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Abstract

This thesis deals with some cosmic aspects in the context of modified Gauss-Bonnet

gravity. Firstly, we explore static spherically symmetric wormhole solutions in galactic

halo region as well as using conformal Killing vectors technique. The effective energy-

momentum tensor leads to the violation of energy conditions while normal matter

satisfies these conditions. We use Navarro-Frenk-White energy density profile to

examine possible existence of traversable wormholes in galactic halo region. We find

physically acceptable wormhole solutions threaded by normal matter for all values of

r. We also investigate stability of the resulting wormhole solutions. For conformally

symmetric traversable wormholes, it is found that all shape functions satisfy flaring-

out condition except phantom case with non-static conformal symmetry.

Secondly, we study the dynamics of self-gravitating objects for spherical and axial

systems. We construct structure scalars through orthogonal splitting of the Riemann

tensor and deduce a complete set of equations governing the evolution of dissipative

anisotropic fluid in terms of these scalars. In spherically symmetric system, we in-

vestigate some particular fluid models according to various dynamical conditions and

find that our results are consistent with general relativity for constant f(G) model.

Any other choice of the model leads to irregular distribution of dark energy and devi-

ates from general relativity. We also explore different causes of density inhomogeneity

which turns out to be a necessary condition in the presence of dark sources.

In axially symmetric system with shear, it is found that dark sources affect ther-

modynamics of the system, evolution of kinematical quantities as well as density in-

homogeneity. For the shear-free case, we study both non-geodesic as well as geodesic

xi



xii

fluids with and without dissipation. The non-geodesic (non-dissipative) fluid gives

inhomogeneous expansion while geodesic fluid leads the system either to vorticity-

free or expansion-free. The vorticity-free non-dissipative geodesic fluid reduces the

axial system to FRW model with homogeneous distribution of dark sources while

expansion-free geodesic fluid does not exist even in the presence of dark sources.



Abbreviations

In this thesis, the metric signatures will be (−,+,+,+) and Greek indices will vary

from 0 to 3, if different it will be mentioned. Also, the unit system κ2 = 8πG
c

= 1 will
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ΛCDM: Λ Cold Dark Matter
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Introduction

Cosmology deals with the origin, composition and evolution of the universe right

from the big-bang to today and onwards to the future. The fundamental theory

which generates a relation between geometry and matter contents is the theory of

general relativity. Cosmic models derived on the basis of this theory represent a

complete picture of the universe. Recent cosmological observations from Supernovae

type Ia [1] and its cross-comparison with foreground stellar galactic distributions

indicate that our universe is expanding at an accelerating rate with time. Other

observational evidences from cosmic microwave background, galaxy redshift surveys

and large scale structure [2] also favor this phenomenon. These cosmological surveys

proposed an obscure type of energy which is considered to be a pivotal constituent

for cosmic accelerated expansion. This is termed as DE possessing repulsive force

pushing various cosmic objects far away from each other against their gravitational

force.

The ΛCDM model is a straightforward explanation of DE in GR but it suffers

problems like cosmic coincidence and fine-tuning. This leads to two well-known ap-

proaches to modify GR. The first approach extends the matter part while the second

modifies the geometric part. Modified GB gravity or f(G) gravity is one of the mod-

ified versions of GR which is obtained by adding an arbitrary function f(G) of GB

1
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quadratic invariant G

G = R2 − 4RµνR
µν +RµρνσR

µρνσ, (0.0.1)

in the action [3]. This theory efficiently elucidates cosmic accelerated expansion and

transition phases of the universe from deceleration to acceleration [4]. The solar

system experiments are essential constrains on modified gravity that measure the

deviation of these theories from GR. A viable gravity model must satisfy these con-

straints and this theory passes all solar system tests [5]. This also avoids all possible

four types of finite time future singularities [6], explains black hole thermodynamics

[7] and studies DE as well as inflationary era [8].

Traversable wormholes are regarded as hypothetical paths (tunnels or bridges)

connecting two different regions of the same spacetime (intra-universe wormhole) or

two different spacetimes (inter-universe wormhole). These paths provide free passage

for observers from which they may traverse easily. The history of wormhole can be

traced back to 1916 when Flamm analyzed a newly described Schwarzschild solution

[9] and found that this solution represents wormhole. Later in 1935, Einstein and

Rosen presented wormhole type solutions known as Einstein-Rosen bridge [10]. In

the modern age, Morris and Thorne [11] brought back the idea of wormhole geom-

etry in 1988 which rekindled the researchers to study traversable wormholes. They

established wormhole solutions from the Einstein field equations as static spherically

symmetric metric and proposed that wormholes might be the objects of nature like

stars and black holes.

In GR, the violation of NEC is the necessary condition for wormhole solutions.

Its violation leads to exotic matter (having negative energy density) which allows two

way travel. The search for a realistic model supporting the energy conditions or to
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minimize the utilization of exotic matter has a significant role in the wormhole history.

For this purpose, various strategies are adopted such as brane wormholes [12], gen-

eralized Chaplygin gas [13] as well as modified theories of gravity. These approaches

may cure the violation of energy conditions and lead to the realistic wormholes. In

fact, the effective energy-momentum tensor in these theories is responsible for energy

conditions violation (extra curvature terms or modified terms take part in the vio-

lation) while normal matter satisfies these conditions. Böhmer et al. [14] discussed

traversable wormholes using conformal symmetry. Rahaman et al. [15] described the

interior of a relativistic star using CKVs under dark effects of generalized telepar-

allel gravity. Sharif and Ikram [16] investigated wormholes by considering traceless,

barotropic as well as isotropic fluids in f(G) gravity and found physically accept-

able wormhole solutions. However, no remarkable work has been done in finding the

wormhole solutions using CKVs technique in modified theories of gravity.

Self-gravitation is one of the principal features of stellar structures in the universe

which keeps these structures together under the influence of their own gravity. In

the absence of self-gravitation, all celestial bodies like stars, galaxies and cluster of

galaxies will expand and vanish. Gravitational collapse is the source of energy behind

structure formation in the universe where over time, once vastly distributed matter

collapses to high density pockets ultimately leading to the hierarchy of all cosmological

structures like galaxies, black holes and all types of stars. Physical quantities like

pressure anisotropy, the Weyl tensor, energy density inhomogeneity and dissipation

characterize self-gravitating fluids in various evolving stellar bodies. The pressure

anisotropy is considered as an important parameter in the stellar evolution which has

significant effects in controlling hydrostatic equilibrium. Herrera and Santos [17] have
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studied significant role of local pressure anisotropy in the evolution of self-gravitating

fluids. The physical relevances of density inhomogeneity, the Weyl tensor and heat

dissipation have been illustrated in [18].

Ellis [19] developed a set of equations comprising dynamical quantities (physical

as well as kinematical quantities) associated with evolving configuration. These equa-

tions govern the evolution and structure of astronomical objects. Herrera et al. [20]

formulated a set of equations governing the evolution of different spherically symmet-

ric self-gravitating systems. Di Prisco et al. [21] investigated the effects of charge on

the dissipative gravitational collapse by using dynamical equations. Sharif and Man-

zoor [22] explored self-gravitating fluid models in Brans-Dicke theory using spherical

as well as cylindrical symmetries. They deduced a set of governing equations to study

the dynamics of anisotropic dissipative fluids.

Scalar expressions with various combinations of physical quantities are known as

structure scalars which have individual physical meanings. These scalars can control

as well as simplify the complexities arising during evolution of the system. Herrera

et al. [23] studied spherically symmetric self-gravitating fluids using structure scalars

generated through orthogonal splitting of the Reimann tensor. Herrera et al. [24]

investigated the effects of electric charge and cosmological constant on the scalars

corresponding to a spherical configuration. Sharif and his collaborators [25] explored

the role of scalars in charged plane symmetry as well as f(R) gravity.

Generally, it is assumed that astrophysical objects are endowed with angular mo-

mentum, e.g., stellar compact objects (like white dwarfs, neutron stars) are in ro-

tational motion and can deviate from spherical symmetry. This deviation is likely

to be incidental rather than basic features of these systems which induces the idea
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of axially symmetry for celestial objects. Some authors [26] studied the evolution

of axially symmetric self-gravitating fluids with perfect matter configurations. The

assumption of perfect fluid seems to be a stringent restriction for axially symmetric

sources even in static case [27, 28]. Herrera et al. [28] studied static interior solutions

of axially symmetric model through structure scalars by considering anisotropic fluid.

Sharif and Nasir [29] extended this work in f(R) gravity. Sharif et al. [30] explored

axial and reflection symmetric systems with anisotropic matter configurations in GR

as well as in self-interacting Brans-Dicke theory.

Stellar objects undergo various phases during their evolution due to different kine-

matical factors. Shear tensor ia one of these factors which measures distortion in

configuration preserving its volume. The role of shear tensor during the evolution

of stellar objects and the consequences emerging from its vanishing have attracted

many researchers. Glass [31] observed that shear-free condition leaves perfect fluid

irrotational if and only if magnetic part of theWeyl tensor vanishes. Collins andWain-

wright [32] hypothesized that spherical system with perfect fluid transformed to FRW

universe during the collapse process under this condition. Tomimura and Nunes [33]

investigated a radiating collapse with heat flow of shear-free geodesic fluid. Herrera

et al. [34] studied stability of spherically symmetric anisotropic matter distribution

using this condition. Herrera and his collaborators [35] provided a comprehensive

analysis of shear-free rotating fluid in the presence of pressure anisotropy and heat

dissipation.

In this thesis, we investigate static spherically symmetric traversable wormholes

in galactic halo region as well as wormholes admitting conformal symmetry in the

background of f(G) gravity. We also explore some dynamical aspects of relativistic
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self-gravitating models. The arrangement of the thesis is as follows.

• Chapter One presents an overview of basic concepts and definitions related to

this thesis.

• Chapter Two explores static spherically symmetric wormhole solutions in galac-

tic halo region as well as wormholes admitting conformal symmetry.

• Chapter Three studies the evolution of spherically symmetric self-gravitating

system in the presence of dark sources through f(G) gravity. We also develop

structure scalars and discuss density inhomogeneity as well as all static inho-

mogeneous solutions for anisotropic spherical models.

• Chapter Four investigates dynamics of axial and reflection symmetric system

in f(G) gravity with and without shear stress.

• Chapter Five provides summary of the results and gives some ideas for future

research.



Chapter 1

Preliminaries

This chapter provides some basic material about this thesis.

1.1 Modified Gauss-Bonnet Gravity

Modified theories of gravity have been the subject of great interest in modern cos-

mology that provide a convincing way for settling the issue of late cosmic accelerated

expansion. Such theories involve higher order derivatives that allow the field equations

to be higher than second order. The inclusion of a particular linear combination of the

Ricci scalar (R), Ricci (Rµν) and Reimann (Rµρνσ) tensors (Eq.(0.0.1)) in the action

gives rise to GB gravity. The corresponding action for higher dimensions (D ≥ 5) is

given as

S =
1

2

∫

dDx[R +G]
√−g + S

M
, (1.1.1)

where S
M

is the matter action. The term G in Eq.(0.0.1) is known as GB quadratic

invariant which is a topological term. This does not contribute to the field equations in

four-dimensional spacetime. In order to obtain non-trivial results in four-dimensional

spacetime, the scalar G in Eq.(1.1.1) is replaced by an arbitrary function f(G) and

7
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the resulting action is named as modified GB gravity. The action for such theory is

given by [3]

S =
1

2

∫

d4x[R + f(G)]
√
−g + S

M
, (1.1.2)

Varying this action with respect to the metric tensor gµν , we obtain the modified

field equations as

Rµν −
1

2
Rgµν + 8[Rµρνσ +Rρνgσµ − Rρσgνµ − Rµνgσρ +Rµσgνρ

+
1

2
R(gµνgσρ − gµσgνρ)]∇ρ∇σf

G
+ (Gf

G
− f)gµν = Tµν , (1.1.3)

where f
G
denotes derivative of f with respect to G and Tµν is the energy-momentum

tensor. In terms of Einstein tensor, Eq.(1.1.3) can be written as

Gµν =
(eff)

T µν =
(m)

T µν +
(GB)

T µν , (1.1.4)

where the notation (eff) (shorten for effective) denotes combined effects of matter

and dark sources (GB terms), Gµν is the Einstein tensor,
(m)

T µν is the energy-momentum

tensors for matter and

(GB)

T µν = 8[Rµρνσ +Rρνgσµ −Rρσgνµ − Rµνgσρ +Rµσgνρ

+
1

2
R(gµνgσρ − gµσgνρ)]∇ρ∇σf

G
+ (Gf

G
− f)gµν , (1.1.5)

is the energy-momentum tensor contributing the gravitational effects due to f(G)

extra dark source terms.

In order to present f(G) as acceptable theory, one should consider viable f(G)

models. A viable model not only helps to shed light over current cosmic accelera-

tion but also obeys the requirements imposed by the solar system experiments with

relativistic background. A modified gravity model should avoid ghosts (instabilities)
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to preserve precise cosmological dynamics. A ghost mode is a propagating degree

of freedom with a kinetic term in the action having opposite sign, i.e., there exist

particles which propagate with negative energy. Ghost often appears, while dealing

with modified gravity theories that indicates DE as a source behind current cosmic

acceleration. A viable f(G) model should satisfy the following conditions [5]

• f(G) and all of its derivatives (f
G
, f

GG
, f

GGG
...) are regular.

• f
GG

> 0, ∀ G and f
GG

→ 0 as |G| → +∞.

• The condition ḟ
G
> 0 is required to avoid ghost.

We shall use two f(G) models in this thesis to discuss some cosmological aspects.

One of the f(G) models is [6]

f(G) = αGl(1 + βGm), (1.1.6)

where α, β, m and l are arbitrary constants with l > 0. This model satisfies the

above conditions and cures four types of finite-time future singularities. The other

model is [4]

f(G) = αGn. (1.1.7)

This model satisfies all the required conditions to be viable. The model parameter n

has some significant effects on R + f(G) cosmology. For n < 0, this model describes

transition from non-phantom to phantom phases while 0 < n < 1
2
gives transition

from decelerated to accelerated universe.
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1.2 Wormholes

A wormhole looks like a tunnel, bridge or tube with two open ends which may link

long (a billion light years or more) or short distances (a few meters) in time. Con-

ventionally, all known wormhole solutions belong to inter-universe wormholes and the

simplest example of such wormholes is the Schwarzschild wormhole. However, this is

not traversable as it possesses an anti-horizon (surface from which objects can come

out but cannot go in) which is unstable against small disturbances. Even when light

passes through such anti-horizon, it changes to a horizon thereby closing and even-

tually destroying the wormhole. In such situation, an object fails to link with other

end of wormhole.

Morris and Thorne [11] presented the idea of traversable wormhole in a way that

a human may traverse from one side of the wormhole to the other. They generalized

Schwarzschild wormhole to eliminate the event horizon and proposed static spherically

symmetric spacetime representing wormhole geometry given by

ds2 = −e2R(r)dt2 +

(

dr2

1− b(r)
r

+ r2dθ2 + r2 sin2 θdφ2

)

, (1.2.1)

where R(r) and b(r) are known as redshift and shape functions, respectively. The

redshift (or potential) function determines gravitational redshift of a light particle

(photon) and the shape function defines shape of the wormhole. The radial coordinate

r bears non-monotonical behavior as it goes down from infinity to the lowest value

of r which defines the wormhole throat r0 (say) and then returns from throat to

infinity. Here we list some essential properties which need to be fulfilled by a spherical

symmetric traversable wormhole [11].

• A horizon prevents two-way travel through a wormhole. To avoid the horizon of
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wormhole, the magnitude of redshift function must be finite everywhere. This

gives rise to no-horizon condition for a wormhole which is imposed on redshift

function.

• The shape function must satisfy the flaring-out condition on throat, i.e., to

have proper shape for a wormhole, the ratio of radial coordinate to the shape

function at that coordinate must be 1. This yields b(r
0
) = r

0
and b′(r

0
) < 1.

• The radial distance d(r) = ±
∫ r

r0

dr√
1− b

r

, for r ≥ r0 should be finite throughout

the space. The + sign represents upper part of spacetime while − indicates the

lower one which are joined through the wormhole throat.

• At large distances, the asymptotic flatness should be accomplished by the space-

time, i.e., b(r)
r

→ 0 as r → ∞.

Schwarzschild solution represents a particular type of wormhole which depends only

on the mass of wormhole while Morris-Thorne solution (1.2.1) represents a class of

wormhole solutions for arbitrarily large number of redshift as well as shape function

satisfying the above conditions.

In order to keep wormhole throat open, the energy-momentum tensor must be

negative which enables one to traverse through it. In this case, NEC (sum of energy

density and pressure of matter) violates and the matter is termed as exotic (normal

matter satisfies this condition). In GR, the violation of this condition is the necessary

tool for the existence of wormholes. In order to minimize the usage of exotic matter

at throat region and thereby obtaining realistic wormhole, modified theories provide

the effective energy-momentum tensor which violates WEC.

Energy conditions (arising from the Raychaudhuri equation) are used to work out
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various important results in different physical scenarios, in particular, to describe

physically realistic matter configuration. In order to discuss NEC and WEC, we

assume the energy-momentum tensor Tµν = diag(ρ, p1, p2 , p3), where ρ is the energy

density and p1 , p2, p3 denote pressures. The relationship between Raychaudhuri

equation and attractive nature of gravity with timelike vector Uµ yields the inequality

TµνU
µUν ≥ 0 which defines WEC. In component form of the energy-momentum

tensor, we have ρ ≥ 0, ρ+ p
i
≥ 0, i = 1, 2, 3. In modified theories, the usual energy-

momentum tensor becomes effective
(eff)

T µν and the corresponding matter components

as
(eff)

ρ ,
(eff)

p1 ,
(eff)

p2 and
(eff)

p3 . The WEC implies NEC Tµνk
µkν ≥ 0 for any null vector kµ,

which gives ρ+ p
i
≥ 0 and hence

(eff)

ρ +
(eff)

p
i
≥ 0.

1.3 Galactic Halo Region

Galactic halo region is a large spheroidal region aggregating scattered stars, dust and

gas surrounding a galaxy. This is a much larger region (several times greater than

the mass of the rest of the galaxy) containing large amount of non-luminous (dark)

matter - also known as dark halo or extended halo. The plot of the velocity (orbital

speed) of stars in a galaxy versus radius (different distances from the center) gives the

galaxy rotation curves (also called velocity curves). It is usually provided graphically

as a plot, and data observed from each side of a spiral galaxy is generally asymmetric

so that data from each side is averaged to create the curve. A flat rotation curve is

one in which the velocity is constant over some range of radii which are observed in

galaxies with a central bulge in their disk (i.e. stars are observed to revolve around

the center of these galaxies at a constant speed over a large range of distances from

the center of galaxy). A flat rotation curve implies that mass continues to increase
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linearly with radius. The non-luminous matter (dark matter which does not interact

with normal matter and is detected only through its gravitational effects on visible

matter) is considered responsible for these flat rotation curves.

The N-body simulation is the simulation for a dynamical system comprising N-

particles, usually under physical forces (such as gravity). Navarro et al. [36] used

N-body simulations to confront the structure of dark halos in the standard ΛCDM

cosmology which led to the density profile

ρ =
k

r
rc
(1 + r

rc
)2
, (1.3.1)

where k and rc represent characteristic density and scale radius, respectively. This

density expression is known as Navarro-Frenk-White energy density. Rahaman et al.

[37] used this density profile to check the possible existence of wormholes with these

strange halos. They also discussed some characteristics of these galactic halos which

support wormhole geometry and checked the equilibrium condition for this geometry.

1.4 Conformal Symmetry

It is always difficult to find exact solutions of the Einstein field equations unless some

certain symmetry restrictions are imposed on spacetime geometry. These restrictions

are expressed in terms of isometries (Killing vectors) possessed by a spacetime metric.

Various symmetries arising from geometrical viewpoint are known as collineations

defined by

LξΦ = Θ, (1.4.1)

where L is the Lie derivative, ξ is collineation (symmetry) vector, Φ is tensor field

which can be gµν , Rµν , R
η
µνσ, Γ

σ
µν and Θ is the tensor with same index symmetries as
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Φ. One can deduce the known collineations by substituting particular forms of Φ and

Θ. Amongst them, CKVs are the best for deeper insight into spacetime geometry

which are obtained by replacing Φ = gµν and Θ = ϕgµν (ϕ is an arbitrary function

(conformal factor)) in Eq.(1.4.1). This provides inheritance symmetry which helps to

find exact solutions from highly non-linear field equations. Suppose that the vector

field ξ generates conformal symmetry so that metric tensor gµν is conformally mapped

onto itself along ξ, then from Eq.(1.4.1), we obtain

Lξgµν = ϕgµν , (1.4.2)

For ϕ = 0, this equation yields Killing vectors, ϕ = constant (real) gives homoth-

eties (homothetic vector field) and the general choice ϕ = ϕ(t, X) produces CKVs.

Equation (1.4.2) can also be written as

gµν,αξ
α + gανξ

α
,µ + gµαξ

α
ν = ϕgµν . (1.4.3)

1.5 Dynamical Quantities

During stellar evolution, a system bears various phases like it can expand or contract,

its shape can be distorted or it can take a rotation. Dynamical quantities play a

vital role in the description of the system in such situations. These quantities include

physical and kinematical variables given as follows.

1.5.1 Kinematical Quantities

Kinematical quantities describe the features of fluid motion comprising four acceler-

ation, expansion parameter, shear as well as vorticity tensors [19].
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(i) Four Acceleration

The combined effects of gravitational as well as inertial forces on the fluid can be

described by four acceleration which is the rate at which the four velocity (uµ) of

matter changes with respect to time. It is given as

aµ = uµ;νu
ν, a2 = aµaµ, (1.5.1)

where the symbol ; denotes covariant derivative. It vanishes for fluid particles moving

with uniform velocity and the corresponding fluid is called geodesic fluid which plays

a significant role in the evolution of the system.

(ii) Expansion Parameter

The volume expansion and contraction of fluid can be measured by expansion param-

eter ϑ. It evaluates the rate of change of distance of neighboring fluid particles with

respect to time. It is a scalar quantity defined by

ϑ = uµ
;µ. (1.5.2)

The positive values of this parameter (ϑ > 0) define the expanding behavior of matter

(distance of neighboring fluid particles is increasing with time) and negative values

(ϑ < 0) define the contracting behavior of matter (distance of neighboring fluid

particles is decreasing with time).

(iii) Shear Tensor

The shear tensor is a symmetric tensor which is used to evaluate distortion appearing

in the fluid due to motion defined as

σµν = u(µ;ν) + a(µuν) −
1

3
ϑhµν , (1.5.3)
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where u(µ;ν) =
1
2
(uµ;ν+uν;µ) is the symmetric part of four velocity and hµν = gµν+uµuν

is the projection tensor. The trace of shear tensor is called shear scalar defined as

σ2 = 1
2
σµνσ

µν . The condition σµν = 0 ⇔ σ = 0 defines a shear-free system which

provides interesting consequences for stellar evolution.

(iv) Vorticity Vector

The local spinning of the system is defined by the vorticity vector

wµ =
1

2
ηµναβu

ν;αuβ =
1

2
ηµναβΩ

ναuβ, (1.5.4)

where ηµναβ is the Levi-Civita tensor and

Ωµν = u[µ;ν] + a[µuν] (1.5.5)

defines vorticity tensor. Here u[µ;ν] =
1
2
(uµ;ν − uν;µ) is the anti-symmetric part of the

four velocity. The trace of vorticity tensor is vorticity scalar defined as Ω2 = ΩµνΩ
µν .

If the system exhibits non-spinning behavior, then

Ω = 0 ⇔ Ωµν = 0 ⇔ wµ = 0. (1.5.6)

1.5.2 The Weyl Tensor

The Weyl tensor or the Weyl curvature tensor is the four indexed tensor described as

a combination of the Riemann tensor, Ricci tensor and Ricci scalar. It explains how

an object is distorted due to the effects of tidal force and is given as

Cµ
ρσν = Rµ

ρσν −
1

2
Rµ

σgρν +
1

2
Rρσδ

µ
ν − 1

2
Rρνδ

µ
σ +

1

2
Rµ

νgρσ +
1

6
R(δµσgρν − δµν gρσ). (1.5.7)
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Its vanishing leads to conformally flatness condition of the fluid distribution. This

tensor can be decomposed into two parts, magnetic Mµν and electric Eµν parts

(eff)

E µν = Cµανβu
αuβ,

(eff)

M µν =
1

2
ηµαδγC

δγ
νλu

αuλ. (1.5.8)

Just analogous to electric and magnetic components of electromagnetic force, the

decomposition of the Weyl tensor into electric and magnetic parts is an attempt to

represent constituents of gravitational force in different directions.

1.5.3 Heat Dissipation

Heat dissipation (due to emission of photons or neutrinos which are massless particles)

during collapse cannot be overemphasized and is, indeed, a characteristic process

during stellar evolution. It is irreversible process in which energy of a system is

transformed from initial to final state so that the initial one has more capability to

do any mechanical work. For example, heat dissipation as it is a transformation of

energy from a hotter to cooler body. It plays an important role in the evolution and

formation of various astrophysical objects, e.g., dissipation due to neutrino emission

of gravitational binding energy leads to the formation of neutron stars or black holes

[38]. Gravitational collapse is a highly dissipative process which leads to structure

formation of the universe [39].

1.5.4 Density Inhomogeneity

The energy density inhomogeneity is indeed unavoidable during stellar evolution. The

homogeneous or non-homogeneous behavior of energy density depends upon deriva-

tive of density variable. If the derivative vanishes (
(eff)

ρ ,ν = 0), there will be homogenous
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distribution of density, otherwise, there will be density inhomogeneity. The collec-

tion of dynamical variables which causes density inhomogeneity is known as density

inhomogeneity factors. The vanishing of such combination of dynamical variables is

necessary and sufficient for homogeneity of energy density [23].

1.5.5 Transport Equation

The heat transport equation elucidates dissipation process and propagation of thermal

energy inside the system. It controls the flow of radiation in fluid. The non-vanishing

value of time relaxation parameter τ (a positive definite quantity having different

physical meaning) serves as a cardinal parameter in this equation which defines the

time interval in which the system returns to its steady state. Consequently, studying

transient regimes, e.g., the evolution between two steady states, the role of τ cannot

be ignored. The heat transport equation for propagation of thermal perturbations is

given as

τhα
βq

β
;µu

µ + qα = −Khαβ(T,β + Taβ)−
1

2
KT

2

(

τuµ

KT2

)

;µ

qα, (1.5.9)

where K is thermal conductivity parameter and T represents temperature parameter

which measures the quantity of heat (degree of hotness and coldness).

1.6 Structure Scalars and Evolution Equations

The scalar functions associated with fluid contents are termed as structure scalars. Bel

[40] introduced these quantities through orthogonal splitting of the Riemann tensor.

These scalars in turn are used to reduce complexity of analyzing various astrophysical

scenarios to describe structure and evolution of self-gravitating systems. The triplet
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of tensors are given as follows [23]

Xµν =
1

2
ηαβµγR

∗
αβνδu

γuδ, Yµν = Rµγνδu
γuδ, Zµν =

1

2
ηµγαβR

αβ
νδ u

γuδ, (1.6.1)

where R∗
µνγδ =

1
2
ηαβγδR

αβ
µν . The tensors Xµν and Yµν are further written in the com-

bination of their trace and traceless parts as

Xµν =
1

3
X

T
hµν +X

TF
(uµuν −

1

3
hµν), Yµν =

1

3
Y

T
hµν + Y

TF
(uµuν −

1

3
hµν), (1.6.2)

where X
T

= Xµ
µ , Y

T
= Y µ

µ are the trace parts of the corresponding tensors and

X
TF
, Y

TF
denote traceless parts of the respective tensors. The scalar function associ-

ated to the tensor Zµν is defined as Z =
√

ZµνZµν . The quantities X
T
, X

TF
, Y

T
, Y

TF

and Z are known as structure scalars (scalar functions). These scalars further consist

of dynamical variables and have individual physical meanings for the description of

several features of relativistic self-gravitating fluids. Some particular physical aspects

of these scalars are given as follows.

• X
T
is directly linked with the energy density of fluid.

• The trace-free part X
TF

controls density inhomogeneity (irregularity) in the

fluid configuration.

• The trace part Y
T
describes the mass for a system in equilibrium.

• The trace-free part Y
TF

measures the effects of inhomogeneous density and

anisotropic pressure on the mass function.

• The scalar Z describes the dissipative flux.

An equation (usually expressed in differential form) which explores various phases

of an evolving system by linking structure scalars is known as evolution equation.
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There is a complete set of evolution equations evoking the phenomenon of stellar

evolution. This set of equations comprises dynamical (conservation) equations, Ray-

chaudhuri equation for expansion parameter and evolution equations for shear as well

as the Weyl tensor. The dynamical equations evaluate conservation of total energy of

an evolving system obtained through Bianchi identities Rµναβ;γ+Rµνγα;β+Rµνβγ;α = 0.

Raychaudhuri equation describes the evolution (expansion or contraction) equation

of expansion scalar which measures volume of the system. This equation is derived

from Ricci identity for four velocity

uµ;ν;α − uµ;α;ν = Rβ
µναuβ, (1.6.3)

where uµ;ν = aµuν + σµν + 1
3
ϑhµν . The evolution equation of shear tensor demon-

strates stellar deformation appearing during different phases of the evolution. The

evolution equations for the Weyl tensor are used to analyze factors causing density

inhomogeneity.



Chapter 2

Wormhole Solutions

In this chapter, we explore static spherically symmetric wormhole solutions under the

dark effects of f(G) gravity. For this purpose, we construct field equations by taking

the effective energy-momentum tensor which contributes combined effects of matter

and dark sources. Firstly, we explore possible existence of wormhole in galactic halo

region either by assuming a viable f(G) model (1.1.6) to construct shape function or

deduce f(G) model by specifying the shape function. We also investigate stability

of the resulting wormhole solutions. Secondly, we study wormhole solutions with

conformal symmetry by taking two types of shape function and power-law f(G) model

(1.1.7). In both cases, we examine the behavior of WEC to deduce the nature of

matter threading the wormholes.

This chapter is organized in three sections. In section 2.1, we develop field equa-

tions for static spherically symmetric wormhole spacetime in the presence of dark

sources. Section 2.2 investigates possible existence of wormhole in galactic halo re-

gion. In section 2.3, we discuss wormhole solutions by imposing conformal symmetry.

Results of this chapter have been compiled in the form of two papers which have been

published separately [41, 42].

21
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2.1 Field Equations

For wormhole geometry (1.2.1), we matter distribution given as

Tµν = (ρ+ pt)uµuν + ptgµν + (pr − pt)vµvν , (2.1.1)

where pr and pt are radial and tangential components of pressure. The four ve-

locity uµ and unit spacelike vector vµ satisfy the relations uµu
µ = −1, vµv

µ =

1 and uµv
µ = 0. The energy-momentum tensor can also be written as Tµν =

diag(−ρ(r), pr(r), pt(r), pt(r)). Equation (1.1.3) yields the corresponding field equa-

tions as

b′

r2
+

4

r5
[(b− rb′)(3b− 2r)f ′

G
+ 2rb(r − b)f ′′

G
]−Gf

G
+ f = ρ, (2.1.2)

2
R′

r
(1− b

r
)− b

r3
+

4R′

r3
(1− b

r
)(3b− 2r)f ′

G
+Gf

G
− f = p

r
, (2.1.3)

(1− b

r
)[R′′ +

R′

r
+R′2 − b′r − b

2r(r − b)
(R′ +

1

r
)]− 2

r3
(1− b

r
)[2r(R′′ +R′2)

×(r − b)− 3R′(b′r − b)]f ′
G
− 4R′

r
(1− b

r
)2f ′′

G
+Gf

G
− f = p

t
. (2.1.4)

The GB invariant (0.0.1) takes the form

G =
4

r5
[R′(3b− 2r)(b′r − b)− 2r2b(R′2 +R′′)(1− b

r
)]. (2.1.5)

In order to check the possibility that wormhole might form without exotic matter, we

examine NEC by taking effective energy density and radial pressure from Eqs.(2.1.2)

and (2.1.3) as

(eff)

ρ +
(eff)

pr =
b′r − b

r3
+

2R′

r
(1− b

r
) < 0.

This implies that

2R′

r
<

b− rb′

2r2
(1− b

r
)−1,

whose right hand side remains positive leading to the violation of NEC.
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2.2 Wormhole in Galactic Halo Region

For a traversable wormhole, there should be no horizon and even no singularity which

is possible only if the redshift functionR(r) is finite for all values of r. Thus we assume

redshift function as e2R(r) = C
1
rh [43], where h = 2(vφ)2, vφ is the rotational velocity

for flat rotational curves observed in galactic halo. This rotational velocity is nearly

constant through these rotational profiles and we let C1 = ( 1
rc
)h, the integrating

constant. Consequently, the field equations (2.1.2)-(2.1.4) and GB invariant (2.1.5)

become

b′

r2
+

4

r5
[(b− rb′)(3b− 2r)f ′

G
+ 2rb(r − b)]f ′′

G
−Gf

G
+ f = ρ, (2.2.1)

h

r2
(1− b

r
)− b

r3
+

2h

r4
(1− b

r
)(3b− 2r)f ′

G
+Gf

G
− f = p

r
, (2.2.2)

(1− b

r
)[(

h

2r
)2 − (h+ 2)(b′r − b)

4r2(r − b)
]− 2h

r4
(1− b

r
)[(h− 1)

×(r − b)− 3

2
(b′r − b)]f ′

G
− 2h

r2
(1− b

r
)2f ′′

G
+Gf

G
− f = pt , (2.2.3)

G =
4

r5
[
h

2r
(3b− 2r)(b′r − b)− h(h− 2)b

2
(1− b

r
)]. (2.2.4)

These are the general expressions of matter contents in terms of b(r) and specific

f(G) model to thread the wormhole. Using Eq.(1.3.1) in (2.2.1), we obtain

b′

r2
+

4

r5
[(b− rb′)(3b− 2r)f ′

G
+ 2rb(r − b)]f ′′

G
−Gf

G
+ f =

kr2
c

r(r + rc)
, (2.2.5)

which consists of two unknowns f(G) and b(r). In order to discuss the wormhole

structure in galactic halo, we impose constraints on matter contents by examining

the validity of WEC. For this purpose, we adopt strategy of specifying (i) an arbitrary

f(G) model to construct b(r) and (ii) an expression of b(r) to deduce f(G) model.
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Figure 2.1: Plots of b(r) and b(r)
r

versus r. (a) displays the shape function b(r) and

(b) shows b(r)
r

versus r.

2.2.1 Wormholes for a Viable f(G) Model

Using Eq.(1.1.6) in (2.2.5), we obtain differential equation for b(r) as

b′

r2
+

4

r5
[αGl−2G′((b− rb′)(3b− 2r))(l(l − 1) + β(l +m)(l +m− 1)Gm)

+2r2b(1 − b

r
)(αl(l − 1)Gl−2((l − 2)G−1G′2 +G′′) + αβ(l +m)(l +m− 1)

×Gl+m−2((l +m− 2)G−1G′2 + G′′))]− αGl(l − 1 + β(l +m− 1)Gm)

=
kr3

c

r(r + r
c
)2
, (2.2.6)

where G is given in Eq.(2.2.4). This equation cannot be solved analytically, so we

solve it numerically for b(r). To check the behavior of shape function, we use graph-

ical analysis by incorporating the values of parameters as α = 0.001, β = 1, k =

0.05, rc = 10, l = 0.0002 and m = −0.05 along with initial conditions b(1) = 0.5 and

b′(1) = 0.6. These are arbitrary constants which give us reasonable results. Any other

combination of these parameters change the results. Figure 2.1(a) shows increasing

behavior of b(r) versus r while Figure 2.1(b) indicates that b
r
→ 0 as r → ∞ leading

to an asymptotically flat universe. Also, it meets the condition 1− b
r
> 0. The throat

radius of wormhole is located at r = r0 for which the plot of b(r) − r crosses the

radial axis. Figure 2.2(a) shows that the plot of b(r) − r meets the radial axis at



25

0 1 2 3 4 5
r

-1

-0.5

0

0.5

1

b
H
r
L

-
r

HaL

0 1 2 3 4 5
r

-0.5

0

0.5

1

1.5

2

2.5

3

d
b

 H
r
L

��
��
��
���
��
��
��
��

d
r

HbL

Figure 2.2: Plot (a) shows the behavior of b(r)− r and (b) represents db(r)
dr

versus r.

r
0
≈ 1.1 which is the throat radius. Also, b

r
< 1 for r

0
≈ 1.1 satisfying the essential

condition of shape function. The graph of db
dr

is shown in Figure 2.2(b) which depicts

db
dr
(1.1) ≈ 0.49 < 1 (i.e., db

dr
(r0) < 1) and hence the flaring-out condition is fulfilled.

We analyze the nature of matter that threads a wormhole via WEC for which the

energy density and pressure components are given as follows

ρ =
b′

r2
+

4

r5
[αGl−2G′((b− rb′)(3b− 2r))(l(l − 1) + β(l +m)(l +m− 1)Gm)

+2r2b(1− b

r
)(αl(l − 1)Gl−2((l − 2)G−1G′2 +G′′) + αβ(l +m)(l +m− 1)

×Gl+m−2((l +m− 2)G−1G′2 +G′′))]− αGl(l − 1 + β(l +m− 1)Gm),

pr =
h

r2
(1− b

r
)− b

r3
+

2hα

r4
Gl−2(1− b

r
)(3b− 2r)(l(l − 1) + β(l +m)(l +m− 1)

× Gm)G′ + αGl(l − 1 + β(l +m− 1)Gm),

p
t

= (1− b

r
)[(

h

2r
)2 − (h+ 2)(b′r − b)

4r2(r − b)
]− 2hα

r4
(1− b

r
)[(h− 1)(r − b)− 3

2
(b′r − b)]

× Gl−2(l(l − 1) + β(l +m)(l +m− 1)Gm)G′ − 2h

r2
(1− b

r
)2(αl(l − 1)((l − 2)

× G−1G′2 +G′′)Gl−2 + αβ(l +m)(l +m− 1)Gl+m−2((l +m− 2)G−1G′2 +G′′))

+ αGl(l − 1 + β(l +m− 1)Gm).

The graphs of WEC (ρ, ρ+ p
r
and ρ+ p

t
) against r (2.2.6) are shown in Figure 2.3

using the same parametric values. Figure 2.3(a) indicates the behavior of energy
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Figure 2.3: Plots of WEC with specific f(G) model, (a) represents ρ versus r, (b)
represents ρ+ pr versus r and (c) shows ρ+ pt versus r.

density which is decreasing but remains positive for the whole range of r. The plot

in Figure 2.3(b) represents initially increasing then decreasing but positive behavior

of ρ + pr for all values of r. The profile of ρ + pt in Figure 2.3(c) shows almost the

same behavior as Figure 2.3(a). Thus, the model and resulting shape function obey

WEC in the galactic halo region and hence accommodate the wormhole geometry

with ordinary matter.

2.2.2 Wormholes for a Particular Shape Function

Here we assume a specific form of the shape function b(r) and construct f(G) model.

We consider the following particular form of the shape function as [44]

b(r) = rt(
r

rt

)γ, γ < 1 (2.2.7)
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where γ is an arbitrary constant and rt is the throat radius. The expression for GB

invariant becomes

G =
4

r5
(
r

rt

)γ [
hrt

2r
(3r

t
(
r

rt

)γ − 2r)(γ − 1)− h(h− 2)rt

2
(1− (

r

rt

)γ−1)].

Using this equation and (2.2.7) in Eq.(2.2.5), we obtain the following differential

equation for f(G) in terms of r as

γ

r2
(
r

r
t

)γ−1 +
4

r5
(
r

r
t

)γ[(3rt(
r

r
t

)γ − 2r)(rt − rγ(
r

r
t

)γ)
G′f ′′ − f ′G′′

(G′)2
− (1− (

r

r
t

)γ−1)

×2r2r
t
(
G′f ′′ − f ′G′′

(G′)2
)′]−G

f ′

G′
+ f =

kr3
c

r(r + rc)
2
.

We solve this equation numerically by choosing the values rt = 0.35 and γ = 0.02 with

initial conditions f(1) = 0.25, f ′(1) = 0.15. The function obtained from the above

equation is based on the Navarro-Frenk-White energy density profile and should be

sufficient to motivate researchers to look for wormholes in galactic halos observa-

tionally. Figure 2.4 shows that the function f(r) is positively decreasing against r.

To thread the wormhole solutions by normal matter, this function should satisfy

WEC. The graphs of ρ, ρ+ pr and ρ+ pt are given in Figure 2.5 by taking the same

values of parameters. The graph of energy density in Figure 2.5(a) shows decreasing
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Figure 2.5: Plots of WEC (ρ, ρ+ p
r
and ρ+ p

t
) versus r for specific shape function

b(r).

but positive behavior of ρ. The behavior of ρ+pr in Figure 2.5(b) initially decreases

with positive values and then continuously increases after r ≈ 2.35 while Figure

2.5(c) depicts the behavior of ρ+ pt which is the same as that of ρ+ pr , thus WEC

is satisfied. This shows that physically acceptable wormholes exist in galactic halo

threaded by normal matter for all values of r.

2.2.3 Equilibrium Condition

Here, we check the equilibrium state of wormhole solutions for both cases. For this

purpose, we consider the generalized Tolman-Oppenheimer-Volkov equation [45] in

effective manner as

d
(eff)

p
r

dr
+

µ′

2
(
(eff)

ρ +
(eff)

pr ) +
2

r
(
(eff)

pr − (eff)

pt ) = 0,

for the metric ds2 = diag(eµ(r),−eν(r),−r2,−r2 sin2 θ). We rewrite this equation as
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−
(eff)

M(
(eff)

ρ +
(eff)

pr )

r2
e

µ−ν
2 − d

(eff)

pr

dr
+

2

r
(
(eff)

pt − (eff)

pr ) = 0, (2.2.8)

where
(eff)

M = µ′r2

2
eν−µ is the effective gravitational mass. Equation (2.2.8) describes

equilibrium state for wormhole supported by gravitational and hydrostatic forces

plus anisotropic force (force due to anisotropy in matter distribution). These forces,

respectively, are defined as

F
G
= −

(eff)

M(
(eff)

ρ +
(eff)

pr )

r2
e

µ−ν
2 , F

H
= −d

(eff)

pr

dr
, F

A
=

2

r
(
(eff)

pt − (eff)

pr ).

For a wormhole to be in equilibrium, these forces should satisfy the relation

F
G
+ F

H
+ F

A
= 0.

Figure 2.6 shows three forces F
G
, F

H
and F

A
for both cases taking the same values of

parameters. Both graphs indicate that the equilibrium state of wormhole solutions can

be attained through the combined effect of these forces. We can see that gravitational

force is much smaller (becomes zero) than the other two forces while hydrostatic and

anisotropic forces are opposite to each other. This balances the system and makes

the wormhole solutions in equilibrium state.
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2.3 Conformally Symmetric TraversableWormholes

Herrera and his collaborators [46] considered static symmetry vector ξ and found

singular solutions for isotropic and anisotropic fluids at the center of stars. To over-

come this shortfall, Maartens and Maharaj [47] assumed static ϕ (conformal factor)

but non-static ξ and obtained singularity free solutions at the center of stars. Here,

we shall follow this later approach. It is mentioned here that singular solutions at

the center of stars are not problematic for wormhole geometries as there is no cen-

ter for wormholes. Thus we also consider phantom wormholes with static conformal

symmetry. The non-static conformal vector field is [47]

ξ = a(t, r)∂t + b(t, r)∂r, (2.3.1)

and static conformal factor is ϕ = ϕ(r). Equation (1.4.3) for (1.2.1) yields

a = a1 +
ct

2
, b =

a2r

2

√

1− b(r)

r
, (2.3.2)

ϕ(r) = a2

√

1− b(r)

r
, (2.3.3)

e2R(r) = a3r
2 exp



−2c

a
2

∫

1

r

√

1− b(r)
r

dr



 , (2.3.4)

where a1 , a2 , a3 and c are constants of integration. Using Eq.(2.3.2) in (2.3.1), we

have

ξ =

(

a1 +
ct

2

)

∂t +
a2r

2

√

1− b(r)

r
∂r. (2.3.5)

Without any loss of generality, we may assign a
1
= 0 and a

2
= 1 [47] so that

ξ =

(

ct

2

)

∂t +
r

2

√

1− b(r)

r
∂r, (2.3.6)

b(r) = r(1− ϕ2(r)), (2.3.7)
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R(r) = ln[a3r]− c

∫

1

r

√

1− b
r

dr. (2.3.8)

Interestingly, the conformal factor in Eq.(2.3.7) reduces to zero at throat (i.e., ϕ(r0) =

0 as b(r0) = r0 at throat). Consequently, the field equations (2.1.2)-(2.1.4) and GB

invariant (2.1.5) in terms of conformal factor can be written as

ρ =
1

r2
(1− ϕ2 − 2rϕϕ′)− 2ϕ2

r3
[(4rcϕ′ − ϕ2 + c

2 + 6rϕϕ′ − 6rcϕ′)]f ′
G
− 8ϕ3

r5

× (ϕ− c)f ′′
G
−Gf

G
+ f, (2.3.9)

p
r

=
1

r2
(3ϕ2 − 2cϕ− 1) +

4

r3
ϕ2(ϕ− c)(1− 3ϕ2)f ′

G
+Gf

G
− f, (2.3.10)

p
t

=
1

r2
(2ϕ2 − 2cϕ+ 2rϕϕ′ + c

2)− 4ϕ2

r3
[3rϕϕ′ − crϕ′ − cϕ+ c

2]f ′
G
− 4ϕ

r2

× (ϕ− c)f ′′
G
+Gf

G
− f, (2.3.11)

G =
8

r4
[rϕϕ′(cϕ− 1)− (c− ϕ)(3rϕ2ϕ′ − cϕ+ c)]. (2.3.12)

Here we discuss some specific wormhole solutions by considering a particular f(G)

model (1.1.7) with parameters as α = 0.1, c = 1.5, ̟ = 0.1 and initial conditions

b(0.5) = 1, b′(0.5) = 0.1 for graphical analysis.

2.3.1 Some Specific Wormhole Solutions

We investigate wormhole solutions by assuming two types of shape functions and a

particular equation of state to deduce shape function. First, we consider two types

of shape functions [14].

i. b(r) = r0

The interesting feature of this constant shape function is that the energy density for

matter vanishes and we are left only with energy density of dark sources. Equation
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(2.3.4) leads to

e2R(r) = a2
3
r2
(

2r − r0 + 2r

√

1− r
0

r

)−2c

.

The matter variables and GB invariant become

ρ =
4

r3
[r0(3r0 − 2r)f ′

G
+ 2rr0(r − r0)f

′′
G
−Gf

G
+ f,

p
r

=
2r − 3r0

r3
− 2c

r2

√

1− r0

r
+

4

r3
(1− r0

r
)(
1

r
− c
√

r(r − r0)
)(3r

0
− 2r)f ′

G

+ Gf
G
− f,

pt =
1

r2
(2 + c

2 − r0

r
− 2c

√

1− r0

r
)− 2

r3
(1− r0

r
)[

r − r0

(r(r − r0))
3
2

(r + 2c
√

r(r − r0))

+ 3r0(
1

r
− c
√

r(r − r0)
)]f ′

G
+Gf

G
− f,

G =
8

r4
[
r0

2r
(c

√

1− r0

r
− 1)− (

3r0

2r

√

1− r0

r
+ c

r0

r
)(c−

√

1− r0

r
)].

We examine the behavior of WEC by plotting their graphs which indicate that these

conditions are satisfied for even values of n but violated for odd range of n. Here, we

give one graph for n = 2 (Figure 2.7 (left), exemplifying the even range of n) and one

graph for n = 3 (Figure 2.7 (right) indicating the odd range of n) for the respective

case. The graph on left side shows the same decreasing but positive behavior for
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ρ (red), ρ + pr (green) and ρ + pt (blue) representing the validity of WEC. Thus

the even values of n lead to physically realistic wormholes (i.e., wormholes threaded

by normal matter). The graph for odd values of n on the right side of Figure 2.7

shows increasing but negative behavior for ρ (red), ρ + pr (green) and ρ + pt (blue)

indicating the violation of WEC. This demonstrates that wormholes are supported

by exotic matter. In fact, here the effective energy-momentum tensor is responsible

for this violation with odd range of n.

ii. b(r) =
r2
0

r

For this shape function, Eq.(2.3.4) gives

e2R(r) = a2
3
r2(r +

√

r2 − r2
0
).

The field equations for this solution take the form

ρ = −2r2
0

r4
+

4

r5
[
2r3

0

r2
(3− 2r)f ′

G
+ 2rr0(r

2 − r2
0
)f ′′

G
]−Gf

G
+ f,

pr =
1

r2
(2− 3r2

0

r2
−

2c
√

r2 − r2
0

r
) +

4

r6
(
1

r
− c
√

r2 − r2
0

)(r2 − r2
0
)(3r2

0
− 2r2)f ′

G

+ Gf
G
− f,

p
t

=
1

r2
(2 + c

2 −
2c
√

r2 − r2
0

r
)− 4

r6

√

r2 − r2
0
(r2

0
− r2 + cr

√

r2 − r2
0
)f ′

G

− 4

r3
(r − r2

0
)2(

1

r
− c
√

r2 − r2
0

)f ′′
G
+Gf

G
− f

with GB invariant

G =
8

r4
[
r2
0

r2
(
c
√

r2 − r2
0

r
− 1)− (c−

√

r2 − r2
0

r
)(
r2
0

√

r2 − r2
0

r3
− c(r2 − r2

0
)

r2
+ c)].

