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1 Introduction: the classical least action principle

Bosonic string theory, which is the most basic form of string theory, describes the propa-
gation of one-dimensional relativistic extended objects, the fundamental strings, and their
interactions by joining and splitting. Quantum field theories of point particles are naturally
obtained by starting with a classical action, and quantizing the fluctuations around a given
classical solution of the equations of motion. An analogous string field theory exists, but
is still poorly understood. In such a theory one should have operators creating a loop in
space, which is certainly more difficult to describe mathematically. Rather the practical
way to handle string theory is to follow the propagation in time of a single string in a fixed
reference space-time. The classical least action principle is considered in modern physics
[67] as a fundamental tool for deriving true and physically sound equations governing the
dynamics of the corresponding physical objects. By means of this principle there has been
described many physical models [54, 37, 38, 49] including those of classical mechanics, elec-
trodynamics and Einsteinian gravity theory. As it was mentioned in many classical manuals
[10, 11, 31, 49, 53, 54], a suitable and physically motivated method of choosing the corre-
sponding Lagrangian functions proves nowadays to be open for studying. Application of the
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least action principle is strongly complicated by inconsistencies often accompanying the de-
rived physical statements which are considered to be well understood and checked by means
of other physical theories. In particular, in modern electrodynamics of a charged point
particle moving under influence of an external electromagnetic field, there is well known
misreading [54, 38, 49] related to the charged point particle energy expression. Namely,
the latter being obtained by means of the classical least action principle, gives rise to the
charged particle ” dynamical” mass expression not depending on the external potential en-
ergy. This fact was discussed also in the physics literature, for instance in [24], where there
are also described other physically reasonable examples. Taking this into account and being
motivated by R.P. Feynman’s considerations of the problem in [38, 34, 35, 50] as well as a
recently devised vacuum field theory approach [12, 13, 15, 21, 16, 17, 18, 20] to a physically
reasonable formulation of the corresponding least action principle for describing the charged
point particle electrodynamics, we have revisited in [14] the approach, based on the Feyn-
man proper time paradigm [38, 34, 35, 50] and applied it to describing the dynamics of a
charged point particle, having stated its complete physical adequacy. Based on this experi-
ence, the devised vacuum field theory approach is applied to describing space-time dynamics
of a charged hadronic string model under influence of an external vacuum field potential.
We analyze also in detail the related Lagrangian and Hamiltonian string model description,
in particular, we state that with respect to some conformal local coordinates the resulting
space-time dynamics is described by means of a linear second order elliptic equation under
the corresponding Dirac type constraints, well fitting [29, 30] for its quantization.A novel
charged hadronic string model: the least action principle analysis within the R.P. Feynman
proper time paradigm

A classical relativistic hadronic string model was first proposed in [6, 59, 42] and studied
in [5], making use of the least action principle and related Lagrangian and Hamiltonian
formalisms. We will not discuss here this classical string model approach and will not
comment the physical problems accompanying it, especially those related to its diverse
quantization versions, but proceed to formulating a novel relativistic hadronic string model
within the vacuum field theory approach, devised in [16, 17, 13]. For a uniformly charged
string, interacting with an ambient electric potential field, the classical least action principle
is, following [5, 17, 20], formulated as

s(t2) roa(s)
3507 =0, 57— [0 [ g el o). 1)
s(t1) Joi(s)
Here W : M* — R is a vacuum field potential function, ¢ € R\{0) is elementary
charge parameter, characterizing the interaction of the vacuum medium with our charged
hadronic string object, and the differential 2-form  dS® := (|¢2¢/|? — (¢|¢')2.)Y/2do A ds
= g(&)do N ds, g(€) = det(gi;(€)]; j_1), 61> = (ElEms, € = (€'[¢)ms, where
& = 06/0s, & := 0¢/00 denote the corresponding partial derivatives, being related
with the induced positive definite Riemannian infinitesimal metrics dz? = (d¢|d€)gs =

911(&)do® + g12(&)dods + g21(€)dsdo +gao(£)ds? on the string, meaning [1, 5, 32, 69] the in-
finitesimal two-dimensional surface element, parameterized by local variables (s,o) € ]R?

and embedded into the four-dimensional Euclidean space-time R x E® with coordinates
¢ := (1(s,0),r(s,0)) € R x E* subject to the proper time reference frame K,. The related
boundary conditions are chosen as

