12,155.3 > 3.6 7.5 7.5 3.6
11,940.0 3.1 —12.8 —12.8 3.1 12,039.1 3.1 —12.8 —12.8 3.1
bbb Kpp Kyp Kpii Ky bbbs Kpp Kyp Kps Kps
2+ ( 15,352.8 ) 2.7 2.7 2.7 2.7 2+ ( 15,454.1 ) 2.7 2.7 2.7 2.7
15,360.3 3.5 6.2 4.8 -39 15,462.0 3.5 6.0 5.0 —4.0
1+ 15,327.5 2.7 0.4 —-5.9 2.0 1t 15,427.1 2.7 —-0.2 —5.2 2.3
15,300.8 3.2 —-9.2 —-1.6 —4.8 15,401.1 3.2 —8.4 —-2.5 —5.0
o+ < 15,379.7 > 3.5 7.5 7.5 3.5 ot ( 15,481.9 > 3.5 7.5 7.5 3.5
15,276.9 3.1 —12.8 —12.8 3.1 15,375.1 3.1 —-12.8 —-12.8 3.1
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Table 12. K factors of CMI eigenvalues for bccii, becs, bebii, and bebs states.
System JP Mass K Factors
been Kpe Kie Ky Kee Ken Ken
2+ 8713.9 —0.5 5.2 0.7 0.7 5.2 —-0.5
( 8696.2 1.9 —-0.5 4.0 4.0 0.5 1.9
8719.4 —2.6 3.8 —-0.5 2.1 4.6 2.8
1+ 8698.4 2.7 0.3 4.2 4.2 1.7 —2.7
8665.3 0.1 -1.8 —6.0 1.6 0.7 2.5
8633.9 1.0 —-10.5 —6.4 2.4 34 -39
8602.3 —3.3 —-0.2 1.7 —-7.9 —3.8 3.0
8555.9 0.8 3.8 2.3 —-7.0 —-11.3 -3.1
8746.8 35 4.0 35 35 4.0 3.5
0* 8668.0 —59 2.6 2.3 23 2.6 ~59
8572.2 2.7 —-3.7 —-9.2 —-9.2 —3.7 2.7
8478.1 -3.0 —-12.2 —-5.9 —5.9 —12.2 -3.0
bees Kpe Kye Kps Kee Kes Kes
2+ 8805.0 —-0.5 5.2 0.6 0.6 5.2 —0.5
8788.1 > 1.9 —-0.5 4.0 4.0 —0.5 1.9
8811.3 —2.8 3.6 —-0.1 2.2 4.5 2.9
1+ 8789.2 2.9 0.4 4.0 4.0 19 -29
8755.6 0.2 —2.4 —5.4 14 0.8 2.6
8722.4 0.9 —10.1 —-7.0 2.5 34 -39
8693.8 —3.3 —-0.1 1.7 —8.0 —3.6 3.0
8644.8 0.8 3.9 2.1 —6.7 —11.5 —-3.1
8839.6 35 3.9 35 35 3.9 3.5
ot 8757.5 —-5.9 2.6 2.3 2.3 2.6 —-59
8661.5 2.8 -39 —-9.0 —-9.0 -39 2.8
8565.4 -3.0 —-12.0 —6.1 —6.1 —12.0 —-3.0
bebn Kpe Kyp Kpn Kye o Ky
2+ 12,042.0 —-0.5 5.2 0.6 0.6 5.2 —-0.5
12,013.5 1.8 —-0.5 41 4.1 —-0.5 1.8
12,042.1 0.7 5.3 —0.2 0.6 5.2 —-1.0
1+ 12,023.1 —-0.7 —-1.1 4.7 5.1 14 0.5
11,987.3 0.9 —4.0 —-2.3 0.0 1.3 2.3
11,973.2 1.2 —8.2 —-9.5 3.0 2.8 —-3.5
11,947.5 -3.0 —1.8 2.9 —12.1 0.0 1.3
11,897.5 —0.4 5.2 —-0.3 —-1.2 —154 —-1.0
12,059.3 3.3 4.3 3.2 3.2 4.3 3.3
ot 12,008.3 -58 25 2.4 24 25 —58
11,918.1 1.8 —-1.6 —11.8 —11.8 -1.6 1.8
11,829.5 —2.0 —14.5 —-3.2 —3.2 —14.5 —-2.0
bebs Kpe KbE Kps Kye Kes Kps
2+ 12,143.3 —-0.5 5.2 0.7 0.7 5.2 —-0.5
12,114.9 1.9 —-0.5 4.0 4.0 —0.5 1.9
12,143.3 0.7 5.3 0.0 0.5 5.2 -1.1
1+ 12,1249 —-0.8 -1.1 4.8 5.1 14 0.6
12,087.7 1.0 —5.1 —-1.5 —-0.3 1.6 2.1
12,072.2 1.1 -7.3 —10.0 29 2.5 —-3.1
12,048.7 —-3.0 -1.7 2.6 —11.8 0.0 1.1
11,996.6 —0.5 5.2 —0.4 —-1.1 —15.4 —-0.9
12,161.0 3.3 4.2 3.2 3.2 4.2 3.3
ot 12,109.7 —-5.9 2.5 2.5 2.5 2.5 —-59
12,016.3 19 —-1.7 —-11.7 —11.7 —-1.7 1.9
11,928.2 2.1 —-14.4 —-3.3 —-3.3 —14.4 —2.1