Similar to the first case, WEC are valid only for even values of n. Figure 2.8 (left)

shows the behavior of WEC (ρ, ρ + pr , ρ + pt) for n = 2 (exemplifying the even
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values of n). This shows the same behavior for ρ, ρ+ pr , ρ+ pt slightly down to the

negative side but then goes along r-axis (zero) for r ≥ 4. Hence physically realistic

wormholes are threaded by normal matter for r ≥ 4 with even values of n. The

plot of WEC on the right side of Figure 2.8 shows negatively increasing behavior for

n = 3 (illustrating the odd range of n) which accomplishes the violation of energy

conditions leading to the wormholes threaded by exotic matter.

Figures 2.7 and 2.8 represent the behavior of energy conditions for shape functions

b(r) = r0 and b(r) =
r2
0

r
, respectively along with model (1.1.7) for which G is defined

in Eq.(2.3.12). The model parameter n can take the values 1, 2, 3, 4, 5 · ·· to draw

the graphs of WEC. On substituting the successive values of n, the WEC shows

negative behavior for n = 1, 3, 5 · ·· depicting the violation of energy conditions. This

violation arises due to the effective energy-momentum tensor which logically leads to

the wormholes threaded by exotic matter. On the other hand, for n = 2, 4, 6, · · ·,

WEC stays on positive side representing the validity of energy conditions leading to

physically realistic wormholes (threaded by normal matter). The graphical analysis

clearly shows that when n is even, matter terms become dominant over GB (DE)
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Figure 2.9: Plots of (a) b(r) and (b) b(r)
r

versus r with n = 2 when EoS is ρ =
̟(p

t
− p

r
).

terms. This leads to physically realistic state where the usage of exotic matter has

been minimized and wormholes could exist which can be threaded by normal matter.

When n is odd, DE terms become dominant over matter terms, i.e., the effective

energy-momentum tensor becomes pivotal which recommends exotic matter to thread

unrealistic wormholes.

iii. Specific Equation of State

An interesting EoS of the form ρ = ̟(pt − pr) (̟ is an arbitrary constant) was first

time studied by Böhmer et al. [14] which they used to evaluate shape function. Using

Eqs.(2.1.2)-(2.1.4) in this EoS, we obtain

b′

r2
−̟(2

R′

r
(1− b

r
)− b

r3
− (1− b

r
)[R′′ +

R′

r
+R′2 − b′r − b

2r(r − b)
(R′ +

1

r
)]) + [

4

r5

×(3b− 2r)(b− rb′)−̟(
4R′

r3
(1− b

r
)(3b− 2r)) +

2

r3
(1− b

r
)(2r(R′′ +R′2)(r − b)

−3R′(b′r − b))]f ′
G
+ [

4

r5
2rb(r − b) +̟

4R′

r
(1− b

r
)2]f ′′

G
−Gf

G
+ f = 0,

for which R is given in Eq.(2.3.8). This is a differential equation in terms of shape

function. We solve it numerically by inserting the values as stated above. The

behavior of shape function is shown in Figure (2.9a) which is an increasing function
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Figure 2.10: Plots of (a) b(r) − r and (b) db(r)
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versus r taking n = 2 for EoS ρ =
̟(p

t
− p

r
).

while Figure (2.9b) indicates that b
r
→ 0 as r → ∞ leading to an asymptotically flat

universe. The wormhole throat is located at r = r0 where the graph b − r crosses

the radial axis and b(r) < r for r > r0 , i.e., the graph of b − r is decreasingly cuts

the radial axis. According to this definition, Figure (2.10a) suggests throat radius

r0 ≈ 2.1 for which db
dr

≈ 0.38 < 1 as shown in Figure (2.10b). This function satisfies

the flaring-out condition and hence called the shape function for wormhole geometry.

2.3.2 Phantom Wormholes

Here we discuss traversable wormhole by using another interesting EoS, p
r
= ωρ in

phantom regime (ω < −1) [48]. Using Eqs.(2.1.2) and (2.1.3) with this EoS, we

obtain

1

r3
(ωrb′ + b)− 2R′

r
(1− b

r
) +

4

r5
(3b− 2r)[R′r2(1− b

r
)− ω(b− rb′)]f ′

G
+

8ω

r4

×(r − b)f ′′
G
− (Gf

G
− f)(ω + 1) = 0, (2.3.13)

yielding a differential equation in terms of redshift and shape function. We solve this

equation for static and non-static conformal symmetries.
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Figure 2.11: Plots of (a) b(r) and (b) b(r)
r

versus r choosing n = 2 for phantom
wormholes with static conformal symmetry.

i. Static Phantom Wormholes

Static conformal symmetry implies the dependence of Eq.(2.3.1) only on radial coor-

dinate r which further implies that c = 0 in Eqs.(2.3.6) and (2.3.8). With this choice

of c, Eq.(2.3.8) implies that

R(r) = ln(a3r).

Inserting this value in Eq.(2.3.13), it follows that

1

r3
(ωrb′ + b)− 2

r2
(1− b

r
) +

4

r5
(3b− 2r)[r(1 + ωb′)− b(1 + ω)]f ′

G
+

8ω

r4

×(r − b)f ′′
G
− (Gf

G
− f)(ω + 1) = 0, (2.3.14)

which can be solved numerically for shape function b(r). The numerical solution for

shape function (with ω = −3) is shown in Figure (2.11a) which indicates increasing

behavior while Figure (2.11b) represents b
r
→ 0 as r → ∞ which leads to asymp-

totically flat universe. Figure (2.12a) represents that b − r cuts the radial axis at

r
0
≈ 2.1 which is the throat radius and db

dr
|r0=(2.1) ≈ 0.36 < 1 (Figure (2.12b). Hence,

the flaring-out condition is satisfied and gives the shape function for wormholes.



38

1 2 3 4 5
r

-2.5

-2

-1.5

-1

-0.5

0

0.5
b
H
r
L

-
r

HaL

1 2 3 4 5
r

-0.2

0

0.2

0.4

0.6

0.8

d
b

 H
r
L

��
��
��
���
��
��
��
��

d
r

HbL

Figure 2.12: Plots of (a) b(r) − r and (b) db(r)
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versus r with n = 2 for phantom
wormhole with static conformal symmetry.
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Figure 2.13: Plot of b(r) versus r with n = 2 for phantom wormhole with non-static
conformal symmetry.

ii. Non-static Phantom Wormholes

In this case, the energy density (2.1.2) and radial pressure (2.1.3) along with EoS lead

to the following equation

1

r2
(ω + 1)− (ω + 3)

r2

√

1− b

r
+

2c

r2

√

1− b

r
− ω(b− rb′)

r3
+ [−(1 + ωr4)

×(1 − b

r
)
12(b− rb′)

r3
+ 8ωr(b− rb′)− 4(1 + 2ωr4)

r3
(1− b

r
)2 +

4

r3
(1− b

r
)

×(2ωr6 + 2cr − 3r + 3r2 + 6) +
4c(1− 2r)

r3
(1− b

r
)
3
2 +

4c(r − r2 − 6)

r3

×
√

1− b

r
]f ′

G
− (Gf

G
+ f)(ω − 1) = 0 (2.3.15)
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for shape function. Its numerical solution is shown in Figure 2.13 which depicts

constant behavior and does not satisfy the flaring-out condition, hence no wormhole

exists for this case.



Chapter 3

Spherically Symmetric
Self-Gravitating Fluid Models and
Structure Scalars

In this chapter, we explore self-gravitating spherically symmetric fluid models and

derive the set of scalar functions (structure scalars) in f(G) gravity. We develop a

set of equations governing the structure and evolution of the system. Using these

equations, we discuss some particular fluid models according to different dynamical

conditions. We construct structure scalars and rewrite the set of governing equations

in terms of these scalar functions. We also identify inhomogeneity factor and derive

static inhomogeneous anisotropic spherical solutions with the help of structure scalars.

The results of this chapter have been published in two papers [49, 50].

This chapter comprises two sections. Section 2.1 provides a comprehensive de-

scription of spherically symmetric self-gravitating fluid models through evolution

equations. Section 2.2 evaluates structure scalars for the system to determine den-

sity inhomogeneity factors and examines anisotropic inhomogeneous spheres in the

presence of dark sources.

40
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3.1 Spherically Symmetric Self-Gravitating Fluid

Models

This section formulates a set of equations which governs the evolution of self-gravitating

system through the Weyl tensor, shear tensor, expansion scalar, pressure anisotropy,

density inhomogeneity as well as heat dissipation in the presence of dark sources.

3.1.1 Field Equations and Dynamical Quantities

We first formulate the field equations and then evaluate dynamical quantities. The

general line element for non-static spherical configuration is given as

ds2 = −A2dt2 +B2dr2 + C2(dθ2 + sin2 θdφ2), (3.1.1)

where A = A(t, r), B = B(t, r) and C = C(t, r) are functions of temporal (t)

and radial (r) coordinates. For matter distribution, the energy-momentum tensor is

defined as

(m)

T µν = ρuµuν + pthµν + (pr − pt)vµvν + q(vµuν + uµvν) + ǫlµlν , (3.1.2)

where q and ǫ are dissipation (heat-flux) and radiation density, respectively. The

quantities uµ, vµ (unit four-vector) and lµ (null four-vector) are defined as

uµ = A−1δ
µ
0 , vµ = B−1δ

µ
1 , lµ = A−1δ

µ
0 +B−1δ

µ
1 ,

satisfying the relations

uµuµ = −1, vµvµ = 1, vµuµ = 0, lµuµ = −1, lµlµ = 0, hµνu
µ = 0.

We can write Eq.(3.1.2) as

(m)

T µν = ρ̃uµuν + pthµν +Πvµvν + q̃µuν + q̃νuµ, (3.1.3)
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where ρ̃ = ρ + ǫ, Π = p̃r + pt , p̃r = pr + ǫ, q̃µ = q̃Vµ, q̃ = q + ǫ. The corresponding

field equations are

ρ̃ =
Ċ

A2C

(

2
Ḃ

B
+

Ċ

C

)

− 1

B2

(

2
C ′′

C
+

(

C ′

C

)2

− 2
B′C ′

BC
−
(

B

C

)2
)

+
4

A2BC2

(

Ḃ − 2
ĊC ′′

B
− ḂC ′2

B2
+ 3

ḂĊ2

A2
+ 2

B′C ′Ċ

B2

)

ḟ
G
+

4

A2B3C2

×
(

A2B′ +B′Ċ2 − 2ḂĊC ′ + 2
A2C ′C ′′

B
− 3

A2B′C ′2

B2

)

f ′
G
+

4

A2B3C2

×
(

A2C ′2

B2
−A2 − 2Ċ

)

f ′′
G
−Gf

G
+ f,

q̃ =
2

AB

(

ḂC ′

BC
+

A′Ċ

AC
− Ċ ′

C

)

+
4

ABC2



1 +

(

Ċ

A

)2

−
(

C ′

B

)2


 ḟ ′
G

+
4

A2BC2

(

−A′ + 2
ĊĊ ′

A
+

A′C ′2

B2
− 3

A′Ċ2

A2
− 2

ḂC ′Ċ

AB

)

ḟ
G
+

4

AB2C2

×
(

−Ḃ − 2
Ċ ′C ′

B
+ 3

ḂC ′2

B2
− ḂĊ2

A2
+ 2

A′C ′Ċ

AB

)

f ′
G
,

p̃r =
1

A2

(

Ċ

C

(

2
Ȧ

A
− Ċ

C

)

− 2
C̈

C

)

+
C ′

B2C

(

2
A′

A
+

C ′

C

)

− 1

C2
+

4

A2C2

×





(

C ′

B

)2

−
(

Ċ

A

)2

− 1



 f̈
G
+

4

A3C2

(

Ȧ− 2
ĊC̈

A
+ 2

A′C ′Ċ

B3
− ȦC ′2

B2

+ 3
ȦĊ2

A2

)

ḟ
G
+

4

AB2C2
(A′ +

1

A2
− 2

ȦĊC ′

A2
− 3

A′C ′2

B2
+ 2

C̈C ′

A
)f ′

G

+ Gf
G
− f,

pt =
1

A2

(

Ȧ

A

(

Ḃ

B
+

Ċ

C

)

− B̈

B
− C̈

C
− ḂĊ

BC

)

+
1

B2

(

A′′

A
+

C ′′

C
− A′B′

AB

+
C ′

C

(

A′

A
− B′

B

))

+
4

A3BC

(

1

B

(

2Ċ ′A′ − ȦC ′′ + A′′Ċ
)

− 1

A

×
(

ḂC̈ + ĊB̈
)

− 1

B2

(

A′B′Ċ + A′ḂC ′ − ȦB′C ′
)

+ 3
ȦḂĊ

A2
− 2
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× A′2Ċ

AB

)

ḟ
G
+

4

AB3C

(

1

A

(

2ḂĊ ′ − B′C̈ + B̈C ′
)

− 1

B
(A′C ′′ + A′′C ′)

− 1

A2

(

ȦḂC ′ + A′ḂĊ − ȦB′Ċ
)

+ 3
A′B′C ′

B2
− 2

Ḃ2C ′

AB

)

f ′
G
+

8

A2B2C

×
(

A′Ċ

A
+

ḂC ′

B
− 1

)

ḟ ′
G
− 4

AB2C

(

A′C ′

B2
+

ȦĊ

A2
− C̈

)

f ′′
G
− 4

A2BC

×
(

ḂĊ

A2
+

B′C ′

A

)

f̈
G
+Gf

G
− f.

The expression for GB invariant is calculated as

G =
8

ABC

[(

A′B′

B2C
+

B̈

AC

)(

1 +
Ċ2

A2

)

+

(

ȦḂ

A2C
+

A′′

BC

)

(

C ′2

B2
− 1

)

− 1

AC

(

A′′Ċ2

AB
+ B̈C ′2

)

+ 2{ C ′′

BC

(

A′C ′

B2
− C̈

A

)

+
B′C ′

AB2C

(

C̈ − ȦĊ

A

)

+
Ċ

A3C

(

C̈Ḃ +
ĊA′2

B

)

+
Ċ

A2BC

(

ȦC ′′ +
A′ḂC ′

B

)

+
1

ABC

(

Ċ ′2

+
Ḃ2C ′2

B2

)

} − 3

C

(

A′B′C ′2

B4
+

ȦḂĊ2

A4

)

− 4Ċ ′

ABC

(

A′Ċ

A
+

ḂC ′

B

)]

.

Here dot and prime denote partial derivatives with respect to t and r, respectively.

The four acceleration (1.5.1) and expansion parameter (1.5.2) are defined as

aµ = avµ, a(1) =
A′

A
, a2 =

(

A′

AB

)2

, ϑ =
1

A

(

Ḃ

B
+ 2

Ċ

C

)

.

Another form of shear tensor (1.5.3), its trace as well as non-zero components are

σµν = σ

(

vµvν −
1

3
hµν

)

, σ =
1

A

(

Ḃ

B
− Ċ

C

)

, σ11 =
2

3
σB2, σ22 = −1

3
σC2

and σ33 = sin2 θσ22. The magnetic part of the Weyl tensor (1.5.7) vanishes for spher-

ical symmetry. The non-zero components of the Weyl tensor and electric part (1.5.8)

in terms of four unit vector as well as projection tensor are given as

Eµν = ε(vµvν −
1

3
hµν), E11 =

2

3
εB2, E22 = −1

3
εC2, E33 = E22 sin

2 θ, (3.1.4)
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where

ε =
1

2

(

C̈

C
− B̈

B
− (

Ċ

C
− Ḃ

B
)
Ċ

C

)

+
1

2B2

(

−C ′′

C
+ (

C ′

C
+

B′

B
)
C ′

C

)

− 1

2C2
(3.1.5)

is a scalar quantity of the electric part. The Misner-Sharp mass function calculates

the total energy of spherically symmetric system within the radius r = C given as

M =
1

2
C3R23

23 =
1

2
C





(

Ċ

A

)2

−
(

C ′

B

)2

+ 1



 . (3.1.6)

Now we calculate the variation of this mass function of radiating fluid inside the

sphere. For this purpose, we introduce two useful derivative operators with respect

to radial and proper time coordinates as

D
T
=

1

A

∂

∂t
, D

C
=

1

C

∂

∂r

and the relativistic velocity of the collapsing fluid turns out to be

U = D
T
C =

1

A

∂C

∂t
=

Ċ

A
. (3.1.7)

Combining Eqs.(3.1.6) and (3.1.7), we obtain

E =
C ′

B
=

(

1 + U2 − 2

C
M
)

1
2

. (3.1.8)

Using Eqs.(1.1.4), (3.1.7) and (3.1.8), it follows that

D
T
M = −C2

2

{(

p̃
r
+

1

B2

(GB)

T
11

)

U +

(

q̃ − 1

AB

(GB)

T
01

)

E

}

, (3.1.9)

D
C
M =

C2

2

{(

ρ̃+
1

A2

(GB)

T00

)

+

(

q̃ − 1

AB

(GB)

T01

) U
E

}

. (3.1.10)

These equations represent the variation of mass inside the spherical surface of evolving

fluid. Equation (3.1.9) represents the effects of radial pressure, dissipation, relativis-

tic velocity and GB curvature terms on the proper derivative of mass function within
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spherically bounded region, while Eq.(3.1.10) indicates the combined effect of pres-

sure, dissipation, relativistic velocity and extra GB curvature terms on the variation

of mass distribution in radial direction. Equation (3.1.10) yields

M′ =
C2C ′

2

{(

ρ̃+
1

A2

(GB)

T
00

)

+

(

q̃ − 1

AB

(GB)

T
01

) U
E

}

.

A particular combination of radiating energy density, dissipation and f(G) correction

terms through mass function can be obtained using the above equation as

3
M
C3

=
3

2C3

∫ r

0

C2C ′

{(

ρ̃+
1

A2

(GB)

T00

)

+

(

q̃ − 1

AB

(GB)

T01

) U
E

}

dr. (3.1.11)

3.1.2 Evolution Equations

Here, we construct dynamical equations for dissipative spherically distributed self-

gravitating fluid for the model (1.1.7). The Riemann curvature tensor can be defined

as

1

2
R

µ
αβνuµ = aα;[νuβ] + aαu[β;ν] + σα[β;ν] +

1

3
{ϑ[νhβ]α + ϑhα[β;ν]}. (3.1.12)

In the following, we formulate evolution equations like Raychaudhuri equation, propa-

gation equation of shear, constraint equation, evolution equations for the Weyl tensor

and dynamical equations.

(i) Raychaudhuri Equation

This equation describes the evolution of expansion and is obtained by contracting

Eq.(3.1.12) with uβ and then indices ν as well as α. It turns out to be

ϑ;µu
µ +

1

3
ϑ2 + σµνσ

µν − aµ;µ = −uµu
νRµ

ν .
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This equation along with Eq.(1.1.4) gives

ϑ;µu
µ +

1

3
ϑ2 +

2

3
σ2 − aµ;µ = −1

2
(ρ̃+ 3p̃r). (3.1.13)

We note that Raychaudhuri equation for f(G) gravity is the same as for GR [20],

i.e., GB terms have no contribution in Raychaudhuri equation. This is the evolution

equation for expansion and hence measures the expansion rate of self-gravitating

relativistic fluid for GR as well as f(G) cosmology.

(ii) Propagation Equation of Shear

This equation is obtained by contracting Eq.(3.1.12) with uβhα
γh

ν
δ as follows

uβuµR
µ
αβνh

α
γh

ν
δ = hα

γh
ν
δ (aα;ν − σαν;βu

β)− aγaδ − uβ
;νh

ν
δ (σγβ +

1

3
ϑhγβ)

− 1

3
ϑ,αu

αhγδ. (3.1.14)

Again contracting with vγ, vδ and using Eq.(1.1.4), we obtain

uβuµR
µ
αβνh

α
γh

ν
δv

γvδ = ε− 1

2
Π + 2nα[−Rφ

ρσµv
µvφ − Rρµv

µvσ + gσρRαµ

× vαvµ − Rασvρv
α +

1

2
RvρVσ]∇ρ∇σGn. (3.1.15)

This is the propagation equation of shear in f(G) gravity with some other dynamical

variables which yields the effects of GB terms in the shearing motion of evolving

self-gravitating spherical objects.

(iii) Constraint Equation

We obtain this equation from Eq.(3.1.12) by contracting α and ν and then contracting

with hαβvα as

R
µ
βuµh

αβ = hα
β(σ

βγ
;γ − 2

3
ϑ;β) + σαβaβ ,



47

which gives

hα
β(σ

βγ
;γ − 2

3
ϑ;β) + σαβaβ = −q̃vα + 2nα[−uµh

αβR
µ
ρσβ + gσρuµh

αβR
µ
β

+ uφh
α
ρR

φ
σ +

1

8
Rhα

ρuσ]∇ρ∇σGn. (3.1.16)

This equation directly relates shear tensor, expansion scalar, heat flux and modified

terms of GB gravity.

(iv) Evolution Equations for the Weyl Tensor

Bainchi identities can also be written as

C
η
αβγ;η = Rγ[α;β] −

1

6
gγ[αR,β]. (3.1.17)

This is the relation between Weyl and Ricci tensors which can also be written in

terms of the Weyl and effective energy-momentum tensors by using Eq.(1.1.4) as

C
η
αβγ;η =

(eff)

T γ[α;β] −
1

6
gγ[α

(eff)

T ,β]. (3.1.18)

We can write

uβC
η
αβγ;η + uβ

;ηC
η
αβγ = ϑEαγ + uµ

Eαγ;µ − uγ;ηE
η
α − uγE

η
α;η, (3.1.19)

where uβCαβγδ = Eαγuδ − Eαδuγ. After contraction with hα
µh

γ
νu

βvµvν , Eq.(3.1.19)

gives

hα
µh

γ
νu

βvµvνC
η
αβγ;η =

4

3
ϑEµνv

µvν − uν;ηE
η
µv

µvν + uβ
Eαγ;βh

α
µh

γ
νv

µvν

+hµνσ
γβ
Eγβv

µvν − σγν
E
γ
µv

µvν − σγµE
γ
νv

µvν . (3.1.20)

Furthermore, the effective energy-momentum tensor provides

hα
µh

γ
νu

β
(eff)

T γα;β = hα
µh

γ
νu

β
(m)

T γα;β + hα
µh

γ
νu

β
(GB)

T γα;β



48

= (pt),βhµνu
β + (Πvγvα);βh

α
µh

γ
νu

β + q̃νaµ + q̃µaν

+ 8nα
[

hα
µh

γ
νu

βRγρασ;β + hα
µhνσu

βRρα;β − hµνu
β

× Rρσ;β − hα
µh

γ
νu

βgσρRγα;β + hµρh
γ
νu

βRγα;β

]

× ∇ρ∇σGn, (3.1.21)

hα
µh

γ
νu

β
(eff)

T γβ;α = hα
µh

γ
νu

β
(m)

T γβ;α + hα
µh

γ
νu

β
(GB)

T γβ;α

= (pt − ρ̃)(σµν +
1

3
ϑhµν) + Π;βu

βvγvβ;αh
α
µh

γ
νu

β

− q̃,αh
α
µvν + 8nα

[

hα
µh

γ
νu

βRγρβσ;α + hα
µhνσu

βRρβ;α

− hα
µh

γ
νu

βgσρRγβ;α + hα
µh

γ
νuρRγσ;α

]

∇ρ∇σGn, (3.1.22)

hα
µh

γ
νu

βgγ[α
(eff)

T ;β] =
1

2

[

hα
µh

γ
νu

βgγα
(eff)

T ;β − hα
µh

γ
νu

βgγβ
(eff)

T ;α

]

=
1

2
(Π + 3pt − ρ̃),βu

βhµν − nαhµν [Rρσ + gσρR];βu
β

× ∇ρ∇σGn. (3.1.23)

Feeding back Eqs.(3.1.20)-(3.1.23) into (3.1.18), we have

ϑ

(

1

3
(ρ̃+ p̃r)hµν + Eµν

)

+ uβ(Eαγ − Παγ);βh
α
µh

γ
ν + (ε+ ρ̃+ p̃r)σµν

+
4

3
ρ̃,βu

βhµν − Πβν(σ
β
µ − 1

3
ϑhβ

µ)− q̃µaν − q̃νaµ − 4nαhα
µh

γ
νu

β[Rγρ[ασ;β]

+gσρRγ[α;β]]∇ρ∇σGn − nα[hα
µhνσu

βRρ[α;β] − hµνu
βRρσ;β + hµρh

γ
νu

β

×Rγα;β − hα
µh

γ
νuρRγσ;α]∇ρ∇σGn = 0. (3.1.24)

Similarly, we obtain

hα
µE

λ
α;λ + aλEµλ + q̃γ(σ

γ
µ +

1

3
ϑhγ

µ) +
1

3
hβ
µ(−2ρ̃+ 2p̃r + pt),β − aγΠµγ

+aµ(−ρ̃+ p̃r) + uβhα
µ q̃α;β + 4nαuγuβ [Rγρασ;β − Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]

∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R;β]∇ρ∇σGn

+4nαuγuβ[Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + uβ[
1

2
nαRu[αgσ]ρ + u[σ
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×Rα]ρ]∇ρ∇σ(Gn),β +
1

2
α(n− 1)uαu

β(Gn),β − 4nα[Rρσ;α +Rρβ;αuσ

×uβ + uγuρRγσ;α − 1

2
hσρR,α]∇ρ∇σGn − 4nα[uγuβRγρβσ + uβuσRρβ

+Rρσ − uγuβgσρRγβ + uγuρRγσ −
1

2
hσρR]∇ρ∇σ(Gn),α +

1

2
α(n− 1)

×(Gn),α − 4

3
nα[Rρσ +Rgσρ −

1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8nα[Rρσ

+Rgσρ −
1

2
R(4gσρ − δρσ)]∇ρ∇σ(Gn),β +

1

3
α(n− 1)(Gn),β = 0. (3.1.25)

Equations (3.1.24) and (3.1.25) are the evolution equations for the Weyl tensor. These

represent the relationship between the Weyl tensor, dynamical variables (heat flux,

anisotropic parameter, density, shear and projection tensors etc) and modified terms

due to f(G) gravity.

(v) Dynamical Equations

These equations describe the conservation of total energy of the evolving star obtained

through Bianch identities as

(
(m)

T µν +
(GB)

T µν);νuµ = 0, (
(m)

T µν +
(GB)

T µν);νvµ = 0, (3.1.26)

where the first equation represents equation of continuity while the second is the

equation of motion. Both equations yield

ρ̃,µu
µ + ϑ(ρ̃+ p̃r)−

2

3
(σ + ϑ)Π + q̃,µv

µ + 2q̃

(

C ′

BC
+ a

)

+ 8nα[Rµν
ρσ

−Rµνgσρ];νuµ∇ρ∇σGn + 8nα[(uσR
ν
ρ − uνRρσ),ν + Γµ

νγ(R
ν
ρδ

γ
σ − Rρσg

γν)

×uµ + Γν
νγ(uσR

γ
ρ − uγRρσ)]∇ρ∇σGn = 0, (3.1.27)

p̃r ,µv
µ + a(ρ̃+ p̃r) + 2Π

C ′

BC
+ q̃,µv

µ +
2

3
q̃(σ + 2ϑ) + 8nα[−Rµνgσρ

+Rµν
ρσ ];νvµ∇ρ∇σGn + 8nα[(vσR

ν
ρ − vνRρσ +Rµ

σδ
ν
ρ ),ν + Γµ

νγ(R
ν
ρδ

γ
σ +Rγ

σ

×δνρ )vµ + Γν
νγ(vσR

γ
ρ + vγRρσ)]∇ρ∇σGn = 0, (3.1.28)



50

representing the effects of GB terms in the evolution of energy density and pressure.

3.1.3 Some Self-Gravitating Fluid Models

In this section, we study governing equations for some specific self-gravitating fluid

models under the influence of f(G) gravity and give their comparison with GR [20].

(i) Geodesic Non-dissipative Isotropic Fluids

If the fluid particles are moving along geodesics, then aµ = 0 and the fluid is geodesic

for which g00 = constant. Thus for locally isotropic (radial and tangential pressures

are same, i.e., Π = 0), non-dissipative (vanishing heat flux and radiation density, i.e.,

q = ǫ = 0) and geodesic fluids, we obtain the governing equations under the effects

of f(G) gravity as follows

uβuµR
µ
αβνh

α
γh

ν
δv

γvδ = ε+ 2nα[−Rφ
ρσµv

µvφ − Rρµv
µvσ + gσρRαµv

α

×vµ − Rασvρv
α +

1

2
Rvρvσ]∇δ∇σGn, (3.1.29)

ϑ

(

1

3
(ρ+ pr)hµν + Eµν

)

+ uβ(Eαγ);βh
α
µh

γ
ν + (ε+ ρ+ pr)σµν +

4

3
ρ,βu

β

×hµν − 4nαhα
µh

γ
νu

β[Rγρ[ασ;β] + gσρRγ[α;β]]∇ρ∇σGn − nα[hα
µhνσRρ[α;β]

×uβ − hµνu
βRρσ;β + hµρh

γ
νU

βRγα;β − hα
µh

γ
νuρRγσ;α]∇ρ∇σGn = 0, (3.1.30)

1

3
hβ
µ(−2ρ),β + 4nαuγuβ

[

Rγρασ;β −Rγρβσ;α − 2(Rγ[αgσ]ρ);β

+gσρRγβ;α]∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R;β]∇ρ∇σ

×Gn + 4nαuγuβ[Rγρασ − gρ[αRσ]γ ]∇γ∇σ(Gn),β + uβ[u[σRα]ρ +
1

2
nα

×Ru[αgσ]ρ]∇ρ∇σ(Gn),β +
1

2
α(n− 1)uαu

β(Gn),β − 4[Rρσ;α +Rρβ;αuσ

×uβ + uγuρRγσ;α − 1

2
nαhσρR;α]∇γ∇σGn − 4nα[uγuβRγρβσ + uβuσ
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×Rρβ +Rρσ − uγuβgσρRγβ + uγuρRγσ −
1

2
hσρR]∇γ∇σ(Gn),α +

1

2
α

×(n− 1)(Gn),α − 4

3
nα[Rρσ +Rgσρ −

1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8n

×α[Rρσ +Rgσρ −
1

2
R(4gσρ − δρσ)]∇ρ∇σ(Gn),β +

1

3
α(n− 1)

×(Gn),β = 0, (3.1.31)

(pr),µV
µ + 8nα[Rµν

ρσ − Rµνgσρ];νvµ∇ρ∇σGn + 8nα[(vσR
ν
ρ − vνRρσ

+Rµ
σδ

ν
ρ),ν + Γµ

νγ(R
ν
ρδ

γ
σ +Rγ

σδ
ν
ρ)vµ + Γν

νγ(VσR
γ
ρ + vγRρσ)]∇ρ∇σ

×Gn = 0. (3.1.32)

This case represents dust fluid model (pressureless fluid) in GR while the conformally

flatness condition (ε = 0) implies shear-free condition (σ = 0) and vice versa [20].

In the scenario of f(G) gravity, the equation of motion (3.1.32) depends upon the

gradient of pressure and extra curvature terms (GB terms). The choice f(G) =

constant (i.e., f
G
= 0) corresponds to the cosmological constant and the standard

results can be imitated. For this type of fluid model, pressure gradient vanishes which

consequently gives pr = constant. In this case, matter particles will exert equal

pressure at each point of evolving relativistic spherically distributed self-gravitating

fluid. Thus geodesic fluids with isotropy and non-dissipation exert constant (non-

zero) pressure (no dust) in f(G) cosmology. For constant to be zero, this yields dust.

Equations (3.1.29) and (3.1.30) represent that conformally flatness and shear-free

conditions rely on GB terms. Thus conformally flatness condition does not imply

shear-free condition. Equation (3.1.31) indicates that energy density inhomogeneity

depends upon GB terms as well as the Weyl tensor. If the Weyl tensor vanishes, then

GB terms are totally responsible for energy density inhomogeneity.
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(ii) Geodesic Non-dissipative Anisotropic Fluids

Here we take geodesic fluid with locally anisotropy (different radial and tangential

pressures, i.e., Π 6= 0) and non-dissipation for which the governing equations are as

follows

uβuµR
µ
αβνh

α
γh

ν
δv

γvδ = ε− 1

2
Π + 2nα[−Rφ

ρσµv
µvφ − Rρµv

µvσ + gσρ

×Rαµv
αvµ −Rασvρv

α +
1

2
Rvρvσ]∇δ∇σGn, (3.1.33)

ϑ

(

1

3
(ρ+ pr)hµν + Eµν

)

+ uβ(Eαγ − Παγ);βh
α
µh

γ
ν + (ε+ ρ+ pr)σµν

+
4

3
ρ,βu

β −Πβν(σ
β
µ − 1

3
ϑhβ

µ)hµν − 4nαhα
µh

γ
νu

β[Rγρ[ασ;β] + gσρRγ[α;β]]

×∇ρ∇σGn − nα[hα
µhνσRρ[α;β]u

β − hµνu
βRρσ;β + hµρ

×hγ
νU

βRγα;β − hα
µh

γ
νuρRγσ;α]∇ρ∇σGn = 0, (3.1.34)

−2

3
hβ
µ(ρ),β +

1

3
hβ
µ(Π),β + 4nαuγuβ

[

Rγρασ;β − Rγρβσ;α − 2(Rγ[αgσ]ρ);β

+gσρRγβ;α]∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R;β]∇ρ∇σ

×Gn + 4nαuγuβ[Rγρασ − gρ[αRσ]γ ]∇γ∇σ(Gn),β + uβ[u[σRα]ρ +
1

2
nα

×Ru[αgσ]ρ]∇ρ∇σ(Gn),β +
1

2
α(n− 1)uαu

β(Gn),β − 4[Rρσ;α +Rρβ;αuσ

×uβ + uγuρRγσ;α − 1

2
nαhσρR;α]∇γ∇σGn − 4nα[uγuβRγρβσ + uβuσ

×Rρβ +Rρσ − uγuβgσρRγβ + uγuρRγσ −
1

2
hσρR]∇γ∇σ(Gn),α +

1

2
α

×(n− 1)(Gn),α − 4

3
nα[Rρσ +Rgσρ −

1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8n

×α[Rρσ +Rgσρ −
1

2
R(4gσρ − δρσ)]∇ρ∇σ(Gn),β +

1

3
α(n− 1)

×(Gn),β = 0, (3.1.35)

ρ,µu
µ + ϑ(ρ+ pr)−

2

3
(σ + ϑ)Π + 8nα[Rµν

ρσ −Rµνgσρ];νuµ∇ρ∇σGn

+8nα[(uσR
ν
ρ − uνRρσ),ν + Γµ

νγ(R
ν
ρδ

γ
σ − Rρσg

γν)uµ + Γν
νγ(uσR

γ
ρ − uγ
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×Rρσ)]∇ρ∇σGn = 0, (3.1.36)

(pr),µv
µ + 2Π

C ′

CB
+ 8nα[Rµν

ρσ − Rµνgσρ];νvµ∇ρ∇σGn + 8nα[(vσR
ν
ρ

−vνRρσ +Rµ
σδ

ν
ρ),ν + Γµ

νγ(R
ν
ρδ

γ
σ +Rγ

σδ
ν
ρ)vµ + Γν

νγ(vσR
γ
ρ + V γRρσ)]

×∇ρ∇σGn = 0. (3.1.37)

The geometry for this type of fluid revolves around a physical quantity of matter, i.e.,

pressure anisotropy. In GR, pressure gradient, shear-free and conformally flatness

conditions are linked with pressure anisotropy while density inhomogeneity depends

on the Weyl tensor as well as pressure anisotropy. The f(G) theory affects these

relations by the inclusion of GB terms. In the absence of Weyl tensor, Eq.(3.1.34)

shows that density inhomogeneity is caused by pressure anisotropy as well as GB

terms.

(iii) Non-geodesic Non-dissipative Isotropic Fluids

In this case, we obtain the following set of governing equations

hα
β(σ

βγ
;γ − 2

3
ϑ;α) + σαβaβ = 2nα[−uµh

αβR
µ
ρσβ + gσρuµh

αβR
µ
β + uφh

α
ρR

φ
σ

+
1

8
Rhα

ρuσ]∇ρ∇σGn, (3.1.38)

1

3
hβ
α(ε),β +

2

3
hβ
αρ,β + 4nαuγuβ [Rγρασ;β −Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]

∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R,β]∇ρ∇σGn

+4nαuγuβ[Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαuβ[u[σRα]ρ +
1

2
Ru[α

×gσ]ρ]∇ρ∇σ(Gn),β +
1

2
α(n− 1)uαu

β(Gn),β − 4nα[uσu
βRρβ;α + uγ

×uρRγσ;α +Rρσ;α − 1

2
hσρR;α]∇γ∇σGn − 4nα[uγuβRγρβσ + uβuσRρβ

+Rρσ − uγuβgσρRγβ + uγuρRγσ −
1

2
hσρR]∇ρ∇σ(Gn),α +

1

2
α(n− 1)
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×(Gn),α − 4

3
nα[Rρσ +Rgσρ −

1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8nα[Rρσ

+Rgσρ −
1

2
R(4gσρ − δρσ)]∇ρ∇σ(Gn),β +

1

3
α(n− 1)(Gn),β = 0, (3.1.39)

In GR, shear-free condition provides expansion free condition for such fluid while con-

formal flatness condition implies irregularities (inhomogeneity) in energy density and

vice-versa. For modified GB gravity, we see from Eq.(3.1.39) that conformal flatness

condition depends upon inhomogeneity of energy density as well as GB terms. If the

fluid is conformally flat, the dependence of energy density inhomogeneity depends

on GB terms, hence GB terms are responsible for density inhomogeneity. Equation

(3.1.38) indicates that shear-free condition does not imply expansion-free fluid due to

GB terms.

(iv) Non-geodesic Non-dissipative Anisotropic Fluids

Here we take non-dissipative (q = ǫ = 0) and anisotropic (Π 6= 0) fluids. For this

case, we have

1

3
hβ
α(ε− Π),β +

2

3
hβ
αρ,β + 4nαuγuβ [Rγρασ;β −Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]

∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R,β]∇ρ∇σGn + 4

×nαuγuβ[Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαuβ[u[σRα]ρ +
1

2
Ru[αgσ]ρ]

×∇ρ∇σ(Gn),β +
1

2
α(n− 1)uαu

β(Gn),β − 4nα[uσu
βRρβ;α +Rρσ;α + uγ

×uρRγσ;α − 1

2
hσρR;α]∇γ∇σGn − 4nα[uγuβRγρβσ + uβuσRρβ +Rρσ

−uγuβgσρRγβ + uγuρRγσ −
1

2
hσρR]∇ρ∇σ(Gn),α +

1

2
α(n− 1)(Gn),α − 4

3

×nα[Rρσ +Rgσρ −
1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8nα[Rρσ +Rgσρ −

1

2
R

×(4gσρ − δρσ)]∇ρ∇σ(Gn),β +
1

3
α(n− 1)(Gn),β = 0. (3.1.40)
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In GR, this relates energy density inhomogeneity, the Weyl tensor and anisotropy.

This equation clearly shows that energy density inhomogeneity is linked with the

Weyl tensor, anisotropy and GB terms.

(v) Non-geodesic Dissipative Anisotropic Fluids

This is a more general case with the presence of dissipation q 6= 0 (ǫ = 0 for simplicity)

and anisotropy (Π 6= 0). From Eq.(3.1.25), we have

hα
µE

λ
α;λ + aλEµλ + qγ(σ

γ
µ +

1

3
ϑhγ

µ) +
1

3
hβ
µ(−2ρ+ 3pr +Π),β + aµ(−ρ+ pr)

−aγΠµγ + uβhα
µ q̃α;β + 4nαuγuβ

[

Rγρασ;β − Rγρβσ;α − 2(Rγ[αgσ]ρ);β + gσρ

×Rγβ;α]∇ρ∇σGn + 4nαuβ[2u[σRα]ρ;β + gρ[σuα]R,β]∇ρ∇σGn + 4nαuγuβ

×[Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαuβ[u[σRα]ρ +
1

2
Ru[αgσ]ρ]∇ρ∇σ

(Gn),β +
1

2
α(n− 1)uαu

β(Gn),α − 4nα[uσu
βRρβ;α +Rρσ;α + uγuρRγσ;α

−1

2
hσρR;α]∇ρ∇σGn − 4nα[uγuβRγρβσ + uβuσRρβ +Rρσ − uγuβgσρ

×Rγβ + uγuρRγσ −
1

2
hσρR]∇ρ∇σ(Gn),α +

1

2
αn− 1(Gn),α − 4

3
nα[Rρσ

+Rgσρ −
1

2
R(4gσρ − δρσ)],β∇ρ∇σGn − 8nα[Rρσ +Rgσρ −

1

2
R(4gσρ

−δρσ)]∇ρ∇σ(Gn),α +
1

3
α(n− 1)(Gn),β = 0. (3.1.41)

This equation represents the link of dark source (GB) terms with the Weyl tensor and

other dynamical quantities. This represents that the tidal force that an object feels

while moving along a geodesic is affected by dynamical quantities as well as GB terms.

This also shows that inhomogeneity of energy density as well as dark source terms

are not affected by the absence of shear and expansion parameters. This indicates

that inhomogeneity of energy density not only depend upon dark source terms but

also on other dynamical variables, so its homogeneity does not alter inhomogeneity
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of energy density. The transport equation (1.5.9) gives

q =
τ [(pr),αv

α + (ρ+ pr)a+ 2Π C′

BC
+GB]−K[Tαu

α + aT]

1 + 1
2
τ [1

3
(2σ − 5ϑ) + 1

τ
uατ,α − 1

K
uαK,α − 2

T
uαT,α]

, (3.1.42)

where

GB = 8nα[Rµν
ρσ −Rµνgσρ];νvµ∇ρ∇σGn + 8nα[(vσR

ν
ρ − vνRρσ +Rµ

σ

× δνρ),ν + Γµ
νγ(R

ν
ρδ

γ
σ +Rγ

σδ
ν
ρ)vµ + Γν

νγ(vσR
γ
ρ + vγRρσ)]∇ρ∇σGn.

Inserting Eq.(3.1.42) in (3.1.41), we obtain a relation between density inhomogeneity

and thermodynamics variables.

3.2 Structure Scalars for Spherically Symmetric

Self-Gravitating System

In this section, we investigate spherically symmetric self-gravitating system by con-

structing structure scalars in the background of f(G) gravity. We then rewrite the set

of governing equations in terms of these scalars. We also obtain inhomogeneity fac-

tors and static inhomogeneous anisotropic spherical solutions by using these structure

scalars.

3.2.1 Modified Structure Scalars

Here we develop structure scalars by splitting the Reimman curvature tensor orthog-

onally. From Eq.(1.5.7), we can write

Rµ
ρσν = Cµ

ρσν +
1

2
Rµ

σgρν −
1

2
Rρσδ

µ
ν +

1

2
Rρνδ

µ
σ − 1

2
Rµ

νgρσ −
1

6
R(δµσgρν + δµν gρσ).
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This equation can be written for Eq.(1.1.4) as

R
µγ
νδ = C

µγ
νδ + 2

(eff)

T [µ
[νδ

γ]
δ] +

(eff)

T

(

1

3
δ
µ

[νδ
γ

δ] − δ
[µ
[ν δ

γ]
δ]

)

. (3.2.1)

We decompose the Riemann curvature tensor into five parts as

R
µγ
νδ =

(I)

Rµγ
νδ +

(II)

Rµγ
νδ +

(III)

Rµγ
νδ +

(IV)

Rµγ
νδ +

(V)

Rµγ
νδ,

which are defined using Eq.(3.2.1) as

(I)

Rµγ
νδ = 2

(

ρ̃u[µu[νδ
γ]
δ] + pth

[µ
[νδ

γ]
δ]

)

+ (−ρ̃+ 3pt +Π)

(

1

3
δ
µ

[νδ
γ

δ] − δ
[µ
[ν δ

γ]
δ]

)

,(3.2.2)

(II)

Rµγ
νδ = 2

(

Πv[µv[νδ
γ]
δ] + q̃v[µu[νδ

γ]
δ] + q̃u[µv[νδ

γ]
δ]

)

, (3.2.3)

(III)

Rµγ
νδ = 4u[µu[νE

γ]
δ] − εµγκ ενδηE

κη, (3.2.4)

(IV)

Rµγ
νδ = 8

[

R
[µ
ρσ[νδ

γ]
δ] +Rρ[νδ

[µ
σ δ

γ]
δ] − Rρσδ

[µ
[ν δ

γ]
δ] − δσλδ

λ
ρR

[µ
[ν δ

γ]
δ] + gρ[νR

[µ
σ δ

γ]
δ]

+
1

2
R
(

δσλδ
λ
ρ δ

[µ
[ν δ

γ]
δ] − δ[µσ gρ[νδ

γ]
δ]

)

]

∇ρ∇σf
G
+ (Gf

G
− f)δ

[µ
[ν δ

γ]
δ] , (3.2.5)

(V)

Rµγ
νδ = (8[2Rρσ − Rgρσ]∇ρ∇σf

G
+Gf

G
− f)

(

1

3
δ
µ

[νδ
γ

δ] − δ
[µ
[ν δ

γ]
δ]

)

. (3.2.6)

Using Eqs.(3.2.2)-(3.2.6) in (1.6.1) along with (1.1.7), we obtain

Xµν =
(m)

Xµν +
(GB)

Xµν

= pthµν +
1

2
Π(hµν − vµvν)−

1

3
hµν(−ρ̃+ 3pt +Π)− Eµν + nα[5Rρσ

× δµν − 2Rµρσν + 10Rκ
σuµuκgρν − 2Rη

ρσνuµuη − 2Rκ
λuκu

λgσρδµν − Rκ
σ

× uµuκδρν − Rρνuµuσ + 9Rµνgσρ + 2Rµλuνu
λgσρ +

1

2
R(3gσρgµν + gρν

× δµσ + 2gσρuµuν)]∇ρ∇σGn−1 + α(n− 1)Gn(4hµν + 4δµν + uµuν)

− 1

3
nα
(

8[2Rρσ −Rgρσ]∇ρ∇σGn−1 + α(n− 1)Gn
)

(gµν + δµν) , (3.2.7)

Yµν =
(m)

Yµν +
(GB)

Yµν
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=
1

2
hµν

(

ρ̃− pt −Πvµvν +
2

3
(−ρ̃+ 3pt +Π)

)

+ Eµν , (3.2.8)

where the notation (m) and (GB) in superscript respectively show matter and GB

parts of the relevant tensor. We note from Eq.(3.2.8) that the variable Yµν does not

contain GB terms. Hence GB terms do not affect this variable.

We can write these tensors as the combination of their trace and traceless parts

in the following way. From Eqs.(3.2.7) and (3.2.8), we have

X
T
≡ Tr(X) =

(m)

X
T
+

(GB)

X
T
, Y

T
≡ Tr(Y ) =

(m)

Y
T
,

where

(m)

X
T

= ρ̃, (3.2.9)

(GB)

X
T

= −1

3
α[n(74Rρσ + 6uνuηR

η
ρσν + 18uκu

λRκ
λgσρ + 3uσuµR

µ
ρ +

1

2

× R(δρσ − 25gσρ))∇ρ∇σGn−1 − 73(n− 1)Gn], (3.2.10)

(m)

Y
T

=
1

2
(ρ̃+ 3p̃

r
− 2Π). (3.2.11)

Moreover, their corresponding traceless parts are found as

X〈µν〉 =
(m)

X
TF

(vµvν −
1

3
hµν) +

(GB)

X
TF

(−1

3
hµν),

Y〈µν〉 =
(m)

Y
TF
(vµvν −

1

3
hµν),

where TF in subscript represents traceless part of the relevant tensor and

(m)

X
TF

= −(ε − 1

2
Π), (3.2.12)

(GB)

X
TF

=
1

2
nα(12Rκ

λuκu
λgσρ − 55Rgσρ)∇ρ∇σGn−1 − 22α(n− 1)Gn, (3.2.13)

(m)

Y
TF

= ε+
1

2
Π. (3.2.14)
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The six quantities
(m)

X
T
,

(GB)

X
T
,

(m)

X
TF
,

(GB)

X
TF
,

(m)

Y
T
and

(m)

Y
TF

are scalar functions (structure

scalars) in f(G) gravity.

Now we briefly discuss physical aspects of these structure scalars in this gravity

that have a direct correspondence with the dynamics of spherical systems. We note

that
(m)

X
T
evidently represents the energy density. The scalar variables

(m)

X
TF

and
(m)

Y
TF

play a crucial role in the physical interpretation of fluid. Both scalars combine the

Weyl tensor with pressure anisotropy. Their sum indicates local anisotropy while

their difference provides the effects of tidal force. With local isotropy (Π = 0), they

behave like
(m)

X
TF

= −
(m)

Y
TF

while in the absence of the Weyl tensor (conformally flat condition), both are same

(m)

X
TF

=
(m)

Y
TF
.