(s, 0(s)) =0 (2)

at string parameter o(s) € R for all s € R. The action functional expression (1) is strongly
motivated by the extended string action functional

oo t(o,72) B
S0 = _q / di(o) / Wdt(r, o), 3)

1 t(o,71)

where the laboratory reference time parameter ¢(7,0) € R is related to the proper time
string reference frame parameter 7 € R by means of the standard Euclidean infinitesimal
relationship

dt(r,0) == 1+ i 2(r,0)Y2dr, |5 |? = (FL]FL)gs, (4)
with o € [01,02] C R, being a spatial variable, parameterizing the string length measure
dl(o) on the real axis R, 7| (7,0) := N 7(r,0) € E3, being orthogonal to the string velocity
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component, where, by definition,

N:=0—- 2" @), |[F7?%:= <r'|r’>£31, (5)

being the corresponding orthogonal projector operator on E? to the string direction, ex-
pressed, for brevity, by means of the standard tensor product ” ® ” on the Euclidean space
E2. The result of recalculating the expression (3) gives rise to the following functional ex-
pression

02(7'
S0 == [ [ W RO ) — (1)) P o )
o1(1)

where we made use of the infinitesimal measure representation di(c) = (r'|r/ >1/2d0 o€

[01,02]. If we introduce on the string world surface local coordinates (s(r,0),0) € E* and
the related Euclidean string position vector & := (7,7(s,0)) € R x E®, the string action
functional (6) reduces equivalently to that of (1).

2 The Lagrangian analysis within the R.P. Feynman proper time paradigm

First obtain the Euler equations corresponding to (6) with respect to the special [5, 32]
internal conformal variables (s,o) € R? on the world space-time string surface %2 with
respect to which the metrics on it becomes equal to dz2 = |¢'[2do2 +|€|2ds?, where (¢/[€)gs =
0 = |¢/|2 — |¢? is the imposed space-time constraint, and the corresponding infinitesimal

world surface measure dX(2) becomes dX2) = |¢/||¢|do Ads. As a result of simple calculations
one obtains the linear second order partial differential equation

O(WE)/0s +O(W¢E') /00 = (I€'| [EIW) /0 (7)

under the suitably chosen boundary conditions
¢ —€5=0 (8)

for all s € R. It is interesting to mention that equation (7) is of elliptic type, contrary
to the case considered before in [5]. This is, evidently, owing to the fact that the resulting
metrics on the string world surface proves to be Euclidean, as we took into account that the
real space-time string motion is, in reality, realized with respect to its proper time reference
frame IC,., not dependent on the string motion observation data, measured with respect to
any external laboratory reference frame K. The latter can be used for physically motivated
evidence of the dynamical stability of the relativistic charged string object, modeling a
charged hadronic particle [4, 43, 59, 74] with non-trivial internal structure. ~

The differential equation (7) strongly depends on the vacuum field potential function W :
M* — R, which, as a function of the Minkowski four-vector variable x := (¢t(s,o),r) € M4
of the laboratory reference frame K, should be expressed as that of the variables (s, o) € E2
making use of the infinitesimal relationship (4) in the following form:

= (NO¢/or|Nog/or >1/Z(?d +gido—) (9)

defined on the string world surface (3). The function W : M* — R itself should be
simultaneously found, following ideas of [24, 71] and recent results of [12, 13, 15, 16, 17, 18],
by means of a suitable solution to the Maxwell equation 9*W/dt? — AW = p, where p € R is
an ambient charge density and, by definition, W (r(t)) := lim,_,,;) W(r,t)|, with r(t) € E?
being the position of the string element with a proper time reference frame IC,. coordinates
(1,0) € E? at the time moment t = t(7,0) € R.