Our mass predictions relied on the X(4140) state as a 17" reference tetraquark. In
previous theoretical works [28,78,79,86,87], X (4140) was regarded as a 17 ¢s¢3 tetraquark.
However, this exotic state’s inner structure has not been confirmed in experiments, and it is
still a subject of theoretical debate. If this state is something other than a tetraquark, one
has to consider the effects of this reference assumption on the predictions. For example, a
detailed study of csc5 states in the chiral quark model [88] did not obtain a csc5 tetraquark
that was consistent with the observed X(4140), while the authors of [89] interpreted X (4140)
as the charmonium state x.1(3P) according to their calculation in a relativistic screened

potential model. In this situation, all the tetraquark states’ masses would change some

of the values in our framework since the mass splittings between the QQQg tetraquark
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states remain unaffected. What we need from the adopted assumption is actually the
determination of a tetraquark mass (input scale of the approach). If the observed X(4140)
is a mixed structure of charmonium, a molecule, and a compact ¢s¢3 tetraquark, one
anticipates that the theoretical mass of the compact cs¢s would not be far from the D+ D3~
threshold; otherwise, the mixing would not be significant. As a result, the shifted value
would not be very large. This theoretical scale’s determination depends on the proportion
of the compact cscs in the wave function of X(4140). If X(4140) does not contain a ¢s¢s
component, one may determine the shifted value by treating another compact tetraquark
candidate as a reference. In [88], the interpretation of X(4274) and X (4350) as ground 17"
and 0" ¢s¢s tetraquarks, respectively, was proposed. If X(4274) is indeed the ground 17"
cs¢5 and we took its mass as the input scale, our predictions for all the tetraquark masses
would shift upward by about My 4574) — Mx(4140) = 140 MeV.

For exotic hadrons, one has to confirm whether they exist through experimental
measurements. Most states that we considered here have the quantum numbers of D(*),
Dg*), B™), or BS(*) but with much higher masses. Such resonances can be searched for in
the invariant mass distributions of a heavy quarkonium and a Qf meson in high-energy
colliders, such as the LHC and future CEPC. The ccbj and bbég states are explicitly exotic,
and they can be searched for similarly.

Here, we considered only a simple rearrangement scheme in which the decay appeared
to occur through quark component free collisions. In principle, the decay parameter C
may be evaluated with the quark-level wave functions of the initial and final states. The
gluon exchange contributions certainly affect the C value further. Such a contribution can
probably be explored in a similar way to the quark interchange model in [90]. Because the
C parameter varies with the state, it is possible that its variation may significantly alter
the predicted decay width ratios. However, the spatial wave functions should be obtained
for such a consideration. If one wants to include gluon exchange contributions to C but
without explicit spatial wave functions, additional parameters would be introduced, which
are not easy to determine with the available experimental data.

Replacing the light antiquark in a triply heavy tetraquark state with a light diquark
(triquark) would produce a triply heavy pentaquark (hexaquark) state. The present frame-
work can be extended to study such systems. In the extension, one would confront the
problem of how to select appropriate reference scales that are consistent with tetraquark
studies. We will consider this problem in future investigations.

To summarize, we studied the properties of triply heavy tetraquark states in this work.
We estimated their spectra in a modified CMI model by treating X(4140) as a reference
17" tetraquark. No stable state was found. We also considered their two-body strong
decays and the related indicative partial width ratios of different channels in a simple
rearrangement scheme. We hope that our results can help future experimental searches for
such exotic states.
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