We observe that local isotropy and conformally flatness condition contradict each

other. This means that spherical system is either isotropic or conformally flat or

it preserves local anisotropy as well as conformal flat condition. Furthermore, the

combination

−1

2

(m)

X
T
+

(m)

X
TF

+
(m)

Y
T
+

(m)

Y
TF

=
3

2
p̃r

describes the radial pressure and the sum
(m)

X
T
+

(GB)

X
T
demonstrates that matter energy

density is connected with dark source terms. The combination
(m)

X
TF

+
(m)

Y
TF

+
(GB)

X
TF

makes spherical system conformally flat and indicates that pressure anisotropy is

controlled by dark source terms due to f(G) gravity. The unification of scalars as
(m)

Y
TF

−
(m)

X
TF

+
(GB)

X
TF

shows that conformal flatness of fluid is controlled by GB terms.
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3.2.2 Evolution Equations in terms of Structure Scalars

A set of governing equations can be deduced in terms of kinematical variables to

describe the self-gravitating system. Here we rewrite this set of equations in terms of

modified structure scalars in the realm of f(G) gravity.

• Raychaudhuri equation: Equation (3.1.13) defines Raychaudhuri equation

for expansion of self-gravitating relativistic system which in terms of scalar

function becomes

ϑ;µu
µ +

1

3
ϑ2 +

2

3
σ2 − aµ;µ = −

(m)

Y
T
. (3.2.15)

We observe from this relation that GB terms have no contribution and
(m)

Y
T
has

an extreme role in measuring the expansion rate of self-gravitating fluid in GR

as well as f(G) cosmology.

• Propagation equation of shear: This equation describes the shear evolution

of self-gravitating system given in Eq.(3.1.15) which in terms of modified scalar

variables reduces to

a,µv
µ + a2 − σ,µu

µ − 1

3
σ2 − 2

3
σϑ− a

C ′

BC
= −

(m)

Y
TF

+
2

67
nα

(GB)

X
TF

+ 22α(n− 1)Gn

(3.2.16)

showing the importance of GB correction terms in the shearing motion of the

evolving self-gravitating system.

• Constraint equation: A direct relation among shear tensor, expansion scalar,

heat flux and dark source terms due to f(G) gravity is obtained through con-

straint equation (3.1.16) which in terms of scalar variables becomes

(ϑ+
1

2
σ),αv

α = − 3C ′

2BC
σ − 3

2B
q̃ − 1

64
(Rδρσ)∇ρ∇σf

G
+

9

444

(GB)

X
TF
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− 3

32

(GB)

X
T
− 7407

929
α(n− 1)Gn. (3.2.17)

• Dynamical equations: These equations describe the conservation of total

energy of the evolving star given in Eqs.(3.1.27) and (3.1.28) and in terms of

scalar variables, these become

ρ̃,µu
µ +

1

3
(

(m)

X
T
+

(m)

Y
T
−

(m)

X
TF

−
(m)

Y
TF
)ϑ+

2

3
(

(m)

X
TF

+
(m)

Y
TF
) + 2q̃

(

C ′

BC
+ a

)

+q̃,µv
µ − 1

58
(

(GB)

X
TF
),νu

ν − 11

29
α(n− 1)(Gn),νu

ν = 0, (3.2.18)

p̃
r ,µv

µ + a(
(m)

X
T
+

(m)

Y
T
−

(m)

X
TF

−
(m)

Y
TF
) + (

(m)

X
TF

+
(m)

Y
TF
)
2C ′

BC
+ q̃,µv

µ +
2

3
q̃

×(σ + 2ϑ)− 1

58
(

(GB)

X
TF
),νv

ν − 11

29
α(n− 1)(Gn),νv

ν = 0, (3.2.19)

which show that the rate of change of energy density and radial pressure depend

on scalar functions of matter and dark source terms.

• Evolution equations for the Weyl tensor: These equations represent the

relationship between the Weyl tensor, dynamical variables and extra dark source

terms as (3.1.24) and (3.1.25). In terms of scalar functions, these become

1

3

(

(−1

2

(m)

X
T
+

(m)

X
TF

+
(m)

Y
T
+

(m)

Y
TF
) +

9

2C3
M
)

(ϑ+
1

2
σ) + (

1

2

(m)

X
T
−

(m)

X
TF
)

+
3C ′

2BC
q̃ +

1

4
nα[vρvσ(R,βu

β − R,αv
α)]∇ρ∇σGn−1 +

1

4
nα(Rvρvσ)∇ρ∇σ

×((Gn−1),βu
β − (Gn−1),αv

α) +
1

4
nα(Ruρuσ),βu

β∇ρ∇σGn−1 +
9

32
nα

×(Ruρuσ)∇ρ∇σ(Gn−1),βu
β + (

7

8

(GB)

X
T
+

9

26 · 87
(GB)

X
TF
),βu

β − 1975

24
(n− 1)

×α(Gn),βu
β = 0, (3.2.20)

(
1

2
ρ̃),αv

α − (
(m)

X
TF
),αv

α − 3C ′

BC

(m)

X
TF

− q̃(ϑ+
1

2
σ)− 5

116
(

(GB)

X
TF

),αv
α − 61

58

×α(n− 1)(Gn),αv
α = 0. (3.2.21)
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The above two equations relate the effects of tidal force with fluid parame-

ters as well as GB terms. Equation (3.2.21) shows the dependence of density

inhomogeneity on two scalars
(m)

X
TF

,
(GB)

X
TF
, dissipation and f(G) model.

Now, we figure out density inhomogeneity factor on the surface of spherical system

under the influence of f(G) gravity. In a collapsing system, the surface of celestial

object suffers density inhomogeneity caused by some specific quantities or specific

relations of dynamical and geometrical variables. The vanishing of these quantities

or relations assures density homogeneity [23]. The dissipation and scalar variable of

matter X
TF

lead to density inhomogeneity for spherical system in GR. It is evident

from Eq.(3.2.21) that if we neglect dissipation and matter variable
(m)

X
TF
, we obtain

(
1

2
ρ̃),αv

α − 5

116
(

(GB)

X
TF
),αv

α − 61

58
α(n− 1)(Gn),αv

α = 0.

We are left with density inhomogeneity and GB terms which suggest that density

inhomogeneity is controlled by GB terms. Furthermore, if
(GB)

X
TF

= 0 and f(G) =

constant, we have

(
1

2
ρ̃),α = 0, (3.2.22)

which reveals that f(G) model remains homogeneous and constant during the evo-

lution. However, a viable and realistic f(G) model cannot be a constant and hence

scalar functions do not vanish which leads to inhomogeneous (irregular) distribution

of fluid.

3.2.3 The Weyl tensor with Mass Function and GB Terms

This relation can be obtained by using Eqs.(1.1.4), (1.5.7) and (3.1.6) as

3M
C3

= ρ̃− Π− ε− 1

3
nα[2Rgρσ + 3Rδρσ]∇ρ∇σGn−1 +

1

6
α(n− 1)Gn.
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In terms of scalar functions, it turns out to be

3M
C3

=
1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σGn−1 +
219

522
α(n− 1)Gn. (3.2.23)

3.2.4 Anisotropic Inhomogeneous Spherical Models

In this section, we restrict ourselves to the static case and modify the line element

(3.1.1) in terms of scalar functions. The resulting line element can yield static spheri-

cal solutions with inhomogeneity and anisotropy in f(G) gravity. We consider C = r

for static configuration for which ϑ = σ = 0. Three possible alternative forms are

given as follows.

(i) First Alternative Form

It can directly be seen from Eq.(3.1.6) that Misner-Sharp mass function for static

case becomes

2

r
M = 1− 1

B2
, (3.2.24)

which gives

B =

(

1− 2r2

3

(

1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σGn−1

+
219

522
α(n− 1)Gn

))− 1
2

. (3.2.25)

Next, using Eqs.(3.1.13) and (3.1.15) with (1.5.7) for static case, we obtain

A′

AB
=

1

3
Br[

(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

Y
TF

− 22α(n− 1)Gn], (3.2.26)

which after integration gives

A = λ1 exp[

∫

r

3

(

1− 2r2

3

(

1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σGn−1
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+
219

522
α(n− 1)Gn

))−1

(
(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)Gn)dr], (3.2.27)

where λ1 is a constant of integration. In this case, the line element (3.1.1) becomes

for Eqs.(3.2.25) and (3.2.27) as

ds2 = −[λ1 exp[

∫

r

3

(

1− 2r2

3

(

1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σ

× Gn−1 +
219

522
α(n− 1)Gn

))−1

(
(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)

× Gn)dr]]2dt2 +

(

1− 2r2

3

(

1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σ

× Gn−1 +
219

522
α(n− 1)Gn

))−1

dr2 + r2(dθ2 + sin2 θdφ2).

A singularity seems to appear if

2r2

3
(
1

2

(m)

X
T
−

(m)

X
TF

+
1

87

(GB)

X
TF

− nα[Rδρσ]∇ρ∇σGn−1 +
219

522
α(n− 1)Gn) = 1.

By inserting the values of five scalar functions
(m)

X
T
,

(m)

X
TF
,

(GB)

X
TF
,

(m)

Y
T
and

(m)

Y
TF
, we can

obtain all possible inhomogeneous static anisotropic spherical solutions.

(ii) Second Alternative Form

Using Eqs.(3.1.11), (3.2.9) and (3.2.23), we obtain the relation

3

r3
M =

M′

r2
−

(m)

X
TF

+
377

87(29)

(GB)

X
TF
,

which implies after integration that

M = r3
(
∫

(
(m)

X
TF

− 377

87(29)

(GB)

X
TF

)dr + λ2

)

,

where λ2 is another integration constant. Using this equation in (3.2.24), we have

B =

(

1− 2r2
(
∫

(
(m)

X
TF

− 377

87(29)

(GB)

X
TF
)dr + λ2

))− 1
2

. (3.2.28)



65

Combining Eqs.(3.2.26) and (3.2.28), it follows that

A = λ3 exp[
1

3

∫
(

1− 2r2
(
∫

(
(m)

X
TF

− 377

87(29)

(GB)

X
TF
)dr + λ2

))−1

r[
(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)Gn]dr], (3.2.29)

λ3 is another constant of integration. The line element (3.1.1) takes the following

form for Eqs.(3.2.28) and (3.2.29) as

ds2 = −[λ3 exp[
1

3

∫

r

(

1− 2r2
(
∫

(
(m)

X
TF

− 377

87(29)

(GB)

X
TF
)dr + λ2

))−1

[
(m)

Y
T

+
(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)Gn]dr]]2dt2 +

(

1− 2r2
(
∫

(
(m)

X
TF

− 377

87(29)

(GB)

X
TF
)dr + λ2

))−1

dr2 + r2(dθ2 + sin2 θdφ2).

In this case, singularity can appear if 2r2
(

∫

(
(m)

X
TF

− 377
87(29)

(GB)

X
TF
)dr + λ2

)

= 1 and all

spherical inhomogeneous static anisotropic solutions can be obtained by inserting the

values of five scalars
(m)

X
T
,

(m)

X
TF
,

(GB)

X
TF

,
(m)

Y
T
and

(m)

Y
TF
.

(iii) Third Alternative Form

Equation (3.1.5) reduces to

ε =
1

2B2r

(

1

r
+

B′

B

)

− 1

2r2
. (3.2.30)

Alternatively, Eq.(3.2.30) can be rearranged as follows

B′ +
1

r
B = B3

(

1

r
+ 2r(

(m)

Y
TF

−
(m)

X
TF

)

)

,

where ε =
(M)

Y
TF

−
(m)

X
TF
. This is the Bernoulli’s differential equation which gives

B =

(

−4r2
∫

1

r
(

(m)

Y
TF

−
(m)

X
TF
)dr + 1 + λ4r

2

)− 1
2

. (3.2.31)
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Using Eq.(3.2.31) in (3.2.26), it follows that

A =
λ5

3
exp[

∫

r

(

−4r2
∫

1

r
(

(m)

Y
TF

−
(m)

X
TF
)dr + 1 + λ4r

2

)−1

[
(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)Gn]dr]. (3.2.32)

The corresponding form of the line element (3.1.1) becomes

ds2 = −[
λ5

3
exp[

∫

r

(

−4r2
∫

1

r
(

(m)

Y
TF

−
(m)

X
TF
)dr + 1 + λ4r

2

)−1

[
(m)

Y
T
+

(m)

Y
TF

− 2

67

(GB)

X
TF

− 22α(n− 1)Gn]dr]2dt2 +

(

−4r2
∫

1

r
(

(m)

Y
TF

−
(m)

X
TF
)dr + 1

+ λ4r
2
)

dr2 + r2(dθ2 + sin2 θdφ2),

where singularity might appear if −4r2
∫

1
r
(

(m)

Y
TF

−
(m)

X
TF

)dr + 1 + λ4r
2 = 0. In this

alternative form of static inhomogeneous sphere with anisotropy, all solutions depend

upon four scalars
(m)

X
TF

,
(GB)

X
TF
,

(m)

Y
T
and

(m)

Y
TF
.



Chapter 4

Dynamics of Axially Symmetric
System and Structure Scalars

This chapter explores dynamics of axially symmetric collapsing fluid under the dark

effects of f(G) gravity. It also investigates the effects of shear-free condition on the

dynamics of the system. The results of this chapter have been divided into two parts.

The first part with shear stress has been published in [51] and the other with shear-

free condition has been published in [52]. The format of this chapter is as follows. The

next section discusses evolution of axially symmetric system in the presence of shear

stress while section 4.2 explores the effects of shear-free condition on this evolution.

4.1 Evolution of Axially Symmetric Systems

In this section, we study evolution of dissipative axially symmetric collapsing fluid by

developing a set of governing equations in terms of structure scalars.

67
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4.1.1 Axial System and Kinematical Variables

The line element for axial and reflection symmetric system is [53]

ds2 = −A2(t, r, θ)dt2+B2(t, r, θ)(dr2+r2dθ2)+2E(t, r, θ)dtdθ+C2(t, r, θ)dφ2. (4.1.1)

The energy distribution of respective fluid observed by an observer with four velocity

uµ (uµ = (A−1, 0, 0, 0) and uµ = (−A, 0, E
A
, 0)) can be represented by the energy-

momentum tensor given by

(eff)

T µν =
(m)

T µν +
(GB)

T µν = (
(eff)

ρ +
(eff)

p )uµuν +
(eff)

p gµν +
(eff)

Π µν +
(eff)

q µuν +
(eff)

q νuµ, (4.1.2)

where the effective energy density, isotropic pressure, anisotropic tensor and heat flux,

respectively are defined as

(eff)

ρ =
(m)

ρ µν +
(GB)

ρ µν ,
(eff)

p =
(m)

p µν +
(GB)

p µν ,

(eff)

Π µν =
(m)

Π µν +
(GB)

Π µν ,
(eff)

q µ =
(m)

q µν +
(GB)

q µν .

We obtain these effective quantities from Eq.(4.1.2) as

(eff)

ρ =
(eff)

T uµuν =
(m)

T µνu
µuν +

3

2
[Rgρσ]∇ρ∇σf

G
−Gf

G
+ f, (4.1.3)

(eff)

q µ = −(eff)

ρ uµ −
(eff)

T µνu
ν = −(eff)

ρ uµ −
(m)

T µνu
ν − 1

2
[Rgρσuµ]∇ρ∇σf

G

+ (Gf
G
− f)uµ, (4.1.4)

(eff)

p =
1

3
hµν

(eff)

T µν =
1

3
hµν

(m)

T µν + 4[
11

8
Rgρσ +Ruρuσ − hρσ]∇ρ∇σf

G

+ 3(Gf
G
− f), (4.1.5)

(eff)

Π µν = hα
µh

β
ν (

(eff)

T αβ −
(eff)

p hαβ) = hα
µh

β
ν (

(m)

T αβ −
(m)

p hαβ) + 8[
5

8
Rgσρδµν

+
9

8
Rgσρuµuν +

1

2
Rgνρhµσ +

1

2
Rhµσuρuν +

1

2
Ruσuρuµuν − Rhµσhρν ]

× ∇ρ∇σf
G
+ (Gf

G
− f)(δµν + uµuν) + 4hµν [

11

8
Rgρσ +Ruρuσ − hρσ]
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× ∇ρ∇σf
G
+ 3hµν(Gf

G
− f). (4.1.6)

The spacelike unit four-vectors are defined as

vµ = Bδ1µ, sµ =
1

A
(A2B2r2 + E2)

1
2 δ2µ, kµ = Cδ3µ,

which satisfy the relations

uµuµ = −vµvµ = −sµsµ = −kµkµ = −1,

uµvµ = uµsµ = uµkµ = vµsµ = vµkµ = kµsµ = 0.

The pressure anisotropic parameter has significant effects in controlling hydro-

static equilibrium. The physical phenomena like mixture of two fluids and phase

transition cause pressure anisotropy in the stellar models [54]. Some other prominent

sources for pressure anisotropy are the magnetic field present in the compact objects

(such as neutron stars and white dwarfs), magnetized strange quark stars, magnetic

field acting on a Fermi gas, viscosity present in neutron stars as well as in highly

densed matter [55]. For the sake of convenience, we convert the anisotropic tensor

(4.1.6) in terms of scalar quantities as follows

(eff)

Π µν =
1

3
(2

(eff)

Π1 +
(eff)

Π2)(vµvν−
1

3
hµν)+

1

3
(2

(eff)

Π2 +
(eff)

Π1)(sµsν−
1

3
hµν)+2

(eff)

Π vsv(µsν), (4.1.7)

where

(eff)

Π vs = vµsν
(eff)

T µν ,
(eff)

Π1 = (2vµvν − sµsν − kµkν)
(eff)

T µν , (4.1.8)

(eff)

Π2 = (2sµsν − kµkν − vµvν)
(eff)

T µν . (4.1.9)

Equations (4.1.8) and (4.1.9) indicate that anisotropy scalars
(eff)

Π vs,
(eff)

Π1 and
(eff)

Π2 depend

on matter as well as dark sources. Hence the inhomogeneous distribution of dark
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sources generate pressure anisotropy in collapsing fluid. Dissipation of heat flux (due

to emission of photons or neutrinos which are massless particle) during collapse cannot

be overemphasized. Indeed, it is a characteristic process during stellar evolution.

Dissipation due to neutrino emission of gravitational binding energy leads to the

formation of neutron stars or black holes [56]. The field equations along with qµuµ = 0

give T03 = 0 which implies that

(eff)

q µ =
(eff)

q1 vµ +
(eff)

q2 sµ. (4.1.10)

Here

(eff)

q1 =
(eff)

qµ v
µ =

(eff)

T µνu
νvµ,

(eff)

q2 =
(eff)

qµ s
µ =

(eff)

T µνu
νsµ. (4.1.11)

These equations indicate that inhomogeneous distribution of matter and dark sources

generate heat dissipation.

The characteristics of self-gravitating collapsing fluid depend upon the behavior

of kinematical variables. The four acceleration (1.5.1) is given as

aµ = a1vµ + a2sµ =

(

0,
A′

A
,

(

−Ȧ

A
+

Ė

E

)

E

A2
+

Aθ

A
, 0

)

, (4.1.12)

where θ indicates derivative with respect to theta coordinate. The expansion scalar

(1.5.2) is

ϑ =
A2B2

A2B2r2 + E2

[(

2
Ḃ

B
+

Ċ

C

)

r2 +

(

Ḃ

B
− Ȧ

A
+

Ė

E
+

Ċ

C

)

E2

A2B2

]

.

(4.1.13)

The non-zero components of the shear tensor (1.5.3) are

σ11 =

[(

CḂB − Ċ

C

)

A2B2r2 −
(

2Ḃ

B
+

Ȧ

A
− Ė

E
− Ċ

C

)

E2

]
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× B2

3A(A2B2r2 + E2)
, (4.1.14)

σ22 =

[(

Ḃ

B
− Ċ

C

)

A2B2r2 −
(

2
Ȧ

A
+

Ḃ

B
− 2Ė

E
+

Ċ

C

)

E2

]

1

3A2
, (4.1.15)

σ33 =

[

2

(

−Ḃ

B
+

Ċ

C

)

A2B2r2 +

(

2Ċ

C
− Ḃ

B
− Ė

E
+

Ȧ

A

)

E2

]

× C2

3A(A2B2r2 + E2)
. (4.1.16)

The alternative form of shear tensor (1.5.3) in terms of two scalar functions σ1 , σ2 is

σµν =
1

3
(2σ

1
+ σ

2
)(vµvν −

1

3
hµν) +

1

3
(2σ

2
+ σ

1
)(sµsν −

1

3
hµν). (4.1.17)

Equations (4.1.14)-(4.1.16) imply that

2σ1 + σ2 =

(

Ḃ

B
− Ċ

C

)

3

A
, (4.1.18)

2σ2 + σ1 =

[(

Ḃ

B
− Ċ

C

)

AB2r2 −
(

Ȧ

A
− Ė

E
− Ċ

C

)

E2

A

]

3

(A2B2r2 + E2)
. (4.1.19)

The vorticity scalar function Ω is given as

Ωµν = Ω(sµvν − sνvµ), Ω =
E(E

′

E
− 2A′

A
)

2B(A2B2r2 + E2)
1
2

. (4.1.20)

Equations (1.5.4) and (4.1.20) yield wµ = −Ωkµ. It can be seen from Eq.(4.1.20) that

Ω = 0 if and only if E = 0, i.e., the system becomes vorticity free (spinless) if and

only if reflection symmetric term (E) is zero. The expressions of kinematical variables

show that they are metric (geometric terms) dependent, there is no contribution from

energy terms.

The Weyl tensor (1.5.7) and Eq.(1.1.4) yield a link between the Weyl tensor and

effective energy terms through Riemann/Ricci tensors and Ricci scalar. In this way,

the Weyl tensor is also associated with the dynamics of dark sources and defines the
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effects of tidal forces due to gravitational as well as repulsive gravitational forces.

There are three non-zero components for electric part while two for the magnetic

part. These components can be written in terms of scalar functions as

(eff)

E µν =
1

3
(2

(eff)

εI +
(eff)

ε
2
)(vµvν −

1

3
hµν) +

1

3
(2

(eff)

ε
2
+

(eff)

ε
1
)(sµsν −

1

3
hµν)

+ εvs(vµsν + vνsµ), (4.1.21)

(eff)

M µν =
(eff)

M1(kµvν + kνvµ) +
(eff)

M2(kµsν + kνsµ). (4.1.22)

4.1.2 Structure Scalars and Evolution Equations

Here we construct a set of structure scalars (scalar functions) that help to write down

the set of governing equations in simpler form. We decompose the Riemann tensor

into energy terms with the help of Eqs.(1.1.4) and (1.5.8) as

R
µν
αβ =

(F)

R
µν
αβ +

(Q)

R
µν
αβ +

(E)

R
µν
αβ +

(M)

R
µν
αβ ,

where

(F)

R
µν
αβ =

2

3
(
(eff)

ρ + 3
(eff)

p )u[µu[αh
ν]
β] +

2

3

(eff)

ρ h
µ

[αh
ν
β], (4.1.23)

(Q)

R
µν
αβ = −2u[µh

ν]
[α

(eff)

q β], (4.1.24)

(E)

R
µν
αβ = 4u[µu[αE

(eff)ν]
β] + 4h

[µ
[αE

(eff)ν]
β] , (4.1.25)

(M)

R
µν
αβ = −2ǫµνγu[α

(eff)

M β]γ − 2ǫαβγu
[µ

(eff)

Mν]γ , (4.1.26)

ǫµνγ = ηβµνγu
β, the notations in top F (density and pressure), Q (heat dissipation),

E (electric part of the Weyl tensor) and M (magnetic part of the Weyl tensor) show

decomposed parts of the Riemann curvature tensor relating to various aspects of

fluid and carry the effects of dark sources. Using Eqs.(1.5.8) and (4.1.23)-(4.1.26), we
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obtain

(eff)

Y µν =
1

3

(eff)

YThµν +
1

3
(2

(eff)

Y
TF1

+
(eff)

Y
TF2

)(vµvν −
1

3
hµν) +

1

3
(2

(eff)

Y
TF2

+
(eff)

Y
TF1

)

× (sµsν −
1

3
hµν) +

(eff)

Yvs(vµsν + vνsµ).

Here the subscript T stands for the trace part while the components with notation

TF1, TF2 and vs in subscript represent trace-free parts of the corresponding tensor.

The scalar quantities

(eff)

YT =
1

2
(
(eff)

ρ + 3
(eff)

p ),
(eff)

Y
TF1

=
(eff)

ε1 − 1

2

(eff)

Π1 ,
(eff)

Y
TF2

=
(eff)

ε2 − 1

2

(eff)

Π2 ,
(eff)

Yvs =
(eff)

εvs −
1

2

(eff)

Πvs,

are the set of scalar functions associated with the tensor
(eff)

Y µν . Likewise, the set of

scalar functions associated with the tensor
(eff)

X µν are given by

(eff)

XT =
(eff)

ρ ,
(eff)

X
TF1

= −(eff)

ε1 − 1

2

(eff)

Π1 ,
(eff)

X
TF2

= −(eff)

ε2 − 1

2

(eff)

Π2 ,
(eff)

Xvs = −(eff)

εvs −
1

2

(eff)

Πvs,

Inserting Eqs.(1.5.8), (4.1.23)-(4.1.26) in the expression of
(eff)

Zµν , we obtain

(eff)

Zµν =
(eff)

Mµν +
1

2

(eff)

qδ µνδ,

or equivalently,
(eff)

Zµν =
(eff)

Z1vµkν +
(eff)

Z2vνkµ +
(eff)

Z3sµkν +
(eff)

Z4sνkµ.

Here

(eff)

Z1 = (
(eff)

M1 −
1

2

(eff)

q2 ),
(eff)

Z2 = (
(eff)

M1 +
1

2

(eff)

q2 ),

(eff)

Z
3

= (
(eff)

M
2
− 1

2

(eff)

q
1
),

(eff)

Z
4
= (

(eff)

M
2
+

1

2

(eff)

q
1
),

are the structure scalars related to
(eff)

Zµν .

We briefly discuss dynamical aspects of scalar quantities under the dark effects

of f(G) gravity. The set of scalar functions describe contribution of matter as well
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as dark sources in the evolution of axially symmetric self-gravitating systems. The

scalar
(eff)

XT expresses total energy density of matter and dark sources of the system.

Three scalars
(eff)

X
TF1

,
(eff)

X
TF2

as well as
(eff)

Xvs indicate combine effects of anisotropy and

electric part of the Weyl tensor in one and the same direction. Another scalar
(eff)

YT

represents sum of energy density and pressure (total energy) of the system. The

scalars
(eff)

Y
TF1

,
(eff)

Y
TF2

as well as
(eff)

Yvs provide combine effects of anisotropy and electric part

of the Weyl tensor in opposite directions. The set of scalar functions
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 ,
(eff)

Z4

represent various combinations of heat dissipation and magnetic parts of the Weyl

tensor. We note that matter as well as dark sources take part in the dynamics of

any axial system. If we neglect matter contributions, then dark sources become

responsible for the dynamics of the system.

By contracting Eq.(1.5.9) with sα and using Eqs.(4.1.12) and (4.1.20), we obtain

τ

A
(q̇(eff)

2
+ A

(eff)

q1 Ω) +
(eff)

q2 =
K

A

(

−EṪ+ A2
T
θ

(A2B2r2 + E2)
− ATa2

)

− KT
2q

2

2

(

τuµ

KT2

)

;µ

.

(4.1.27)

Similarly, the contraction of Eq.(1.5.9) with vα gives

τ

A
(q̇(eff)

1
− A

(eff)

q2 Ω) +
(eff)

q1 = −K

A
(T′ + BTa1)−

KT
2q1
2

(

τuµ

KT2

)

;µ

. (4.1.28)

These two equations describe the effective thermal energy transport (thermal trans-

port due to matter as well as dark sources) in the presence of vorticity (spinning

configuration). The set of evolution equations depending upon dynamical variables

give the dynamics of collapsing stellar configuration. In the following, we formulate

these equations in the presence of dark sources under the effects of f(G) gravity.
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(i) Conservation Equations and Thermodynamical Aspect of the System

From the conservation law,
(eff)

T µ
ν;µ = 0, we obtain two conservation equations in terms

of scalar quantities as

(eff)

XT ;µu
µ + 2ϑ(

(eff)

YT − (eff)

p ) + qµ;µ + qµaµ +
1

9
[(2σ1 + σ2)Π1 + (σ1 + 2σ2)Π2 ] = 0, (4.1.29)

2aµ(
(eff)

YT − (eff)

p ) + hν
µ(
1

3
(2

(eff)

YT −
(eff)

XT );ν +
(eff)

Πα
ν;α +

(eff)

q ν;αu
α)

+(
4

3
ϑhµν + σµν + ωµν)

(eff)

qν = 0. (4.1.30)

The first is the continuity equation and the second is named as the Euler equation.

In order to explore thermodynamical effects, we use Eqs.(1.5.9)-(4.1.28) and (4.1.30).

The combination of Eqs.(1.5.9) and (4.1.30) leads to effective inertial mass while

Eqs.(4.1.27) and (4.1.28) provide the relation between thermodynamics and vorticity.

Just analogous to inertial mass defined in classical dynamics (Newton’s second law),

a similar concept also exists in instantaneous rest-frame in relativistic theory. Since

in instantaneous rest-frame, the acceleration is parallel (proportional) to the applied

force, so the inertial mass behaves as a factor of proportionality among them [57].

However, in some cases when there is no interaction between particles, this factor of

proportionality does not represent mass of the particles. In such a case, this factor of

proportionality is referred as to effective inertial mass.

The value of effective inertial mass of a particle moving through a solid body (like

crystal) may differ from the value calculated for the same particle moving in free

space under the same force [58]. In the present case, the combination of Eqs.(1.5.9)

and (4.1.30) gives

[

2(
(eff)

YT − (eff)

p )− KT

τ

]

aµ = −hν
µΠ

(eff)α
ν;α − 1

3
hν
µ(2

(eff)

YT −
(eff)

XT ),ν − (σµν
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+ωµν)
(eff)

qν +
K

τ
hν
µT,ν +

[

1

τ
− 5

6
ϑ+

1

2
Dt

(

ln(
τ

KT2
)
)

]

qµ, (4.1.31)

where Dtf = f,νu
ν. The expression on the right hand side contains some extra terms

other than dissipative terms which represent hydrodynamic force acting upon fluid

and dark sources. The factor multiplying with four acceleration on the left side depicts

effective inertial mass density given as

2(
(eff)

YT − (eff)

p )(1−
(eff)

Ψ ),

with
(eff)

Ψ = KT

2τ(
(eff)

YT −
(eff)
p )

. When the system deviates from thermal equilibrium state, the

effective inertial mass density of dissipative fluid is diminished by a factor (1 −
(eff)

Ψ ).

It disappears for
(eff)

Ψ = 1 or even becomes negative for
(eff)

Ψ > 1. It can be observed

that the factor
(eff)

Ψ depends upon the values of temperature, the scalar
(eff)

YT as well as

pressure in the presence of matter and dark sources. It is mentioned here that in GR,

the effective inertial mass density of the dissipative fluid is given by (
(m)

ρ +
(m)

p ) which is

reduced by a factor Ψ = KT

τ(
(m)
ρ +

(m)
p )

. For f(G) gravity, the generalized effective inertial

mass density becomes

2(
(eff)

YT − (eff)

p ) = 2(
(m)

YT − (m)

p ) + [7Rgρσ + 4Ruρuσ − 4hρσ]∇ρ∇σf
G
+ 2(Gf

G
− f),

which is the sum of matter and dark source terms. In the absence of dark sources,

this reduces to 2(
(eff)

YT − (eff)

p ) = 2(
(m)

YT − (m)

p ). Thus the dark source terms affect thermo-

dynamics of dissipative collapsing system.

Now we check the relationship between thermodynamics and vorticity given in

Eqs.(4.1.27) and (4.1.28). For this purpose, we consider the system is in thermody-

namic equilibrium in θ direction and assume
(eff)

q2 = 0 with constant (corresponding)

temperature. Under these considerations, Eq.(4.1.27) gives

(
(eff)

q2 ),t = −AΩ
(eff)

q1
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showing the spinning configuration (vorticity) or heat flux of matter in r-direction

which controls the vanishing of time propagation of meridional flow (thermal equi-

librium in θ direction). Inversely, under the same type of assumption in Eq.(4.1.28),

(
(eff)

q1 ),t = AΩ
(eff)

q2 shows that time propagation of the vanishing of radial heat flux at

initial time will depend upon the values of vorticity and meridional heat flux. From

the above discussion, we note that dark sources along with matter terms take part

in time propagation of thermal equilibrium in either direction (r and θ). In GR, it

depends only on matter and vorticity.

(ii) Ricci Evolutionary Equations and Kinematic Variables

We discuss the evolution of kinematical quantities and effects of dark sources through

Ricci evolutionary equations. The time propagation equation of expansion scalar is

derived by contracting Ricci identities for four velocity given by

ϑ;µu
µ +

1

3
ϑ2 + 2(σ2 − Ω2)− aµ;µ +

(eff)

YT = 0, (4.1.32)

where σ2 = σµνσ
µν . We note from this equation that for axial system, the evolution

of expansion parameter depends upon shear, voticity and the scalar
(eff)

YT in geodesic

as well as non-geodesic cases. In the absence of matter, dark sources control the

evolution of expansion scalar.

The propagation equation of shear tensor is obtained by contracting Ricci identi-

ties with four velocity as well as combination of projection tensor and unit four-vectors

given by

hα
µh

β
νσαβ;γu

γ + σα
µσνα +

2

3
ϑσµν −

1

3
(2σ2 + Ω2 − aγ;γ)hµν + wµwν − aµaν

−hα
(µh

β

ν)aα;β +
(eff)

E µν −
1

2

(eff)

Π µν = 0.
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Additionally, contracting this equation with ss, vv and vs, respectively, it follows

that

σ2,γu
γ +

1

3
σ2(σ2 + 2ϑ)− (2σ2 + Ω2 − aγ;γ)− 3(sαsβaα;β + a2

2
) +

(eff)

Y
TF2

= 0, (4.1.33)

σ1,γu
γ +

1

3
σ1(σ1 + 2ϑ)− (2σ2 + Ω2 − aγ;γ)− 3(vαvβaβ;α + a1) +

(eff)

Y
TF1

= 0, (4.1.34)

1

3
(σ

1
− σ

2
)Ω− a

1
a

2
− v(αsβ)aα;β +

(eff)

Yvs = 0.(4.1.35)

Equations (4.1.33) and (4.1.34) demonstrate that the evolution of shear depends on

vorticity and scalars
(eff)

Y
TF1

,
(eff)

Y
TF2

. If we consider geodesic fluid with vorticity-free

condition, then expansion parameter and scalars
(eff)

Y
TF1

,
(eff)

Y
TF2

will control the evolution

of shear scalars. Since
(eff)

Y
TF1

and
(eff)

Y
TF2

contain pressure anisotropy and electric part

of the Weyl tensor, therefore these scalars will affect the shearing collapsing fluid.

Equation (4.1.35) in geodesic case with vorticity-free condition gives
(eff)

Yvs = 0.

Constraint equations are obtained as

hν
µ

(

2

3
ϑ;ν − σα

ν;α + Ωα
ν;α

)

+ (σµν + Ωµν) a
ν =

(eff)

q µ, (4.1.36)

2w(µaν) + hα
(µhν)β(σαγ + Ωαγ);δη

βκδγuκ =
(eff)

M µν . (4.1.37)

The contraction of Eq.(4.1.36) with v and s gives the following scalar equations

2

3B
ϑ′ − Ω;αs

α + Ω(sν;βv
βvν − s

β
;β) +

1

3
aIσ1 − a2Ω− 1

3
σ1;αv

α

−1

3
(2σ1 + σ2)(v

α
;α − a1

3
)− 1

3
(σ1 + 2σ2)(sν;αs

αsν − a1

3
) =

(eff)

q1 , (4.1.38)

1

3
(E2 + A2B2r2)

1
2

(

2Aϑθ +
2E

A
ϑ̇

)

+
σ2a2

3
+ ω;αv

α + Ω(vα;α

+sβvνsν;β) + ΩaI −
1

3
σ2;αs

α +
1

3
(σ2 + 2σ1)(sν;αs

αsν − a
2

3
)

−1

3
(σ1 + 2σ2)(s

α
;α − a

2

3
) =

(eff)

q2 . (4.1.39)
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Similarly, contraction of Eq.(4.1.37) with vk and sk provide

−Ωa1 −
1

2
(vαkβ + kαvβ) (σαδ + Ωαδ);γ ǫ

βγδ =
(eff)

M1 , (4.1.40)

−Ωa
2
− 1

2
(sαkβ + kαsβ) (σαδ + Ωαδ);γ ǫ

βγδ =
(eff)

M
2
. (4.1.41)

Equation (4.1.38) demonstrates that effective dissipation scalar rules the propagation

of vorticity in the case of shear and expansion-free geodesic fluid. In this way, dark

sources affect the vorticity of fluid. Equations (4.1.38)-(4.1.41) exhibit the relations

between
(eff)

M1 ,
(eff)

M2 ,
(eff)

q1 ,
(eff)

q2 , shear and vorticity. Thus these relations also affect the

evolution of expansion scalar. The time propagation equation for the vorticity tensor

can be derived from the Ricci identity by contracting it with the combination of

projection tensor and four velocity vector as [27]

hα
µh

β
νΩαβ;γu

γ +
2

3
ϑσµν + 2σα[µΩ

α
ν] − hα

[µh
β

ν]aµ;ν = 0. (4.1.42)

Contraction of the above equation with vs yields

Ω,αu
α +

1

3
(2ϑ+ σ1 + σ2)Ω + v[µsν]aµ;ν = 0, (4.1.43)

which expresses the evolution of vorticity. We note that it does not depend on dark

term even in the presence of dark sources due to f(G) gravity. Hence for general

fluid, vorticity is not affected by dark sources.

(iii) Bianchi Evolutionary Equations and Density Inhomogeneity

TheWeyl tensor usually narrates effects of gravity due to tidal force in the universe. In

our case, it describes both attractive (gravity) as well as repulsive gravitational effects

due to the coupling of tidal force with dark sources. Evolution equations calculated

for various components of the Weyl tensor establish relations among structur scalars,
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dark sources and tidal force. These equations evaluate inhomogeneity (irregularity)

factors in the system. The collection of dynamical variables which causes density

inhomogeneity is known as density inhomogeneity factor. The vanishing of such

combination of dynamical variables is the necessary and sufficient for homogeneity of

energy density (hν
µ

(eff)

ρ ,ν = 0). The Weyl equations are derived by using Eqs.(1.1.4)

and (1.5.7) in Bianchi identities given as

hα
(µh

β

ν)

(eff)

E αβ;γu
γ + ϑ

(eff)

E µν + hµν

(eff)

E αβσ
αβ − 3

(eff)

E α(µσ
α
ν) + hα

(µη
γδκ

ν) uδ

(eff)

M γα;κ

−
(eff)

E δ(µΩ
δ
ν) − 2

(eff)

Mα
(µην)δακu

δaκ =
1

2
(
(eff)

ρ +
(eff)

p )σµν −
1

6
ϑ

(eff)

Π µν −
1

2
hα
(µh

β

ν)

×
(eff)

Π αβ;δu
δ − 1

2
σα(µ

(eff)

Πα
ν) −

1

2
Ωα

(µ

(eff)

Π ν)α − a(µ
(eff)

q ν) +
1

6
(
(eff)

Π αβσ
αβ + aα

(eff)

qα

+
(eff)

qα ;α)hµν −
1

2
hα
(µh

β

ν)

(eff)

q β;α, (4.1.44)

hα
µh

βν
(eff)

E αβ;ν − ηδβκµ uδσ
γ
β

(eff)

M κγ + 3
(eff)

M µνw
ν =

1

3
hν
µ

(eff)

ρ ;ν −
1

2
hν
µh

αβ
(eff)

Π νβ;α

−1

2

(

2

3
ϑhν

µ − σν
µ + 3Ων

µ

)

(eff)

q ν , (4.1.45)

(σµδ

(eff)

E
δ
ν + 3Ωµδ

(eff)

E
δ
ν)ǫ

µν
κ + aβ

(eff)

M βκ −
(eff)

Mβγ
;γhβκ =

1

2
(
(eff)

ρ +
(eff)

p )Ωµνǫ
µν
κ

+
1

2

[

(eff)

q µ;ν +
(eff)

Π βν(σ
β
ν + Ωβ

ν )

]

ǫµνκ , (4.1.46)

2aν
(eff)

E µκǫ
µν
γ −

(eff)

E βν;δh
β
κǫ

δν
γ +

(eff)

E
δ
ν;δǫ

ν
γκ +

2

3
ϑ

(eff)

M κγ +
(eff)

Mα
β;δu

δhβ
κhαγ −

(eff)

M δ
γ

×(σδκ + Ωδκ) + (σνδ + Ωνδ)
(eff)

Mα
µǫ

δ
καǫ

µν
γ +

1

3
ϑ

(eff)

Mα
µǫ

δ
καǫ

µ
γδ =

1

6

(eff)

ρ ;νǫ
ν
γκ

+
1

2

(eff)

Π µβ;νh
β
κǫ

µν
γ +

1

2

[

(eff)

q κΩµν +
(eff)

q µ(σκν + Ωκν +
1

3
ϑhκν)

]

ǫµνγ . (4.1.47)

The two Weyl equations are obtained by contracting Eq.(4.1.45) with v, s and using

scalar functions as

−1

3

(eff)

XTF1,νv
ν −

(eff)

Xvs,νs
ν − 1

3
(2

(eff)

X
TF1

+
(eff)

X
TF2

)(vν;ν − aβv
β)− 1

3
sα;νs

νvα

×(
(eff)

X
TF1

+ 2
(eff)

X
TF2

)−
(eff)

Xvs(sα;νv
αvν + sν;ν − aνs

ν)− 1

3

(eff)

M2(σ1 + 2σ2)− 3Ω
(eff)

M1
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=
1

3

(eff)

ρ ;νv
ν − 1

6

(eff)

q1 (2ϑ− σ1) + 4Ω
(eff)

q2 , (4.1.48)

1

3

(eff)

X
TF2ν

sν −
(eff)

Xvs,νv
ν − 1

3
(

(eff)

X
TF1

+ 2
(eff)

X
TF2

)(sν;ν − aνs
ν)− 1

3
(2

(eff)

X
TF1

+
(eff)

X
TF2

)

×vα;νs
αvν −

(eff)

Xvs(vα;νs
αsν + vν;ν − aνv

ν) +
1

3

(eff)

M1(2σ1 + σ2)− 3Ω
(eff)

M2

=
1

3

(eff)

ρ ;νs
ν − 4Ω

(eff)

q1 −
(eff)

q
2

6
(2ϑ− σ2), (4.1.49)

where the scalars
(eff)

X
TF1

,
(eff)

X
TF2

,
(eff)

Xvs,
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 and
(eff)

Z4 generate energy density

inhomogeneity.

In order to investigate the role of dark sources in energy density inhomogeneity,

we suppose that matter contribution is almost absent which leaves only dark source

terms. This indicates dark sources as agent of energy density inhomogeneity. In the

absence of f(G) terms, magnetic part of the Weyl tensor produces irregularity in the

respective region. Hence, the inhomogeneous distribution of dark sources causes heat

dissipation and repulsive gravitational effects in the interstellar region to produce

energy density inhomogeneity.

4.2 Shear-Free Axial System

In this section, we study the effects of shear-free condition on axial system in the

presence of dark sources (for f(G) model (1.1.7)) for non-geodesic (as well as geodesic)

dissipative (as well as non-dissipative) cases.
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4.2.1 Non-Geodesic Condition

We assume that the evolution of non-geodesic dissipative fluid is shear-free (σαβ =

0 = σ1 = σ2). Under this assumption, Eqs.(4.1.18) and (4.1.19) yield

C(t, r, θ) = B(t, r, θ)R1(r, θ), E(t, r, θ) = A(t, r, θ)B(t, r, θ)R2(r, θ), (4.2.1)

where R1(r, θ), R2(r, θ) are functions of integration with respect to temporal coordi-

nate t. These functions must satisfy R1(0, θ) = R2(0, θ) = 0 to be compatible with

regular condition at the origin. Equation (4.1.37) provides

2w<αaβ> +∇<αwβ> =
(eff)

M αβ . (4.2.2)

Here ∇αwβ = hµ
αwβ;µ and angled brackets indicate symmetric and trace-free part.

The above equation implies that under shear-free condition, the effective magnetic

part of the Weyl tensor depends upon the rotational parameter and for wα = 0, we

have
(eff)

M αβ = 0. Inversely,
(eff)

M αβ = 0 in Eq.(4.2.2) yields

∇αw
α = −2aαw

α. (4.2.3)

However, Eqs.(1.5.3) and (1.5.4) in the shear-free condition yield the identity

∇αw
α = aαw

α. (4.2.4)

Equations (4.2.3) and (4.2.4) imply that wα = 0 which further gives Ωαβ = 0

(from Eq.(1.5.4)). In both cases, we obtain
(eff)

M αβ = 0 implying that

(eff)

M1 =
(eff)

M2 = 0 ⇔ Ω = 0, (4.2.5)

which provides that necessary and sufficient condition for irrotational shear-free fluid

is the vanishing of magnetic part of the Weyl tensor. For shear-free irrotational fluid,
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Eqs.(4.1.38) and (4.1.39) give heat dissipation scalars as

(eff)

q1 =
ϑ,r

3B
,

(eff)

q2 =
ϑ,θ

3Br
. (4.2.6)

This shows the behavior of expansion scalar which depends upon heat dissipation.

In the absence of dissipation, Eq.(4.2.6) implies that the expansion scalar depends

upon temporal coordinate only, i.e., ϑ = ϑ(t) (becomes homogeneous) but dissipation

due to dark sources does not vanish. Hence the expansion of axial system remains

inhomogeneous under the dark effects of f(G) gravity.

4.2.2 Geodesic Condition

Here we restrict our system to be geodesic, i.e., a system with vanishing four acceler-

ation. Consequently, Eq.(4.1.12) along with Eqs.(4.1.13) and (4.1.24) gives

A = R3(t, θ), R2ϑB = R4(t, θ), (4.2.7)

where R3(t, θ) and R4(t, θ) are arbitrary functions of integration representing null

contributions from a1 and a2 , respectively. Under regularity conditions, we have

Ω(t, 0, θ) = E(t, 0, θ) = 0, i.e., vanishing of the coefficient of cross term results ir-

rotational fluid. The condition E(t, 0, θ) = 0 further gives R2(t, 0, θ) = 0 and con-

sequently, from Eq.(4.2.7), we obtain R
4
(t, 0, θ) = 0. As a result, we have either

Ω = 0 or ϑ = 0. A similar result can be found from Eq.(4.1.43) which reads for the

underlying case as

hα
µh

β
νΩαβ;γu

γ = −2

3
ϑΩµν , or Ω,αu

α = −2

3
ϑΩ. (4.2.8)

This equation along with Eqs.(4.1.13), (4.1.18) and (4.1.19) provides ϑΩ = 0 which

indicates that shear-free geodesic fluid yields either Ω = 0 or ϑ = 0. In the following,

we analyze both cases separately.
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(i) Vorticity-Free Expanding Fluid

First we consider the case with Ωµν = 0 but ϑ 6= 0 which implies that A = R
3
(t), E =

0. After reparametrization of time coordinate, the line element (4.1.1) becomes

ds2 = −dt2 +B2(t, r, θ)
[

dr2 + r2dθ2 + F 2(r, θ)dφ2
]

. (4.2.9)

This represents restricted class of axially symmetric cosmic structure. The continuity

and Euler equations ((4.1.29) and (4.1.30), respectively) reduce to

(eff)

ρ ;αu
α + (

(eff)

ρ +
(eff)

p )ϑ+
(eff)

q
α

;α = 0, (4.2.10)

hβ
α(

(eff)

p ,β +
(eff)

Π
µ

β;µ +
(eff)

q β;µu
µ) +

4

3
ϑ

(eff)

q α = 0, (4.2.11)

while the heat transport equation (1.5.9) gives

τhµ
ν

(eff)

q
ν

;αu
α +

(eff)

q
µ

= −Khµν(T,ν)−
1

2
KT

2

(

τuα

KT2

)

;α

(eff)

q
µ

. (4.2.12)

The combination of Eqs.(4.2.11) and (4.2.12) yields

hβ
α

(eff)

Π
µ

β;µ +∇α

(eff)

p +
K

τ
∇αT−

[

1

τ
+

1

2
Dt

(

ln(
τ

KT2
)
)

− 5

6
ϑ

]

(eff)

q α = 0, (4.2.13)

which gives a link between pressure gradient, pressure anisotropy and thermodynamic

quantities. This suggests that any acceptable EoS for the system under considera-

tion is restricted by thermodynamic quantities through the heat transport equation.