3 The Hamiltonian analysis within the R.P. Feynman proper time paradigm
We proceed now to constructing the Hamiltonian equations for our string model, making
use of the general action functional (6) in the following form:

Ta oa(1)
SO == [Tar [ a0 5 - 18 o (10)
T1 o1(7)
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It is easy to calculate that the generalized momentum density

. =W =2 () es)
L CON Y _
p / T (|7~,|2+1_‘r/‘72<74/|7~,>]2E3)1/2
*C]W|7”/|Nd’r‘/d7'
(1712 + 1 = 7|72 (' |#)5a ) 1/

= —q|r'|WNdr/dt =|r'|N (—qWu) (11)

satisfies the dynamical equation
dp/dr = =6L7 [or = —q(|r'P(|#] + 1) — (r']7)Fs) /2 VIV + (12)
) { GW (1 + |#2T)r
( )

9o | (1 + 1|2 [#[2 (T | )gs ) /2

where we denoted by
LD = —gW (P14 [#[%) = (Fr)§a) "2 = =W (I[P + [P ([ T ) V2 (13)
the corresponding Lagrangian function, and for any vector w € E3
Ty =1—|w2wow, |w?:=(wwi, (14)
the usual projector operator on E3. As a result of (12) one finds that

dp/dt = —|r'| V (qW) + (1 — [ul*){ulr')3:) ~/?x
o [ aW a4 | "2 () 25 HulPTu)r (15)

9o (I=[uP+[r =2 (ulr")25) 172 ’

where we took into account that owing to (4)
7 =dr/dr =dr/dt -dt/dr =u(l— |u®+ |72 (ulr)2s) "2 (16)
The Lagrangian function is degenerate [1, 3, 5, 20, 32|, satisfying the constraint
(plr')es =0 (17)
for all 7 € R, meaning that the physical momentum vector p € E? is locally orthogonal to
the string ©(?) spatial surface. Concerning the Hamiltonian formulation of the dynamics

(12), we construct the corresponding Hamiltonian functional density as

Ho= [72((pli)gs — £O)do =

foz —qW ' ||+ = || 72" |#) ) + aW e | (|72 41| | 2 () 25) do —
I1 (P2 +1=[r[=2{r' ) 25) /2 (72 +1=[r[=2{r' 7)) 25) /2 (18)

o Wlr’ o =
= 012 ((l’f-|2+1_|7€‘_LZ’I-‘I‘T‘)ES)l/Q) do = f012(_q2W2|7"/|2 + [p|*)*/2do,
satisfying the canonical Hamiltonian equations
dr/dr = dH/op, dp/dr = —6H/or, (19)

where

dM/dr =0, (20)

holding only with respect to the proper time reference frame K, time parameter 7 €
R.P. Now making use of identity (17) the Hamiltonian functional (18) can be equivalently
represented [5] in the symbolic form as

o2
H= / lqgWr" +ip|csdo, (21)
o1
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where i:= /=1 and |- |cs denotes the norm on the complex space C3. Tt is worthwhile to
mention here that a pair of dynamic variables (r,p) € T*(2(?) is canonical, that is, their
Poisson brackets [1, 3, 20] satisfy the following relationships:

{r(r,0),p(r,0'} = 6&(c—0a'), (22)

{T(T’U)7T(Ta0l} = OZ{p(T,O'),p(T,O'/}

for all string coordinates (7, o) and (,0’) € ©(2). Moreover, concerning the result obtained
above, we need to mention here that one can not construct the suitable Hamiltonian function
expression and relationship of type (20) with respect to the laboratory reference frame K,
since expression (21) is not defined on the whole for a separate laboratory time parameter
t € R locally dependent both on the spatial parameter o € R and the proper time reference
frame time parameter 7 € R. Thereby, one can formulate the following proposition.

Proposition 1 The hadronic string model (1) allows on the related world space-time surface
the conformal local coordinates, with respect to which the resulting dynamics is described by
means of the linear second order elliptic equation (7). Subject to the proper time Fuclidean
reference frame IKC,. coordinates the corresponding dynamics is equivalent to the Hamiltonian
equations

dr/dr ={H,r}, dp/dr ={H,p}, (23)

with respect to the canonical Poisson structure (22) and the Hamiltonian functional (18) .

It is worth remarking here, that any quantization scheme of the Hamiltonian expression
(21) under the derived above constraint (17) should be performed within the classical Dirac
type reduction [29] scheme.

4 A charged hadronic string interaction with a moving external point charge
We proceed now to construct the action functional expression for a charged string model
under an external electromagnetic field, generated by a point charged particle g, moving
with some velocity uy := dry/dt € E® subject to a laboratory reference frame K. To solve
this problem we make use of the trick, passing to the string, considered with respect
to the proper time reference frame K, moving under the external vacuum field potential
W (i, r), measured in the reference frame K #» specified by its own Euclidean coordinates
(t, r) € E*, which simultaneously moves with velocity up = dry/dt € E3, measured in the
laboratory reference frame . As a result of this reasoning, we can write down the action
functional:

0'2(7'
s = / dT/ W(r'P(L+ [ = i) = (=il )fa) d o, (24)
o1(1)

giving rise to the following dynamical equation

dP/dr = 6L Jor = —q(|r'P(1 + |7 — 74 |?) — (- —7f|r")2s) 2 VIV + (25)
+2 W (1 + | — 742 T,-,,i,f)r
9 | (IP"P(L+ |7 =7 [?) — (7 — 7|r')§s) 1/

with the generalized momentum density

_ —qW|r'|> NG — i)
(1721 + |7 — 75]2) — (7 — 757 2ags) /2

(26)

Owing to the vacuum field potential Lorentz transform W (1—|us|?)'/2 = W, one can define
the string momentum density

—qW|r’|2N1‘
o= = 27
P PRI — ) — (7 — 7yl J2)2 @7)
—qW\r'\Ndr/dT B
=P = 1720 = iy )2

—qV~V|r'\Nﬂ = —qW|r’|Nu,
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as the local string momentum density, and

Wr'|2Nv

/A . — q f = 28

il (PRI = 2) — (F—#fr)2 )12 (28)
qu|r’|Ndrf/dT

AT == 2 = il )

= qWr'|Nay = gW|r'|Nuy,

as the external vector magnetic potential density, where ¢ € R is a uniform charge density,
distributed along the string length. Thus, equation (25) reduces to

d -
—=(p+qlr'|A) = —q|r'| VIW+ (29)
dt

+£ GV — | — u}|2 + |72 — u}\r'}?w + | — uff\ZTu,,u:f)r’ )
e A R A ER R

do
with respect to the moving reference frame K £, or equivalently, reduces to
&P+ alr'|A) = —qlr’| VW (L~ Jug]*)+

(= Jug )1 = Jug? = o =g+ 172w = uplr)ga) 712

9 alr! W (= Jug |* = Ju—us | +|r'| 7 (u—ug|r) g Hlu—us P Tumuy )r’
9o (A—up P —lu—ug [P+[r'| =2 (u—ug|r’)25)1/2

with respect to the moving laboratory frame K. The latter can be easily rewritten also as
the generalized Lorentz type force expression

dp/dt = q|r'|E + g|r'|u x B — q|r'| V(u - ug|A)gs+

(= Jug ) (1 = Jug? = u =g+ 172w = uplr’)ga) 712

(31)
o [ alr' IW—lus|®—lu—us P +r'| "> (u—uy|r") S +lu—us [*Tuu,)r’
X5 (A=lup P =lu—up [P+[r | =2 (u—ug|r’)2;) /2 ’
where B = V X A means, as usual, the external magnetic field and F = —0A /ot —

VW means the corresponding clectric field, acting on the string (). Making use of the
standard scheme, one can derive, as above, the Hamiltonian interpretation of dynamical
equations (25), but which will not be here discussed.

5 A charged hadronic string interaction with ambient electromagnetic field
Let us now consider the classical least action principle for a charged string interacting with
an ambient electromagnetic field:

s(r2) po2(s)
550 =0, 80 =g [ 7 [T (W (©) + el arlAENEA Q. 3

Here W : M* — R is an electric field potential function, A : M* — E3 is a magnetic field po-
tential function, ¢ € R\{0) is elementary charge parameter, characterizing the interaction of
the vacuum medium with our charged hadronic string object, and as before, the differential
2-form  dS® = (JEP|¢2 — (€1€)20) Y 2do A ds = 3/g(€)da Nds, g(€) = det(g;;(€) i j=T3)
€2 := (£|€)ga, |€']2 := (£'|¢)g4, being related to the induced positive definite Riemannian
infinitesimal metrics dz? := (d¢|d&)gs = g11(€)do? + g12(€)dods + go1(€)dsdo +goo (€)ds?
on the string, meaning the infinitesimal two-dimensional surface element, parameterized
by local parameters (s, o) € R%, embedded into the four-dimensional Euclidean space-time
R x E* with space-time coordinate £ := (7(s,0),7(s,0)) € R x E*> ~ E* subject to the
proper time reference frame /C,.. The related boundary conditions are usually chosen as