Equations (4.1.33)-(4.1.35) give

(eff)

Y
TF1

=
(eff)

Y
TF2

=
(eff)

Yvs = 0. (4.2.14)

The vanishing of this set of scalar functions associated with
(eff)

Y µν provide the relations

(eff)

ε1 =
1

2

(eff)

Π1 ,
(eff)

ε2 =
1

2

(eff)

Π2 ,
(eff)

εvs =
1

2

(eff)

Πvs, (4.2.15)
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and accordingly the tensor
(eff)

X µν reduces to

(eff)

X
TF1

= −2
(eff)

ε1 ,
(eff)

X
TF2

= −2
(eff)

ε2 ,
(eff)

Xvs = −2
(eff)

εvs. (4.2.16)

Now we turn our attention to non-dissipative fluid in the respective case, i.e.,

(eff)

q1 =
(eff)

q2 = 0. Under this condition, Eqs.(4.1.13), (4.2.6), (4.2.10), (4.2.14) yield

homogenous parameters given by

B(t, r, θ) = α(t)b(r, θ),
(eff)

ρ =
(eff)

ρ (t),
(eff)

p =
(eff)

p (t),

(eff)

Π
1

=
(eff)

Π
1
(t),

(eff)

Π
2
=

(eff)

Π
2
(t),

(eff)

Π
vs
=

(eff)

Π
vs
(t),

(eff)

ε1 =
(eff)

ε1 (t),
(eff)

ε2 =
(eff)

ε2 (t),
(eff)

εvs =
(eff)

εvs(t). (4.2.17)

This is possible only if our f(G) models become constant (n = 0) which shows homo-

geneous distribution of dark sources. In our case, we cannot choose n = 0 and there-

fore the above parameters remain inhomogeneous. We examine the non-dissipative

shear-free geodesic evolution and homogeneous distribution of dark sources. The

differential equations of the Weyl tensor (4.1.45)-(4.1.47) reduce to

−1

3

(

(eff)

X
TF1

− (eff)

ρ

)

,t

+
1

3

(eff)

ε
TF1

ϑ =
−1

3

(

(eff)

ρ +
(eff)

p +
1

3

(eff)

Π
2

)

ϑ, (4.2.18)

−Ẋ(eff)
vs − ϑ

(eff)

Xvs =
1

3

(eff)

Π vsϑ, (4.2.19)

1

3
(−

(eff)

X
TF2

+
(eff)

ρ ),t +
ϑ

3

(eff)

ε2 = −1

3

(

(eff)

ρ +
(eff)

p +
1

3

(eff)

Π2

)

ϑ. (4.2.20)

Using (4.2.16) and (4.2.17), the above set of equations can be integrated to

(eff)

ε1 = c1 exp(−
2

3

∫

ϑdt),
(eff)

ε2 = c2 exp(−
2

3

∫

ϑdt),
(eff)

εvs = c3 exp(−
2

3

∫

ϑdt),

where c1, c2 and c3 are constants of integration. Equation (4.1.13) along with
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Eq.(4.1.24) gives ϑ = 3 Ḃ
B
and hence the expressions in the above equation are calcu-

lated as

(eff)

ε1 =
c
1

B2
,

(eff)

ε2 =
c
2

B2
,

(eff)

εvs =
c
3

B2
.

This suggests that B in (4.2.17) reduces to B = β(t) and the line element represents

FRW spacetime for ϑ > 0. This is consistent with GR [35] in the case of homogeneous

distribution of dark sources. Otherwise, the axial system preserves its symmetry

under dissipation-less case in the presence of dark sources.

(ii) Expansion-Free Rotating Fluid

Now we consider Ω 6= 0 but ϑ = 0, i.e., expansion-free but rotating fluid. The

assumption Ω 6= 0 indicates that the metric (1.2.1) remains non-diagonal while the

expansion scalar (4.1.13) with assumption ϑ = 0 indicates that the system becomes

time independent. Equations (4.1.32)-(4.1.34) yield the relations

(eff)

Y
T
= 2

(eff)

Y
TF1

= 2
(eff)

Y
TF2

= 2Ω2, (4.2.21)

which generates a relationship between rotation parameter and the scalars associated

with tensor
(eff)

Yµν while the scalar Yvs vanishes in this case. One of the conservation

equations (4.1.29) along with Eq.(4.1.3) reduces to

(eff)

XT ;µu
µ − (

(m)

T
µ

νu
ν − 2nα[Rgρσu

µ]∇ρ∇σGn−1 + 2α(n− 1)Gnuµ);µ = 0,

which indicates that the only factor which controls the evolution of energy density is

dissipation from matter as well as dark sources. In the absence of matter, dark sources

control the evolution of energy density and if α is zero, then there is no evolution

for energy density. Equation (4.1.36) produces a connection between dissipation and
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vorticity as

hν
µΩ

α
ν;αu

µ =
(m)

q µu
µ + 2nα[Rgρσ]∇ρ∇σGn−1 − 2α(n− 1)Gn.

In dissipation-less case (
(m)

q µ = α = 0), we obtain a system with zero rotation

(Ω = 0) which contradicts our considered case. We can say that such a system

remains dissipative as α cannot be zero (although matter can be neglected). Hence

due to inhomogeneous distribution of dark sources, the system must be dissipative

while from Eq.(4.1.39), we obtain

(ΩBR1)
′ =

(eff)

q2 B
2R1 or Ω =

1

BR1

∫

(eff)

q2 B
2R1dr +R

5(θ), (4.2.22)

which gives Ω = 0 in non-dissipative case. Using Eq.(4.2.22) in (4.1.32), we have

(m)

ρ = (
2

BR1

∫

(eff)

q2 B
2R1dr +R

5(θ))
2 − 267nα

2
[Rgρσ]∇ρ∇σGn−1 + 8α(n− 1)Gn − 3

(m)

p .

For non-dissipative case and α = 0 (absence of dark sources), we obtain EoS ρ =

−3p which is consistent with GR [35]. Hence in the presence of dark sources, all

geodesic shear/expansion-free fluids can be rotational without dissipation under the

dark effects of f(G) gravity. This generalizes the results of GR where such kind of

fluids must be dissipative. If we apply regularity conditions on the first expression of

Eq.(4.2.22), no such model (ϑ = 0) exists even in the presence of dark sources.



Chapter 5

Concluding Remarks

In this thesis, we have studied static spherically symmetric wormhole solutions in

galactic halo region and by imposing an extra symmetry, i.e., CKVs. We have ex-

amined the effects of DE in the phenomenon of stellar evolution which has been

characterized by the set of governing equations and structure scalars in the frame-

work of modified Gauss-Bonnet gravity. In the following, we summarize and briefly

discuss the main results of this thesis.

It is well-known that the violation of NEC is the basic ingredient for the static

traversable wormhole in GR. To reduce the wormhole dependence on exotic matter,

the study of viable realistic models is an important task in modified theories. In

chapter TWO, we have investigated static spherically symmetric wormhole solutions

in galactic halo region and using CKVs technique in modified Gauss-Bonnet grav-

ity. We have discussed wormhole solutions for galactic halo either by considering a

viable f(G) model or a particular shape function. For a viable f(G) model with

Navarro-Frenk-White density profile, the graphical behavior shows that it satisfies all

conditions related to the wormhole geometry and WEC is also satisfied. In the sec-

ond case, we have taken a particular form of the shape function and constructed f(G)
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model. We have found that physically acceptable wormhole solution exists for all val-

ues of r in galactic halo region. It is concluded that normal matter satisfies WEC in

this modified gravity which leads the modified theories to minimize the dependence

of wormhole geometry on exotic matter.

We have also considered a systematic approach to study wormhole solutions by

assuming static spherically symmetric metric with conformal symmetry by choosing

two types of shape function and also formulated the shape function for a particular as

well as phantom EoS. For specific choice of shape functions, we have found physically

realistic wormholes are threaded by normal matter. The graphical behavior shows

that these functions satisfy all conditions related to the wormhole geometry and hence

provides wormholes for the whole range of r. For phantom wormholes with non-static

conformal symmetry, the function does not obey the assumptions related to wormhole

physics and hence there does not exist any wormhole in this case.

In chapter THREE, we have explored spherically symmetric self-gravitating fluid

models in this gravity. For locally isotropic and non-dissipative geodesic fluid, due to

extra curvature terms from dark sources, fluid is not dust and conformally flatness

condition does not imply shear-free condition while density inhomogeneity is con-

trolled by the Weyl tensor as well as GB terms. If we include pressure anisotropy

in the fluid, all results revolve around this physical variable. For non-geodesic fluids

with local anisotropy and non-dissipation, dark sources affect energy density inhomo-

geneity factor, the Weyl tensor and anisotropy due to GB terms. For non-geodesic

fluids with local isotropy and non-dissipation, shear-free and expansion-free conditions

are not linked with each other and density inhomogeneity is found from conformally

flatness condition as well as dark sources. In the absence of conformally flatness
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condition, density inhomogeneity is assured by GB terms. In a more general case,

anisotropic fluid with dissipation, the evolution of self-gravitating fluid depends upon

GB terms along with dynamical quantities. We have also obtained a relation be-

tween density inhomogeneity and thermodynamics variables plus GB terms through

transport equation.

This chapter also investigates dynamics of self-gravitating spherically distributed

fluid in terms of structure scalars
(m)

X
T
,

(GB)

X
T
,

(m)

X
TF
,

(GB)

X
TF
,

(m)

Y
T
and

(m)

Y
TF

for matter as well

as GB terms to deduce all governing equations in terms of these scalars. The evolution

equation for the Weyl tensor indicates that energy density inhomogeneity is caused

by
(m)

X
TF

,
(GB)

X
TF
, dissipation and f(G) model. It is concluded that spherical systems

should necessarily be inhomogeneous in this gravity. Finally, we have constructed

three forms of the line elements for inhomogeneous anisotropic spheres in terms of

scalar functions which lead to further physical relevance of scalar functions. We

have found that the evolution of spherically symmetric self-gravitating fluid not only

depends upon dynamical variables but also on GB terms. The choice f(G) = constant

or n = 0 corresponds to the cosmological constant and the standard results can be

recovered. For this choice of the model, our results are consistent with standard results

[20] otherwise GB terms affect the results which deviate from GR. It is worthwhile

to mention here that our constructed self-gravitating fluid models are more general

as compared to GR.

In chapter FOUR, we have explored the evolution of axially and reflection sym-

metric dissipative collapsing fluid with and without shear stress in this gravity. The

Weyl tensor in the presence of dark sources deals with gravitational (attractive) as

well as repulsive forces. We have constructed a set of 12 scalar functions which further
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consist of energy terms, electric and magnetic parts of the Weyl tensor. It is found

that inertial mass of the system is reduced by a factor depending upon the thermal

effects as well as dark sources. The coupling of heat flux with vorticity controls ther-

mal equilibrium in r and θ directions of the fluid flow. We have seen that kinematical

variables remain unchanged under the influence of dark sources but their evolution

is affected. Evolution of expansion scalar is determined by shear, vorticity and
(eff)

YT

in geodesic as well as non-geodesic case. The two scalars
(eff)

Y
TF1

and
(eff)

Y
TF2

control the

evolution of propagation equation of shear while the evolution of vorticity does not

depend upon dark sources but its absence in geodesic case leaves
(eff)

Yvs = 0. From the

evolution equations for the Weyl tensor, we have found that the set of seven scalars
(eff)

X
TF1

,
(eff)

X
TF2

,
(eff)

Xvs,
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 and
(eff)

Z4 are the inhomogeneity factors. The presence

of dark sources in these scalars thus affect the collapsing configuration.

For shear-free axial system, with non-geodesic dissipative fluid, we have found

that rotation or spinning of the system is linked with magnetic part of the Weyl

tensor. The vanishing of magnetic part turns out to be the necessary and sufficient

condition for irrotational evolution even in the presence of dark terms. For shear-

free geodesic fluid, we have taken Ω = 0, ϑ 6= 0 and Ω 6= 0, ϑ = 0. In the first

case, non-dissipative fluid with homogeneous distribution of dark sources turns the

axial system to FRW universe model which is consistent with GR result. However,

dissipation due to dark sources is not negligible, hence this correspondence in our

case cannot be possible. In the second case, evolution of energy density is controlled

by dissipation from matter as well as dark sources. We conclude that all geodesic

shear/expansion-free non-dissipative fluids can be rotational under the dark effects

of f(G) gravity which generalizes the results of GR where such kind of fluids must
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be dissipative. Using regularity conditions, we have found that models with zero

expansion do not exist even in the presence of dark sources.

It would be interesting

• To explore the role of charge in wormhole solutions with non-commutative ge-

ometrical background in this gravity.

• To explore wormhole solutions by considering a general spherically symmet-

ric wormhole spacetime for various shape functions or f(G) models (and vice-

versa).

• For different viable f(G) models and shape functions, possible existence of re-

alistic wormhole solutions can be explored in galactic halo region.

The dynamical analysis of self-gravitating systems in modified theories appear as a

compelling candidate to describe stellar evolution in the presence of dark sources. It

would be worthwhile

• To explore dynamics of self-gravitating systems with expansion-free condition.

• To investigate role of charge in the evolution of self-gravitating fluids.
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List of Publications

The contents of this thesis are based on the following research papers published

or submitted in journals of International repute. These papers are also attached
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1. Sharif, M. and Fatima, H.I.: Wormhole Solutions for f(G) Gravity in Galactic

Halo Region
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2. Sharif, M. and Fatima, H.I.: Conformally Symmetric Traversable Wormholes

in f(G) Gravity

Gen. Relativ. Gravit. 48(2016)148.

3. Sharif, M. and Fatima, H.I.: Effects of f(G) Gravity on the Dynamics of Self-

Gravitating Fluids

Eur. Phys. J. Plus 131(2016)265.

4. Sharif, M. and Fatima, H.I.: Structure Scalars and Evolution Equations in
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5. Sharif, M. and Fatima, H.I.: Evolution of Axially Symmetric Systems and
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6. Sharif, M. and Fatima, H.I.: Static Spherically Symmetric Solutions in f(G)
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Int. J. Mod. Phys. D 25(2016)1650083.
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Abstract In this paper, we study static spherically symmet-
ric wormhole solutions in galactic halo region. Two obser-
vational results, Navarro–Frenk–White energy density pro-
file in standard cosmological model and the observed flat
rotational curves, are used to discuss traversable wormholes
supported by galactic halo in modified Gauss–Bonnet grav-
ity. We explore these solutions either by considering a viable
f (G) model to construct shape function or by specifying the
shape function to deduce f (G) model. We explore energy
conditions and find physically acceptable wormhole solu-
tions threaded by normal matter for all values of r . Finally,
we investigate stability of the resulting wormhole solutions.

Keywords Galactic halo · Wormhole solutions · f (G)

gravity

1 Introduction

It is well-known that dark matter (DM) exists in baryonic
and non-baryonic forms in the universe. Baryonic DM is
the matter which can be detected through the emission of
photons in all directions. Such matter emits light and is less
than 4 percent of the over all matter of the universe. It is
argued that the remaining baryonic DM is in the nonlumi-
nous form such as MACHOs (massive astrophysical com-
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pact halo objects) which may fulfill the required percent-
age of baryonic matter in the universe. However, the sec-
ond major constituent of the universe is non-baryonic DM
which covers approximately 23 percent of the universe mat-
ter. Astronomers cannot detect such matter directly because
it cannot emit or absorb/scatter light of any wavelength. The
observed flat circular curves of neutral hydrogen clouds in
the galactic halo as well as in the outer region of galaxies
cannot be explained by luminous (ordinary) matter. This led
to the hypothesis that galaxies even cluster of galaxies are
filled with nonluminous (dark) matter which is considered
as the result of flat rotating curves. The presence of nonlu-
minous DM in galactic halo can only be detected through its
gravitational impression on luminous DM (Faber and Visser
2006). Some candidates of nonbaryonic DM include global
monopoles (Nukamendi et al. 2000), noncommutative ge-
ometry (Rahaman et al. 2012), supersymmetry (Jungman
et al. 1996), scalar fields (Fay 2004) and modified theories
(Böhmer et al. 2008).

When spacelike sections of metric are embedded in Eu-
clidean space, two asymptotically flat connected regions
are exhibited. These asymptotically flat connected regions
define a wormhole and the connecting path is termed as
bridge or tunnel through which an observer can traverse
easily. The supporting matter yielding such geometry is
the exotic matter for which energy density becomes neg-
ative. This behavior of energy density leads to violation
of null energy condition (NEC). The study of wormhole
solutions in general relativity (GR) as well as modified
theories of gravity has attracted many researchers. Mor-
ris and Thorne (1988) did the pioneer work by develop-
ing some properties of spacetime metric to hold such so-
lutions.

To discuss wormholes in these bizarre astrophysical phe-
nomena, we rely on Navarro–Frenk–White energy density

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-016-2715-2&domain=pdf
mailto:msharif.math@pu.edu.pk
mailto:ismatfatima4@gmail.com
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profile (Navarro et al. 1996)

ρ = k
r
rc

(1 + r
rc

)2
, (1)

where k and rc represent characteristic density and charac-
teristic scale radius, respectively. This density profile was
found from N-body numerical simulations to explore dark
galactic halos (galaxies or cluster of galaxies) in standard
cosmological model. The structure of these dark galactic ha-
los may be differentiated by the traversable wormhole ge-
ometry along with density profile as well as flat galactic cir-
cular curves. Rahaman et al. (2014) discussed some char-
acteristics of these galactic halos which support wormhole
geometry and checked the equilibrium condition for this ge-
ometry. They also proposed its existence through scattered
scalar waves.

The violation of null energy condition (NEC) is a neces-
sary tool for the existence of wormhole in GR (González-
Díaz 2004; Lobo 2005), but this violation no longer holds
in modified (higher order derivative) theories of gravity.
In these theories, the effective energy-momentum tensor
is responsible for this violation (Bhawal and Kar 1992;
Furey and DeBenedictis 2005). Thus it would be inter-
esting to investigate wormhole geometry in galactic halos
and check the validity of this energy condition for modi-
fied Gauss–Bonnet theory of gravity. The f (G) theory is
the modification of GR obtained by including an arbitrary
function of the Gauss–Bonnet quadratic invariant, G in the
Einstein–Hilbert action (Nojiri et al. 2006). The motivation
for this theory comes from string theory by low energy effec-
tive scale (Cognola et al. 2006, 2007). This theory has been
analyzed for the cosmic expansion of the universe (Eas-
son 2005) to avoid four types of finite future singularities
(Nojiri et al. 2005), solar system tests (Nojiri et al. 2007),
thermodynamics (Sadjadi 2011; Chatterjee and Parikh 2014;
Sharif and Fatima 2014b) and many other phenomena. Re-
cently, Sharif and Ikram (2015) explored traversable worm-
holes by considering power-law function f (G) = αGn as
well as redshift function. They investigated these solutions
for traceless, barotropic as well as isotropic fluids and found
that physically acceptable solutions exist according to differ-
ent powers of G. We have studied noncommutative worm-
hole geometry for this theory and found wormhole solutions
threaded by normal matter (Sharif and Fatima 2015).

Sharif and Rani explored wormhole for galactic halo re-
gion (2014a), dynamical (2013a), noncommutative (2013b)
and charged noncommutative (2014b) wormhole solutions
in f (T ) gravity. They concluded that WEC is satisfied for
specific range of radial coordinate r and normal matter gives
some physically acceptable solutions. Mehdizadeh et al.
(2015) explored traversable wormholes for Einstein–Gauss–
Bonnet gravity satisfying WEC. Sharif and Zahra (2013)
studied wormholes taking isotropic, barotropic as well as

anisotropic fluid in f (R) gravity and concluded that WEC
is satisfied for barotropic fluid but is violated for isotropic as
well as anisotropic fluids. Lobo and Oliveira (2009) inves-
tigated wormhole solutions in f (R) gravity by choosing a
specific form of shape function and examined energy condi-
tions.

In this paper, we study wormhole solutions in galactic
halo region for f (G) gravity. The paper is organized as fol-
lows. The next section provides basics of f (G) gravity and
energy conditions. Section 3 is devoted to construct worm-
hole geometry and field equations. Section 4 provides solu-
tions for specific f (G) model as well as b(r) function. We
also check the behavior of WEC for both cases. In Sect. 5,
we discuss equilibrium state for our constructed solutions.
Finally, we conclude our results in the last section.

2 f (G) gravity and energy conditions

In this section, we briefly overview f (G) gravity and energy
constraints. The action for f (G) gravity is given by Li et al.
(2007)

S = 1

2κ2

∫
d4x

√−g
[
R + f (G)

] + SM, (2)

where κ2 = 8πG is the coupling constant, R, f and SM are
Ricci scalar, an arbitrary function of Gauss–Bonnet invari-
ant G and matter action, respectively. The Gauss–Bonnet
invariant is defined as

G = R2 − 4RμνR
μν + RμνσρRμνσρ, (3)

where Rμν and Rμνσρ are the Ricci and Riemann tensors,
respectively. Varying the action (2) with respect to gμν , we
obtain the modified field equations

Rμν − 1

2
Rgμν + 8

[
Rμρνσ + Rρνgσμ

− Rρσ gνμ − Rμνgσρ + Rμσ gνρ

+ 1

2
R(gμνgσρ − gμσ gνρ)

]
∇ρ∇σ fG

+ (GfG − f )gμν = κ2Tμν, (4)

where subscript G represents derivative of f with respect
to G and Tμν denotes the energy-momentum tensor. For
anisotropic distribution of matter, Tμν is given as

Tμν = (ρ + pt)υμυν − ptgμν + (pr − pt )ημην,

where pr , pt denote radial and tangential pressures, υμ,
ημ are four-velocity and spacelike four-vector satisfying
the relations υμυμ = 1, ημημ = −1 and υμημ = 0. The
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energy-momentum tensor can also be written as Tμν =
diag(ρ(r),−pr(r),−pt (r),−pt (r)).

Energy conditions are fundamental tools which are used
to work out various important results about black holes in
different physical scenarios. In GR, the violation of these
conditions is the necessary tool for the existence of worm-
holes. These conditions arise from the relationship of Ray-
chaudhuri equation with expansion scalar (Raychaudhuri
1979). Using the condition of attractive nature of grav-
ity of hypersurface orthogonal congruences (i.e., rotation
associated to congruence defined by null vector is zero)
in these equations, yield Rμνv

μvν ≥ 0 and Rμνk
μkν ≥ 0

for null vμ and timelike kμ vectors. Replacing the Ricci
tensor by the energy-momentum tensor in these inequal-
ities, we obtain energy conditions. These are defined as
(ρ + p ≥ 0), (ρ ≥ 0, ρ + p ≥ 0), (ρ + p ≥ 0, ρ + 3p ≥ 0)

and (ρ ≥ 0, ρ ±p ≥ 0) NEC, WEC, strong energy condition
(SEC) and dominant energy condition (DEC), respectively.
These are purely geometrical conditions and can be used in
any alternative theory of gravity (Liu and Reboucas 2012).
In the case of any other alternative theory of gravitation, the
Ricci tensor is replaced by modified energy-momentum ten-
sor, i.e., T

(eff)
μν kμkν ≥ 0 (T (eff)

μν = T
(d)
μν (dark matter terms) +

T
(m)
μν (normal matter terms)), which means that we include

modified energy density and pressure in these conditions.
We also impose T

(m)
μν kμkν ≥ 0 for normal matter. Taking

into account that Raychaudhuri equation fits for any theory
of gravitation, we will maintain its physical motivation, i.e.,
the focussing of geodesic congruences along with the at-
tractive nature of the gravitational interaction to deduce the
energy conditions in the scenario of f (G) gravity (García
2011). For convenience, the field equations (4) can also be
written as

Rμν − 1

2
Rgμν = T eff

μν ,

where

T eff
μν = κ2Tμν − 8

[
Rμρνσ + Rρνgσμ

− Rρσ gνμ − Rμνgσρ + Rμσ gνρ

+ 1

2
R(gμνgσρ − gμσ gνρ)

]
∇ρ∇σ fG

+ (GfG − f )gμν.

In this context, the energy conditions are

NEC : ρeff + peff
i ≥ 0,

WEC : ρeff ≥ 0, ρeff + peff
i ≥ 0,

SEC : ρeff + peff
i ≥ 0, ρeff + 3peff

i ≥ 0,

DEC : ρeff ≥ 0, ρeff ± peff
i ≥ 0,

where i = r, t (radial and tangential components).

3 Wormhole geometry and field equations

A wormhole provides a feasible way to connect two dis-
tant patches of the universe. The flat rotating curves due
to neutral hydrogen clouds in the outer region of rotating
galaxies indicate the existence of DM. In such galaxies, the
outer neutral hydrogen clouds are treated as test particles.
These test particles move in circular orbits which can be de-
scribed by static spherically symmetric spacetime. Morris
and Thorne (1988) found the metric for traversable worm-
holes which is static and spherically symmetric given by

ds2 = e2h(r)dt2 −
(

dr2

1 − b(r)
r

+ r2dθ2 + r2 sin2 θdφ2
)

, (5)

where h(r) and b(r) are arbitrary functions of radial coordi-
nate r related to gravitational redshift and shape of worm-
hole known as redshift and shape functions, respectively.
The coordinate r behaves non-monotonically as it declines
from infinity to the least value r0 (wormhole throat radius)
and then goes back from wormhole throat to infinity. The
corresponding field equations are

b′

r2
− 4

[(
b′r − b

)
(3b − r) − 2rb(r − b)

]
f ′

G

+ GfG − f = κ2ρ, (6)

2
h′

r

(
1 − b

r

)
− b

r3
− 4

r3

(
1 − b

r

)[
2r3

(
1 − b

r

)(
h′2 + h′′)

− (
2 + rh′)(b′r − b

) + 6bh′
]
f ′

G

− GfG + f = κ2pr, (7)
(

1 − b

r

)[
h′′ + h′

r
+ h′2 − b′r − b

2r(r − b)

(
h′ + 1

r

)]

+ 8

2r3

(
1 − b

r

)[
2r2

(
1 − b

r

)(
h′ − h′2 + h′′)

− 3h′(b′r − b
)]

f ′
G − GfG + f = κ2pt , (8)

and Gauss–Bonnet invariant takes the form

G = 4

r5

[
h′(3b − 2r)

(
b′r − b

) − 2r2b
(
h′2 + h′′)(1 − b

r

)]
.

(9)

Here prime denotes radial derivative. For a traversable
wormhole, there should be no horizon and even no singu-
larity which is possible only if the redshift function h(r) is
finite for all values of r . Thus we assume redshift function as
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e2h(r) = Crn (Kar and Sahdev 1995), where n = 2(vφ)2, vφ

is the rotational velocity for flat rotational curves observed
in galactic halo. This rotational velocity is nearly constant
through these rotational profiles and we let C = ( 1

rc
)n, the

integrating constant. Consequently, the field equations (6)–
(8) and Gauss–Bonnet invariant (9) become

b′

r2
− 4

[(
b′r − b

)
(3b − r) − 2rb(r − b)

]
f ′

G

+ GfG − f = κ2ρ, (10)

2
n

r2

(
1 − b

r

)
− b

r3
− 4

r3

(
1 − b

r

)[
rn(n − 2)

2

(
1 − b

r

)

− n + 4

2

(
b′r − b

) + 3nb

r

]
f ′

G − GfG + f = κ2pr, (11)

(
1 − b

r

)[(
n

2r

)2

− (n + 2)(b′r − b)

4r2(r − b)

]

− 8

2r3

(
1 − b

r

)[
n2

2

(
1 − b

r

)

+ 3n

2r

(
b′r − b

)]
f ′

G − GfG + f = κ2pt , (12)

G = 4

r5

[
n

2r
(3b − 2r)

(
b′r − b

)

− n(n − 2)b

2

(
1 − b

r

)]
. (13)

These are the general expressions of matter contents in
terms of b(r) and specific f (G) model to thread the worm-
hole. For the above choice of redshift function, the resulting
shape function constitutes traversable wormhole if it obeys
flaring-out conditions at wormhole throat radius r = r0, i.e.,
if it satisfies the conditions b−rb′

b2 > 0 (Morris and Thorne
1988) and b(r0) = r0 (the location of throat radius), which
implies the relation b′(r0) < 1 with b(r)

r
→ 0 as r → ∞. To

examine the nature of matter threading the wormhole solu-
tions, it is worthwhile to impose condition on matter con-
tents by checking the validity of WEC. In GR, the violation
of NEC leads to wormhole solutions. In alternative theories
of gravity, the effective energy-momentum tensor is respon-
sible for this violation but normal matter satisfies the energy
conditions for wormhole geometry, e.g., energy conditions
are satisfied in D-dimensional Einstein–Gauss–Bonnet grav-
ity (Bhawal and Kar 1992). Using Eqs. (10) and (11), the
expression for NEC (radial component only) is obtained as

ρeff + peff
r = b′r − b

r3
+ 2n

r2

(
1 − b

r

)
< 0,

from which we deduce

2n

r2
<

rb′ − b

2r2

(
1 − b

r

)−1

,

whose right hand side remains positive and leads to the vio-
lation of NEC. Using Eq. (1) in (10), we obtain

b′

r2
− 4

[(
b′r − b

)
(3b − r) − 2rb(r − b)

]
f ′

G + GfG − f

= κ2 kr2
c

r(r + rc)
, (14)

which consists of two unknowns f (G) and b(r). In order to
discuss the wormhole structure in galactic halo, we impose
constraints on matter contents by examining the validity of
WEC.

4 Wormhole solutions

In this section, we discuss wormhole solutions in galactic
halo by finding the solution of Eq. (14). For this purpose, we
adopt the strategy of specifying (i) an arbitrary f (G) model
to construct b(r) and (ii) an expression of b(r) to deduce
f (G). We discuss wormholes by checking the behavior of
WEC.

4.1 Wormholes for a viable f (G) model

First we take a viable f (G) model as (Bamba et al. 2010;
Sharif and Fatima 2014a)

f (G) = αGl
(
1 + βGm

)
, (15)

where α, β , l and m are arbitrary constants with l > 0. This
model is useful to cure four types of finite-time future singu-
larities (Nojiri and Odintsov 2008). It is also consistent with
local tests and cosmological bounds (Nojiri and Odintsov
2007). Using Eq.(15) in (14), we obtain differential equa-
tion for b(r) as

b′

r2
− 4αGl−2G′

[(
rb′ − b

)
(3b − r)

− 2r2b

(
1 − b

r

)]
(l(l − 1) + β(l + m)(l + m − 1)Gm

+ αGl
(
l + 1 + β(l + m + 1)Gm

) = κ2 kr3
c

r(r + rc)2
, (16)

where G is given in Eq. (13). This equation cannot be
solved analytically, so we solve it numerically for b(r).
To check the behavior of shape function, we use graphi-
cal technique by incorporating the values of parameters as
κ2 = 6.074 × 10−25 kpc/kg, α = 0.001, β = 1, k = 0.05,
rc = 10, l = 0.0002 and m = −0.05 along with initial con-
ditions b(1) = 0.5 and b′(1) = 0.6. These are arbitrary con-
stants which give us reasonable results. Any other combi-
nation of these parameters change the results. The plot in
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Fig. 1 Plots of b(r) and b(r)
r

versus r . a displays the shape
function b(r) and b shows b(r)

r
versus r

Fig. 2 Plot a shows the
behavior of b(r) − r and
b represents db(r)

dr
versus r

Fig. 3 Plots of WEC with specific f (G) model, a represents ρ versus r , b represents ρ + pr versus r and c shows ρ + pt versus r

Fig. 1(a) shows increasing behavior of b(r) versus r . The
plot of b

r
in Fig. 1(b) indicates that b

r
→ 0 as r → ∞ lead-

ing to an asymptotically flat universe. Also, it meets the
condition 1 − b

r
> 0. The throat radius of wormhole is lo-

cated at r = r0 for which b(r) − r crosses the radial axis
and b(r) − r < 0 for r > r0 (i.e., b(r) − r decreasingly cuts
the radial axis). Figure 2(a) shows that the plot of b(r) − r

meets the radial axis at r0 ≈ 1.1 which is the throat radius.
Also, b

r
< 1 for r0 ≈ 1.1 satisfying the essential condition of

shape function. The graph of db
dr

is shown in Fig. 2(b) which
depicts db

dr
(1.1) ≈ 0.49 < 1 (i.e., db

dr
(r0) < 1) and hence the

flare-out conditions are fulfilled.
We analyze the nature of matter that threads a worm-

hole using energy conditions. We explicitly check WEC for
which the expressions of matter contents are given as fol-
lows

κ2ρ = b′

r2
− 4αGl−2G′

[(
rb′ − b

)
(3b − r)

− 2r2b

(
1 − b

r

)](
l(l − 1) + β(l + m)

× (l + m − 1)Gm
) + αGl

(
l + 1 + β(l + m + 1)Gm

)

+ αGl(l − 1) − αβ(l + m − 1)Gl+m, (17)

κ2pr = n

r2

(
1 − b

r

)
− b

r3
− 4

r3

(
1 − b

r

)[
rn(n − 1)

2

×
(

1 − b

r

)
− 4 + n

2

(
b′r − b

) + 3nb

r

]

× αGl−2G′(l(l − 1) + β(l + m)(l + m − 1)Gm
)

− αGl(l − 1) + αβ(l + m − 1)Gl+m, (18)

κ2pt =
(

1 − b

r

)[(
n

2r

)2

− (l + 2)(b′r − b)

4r2
(r − b)

]

− 8

2r3

(
1 − b

r

)[
n2

2

(
1 − b

r

)
+ 3n

2r

(
b′r − b

)]

× αGl−2G′(l(l − 1) + β(l + m)(l + m − 1)Gm
)

− αGl(l − 1) + αβ(l + m − 1)Gl+m. (19)

The graphs of WEC (ρ, ρ + pr and ρ + pt ) against r are
shown in Fig. 3 using the same parametric values. Fig-
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ure 3(a) shows the behavior of energy density which is de-
creasing but remains positive for the whole range of r . The
plot in Fig. 3(b) represents initially increasing then decreas-
ing but positive behavior for ρ + pr for all values of r . The
profile of ρ + pt in Fig. 3(c) indicates almost the same be-
havior as Fig. 3(a). Thus, the model and resulting shape
function obey WEC in the galactic halo region and hence
accommodate the wormhole geometry with ordinary matter.

4.2 Wormholes for a particular shape function

Here we assume a specific form of the shape function b(r)

and construct f (G). We consider the following particular
form of the shape function as (Sharif and Jawad 2014)

b(r) = rt

(
r

rt

)γ

, (20)

with γ as an arbitrary constant and rt is the throat radius. It
satisfies the flaring-out conditions if b′(rt ) < 1 implying that
b′(rt ) = γ < 1 and the condition b(rt ) = rt . The asymptoti-
cally flat universe is attained if b

r
= r

1−γ
t rγ−1 approaches to

zero as r tends to infinity. The expression for Gauss–Bonnet
invariant becomes

G = 4

r5

(
r

rt

)γ [
nrt

2r

(
3rt

(
r

rt

)γ

− 2r

)
(γ − 1)

− n(n − 2)rt

2

(
1 −

(
r

rt

)γ−1)]
. (21)

Using Eqs. (20) and (14), we obtain the following differen-
tial equation for f (G) in terms of r as

γ

r2

(
r

rt

)γ−1

− 4rt

(
r

rt

)γ [(
3rt

(
r

rt

)γ

− r

)
(γ − 1)

− 2r2
(

1 −
(

r

rt

)γ−1)]
G′f ′′ − f ′G′′

(G′)2

+ G
f ′

G′ − f = κ2 kr3
c

r(r + rc)2
. (22)

We solve this equation numerically by choosing the values
rt = 0.35 and γ = 0.02 with initial conditions f (1) = 0.25,
f ′(1) = 0.15. The function obtained from the above equa-
tion is based on the Navarro–Frenk–White energy density
profile and should be sufficient to motivate researchers to
look for wormholes in galactic halos observationally. Fig-
ure 4 shows that the function f (r) is positively decreasing
against r . To thread the wormhole solutions by normal mat-
ter, this function should satisfy WEC. The expressions of
matter contents are given as

κ2ρ = γ

r2

(
r

rt

)γ−1

− 4rt

(
r

rt

)γ [(
3rt

(
r

rt

)γ

− r

)
(γ − 1)

Fig. 4 Plot of f (r) against r

− 2r2
(

1 −
(

r

rt

)γ−1)]
G′f ′′ − f ′G′′

(G′)2

+ G
f ′

G′ − f, (23)

κ2pr = n

r2
−

(
1 −

(
r

rt

)γ−1)
− 1

r2

(
r

rt

)γ−1

− 4

r3

(
1 −

(
r

rt

)γ−1)[
n(n − 1)r

2

(
1 −

(
r

rt

)γ−1)

− rt

(
r

rt

)γ {
(γ − 1)

(
n + 4

2

)
+ 3nrt

r

}]

× G′f ′′ − f ′G′′

(G′)2
− G

f ′

G′ + f, (24)

κ2pt =
(

1 −
(

r

rt

)γ−1)[(
n

2r

)2

− (n + 2)r( r
rt

)γ−1(γ − 1)

4r(r − rt (
r
rt

)γ )

]
− 8

2r3

(
1 −

(
r

rt

)γ−1)

×
[
n2

2

(
1 −

(
r

rt

)γ−1)
+ 3n

2

(
r

rt

)γ−1

(γ − 1)

]

× G′f ′′ − f ′G′′

(G′)2
− G

f ′

G′ + f. (25)

The graphs of ρ, ρ + pr and ρ + pt are given in Fig. 5 by
taking the same values of parameters. The graph of energy
density in Fig. 5(a) shows decreasing but positive behavior
of ρ. The behavior of ρ + pr in Fig. 5(b) is initially de-
creases with positive values and then continuously increases
after r ≈ 2.35 while Fig. 5(c) depicts the behavior of ρ + pt

which is same as of ρ + pr , thus WEC is satisfied. This
shows that physically acceptable wormholes exist in galac-
tic halo threaded by normal matter for all values of r .

5 Equilibrium condition

Here, we check the equilibrium state of wormhole solutions
for both cases. For this purpose, we consider the gener-
alized Tolman–Oppenheimer–Volkov (TOV) equation (Ra-
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Fig. 5 Plots of WEC (ρ, ρ + pr and ρ + pt ) versus r for specific shape function b(r)

Fig. 6 Plots of three forces
gravitational (red), hydrostatic
(green) and anisotropic (blue)
acting on a fluid inside the
galactic halo for both cases.
a shows the equilibrium state of
wormholes for f (G) model and
b represents the equilibrium
state for shape function

haman et al. 2014)

dpr

dr
+ μ′

2
(ρ + pr) + 2

r
(pr − pt) = 0,

for the metric ds2 = diag(eμ(r),−eν(r),−r2,−r2 sin2 θ).
We rewrite the TOV equation for anisotropic distribution of
mass in galactic halo region (as it is suggested by De León
1993 for anisotropic matter distribution) in galactic halo as

−Meff(ρ + pr)

r2
e

μ−ν
2 − dpr

dr
+ 2

r
(pt − pr) = 0, (26)

where the effective gravitational mass Meff inside the galac-
tic halo measured from wormhole throat to any radius r

is defined as Meff = μ′r2

2 eν−μ. Equation (26) describes
equilibrium state for wormhole supported by gravitational
and hydrostatic forces plus anisotropic force (force due to
anisotropy in matter distribution). These forces, respectively
are defined as

FG = −Meff(ρ + pr)

r2
e

μ−ν
2 , FH = −dpr

dr
,

FA = 2

r
(pt − pr).

(27)

For a wormhole to be in equilibrium, these forces should
satisfy the relation

FG + FH + FA = 0.

Figure 6 shows three forces FG, FH and FA for both cases
taking the same values of parameters. Both graphs indicate

that the equilibrium state of wormhole solutions can be at-
tained through the combined effect of these forces. We can
see that gravitational force is much smaller (becomes zero)
than the other two forces while hydrostatic and anisotropic
forces are opposite to each other. This balances the system
and makes the wormhole solutions in equilibrium state.

6 Conclusions

It is well-known that the violation of NEC is the basic in-
gredient for the static traversable wormhole in GR. To re-
duce the wormhole dependence on exotic matter, the study
of viable realistic models is an important task in modified
theories. Navarro–Frenk–White density function for galac-
tic halo has some important characteristics which can gen-
erate traversable wormholes. In this analysis, we have in-
vestigated static spherically symmetric wormhole solutions
in galactic halo region for f (G) gravity. We have discussed
these solutions either by considering a viable f (G) model
or a particular shape function. To examine the nature of mat-
ter threading the wormhole solutions, the energy conditions
have been imposed on matter contents. The equilibrium state
of the solutions have also been examined through general-
ized TOV equation. The results of the analysis are summa-
rized as follows.

For a viable f (G) model with Navarro–Frenk–White
density profile for galactic halo, we have obtained the shape
function numerically by taking particular values of model
constants. The graphical behavior shows that it satisfies all
conditions related to the wormhole geometry and WEC is
also satisfied. In the second case, we choose a particular
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form of the shape function and construct f (G) model. We
find that WEC is satisfied showing that physically accept-
able wormhole solution exists for all values of r in galactic
halo region. It is concluded that normal matter satisfies WEC
in this modified gravity which leads the modified theories
to minimize the dependence of wormhole geometry on ex-
otic matter. Finally, we have checked the equilibrium state of
wormhole solutions. It is found that systems initially show
unbalanced state then become stable after some time due to
the canceling effect of equal but opposite forces (balancing
forces).

We have also studied wormhole solutions for f (G) grav-
ity by taking noncommutative geometry (Sharif and Fatima
2015). We have constructed these solutions (i) by assum-
ing a viable f (G) model to construct the shape function
and (ii) by specifying the shape function to deduce f (G)

model. We have found physically acceptable wormhole so-
lutions threaded by normal matter (for all values of r) in
the first case while the second case provides physical solu-
tion for higher values of r . Sharif and Ikram (2015) have
explored traversable wormholes by considering power-law
function f (G) = αGn as well as redshift function. They
have investigated these solutions for traceless, barotropic as
well as isotropic fluids and have found that physically ac-
ceptable solutions exist for different powers of G. In the
present work, we have found wormhole solutions in galac-
tic halo region for f (G) gravity using two observational re-
sults, Navarro–Frenk–White energy density profile in stan-
dard cosmological model and the observed flat rotational
curves. We have established physically acceptable worm-
hole solutions threaded by normal matter for all values of
r and have investigated their stability.
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Abstract We discuss non-static conformally symmetric traversable wormholes for
spherically symmetric spacetime using the model f (G) = αGn , where n > 0 and
α is an arbitrary constant. We investigate wormhole solutions by taking two types
of shape function and found that physically realistic wormholes exist only for even
values of n. We also check the validity of flare-out condition, required for wormhole
construction, for the shape functions deduced from two types of equation of state. It
is found that this condition is satisfied by these functions in all cases except phantom
case with non-static conformal symmetry.

Keywords Wormhole solutions · Conformal symmetry · f (G) gravity

1 Introduction

Traversable wormholes are spacetime shortcuts or tunnels allowing free passage of
observers in either two different regions of the same spacetime (inter-galactic worm-
hole) or two different spacetimes (inter-universe wormhole). This free passage is the
hypothetical backbone of time travel and travel to any other parallel world. Paging
through history, wormhole physics can be traced back to 1916 when Flamm analyzed
a newly described Schwarzschild solution [1]. He found that this solution represents
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wormhole. Later, wormhole-type solutions were presented by Einstein and Rosen in
1935 as an elementary particle model known as Einstein–Rosen bridge [2]. This is
simply conceivable as a bridge connecting two identical sheets. In the modern age,
Morris and Thorne [3] brought back the idea of wormhole geometry in 1988 which
rekindled the researchers to study traversable wormholes. They derived static spheri-
cally symmetric wormhole solutions from the Einstein field equations and proposed
that the wormholes might be the objects of nature like stars and black holes.

Conventionally, wormhole solutions adopt the reverse philosophy while solving
the Einstein field equations, first constructing the spacetime metric, then deducing
the energy-momentum tensor which violates the null energy condition (NEC). This is
the weakest of the energy conditions whose violation indicates the violation of other
energy conditions. The existence of wormholes and violation of energy conditions
based on controversial-nature-type matter, i.e., exotic matter. This is the matter with
strong negative energy density. The search for a realistic model that supports the energy
conditions or to minimize the utilization of exotic matter has a significant role in the
wormhole history. For this purpose, different directions are adopted such as, dynamical
wormhole solutions [4], scalar field models [5], non-minimal coupling of curvature
matter [6], generalized Chaplygin gas [7], brane wormholes [8] as well as modified
theories of gravity such as f (R), f (T ), f (G) and Brans–Dicke theories of gravity
etc. These theories and models may cure the violation of these conditions and lead
to the wormholes threaded by normal matter. In fact in these theories, the effective
energy-momentum tensor is responsible for the violation of energy conditions (extra
terms or modified terms take part in the violation) while normal matter satisfies these
conditions.

Sharif and Rani explored wormhole solutions for the galactic halo region and with
non-commutative geometry [9,10] in generalized teleparallel gravity. They also stud-
ied the role of charge in non-commutative wormhole solutions and searched for the
dynamical wormholes [4,11]. Mehdizadeh [12] found wormholes threaded by normal
matter for Einstein–Gauss–Bonnet gravity. Lobo and Oliveira [6] examined worm-
hole solutions for some particular shape functions as well as specific equation of state
(EoS) in f (R) gravity and found that these solutions satisfy energy conditions. Sharif
and Zahra [13] investigated wormholes by considering isotropic and anisotropic fluids
plus barotropic EoS.

The modified Gauss–Bonnet gravity ( f (G) theory of gravity) is the consequence of
the inclusion of an arbitrary function f (G) in the Einstein–Hilbert action [14], where
G is the Gauss–Bonnet quadratic invariant. This theory expeditiously interprets recent
cosmic accelerated expansion, transition from decelerating to accelerating phases and
passes solar system tests. Also, it efficiently narrates thermodynamics [15,16] and
cures four types of finite time future singularities [17]. Myrzakulov et al. [18] explored
dark energy as well as inflationary era in this gravity. We have studied energy conditions
[19], built-in inflation [20] as well as Noether symmetries [21] in this theory.

It is always difficult to find exact solutions of the Einstein field equations unless
some certain symmetry restrictions are imposed on spacetime geometry. These
restrictions are expressed in terms of isometries (Killing vectors) possessed by space-
time metric. Various symmetries arising from geometrical viewpoint are known as
collineations defined by
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Lξ� = �, (1)

where L is the Lie derivative, ξ is collineation (symmetry) vector, � is tensor field
can be gμν, Rμν, R

η
μνσ , 	σ

μν and � is the tensor with same index symmetries as �.
One can deduce the known collineations by substituting particular forms of � and �.
Amongst them, the conformal Killing vectors (CKVs) are the best for deeper insight
into spacetime geometry which are obtained by replacing � = gμν and � = ϕgμν

[ϕ is an arbitrary function (conformal factor)] in Eq. (1). This provides inheritance
symmetry which helps to find exact solutions from highly non-linear field equations
[22]. There is a lot of literature available about CKVs in general relativity [23–26].

Böhmer et al. [27] discussed traversable wormholes using conformal symmetry.
Sharif and Ikram [28] investigated traversable wormholes by considering redshift
function in f (G) gravity. They used traceless, barotropic as well as isotropic fluids
and found physically acceptable wormhole solutions. We have studied wormholes with
noncommutative geometry as well as galactic halo region in this theory and found
wormholes threaded by normal matter [29,30]. However, no remarkable work has
been done using CKVs in modified theories of gravity. This mathematical technique
may be fruitful in these theories for deducing exact solutions from highly non-linear
partial differential equations. It would therefore be interesting to discuss wormhole
solutions using CKVs in f (G) gravity.

This work investigates traversable wormholes admitting non-static CKVs in f (G)

gravity. The paper is arranged as follows. Next section briefly reviews this gravity and
non-static conformal symmetry. Section 3 provides wormhole geometry and energy
conditions. In Sect. 4, we explore wormhole solutions by considering two types of
shape function and also deduce shape function from a particular EoS. In Sect. 5, we
explore phantom wormholes with static as well as non-static conformal symmetries.
Section 6 carries concluding remarks.

2 f (G) gravity and non-static conformal symmetry

In this section, we briefly review f (G) gravity as well as non-static conformal sym-
metry. The action for f (G) gravity is given by [31]

S = 1

2κ2

∫
d4x

√−g[R + f (G)] + SM , (2)

where κ, R, f (G) are the coupling constant, the Ricci scalar, arbitrary function of
G, respectively and SM is the matter action. The Gauss–Bonnet invariant is defined as

G = R2 − 4RμνR
μν + RμνσρR

μνσρ. (3)

Here Rμν and Rμνσρ are the Ricci and Riemann tensors, respectively. Varying the
action (2) with respect to gμν , we obtain the modified field equations
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Rμν − 1

2
Rgμν + 8

[
Rμρνσ + Rρνgσμ − Rρσ gνμ − Rμνgσρ + Rμσ gνρ

+1

2
R

(
gμνgσρ − gμσ gνρ

)] ∇ρ∇σ fG + (
G fG − f

)
gμν = κ2Tμν, (4)

where fG denotes derivative of f with respect to G and Tμν is the energy-momentum
tensor. For anisotropic fluid, it is given as

Tμν = (ρ + pt )uμuν − pt gμν + (pr − pt )ημην,

where pr , pt denote radial and tangential pressures, uμ, ημ are four-velocity
and spacelike four-vector satisfying the relations uμuμ = 1, ημημ = −1
and uμημ = 0. The energy-momentum tensor can also be written as Tμν =
diag(ρ(r),−pr (r),−pt (r),−pt (r)).