§(s,0(s)) =0 (33)
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at string parameter o(s) € R for all s € R. The action functional expression (32) is naturally
motivated by the extended string action functional

o2 t(o,72)
PO / di(o) / (W (tr) + (dr/dt|A(t, r)]dt(r, o), (34)

t(o,71)

where the laboratory reference time parameters (t(7,0),7(7,0)) € R x E?® is related to the
proper time string reference frame parameter 7 € R by means of the standard Euclidean
infinitesimal relationship

dt(r,0) :== L+ |rL)?(r,0))Y2dr,  |io]? := (Fo|FL)Es, (35)

with o € [01,02] C R, as before, parameterizing the string length measure dl(c) on the real
axis R, 7 (7,0) := N 7(r,0) € E3, being the orthogonal to the string velocity component,
where, by definition,

No= (=2 o), |72 = ' )gs, (36)

being the corresponding orthogonal projector operator on E? to the string direction, ex-
pressed, for brevity, by means of the standard tensor product ” ® ” on the Euclidean space
E3. The result of recalculating the expression (3) gives rise to the following functional ex-
pression

oo(T)
s = fq/ dT/ (W + (dr Jdt) AN (1 + 72 — ]2 )20 2d o = (37)
o1(7)

o2(7)
= o Car [ ) -
o1(7)

02(7)
—q/ dT/ AN d o,
o1(1)

where we made use of the infinitesimal measure representation di(c) = (r'|r')5 do, o €
[01, 02]. If we introduce on the string world surface local coordinates (s(7,0),0) € IE2 and
the related Euclidean string position vector ¢ := (7,7(s(7,0),0)) € E*, the string action
functional (37) reduces equivalently to that of (32). Based on this expression, one can write
down the related string momentum density

>1/2

. 2 am . aWIr [ G=r | |72 [7)gs _
P .= Bﬁ( )/87' = 7(\7"|2+1*\T’|72<7“'|7'">]§3)1]h/2 - qA|TI| -

(38)
= —q[r'|[(NWu + A),
satisfying the dynamical equation
dP/dr := 6L Jor = —q|r'|( |72+ 1 — || 2|7 )2 Y2 VW (T, 7)) —
39
—al VA= g(F Ay + 5 {<1+|r7wva2(\1r'\+2‘<fﬂl”“ﬁ):>ma)1/2 3 v
where we denoted by

LD = —qWr|(L+ 77 = |72 ])Ea) V2 = a (Pl A)) 1| (40)

the corresponding Lagrangian density for the action functional (37). Based on the expres-
sions (38) and (40) one easily obtains the string Hamiltonian function

H = / do[(P + q|r'|A)% — q2|r’|2W2]1/2, (41)

generalizing the result (18) and satisfying the conservation condition dH/dt = 0 for all
temporal values t € R. What is interesting, the dynamical equation (39) is equivalent to

doi:10.1088/1742-6596/2987/1/012009
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that of (25) on taking into account the vector field potential definition (30). Moreover, one
can observe that the Hamiltonian expression (41) can be equivalently rewritten as

H= / lgWr' £i(P + g|r'|A)|csdo, (42)

where, as before, i:=+/—1 and |- |¢s denotes the norm on the complex space C, and a pair
of dynamic variables (r, P) € T*(X(?)) is canonical, that is their Poisson brackets satisfy the
following relationships:

{r(r,0),P(r,0'} = &(c—0), (43)

{T(T,O’),T(T,OJ} = 0= {P(Tvg)vp(Tvoj}

for all string coordinates (7,0) and (7,0’) € (). The above Hamiltonian function (42)
generalizes the previously obtained expression (21) and takes into account the interaction
of our string with ambient electromagnetic field explicitly. Summarizing the statements
above, one can formulate the following proposition.

Proposition 2 The hadronic string model (32) allows on the related world space-time sur-
face the conformal local coordinates, whose dynamics is described subject to the proper time
Euclidean reference frame K, by means of the Hamiltonian equations

dr/dr ={H,r}, dP/dr = {H,P}, (44)
with respect to the canonical Poisson structure (43) and the Hamiltonian functional (42).