In the analysis, we shall use a systematic approach in order to derive solutions which
was introduced by Maartens and Maharaj [32], where they used static spherically
symmetric spacetime possessing non-static conformal symmetry. It is to be noted that
neither ξ nor ϕ need to be static even though one can take a static metric [27]. Suppose
that the vector field ξ generates conformal symmetry so that gμν is conformally mapped
onto itself along ξ , then from Eq. (1), we obtain

Lξ gμν = ϕgμν, (5)

For ϕ = 0, this equation yields Killing vectors, ϕ = constant (real) gives homo-
theties (homothetic vector field) and the general choice ϕ = ϕ(t, X) produces CKVs.
Equation (5) can also be written as

gμν,αξα + gανξ
α
,μ + gμαξα

ν = ϕgμν. (6)

Herrera et al. [33,34] considered static ξ and found singular solutions for isotropic
and anisotropic fluids at the center of stars. To overcome this shortfall, Maartens
and Maharaj [32] assumed static ϕ but non-static ξ and obtained singularity free
solutions at the center of stars. In this paper, we shall follow this later approach. It
is mentioned here that singular solutions at the center of stars are not problematic
for wormhole geometries as there is no center for wormholes. Thus we also consider
phantom wormholes with static conformal symmetry. The non-static conformal vector
field is [32]

ξ = a(t, r)∂t + b(t, r)∂r , (7)

and static conformal factor is ϕ = ϕ(r).

3 Wormhole geometry and energy conditions

This section studies wormhole geometry and gives overview of energy conditions.
The static spherically symmetric spacetime representing wormhole is given by [3]
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ds2 = e2R(r)dt2 −
(

dr2

1 − b(r)
r

+ r2dθ2 + r2 sin2 θdφ2

)
, (8)

where R(r) and b(r) are known as redshift and shape functions, respectively. The
radial coordinate r bears non-monotonical behavior as it goes down from infinity to
the lowest value of r (wormhole throat r0 ) and then returns from throat to infinity.
For a traversable wormhole, various conditions are required to be satisfied [3]. Firstly,
there should be no event horizon which is only possible if the redshift function is finite
for all values of r (condition on redshift function). Secondly, the flaring-out condition,
rb′−b
b2 < 0, should be fulfilled (condition on the shape function) which can be written

as b′(r) < 1 at throat (due to the condition b(r0) = r0 ). Also, the conditions b
r < 1

and b(r0) = r0 are satisfied at throat. To check out all these conditions, first we write
down the field Eqs. (4) for (8) as follows

b′

r2 − 4
[
(b′r − b)(3b − r) − 2rb(r − b)

]
f ′
G

+ G fG − f = κ2ρ, (9)

2
R′

r

(
1 − b

r

)
− b

r3 − 4

r3

(
1 − b

r

)[
2r3

(
1 − b

r

)(
R′2 + R′′)

− (
2 + r R′) (

b′r − b
) + 6bR′

]
f ′
G

− G fG + f = κ2 pr , (10)

(
1 − b

r

)[
R′′ + R′

r
+ R′2 − b′r − b

2r(r − b)

(
R′ + 1

r

)]
+ 8

2r3

(
1 − b

r

)[
2r2

(
1 − b

r

)

×(R′ − R′2 + R′′) − 3R′ (b′r − b
) ]

f ′
G

−G fG + f = κ2 pt . (11)

The Gauss–Bonnet invariant takes the form

G = 4

r5

[
R′ (3b − 2r)

(
b′r − b

) − 2r2b
(
R′2 + R′′)(

1 − b

r

)]
. (12)

Making use of Eq. (8) in (6), we obtain

a = a1 + ct

2
, b = a2r

2

√
1 − b(r)

r
, (13)

ϕ(r) = a2

√
1 − b(r)

r
, (14)

e2R(r) = a3r
2exp

⎡
⎣−2c

a2

∫
1

r
√

1 − b(r)
r

dr

⎤
⎦ , (15)

where a1 , a2 , a3 and c are constants of integration. Using Eq. (13) in (7), we have

ξ =
(
a1 + ct

2

)
∂t + a2r

2

√
1 − b(r)

r
∂r . (16)
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Without any loss of generality, we may assign a1 = 0 and a2 = 1 [32] so that

ξ =
(
ct

2

)
∂t + r

2

√
1 − b(r)

r
∂r , (17)

b(r) = r(1 − ϕ2(r)), (18)

R(r) = ln[a3r ] − c

∫
1

r
√

1 − b
r

dr. (19)

Interestingly, the conformal factor in Eq. (18) reduces to zero at throat (i.e., ϕ(r0) = 0
as b(r0) = r0 at throat). Consequently, the field Eqs. (9)–(11) and Gauss–Bonnet
invariant (12) in terms of conformal factor can be written as

κ2ρ = 1

r2

(
1 − ϕ2 − 2rϕϕ′) − 8r3ϕ

[
ϕ′ (3ϕ2 − 2

)
+ ϕ

(
ϕ2 − 1

)]
f ′
G

+G fG − f (G), (20)

κ2 pr = 1

r2

(
3ϕ2 − 2cϕ − 1

)
− 4

r3

[
−ϕ4 + cϕ3 (1 − 2r) + 2c2rϕ2 + ϕ (3 + cϕ)

×
(
r2 − r + 6

)
+ 6r2ϕ3ϕ′] f ′

G
− G fG + f (G), (21)

κ2 pt = 1

r2

(
2ϕ2 − 2cϕ + 2rϕϕ′ + c2

)
+ 8

r3 ϕ2
[
ϕ2 (r − 2) + cϕ (3 − 8r) − c2

+ rϕ′ (c + 4)
]
f ′
G

− G fG + f (G), (22)

G = 8

r4

[
rϕϕ′ (cϕ − 1) − (c − ϕ)

(
3rϕ2ϕ′ − cϕ + c

)]
. (23)

Energy conditions are used to work out various important results in different phys-
ical scenarios. In general relativity, the violation of these conditions is the necessary
tool for the construction of wormholes. These conditions arise from the relation-
ship of Raychaudhuri’s equation with expansion scalar [35]. Using the condition of
attractive nature of gravity of hypersurface orthogonal congruences (i.e., rotation asso-
ciated to congruence defined by null vector is zero) in these equations, it follows that
Rμνv

μvν ≥ 0 and Rμνkμkν ≥ 0 for null vμ and timelike kμ vectors. Replacing the
Ricci tensor by the energy-momentum tensor in these inequalities, we obtain energy
conditions as (ρ + p ≥ 0), (ρ ≥ 0, ρ + p ≥ 0), (ρ + p ≥ 0, ρ + 3p ≥ 0) and
(ρ ≥ 0, ρ ± p ≥ 0) as NEC, weak energy condition (WEC), strong energy condi-
tions (SEC) and dominant energy conditions (DEC), respectively. These are purely
geometrical conditions and can be used in any alternative theory of gravity [36,37].
In modified theories of gravitation, the Ricci tensor is replaced by modified energy-
momentum tensor, i.e., T (e f f )

μν kμkν ≥ 0 (T (e f f )
μν = T (d)

μν (dark matter terms) + T (m)
μν

(normal matter terms)), which means that we include modified energy density and
pressure in these conditions. We also impose T (m)

μν kμkν ≥ 0 for normal matter. In the
scenario of f (G) gravity [38], the energy conditions are

NEC : ρe f f + pef fi ≥ 0,
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WEC : ρe f f ≥ 0, ρe f f + pef fi ≥ 0,

SEC : ρe f f + pef fi ≥ 0, ρe f f + 3pef fi ≥ 0,

DEC : ρe f f ≥ 0, ρe f f ± pef fi ≥ 0,

where i = r, t (radial and tangential components).
The WEC are calculated from Eqs. (20)–(22) as

ρ + pr = 1

r2

(
2ϕ2 − 2cϕ − 2rϕϕ′) +

[
4ϕ4

(
1

r3 − 2r3
)

+ 4cϕ3

r2

(
2 − 1

r

)

+ 4ϕ2
(

2r3 + 3

r2 − 3

r
− c

r3 − 2c2

r2

)
+ 4cϕ

r

(
1 − 1

r
− 6

r2

)

+ 24ϕ3ϕ′
(
r3 − 1

r

)
+ 16r3ϕϕ′

]
f ′
G

≥ 0, (24)

ρ + pt = 1

r2 (1 + c2 + ϕ2 − 2cϕ) + 8ϕ

r3

[
ϕ3(r − 2) + cϕ2(3 − 8r) − c2ϕ2

+ rϕϕ′(c + 4) − r6ϕ′(3ϕ2 − 2) − r6ϕ(ϕ2 − 1)
]
f ′
G

≥ 0. (25)

Here we discuss some specific wormhole solutions by considering a particular f (G)

model
f (G) = αGn, (26)

where α is any constant and n > 0 [39]. In small curvature regime (phantom phase)
with n < 1

2 , f (G) term dominates over Einstein term. For n < 0, it corresponds
to non-phantom phase (as curvature term dominates). The universe starts with large
curvature (non-phantom phase) but it turns out to be small (phantom phase) gradually.
Thus, the transition of non-phantom to phantom phase can naturally occur in this
model.

In order to study graphical analysis, we take the parameters as κ2 = 1, α =
0.1, r0 = 2, n = 2, c = 1.5, ε = 0.1 and initial conditions b(0.5) = 1, b′(0.5) =
0.1.

4 Some specific wormhole solutions

In this section, we investigate wormhole solutions by assuming two types of shape
function and a particular equation of state to deduce shape function.

4.1 Specific shape function

First, we consider two types of shape function.
i. b(r) = r0

The interesting feature of this constant shape function is that the energy density for
matter vanishes and we are left only with the energy density of dark sources. Equation
(15) leads to
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e2R(r) = a2
3
r2

(
2r − r0 + 2r

√
1 − r0

r

)−2c

.

The matter variables and Gauss–Bonnet invariant become

ρ = 4r0

(
3r0 − r + 2r2 − 2rr0

)
f ′
G

+ G fG − f,

pr = 2r − 3r0

r3 − 2c

r2

√
1 − r0

r
− 4

r3

[ (
2c2 + 3r

) (
r − r0

) +
(

1 − r0

r

) 3
2

× (c − 1 − 2cr) + c

√
1 − r0

r

(
r − 6 − cr2

)
+ 6r0

(
1 − 1

r

)
+ 6 − 3r

−3r2
0

r

]
f ′
G

− G fG + f (G),

pt = 1

r2

(
2 + c2 − r0

r
− 2c

√
1 − r0

r

)
+ 8

r3 [(r − 2)
(

1 − r0

r

)2 + c (3 − 8r)

×
(

1 − r0

r

) 3
2 − c2

(
1 − r0

r

)
+ r0

2r
(c + 4)] f ′

G
− G fG + f (G),

G = 8

r4

[
r0

2r

(
c

√
1 − r0

r
− 1

)
−

(
3r0

2r

√
1 − r0

r
+ c

r0

r

) (
c −

√
1 − r0

r

)]
.

We examine the behavior of WEC by plotting their graphs which indicate that these
conditions are satisfied for even values of n but violated for odd range of n. Here, we
give one graph for n = 2 (Fig. 1 (left), exemplifying the even range of n) and one
graph for n = 3 (Fig. 1 (right) indicating the odd range of n) for the respective case.
The graph on left side shows the same decreasing but positive behavior for ρ (red),
ρ + pr (green) and ρ + pt (blue) representing the validity of WEC. Thus the even
values of n lead to physically realistic wormholes (i.e., wormholes threaded by normal
matter). The graph for odd values of n on the right side of Fig. 1 shows increasing but
negative behavior for ρ (red), ρ + pr (green) and ρ + pt (blue) indicating the violation
of WEC. This demonstrates that wormholes are supported by exotic matter. In fact,
here the effective energy-momentum tensor is responsible for this violation with odd
range of n.

ii. b(r) = r2
0
r

For this shape function, Eq. (15) gives

e2R(r) = a2
3
r2

(
r +

√
r2 − r2

0

)
.

The field equations for this solution take the form

ρ = −2r2
0

r4 − 8r2
0

⎡
⎣

(
1 − 3r2

0

r2

)
−

√
r2 − r2

0

r

⎤
⎦ f ′

G
+ G fG − f (G),
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pr = 1

r2

⎛
⎝2 − 3r2

0

r2 −
2c

√
r2 − r2

0

r

⎞
⎠ − 4

(
r2 − r2

0

)
r5

[
r
(

2c2 − 3 + 3r
)

+ c
√
r2 − r2

0

(
1

r
− 2

)
+ cr√

r2 − r2
0

(
r − r2 − 6

)
+ 5r2 + 7r2

0

r2

⎤
⎦ f ′

G

−G fG + f (G),

pt = 1

r2

⎛
⎝2 + c2 −

2c
√
r2 − r2

0

r

⎞
⎠ + 8

(
r2 − r2

0

)
r5

[(
r2 − r2

0

)
(r − 2)

r2

+
c(3 − 8r)

√
r2 − r2

0

r
− c2 + r2

0
(c + 4)

r
√
r2 − r2

0

⎤
⎦ f ′

G
− G fG + f (G)

with Gauss–Bonnet invariant

G = 8

r4

⎡
⎣r2

0

r2

⎛
⎝ c

√
r2 − r2

0

r
− 1

⎞
⎠

−
⎛
⎝c −

√
r2 − r2

0

r

⎞
⎠

⎛
⎝r2

0

√
r2 − r2

0

r3 − c
(
r2 − r2

0

)
r2 + c

⎞
⎠

⎤
⎦ .

Similar to the first case, WEC are valid only for even values of n. Figure 2 (left) shows
the behavior of WEC (ρ, ρ + pr , ρ + pt ) for n = 2 (exemplifying the even values of
n). This shows the same behavior for ρ, ρ + pr , ρ + pt slightly down to the negative
side but then goes along r -axis (zero) for r ≥ 4. Hence physically realistic wormholes
are threaded by normal matter for r ≥ 4 with even values of n. The plot of WEC on
right side of Fig. 2 shows negatively increasing behavior for n = 3 (illustrating the
odd range of n) which accomplishes the violation of energy conditions leading to the
wormholes threaded by exotic matter.

Figures 1 and 2 represent the behavior of energy conditions for shape functions

b(r) = r0 and b(r) = r2
0
r , respectively along with model (26) for which G is defined

in Eq. (23). The model parameter n can take the values 1, 2, 3, 4, 5 . . . to draw the
graphs of WEC. On substituting the successive values of n, the WEC shows negative
behavior for n = 1, 3, 5 . . . depicting the violation of energy conditions. This viola-
tion arises due to the effective energy-momentum tensor which logically leads to the
wormholes threaded by exotic matter. On other hand, for n = 2, 4, 6, . . ., WEC stays
on positive side representing the validity of energy conditions leading to physically
realistic wormholes (threaded by normal matter).

This graphical analysis clearly shows that when n is even, matter terms become
dominant over Gauss–Bonnet (dark energy) terms. This leads to physically realistic
state where the usage of exotic matter has been minimized and wormholes could exist

123



Conformally symmetric traversable wormholes in f (G) gravity Page 11 of 19 148

1
2

3
4

5
r

5101520W
EC

1
2

3
4

5
r

8
10

8

6
10

8

4
10

8

2
10

8W
EC

F
ig
.2

Pl
ot

s
of

W
E

C
ρ

(r
ed

),
ρ

+
p r

(g
re
en

)
an

d
ρ

+
p t

(b
lu
e)

fo
r

sp
ec

ifi
c

sh
ap

e
fu

nc
tio

n
b(
r)

=
r2 0 r

us
in

g
n

=
2

(l
ef
t)

an
d
n

=
3

(r
ig
ht

)
(c

ol
or

fig
ur

e
on

lin
e)

123



148 Page 12 of 19 M. Sharif, H. I. Fatima

which can be threaded by normal matter. When n is odd, dark energy terms become
dominant over matter terms, i.e., the effective energy-momentum tensor becomes
pivotal which recommends exotic matter to thread unrealistic wormholes.

4.2 Specific equation of state

An interesting EoS of the form ρ = ε(pt − pr ) was first time studied by Böhmer et
al. [27] which they used to evaluate shape function. Using Eqs. (9)–(11) along with
Eqs. (14) and (15) in this EoS, we obtain

1

r2

(
1 − ε − εc2

)
+ ε − 1

r2

(
1 − b

r

)
− ε

b − rb′

r2

{
− 4cε

r

√
1 − b

r

×
(

− 3

r2 + 1

r
− 1

)
− 4

r

(
1 − b

r

) (
6ε

r2 + ε
(
2c2 − 3

)
r

+ 3ε − 2r4

)
− 4ε

r2

×
(

1 − b

r

) 3
2
(
c − 16c2 − 1

r
− 2c

)
+ 8

r2

(
2ε

r
− ε − r5

) (
1 + b2

r2 − 2b

r

)

− 4

r3

√
1 − b

r

(
b − rb′)

(
ε (c + 4)

r
+ 3ε

√
1 − b

r
+ 3r4

√
1 − b

r

)

+ 8r(b − rb′)
}
f ′
G

+ G fG − f (G) = 0, (27)

which is a differential equation in terms of shape function. We solve it numerically
by inserting the values as stated above. The behavior of shape function is shown in
Fig. (3I) which is an increasing function while Fig. (3II) indicates that b

r → 0 as
r → ∞ leading to an asymptotically flat universe. The wormhole throat is located at
r = r0 where the graph b − r crosses the radial axis and b(r) < r for r > r0 , i.e.,
the graph of b − r is decreasingly cuts the radial axis. According to this definition,
Fig. (4I) suggests the throat radius r0 ≈ 2.1 for which db

dr ≈ 0.38 < 1 as shown
in Fig. (4II). Consequently, this function satisfies the flaring-out condition and hence
called the shape function for wormhole geometries.

5 Phantom wormholes

Here we discuss traversable wormhole by using another interesting EoS, pr = ωρ in
phantom regime (ω < −1) which has extensively been studied in literature [40,41].
Using Eqs. (9) and (10) with this EoS, we obtain

1

r3

(
ωrb′ + b

) − 2R′

r

(
1 − b

r

)
+

[
24bR′

r3

(
1 − b

r

)
− 4

(
rb′ − b

)
r3

(
ωr3 (3b − r)

+ (
2 + r R′) (

1 − b

r

))
+ 2

(
1 − b

r

) (
ωr2b + 4

(
1 − b

r

) (
R′2 + R′′))]

f ′
G

+ (
G fG − f (G)

)
(ω + 1) = 0, (28)
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yielding a differential equation in terms of redshift and shape function. We solve this
equation for static and non-static conformal symmetries.

5.1 Static conformal symmetric phantom wormholes

Static conformal symmetry implies the dependence of Eq. (7) only on radial coordinate
r which further implies that c = 0 in Eqs. (17) and (19). With this choice of c, Eq. (19)
implies that

R(r) = ln(a3r).

Inserting this value in Eq. (28), it follows that

1

r3 (ωrb′ + b) − 2

r2

(
1 − b

r

)
+

[
24b

r4

(
1 − b

r

)
− 4

(
rb′ − b

)
r3

(
ωr3 (3b − r)

+ 3

(
1 − b

r

))
+ 2ωr2b

(
1 − b

r

)]
f ′
G

+ (G fG − f (G))(ω + 1) = 0, (29)

which can be solved numerically for shape function b(r). The numerical solution
for shape function (with ω = −3) is shown in Fig. (5I) which indicates increasing
behavior while Fig. (5II) represents b

r → 0 as r → ∞ which leads to asymptotically
flat universe. Figure (6I) represents that b − r cuts the radial axis at r0 ≈ 2.1 which
is the throat radius and db

dr |r0 =(2.1) ≈ 0.36 < 1 (Fig. 6II). Hence, the flaring-out
condition is satisfied and gives the shape function for wormholes.

5.2 Non-static conformal symmetric phantom wormholes

For non-static conformal symmetric phantom wormholes, the energy density (20) and
radial pressure (21) along with EoS lead to the following equation

1

r2 (ω + 1) − (ω + 3)

r2

√
1 − b

r
+ 2c

r2

√
1 − b

r
− ω

r

b − rb′

r2 +
[

−
(

1 + ωr4
)

×
(

1 − b

r

)
12

(
b − rb′)
r3 + 8ωr

(
b − rb′) − 4

(
1 + 2ωr4

)
r3

(
1 − b

r

)2

+ 4

r3

(
1 − b

r

)
×

(
2ωr6 + 2cr − 3r + 3r2 + 6

)
+ 4c (1 − 2r)

r3

(
1 − b

r

) 3
2

+4c
(
r − r2 − 6

)
r3 ×

√
1 − b

r

]
f ′
G

+ (G fG + f (G))(ω − 1) = 0 (30)

for shape function. Its numerical solution is shown in Fig. 7 which depicts constant
behavior for very short range of r (0.4996 ≤ r ≤ 0.5). This function does not satisfy
the flaring-out condition and hence no wormhole exists for this case.
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Fig. 7 Plot of b(r) versus r with n = 2 for phantom wormhole with non-static conformal symmetry

6 Concluding remarks

It has always been interesting to formulate wormhole solutions, i.e., by first considering
spacetime metric and then deducing the energy-momentum tensor which may violate
the energy conditions. A hypothetical type of matter is affiliated with this violation,
namely, exotic matter. To minimize the dependence of wormholes on exotic matter,
the exploration of viable realistic models is an important issue. In this paper, we have
considered a systematic approach to study wormhole solutions by assuming static
spherically symmetric metric with non-static conformal symmetry in the background
of f (G) gravity. We have explored wormhole solutions by choosing two types of shape
function and also formulated the shape function for a particular as well as phantom
EoS. We have also discussed a particular case with static conformal symmetry in the
context of phantom wormhole. The results are summarized as follows.

For specific choice of shape functions, we have found that WEC (exemplifying
all energy conditions) are satisfied only for the even values of n while violated for
odd range. The validity of energy conditions confirms the existence of physically
realistic wormholes threaded by normal matter which leads the modified theories to
minimize the dependence of wormhole geometry on exotic matter. The behavior of
the shape function are shown graphically for a particular as well as phantom EoS.
The graphical behavior shows that these functions satisfy all conditions related to
the wormhole geometry and hence provides wormholes for the whole range of r .
For phantom wormholes with non-static conformal symmetry, the function does not
obey the assumptions related to wormhole physics and hence there does not exist any
wormhole in this case.
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Abstract. We study the dynamics of self-gravitating fluids bounded by spherically symmetric surface in
the background of f(G) gravity. The link between physical and geometrical variables, such as anisotropy,
density inhomogeneity, dissipation, the Weyl tensor, expansion scalar, shear tensor and modified (Gauss-
Bonnet) curvature terms, is given. We also investigate some particular fluid models according to various
dynamical conditions. It is found that our results are consistent with general relativity for constant f(G)
model (regular distribution of dark energy in the universe). Any other choice of the model leads to irregular
distribution of dark energy and deviates from general relativity.

1 Introduction

Gravitational collapse and its resulting remanent, such as stars, black holes, planets and galaxies, have attracted
many researchers to explore their dynamics. The most fascinating model to study the dynamics of these celestial
objects are the self-gravitating fluid models. These are based on some dynamical variables (physical and geometrical
quantities) like Weyl tensor, expansion scalar, anisotropy, shear tensor, density inhomogeneity (irregularity of energy
density) as well as dissipation. Mena and Tavakol [1] studied the evolution of a self-gravitating system through these
quantities. The Weyl tensor describes the tidal force, which makes the gravitating fluid more inhomogeneous during
evolution as time proceeds. The effects of this tensor on energy density inhomogeneity has been studied during the
evolution of self-gravitating fluid [2,3]. Herrera [4] investigated stability of spherical self-gravitating fluid and found
physical relevance of the Weyl tensor with such fluids. The significant roles of local anisotropy of pressure [5–7] as well
as shear tensor [8–11] in the evolution of self-gravitating fluid models have largely been studied. Herrera et al. [12]
analyzed dissipative spherically symmetric self-gravitating system using all dynamical quantities. Herrera [13] studied
contributions of the Weyl tensor and dissipation for axial fluid model.

Stimulating results from type Ia supernovae, cosmic microwave background radiations and large-scale structures,
revolutionized the field of gravitational physics and cosmology, which indicate that our universe is expanding at an
accelerating rate. This strange behavior of the universe is linked with a mysterious repulsive force known as dark energy
(DE) possessing highly negative pressure. In order to explain the mysterious nature of DE, modification in Einstein-
Hilbert action has been proposed leading to different modified theories like f(R) (R is the Ricci scalar), f(R, T ) (T
is the trace of energy-momentum tensor), Brans-Dicke and Gauss-Bonnet theories of gravity, etc. These theories are
consistent with GR in weak gravitational field regime but may disagree in strong field regime. Gravitational collapse
is the phenomenon of strong gravitational field regime and hence can be described by modified theories of gravitation.

The modified Gauss-Bonnet gravity (f(G) theory of gravity) is the consequence of the inclusion of an arbitrary
function f(G) in the Einstein-Hilbert action [14], where G is the Gauss-Bonnet quadratic invariant. This theory
efficiently interprets recent cosmic accelerated expansion, transition from decelerated to accelerated phases and passes
solar system tests. Also, it efficiently narrates thermodynamics [15,16] and cures four types of finite time future
singularities [17]. Myrzakulov et al. [18] explored DE as well as inflationary era in this gravity. We have studied energy
conditions [19], built-in inflation [20] as well as Noether symmetries [21] in this theory.

Sharif and Manzoor [22,23] investigated self-gravitating fluid models with spherical as well as cylindrical symmetries
in Brans-Dicke theory and originated a set of equations governing the dynamics of dissipative anisotropic fluids. Sharif

a e-mail: msharif.math@pu.edu.pk
b e-mail: ismatfatima4@gmail.com
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and Nasir [24] discussed the evolution of axial dissipative fluid in f(R) gravity through structure scalars in terms
of dynamical quantities. Sharif and Yousaf [25] analyzed the dynamics of spherical self-gravitating fluid in terms of
structure scalars for a particular f(R) model.

In this paper, we discuss the evolution of dissipative anisotropic shearing spherical matter configuration in f(G)
gravity. We construct a set of governing equations for the dynamics of fluid with spherically symmetric spacetime in
f(G) gravity. The scheme of the paper is as follows. In the next section, we formulate the modified field equations and
dynamical quantities. In sect. 3, we derive the evolution equations for a viable f(G) model. Section 4 describes the
dynamics for different fluid models. The last section concludes the results.

2 Field equations and dynamical quantities

In this section, we first formulate the field equations for f(G) gravity and then evaluate dynamical quantities. The
general line element for non-static spherical configuration is given as

ds2 = −A2dt2 + B2dr2 + C2(dθ2 + sin2 θdφ2), (1)

where A = A(t, r), B = B(t, r) and C = C(t, r) are functions of comoving coordinates t and r. The action for f(G)
gravity is given by [26]

S =
1

2κ2

∫
d4x[R + f(G)]

√
−g + SM , (2)

where κ, R, f(G) are the coupling constant, the Ricci scalar, arbitrary function of G, respectively, and SM is the
matter action. The Gauss-Bonnet term is

G = R2 − 4RμνRμν + RμνσρR
μνσρ,

where Rμνσρ, Rμν are the Riemann and Ricci tensors, respectively. Varying the action (2) with respect to the metric
tensor, we obtain

Gμν = κ2
(eff)

T μν = κ2

[
(M)

T μν +
(GB)

T μν

]
, (3)

where
(M)

T μν and
(BG)

T μν are the energy-momentum tensors for matter and Gauss-Bonnet (GB) terms, respectively, and

(GB)

T μν = 8
[
Rμρνσ + Rρνgσμ − Rρσgνμ − Rμνgσρ + Rμσgνρ

+
1
2
R(gμνgσρ − gμσgνρ)

]
∇ρ∇σfG + (GfG − f)gμν , (4)

where fG denotes derivative of f with respect to G.
For matter distribution, the energy-momentum tensor is defined as

(M)

T μν = ρUμUν + pthμν + (pr − pt)VμVν + q(VμUν + UμVν) + εlμlν , (5)

where ρ, pr, pt, q and ε are energy density, radial pressure, tangential pressure, dissipation (heat-flux) and radiation
density, respectively. The quantities Uμ (4-velocity vector), V μ (unit 4-vector in radial direction), hμν (projection
tensor) and lμ (null 4-vector) are defined as

Uμ = A−1δμ
0 , V μ = B−1δμ

1 , hμν = gμν + UμUν , lμ = A−1δμ
0 + B−1δμ

1 ,

satisfying the relations

UμUμ = −1, V μVμ = 1, V μUμ = 0, lμUμ = −1, lμlμ = 0, hμνUμ = 0.

We can write eq. (5) as
(M)

T μν = ρ̃UμUν + pthμν + ΠVμVν + q̃μUν + q̃νUμ, (6)
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where ρ̃ = ρ + ε, Π = p̃r + pt, p̃r = pr + ε, q̃μ = q̃Vμ, q̃ = q + ε. The corresponding field equations are

ρ̃ =
Ċ

A2C

(
2
Ḃ

B
+

Ċ

C

)
− 1

B2

(
2
C ′′

C
+

(
C ′

C

)2

− 2
B′C ′

BC
−

(
B

C

)2
)

+
4

A2BC2

(
Ḃ − 2

ĊC ′′

B
− ḂC ′2

B2
+ 3

ḂĊ2

A2
+ 2

B′C ′Ċ

B2

)
ḟG +

4
A2B3C2

×
(

A2B′ + B′Ċ2 − 2ḂĊC ′ + 2
A2C ′C ′′

B
− 3

A2B′C ′2

B2

)
f ′

G +
4

A2B3C2

×
(

A2C ′2

B2
− A2 − 2Ċ

)
f ′′

G − GfG + f, (7)

q̃ =
2

AB

(
ḂC ′

BC
+

A′Ċ

AC
− Ċ ′

C

)
+

4
ABC2

⎛
⎝1 +

(
Ċ

A

)2

−
(

C ′

B

)2
⎞
⎠ ḟ ′

G

+
4

A2BC2

(
−A′ + 2

ĊĊ ′

A
+

A′C ′2

B2
− 3

A′Ċ2

A2
− 2

ḂC ′Ċ

AB

)
ḟG +

4
AB2C2

×
(
−Ḃ − 2

Ċ ′C ′

B
+ 3

ḂC ′2

B2
− ḂĊ2

A2
+ 2

A′C ′Ċ

AB
f ′

G

)
, (8)

p̃r =
1

A2

(
Ċ

C

(
2
Ȧ

A
− Ċ

C

)
− 2

C̈

C

)
+

C ′

B2C

(
2
A′

A
+

C ′

C

)
− 1

C2
+

4
A2C2

×

⎛
⎝

(
C ′

B

)2

−
(

Ċ

A

)2

− 1

⎞
⎠ f̈G +

4
A3C2

(
Ȧ − 2

ĊC̈

A
+ 2

A′C ′Ċ

B3
− ȦC ′2

B2

+ 3
ȦĊ2

A2

)
ḟG +

4
AB2C2

(
A′ +

1
A2

− 2
ȦĊC ′

A2
− 3

A′C ′2

B2
+ 2

C̈C ′

A

)
f ′

G

+ GfG − f, (9)

pt =
1

A2

(
Ȧ

A

(
Ḃ

B
+

Ċ

C

)
− B̈

B
− C̈

C
− ḂĊ

BC

)
+

1
B2

(
A′′

A
+

C ′′

C
− A′B′

AB

+
C ′

C

(
A′

A
− B′

B

))
+

4
A3BC

(
1
B

(
2Ċ ′A′ − ȦC ′′ + A′′Ċ

)
− 1

A

×
(
ḂC̈ + ĊB̈

)
− 1

B2

(
A′B′Ċ + A′ḂC ′ − ȦB′C ′

)
+ 3

ȦḂĊ

A2
− 2

× A′2Ċ

AB

)
ḟG +

4
AB3C

(
1
A

(
2ḂĊ ′ − B′C̈ + B̈C ′

)
− 1

B
(A′C ′′ + A′′C ′)

− 1
A2

(
ȦḂC ′ + A′ḂĊ − ȦB′Ċ

)
+ 3

A′B′C ′

B2
− 2

Ḃ2C ′

AB

)
f ′

G +
8

A2B2C

×
(

A′Ċ

A
+

ḂC ′

B
− 1

)
ḟ ′

G − 4
AB2C

(
A′C ′

B2
+

ȦĊ

A2
− C̈

)
f ′′

G − 4
A2BC

×
(

ḂĊ

A2
+

B′C ′

A

)
f̈G + GfG − f. (10)
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The expression for Gauss-Bonnet invariant is calculated as

G =
8

ABC

[(
A′B′

B2C
+

B̈

AC

) (
1 +

Ċ2

A2

)
+

(
ȦḂ

A2C
+

A′′

BC

)(
C ′2

B2
− 1

)

− 1
AC

(
A′′Ċ2

AB
+ B̈C ′2

)
+ 2

{
C ′′

BC

(
A′C ′

B2
− C̈

A

)
+

B′C ′

AB2C

(
C̈ − ȦĊ

A

)

+
Ċ

A3C

(
C̈Ḃ +

ĊA′2

B

)
+

Ċ

A2BC

(
ȦC ′′ +

A′ḂC ′

B

)
+

1
ABC

(
Ċ ′2 +

Ḃ2C ′2

B2

)}

− 3
C

(
A′B′C ′2

B4
+

ȦḂĊ2

A4

)
− 4Ċ ′

ABC

(
A′Ċ

A
+

ḂC ′

B

)]
. (11)

Here dot and prime denote partial derivatives with respect to t and r, respectively, and we have assumed the unit
system κ2 = 8πG

c = 1 (G is the gravitational constant and c is the speed of light).
The four acceleration aμ (which defines the effects of gravitational as well as inertial forces on fluid) is defined as

aμ = Uμ;νUν , aμ = aVμ, a(1) =
A′

A
, a2 = aμaμ =

(
A′

AB

)2

.

The volume expansion of fluid can be measured by expansion parameter ϑ as

ϑ = Uμ
;μ =

1
A

(
Ḃ

B
+ 2

Ċ

C

)
.

The shear tensor σμν is used to evaluate distortion appearing in the fluid due to motion defined as

σμν = U(μ;ν) + a(μUν) −
1
3
ϑhμν .

Its alternative form is given as

σμν = σ

(
VμVν − 1

3
hμν

)
,

which provides

σμνσμν =
2
3
σ2, σ =

1
A

(
Ḃ

B
− Ċ

C

)

and its non-zero components are

σ11 =
2
3
σB2, σ22 =

1
sin2 θ

, σ33 = −1
3
σC2.

The Weyl tensor is described as a combination of the Riemann tensor, Ricci tensor and Ricci scalar. It narrates
the effects of tidal force borne by the object while moving along geodesics (in the region without matter) and is given
by

Cμ
ρσν = Rμ

ρσν − 1
2
Rμ

σgρν +
1
2
Rρσδμ

ν − 1
2
Rρνδμ

σ +
1
2
Rμ

ν gρσ +
1
6
R(δμ

σgρν − δμ
ν gρσ). (12)

This tensor can be written as magnetic Mμν and electric parts Eμν . The magnetic part of this tensor vanishes for
spherical symmetry while the electric part is given by

Eμν = CμανβUαUβ , (13)

where
Cμανβ = (gμακηgνβγδ − εμακηενβγδ)UκUγEηδ,

with gμακη = gμκgαη − gμηgακ and εμακη is the Levi-Civita tensor. The electric part in terms of 4-unit vector and
projection tensor can be written as

Eμν = ε

(
VμVν − 1

3
hμν

)
, (14)
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where ε = 1
2 ( C̈

C − B̈
B − ( Ċ

C − Ḃ
B ) Ċ

C ) + 1
2B2 (−C′′

C + (C′

C + B′

B )C′

C )− 1
2C2 is the Weyl scalar and the non-zero components

of the electric part are

E11 =
2
3
εB2, E22 = −1

3
εC2, E33 = E22 sin2 θ.

The Misner-Sharp mass function calculates the total energy of spherically symmetric system within the radius r = C
given as

M =
1
2
C3R23

23 =
1
2
C

⎛
⎝

(
Ċ

A

)2

−
(

C ′

B

)2

+ 1

⎞
⎠ . (15)

Now we calculate the variation of this mass function of radiating fluid inside the sphere. For this purpose, we
introduce two useful derivative operators with respect to radial and proper time coordinates as

DT =
1
A

∂

∂t
, DC =

1
C

∂

∂r

and the relativistic velocity of the collapsing fluid turns out to be

U = DT C =
1
A

∂C

∂t
=

Ċ

A
. (16)

Combining eqs. (15) and (16), we obtain

E =
C ′

B
=

(
1 + U2 − 2

C
M

) 1
2

. (17)

Using eqs. (3), (16) and (17), it follows that

DTM = −C2

2

{(
p̃r +

1
B2

(GB)

T11

)
U +

(
q̃ − 1

AB

(GB)

T01

)
E

}
, (18)

DCM =
C2

2

{(
ρ̃ +

1
A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

)
U
E

}
. (19)

These equations represent the variation of mass inside the spherical surface of evolving fluid. Equation (18) represents
the effects of radial pressure, dissipation, relativistic velocity and GB curvature terms on the proper derivative of mass
function within spherically bounded region, while eq. (19) indicates the combined effect of pressure, dissipation, rela-
tivistic velocity and extra GB curvature terms on the variation of mass distribution in radial direction. Equation (19)
yields

M′ =
C2C ′

2

{(
ρ̃ +

1
A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

)
U
E

}
,

which further implies that

M =
1
2

∫ r

0

C2C ′

{(
ρ̃ +

1
A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

)
U
E

}
dr. (20)

A particular combination of radiating energy density, dissipation and f(G) correction terms through mass function
can be attained using eq. (20) as

3
M
C3

=
3

2C3

∫ r

0

C2C ′

{(
ρ̃ +

1
A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

)
U
E

}
dr. (21)

We have taken a regular matter distribution at r = 0 (center), i.e., M(t, 0) = C(t, 0) = 0.
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3 f(G) model and the evolution equations

In this section, we construct the dynamical equations for dissipative spherically distributed self-gravitating fluid by
assuming the following f(G) model

f(G) = αGn, (22)

where α is any constant and n > 0 [27]. A modified gravity model should avoid ghosts (i.e., instabilities such as
Dolgov-Kawasaki as well as Ostrogradski’s instability) to preserve precise cosmological dynamics. Ghost may appear
while dealing with modified theories due to the repulsive nature of DE. This model (22) is viable if it satisfies the
following conditions [28]:

– f(G) and all of its derivatives (fG, fGG, fGGG . . .) are regular;
– fGG > 0, ∀ G and fGG → 0 as |G| → +∞.

The condition ḟG > 0 is required to avoid ghost. This model satisfies all the required conditions to be viable. The
model parameter n has some effects on R + f(G) cosmology. If n < 1

2 , the GB terms become dominant over curvature
term (Einstein term) in the weak-field regime, where the curvature term is negligible and we are in the non-phantom
phase. For n < 0, the big-rip singularity seems to occur. Near this singularity, the curvature becomes dominant, i.e.,
Einstein term becomes dominant as compared to GB terms. To avoid this singularity, GB terms can be neglected and
we arrive at phantom era. Thus, the transition of non-phantom to phantom phase can naturally occur in this model.
When 0 < n < 1

2 in strong gravitational field regime, GB terms can be neglected and we are left with the Einstein
gravity (deceleration). For late times, the GB terms may become dominant as compared with the matter Lagrangian
density (acceleration). Thus transition from decelerated to accelerated universe can occur.

3.1 Evolution equations

Ricci identities are used to define curvature by using four-velocity, four acceleration, expansion scalar, shear and
projection tensors. The iterated Ricci identities are obtained by taking one extra derivative, such as

Uμ;ν;α − Uμ;α;ν = Rβ
μναUβ ,

where Uμ;ν = aμUν + σμν + 1
3ϑhμν . The Riemann curvature tensor can be defined as

1
2
Rμ

αβνUμ = aα;[νUβ] + aαU[β;ν] + σα[β;ν] +
1
3

{
ϑ[νhβ]α + ϑhα[β;ν]

}
. (23)

In the following, we formulate evolution equations like Raychaudhuri equation, constraints equation, propagation
equation of shear (using eq. (23)), evolution equations for the Weyl tensor and dynamical equations.

3.1.1 Raychaudhuri equation

This equation describes the evolution of expansion and is obtained by contracting eq. (23) with Uβ and then with
indices ν and α. It turns out to be

ϑ;μUμ +
1
3
ϑ2 + σμνσμν − aμ

;μ = −UμUνRμ
ν . (24)

This equation along with eq. (3) gives

ϑ;μUμ +
1
3
ϑ2 +

2
3
σ2 − aμ

;μ = −1
2
(ρ̃ + 3p̃r). (25)

We note that the Raychaudhuri equation for f(G) gravity is the same as for GR [12], i.e., GB terms have no contribution
in Raychaudhuri equation. This is the evolution equation for expansion, therefore, measures the expansion rate of self-
gravitating relativistic fluid for GR as well as in f(G) cosmology.
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3.1.2 Propagation equation of shear

This equation is obtained by contracting eq. (23) with Uβhα
γ hν

δ as follows:

UβUμRμ
αβνhα

γ hν
δ = hα

γ hν
δ

(
aα;ν − σαν;βUβ

)
− aγaδ − Uβ

;νhν
δ

(
σγβ +

1
3
ϑhγβ

)
− 1

3
ϑ,αUαhγδ. (26)

Alternatively, this relation can be derived from eq. (12) as

Rμ
αβν = Cμ

αβν +
1
2
Rμ

βgαν − 1
2
Rαβδμ

ν +
1
2
Rανδμ

β − 1
2
Rμ

ν gαβ − 1
6
R(δμ

βgαν − δμ
ν gαβ),

which, after contraction with UβUμhα
γ hν

δ , gives eq. (26). Again contracting with V γ , V δ and using eq. (3), we obtain

UβUμRμ
αβνhα

γ hν
δV γV δ = ε − 1

2
Π + 2nα

[
− Rφ

ρσμV μVφ − RρμV μVσ + gσρRαμ

× V αV μ − RασVρV
α +

1
2
RVρVσ

]
∇ρ∇σGn. (27)

This is the propagation equation of the shear in f(G) gravity with some other dynamical variables which yields the
effects of GB terms in the shearing motion of evolving self-gravitating spherical objects.

3.1.3 Constraint equation

We obtain this equation from eq. (23) by contracting α and ν and then contracting with hαβVα as

Rμ
βUμhαβ = hα

β

(
σβγ

;γ − 2
3
ϑ;β

)
+ σαβaβ ,

which gives

hα
β

(
σβγ

;γ − 2
3
ϑ;β

)
+ σαβaβ = −q̃V α + 2nα

[
− UμhαβRμ

ρσβ + gσρUμhαβRμ
β

+ Uφhα
ρ Rφ

σ +
1
8
Rhα

ρ Uσ

]
∇ρ∇σGn. (28)

This equation directly relates shear tensor, expansion scalar, heat flux and modified terms of the Gauss-Bonnet gravity.

3.2 Evolution equations for the Weyl tensor

Bianchi identities (Rαβγδ;η + Rαβηγ;δ + Rαβδη;γ = 0) can also be written as

Cη
αβγ;η = Rγ[α;β] −

1
6
gγ[αR,β]. (29)

This is the relation between Weyl and Ricci tensors given by Kundt and Trümper [29]. This can also be written in
terms of the Weyl and effective energy-momentum tensors by using eq. (3) as

Cη
αβγ;η =

(eff)

T γ[α;β] −
1
6
gγ[α

(eff)

T ,β], (30)

where
(eff)

T =
(M)

T +
(GB)

T . From eq. (2), we can write

UβCη
αβγ;η + Uβ

;ηCη
αβγ = ϑEαγ + UμEαγ;μ − Uγ;ηEη

α − UγEη
α;η, (31)

where UβCαβγδ = EαγUδ − EαδUγ . After contraction with hα
μhγ

νUβV μV ν , eq. (31) gives

hα
μhγ

νUβV μV νCη
αβγ;η =

4
3
ϑEμνV μV ν − Uν;ηEη

μV μV ν + UβEαγ;βhα
μhγ

νV μV ν

+ hμνσγβEγβV μV ν − σγνEγ
μV μV ν − σγμEγ

ν V μV ν . (32)
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Furthermore, the effective energy-momentum tensor provides

hα
μhγ

νUβ
(eff)

T γα;β = hα
μhγ

νUβ
(M)

T γα;β + hα
μhγ

νUβ
(GB)

T γα;β

= (pt),βhμνUβ + (ΠVγVα);βhα
μhγ

νUβ + q̃νaμ + q̃μaν

+ 8nα
[
hα

μhγ
νUβRγρασ;β + hα

μhνσUβRρα;β − hμνUβ

× Rρσ;β − hα
μhγ

νUβgσρRγα;β + hμρh
γ
νUβRγα;β

]
∇ρ∇σGn, (33)

hα
μhγ

νUβ
(eff)

T γβ;α = hα
μhγ

νUβ
(M)

T γβ;α + hα
μhγ

νUβ
(GB)

T γβ;α

= (pt − ρ̃)
(

σμν +
1
3
ϑhμν

)
+ Π;βUβVγVβ;αhα

μhγ
νUβ

− q̃,αhα
μVν + 8nα

[
hα

μhγ
νUβRγρβσ;α + hα

μhνσUβRρβ;α

− hα
μhγ

νUβgσρRγβ;α + hα
μhγ

νUρRγσ;α

]
∇ρ∇σGn, (34)

hα
μhγ

νUβgγ[α

(eff)

T ;β] =
1
2

[
hα

μhγ
νUβgγα

(eff)

T ;β − hα
μhγ

νUβgγβ

(eff)

T ;α

]

=
1
2
(Π + 3pt − ρ̃),βUβhμν − nαhμν [Rρσ + gσρR];βUβ∇ρ∇σGn. (35)

Feeding back eqs. (32)–(35) into eq. (30), we have

ϑ

(
1
3
(ρ̃ + p̃r)hμν + Eμν

)
+ Uβ(Eαγ − Παγ);βhα

μhγ
ν + (ε + ρ̃ + p̃r)σμν

+
4
3
ρ̃,βUβhμν − Πβν

(
σβ

μ − 1
3
ϑhβ

μ

)
− q̃μaν − q̃νaμ − 4nαhα

μhγ
νUβ [Rγρ[ασ;β]

+ gσρRγ[α;β]]∇ρ∇σGn − nα[hα
μhνσUβRρ[α;β] − hμνUβRρσ;β + hμρh

γ
νUβ

× Rγα;β − hα
μhγ

νUρRγσ;α]∇ρ∇σGn = 0. (36)

Similarly, contracting eq. (31) with Uγ , it follows that

UγUβCη
αβγ;η = −Eη

α;η − aηEαη − σβ
η Eη

βUα. (37)

Also, we have

UγUβ
(eff)

T γα;β = UγUβ
(M)

T γα;β + UγUβ
(GB)

T γα;β

= Uβ(Uαρ̃,β + q̃α;β) + aα(ρ̃ + p̃r) − aγ(q̃γUα + Παγ)

+ 8nαUγUβ
[
Rγρασ − 2Rr[αgσ]ρ

]
;β
∇ρ∇σGn + 8nαUβ

× [2U[σRα]ρ;β + gρ[σUα]R;β ]∇ρ∇σGn + 8nαUγUβ [Rγρασ

− gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαUβ

[
U[σRα]ρ +

1
2
RU[αgσ]ρ

]

×∇rho∇σ(Gn),β + α(n − 1)UαUβ(Gn),β , (38)

UγUβ
(eff)

T γβ;α = UγUβ
(M)

T γβ;α + UγUβ
(GB)

T γβ;α

= ρ̃,α − 2q̃γ

(
σγ

α + aγUα +
1
3
ϑhγ

α

)
+ 8nαUγUβ [Rγρβσ

− gσρRγβ ];α∇ρ∇σGn + 8nα

[
UσUβRρβ;α + Rρσ;α

+ UγUρRγσ;α − 1
2
hσρR;α

]
∇ρ∇σGn + 8nα

[
UγUβRγρβσ

+ UβUσRρβ + Rρσ − UγUβgσρRγβ + UγUρRγσ − 1
2
hσρ

× R

]
∇ρ∇σ(Gn),α − α(n − 1)(Gn),α, (39)
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UγUβgγ[α

(eff)

T ;β] = −1
2
hβ

α

(eff)

T ,β = −1
2
hβ

α

(
(M)

T ,β +
(GB)

T ,β

)

= −1
2
hβ

α(−ρ̃ + 2p̃r + pt),β − 8nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ

− δρσ)
]

,β

∇ρ∇σGn − 8nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]

×∇ρ∇σ(Gn),β + 4α(n − 1)(Gn),β . (40)

Substituting eqs. (37)–(40) back into eq. (30), we obtain

hα
μEλ

α;λ + aλEμλ + q̃γ

(
σγ

μ +
1
3
ϑhγ

μ

)
+

1
3
hβ

μ(−2ρ̃ + 2p̃r + pt),β − aγΠμγ

+ aμ(−ρ̃ + p̃r) + Uβhα
μ q̃α;β + 4nαUγUβ [Rγρασ;β − Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]
∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R;β ]∇ρ∇σGn

+ 4nαUγUβ [Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + Uβ

[
1
2
nαRU[αgσ]ρ + U[σ

× Rα]ρ

]
∇ρ∇σ(Gn),β +

1
2
α(n − 1)UαUβ(Gn),β − 4nα

[
Rρσ;α + Rρβ;αUσ

× Uβ + UγUρRγσ;α − 1
2
hσρR,α

]
∇ρ∇σGn − 4nα

[
UγUβRγρβσ + UβUσRρβ

+ Rρσ − UγUβgσρRγβ + UγUρRγσ − 1
2
hσρR

]
∇ρ∇σ(Gn),α +

1
2
α(n − 1)

× (Gn),α − 4
3
nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8nα

[
Rρσ

+ Rgσρ − 1
2
R(4gσρ − δρσ)

]
∇ρ∇σ(Gn),β +

1
3
α(n − 1)(Gn),β = 0. (41)

Equations (36) and (41) are the evolution equations for the Weyl tensor. These represent the relationship between
the Weyl tensor, dynamical variables (heat flux, anisotropic parameter, density, shear and projection tensors etc) and
modified terms due to f(G) gravity.