Here we need to underline that with respect to the proper time reference frame,
the charged string model, supplemented with the Maxwell electrodynamics, allows both the
Lagrangian and Hamiltonian physically reasonable formulations regarding their canonical
Poisson structure, suitable for the canonical quantization procedure.

6 Conclusion

Based on the vacuum field theory approach, devised recently in [16, 17, 13], we revisited the
alternative charged hadronic string model, having succeeded in treating their Lagrangian
and Hamiltonian dynamic properties. The obtained results, as compared with classical ones,
make it possible to argue a physically motivated choice of a charged string model. Another
important aspect of the developed vacuum field theory approach to studying extended rel-
ativistic string models consists in singling out the decisive role of the R.P. Feynman proper
time paradigm, related to rest reference frame K,, subject to which the relativistic object
motion, in reality, is realized. Namely, with respect to the proper time reference frame evo-
lution parameter,  the charged string model allows both the Lagrangian and Hamiltonian
physically reasonable formulations regarding their canonical Poisson structure, well suitable
for the canonical quantization procedure. The deeper physical nature of this fact remains, as
of today, is not enough understood and needs additional investigations. We would like only
to recall here very interesting reasonings of R.P. Feynman, who argued in [38, 39] that the
relativistic expressions have physical sense only with respect to the proper time reference
frames, associated with respectively observed physical objects. In a sequel of our work we
plan to analyze our relativistic charged string model subject to its canonical quantization
devised in [64] and make a step toward the related vacuum quantum field theory of infinite
many particle systems.

7 Supplement: The Maxwell electrodynamics within the vacuum field theory
approach
We start from the following field theoretical model [12, 13, 15] of the microscopic vac-
uum medium structure, considered as some physical reality imbedded into the standard
three-dimensional Euclidean space reference frame marked by three spatial coordinates
r € E3, endowed, as before, with the standard scalar product (-|-) gs, and parameter-
ized by means of the scalar temporal parameter t € R. First we will describe the physical
vacuum medium endowing it with an everywhere smooth enough four-vector potential func-
tion (W, A) : M* — T*(M*), defined in the Minkowski space M* and naturally related to



IARD 2024 IOP Publishing
Journal of Physics: Conference Series 2987 (2025) 012009 doi:10.1088/1742-6596/2987/1/012009

light propagation properties. The material objects, imbedded into the vacuum medium, we
will model (classically here) by means of the scalar charge density function p: M* — R and
the vector current density J : M?* — E3, being also everywhere smooth enough functions.

1. The first vacuum field theory principle regarding the vacuum we accept is formulated
as follows: the four-vector function (W, A) : M* — T*(M*) satisfies the standard
Lorentz type conserved continuity relationship

10W
o T (V[A)gs =0, (45)

where, by definition, V := 9/dr is the usual gradient operator with respect to the
spatial variable r € E3 and ¢ > 0 denotes the light velocity in the vacuum.

2. The second vacuum field theory principle we accept is an evolution wave relationship
on the scalar potential W : M* — R :

1 9?°W

2

assuming the linear law of the small vacuum uniform and isotropic perturbation prop-
agations in the space-time, understood here, evidently, as a first (linear) approximation
in the case of weak enough fields.

3. The third vacuum principle is similar to the first one and means simply the conserved
continuity condition for the charge and current density functions:

Dp/t + (V|J)gs = 0. (47)

We need to note here that the vacuum field perturbations velocity parameter ¢ > 0, used
above, coincides with the vacuum light velocity, as we are trying to derive successfully from
these first principles the well-known Maxwell electromagnetism field equations, to analyze
the related Lorentz forces and special relativity relationships. To do this, we first combine
equations (45) and (46):

1 0°W 10A
Top —( |E§>E3 = (VIVW)g: + p,
whence 164
Having put, by definition,
10A

we obtain the first material Maxwell equation
(VIE)gs = p (50)

for the electric field E : M* — E2. Having now applied the rotor-operation Vx to
expression (49) we obtain the first Maxwell field equation

10B

on the magnetic field vector function B : M* — E3, defined as
B: =V xA. (52)

Remark 1 It is useful to remark that the second field theory principle is exactly equivalent
to the experimentally stated physical relationships (49) and (50) for the electric field E :
M* — E®. Really, having applied the operator Vx to the left-hand side of (49), one obtains
the wave relationship (46).