3.3 Dynamical equations

These equations describe the conservation of total energy of the evolving star obtained through Bianchi identities as
(

(M)

Tμν +
(GB)

Tμν

)

;ν

Uμ = 0,

(
(M)

Tμν +
(GB)

Tμν

)

;ν

Vμ = 0, (42)

where the first equation represents equation of continuity while the second is the equation of motion. Both equations
yield

ρ̃,μUμ + ϑ(ρ̃ + p̃r) −
2
3
(σ + ϑ)Π + q̃,μV μ + 2q̃

(
C ′

BC
+ a

)
+ 8nα[Rμν

ρσ

− Rμνgσρ];νUμ∇ρ∇σGn + 8nα[(UσRν
ρ − UνRρσ),ν + Γμ

νγ(Rν
ρδγ

σ − Rρσgγν)

× Uμ + Γ ν
νγ(UσRγ

ρ − UγRρσ)]∇ρ∇σGn = 0, (43)

p̃r,μV μ + a(ρ̃ + p̃r) + 2Π
C ′

BC
+ q̃,μV μ +

2
3
q̃(σ + 2ϑ) + 8nα[−Rμνgσρ

+ Rμν
ρσ ];νVμ∇ρ∇σGn + 8nα[(VσRν

ρ − V νRρσ + Rμ
σδν

ρ ),ν + Γμ
νγ(Rν

ρδγ
σ + Rγ

σ

× δν
ρ )Vμ + Γ ν

νγ(VσRγ
ρ + V γRρσ)]∇ρ∇σGn = 0, (44)

representing the effects of GB terms in the evolution of energy density and pressure.
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4 Some self-gravitating fluid models

In this section, we study governing equations for some specific self-gravitating fluid models under the influ-
ence of f(G) gravity and give their comparison with GR [12]. The set of governing equations is given by
eqs. (25), (27), (28), (36), (41), (43) and (44).

4.1 Geodesic non-dissipative isotropic fluids

If the fluid particles are moving along geodesics, then aμ = 0 and the fluid is geodesic for which g00 = const. Thus
for locally isotropic (radial and tangential pressures are same, i.e., Π = 0), non-dissipative (vanishing heat flux and
radiation density, i.e., q = ε = 0) and geodesic fluids, we obtain the governing equations under the effects of f(G)
gravity as follows:

ϑ;μUμ +
1
3
ϑ2 +

2
3
σ2 = −1

2
(ρ + 3pr), (45)

UβUμRμ
αβνhα

γ hν
δV γV δ = ε + 2nα

[
− Rφ

ρσμV μVφ − RρμV μVσ + gσρRαμV α

× V μ − RασVρV
α +

1
2
RVρVσ

]
∇δ∇σGn, (46)

hα
β

(
σβγ

;γ − 2
3
ϑ;β

)
+ σαβaβ = 2nα

[
− UμhαβRμ

ρσβ + gσρUμhαβRμ
β + Uφhα

ρ Rφ
σ

+
1
8
Rhα

ρ Uσ

]
∇ρ∇σGn, (47)

ϑ

(
1
3
(ρ + pr)hμν + Eμν

)
+ Uβ(Eαγ);βhα

μhγ
ν + (ε + ρ + pr)σμν +

4
3
ρ,βUβ

× hμν − 4nαhα
μhγ

νUβ [Rγρ[ασ;β] + gσρRγ[α;β]]∇ρ∇σGn − nα[hα
μhνσRρ[α;β]

× Uβ − hμνUβRρσ;β + hμρh
γ
νUβRγα;β − hα

μhγ
νUρRγσ;α]∇ρ∇σGn = 0, (48)

1
3
hβ

μ(−2ρ),β + 4nαUγUβ
[
Rγρασ;β − Rγρβσ;α − 2(Rγ[αgσ]ρ);β

+gσρRγβ;α]∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R;β ]∇ρ∇σ

× Gn + 4nαUγUβ [Rγρασ − gρ[αRσ]γ ]∇γ∇σ(Gn),β + Uβ

[
U[σRα]ρ +

1
2
nα

× RU[αgσ]ρ

]
∇ρ∇σ(Gn),β +

1
2
α(n − 1)UαUβ(Gn),β − 4

[
Rρσ;α + Rρβ;αUσ

× Uβ + UγUρRγσ;α − 1
2
nαhσρR;α

]
∇γ∇σGn − 4nα

[
UγUβRγρβσ + UβUσ

× Rρβ + Rρσ − UγUβgσρRγβ + UγUρRγσ − 1
2
hσρR

]
∇γ∇σ(Gn),α +

1
2
α

× (n − 1)(Gn),α − 4
3
nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8n

× α

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
∇ρ∇σ(Gn),β +

1
3
α(n − 1)

× (Gn),β = 0, (49)
ρ,μUμ + ϑ(ρ + pr) + 8nα[Rμν

ρσ − Rμνgσρ];νUμ∇ρ∇σGn + 8nα[(UσRν
ρ

− UνRρσ),ν + Γμ
νγ(Rν

ρδγ
σ − Rρσgγν)Uμ + Γ ν

νγ(UσRγ
ρ − UγRρσ)]∇ρ∇σ

× Gn = 0, (50)
(pr),μV μ + 8nα[Rμν

ρσ − Rμνgσρ];νVμ∇ρ∇σGn + 8nα[(VσRν
ρ − V νRρσ

+ Rμ
σδν

ρ ),ν + Γμ
νγ(Rν

ρδγ
σ + Rγ

σδν
ρ )Vμ + Γ ν

νγ(VσRγ
ρ + V γRρσ)]∇ρ∇σ

× Gn = 0. (51)
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This represents dust fluid model (pressureless fluid) in GR while the conformally flatness condition (ε = 0) implies shear
free condition (σ = 0) and vice versa [12]. In the scenario of f(G) gravity, the equation of motion (51) depends upon
the gradient of pressure and extra curvature terms (GB terms). The choice f(G) = const. (i.e., fG = 0) corresponds
to the cosmological constant and the standard results can be imitated. For this type of fluid model, pressure gradient
vanishes in eq. (51) which consequently gives pr = const. In this case, matter particles will exert equal pressure at
each point of evolving relativistic spherically distributed self-gravitating fluid. Thus geodesic fluids with isotropy and
non-dissipation exert constant (non-zero) pressure (no dust) in f(G) cosmology. For constant to be zero, this yields
dust. Equations (46) and (48) represent that the conformally flatness condition and shear free condition rely on GB
terms. Thus conformally flatness condition does not imply shear free condition. Equation (49) indicates that energy
density inhomogeneity depends upon GB terms as well as the Weyl tensor. If the Weyl tensor vanishes, then GB terms
are totally responsible for energy density inhomogeneity.

4.2 Geodesic non-dissipative anisotropic fluids

Here we take geodesic fluid with locally anisotropy (different radial and tangential pressures, i.e., Π �= 0) and non-
dissipation for which the governing equations are as follows:

UβUμRμ
αβνhα

γ hν
δV γV δ = ε − 1

2
Π + 2nα

[
− Rφ

ρσμV μVφ − RρμV μVσ + gσρ

× RαμV αV μ − RασVρV
α +

1
2
RVρVσ

]
∇δ∇σGn, (52)

ϑ

(
1
3
(ρ + pr)hμν + Eμν

)
+ Uβ(Eαγ − Παγ);βhα

μhγ
ν + (ε + ρ + pr)σμν

+
4
3
ρ,βUβ − Πβν

(
σβ

μ − 1
3
ϑhβ

μ

)
hμν − 4nαhα

μhγ
νUβ [Rγρ[ασ;β] + gσρRγ[α;β]]

×∇ρ∇σGn − nα[hα
μhνσRρ[α;β]U

β − hμνUβRρσ;β + hμρ

× hγ
νUβRγα;β − hα

μhγ
νUρRγσ;α]∇ρ∇σGn = 0, (53)

−2
3

hβ
μ(ρ),β +

1
3
hβ

μ(Π),β + 4nαUγUβ
[
Rγρασ;β − Rγρβσ;α − 2(Rγ[αgσ]ρ);β

+gσρRγβ;α]∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R;β ]∇ρ∇σ

× Gn + 4nαUγUβ [Rγρασ − gρ[αRσ]γ ]∇γ∇σ(Gn),β + Uβ

[
U[σRα]ρ +

1
2
nα

× RU[αgσ]ρ

]
∇ρ∇σ(Gn),β +

1
2
α(n − 1)UαUβ(Gn),β − 4

[
Rρσ;α + Rρβ;αUσ

× Uβ + UγUρRγσ;α − 1
2
nαhσρR;α

]
∇γ∇σGn − 4nα

[
UγUβRγρβσ + UβUσ

× Rρβ + Rρσ − UγUβgσρRγβ + UγUρRγσ − 1
2
hσρR

]
∇γ∇σ(Gn),α +

1
2
α

× (n − 1)(Gn),α − 4
3
nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8n

× α

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
∇ρ∇σ(Gn),β +

1
3
α(n − 1)

× (Gn),β = 0, (54)

ρ,μUμ + ϑ(ρ + pr) −
2
3
(σ + ϑ)Π + 8nα[Rμν

ρσ − Rμνgσρ];νUμ∇ρ∇σGn

+ 8nα[(UσRν
ρ − UνRρσ),ν + Γμ

νγ(Rν
ρδγ

σ − Rρσgγν)Uμ + Γ ν
νγ(UσRγ

ρ − Uγ

× Rρσ)]∇ρ∇σGn = 0, (55)

(pr),μV μ + 2Π
C ′

CB
+ 8nα[Rμν

ρσ − Rμνgσρ];νVμ∇ρ∇σGn + 8nα[(VσRν
ρ

− V νRρσ + Rμ
σδν

ρ ),ν + Γμ
νγ(Rν

ρδγ
σ + Rγ

σδν
ρ )Vμ + Γ ν

νγ(VσRγ
ρ + V γRρσ)]

×∇ρ∇σGn = 0. (56)
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The geometry for this type of fluid revolves around a physical quantity of matter, i.e., pressure anisotropy. In GR,
pressure gradient, shear free and conformally flatness conditions are linked with pressure anisotropy while density
inhomogeneity depends on the Weyl tensor as well as pressure anisotropy. The f(G) theory affects these relations by
the inclusion of GB terms. In the absence of the Weyl tensor, eq. (53) shows that density inhomogeneity is caused by
pressure anisotropy as well as GB terms.

4.3 Non-geodesic non-dissipative isotropic fluids

In this case, we obtain the following set of governing equations:

ϑ;μUμ +
1
3
ϑ2 +

2
3
σ2 − aμ

;μ = −1
2
(ρ + 3pr), (57)

UβUμRμ
αβνhα

γ hν
δV γV δ = ε + 2nα

[
− Rφ

ρσμV μVφ − RρμV μVσ + gσρRαμV α

× V μ − RασVρV
α +

1
2
RVρVσ

]
∇ρ∇σGn, (58)

hα
β

(
σβγ

;γ − 2
3
ϑ;α

)
+ σαβaβ = 2nα

[
− UμhαβRμ

ρσβ + gσρUμhαβRμ
β + Uφhα

ρ Rφ
σ

+
1
8
Rhα

ρ Uσ

]
∇ρ∇σGn, (59)

ϑ

(
Eμν +

1
3
(ρ + pr)hμν

)
+ Uβ(Eαγ);βhα

μhγ
ν + (ε + ρ + pr)σμν +

4
3
ρ;βUβ

× hμν − 4nαhα
μhγ

νUβ [Rγρ[ασ;β] + gσρRγ[α;β]]∇ρ∇σGn − nα[hα
μhνσUβRρ[α;β]

− hμνUβRρσ;β + hμρh
γ
νUβRγα;β − hα

μhγ
νUρRγσ;α]∇ρ∇σGn = 0, (60)

1
3
hβ

α(ε),β +
2
3
hβ

αρ,β + 4nαUγUβ [Rγρασ;β − Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]
∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R,β ]∇ρ∇σGn

+ 4nαUγUβ [Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαUβ

[
U[σRα]ρ +

1
2
RU[α

× gσ]ρ

]
∇ρ∇σ(Gn),β +

1
2
α(n − 1)UαUβ(Gn),β − 4nα

[
UσUβRρβ;α + Uγ

× UρRγσ;α + Rρσ;α − 1
2
hσρR;α

]
∇γ∇σGn − 4nα

[
UγUβRγρβσ + UβUσRρβ

+ Rρσ − UγUβgσρRγβ + UγUρRγσ − 1
2
hσρR

]
∇ρ∇σ(Gn),α +

1
2
α(n − 1)

× (Gn),α − 4
3
nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8nα

[
Rρσ

+ Rgσρ − 1
2
R(4gσρ − δρσ)

]
∇ρ∇σ(Gn),β +

1
3
α(n − 1)(Gn),β = 0, (61)

ρ,μUμ + ϑ(ρ + pr) + 8nα[Rμν
ρσ − Rμνgσρ];νUμ∇ρ∇σGn + 8nα[(UσRν

ρ

− UνRρσ),ν + Γμ
νγ(Rν

ρδγ
σ − Rρσgγν)Uμ + Γ ν

νγ(UσRγ
ρ − UγRρσ)]

×∇ρ∇σGn = 0, (62)
(pr),μV μ + a(ρ + pr) + 8nα[Rμν

ρσ − Rμνgσρ];νVμ∇ρ∇σGn + 8nα[(VσRν
ρ

− V νRρσ + Rμ
σδν

ρ ),ν + Γμ
νγ(Rν

ρδγ
σ + Rγ

σδν
ρ )Vμ + Γ ν

νγ(VσRγ
ρ + V γRρσ)]

×∇ρ∇σGn = 0. (63)

In GR, shear free condition provides expansion free condition for such fluid while conformal flatness condition implies
irregularities (inhomogeneity) in energy density and vice versa. For modified Gauss-Bonnet gravity, we see from
eq. (61) that conformal flatness condition depends upon inhomogeneity of energy density as well as GB terms. If the
fluid is conformally flat, the dependence of energy density inhomogeneity depends on GB terms, hence GB terms are
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responsible for density inhomogeneity. Equation (59) indicates that shear free condition does not imply expansion free
fluid due to GB terms.

4.4 Non-geodesic non-dissipative anisotropic fluids

Here we take non-dissipative (q = ε = 0) and anisotropic (Π �= 0) fluids. For this case, we have

1
3
hβ

α(ε − Π),β +
2
3
hβ

αρ,β + 4nαUγUβ [Rγρασ;β − Rγρβσ;α + gσρRγβ;α

−2(Rγ[αgσ]ρ);β
]
∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R,β ]∇ρ∇σGn + 4

× nαUγUβ [Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαUβ

[
U[σRα]ρ +

1
2
RU[αgσ]ρ

]

×∇ρ∇σ(Gn),β +
1
2
α(n − 1)UαUβ(Gn),β − 4nα

[
UσUβRρβ;α + Rρσ;α + Uγ

× UρRγσ;α − 1
2
hσρR;α

]
∇γ∇σGn − 4nα

[
UγUβRγρβσ + UβUσRρβ + Rρσ

− UγUβgσρRγβ + UγUρRγσ − 1
2
hσρR

]
∇ρ∇σ(Gn),α +

1
2
α(n − 1)(Gn),α − 4

3

× nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8nα

[
Rρσ + Rgσρ − 1

2
R

× (4gσρ − δρσ)
]
∇ρ∇σ(Gn),β +

1
3
α(n − 1)(Gn),β = 0. (64)

In GR, this relates energy density inhomogeneity, the Weyl tensor and anisotropy. Here, eq. (64) clearly shows that
energy density inhomogeneity is linked with the Weyl tensor, anisotropy and GB terms.

4.5 Non-geodesic dissipative anisotropic fluids

This is more general case with the presence of dissipation q �= 0 (ε = 0 for simplicity) and anisotropy (Π �= 0). From
eq. (41), we have

hα
μEλ

α;λ + aλEμλ + qγ

(
σγ

μ +
1
3
ϑhγ

μ

)
+

1
3
hβ

μ(−2ρ + 3pr + Π),β + aμ(−ρ + pr)

− aγΠμγ + Uβhα
μ q̃α;β + 4nαUγUβ

[
Rγρασ;β − Rγρβσ;α − 2(Rγ[αgσ]ρ);β + gσρ

× Rγβ;α]∇ρ∇σGn + 4nαUβ [2U[σRα]ρ;β + gρ[σUα]R,β ]∇ρ∇σGn + 4nαUγUβ

× [Rγρασ − gρ[αRσ]γ ]∇ρ∇σ(Gn),β + nαUβ

[
U[σRα]ρ +

1
2
RU[αgσ]ρ

]
∇ρ∇σ

(Gn),β +
1
2
α(n − 1)UαUβ(Gn),α − 4nα

[
UσUβRρβ;α + Rρσ;α + UγUρRγσ;α

− 1
2
hσρR;α

]
∇ρ∇σGn − 4nα

[
UγUβRγρβσ + UβUσRρβ + Rρσ − UγUβgσρ

× Rγβ + UγUρRγσ − 1
2
hσρR

]
∇ρ∇σ(Gn),α +

1
2
αn − 1(Gn),α − 4

3
nα

[
Rρσ

+ Rgσρ − 1
2
R(4gσρ − δρσ)

]
,β

∇ρ∇σGn − 8nα

[
Rρσ + Rgσρ − 1

2
R(4gσρ

− δρσ)
]
∇ρ∇σ(Gn),α +

1
3
α(n − 1)(Gn),β = 0. (65)

This equation represents the link of dark source (GB) terms with the Weyl tensor and other dynamical quantities. This
represents that the tidal force that an object feels while moving along a geodesic is affected by dynamical quantities
as well as GB terms. This also shows that the inhomogeneity of energy density as well as dark source terms do not
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disturb due to the absence of shear and expansion parameters. This equation indicates that the inhomogeneity of
energy density does not depend upon dark source terms so its homogeneity does not alter the inhomogeneity of energy
density.

The transport equation [30] is used to discuss the flow of heat inside the density inhomogeneity given by

τhμ
νUαqν

,α + qμ − K

(
hμν(T,ν + Taν) − 1

2
qμ

(
τUν

KT 2

)
;ν

)
= 0, (66)

where K, T , and τ are the thermal conductivity, temperature and time relaxation. Using eq. (44) in (66), we have

q =
τ [(pr),αV α + (ρ + pr)a + 2Π C′

BC + GB] − K[TαUα + aT ]
1 + 1

2τ [ 13 (2σ − 5ϑ) + 1
τ Uατ,α − 1

K UαK,α − 2
T UαT,α]

, (67)

where

GB = 8nα[Rμν
ρσ − Rμνgσρ];νVμ∇ρ∇σGn + 8nα[(VσRν

ρ − V νRρσ + Rμ
σ

× δν
ρ ),ν + Γμ

νγ(Rν
ρδγ

σ + Rγ
σδν

ρ )Vμ + Γ ν
νγ(VσRγ

ρ + V γRρσ)]∇ρ∇σGn.

Inserting eq. (67) in (65), we obtain a relation between density inhomogeneity and thermodynamics variables.

5 Conclusions

In this paper, we have generated a set of governing equations for the dynamics of evolving fluid bounded by spherically
symmetric surface under the influence of f(G) gravity. These equations express a connection between dynamical
variables and dark source (Gauss-Bonnet curvature) terms as well as their roles for evolving self-gravitating fluids. We
have discussed different fluid models for various dynamical conditions and found that the role of dark source terms
is crucial for gravitational effects during the evolution of self-gravitating fluids. In the following, we summarize our
results and compare with GR [12].

For a geodesic fluid with locally isotropic and non-dissipative, GR gives dust where density inhomogeneity depends
upon the Weyl tensor and shear free condition implies conformal flatness. In f(G) gravity, such relations are not
imitated due to extra curvature terms from dark source. Fluid is not dust and the conformally flatness condition does
not imply shear free condition, while density inhomogeneity is controlled by the Weyl tensor as well as GB terms. If
we include pressure anisotropy in the fluid, all results revolve around this physical variable. For non-geodesic fluids
with local anisotropy and non-dissipation, GR gives the combination of energy density inhomogeneity, the Weyl tensor
and anisotropy while f(G) theory affects this combination by including GB terms.

For non-geodesic fluids with local isotropy and non-dissipation in GR, shear free and expansion free conditions
are linked with each other and density inhomogeneity is attained from conformally flatness condition. In our case,
these results are affected by GB terms and in the absence of conformally flatness condition, density inhomogeneity
is assured by GB terms. In the more general case, anisotropic fluid with dissipation, GR describes the evolution of
self-gravitating fluid in terms of dynamical variables. In the present case, there is one extra dependence of the evolution
of self-gravitating fluid on GB terms along with dynamical quantities. We have obtained a relation between density
inhomogeneity and thermodynamics variables plus GB terms through transport equation.

We have found that the evolution of self-gravitating fluid not only depends upon dynamical variables but also
on GB terms. The choice f(G) = const. (i.e., fG = 0) or n = 0 corresponds to the cosmological constant and the
standard results can be recovered. For this choice of the model, our results are consistent with standard results [12]
otherwise GB terms affect the results which deviate from GR. It is worthwhile to mention here that our constructed
self-gravitating fluid models are more general as compared to GR.
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Abstract In this paper, we study the dynamics of self-gravitating fluid using structure
scalars for spherical geometry in the context of f (G) cosmology. We construct struc-
ture scalars through orthogonal splitting of the Riemann tensor and deduce a complete
set of equations governing the evolution of dissipative anisotropic fluid in terms of
these scalars. We explore different causes of density inhomogeneity which turns out
to be a necessary condition for viable models. It is explicitly shown that anisotropic
inhomogeneous static spherically symmetric solutions can be expressed in terms of
these scalar functions.

Keywords f (G) gravity · Dissipative fluid · Structure scalars

1 Introduction

Gravitational collapse has a key role in the formation of universe structure. The initial
smooth distribution of matter collapses with the passage of time and forms pockets
of higher density leading to hierarchy of compressed celestial structures like galaxies,
cluster of galaxies, stars, black holes and planets. Observations from redshift surveys
such as 2 dF (two degree field) galaxy redshift survey (with 3.9 m equatorially mounted
telescope) and Sloan digital sky survey (with 2.5 m wide angle optical telescope)
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[1,2] describe these objects as self-gravitating systems. These are characterized by
kinematical quantities (physical and geometrical dynamical variables) like expansion
scalar, the Weyl tensor, density inhomogeneity, anisotropy, dissipation (heat flux) as
well as shear tensor.

Gravitational collapse initiates in highly inhomogeneous state which can be
described through the relations of energy density inhomogeneity with the Weyl tensor
or other kinematical quantities [3–5]. The Weyl tensor illustrates tidal force which
makes fluid more inhomogeneous during the evolution. Herrera [6] discussed stability
of spherically distributed self-gravitating fluid and found physical relevance of the
Weyl tensor with such fluids. The pressure anisotropy occurs in phenomena like mix-
ture of two fluids, phase transition, slow rotation and solid core. The significant roles
of local anisotropy of pressure [7–9] as well as shear tensor [10–13] in the evolution of
self-gravitating fluid models have largely been studied. Since gravitational collapse is
a highly dissipative process, so the relevance of dissipation in self-gravitating objects
has attracted many people [14–16]. Herrera et al. [17] developed structure scalars of
dissipative anisotropic spherically as well as axially symmetric [18] self-gravitating
systems by using dynamical quantities.

Stimulating observations from type Ia supernovae, large scale structures and cosmic
microwave background radiations indicate the cosmic expansion at an accelerating
rate. The phenomenon of cosmic expansion is linked with dark energy (DE) which
is a mysterious repulsive force possessing highly negative pressure. To study the
mystical effects of DE, the Einstein–Hilbert action has been generalized leading to
various alternative (modified) theories of gravitation as f (R), f (R, T ), where R
is the Ricci scalar and T is the trace of energy-momentum tensor, Brans–Dicke and
Gauss–Bonnet etc. The modified Lagrangian significantly helps to analyze the mystical
effects of DE. These theories are consistent with (general relativity) GR in the regime
of weak field but may vary in strong field. Gravitational collapse is categorized as the
phenomenon of strong field, hence modified theories are the best candidates to explain
this phenomenon.

The f (G) or modified Gauss–Bonnet theory of gravity is obtained by adding an
arbitrary function ( f (G)) of the Gauss–Bonnet quadratic invariant G in the action
[19]. This theory efficiently elucidates accelerated expansion of the universe, transition
from deceleration to accelerating phase of the universe and also satisfies solar system
tests. Furthermore, it is useful in explaining thermodynamics [20,21] and protects all
possible four types of future singularities [22]. Myrzakulov et al. [23] explored this
theory to study DE as well as inflationary era. We have studied energy conditions [24],
wormhole solutions [25,26], built-in inflation [27], Noether symmetries [28] as well
as spherical solution with conformal symmetry [29] in this theory.

The description of collapsing fluids in stellar interiors remains a debateable issue in
GR as well as modified theories. For this purpose, a set of scalars have been introduced
in [30,31] that have individual physical meaning and appeared to be well applicable
for the description of relativistic fluids. In this context, Sharif and Manzoor [32–34]
explored self-gravitating fluid models in Brans–Dicke theory using spherical as well
as cylindrical symmetries. They deduced a set of governing equations in terms of
structure scalars to study the dynamics of anisotropic dissipative fluids. There is a
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large body of literature [35–40] available about structure scalars in GR and f (R)

gravity.
In this paper, we construct a set of scalars in terms of dynamical quantities to discuss

the evolution of dissipative anisotropic shearing spherical matter configuration in f (G)

gravity. The paper has the following format. The next section formulates the modified
field equations and dynamical variables. In Sect. 3, we construct structure scalars for
a particular f (G) model. Section 4 contains the set of governing equations in terms of
scalars. We also explore density inhomogeneity factors. In Sect. 5, we write down all
three possible static anisotropic spherical solutions in terms of scalars. Finally, Sect. 6
concludes the results.

2 Modified field equations and dynamical variables

In this section, we first formulate the field equations for f (G) gravity taking non-static
spherically symmetric metric and then evaluate dynamical variables. The most general
non-static line element for spherically symmetric configuration is

ds2 = −A2dt2 + B2dr2 + C2(dθ2 + sin2 θdφ2), (1)

where the metric coefficients A = A(t, r), B = B(t, r) andC = C(t, r) are functions
of co-moving coordinates t and r . The generalized GR action for f (G) gravity is given
by [41]

S = 1

2κ2

∫
d4x[R + f (G)]√−g + SM , (2)

where κ, R, f (G) are the coupling constant, the Ricci scalar, arbitrary function of G,
respectively, and SM is the matter action. We assume the unit system κ2 = 8πG

c = 1 (G
is the gravitational constant and c is the speed of light). The Gauss–Bonnet quadratic
invariant term is defined as

G = R2 − 4RμνR
μν + RμνσρR

μνσρ,

where Rμνσρ, Rμν are the Riemann and Ricci tensors, respectively. Varying the f (G)

action (2) with respect to the metric tensor gμν , we obtain

Gμν = (eff)

T μν = (M)

T μν + (GB)

T μν, (3)

where Gμν is the Einstein tensor and
(M)

T μν /
(BG)

T μν are the energy-momentum tensors for
matter/Gauss–Bonnet (GB) terms, respectively and

(GB)

T μν = 8

[
Rμρνσ + Rρνgσμ − Rρσ gνμ − Rμνgσρ + Rμσ gνρ

+1

2
R(gμνgσρ − gμσ gνρ)

]
∇ρ∇σ fG + (G fG − f )gμν, (4)
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where subscript G denotes derivative of f with respect to Gauss–Bonnet invariant G.
This is the energy-momentum tensor sharing the gravitational contribution coming
from f (G) extra degrees of freedom.

We assume a more complex problem in which non-static spherical geometry is
coupled with locally anisotropic shearing fluid configurations with dissipation. The
energy-momentum tensor for this type of fluid is defined as

(M)

T μν = ρuμuν + pt hμν + (pr − pt )vμvν + q(vμuν + uμvν) + εlμlν, (5)

where ρ, pr , pt , q and ε are energy density, radial pressure, tangential pressure,
dissipation and radiation density, respectively. The scalar quantity q corresponds to a
heat conducting vector qμ. The quantities uμ (4-velocity vector), vμ (unit 4-vector in
radial direction), hμν (projection tensor) and lμ (null 4-vector) are defined as

uμ = A−1δ
μ
0 , vμ = B−1δ

μ
1 , hμν = gμν + uμuν, lμ = A−1δ

μ
0 + B−1δ

μ
1 ,

obeying the relations

uμuμ = −1, vμvμ = 1, vμuμ = 0, lμuμ = −1, lμlμ = 0, hμνu
μ = 0.

The effects of gravitational as well as inertial forces on the fluid can be described by
4-acceleration as

aμ = uμ;νuν, aμ = avμ, a(1) = A′

A
, a2 = aμaμ =

(
A′

AB

)2

,

where prime denotes partial derivative with respect to radial coordinate r . The volume
expansion and contraction of fluid can be measured by kinematical scalar variable ϑ

(expansion parameter). Mathematically, it is defined as ϑ = uμ

;μ

ϑ = 1

A

(
Ḃ

B
+ 2

Ċ

C

)
,

where dot represents the temporal partial derivative. The shear tensor is used to evaluate
distortion appearing in the fluid due to motion defined as

σμν = u(μ;ν) + a(μuν) − 1

3
ϑhμν.

Its alternative form and the non-zero components are given as

σμν = σ

(
vμvν − 1

3
hμν

)
, σ11 = 2

3
σ B2, σ22 = 1

sin2 θ
σ33 = −1

3
σC2.
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Also,

σμνσ
μν = 2

3
σ 2, σ = 1

A

(
Ḃ

B
− Ċ

C

)
.

We can write Eq. (5) as

(M)

T μν = ρ̃uμuν + pt hμν + �vμvν + q̃μuν + q̃νuμ, (6)

where ρ̃ = ρ + ε, � = p̃r − pt , p̃r = pr + ε, q̃μ = q̃vμ, q̃ = q + ε.
The corresponding field equations are

ρ̃ = Ċ

A2C

(
2
Ḃ

B
+ Ċ

C

)
− 1

B2

(
2
C ′′

C
+

(
C ′

C

)2

− 2
B ′C ′

BC
−

(
B

C

)2
)

+ 4

A2BC2

(
Ḃ − 2

ĊC ′′

B
− ḂC ′2

B2 + 3
ḂĊ2

A2 + 2
B ′C ′Ċ
B2

)
ḟG + 4

A2B3C2

×
(
A2B ′ + B ′Ċ2 − 2ḂĊC ′ + 2

A2C ′C ′′

B
− 3

A2B ′C ′2

B2

)
f ′
G

+ 4

A2B3C2

×
(
A2C ′2

B2 − A2 − 2Ċ

)
f ′′
G

− G fG + f, (7)

q̃ = 2

AB

(
ḂC ′

BC
+ A′Ċ

AC
− Ċ ′

C

)
+ 4

ABC2

(
1 +

(
Ċ

A

)2

−
(
C ′

B

)2
)

ḟ ′
G

+ 4

A2BC2

(
−A′ + 2

ĊĊ ′

A
+ A′C ′2

B2 − 3
A′Ċ2

A2 − 2
ḂC ′Ċ
AB

)
ḟG + 4

AB2C2

×
(

−Ḃ − 2
Ċ ′C ′

B
+ 3

ḂC ′2

B2 − ḂĊ2

A2 + 2
A′C ′Ċ
AB

f ′
G

)
, (8)

p̃r = 1

A2

(
Ċ

C

(
2
Ȧ

A
− Ċ

C

)
− 2

C̈

C

)
+ C ′

B2C

(
2
A′

A
+ C ′

C

)
− 1

C2 + 4

A2C2

×
((

C ′

B

)2

−
(
Ċ

A

)2

− 1

)
f̈G + 4

A3C2

(
Ȧ − 2

ĊC̈

A
+ 2

A′C ′Ċ
B3 − ȦC ′2

B2

+ 3
ȦĊ2

A2

)
ḟG + 4

AB2C2

(
A′ + 1

A2 − 2
ȦĊC ′

A2 − 3
A′C ′2

B2 + 2
C̈C ′

A

)
f ′
G

+G fG − f, (9)

pt = 1

A2

(
Ȧ

A

(
Ḃ

B
+ Ċ

C

)
− B̈

B
− C̈

C
− ḂĊ

BC

)
+ 1

B2

(
A′′

A
+ C ′′

C
− A′B ′

AB

+ C ′

C

(
A′

A
− B ′

B

))
+ 4

A3BC

(
1

B

(
2Ċ ′A′ − ȦC ′′ + A′′Ċ

) − 1

A

× (
ḂC̈ + Ċ B̈

) − 1

B2

(
A′B ′Ċ + A′ ḂC ′ − ȦB ′C ′) + 3

Ȧ ḂĊ

A2 − 2
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× A′2Ċ
AB

)
ḟG + 4

AB3C

(
1

A

(
2ḂĊ ′ − B ′C̈ + B̈C ′) − 1

B

(
A′C ′′ + A′′C ′)

− 1

A2

(
Ȧ ḂC ′ + A′ ḂĊ − ȦB ′Ċ

) + 3
A′B ′C ′

B2 − 2
Ḃ2C ′

AB

)
f ′
G

+ 8

A2B2C

×
(
A′Ċ
A

+ ḂC ′

B
− 1

)
ḟ ′
G

− 4

AB2C

(
A′C ′

B2 + ȦĊ

A2 − C̈

)
f ′′
G

− 4

A2BC

×
(
ḂĊ

A2 + B ′C ′

A

)
f̈G + G fG − f. (10)

The expression for Gauss–Bonnet invariant is calculated as

G = 8

ABC

[(
A′B ′

B2C
+ B̈

AC

)(
1 + Ċ2

A2

)
+

(
Ȧ Ḃ

A2C
+ A′′

BC

) (
C ′2

B2 − 1

)

− 1

AC

(
A′′Ċ2

AB
+ B̈C ′2

)
+ 2

{
C ′′

BC

(
A′C ′

B2 − C̈

A

)
+ B ′C ′

AB2C

(
C̈ − ȦĊ

A

)

+ Ċ

A3C

(
C̈ Ḃ + Ċ A′2

B

)
+ Ċ

A2BC

(
ȦC ′′ + A′ ḂC ′

B

)
+ 1

ABC

(
Ċ ′2

+ Ḃ2C ′2

B2

)}
− 3

C

(
A′B ′C ′2

B4 + Ȧ ḂĊ2

A4

)
− 4Ċ ′

ABC

(
A′Ċ
A

+ ḂC ′

B

)]
.

(11)

The Weyl tensor or the Weyl curvature tensor is described as a combination of the
Riemann tensor, Ricci tensor and Ricci scalar. It explains how an object is distorted
due to the effects of tidal force while moving on geodesics. Its expression is given by

Cμ
ρσν = Rμ

ρσν − 1

2
Rμ

σ gρν + 1

2
Rρσ δμ

ν − 1

2
Rρνδ

μ
σ + 1

2
Rμ

ν gρσ + 1

6
R

(
δμ
σ gρν − δμ

ν gρσ

)
.

(12)
This tensor can be decomposed into two parts, magnetic Mμν and electric Eμν parts.
The magnetic part vanishes for spherical symmetry while the electric part is defined
as

Eμν = Cμανβu
αuβ, (13)

where

Cμανβ = (
gμακηgνβγ δ − εμακηενβγ δ

)
uκuγ Eηδ

with gμακη = gμκgαη − gμηgακ and εμακη is the Levi-Civita tensor. The electric part
can be written in terms of 4-unit vector and projection tensor as

Eμν = ε

(
vμvν − 1

3
hμν

)
, (14)
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where

ε = 1

2

(
C̈

C
− B̈

B
−

(
Ċ

C
− Ḃ

B

)
Ċ

C

)
+ 1

2B2

(
−C ′′

C
+

(
C ′

C
+ B ′

B

)
C ′

C

)
− 1

2C2

(15)

is the Weyl scalar and the non-zero components of electric part are

E11 = 2

3
εB2, E22 = −1

3
εC2, E33 = E22 sin2 θ.

The Misner-Sharp mass function calculates the total energy of spherically symmetric
system within the radius r = C given as

M = 1

2
C3R23

23 = 1

2
C

((
Ċ

A

)2

−
(
C ′

B

)2

+ 1

)
. (16)

Now we calculate the variation of this mass function of radiating fluid inside the
sphere. For this purpose, we introduce two useful derivative operators with respect to
radial and proper time coordinates as

DT = 1

A

∂

∂t
, DC = 1

C

∂

∂r
(17)

and the relativistic velocity of the collapsing fluid turns out to be

U = DT C = 1

A

∂C

∂t
= Ċ

A
. (18)

Combining Eqs. (16) and (18), we obtain

E = C ′

B
=

(
1 + U2 − 2

C
M

) 1
2

. (19)

Using Eqs. (3), (16) and (17), it follows that

DTM = −C2

2

{(
p̃r + 1

B2

(GB)

T11

)
U +

(
q̃ − 1

AB

(GB)

T01

)
E

}
, (20)

DCM = C2

2

{(
ρ̃ + 1

A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

) U
E

}
. (21)

These equations represent the variation of mass inside the spherical surface of evolv-
ing fluid. Equation (20) depicts the combined role of pressure, dissipation, relativistic
velocity and GB curvature terms on the derivative of mass function within the evolving
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spherical matter distribution. Equation (21) shows the role of energy density, dissi-
pation, relativistic velocity and extra GB curvature terms on the variation of mass
distribution in radial direction within surface of radius C . Equation (21) yields

M′ = C2C ′

2

{(
ρ̃ + 1

A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

) U
E

}
,

which further implies that

M = 1

2

∫ r

0
C2C ′

{(
ρ̃ + 1

A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

) U
E

}
dr. (22)

A particular combination of radiating energy density, dissipation and f (G) correction
terms through mass function can be attained using Eq. (22) as

3
M
C3 = 3

2C3

∫ r

0
C2C ′

{(
ρ̃ + 1

A2

(GB)

T00

)
+

(
q̃ − 1

AB

(GB)

T01

) U
E

}
dr. (23)

We have taken a regular matter distribution at r = 0 (center), i.e.,M(t, 0) = C(t, 0) =
0.

3 f (G)model and modified structure scalars

In this section, we first consider a viable f (G) model and then develop structure scalars
by splitting the Reimman curvature tensor orthogonally. We assume the following
f (G) model

f (G) = αGn, (24)

where α is any constant and n > 0 [42]. This model is viable if it satisfies the following
conditions [43]

• f (G) and all its derivatives ( fG , fGG , fGGG ...) are regular,
• fGG > 0, ∀ G and fGG → 0 as |G| → +∞.

The condition ḟG > 0 is required to avoid ghost. This model satisfies all the required
conditions for a viable model. The model parameter n has some effects on R + f (G)

cosmology. If n < 1
2 , GB terms become dominant over curvature term (Einstein term)

in weak field regime, i.e., curvature term becomes negligible in this stage leading to
non-phantom phase. For n < 0, the big-rip singularity might seem to occur. Near this
singularity, the curvature becomes dominant, i.e., Einstein term becomes dominant
as compared to GB terms. To avoid this singularity, GB terms can be neglected and
we arrive at phantom era. Thus, the transition of non-phantom to phantom phase can
naturally occur in this model. If 0 < n < 1

2 in strong gravitational field regime, GB
terms can be neglected and we are left with Einstein gravity (deceleration). For late
times, the GB terms may become dominant as compared to matter Lagrangian density
(acceleration), thus transition from decelerated to accelerated universe can occur.
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In order to obtain scalar functions, we use decomposition of the Riemann curvature
tensor orthogonally developed by Bel [30]. Here we are using this procedure with
some changes [31] and present couple of tensors as follows

Xμν = 1

2
ηαβ

μγ R
∗
αβνδu

γ uδ, (25)

Yμν = Rμγ νδu
γ uδ, (26)

where R∗
μνγ δ = 1

2ηαβγ δR
αβ
μν . From Eq. (12), we can write

Rμ
ρσν = Cμ

ρσν + 1

2
Rμ

σ gρν − 1

2
Rρσ δμ

ν + 1

2
Rρνδ

μ
σ − 1

2
Rμ

ν gρσ − 1

6
R

(
δμ
σ gρν + δμ

ν gρσ

)
.

(27)
This equation can be written for Eq. (3) as

Rμγ
νδ = Cμγ

νδ + 2
(eff)

T [μ[νδγ ]
δ] + (eff)

T

(
1

3
δ
μ
[νδ

γ
δ] − δ

[μ
[ν δ

γ ]
δ]

)
. (28)

We decompose the Riemann curvature tensor orthogonally into five parts as

Rμγ
νδ =

(I)

Rμγ
νδ +

(II)

Rμγ
νδ +

(III)

Rμγ
νδ +

(IV)

Rμγ
νδ +

(V)

Rμγ
νδ,

which are defined using Eq. (28) as

(I)

Rμγ
νδ = 2

(
ρ̃u[μu[νδγ ]

δ] + pt h
[μ
[ν δ

γ ]
δ]

)
+ (−ρ̃ + 3pt + �)

(
1

3
δ
μ
[νδ

γ
δ]

− δ
[μ
[ν δ

γ ]
δ]

)
, (29)

(II)

Rμγ
νδ = 2

(
�v[μv[νδγ ]

δ] + q̃v[μu[νδγ ]
δ] + q̃u[μv[νδγ ]

δ]
)

, (30)

(III)

Rμγ
νδ = 4u[μu[νEγ ]

δ] − εμγ
κ ενδηE

κη, (31)
(IV)

Rμγ
νδ = 8

[
R[μ

ρσ [νδ
γ ]
δ] + Rρ[νδ[μ

σ δ
γ ]
δ] − Rρσ δ

[μ
[ν δ

γ ]
δ] − δσλδ

λ
ρR

[μ
[ν δ

γ ]
δ] + gρ[νR[μ

σ δ
γ ]
δ]

+ 1

2
R

(
δσλδ

λ
ρδ

[μ
[ν δ

γ ]
δ] − δ[μ

σ gρ[νδγ ]
δ]

)]
∇ρ∇σ fG + (G fG − f )δ[μ

[ν δ
γ ]
δ] , (32)

(V)

Rμγ
νδ = (

8[2Rρσ − Rgρσ ]∇ρ∇σ fG + G fG − f
) (

1

3
δ
μ
[νδ

γ
δ] − δ

[μ
[ν δ

γ ]
δ]

)
. (33)

Using Eqs. (29)–(33) in Eqs. (25) and (26) along with Eq. (24), we obtain

Xμν = (M)

Xμν + (GB)

Xμν

= pt hμν + 1

2
�(hμν − vμvν) − 1

3
hμν(−ρ̃ + 3pt + �) − Eμν + nα

[
5Rρσ
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× δμν − 2Rμρσν + 10Rκ
σuμuκgρν − 2Rη

ρσνuμuη − 2Rκ
λuκu

λgσρδμν − Rκ
σ

× uμuκδρν − Rρνuμuσ +9Rμνgσρ + 2Rμλuνu
λgσρ+1

2
R

(
3gσρgμν + gρν

× δμσ + 2gσρuμuν

)] ∇ρ∇σGn−1 + α(n − 1)Gn (
4hμν + 4δμν + uμuν

)

− 1

3
nα

(
8
[
2Rρσ − Rgρσ

] ∇ρ∇σGn−1 + α(n − 1)Gn
) (

gμν + δμν

)
, (34)

Yμν = (M)

Yμν + (GB)

Yμν

= 1

2
hμν

(
ρ̃ − pt − �vμvν + 2

3
(−ρ̃ + 3pt + �)

)
+ Eμν, (35)

where the notation (M) and (GB) in superscript respectively show matter and Gauss–
Bonnet parts of the relevant tensor. We note from Eq. (35) that the variable Yμν does
not contain GB terms. Hence GB terms do not affect this variable.

We can write these tensors as the combination of their trace and traceless parts in
the following way

Xμν = 1

3
Tr(X)hμν + X〈μν〉,

Yμν = 1

3
Tr(Y )hμν + Y〈μν〉,

where Tr(X) = Xμ
μ is trace of Xμν and X〈μν〉 is traceless part of the tensor defined

as

X〈μν〉 = hα
μh

β
ν (Xαβ − 1

3
Tr(X)hαβ).

From Eqs. (34) and (35), we have

XT ≡ Tr(X) = (M)

XT + (GB)

XT ,

YT ≡ Tr(Y ) = (M)

YT .

Here

(M)

XT = ρ̃, (36)
(GB)

XT = −1

3
α

[
n(74Rρσ + 6uνuηR

η
ρσν + 18uκu

λRκ
λgσρ + 3uσuμR

μ
ρ + 1

2

× R(δρσ − 25gσρ))∇ρ∇σGn−1 − 73(n − 1)Gn
]
, (37)

(M)

YT = 1

2
(ρ̃ + 3 p̃r − 2�). (38)

Moreover, their corresponding traceless parts are found as

X〈μν〉 = (M)

XT F

(
vμvν − 1

3
hμν

)
+ (GB)

XT F

(
−1

3
hμν

)
,
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Y〈μν〉 = (M)

YT F

(
vμvν − 1

3
hμν

)
,

where T F in subscript represents traceless part of the relevant tensor and

(M)

XT F = −
(

ε − 1

2
�

)
, (39)

(GB)

XT F = 1

2
nα

(
12Rκ

λuκu
λgσρ − 55Rgσρ

) ∇ρ∇σGn−1 − 22α(n − 1)Gn, (40)

(M)

YT F = ε + 1

2
�. (41)

The six quantities
(M)

XT ,
(GB)

XT ,
(M)

XT F ,
(GB)

XT F ,
(M)

YT and
(M)

YT F are scalar functions (structure
scalars) in f (G) gravity.

Now we briefly discuss physical aspects of these structure scalars under the influ-
ence of f (G) gravity that have a direct correspondence with the dynamics of relativistic

spherical systems. We note that
(M)

XT evidently represents the energy density. The scalar

variables
(M)

XT F and
(M)

YT F play a crucial role in the physical interpretation of fluid. Both
scalars combine the Weyl tensor with pressure anisotropy. Their sum indicates local
anisotropy while their difference provides the effects of tidal force. With local isotropy
(when anisotropic parameter is assumed to be zero, i.e., � = 0), they behave like

(M)

XT F = − (M)

YT F

while in the absence of the Weyl tensor (conformally flat condition), both are same

(M)

XT F = (M)

YT F .

We observe that local isotropy and conformally flatness condition contradict each other.
This means that spherical system is either isotropic or conformally flat or it preserves
local anisotropy as well as conformal flat condition. Furthermore, the combination

−1

2

(M)

XT + (M)

XT F + (M)

YT + (M)

YT F = 3

2
p̃r

describes the radial pressure and the sum
(M)

XT + (GB)

XT demonstrates that matter energy

density is connected with dark source terms. The combination
(M)

XT F + (M)

YT F + (GB)

XT F makes
the relativistic spherical system conformally flat and indicates that pressure anisotropy
is controlled by dark source terms arising due to f (G) gravity. The unification of

scalars as
(M)

YT F − (M)

XT F + (GB)

XT F shows that conformal flatness of fluid is controlled by
GB terms.
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4 Evolution equations

A set of governing equations can be deduced in terms of kinematical variables to
describe the self-gravitating system. In the gravitational system of f (G) theory, this
set has been derived in [44]. Here we rewrite this set of equations in terms of modified
structure scalars in the realm of f (G) gravity.

4.1 Raychaudhuri equation

This equation describes the expansion rate of self-gravitating relativistic system and
is given as

ϑ;μuμ + 1

3
ϑ2 + 2

3
σ 2 − aμ

;μ = −1

2

(
ρ̃ + 3 p̃r − 2�

)
,

which in terms of scalar function becomes

ϑ;μuμ + 1

3
ϑ2 + 2

3
σ 2 − aμ

;μ = − (M)

YT . (42)

We observe from this relation that GB terms have no contribution and
(M)

YT has an
extreme role in measuring the expansion rate of self-gravitating relativistic fluid in
GR as well as f (G) cosmology.

4.2 Propagation equation of shear

This equation describes the shear evolution of self-gravitating system and is of the
form

a,μvμ + a2 − σ,μu
μ − 1

3
σ 2 − 2

3
σϑ − a

C ′

BC
= ε − 1

2
� + 2nα

[−Rφ
ρσμvμvφ

− Rρμvμvσ + gσρRαμvαvμ − Rασ vρvα + 1

2
Rvρvσ

]
∇ρ∇σGn,

which in terms of modified scalar variables reduces to

a,μvμ + a2 − σ,μu
μ − 1

3
σ 2 − 2

3
σϑ − a

C ′

BC
= − (M)

YT F + 2

67
nα

(GB)

XT F

+ 22α(n − 1)Gn (43)

showing the importance of GB correction terms in the shearing motion of the evolving
self-gravitating system.

4.3 Constraint equation

A direct relation among shear tensor, expansion scalar, heat flux and dark source terms
due to f (G) gravity is obtained through constraint equation defined as
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(
ϑ + 1

2
σ

)
,α

vα = − 3C ′

2BC
σ − 3

2B
q̃ + 2nα

[
−Uμh

αβ Rμ
ρσβ + gσρUμh

αβ Rμ
β

+Uφh
α
ρR

φ
σ + 1

8
Rhα

ρUσ

]
∇ρ∇σGn .

In terms of scalar variables, this equation becomes

(
ϑ + 1

2
σ

)
,α

vα = − 3C ′

2BC
σ − 3

2B
q̃ − 1

64
(Rδρσ )∇ρ∇σ fG + 9

444

(GB)

XT F

− 3

32

(GB)

XT − 7407

929
α(n − 1)Gn . (44)

4.4 Dynamical equations

These equations describe the conservation of total energy of the evolving star and are
obtained as

ρ̃,μu
μ + ϑ(ρ̃ + p̃r ) − 2

3
(σ + ϑ)� + q̃,μvμ + 2q̃

(
C ′

BC
+ a

)
+ 8nα

[
Rμν

ρσ

− Rμνgσρ

]
;ν uμ∇ρ∇σGn + 8nα

[(
uσ R

ν
ρ − uνRρσ

)
,ν

+ �μ
νγ

(
Rν

ρδγ
σ − Rρσ g

γ ν
)

× uμ + �ν
νγ

(
uσ R

γ
ρ − uγ Rρσ

)] ∇ρ∇σGn = 0,

p̃r ,μvμ + a(ρ̃ + p̃r ) + 2�
C ′

BC
+ q̃,μvμ + 2

3
q̃(σ + 2ϑ) + 8nα

[−Rμνgσρ

+ Rμν
ρσ

]
;ν vμ∇ρ∇σGn + 8nα

[(
vσ R

ν
ρ − vνRρσ + Rμ

σ δν
ρ

)
,ν

+ �μ
νγ

(
Rν

ρδγ
σ + Rγ

σ

× δν
ρ

)
vμ + �ν

νγ

(
vσ R

γ
ρ + vγ Rρσ

)] ∇ρ∇σGn = 0.

In terms of scalar variables, these become

ρ̃,μu
μ + 1

3

(
(M)

XT + (M)

YT − (M)

XT F − (M)

YT F

)
ϑ + 2

3

(
(M)

XT F + (M)

YT F

)
+ 2q̃

(
C ′

BC
+ a

)

+ q̃,μvμ − 1

58

(
(GB)

XT F

)
,ν

uν − 11

29
α(n − 1)(Gn),νu

ν = 0, (45)

p̃r ,μvμ + a

(
(M)

XT + (M)

YT − (M)

XT F − (M)

YT F

)
+

(
(M)

XT F + (M)

YT F

)
2C ′

BC
+ q̃,μvμ + 2

3
q̃

× (σ + 2ϑ) − 1

58

(
(GB)

XT F

)
,ν

vν − 11

29
α(n − 1)(Gn),νv

ν = 0, (46)

which show that the rate of change of energy density and radial pressure depend on
scalar functions of matter and dark source terms.
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4.5 Relation of the Weyl tensor with mass function and GB terms

This relation can be obtained by using Eqs. (3), (12) and (16) as

3M
C3 = ρ̃ − � − ε − 1

3
nα

[
2Rgρσ + 3Rδρσ

]∇ρ∇σGn−1 + 1

6
α(n − 1)Gn .

In terms of scalar functions, it turns out to be

3M
C3 = 1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα
[
Rδρσ

] ∇ρ∇σGn−1 + 219

522
α(n − 1)Gn .

(47)

4.6 Evolution equations for the Weyl tensor

These evolution equations represent the relationship between the Weyl tensor, dynam-
ical variables (heat flux, anisotropic parameter, density, shear and projection tensors
etc) and extra dark source terms as

1

2

(
p̃r + 3

C3M
) (

ϑ + 1

2
σ

)
+

(
ε − 1

2
(� − ρ̃

)
+ 3C ′

2BC
q̃ + 1

4
nα

[
vρvσ

(
R,βu

β

− R,αvα
)]∇ρ∇σGn−1 + 1

4
nα(Rvρvσ )∇ρ∇σ

(
(Gn−1),βu

β − (Gn−1),αvα
)

− 1

48
nα

(
Rδρσ − 8Rgρσ

)
;β uβ∇ρ∇σGn−1 − 1

6
α(n − 1)(Gn),βu

β + 1

48
nα

×(Rδρσ )∇ρ∇σ (Gn−1),βu
β = 0,(

ε + 1

2
(ρ̃ − �)

)
,α

vα − 3C ′

BC

(
1

2
� − ε

)
− q̃

(
ϑ + 1

2
σ

)
− 1

4
nα

[
(Rgρσ )∇ρ∇σ

×Gn−1
]
;α vα − nα

[
(Rgρσ )∇ρ∇σGn−1

]
,α

vα − 2α(n − 1)(Gn),αu
α = 0.

In terms of scalar functions, these become

1

3

((
−1

2

(M)

XT + (M)

XT F + (M)

YT + (M)

YT F

)
+ 9

2C3M
) (

ϑ + 1

2
σ

)
+

(
1

2

(M)

XT − (M)

XT F

)

+ 3C ′

2BC
q̃ + 1

4
nα

[
vρvσ (R,βu

β − R,αvα)
] ∇ρ∇σGn−1 + 1

4
nα(Rvρvσ )∇ρ∇σ

×
(
(Gn−1),βu

β − (Gn−1),αvα
)

+ 1

4
nα(Ruρuσ ),βu

β∇ρ∇σGn−1 + 9

32
nα

× (Ruρuσ )∇ρ∇σ (Gn−1),βu
β +

(
7

8

(GB)

XT + 9

26 · 87

(GB)

XT F

)
,β

uβ − 1975

24
(n − 1)

×α(Gn),βu
β = 0, (48)
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(
1

2
ρ̃

)
,α

vα −
(

(M)

XT F

)
,α

vα − 3C ′

BC

(M)

XT F − q̃

(
ϑ + 1

2
σ

)
− 5

116

(
(GB)

XT F

)
,α

vα − 61

58

×α(n − 1)(Gn),αvα = 0. (49)

The above two equations relate the effects of tidal force with fluid parameters as well
as GB terms. Equation (49) shows the dependence of density inhomogeneity on two

scalars
(M)

XT F ,
(GB)

XT F , dissipation and f (G) model.
Now, we figure out density inhomogeneity factors on the surface of spherical system

under the influence of f (G) gravity. In a collapsing system, the surface of celestial
object suffers density inhomogeneity caused by some specific quantities or specific
relations of dynamical and geometrical variables. The vanishing of these quantities
or relations assures density homogeneity [31]. The dissipation and scalar variable of
matter XT F lead to density inhomogeneity for spherical system in GR. It is evident

from Eq. (49) that if we neglect dissipation and matter variable
(M)

XT F , we obtain

(
1

2
ρ̃

)
,α

vα − 5

116

(
(GB)

XT F

)
,α

vα − 61

58
α(n − 1)(Gn),αvα = 0.

We are left with density inhomogeneity and GB terms which suggests that density

inhomogeneity is controlled by GB terms. Furthermore, if
(GB)

XT F = 0 and f (G) =
constant (or n = 0 for our model), we have

(
1

2
ρ̃

)
,α

= 0, (50)

which reveals that f (G) model remains homogeneous and constant during the evo-
lution. However, a viable and realistic f (G) model cannot be a constant and hence
scalar functions do not vanish which leads to inhomogeneous (irregular) distribution
of fluid.

5 Anisotropic inhomogeneous spherical models

In this section, we restrict ourselves to the static case and modify the line element
(1) in terms of scalar functions. The resulting line element can yield static spherical
solutions with inhomogeneity and anisotropy in f (G) gravity. We consider C = r for
static configuration for which ϑ = σ = 0. Three possible alternative forms are given
as follows.

5.1 First alternative form

It can directly be seen from Eq. (16) that the Misner-Sharp mass function for static
case becomes

2

r
M = 1 − 1

B2 , (51)
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which gives

B =
(

1 − 2r2

3

(
1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα[Rδρσ ]∇ρ∇σGn−1 + 219

522

× α(n − 1)Gn))− 1
2 . (52)

Next, using Eqs. (42) and (43) with (12) for static case, we obtain

A′

AB
= 1

3
Br

[
(M)

YT + (M)

YT F − 2

67

(GB)

YT F − 22α(n − 1)Gn
]

, (53)

which after integration gives

A = λ1exp

[ ∫
r

3

(
1 − 2r2

3

(
1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα[Rδρσ ]∇ρ∇σGn−1

+ 219

522
α(n − 1)Gn

))−1 (
(M)

YT + (M)

YT F − 2

67

(GB)

XT F − 22α(n − 1)Gn
)
dr

]

(54)

with λ1 as a constant of integration. In this case, the line element (1) becomes for
Eqs. (52) and (54) as

ds2 = −
[
λ1 exp

[∫
r

3

(
1 − 2r2

3

(
1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα[Rδρσ ]∇ρ∇σ

× Gn−1 + 219

522
α(n − 1)Gn

))−1 (
(M)

YT + (M)

YT F − 2

67

(GB)

XT F − 22α(n − 1)

×Gn) dr
]]2

dt2 +
(

1 − 2r2

3

(
1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα[Rδρσ ]∇ρ∇σ

× Gn−1 + 219

522
α(n − 1)Gn

))−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

A singularity seems to appear if

2r2

3

(
1

2

(M)

XT − (M)

XT F + 1

87

(GB)

XT F − nα[Rδρσ ]∇ρ∇σGn−1 + 219

522
α(n − 1)Gn

)
= 1.

By inserting the values of five scalar functions
(M)

XT ,
(M)

XT F ,
(GB)

XT F ,
(M)

YT and
(M)

YT F , we can
obtain all possible inhomogeneous static anisotropic spherical solutions.
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5.2 Second alternative form

Using Eqs. (23), (36) and (47), we obtain the relation

3

r3M = M′

r2 − (M)

XT F + 377

87(29)

(GB)

XT F ,

which implies after integration that

M = r3
(∫ (

(M)

XT F − 377

87(29)

(GB)

XT F

)
dr + λ2

)
,

where λ2 is another constant of integration. Using this equation in (51), we have

B =
(

1 − 2r2
(∫ (

(M)

XT F − 377

87(29)

(GB)

XT F

)
dr + λ2

))− 1
2

. (55)

Now combining Eqs. (53) and (55), it follows that

A = λ3exp

[
1

3

∫ (
1 − 2r2

(∫ (
(M)

XT F − 377

87(29)

(GB)

XT F

)
dr + λ2

))−1

r

[
(M)

YT + (M)

YT F

− 2

67

(GB)

XT F − 22α(n − 1)Gn
]
dr

]
. (56)

Here λ3 is another constant of integration. The line element (1) takes the following
form for Eqs. (55) and (56) as

ds2 = −
[
λ3exp

[
1

3

∫
r

(
1 − 2r2

(∫ (
(M)

XT F − 377

87(29)

(GB)

XT F

)
dr + λ2

))−1 [
(M)

YT

+ (M)

YT F − 2

67

(GB)

XT F − 22α(n − 1)Gn
]
dr

]]2

dt2 +
(

1 − 2r2
(∫ (

(M)

XT F

− 377

87(29)

(GB)

XT F

)
dr + λ2

))−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

In this case, singularity can appear if 2r2
(∫

(
(M)

XT F − 377
87(29)

(GB)

XT F )dr + λ2

)
= 1 and

all spherical inhomogeneous static anisotropic solutions can be obtained by inserting

the values of five scalars
(M)

XT ,
(M)

XT F ,
(GB)

XT F ,
(M)

YT and
(M)

YT F .
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5.3 Third alternative form

Equation (15) reduces to

ε = 1

2B2r

(
1

r
+ B ′

B

)
− 1

2r2 . (57)

Alternatively, Eq. (57) can be rearranged as follows

B ′ + 1

r
B = B3

(
1

r
+ 2r

(
(M)

YT F − (M)

XT F

))
,

where ε = (M)

YT F − (M)

XT F . This is Bernoulli’s differential equation which gives

B =
(

−4r2
∫

1

r

(
(M)

YT F − (M)

XT F

)
dr + 1 + λ4r

2
)− 1

2

. (58)

Using Eqs. (58) in (53), it follows that

A = λ5

3
exp

[∫
r

(
−4r2

∫
1

r

(
(M)

YT F − (M)

XT F

)
dr + 1 + λ4r

2
)−1 [

(M)

YT + (M)

YT F

− 2

67

(GB)

XT F − 22α(n − 1)Gn
]
dr

]
, (59)

The alternate form of the line element (1) becomes

ds2 = −
[

λ5

3
exp

[∫
r

(
−4r2

∫
1

r

(
(M)

YT F − (M)

XT F

)
dr + 1 + λ4r

2
)−1 [

(M)

YT + (M)

YT F

− 2

67

(GB)

XT F − 22α(n − 1)Gn

]
dr

]2

dt2 +
(

−4r2
∫

1

r

(
(M)

YT F − (M)

XT F

)
dr + 1

+ λ4r
2
)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
,

where singularity might appear if −4r2
∫ 1

r (
(M)

YT F − (M)

XT F )dr + 1 + λ4r2 = 0. In this
alternative form of static inhomogeneous sphere with anisotropy, all solutions depend

upon four scalars
(M)

XT F ,
(GB)

XT F ,
(M)

YT and
(M)

YT F .

6 Conclusions

This paper is devoted to investigate the dynamics of self-gravitating spherically dis-
tributed fluid in terms of structure scalars in f (G) cosmology. We have constructed
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structure scalars
(M)

XT ,
(GB)

XT ,
(M)

XT F ,
(GB)

XT F ,
(M)

YT and
(M)

YT F for matter as well as GB terms
through orthogonal splitting of the Riemann tensor and deduced all governing equa-
tions in terms of these scalars. Furthermore, we have investigated the causes of density
inhomogeneity and also showed that inhomogeneous static spherically symmetric
solutions with anisotropy can be expressed in terms of these scalar functions. The
physical effects of these scalars and results are summarized as follows.

We have found that the scalar
(M)

XT represents energy density while
(M)

XT F and
(M)

YT F

control conformal flatness as well as the effects of anisotropy of the fluid. The sum of

four scalars (
(M)

XT ,
(M)

XT F ,
(M)

YT and
(M)

YT F ) gives radial pressure. In the absence of anisotropy,

the two scalars
(M)

XT F , and
(M)

YT F show that isotropic fluid with spherical symmetry is not

conformally flat. In the case of dust fluid, the scalars
(M)

XT , and
(M)

YT have the same

behavior, i.e.,
(M)

XT = (M)

YT but
(M)

XT F = − (M)

YT F . The scalar functions from dark side along

with matter scalars have some physical effects as the sum
(M)

XT + (GB)

XT indicate that energy

density is linked with dark source terms. The combination
(M)

XT F + (M)

YT F + (GB)

XT F gives
relativistic conformally flat spherical system and represents that pressure anisotropy is

driven by dark source terms. The unification of scalars as
(M)

YT F − (M)

XT F + (GB)

XT F suggests
that conformal flat condition is controlled by GB terms. In GR, the structure scalar XT

gives energy density,YT F signifies the role of anisotropy on Tolman mass and XT F /YT F

both describe the effects of anisotropy for general fluid [31]. The evolution equation for

the Weyl tensor indicates that energy density inhomogeneity is caused by
(M)

XT F ,
(GB)

XT F ,
dissipation and constant f (G) model. In GR, the density inhomogeneity is caused by
XT F and dissipation only. It is concluded that spherical systems should necessarily be
inhomogeneous in this gravity. Finally, we have constructed three alternate forms of
the line elements for inhomogeneous anisotropic spheres in terms of scalar functions
which lead to further physical relevance of scalar functions.
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This paper explores evolution of dissipative axially symmetric collapsing fluid under
the dark effects of f(G) gravity. We formulate the dynamical variables and study the
effects of dark sources in pressure anisotropy as well as heat dissipation. The structure
scalars (scalar functions) as well as their role in the dynamics of source are investigated.
Finally, we develop heat transport equation to examine the thermodynamic aspect and
a set of equations governing the evolution of dynamical variables. It is concluded that
dark sources affect thermodynamics of the system, evolution of kinematical quantities
as well as density inhomogeneity.

Keywords: Structure scalars; Self-gravitating systems; f(G) gravity.

PACS Number(s): 04.20.Gz, 04.40.Dg, 04.50.Kd

1. Introduction

Gravitational collapse is the source of energy behind structure formation in the
universe where over the time, once vastly distributed matter collapses to high den-
sity pockets. This ultimately leads to the hierarchy of all cosmological structures
like galaxies, black holes and all types of stars. Loss of hydrostatic equilibrium of a
self-gravitating body results collapse under its own gravity leading to the situation
where the dynamics of gravitational force dominates all other forces. The hydro-
static time scale is usually quite short among various stellar evolutionary phases.
For Sun, it turns out to be about 27min, 4.5 sec for a white dwarf and for a neu-
tron star, weighing one solar mass and 10km radius, it is only 10−4 s.1 Other more
intense dynamical phases (like gravitational collapse) persist for time scale of the
order of magnitude of the hydrostatic time length.2 This obviously mandates the
exploration of the factors indicating the deviation from equilibrium state.
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The dynamical variables like local pressure anisotropy, heat dissipation, expan-
sion scalar, shear, vorticity, density inhomogeneity as well as the Weyl tensors are
considered as the essential tools for the dynamics of stellar configurations. Herrera
and his companions3,4 developed a new strategy for investigating the dynamics
of stellar configurations by constructing evolution equations in terms of dynam-
ical variables and scalar functions. Scalar functions (structure scalars) consist of
various combinations of energy terms which help to simplify the complications dur-
ing the dynamical analysis of the system under consideration. In general relativity
(GR), such studies do not explain the influence of dark sources on the dynamics of
self-gravitating systems.

The f(G) or modified Gauss–Bonnet (GB) theory of gravity is obtained by
adding an arbitrary function (f(G)) of the GB quadratic invariant G in the action.5

This theory efficiently elucidates accelerated expansion of the universe, transition
from deceleration to accelerating phases of the universe and also satisfies solar sys-
tem tests. Furthermore, it is useful in explaining thermodynamics6 and protects all
possible four types of finite time future singularities.7 Myrzakulov et al.8 explored
this theory to study dark energy (DE) as well as inflationary era. We have stud-
ied energy conditions, wormhole solutions, built-in inflation, Noether symmetries,
spherical wormhole solutions with conformal symmetry as well as dynamics of self-
gravitating fluids in this theory.9

Modified theories are consistent with GR in weak field regime but may deviate in
strong field. Gravitational collapse is classified as the phenomenon of strong field,
hence modified theories can be the best candidates to explain this phenomenon.
These theories may remodel the collapse process as well as improve its dynamics
which may unveil fascinating results related to structure formation of the uni-
verse. In this regard, Sharif and Manzoor10 investigated self-gravitating systems
with spherical as well as cylindrical symmetries through structure scalars in the
background of self-interacting Brans–Dicke gravity. Sharif and his collaborators11

analyzed the evolution of self-gravitating systems under the dark effects of f(R)
gravity. Recently, we have constructed scalar functions and evolution equations to
study the dynamics of spherical as well as cylindrical symmetric self-gravitating
systems in f(G) gravity.12

It is believed that astrophysical objects are endowed with angular momentum,
e.g. stellar compact objects (like white dwarfs, neutron stars) are in rotational
motion and can deviate from spherical symmetry incidentally which gives rise to
axially symmetry. Thus, the dynamical analysis for self-gravitating fluids with such
symmetry would be interesting. Herrera and Varela13 investigated effects of axially
symmetric perturbations of matter variables by considering only perfect fluids. The
assumption of perfect fluid seems to be a stringent restriction for axially symmet-
ric sources even in static case.14 Sharif and Bhatti15 explored instability regions
for axial and reflection symmetric systems with anisotropic matter configurations.
Sharif and Manzoor16 examined the dynamics and stability for axial and reflection
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symmetric model in self-interacting Brans–Dicke gravity. They also studied the
effects of dark source terms on dissipative axially symmetric collapsing fluid.17

In this paper, we investigate the effects of dark sources by taking a general
source comprising dissipation and all nonvanishing stresses consistent with axial
symmetry in modified GB gravity. The paper has the following format. In the
next section, we provide formalism of gravity for axial system with general source.
Section 3 yields nonzero structure scalars corresponding to the system. Section 4
leads to heat transport equation as well as some dynamical aspects through the set
of governing equations. Finally, we summarize our results in the last section.

2. f(G) Gravity and Axial System

The generalized GR action for f(G) gravity is given by5

S =
1

2κ2

∫
d4x[R + f(G)]

√−g + S
M

, (1)

where κ, R, f(G) are the coupling constant, the Ricci scalar, arbitrary function
of G, respectively, and SM is the matter action. We assume the unit system κ2 =
8πG

c = 1 (G is the gravitational constant and c is the speed of light). The GB
quadratic invariant term is

G = R2 − 4RµνRµν + RµνσρR
µνσρ,

where Rµν , Rµνσρ are the Ricci and Riemann tensors, respectively. Varying the
action (1) with respect to gµν , we have

Gµν =
(eff)

T µν =
(M)

T µν +
(GB)

T µν , (2)

where notation (eff) (short for effective) denotes combined effects of matter and

dark sources (GB terms), Gµν is the Einstein tensor,
(M)

T µν/
(GB)

T µν are the energy–
momentum tensors for matter/GB terms, respectively, and

(GB)

T µν = 8[Rµρνσ + Rρνgσµ − Rρσgνµ − Rµνgσρ + Rµσgνρ

+
1
2
R(gµνgσρ − gµσgνρ)]∇ρ∇σfG + (GfG − f)gµν , (3)

G in subscript denotes derivative of f with respect to GB invariant. This is the
energy–momentum tensor contributing the gravitational effects due to extra dark
source terms.

The line element for axially and reflection symmetric system is4

ds2 = −A2(t, r, θ)dt2 + B2(t, r, θ)(dr2 + r2dθ2)

+ 2E(t, r, θ)dtdθ + C2(t, r, θ)dφ2. (4)

The energy distribution of respective fluid observed by an observer with four-
velocity uµ (uµ = (A−1, 0, 0, 0) and uµ = (−A, 0, E

A , 0)) can be represented by

1750109-3
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the energy–momentum tensor given by
(eff)

T µν =
(m)

T µν +
(GB)

T µν = (
(eff)
ρ +

(eff)
p )uµuν

+
(eff)
p gµν +

(eff)

Π µν +
(eff)
q µuν +

(eff)
q νuµ, (5)

where effective energy density, isotropic pressure, anisotropic tensor and heat flux,
respectively are defined as

(eff)
ρ =

(m)
ρ µν +

(GB)
ρ µν ,

(eff)
p =

(m)
p µν +

(GB)
p µν ,

(eff)

Π µν =
(m)

Π µν +
(GB)

Π µν ,
(eff)
q µ =

(m)
q µν +

(GB)
q µν .

We obtain these effective quantities from Eq. (5) as

(eff)
ρ =

(eff)

T µνuµuν =
(m)

T µνuµuν +
3
2
[Rgρσ]∇ρ∇σf

G
− Gf

G
+ f, (6)

(eff)
q µ = −(eff)

ρ uµ −
(eff)

T µνuν = −(eff)
ρ uµ −

(m)

T µνuν

− 1
2
[Rgρσuµ]∇ρ∇σf

G
+ (Gf

G
− f)uµ, (7)

(eff)
p =

1
3
hµν

(eff)

T µν =
1
3
hµν

(m)

T µν + 4
[
11
8

Rgρσ

+ Ruρuσ − hρσ

]
∇ρ∇σf

G
+ 3(Gf

G
− f), (8)

(eff)

Π µν = hα
µhβ

ν (
(eff)

T αβ − (eff)
p hαβ) = hα

µhβ
ν (

(m)

T αβ − (m)
p hαβ)

+ 8
[
5
8
Rgσρδµν +

9
8
Rgσρuµuν +

1
2
Rgνρhµσ

+
1
2
Rhµσuρuν +

1
2
Ruσuρuµuν − Rhµσhρν

]

×∇ρ∇σf
G

+ (Gf
G
− f)(δµν + uµuν)

+ 4hµν

[
11
8

Rgρσ + Ruρuσ − hρσ

]
×∇ρ∇σf

G
+ 3hµν(Gf

G
− f), (9)

where hµν = gµν + uµuν is the projection tensor. The spacelike unit 4-vectors are
defined as

vµ = Bδ1
µ, sµ =

1
A

(A2B2r2 + E2)
1
2 δ2

µ, kµ = Cδ3
µ,

which satisfy the relations

uµuµ = −vµvµ = −sµsµ = −kµkµ = −1,

uµvµ = uµsµ = uµkµ = vµsµ = vµkµ = kµsµ = 0.

1750109-4

In
t. 

J.
 M

od
. P

hy
s.

 D
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
D

A
N

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/0

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

April 4, 2017 14:47 WSPC/S0218-2718 142-IJMPD 1750109

Evolution of axially symmetric systems

The pressure anisotropic parameter has significant effects in controlling hydro-
static equilibrium. The physical phenomena like mixture of two fluids and phase
transition cause pressure anisotropy in the stellar models.18 Some other prominent
sources for pressure anisotropy are the magnetic field present in the compact objects
(such as neutron stars and white dwarfs), magnetized strange quark stars, magnetic
field acting on a Fermi gas, viscosity present in neutron stars as well as in highly
densed matter.19 For the sake of convenience, we convert the anisotropic tensor (9)
in terms of scalar quantities as follows:

(eff)

Π µν =
1
3
(2

(eff)

Π1 +
(eff)

Π2 )
(

vµvν − 1
3
hµν

)

+
1
3
(2

(eff)

Π2 +
(eff)

Π1 )
(

sµsν − 1
3
hµν

)
+ 2

(eff)

Π vsv(µsν), (10)

where
(eff)

Π vs = vµsν
(eff)

T µν ,
(eff)

Π1 = (2vµvν − sµsν − kµkν)
(eff)

T µν , (11)
(eff)

Π2 = (2sµsν − kµkν − vµvν)
(eff)

T µν . (12)

Equations (11) and (12) indicate that anisotropy scalars
(eff)

Π vs,
(eff)

Π1 and
(eff)

Π2 depend
on matter as well as dark sources. Hence the inhomogeneous distribution of dark
sources generate pressure anisotropy in collapsing fluid.

Dissipation of heat flux (due to emission of photons or neutrinos which are
massless particle) during collapse cannot be overemphasized. Indeed, it is a char-
acteristic process during stellar evolution. Dissipation due to neutrino emission of
gravitational binding energy leads to the formation of neutron stars or black holes.20

The field equations along with qµuµ = 0 gives T03 = 0 which implies that

(eff)
q µ =

(eff)
q1 vµ +

(eff)
q2 sµ, (13)

where

(eff)
q1 =

(eff)
qµ vµ =

(eff)

T µνuνvµ,
(eff)
q2 =

(eff)
qµ sµ =

(eff)

T µνuνsµ. (14)

These equations indicate that inhomogeneous distribution of dark sources generate
heat dissipation. Using Eq. (14), we can express (13) in contravariant and covariant
forms as

qµ
(eff)

=




(eff)

T µνuνsµE

A(A2B2r2 + E2)
1
2
,

(eff)

T µνuνvµ

B
,

A
(eff)

T µνuνsµ

(A2B2r2 + E2)
1
2
, 0


, (15)

(eff)
q µ =


0, B

(eff)

T µνuνvµ,
(A2B2r2 + E2)

1
2

(eff)

T µνuνsµ

A
, 0


. (16)
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2.1. Kinematical variables and the Weyl tensor

The characteristics of self-gravitating collapsing fluid depend upon the behavior of
kinematical variables. The 4-acceleration is given as

aµ = uνuµ;ν = a1vµ + a2sµ =

(
0,

A′

A
,

(
− Ȧ

A
+

Ė

E

)
E

A2
+

Aθ

A
, 0

)
, (17)

where prime represents partial derivative with respect to radial coordinate, dot
is the temporal and θ indicates derivative with respect to theta coordinate. The
expansion scalar controls the volume expansion of the fluid and is defined as

ϑ = uµ
;µ =

A2B2

A2B2r2 + E2

[(
2
Ḃ

B
+

Ċ

C

)
r2 +

(
Ḃ

B
− Ȧ

A
+

Ė

E
+

Ċ

C

)
E2

A2B2

]
. (18)

The shear tensor measures distortion appearing in the fluid motion given as

σµν = u(µ;ν) + a(µuν) − 1
3
ϑhµν .

The nonzero components of the shear tensor are

σ11 =

[(
CḂB − Ċ

C

)
A2B2r2 −

(
2Ḃ

B
+

Ȧ

A
− Ė

E
− Ċ

C

)
E2

]

× B2

3A(A2B2r2 + E2)
, (19)

σ22 =

[(
Ḃ

B
− Ċ

C

)
A2B2r2 −

(
2
Ȧ

A
+

Ḃ

B
− 2Ė

E
+

Ċ

C

)
E2

]
1

3A2
, (20)

σ33 =

[
2

(
− Ḃ

B
+

Ċ

C

)
A2B2r2 +

(
2Ċ

C
− Ḃ

B
− Ė

E
+

Ȧ

A

)
E2

]

× C2

3A(A2B2r2 + E2)
. (21)

The alternative form of shear tensor in terms of two scalar functions σ1 , σ2 are
derived as

σµν =
1
3
(2σ1 + σ2)

(
vµvν − 1

3
hµν

)
+

1
3
(2σ2 + σ1)

(
sµsν − 1

3
hµν

)
. (22)

Equations (19)–(21) imply that

2σ1 + σ2 =

(
Ḃ

B
− Ċ

C

)
3
A

, (23)

2σ2 + σ1 =

[(
Ḃ

B
− Ċ

C

)
AB2r2 −

(
Ȧ

A
− Ė

E
− Ċ

C

)
E2

A

]
3

(A2B2r2 + E2)
. (24)
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The local spinning of the system is defined by the vorticity vector as

wµ =
1
2
ηµναβuν;αuβ =

1
2
ηµναβΩναuβ , (25)

where ηµναβ and Ωµν = u[µ;ν] + a[µuν] define Levi-Civita and vorticity tensors,
respectively. Another form of vorticity tensor in terms of vorticity scalar function
Ω is given as

Ωµν = Ω(sµvν − sνvµ), Ω =
E

(
E′

E
− 2A′

A

)
2B(A2B2r2 + E2)

1
2
. (26)

Equations (25) and (26) yield wµ = −Ωkµ. It can be seen from Eq. (26) that Ω = 0
if and only if E = 0, i.e. the system becomes vorticity free (spinless) if and only
if reflection symmetric term (E) is zero. The expressions of kinematical variables
show that they are metric (geometric terms) dependent, there is no contribution
from energy terms.

The Weyl tensor describes the tidal force effects given as

Cµ
αβν = Rµ

αβν − 1
2
Rµ

βgαν +
1
2
Rαµδν

β − 1
2
Rαµδν

β

+
1
2
Rµ

νgαβ +
1
6
R(δµ

βgαν − gαβδµ
ν ). (27)

Equations (2) and (27) yield a link between the Weyl tensor and effective energy
terms through Riemann/Ricci tensors and Ricci scalar. In this way, the Weyl tensor
is also associated with the dynamics of dark sources and defines effects of tidal forces
due to gravitational as well as repulsive gravitational forces. The Weyl tensor is
further divided into electric and magnetic parts as

(eff)

E µν = Cµανβuµuν,
(eff)

M µν =
1
2
ηµαδγCδγ

νλuαuλ. (28)

There are three nonzero components of electric part while two for the magnetic
part. These elements of the Weyl tensor can be written in terms of scalar functions
as

(eff)

E µν =
1
3
(2

(eff)
εI +

(eff)
ε2 )

(
vµvν − 1

3
hµν

)

+
1
3
(2

(eff)
ε2 +

(eff)
ε1 )

(
sµsν − 1

3
hµν

)
+ εvs(vµsν + vνsµ), (29)

(eff)

M µν =
(eff)

M1 (kµvν + kνvµ) +
(eff)

M2 (kµsν + kνsµ). (30)

3. Structure Scalars

Here we construct a set of structure scalars (scalar functions) through orthogonal
splitting of the Riemann tensor.21 These scalars help to write down the set of
governing equations in simpler form. We decompose the Riemann tensor into energy
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terms with the help of Eqs. (2) and (28) as

Rµν
αβ =

(F)

Rµν
αβ +

(Q)

Rµν
αβ +

(E)

Rµν
αβ +

(M)

Rµν
αβ ,

where
(F)

Rµν
αβ =

2
3
(
(eff)
ρ + 3

(eff)
p )u[µu[αh

ν]
β] +

2
3

(eff)
ρ hµ

[αhν
β], (31)

(Q)

Rµν
αβ = −2u[µh

ν]
[α

(eff)
q β], (32)

(E)

Rµν
αβ = 4u[µu[αE

(eff)ν]
β] + 4h

[µ
[αE

(eff)ν]
β , (33)

(M)

Rµν
αβ = −2εµνγu[α

(eff)

M β]γ − 2εαβγu[µ
(eff)

Mν]γ , (34)

εµνγ = ηβµνγuβ, the notations in top F (density and pressure), Q (heat dissipation),
E (electric part of the Weyl tensor) and M (magnetic part of the Weyl tensor) show
decomposed parts of the Riemann curvature tensor relating to various aspects of
fluid and carry the effects of dark sources. The triplets of the tensors are given as

(eff)

Y µν = Rµανβuαuβ,
(eff)

X µν =
1
2
ηδλ

µαR∗
δλνβuαuβ,

(eff)

Z µν =
1
2
εµλδR

δλ
βνuβ.

where R∗
µναβ = 1

2ηδλαβRδλ
µν is the dual form of the Riemann tensor. Using Eqs. (28)

and (31)–(34), we obtain
(eff)

Y µν =
1
3

(eff)

YT hµν +
1
3
(2

(eff)

Y
T F1 +

(eff)

Y
T F2)

(
vµvν − 1

3
hµν

)
+

1
3
(2

(eff)

Y
T F2 +

(eff)

Y
T F1)

×
(

sµsν − 1
3
hµν

)
+

(eff)

Yvs(vµsν + vνsµ).

Here the subscript T stands for the trace part while the components with notations
TF1, TF2 and vs in subscript represent trace free parts of the corresponding
tensor. The scalar quantities

(eff)

YT =
1
2
(
(eff)
ρ + 3

(eff)
p ),

(eff)

YT F1 =
(eff)
ε1 − 1

2

(eff)

Π1 ,

(eff)

Y
T F2 =

(eff)
ε2 − 1

2

(eff)

Π2 ,
(eff)

Yvs =
(eff)
εvs − 1

2

(eff)

Πvs,

are the set of scalar functions associated with the tensor
(eff)

Y µν . Likewise, the set of

scalar functions associated with the tensor
(eff)

X µν are given by

(eff)

XT =
(eff)
ρ ,

(eff)

XTF1 = −(eff)
ε1 − 1

2

(eff)

Π1 ,

(eff)

X
T F2 = −(eff)

ε2 − 1
2

(eff)

Π2 ,
(eff)

Xvs = −(eff)
εvs − 1

2

(eff)

Πvs,
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Inserting Eqs. (28) and (31)–(34) in the expression of
(eff)

Zµν , we obtain

(eff)

Zµν =
(eff)

Mµν +
1
2

(eff)

qδ
µνδ,

or equivalently,
(eff)

Zµν =
(eff)

Z1 vµkν +
(eff)

Z2 vνkµ +
(eff)

Z3 sµkν +
(eff)

Z4 sνkµ.

Here
(eff)

Z1 =

(
(eff)

M1 −
1
2

(eff)
q2

)
,

(eff)

Z2 =

(
(eff)

M1 +
1
2

(eff)
q2

)
,

(eff)

Z3 =

(
(eff)

M2 −
1
2

(eff)
q1

)
,

(eff)

Z4 =

(
(eff)

M2 +
1
2

(eff)
q1

)
,

are the structure scalars related to
(eff)

Zµν .
Now we briefly discuss dynamical aspects of scalar quantities under the dark

effects of f(G) gravity. The set of scalar functions describe contribution of matter
as well as dark sources in the evolution of axially symmetric self-gravitating sys-

tems. The scalar
(eff)

XT expresses the total energy density of matter and dark sources

of the system. Three scalars
(eff)

X
T F1 ,

(eff)

X
T F2 as well as

(eff)

Xvs indicate combine effects
of anisotropy and electric part of the Weyl tensor in one and the same direction.

Another scalar
(eff)

YT represents sum of energy density and pressure (total energy)

of the system. The scalar
(eff)

Y
T F1 ,

(eff)

Y
T F2 as well as

(eff)

Yvs provide combine effects of
anisotropy and electric part of the Weyl tensor in opposite directions. The set of

scalar functions
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 ,
(eff)

Z4 represent various combinations of heat dissipa-
tion and magnetic parts of the Weyl tensor. We note that matter as well as dark
sources take part in the dynamics of any axial symmetric system. If we neglect
matter contributions, then dark sources become responsible for the dynamics of
the system.

4. Evolution of Axially Symmetric Dissipative Fluid

Here we discuss heat transport equation and explore the evolution of axi-
ally/reflection symmetric dissipative fluid through the set of evolution equations
associated with f(G) gravity.

4.1. Heat transport equation

The heat transport equation elucidates dissipation process and propagation of ther-
mal energy inside the system.22 The nonvanishing value of time relaxation param-
eter τ (a positive definite quantity having different physical meaning) serves as a
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cardinal parameter in this equation which defines the time interval in which the
system returns to its steady state. Consequently, studying transient regimes, e.g.
the evolution between two steady states, the role of τ cannot be ignored. The heat
transport equation for propagation of thermal perturbations under the effects of
f(G) gravity is given as

τhα
βqβ

;µuµ +
(eff)

qα = −Khαβ(T,β + Taβ) − 1
2
KT

2

(
τuµ

KT2

)
;µ

(eff)

qα , (35)

where K and T represent thermal conductivity and temperature, respectively. By
contracting the above equation with sα and using Eqs. (17) and (26), we obtain

τ

A
(q̇(eff)

2
+ A

(eff)
q1 Ω) +

(eff)
q2

=
K

A

(
−EṪ + A2

T
θ

(A2B2r2 + E2)
− ATa2

)
− KT

2q2

2

(
τuµ

KT2

)
;µ

. (36)

Similarly, the contraction of Eq. (35) with vα gives

τ

A
(q̇(eff)

1
− A

(eff)
q2 Ω) +

(eff)
q1 = −K

A
(T′ + BTa1) −

KT
2q1

2

(
τuµ

KT2

)
;µ

. (37)

These two equations describe the effective thermal energy transport (thermal trans-
port due to matter as well as dark sources) in the presence of vorticity (spinning
configuration).

4.2. Evolution of the system

The set of evolution equations depending upon dynamical variables give the dynam-
ics of collapsing stellar configuration. We have obtained this set of equations for
spherical as well as cylindrical symmetric configurations.12 Depending upon the
problem under consideration (for axially symmetric configurations), these equations
are derived through the contraction of Bianchi and Ricci identities which are then
converted into scalar form by using structure scalars and projecting them with all
possible combinations of 4-vectors (u,v, s and k).23 In the following, we formulate
these equations in the presence of dark sources under the effects of f(G) gravity.

4.2.1. Conservation equations

From the conservation law,
(eff)

T µ
ν;µ = 0, we obtain two conservation equations in

terms of scalar quantities as

(eff)

XT ;µuµ + 2ϑ(
(eff)

YT − (eff)
p ) + qµ

;µ + qµaµ

+
1
9
[(2σ1 + σ2)Π1 + (σ1 + 2σ2)Π2 ] = 0, (38)
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2aµ(
(eff)

YT − (eff)
p ) + hν

µ

(
1
3
(2

(eff)

YT −
(eff)

XT );ν +
(eff)

Πα
ν;α +

(eff)
q ν;αuα

)

+
(

4
3
ϑhµν + σµν + ωµν

)
(eff)

qν = 0. (39)

The first is the continuity equation which gives the evolution of energy density in
the presence of expansion scalar, heat dissipation, shear, pressure anisotropy as

well as the scalar
(eff)

YT and the second is named as the Euler equation. In order to
explore thermodynamical effects, we use Eqs. (35)–(37) and (39). The combination
of Eqs. (35) and (39) leads to effective inertial mass while Eqs. (36) and (37) provide
the relation between thermodynamics and vorticity. Just analogous to inertial mass
defined in classical dynamics (Newton’s second law), a similar concept also exists
in instantaneous rest-frame in relativistic theory. Since in instantaneous rest-frame,
the acceleration is parallel (proportional) to the applied force, so the inertial mass
behaves as a factor of proportionality among them.24 However, in some cases, when
there is no interaction between particles, this factor of proportionality does not
represent mass of the particles. In such a case, this factor is referred to effective
inertial mass.

The value of effective inertial mass of a particle moving through a solid body
(like crystal) may differ from the value calculated for the same particle moving in
free space under the same force.25 In the present case, the combination of Eqs. (35)
and (39) gives[

2(
(eff)

YT − (eff)
p ) − KT

τ

]
aµ = −hν

µΠ(eff)α
ν;α − 1

3
hν

µ(2
(eff)

YT −
(eff)

XT ),ν − (σµν + ωµν)
(eff)

qν

+
K

τ
hν

µT,ν +
[

1
τ
− 5

6
ϑ +

1
2
Dt

(
ln
( τ

KT2

))]
qµ, (40)

where Dtf = f,νuν . The expression on the right hand side contains some extra terms
other than dissipative terms which represent hydrodynamic force acting upon fluid
and dark sources. The factor multiplying with 4-acceleration on the left side depicts
effective inertial mass density given as

2(
(eff)

YT − (eff)
p )(1 −

(eff)

Ψ )

with
(eff)

Ψ = KT

2τ(
(eff)
YT −(eff)

p )

. When the system deviates from thermal equilibrium state,

the effective inertial mass density of dissipative fluid is diminished by a factor

(1 −
(eff)

Ψ ). It disappears for
(eff)

Ψ = 1 or even becomes negative for
(eff)

Ψ > 1. It can

be observed that the factor
(eff)

Ψ depends upon the values of temperature, the scalar
(eff)

YT as well as pressure in the presence of matter and dark sources. It is mentioned
here that in GR, the effective inertial mass density of the dissipative fluid is given
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by (
(m)
ρ +

(m)
p ) which is reduced by a factor Ψ = KT

τ(
(m)
ρ +

(m)
p )

. In f(G) gravity, the

generalized effective inertial mass density becomes

2(
(eff)

YT − (eff)
p ) = 2(

(m)

YT − (m)
p ) + [7Rgρσ + 4Ruρuσ − 4hρσ]

×∇ρ∇σf
G

+ 2(Gf
G
− f),

which is the sum of matter and dark source terms. In the absence of dark sources,

this reduces to 2(
(eff)

YT − (eff)
p ) = 2(

(m)

YT − (m)
p ). Thus the dark source terms affect

thermodynamics of dissipative collapsing system.
Now we check the relationship between thermodynamics and vorticity given in

Eqs. (36) and (37). For this purpose, we consider the system is in thermodynamic

equilibrium in θ direction and we assume
(eff)
q2 = 0 with constant (corresponding)

temperature. Under these considerations, Eq. (36) gives

q̇(eff)
2

= −AΩ
(eff)
q1

showing the spinning configuration (vorticity) or heat flux of matter in r-direction
which controls the vanishing of time propagation of meridional flow (thermal equi-
librium in θ direction). Inversely, under the same type of assumption in Eq. (37),

(
(eff)
q1 ),t = AΩ

(eff)
q2 shows that time propagation of the vanishing of radial heat flux at

initial time will depend upon the values of vorticity and meridional heat flux. From
the above discussion, we note that dark sources along with matter terms take part
in time propagation of thermal equilibrium in either direction (r and θ). In GR, it
depends only on matter and vorticity.

4.2.2. Ricci evolutionary equations and kinematic variables

Here we discuss the evolution of kinematical quantities and effects of dark
sources through Ricci evolutionary equations (propagation equations of expansion,
shear/vorticity tensors and constraint equations). The time propagation equation of
expansion scalar (ϑ) is derived by contracting Ricci identities for 4-velocity vector
uµ.23 It is given in terms of scalars as

ϑ;µuµ +
1
3
ϑ2 + 2(σ2 − Ω2) − aµ

;µ +
(eff)

YT = 0, (41)

where σ2 = σµνσµν . We note from this equation that for axial symmetric system,
the evolution of expansion parameter depends upon shear velocity and the scalar
(eff)

YT in geodesic as well as nongeodesic cases. In the absence of matter, dark sources
control the evolution of expansion scalar.

The propagation equation of shear tensor is obtained by contracting Ricci identi-
ties with 4-velocity as well as the combination of projection tensor and unit 4-vectors
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given by

hα
µhβ

νσαβ;γuγ + σα
µσνα +

2
3
ϑσµν − 1

3
(2σ2 + Ω2 − aγ

;γ)hµν

+ wµwν − aµaν − hα
(µhβ

ν)aα;β +
(eff)

E µν − 1
2

(eff)

Π µν = 0.

Additionally, contracting this equation with ss, vv and vs, respectively, it follows
that

σ2,γuγ +
1
3
σ2(σ2 + 2ϑ) − (2σ2 + Ω2 − aγ

;γ) − 3(sαsβaα;β + a2
2
) +

(eff)

Y
T F2 = 0, (42)

σ1,γuγ +
1
3
σ1(σ1 + 2ϑ) − (2σ2 + Ω2 − aγ

;γ) − 3(vαvβaβ;α + a1) +
(eff)

Y
T F1 = 0, (43)

1
3
(σ1 − σ2)Ω − a1a2 − v(αsβ)aα;β +

(eff)

Yvs = 0. (44)

Equations (42) and (43) demonstrate that the evolution of shear depends on vor-

ticity and scalars
(eff)

YT F1 ,
(eff)

YTF2 . If we consider geodesic fluid with vorticity free con-

dition, then expansion parameter and scalars
(eff)

YT F1 ,
(eff)

YT F2 will control the evolution

of shear scalars. Since
(eff)

YT F1 and
(eff)

YT F2 contain pressure anisotropy and electric part
of the Weyl tensor, therefore these scalars will affect the shearing collapsing fluid.

Equation (44) in geodesic case with vorticity free condition gives
(eff)

Yvs = 0.
Constraint equations are obtained as

hν
µ

(
2
3
ϑ;ν − σα

ν;α + Ωα
ν;α

)
+ (σµν + Ωµν) aν =

(eff)
q µ, (45)

2w(µaν) + hα
(µhν)β(σαγ + Ωαγ);δη

βκδγuκ =
(eff)

M µν . (46)

The contraction of Eq. (45) with v and s gives the following scalar equations

2
3B

ϑ′ − Ω;αsα + Ω(sν;βvβvν − sβ
;β) +

1
3
aIσ1 − a2Ω − 1

3
σ1;αvα

− 1
3
(2σ1 + σ2)

(
vα
;α − a1

3

)
− 1

3
(σ1 + 2σ2)

(
sν;αsαsν − a1

3

)
=

(eff)
q1 , (47)

1
3
(E2 + A2B2r2)

1
2

(
2Aϑθ +

2E

A
ϑ̇

)
+

σ2a2

3
+ ω;αvα + Ω(vα

;α

+ sβvνsν;β) + ΩaI − 1
3
σ2;αsα +

1
3
(σ2 + 2σ1)

(
sν;αsαsν − a2

3

)

− 1
3
(σ1 + 2σ2)

(
sα
;α − a2

3

)
=

(eff)
q2 . (48)
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Similarly, contraction of Eq. (46) with vk and sk provide

−Ωa1 −
1
2
(vαkβ + kαvβ)(σαδ + Ωαδ);γεβγδ =

(eff)

M1 , (49)

−Ωa2 −
1
2
(sαkβ + kαsβ)(σαδ + Ωαδ);γεβγδ =

(eff)

M2 . (50)

Equation (47) demonstrates that effective dissipation scalar rules the propagation
of vorticity in the case of shear and expansion free geodesic fluid. In this way,
dark sources affect the vorticity of fluid. Equations (47)–(50) exhibit the relations

between
(eff)

M1 ,
(eff)

M2 ,
(eff)
q1 ,

(eff)
q2 , shear and vorticity. Thus these relations also affect the

evolution of expansion scalar.
The time propagation equation for the vorticity tensor Ωµν can be derived from

Ricci identity by contracting it with the combination of projection tensor and 4-
velocity vector as14

hα
µhβ

νΩαβ;γuγ +
2
3
ϑσµν + 2σα[µΩα

ν] − hα
[µhβ

ν]aµ;ν = 0. (51)

Contraction of the above equation with vs yields

Ω,αuα +
1
3
(2ϑ + σ1 + σ2)Ω + v[µsν]aµ;ν = 0, (52)

which expresses the evolution of vorticity. We note that it does not depend on dark
term even in the presence of dark sources due to f(G) gravity. Hence for general
fluid, vorticity is not affected by dark sources.