IARD 2024 IOP Publishing
Journal of Physics: Conference Series 2987 (2025) 012009 doi:10.1088/1742-6596/2987/1/012009

To derive the second Maxwell field equation we will make use of (52), (45) and (49):

VxB = Vx(VxA) =V(V|A)g — V?A=
1 1 10A 10A
= V(—fa—W) _va-1l (—VW _1o4 + 78—) — V%A=
c Ot c
1B 10°4
c Ot 2 Ot?
We have from (49), (50) and (47) that

—V24). (53)

QLB 10 _

1
N e

or
1024 1Low. 1
Vi-zam ~ Vi) Tele =0 ®9

Now making use of (45), from (54) we obtain that

1 0%A 9 1
=5 —VA=—-(J+V xS 55
2o S+ ) (55)
for some smooth vector function S : M?* — E3. Here we need to note that continuity
equation (47) is defined, concerning the current density vector J : M* — R3 up to a
vorticity expression, that is J ~ J +V x S and equation (55) can finally be rewritten as the
next wave equation
1 9?4
2 ot?
on the magnetic potential function A : M* — E3. Having substituted (56) into (53) we
obtain the second Maxwell field equation

1
— VA= -J (56)

10E 1
VXB—-=-—==].
x c Ot cJ (57)

In addition, from (52) one also finds the magnetic no-charge relationship
(V|B)gs = 0. (58)

Thus, we have derived all the Maxwell electromagnetic field equations from our three
main principles (45), (46) and (47). The success of our undertaking will be more impressive
if we adapt our results to those following from the well-known relativity theory in the case
of point charges or masses. Below we will try to demonstrate the corresponding derivations
based on some completely new physical conceptions of the vacuum medium first discussed
in [66, 13].

It is interesting to observe a partial case of the first field theory vacuum principle (45),
equivalent to the following local conservation law for the scalar potential field function
W:M*—R: d

— [ W(t,r)d* =0, (59)
dt Jq,
where Q; C E? is an arbitrary open domain in space E? with the smooth enough boundary
0 for all t € R and d>r denotes the standard volume measure in R? in a vicinity of
the point r(t) € ;. Having calculated expression (59) we obtain the following continuity
equation

10W v

- —W)gs =

P + <V|c Ygs =0, (60)
where V := 9/0r is, as above, the gradient operator with respect to the spatial variable

r € E® v := dr(t)/dt is the velocity vector of the corresponding vacuum medium change
influenced by an external charge particle, carrying the potential field energy W. Comparing
now equations (45), (60) and using equation (47) we can make the suitable very important
identification: v

A= EW (61)

10
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well known from the classical electrodynamics [54] and superconductivity theory [38, 51].
Thus, we are faced with a new physical interpretation of the conservative electromagnetic
field theory when the vector potential A : M* — E? is completely determined via expression
(61) by the scalar field potential function W : M4 — R. It is also evident that all the Maxwell
electromagnetism with filed equations (57) and (58) derived above, hold as well in the case
(61), as it was first demonstrated in  [?]

Consider now the conservation equation (59) jointly with the related integral ” vacuum
momentum” conservation condition

d

- (c2Wo)d®r =0, Q=0 = Q, (62)
dt Jo,

where, as above, €, C E? is for any time ¢ € R an open domain with the smooth boundary
09, whose evolution is governed both by the transport equation

dr/dt = v(t,r) (63)

for all » € Q,t € R, and by the initial state of the boundary 0. As a result of relation
(62) one obtains the new continuity equation
d(vW)
dt

+ oW (V|v)gs = 0. (64)

Now making use of (60) in the equivalent form

aw
W + W<V‘U>E3 = 0,

we finally obtain a very interesting local conservation relationship
dv/dt =0 (65)

on the vacuum matter perturbations velocity v = dr(t)/dt, which holds for all values of the
time parameter ¢t € R. As it is easy to observe, the obtained relationship completely coincides
with the well-known hydrodynamic type equation [56] of ideal compressible liquid without
any external exertion, that is, any external forces and field ”pressure” are equally identical
to zero. We received a natural enough result, confirming that the propagation velocity of
the vacuum field matter is strait linear, constant and equals exactly v = ¢, that is the light
velocity ¢ in the vacuum, if to take into account the starting wave equation (46) owing to
which the small vacuum field matter perturbations propagate in the space with the light
velocity.
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