4.2.3. Bianchi evolutionary equations and density inhomogeneity

Bianchi evolutionary equations or evolution equations for the Weyl tensor are given
in Appendix A. The Weyl tensor usually narrates the effects of gravity due to tidal
force in the universe. In our case, it describes both attractive (gravity) as well as
dark source (repulsive) effects due to the coupling of tidal force with dark sources.
Evolution equations for various components of the Weyl tensor establish relations
among structural scalars, dark sources and tidal force. These equations evaluate
inhomogeneity (irregularity) factors in the system. The collection of dynamical
variables which causes density inhomogeneity is known as density inhomogeneity
factor. The vanishing of such combination of dynamical variables is the necessary

and sufficient for homogeneity of energy density (hν
µ

(eff)
ρ ,ν = 0). The two Weyl

equations are obtained by contracting Eq. (A.2) with v, s and using scalar functions

−1
3

(eff)

XTF1,νvν −
(eff)

Xvs,νsν − 1
3
(2

(eff)

XT F1 +
(eff)

XTF2)(v
ν
;ν − aβvβ) − 1

3
sα;νsνvα

× (
(eff)

X
TF1 + 2

(eff)

X
TF2) −

(eff)

X
vs

(sα;νvαvν + sν
;ν − aνsν) − 1

3

(eff)

M2(σ1 + 2σ2) − 3Ω
(eff)

M1

=
1
3

(eff)
ρ ;νvν − 1

6
(eff)
q1 (2ϑ − σ1) + 4Ω

(eff)
q2 , (53)
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1
3

(eff)

X
T F2ν

sν −
(eff)

Xvs,ν vν − 1
3
(

(eff)

X
T F1 + 2

(eff)

X
TF2)(s

ν
;ν − aνsν) − 1

3
(2

(eff)

X
TF1 +

(eff)

X
T F2)

× vα;νsαvν −
(eff)

X
vs

(vα;νsαsν + vν
;ν − aνvν) +

1
3

(eff)

M1 (2σ1 + σ2) − 3Ω
(eff)

M2

=
1
3

(eff)
ρ ;νsν − 4Ω

(eff)
q1 −

(eff)
q2

6
(2ϑ − σ2), (54)

where the scalars
(eff)

XT F1 ,
(eff)

XT F2 ,
(eff)

Xvs,
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 and
(eff)

X4 generate energy density
inhomogeneity. In order to investigate the role of dark sources in energy density
inhomogeneity, we suppose that matter contribution is almost absent which leaves
only dark source terms. This indicates dark sources as agent of energy density
inhomogeneity. In the absence of f(G) terms, magnetic part of the Weyl tensor
produces irregularity in the respective region. Thus the inhomogeneous distribution
of dark sources leads to heat dissipation and dark source effects in the interstellar
region to produce energy density inhomogeneity. Since the magnetic part of the
Weyl tensor as well as the dark source terms are not zero, therefore, the axial
system remains inhomogeneous in this gravity.

5. Final Remarks

In this paper, we have explored the evolution of axially and reflection symmetric
dissipative collapsing fluid under the influence of dark sources due to f(G) gravity.
For this purpose, we have considered the modified gravity coupled with dissipative
anisotropic fluid and constructed structure scalars through orthogonal splitting of
the Riemann tensor. We have formulated the set of evolution equations in terms
of these scalars reflecting the physical meanings and their role in the dynamics of
the system. We have found that the inhomogeneous distributions of dark sources
generate pressure anisotropy and heat dissipation while the kinematical variables
are not disturbed under influence of dark sources. The summary of results is given
as follows.

We have evaluated tidal effects through the Weyl tensor in the presence of
dark sources which deals with gravitational (attractive) effects of tidal force. This
represents the effects for both gravitational as well as repulsive forces. We have
constructed a set of 12 scalar functions which further consist of energy terms (energy
density, pressure, dissipation, anisotropy), electric and magnetic parts of the Weyl
tensor. These scalars simplify the complexities of the dynamical analysis of the
system. We have also formulated heat transport equation and a set of evolution
equations which demonstrate effects of dark sources in thermodynamics as well as
dynamics of dissipative collapsing fluid. We have studied thermodynamical aspects
of the system through the combination of transport equation and the Euler equation
of motion. It is found from Eq. (39) that inertial mass of the system is reduced by
a factor depending upon the thermal effects as well as dark sources. The coupling
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of heat flux with vorticity controls thermal equilibrium in r and θ directions of the
fluid flow.

We have seen that kinematical variables remain unchanged under the influence
of dark sources but their evolution is effected by it. Evolution of expansion scalar is

determined by shear, vorticity and
(eff)

YT in geodesic as well as nongeodesic case. The

two scalars
(eff)

YT F1 and
(eff)

YT F2 control the evolution of propagation equation of shear
while the evolution of vorticity does not depend upon dark sources but its absence

in geodesic case leaves
(eff)

Y
vs

= 0. From the evolution equations of the Weyl tensor,

we have found that the set of seven scalars
(eff)

X
T F1 ,

(eff)

X
T F2 ,

(eff)

Xvs,
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 and
(eff)

X4 are the inhomogeneity factors. The presence of dark sources in these scalars
also produce pressure anisotropy, heat dissipation and repulsive tidal forces which
generate density irregularity in the system. In GR, all the collapsing factors depend
only upon matter contribution but in our case, dark sources also play crucial role.
Thus the presence of dark sources not only explain the cosmic expansion but also
affect the collapsing configuration.

Appendix A. Bianchi Evolutionary Equations

These equations are derived by using Eqs. (2) and (27) in Bianchi identities
(Rµνγδ;β + Rµνβκ;δ + Rµνδβ;κ = 0) given as

hα
(µhβ

ν)

(eff)

E αβ;γuγ + ϑ
(eff)

E µν + hµν

(eff)

E αβσαβ − 3
(eff)

E α(µσα
ν) + hα

(µηγδκ
ν) uδ

(eff)

M γα;κ

−
(eff)

E δ(µΩδ
ν) − 2

(eff)

Mα
(µην)δακuδaκ =

1
2
(
(eff)
ρ +

(eff)
p )σµν − 1

6
ϑ

(eff)

Π µν

− 1
2
hα

(µhβ
ν)

(eff)

Π αβ;δu
δ − 1

2
σα(µ

(eff)

Πα
ν) − 1

2
Ωα

(µ

(eff)

Π ν)α − a(µ

(eff)
q ν)

+
1
6
(
(eff)

Π αβσαβ + aα

(eff)

qα +
(eff)

qα
;α)hµν − 1

2
hα

(µhβ
ν)

(eff)
q β;α, (A.1)

hα
µhβν

(eff)

E αβ;ν − ηδβκ
µ uδσ

γ
β

(eff)

M κγ + 3
(eff)

M µνwν

=
1
3
hν

µ

(eff)
ρ ;ν − 1

2
hν

µhαβ
(eff)

Π νβ;α − 1
2

(
2
3
ϑhν

µ − σν
µ + 3Ων

µ

)
(eff)
q ν , (A.2)

(σµδ

(eff)

E
δ

ν + 3Ωµδ

(eff)

E
δ

ν)εµν
κ + aβ

(eff)

M βκ −
(eff)

Mβγ
;γhβκ

=
1
2
(
(eff)
ρ +

(eff)
p )Ωµνεµν

κ +
1
2

[
(eff)
q µ;ν +

(eff)

Π βν(σβ
ν + Ωβ

ν )

]
εµν
κ , (A.3)
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2aν

(eff)

E µκεµν
γ −

(eff)

E βν;δh
β
κεδν

γ +
(eff)

E
δ

ν;δε
ν
γκ +

2
3
ϑ

(eff)

M κγ +
(eff)

Mα
β;δu

δhβ
κhαγ

−
(eff)

M δ
γ(σδκ + Ωδκ) + (σνδ + Ωνδ)

(eff)

Mα
µεδ

καεµν
γ +

1
3
ϑ

(eff)

Mα
µεδ

καεµ
γδ

=
1
6

(eff)
ρ ;νεν

γκ +
1
2

(eff)

Π µβ;νhβ
κεµν

γ

+
1
2

[
(eff)
q κΩµν +

(eff)
q µ

(
σκν + Ωκν +

1
3
ϑhκν

)]
εµν
γ . (A.4)
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Abstract. This paper investigates the influences of dark sources on the evolution of shear-free axially
symmetric dissipative fluid in f(G) gravity. Matter contents (energy terms of the system), corresponding
dynamical variables as well as scalar functions are derived in the presence of dark sources. The dark terms
appear as one of the sources producing pressure anisotropy and heat dissipation. We then study non-
geodesic and geodesic fluids with and without dissipation under shear-free condition. The non-geodesic
(non-dissipative) fluid gives inhomogeneous expansion while the geodesic fluid makes the system either
vorticity-free or expansion-free. The vorticity-free non-dissipative geodesic fluid reduces the axial system
to FRW model in the presence of homogeneous distribution of dark sources while the expansion-free
geodesic fluid does not exist even in the presence of dark sources.

1 Introduction

On the basis of recent cosmological observations, it is believed that there is an obscure type of energy possessing
repulsive force pushing various cosmic objects far away from each other against their gravitational force. This strange
energy is termed as dark energy and is considered as the pivotal constituent for cosmic accelerated expansion. In order
to study puzzling effects of dark energy and cosmic accelerated expansion, the Einstein-Hilbert action has been altered
leading to various modified (alternative) theories of gravity. Modified Gauss-Bonnet (GB) gravity or f(G) gravity
is one of the modified versions of general relativity (GR). This is obtained by adding an arbitrary function of GB
quadratic invariant G (f(G)) in the action [1], where G = R2 − 4RμνRμν + RμνσρR

μνσρ (R, Rμν , Rμνσρ are the Ricci
scalar, Ricci and the Riemann tensors, respectively).

This theory efficiently elucidates cosmic accelerated expansion and transition phases of the universe from deceler-
ation to acceleration [2]. The solar system experiments are essential constrains on modified gravity that measure the
deviation of these theories from GR. A viable gravity model must satisfy these constraints and f(G) theory passes
all solar system tests [3]. Furthermore, it explains black hole thermodynamics [4] and avoids all possible four types
of finite time future singularities [5]. This theory has also been explored to study dark energy as well as inflationary
era [6]. We have investigated energy conditions, wormhole solutions, built-in inflation, Noether symmetries, spherical
wormhole solutions with conformal symmetry as well as dynamics of self-gravitating fluids [7–14].

Stellar objects undergo various phases during their evolution due to different kinematical factors including the shear,
which measures distortion in configuration preserving the volume. The role of the shear tensor during the evolution
of stellar objects and the consequences emerging from its vanishing have attracted many researchers. Glass [15]
observed that the shear-free condition leaves a perfect fluid irrotational if and only if the magnetic part of the
Weyl tensor vanishes. Collins and Wainwright [16] showed that the class of shear-free evolving irrotational perfect
fluids having equation of state p = p(ρ) is either an FRW model or a special case of plane symmetric models.
Tomimura and Nunes [17] investigated a radiating collapse with heat flow of shear-free geodesic fluid. Herrera et
al. [18] investigated the stability of spherically symmetric anisotropic matter distribution under this condition. Herrera
and his collaborators [19,20] provided a comprehensive analysis of shear-free rotating fluid in the presence of pressure
anisotropy and heat dissipation.

Modified theories are consistent with GR in the weak field regime but may deviate in the strong field. Gravitational
collapse is classified as the phenomenon of strong field, hence modified theories can be the best candidates to explain

a e-mail: msharif.math@pu.edu.pk
b e-mail: ismatfatima4@gmail.com
c Also at : Department of Mathematics, Queen Mary College, Lahore-54000, Pakistan.
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this phenomenon. These theories may remodel the collapse process as well as improve its dynamics which may unveil
fascinating results related to the structure formation of the universe. In this regard, Sofuoğlu and Mutuş [21] analyzed
stellar system with perfect fluids under shear-free condition and found two f(R) models which incorporate rotation
as well as expansion. Sharif and his collaborators [22,23] studied the influences of f(R) gravity on the evolution of
spherical as well as axial system with shear-free fluids. Jawad and Rani [24] discussed the dynamical instability of
spherically symmetric collapsing star under shear-free condition in generalized teleparallel gravity.

It is believed that astrophysical objects are endowed with angular momentum, e.g., stellar compact objects (like
white dwarfs or neutron stars) are in rotational motion and can deviate from spherical symmetry, which gives rise
to axial symmetry. Thus, the dynamical analysis of self-gravitating fluids with this symmetry would be interesting.
Herrera and Varela [25] investigated the effects of axially symmetric perturbations of matter variables by considering
only perfect fluids. The assumption of perfect fluid seems to be a stringent restriction for axially symmetric sources
even in the static case [26,27]. Sharif and Bhatti [28] explored instability regions for axial and reflection symmetric
systems with anisotropic matter configurations. Sharif and Manzoor [29] examined the dynamics and stability for axial
and reflection symmetric model in self-interacting Brans-Dicke gravity. They also studied the effects of dark source
terms on a dissipative axially symmetric collapsing fluid [30].

In this paper, we investigate the effects of dark sources by taking a general source comprising dissipation and
all non-vanishing stresses consistent with axial symmetry in the modified Gauss-Bonnet gravity. The paper has the
following format. In the next section, we provide formalism of gravity for axial system with general source. Section 3
yields non-zero structure scalars corresponding to the system. Section 4 explores shear-free axial model by considering
geodesic as well as non-geodesic fluids. Finally, we summarize our results in the last section.

2 f(G) Gravity and axial system

The action for f(G) gravity is given by [1]

S =
1

2κ2

∫
d4x[R + f(G)]

√
−g + SM , (1)

where κ is the coupling constant and SM is the matter action. We assume the unit system κ2 = 8πg

c = 1 (g is the
gravitational constant and c is the speed of light). Varying the action (1) with respect to gμν , we obtain

Gμν =
(eff)

T μν =
(m)

T μν +
(GB)

T μν , (2)

where the notation (eff) (shorten for effective) denotes the combined effects of matter and dark sources (GB terms),

Gμν is the Einstein tensor and
(m)

T μν/
(GB)

T μν are the energy-momentum tensors for matter/GB terms, respectively,

(GB)

T μν = 8[Rμρνσ + Rρνgσμ − Rρσgνμ − Rμνgσρ + Rμσgνρ

+
1
2
R(gμνgσρ − gμσgνρ)]∇ρ∇σfG + (GfG − f)gμν , (3)

where G in subscript denotes derivative of f with respect to GB invariant. This is the energy-momentum tensor
contributing the gravitational effects due to f(G) extra dark source terms. We assume the f(G) model [31],

f(G) = αGn, (4)

where α is any constant and n > 0. For the viability of this model, it must satisfy the conditions that f(G) and
all its derivatives (fG, fGG, fGGG, . . .) are regular and fGG > 0, ∀G [3]. The model parameter n has some significant
effects on R+ f(G) cosmology. For n < 0, this model describes transition from non-phantom to phantom phases while
0 < n < 1

2 gives transition from decelerated to accelerated universe [31].
The line element for axially and reflection symmetric system is [20]

ds2 = −A2(t, r, θ)dt2 + B2(t, r, θ)(dr2 + r2dθ2) + 2E(t, r, θ)dt dθ + C2(t, r, θ)dφ2. (5)

The energy distribution of respective fluid observed by an observer with four-velocity uμ (uμ = (A−1, 0, 0, 0) and
uμ = (−A, 0, E

A , 0)) can be represented by the energy-momentum tensor given by

(eff)

T μν =
(m)

T μν +
(GB)

T μν =
(

(eff)
ρ +

(eff)
p

)
uμuν +

(eff)
p gμν +

(eff)

Π μν +
(eff)
q μuν +

(eff)
q νuμ, (6)
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where effective energy density, isotropic pressure, anisotropic tensor and heat flux, respectively are defined as

(eff)
ρ =

(m)
ρ +

(GB)
ρ ,

(eff)
p =

(m)
p +

(GB)
p ,

(eff)

Π μν =
(m)

Π μν +
(GB)

Π μν ,
(eff)
q μ =

(m)
q μ +

(GB)
q μ.

We obtain these effective quantities from eq. (6) using eqs. (3) and (4) as

(eff)
ρ =

(eff)

Tμνuμuν =
(m)

T μνuμuν +
3nα

2
[Rgρσ]∇ρ∇σGn − α(n − 1)Gn, (7)

(eff)
q μ = −(eff)

ρ uμ −
(eff)

T μνuν = −2nα[Rgρσuμ]∇ρ∇σGn + 2α(n − 1)Gnuμ, (8)

(eff)
p =

1
3
hμν

(eff)

T μν =
1
3
hμν

(m)

T μν + 4nα

[
11
8

Rgρσ + Ruρuσ − hρσ

]
∇ρ∇σGn + 3α(n − 1)Gn, (9)

(eff)

Π μν = hα
μhβ

ν

(
(eff)

T αβ − (eff)
p hαβ

)
= hα

μhβ
ν

(
(m)

T αβ − (m)
p hαβ

)
+ 8nα

[
5
8
Rgσρδμν +

9
8

× Rgσρuμuν +
1
2
Rgνρhμσ +

1
2
Rhμσuρuν +

1
2
Ruσuρuμuν − Rhμσhρν

]

×∇ρ∇σGn + α(n − 1)Gn(δμν + uμuν) +
[
11
8

Rgρσ + Ruρuσ − hρσ

]

× 4nα∇ρ∇σGnhμν + 3α(n − 1)hμνGn, (10)

where hμν = gμν + uμuν is the projection tensor. If we put n = 0, the f(G) model becomes constant and all these
energy terms reduce to matter part only. The constant f(G) model (i.e., fG = 0) corresponds to the cosmological
constant and standard results are imitated. The spacelike unit four-vectors are defined as

vμ = Bδ1
μ, sμ =

1
A

(A2B2r2 + E2)
1
2 δ2

μ, kμ = Cδ3
μ,

which satisfy the relations

uμuμ = −vμvμ = −sμsμ = −kμkμ = −1,

uμvμ = uμsμ = uμkμ = vμsμ = vμkμ = kμsμ = 0.

Pressure anisotropy cannot be ignored during collapse process which has significant effects in controlling hydrostatic
equilibrium. Some prominent sources for pressure anisotropy are the magnetic field present in the compact objects,
magnetized strange quark stars, magnetic field acting on a Fermi gas, viscosity present in neutron stars as well as
in highly densed matter [32–35]. For the sake of convenience, we convert anisotropic tensor (10) in terms of scalar
quantities as follows:

(eff)

Π μν =
1
3

(
2
(eff)

Π1 +
(eff)

Π2

)(
vμvν − 1

3
hμν

)
+

1
3

(
2
(eff)

Π2 +
(eff)

Π1

)(
sμsν − 1

3
hμν

)
+ 2

(eff)

Π vsv(μsν), (11)

where

(eff)

Π vs = vμsν
(eff)

T μν ,
(eff)

Π1 = (2vμvν − sμsν − kμkν)
(eff)

T μν , (12)
(eff)

Π2 = (2sμsν − kμkν − vμvν)
(eff)

T μν . (13)

These indicate that the anisotropy scalars,
(eff)

Π vs,
(eff)

Π1 and
(eff)

Π2 , depend on matter as well as dark sources. Hence the
inhomogeneous distribution of dark sources generate pressure anisotropy in collapsing fluid.

Dissipation of heat flux (due to emission of photons or neutrinos which are massless particles) during collapse
cannot be overemphasized. Indeed, it is a characteristic process during stellar evolution. Dissipation due to neutrino
emission of gravitational binding energy leads to formation of neutron stars or black holes [36]. The field equations
along with the condition qμuμ = 0 give T03 = 0 implying that

(eff)
q μ =

(eff)
q1 vμ +

(eff)
q2 sμ, (14)
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where
(eff)
q1 =

(eff)
qμ vμ =

(eff)

T μνuνvμ,
(eff)
q2 =

(eff)
qμ sμ =

(eff)

T μνuνsμ. (15)

These equations indicate that inhomogeneous distribution of dark sources generate heat dissipation.

2.1 Kinematical variables and the Weyl tensor

The characteristics of self-gravitating collapsing fluid depend upon the behavior of kinematical variables including
four-acceleration, expansion scalar, shear tensor and a vorticity vector. The four-acceleration gives combined effects
of gravitational and inertial forces given as

aμ = uνuμ;ν = a1vμ + a2sμ, (16)

where

a1 =
A′

AB
, a2 =

A

(A2B2r2 + E2)
1
2

[
E

A2

(
− Ȧ

A
+

Ė

E

)
+

Aθ

A

]
, (17)

prime represents partial derivative with respect to radial coordinate, dot is the temporal and θ indicates derivative
with respect to theta coordinate. The expansion scalar controls the volume expansion of the fluid and is defined as

ϑ = uμ
;μ =

A2B2

A2B2r2 + E2

[(
2
Ḃ

B
+

Ċ

C

)
r2 +

(
Ḃ

B
− Ȧ

A
+

Ė

E
+

Ċ

C

)
E2

A2B2

]
. (18)

The shear tensor measures distortion appearing in the fluid motion given as

σμν = u(μ;ν) + a(μuν) −
1
3
ϑhμν . (19)

The alternative form of shear tensor in terms of two scalar functions σ1, σ2 is

σμν =
1
3
(2σ1 + σ2)

(
vμvν − 1

3
hμν

)
+

1
3
(2σ2 + σ1)

(
sμsν − 1

3
hμν

)
. (20)

The non-zero components of shear tensor are derived in appendix A. Equations (A.1)–(A.3) imply that

2σ1 + σ2 =

(
Ḃ

B
− Ċ

C

)
3
A

, (21)

2σ2 + σ1 =

[(
Ḃ

B
− Ċ

C

)
AB2r2 −

(
Ȧ

A
− Ė

E
− Ċ

C

)
E2

A

]
3

(A2B2r2 + E2)
. (22)

The local spinning of the system is defined by the vorticity vector as

wμ =
1
2
ημναβuν;αuβ =

1
2
ημναβΩναuβ , (23)

where ημναβ and Ωμν = u[μ;ν] + a[μuν] define the Levi-Civita and vorticity tensors, respectively. Another form of
vorticity tensor in terms of vorticity scalar function Ω is given as

Ωμν = Ω(sμvν − sνvμ), Ω =
E(E′

E − 2A′

A )

2B(A2B2r2 + E2)
1
2

. (24)

Equations (23) and (24) yield wμ = −Ωkμ. Equation (24) implies that the system becomes spinless (Ω = 0) if and only
if E = 0. From the expressions of kinematical variables, we observe that they are totally depending upon geometrical
terms and there is zero contribution from matter/dark sources. This implies that dark sources do not affect kinematical
variables.

The Weyl tensor describes the tidal force effects upon the system as

Cμ
αβν = Rμ

αβν − 1
2
Rμ

βgαν +
1
2
Rαμδν

β − 1
2
Rαμδν

β +
1
2
Rμ

ν gαβ +
1
6
R(δμ

βgαν − gαβδμ
ν ). (25)
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Equations (2) and (25) generate a link between the Weyl tensor and effective energy terms through Riemann/Ricci
tensors and Ricci scalar (which involve in modified field equations). In this way, the Weyl tensor is also associated
with dynamics of dark sources and defines effects of tidal forces due to gravitational as well as repulsive forces. The
Weyl tensor is further divided into electric and magnetic parts as

(eff)

E μν = Cμανβuμuν ,

(eff)

M μν =
1
2
ημαδγCδγ

νλuαuλ. (26)

There are three non-zero components for electric part while two for the magnetic part. These elements of the Weyl
tensor can be written in terms of scalar functions as

(eff)

E μν =
1
3

(
2
(eff)
ε1 +

(eff)
ε2

)(
vμvν − 1

3
hμν

)
+

1
3

(
2
(eff)
ε2 +

(eff)
ε1

)(
sμsν − 1

3
hμν

)
+ εvs(vμsν + vνsμ), (27)

(eff)

M μν =
(eff)

M1(kμvν + kνvμ) +
(eff)

M2(kμsν + kνsμ). (28)

3 Modified structure scalars

In this section, we calculate structure scalars by orthogonal splitting of the Riemman tensor [37]. We decompose the
Riemann tensor into energy terms with the help of eqs. (2) and (26) as

Rμν
αβ =

(F)

Rμν
αβ +

(Q)

Rμν
αβ +

(E)

Rμν
αβ +

(M)

Rμν
αβ ,

where

(F)

Rμν
αβ =

2
3

(
(eff)
ρ + 3

(eff)
p

)
u[μu[αh

ν]
β] +

2
3

(eff)
ρ hμ

[αhν
β], (29)

(Q)

Rμν
αβ = −2u[μh

ν]
[α

(eff)
q β], (30)

(E)

Rμν
αβ = 4u[μu[αE

(eff)ν]
β] + 4h

[μ
[αE

(eff)ν]
β] , (31)

(M)

Rμν
αβ = −2εμνγu[α

(eff)

M β]γ − 2εαβγu[μ
(eff)

Mν]γ , (32)

εμνγ = ηβμνγuβ , the notations in top F (density and pressure), Q (heat dissipation), E (electric part of the Weyl
tensor) and M (magnetic part of the Weyl tensor) show decomposed parts of the Riemann curvature tensor relating
to various aspects of fluid and carry the effects of dark sources. The triplets of the tensors are given as

(eff)

Y μν = Rμανβuαuβ ,

(eff)

X μν =
1
2
ηδλ

μαR∗
δλνβuαuβ ,

(eff)

Z μν =
1
2
εμλδR

δλ
βνuβ ,

where R∗
μναβ = 1

2ηδλαβRδλ
μν is the dual form of the Riemann tensor. Using eqs. (26) and (29)–(32), we obtain

(eff)

Y μν =
1
3

(eff)

YT hμν +
1
3

(
2

(eff)

YTF1 +
(eff)

YTF2

)(
vμvν − 1

3
hμν

)
+

1
3

(
2

(eff)

YTF2 +
(eff)

YTF1

)

×
(

sμsν − 1
3
hμν

)
+

(eff)

Yvs(vμsν + vνsμ),
(eff)

Zμν =
(eff)

Mμν +
1
2

(eff)

qδ
μνδ.

Here the subscript T stands for the trace part while the components with notations TF1, TF2 and vs in subscript

represent the trace-free parts of the corresponding tensor. The scalar quantities corresponding to
(eff)

X μν ,
(eff)

Y μν and
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(eff)

Z μν are, respectively, given as

(eff)

XT =
(eff)
ρ ,

(eff)

XTF1 = −(eff)
ε1 − 1

2

(eff)

Π1 ,
(eff)

XTF2 = −(eff)
ε2 − 1

2

(eff)

Π2 ,
(eff)

Xvs = −(eff)
εvs − 1

2

(eff)

Πvs ,

(eff)

YT =
1
2

(
(eff)
ρ + 3

(eff)
p

)
,

(eff)

YTF1 =
(eff)
ε1 − 1

2

(eff)

Π1 ,
(eff)

YTF2 =
(eff)
ε2 − 1

2

(eff)

Π2 ,

(eff)

Yvs =
(eff)
εvs − 1

2

(eff)

Πvs ,
(eff)

Z1 =

(
(eff)

M1 − 1
2

(eff)
q2

)
,

(eff)

Z2 =

(
(eff)

M1 +
1
2

(eff)
q2

)
,

(eff)

Z3 =

(
(eff)

M2 − 1
2

(eff)
q1

)
,

(eff)

Z4 =

(
(eff)

M2 +
1
2

(eff)
q1

)
,

This is a set of 12 scalar functions which describe the evolution of axially symmetric self-gravitating systems in

the presence of matter as well as dark sources. The scalar
(eff)

XT expresses the total energy density of the system due to

matter and dark sources. Three scalars
(eff)

XTF1,
(eff)

XTF2 as well as
(eff)

Xvs give combine effects of anisotropy and electric part

of the Weyl tensor in one and the same direction. Another scalar
(eff)

YT represents sum of energy density and pressure

(total energy) of the system. The set of scalars
(eff)

YTF1,
(eff)

YTF2,
(eff)

Yvs provide combine effects of anisotropy and electric part

of the Weyl tensor in opposite directions. The scalar functions
(eff)

Z1 ,
(eff)

Z2 ,
(eff)

Z3 ,
(eff)

Z4 represent various combinations of
heat dissipation and magnetic parts of the Weyl tensor. We note that matter as well as dark sources take part in the
dynamics of any axial symmetric system. If we neglect matter contributions, then dark sources become responsible for
the dynamics of the system.

4 Shear-free axial system

Here we study the effects of shear-free condition on axial system in the presence of dark sources for non-geodesic (as
well as geodesic) dissipative (as well as non-dissipative) cases. For this purpose, we have developed a set of governing
equations corresponding to the system and heat transport equation in appendix A.

4.1 Non-geodesic condition

We assume that the evolution of non-geodesic dissipative fluid is shear-free (σαβ = 0 = σ1 = σ2). Under this assump-
tion, eqs. (21) and (22) yield

C(t, r, θ) = B(t, r, θ)R1(r, θ), E(t, r, θ) = A(t, r, θ)B(t, r, θ)R2(r, θ), (33)

where R1(r, θ), R2(r, θ) are functions of integration with respect to temporal coordinate t. These functions must satisfy
R1(0, θ) = R2(0, θ) = 0 to be compatible with regular condition at the origin. Equation (A.13) provides

2w<αaβ> + ∇<αwβ> =
(eff)

M αβ . (34)

Here ∇αwβ = hμ
αwβ;μ and angled brackets indicate symmetric and trace-free part. The above equation implies that

under shear-free condition, the effective magnetic part of the Weyl tensor depends upon the rotational function and

for wα = 0, we have
(eff)

M αβ = 0. Inversely,
(eff)

M αβ = 0 in eq. (31) yields

∇αwα = −2aαwα. (35)

However, eqs. (19) and (23) in the shear-free condition yield the identity

∇αwα = aαwα. (36)

Equations (35) and (36) imply that wα = 0 which further gives Ωαβ = 0 (from eq. (23)). In both cases, we obtain
(eff)

M αβ = 0 implying that

(eff)

M1 =
(eff)

M2 = 0 ⇔ Ω = 0, (37)
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which provides that necessary and sufficient condition for irrotational shear-free fluid is the vanishing of magnetic part
of the Weyl tensor. For shear-free irrotational fluid, eqs. (A.14) and (A.15) give heat dissipation scalars as

(eff)
q1 =

2ϑ,r

3B
,

(eff)
q2 =

ϑ,θ

3Br
. (38)

This shows the behavior of expansion scalar which depends upon heat dissipation. In the absence of dissipation, eq. (38)
implies that the expansion scalar depends upon temporal coordinate only, i.e., ϑ = ϑ(t) (becomes homogeneous) but
dissipation due to dark sources does not vanish. Hence the expansion of axial system remains inhomogeneous under
the influence of f(G) gravity.

4.2 Geodesic condition

Here we restrict our system to be geodesic, i.e., a system with vanishing four-acceleration. Consequently, eqs. (17)
and (18) provide

A = R3(t, θ), R2ϑB = R4(t, θ), (39)

where R3(t, θ) and R4(t, θ) are arbitrary functions of integration representing null contributions from a1 and a2,
respectively. Under regularity conditions, we have Ω(t, 0, θ) = E(t, 0, θ) = 0 (eq. (33)), i.e., the vanishing of the
coefficient of cross term results irrotational fluid. The condition E(t, 0, θ) = 0 further gives R2(t, 0, θ) = 0 and,
consequently, from eq. (39), we obtain R4(t, 0, θ) = 0. As a result, we have either Ω = 0 or ϑ = 0. A similar result can
be found from eq. (A.16) which reads, for the underlying case,

hα
μhβ

νΩαβ;γuγ = −2
3
ϑΩμν , or Ω,αuα = −2

3
ϑΩ. (40)

This equation along with eqs. (18), (21) and (22) provides ϑΩ = 0 which indicates that shear-free geodesic fluid yields
either Ω = 0 or ϑ = 0. In the following, we analyze both cases separately.

Vorticity-free expanding fluid

First we consider the case with Ωμν = 0 but ϑ �= 0 which implies that A = R3(t), E = 0. After reparametrization of
time coordinate, the line element (5) becomes

ds2 = −dt2 + B2(t, r, θ)
[
dr2 + r2dθ2 + F 2(r, θ)dφ2

]
. (41)

This represents restricted class of axially symmetric cosmic structure. The continuity and Euler equations (eqs. (A.6)
and (A.7), respectively) reduce to

(eff)
ρ ;αuα +

(
(eff)
ρ +

(eff)
p

)
ϑ +

(eff)
q

α

;α = 0, (42)

hβ
α

(
(eff)
p ,β +

(eff)

Π

μ

β;μ +
(eff)
q β;μuμ

)
+

4
3
ϑ

(eff)
q α = 0, (43)

while the heat transport equation (A.4) gives

τhμ
ν

(eff)
q

ν

;αuα +
(eff)
q

μ

= −Khμν(T,ν) − 1
2
KT

2

(
τuα

KT2

)
;α

(eff)
q

μ

. (44)

The combination of eqs. (43) and (44) yields

hβ
α

(eff)

Π

μ

β;μ + ∇α
(eff)
p +

K

τ
∇αT −

[
1
τ

+
1
2
Dt

(
ln

( τ

KT2

))
− 5

6
ϑ

]
(eff)
q α = 0, (45)

which gives a link between pressure gradient, pressure anisotropy and thermodynamic quantities. This suggests that
any acceptable equation of state for the system under consideration is restricted by thermodynamic quantities through
the heat transport equation. Equations (A.9)–(A.11) give

(eff)

YTF1 =
(eff)

YTF2 =
(eff)

Yvs = 0. (46)
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The vanishing of this set of scalar functions associated with the tensor
(eff)

Y μν provide the relations

(eff)
ε1 =

1
2

(eff)

Π1 ,
(eff)
ε2 =

1
2

(eff)

Π2 ,
(eff)
εvs =

1
2

(eff)

Πvs (47)

and, accordingly, the tensor
(eff)

X μν reduces to

(eff)

XTF1 = −2
(eff)
ε1 ,

(eff)

XTF2 = −2
(eff)
ε2 ,

(eff)

Xvs = −2
(eff)
εvs . (48)

Now we turn our attention to non-dissipative fluid in the respective case, i.e.,
(eff)
q1 =

(eff)
q2 = 0. Under this condition,

eqs. (18), (38), (42), (46) yield homogenous parameters given by

B(t, r, θ) = α(t)b(r, θ),
(eff)
ρ =

(eff)
ρ (t),

(eff)
p =

(eff)
p (t),

(eff)

Π1 =
(eff)

Π1 (t),
(eff)

Π2 =
(eff)

Π2 (t),
(eff)

Πvs =
(eff)

Πvs(t),
(eff)
ε1 =

(eff)
ε1 (t),

(eff)
ε2 =

(eff)
ε2 (t),

(eff)
εvs =

(eff)
εvs (t). (49)

This is possible only if our f(G) models become constant (n = 0) which shows homogeneous distribution of dark
sources. In our case, we cannot choose n = 0 and therefore the above quantities remain inhomogeneous. We examine the
non-dissipative shear-free geodesic evolution and homogeneous distribution of dark sources. The differential equations
of the Weyl tensor (A.17)–(A.19) reduce to

−1
3

(
(eff)

XTF1 −
(eff)
ρ

)

,t

+
1
3

(eff)
εTF1ϑ =

−1
3

(
(eff)
ρ +

(eff)
p +

1
3

(eff)

Π2

)
ϑ, (50)

−Ẋ(eff)
vs − ϑ

(eff)

Xvs =
1
3

(eff)

Π vsϑ, (51)

1
3

(
−

(eff)

XTF2 +
(eff)
ρ

)

,t

+
ϑ

3
(eff)
ε2 = −1

3

(
(eff)
ρ +

(eff)
p +

1
3

(eff)

Π2

)
ϑ. (52)

Using (48) and (49), the above set of equations can be integrated to

(eff)
ε1 = c1 exp

(
−2

3

∫
ϑdt

)
,

(eff)
ε2 = c2 exp

(
−2

3

∫
ϑdt

)
,

(eff)
εvs = c3 exp

(
−2

3

∫
ϑdt

)
,

where c1, c2 and c3 are constants of integration. Equation (18) along with eq. (30) gives ϑ = 3 Ḃ
B and hence the

expressions in the above equation are calculated as

(eff)
ε1 =

c1

B2
,

(eff)
ε2 =

c2

B2
,

(eff)
εvs =

c3

B2
.

This suggests that B in (49) reduces to B = β(t) and the line element represents FRW spacetime for ϑ > 0. This
is consistent with GR [20] in the case of homogeneous distribution of dark sources. Otherwise, the axial system (41)
preserves its symmetry under dissipation-less case in the presence of dark sources.

Expansion-free rotating fluid

Now we consider Ω �= 0 but ϑ = 0, i.e., expansion-free but rotating fluid. The assumption Ω �= 0 indicates that the
metric (5) remains non-diagonal while the expansion scalar (18) with assumption ϑ = 0 indicates that the system
becomes time-independent. Equations (A.8)–(A.10) yield the relations

(eff)

YT = 2
(eff)

YTF1 = 2
(eff)

YTF2 = 2Ω2, (53)
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which generates a relationship between rotation parameter and the scalars associated with tensor
(eff)

Yμν while the scalar
Yvs vanishes in this case. One of the conservation equations (A.6) along with eq. (8) reduces to

(eff)

XT ;μuμ −
(

(m)

T

μ

νuν − 2nα[Rgρσuμ]∇ρ∇σGn−1 + 2α(n − 1)Gnuμ

)

;μ

= 0,

which indicates that the only factor which controls the evolution of energy density is dissipation from matter as well
as dark sources. In the absence of matter, dark sources control the evolution of energy density and if α is zero, then
there is no evolution for energy density. Equation (A.12) produces a connection between dissipation and vorticity as

hν
μΩα

ν;αuμ =
(m)
q μuμ + 2nα[Rgρσ]∇ρ∇σGn−1 − 2α(n − 1)Gn.

In the dissipation-less case (
(m)
q μ = α = 0), we obtain a system with zero rotation (Ω = 0) which contradicts

our considered case. We can say that such a system remains dissipative as α cannot be zero (although matter can
be neglected). Hence due to inhomogeneous distribution of dark sources, the system must be dissipative while from
eq. (A.15), we obtain

(ΩBR1)′ =
(eff)
q2 B2R1 or Ω =

1
BR1

∫
(eff)
q2 B2R1dr + R5(θ), (54)

which gives Ω = 0, in the non-dissipative case. Using eq. (54) in (A.8), we obtain

(m)
ρ =

(
2

BR1

∫
(eff)
q2 B2R1dr + R5(θ)

)2

− 267nα

2
[Rgρσ]∇ρ∇σGn−1 + 8α(n − 1)Gn − 3

(m)
p .

For the non-dissipative case and α = 0 (absence of dark sources), we obtain equation of state ρ = −3p, which
is consistent with GR [20]. Hence, in the presence of dark sources, all geodesic shear/expansion-free fluids can be
rotational without dissipation under the dark effects of f(G) gravity. This generalizes the results of GR where such
kind of fluids must be dissipative. If we apply regularity conditions on the first expression of eq. (54), no such model
(ϑ = 0) exists even in the presence of dark sources.

5 Final remarks

In this paper, we have explored the evolution of shear-free axially symmetric configuration in the presence of dark
sources. For this purpose, We have chosen a power-law f(G) model as a dark energy candidate and formulated energy
terms (matter contents) of the model, corresponding dynamical variables as well as non-zero structure scalars. The
kinematical variables do not depend upon dark source terms while pressure anisotropy and heat dissipation are affected
by dark sources. Geodesic as well as non-geodesic fluid models with and without dissipation have been considered to
discuss consequences of shear-free condition. The results can be summarized as follows.

The Weyl tensor usually provides tidal gravitational effects. We have observed that this tensor elaborates both
gravitational as well as repulsive force due to the presence of dark sources. We have obtained 12 non-zero structure
scalars consisting of dark/matter terms, electric and magnetic parts of the Weyl tensor which describe the evolution
of axial system in the presence of dark sources. In GR, these scalars depend upon matter contents only. For the shear-
free axial system, we have considered non-geodesic as well as geodesic fluids. In the case of a non-geodesic fluid with
dissipation, we have found that rotation or spinning of the system is linked with magnetic part of the Weyl tensor.
The vanishing of magnetic part turns out to be the necessary and sufficient condition for irrotational evolution even in
the presence of dark terms. We have noticed that the behavior of expansion of the system is linked with the presence
or absence of dissipation. In the absence of dissipation, the expansion scalar becomes homogeneous (as in GR). In
our case, dissipation due to dark sources does not vanish and makes the expansion of axial system inhomogeneous.
Hence, shear effects of an evolving configuration control the behavior of radiating system in the presence of dark
sources.

For shear-free geodesic fluid, we have taken Ω = 0, ϑ �= 0 and Ω �= 0, ϑ = 0. In the first case, the non-dissipative
fluid with homogeneous distribution of dark sources turns the axial system to FRW universe model which is consistent
with GR result. However, dissipation due to dark sources is not negligible, hence this correspondence in our case
cannot be possible. In the second case, evolution of energy density is controlled by dissipation from matter as well
as dark sources. In the absence of matter, dark sources control the evolution of energy density. Without dissipation
and homogeneous distribution of dark sources, we have concluded that all geodesic shear/expansion-free fluids can be
rotational under the dark effects of f(G) gravity which generalizes the results of GR where such kind of fluids must
be dissipative. Using regularity conditions, we have found that models with zero expansion do not exist even in the
presence of dark sources.
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Appendix A.

The non-zero components of the shear tensor are given by

σ11 =

[(
CḂB − Ċ

C

)
A2B2r2 −

(
2Ḃ
B

+
Ȧ

A
− Ė

E
− Ċ

C

)
E2

]
× B2

3A(A2B2r2 + E2)
, (A.1)

σ22 =

[(
Ḃ

B
− Ċ

C

)
A2B2r2 −

(
2
Ȧ

A
+

Ḃ

B
− 2Ė

E
+

Ċ

C

)
E2

]
1

3A2
, (A.2)

σ33 =

[
2

(
− Ḃ

B
+

Ċ

C

)
A2B2r2 +

(
2Ċ
C

− Ḃ

B
− Ė

E
+

Ȧ

A

)
E2

]
× C2

3A(A2B2r2 + E2)
. (A.3)

The heat transport equation

The heat transport equation is given by

τhα
βqβ

;μuμ +
(eff)

qα = −Khαβ(T,β + Taβ) − 1
2
KT

2

(
τuμ

KT2

)
;μ

(eff)

qα , (A.4)

τ

A

(
q̇
(eff)
2 + A

(eff)
q1 Ω

)
+

(eff)
q2 =

K

A

(
−EṪ + A2

T
θ

(A2B2r2 + E2)
− ATa2

)
− KT

2q2

2

(
τuμ

KT2

)
;μ

. (A.5)

Conservation equations

From the conservation law,
(eff)

Tμ
ν;μ = 0, we obtain two conservation equations in terms of scalar quantities as

(eff)

XT ;μuμ + 2ϑ

(
(eff)

YT − (eff)
p

)
+ qμ

;μ + qμaμ +
1
9
[(2σ1 + σ2)Π1 + (σ1 + 2σ2) × Π2] = 0, (A.6)

2aμ

(
(eff)

YT − (eff)
p

)
+ hν

μ

⎛
⎝1

3

(
2
(eff)

YT −
(eff)

XT

)

;ν

+
(eff)

Πα
ν;α +

(eff)
q ν;αuα

⎞
⎠ +

(
4
3
ϑhμν + σμν + ωμν

)
(eff)

qν = 0. (A.7)

Here the first equation is the continuity equation and the second is named as the Euler equation obtained for f(G)
gravity.

Ricci evolutionary equations

The Ricci evolutionary equations are propagation equations of expansion, shear/vorticity tensors and constraint equa-
tions. The time propagation equation of expansion scalar is derived by contracting Ricci identities for four-velocity
vector. It is given in terms of scalars as

ϑ;μuμ +
1
3
ϑ2 + 2(σ2 − Ω2) − aμ

;μ +
(eff)

YT = 0, σ2 = σμνσμν . (A.8)

The propagation equations of shear tensor are given by

σ2,γuγ +
1
3
σ2(σ2 + 2ϑ) − (2σ2 + Ω2 − aγ

;γ) − 3(sαsβaα;β + a2
2) +

(eff)

YTF2 = 0, (A.9)

σ1,γuγ +
1
3
σ1(σ1 + 2ϑ) − (2σ2 + Ω2 − aγ

;γ) − 3(vαvβaβ;α + a1) +
(eff)

YTF1 = 0, (A.10)

1
3
(σ1 − σ2)Ω − a1a2 − v(αsβ)aα;β +

(eff)

Yvs = 0. (A.11)
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Constraint equations are obtained as

hν
μ

(
2
3
ϑ;ν − σα

ν;α + Ωα
ν;α

)
+ (σμν + Ωμν) aν =

(eff)
q μ, (A.12)

2w(μaν) + hα
(μhν)β(σαγ + Ωαγ);δη

βκδγuκ =
(eff)

M μν , (A.13)

2
3B

ϑ′ − Ω;αsα + Ω
(
sν;βvβvν − sβ

;β

)
+

1
3
aIσ1 − a2Ω − 1

3
σ1;αvα

− 1
3
(2σ1 + σ2)

(
vα
;α − a1

3

)
− 1

3
(σ1 + 2σ2)

(
sν;αsαsν − a1

3

)
=

(eff)
q1 , (A.14)

1
3
(E2 + A2B2r2)−

1
2

(
2Aϑθ +

2E

A
ϑ̇

)
+

σ2a2

3
+ ω;αvα + Ω(vα

;α + sβvνsν;β)

+ ΩaI −
1
3
σ2;αsα +

1
3
(σ2 + 2σ1)

(
sν;αsαsν − a2

3

)

− 1
3
(σ1 + 2σ2)

(
sα
;α − a2

3

)
=

(eff)
q2 . (A.15)

The time propagation equation for the vorticity tensor Ωμν can be derived from Ricci identity as

hα
μhβ

νΩαβ;γuγ +
2
3
ϑΩμν + 2σα[μΩα

ν] − hα
[μhβ

ν]aμ;ν = 0. (A.16)

Bianchi evolutionary equations

Bianchi evolutionary equations or evolution equations for the Weyl tensor are

− 1
3

(
(eff)

XTF1 −
1
2

(eff)
ρ

)

,δ

uδ +
1
9

(eff)
ε1 (3ϑ − σ1 + σ2) +

1
2
(σ1 + 2σ2)

(eff)
ε2 = −vνενγκ

×
[

(eff)

M 1,κkγ +
(eff)

M1kγ;κ +
(eff)

M2(kμ;κsγvμ + sμ;κkγvμ)

]
+ Ω

(eff)

Xvs = 2a2

(eff)

M1

− 1
6

(
(eff)
ρ +

(eff)
p +

1
3

(eff)

Π1

)
(σ1 + ϑ) − a1

(eff)
q1 − 1

2B
q
′(eff)
I − A

(eff)
q2

(A2B2r2 + E2)
1
2
×

(
EḂ

A2B
+

Bθ

B

)
, (A.17)

−
(eff)

Xvs,δu
δ +

1
6
Ω

(
(eff)

XTF2 −
(eff)

XTF1

)
− 1

2

(eff)

Xvs(2ϑ − σ2 − σ1) + a1

(eff)

M1 − a2

(eff)

M2

− 1
2

[(
(eff)

M1;κkγ +
(eff)

M1(kγ;κ + kμ;κvγvμ) +
(eff)

M2kγsμ;κvμ

)
εβγκsβ −

(
(eff)

M1vνkγ +
(eff)

M2kμsγ

)
sμ;κεβγκvβ

]

− 1
2

(
(eff)

M1;κkγ +
(eff)

M2kγ;κ

)
εβγκvβ =

1
3

(eff)

Πvs(ϑ − σ1 − σ2)

− 1
2
a2

(eff)
q1 − 1

4
(vμsν + vνsμ)

(eff)
q ν;μ − 1

2
a1

(eff)
q2 , (A.18)

1
3

(
−

(eff)

XTF2 +
1
2

(eff)
ρ

)

;δ

uδ +
1
9

(eff)
ε2 (3ϑ − σ2 + σ1) +

1
9
(σ2 + 2σ1)

(eff)
ε1 − Ω

(eff)

Xvs

−
[

(eff)

M2;κ −
(eff)

M1(kγsμ;κvμ + sμ;κvμvγ) +
(eff)

M2kγ;κ

]
ενγκsν + 2a1

(eff)

M2 =

− 1
6

(
(eff)
ρ +

(eff)
p +

1
3

(eff)

Π2

)
(σ2 + ϑ) − a2

(eff)
q2 − 1

2
sμsν

(eff)
q

ν

;μ. (A.19)
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27. L. Herrera, A. Di Prisco, J. Ibáñez, J. Ospino, Phys. Rev. D 87, 024014 (2013).
28. M. Sahrif, M.Z. Bhatti, Mon. Not. R. Astron. Soc. 455, 1015 (2015).
29. M. Sahrif, R. Manzoor, Eur. Phys. J. C 76, 330 (2016).
30. M. Sahrif, R. Manzoor, Int. J. Mod. Phys. D 26, 1750057 (2017).
31. G. Cognola et al., Phys. Rev. D 73, 084007 (2006).
32. J.C. Kemp et al., Astrophys. J. 161, L77 (1970).
33. G.D. Schmidt, P.S. Schmidt, Astrophys. J. 448, 305 (1995).
34. N. Anderson et al., Nucl. Phys. A 763, 212 (2005).
35. E.J. Ferrer et al., Phys. Rev. C. 82, 065802 (2010).
36. D. Kazanas, D. Schramm, Source of Gravitational Radiation (Cambridge University Press, 1979).
37. L. Bel, Ann. Inst. H Poincaré 17, 37 (1961).
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