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Abstract In this paper, we study the scalarization of the
static and spherically symmetric dyonic Reissner–Nordstrom
(RN) black holes in the Einstein–Maxwell-scalar theory
where the scalar field is coupled to an electromagnetic
Chern–Simons term. When both electric and magnetic
charges are present, there exists an unstable region of para-
metric space for the dyonic RN black holes where the scalar-
ization of black holes should occur. That is to say, mixing
electric and magnetic charges can reduce the scalarization
in this theory. Firstly, we calculate the perturbation field
equations under the dyonic RN black hole background and
obtain the corresponding asymptotic-flat perturbation solu-
tions, which are the bifurcation points at the dyonic RN
branch. The results show that the perturbation scalarization
demands a lower bound of the coupling constant. Then, we
calculate the scalarized black hole solutions bifurcating from
the dyonic RN solutions. We find that there exist a lot of
discrete branches of the scalarized solutions. Contract to
the dyonic RN solutions, these scalarized solutions can be
overcharged and their mass could even approach zero. After
illustrating the behavior of the entropy for the scalarized
black holes, we demonstrate that the scalarized configura-
tions might be thermodynamically more stable than GR con-
figurations. Moreover, we also show that for each scalarized
branch, the black hole cannot reach the extremal limit with
vanishing temperature.

1 Introduction

The no-hair theorem is very important for understanding the
properties of black holes. It states that a black hole is uniquely
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determined only by three parameters: mass, electric charge,
and angular momentum [1–3]. Although the no-hair theory
has been proven in Einstein–Maxwell theory, various coun-
terexamples can be found when the gravitational theory pos-
sesses an extra field degree of freedom, such as Einstein–
Yang–Mills theory [4–6], Dilatonic black holes [7], and a
black hole with Skyrme hairs [8–10]. These hairy black hole
solutions prompt people to further study the no-hair theorem.
The recent developments in the gravitational wave detection
[11] and black hole shadow [12] provide us a chance to detect
the features of the black hole and then test alternative theo-
ries. A key difference between General Relativity (GR) and
the alternative theory of gravity is the phenomena of scalar-
ization (a counterexample of the no-hair theorem).

The phenomena of spontaneous scalarization were first
investigated for neutron stars in the scalar-tensor theory
where the scalar field non-minimally couples to the Ricci
curvature [13]. It was illustrated that there is a certain region
in parametric space where the scalar-free and scalarized solu-
tions coexist and the scalarized one is energetically favored.
After that, the spontaneous scalarization in scalar-tensor the-
ories was extended to the black hole cases [14,15]. Recently,
the spontaneous scalarization was widely studied in extended
scalar-tensor-Gauss-Bonnet gravity, in which the scalar field
is non-minimally coupled to a Gauss-Bonnet gravity cor-
rection term [16–27]. The dynamics of spontaneous black
hole scalarization in Einstein-Scalar-Gauss–Bonnet gravity
is also investigated in Ref. [28–30]. Moreover, this mecha-
nism is also studied in Einstein–Chern–Simons-Scalar theory
with a scalar field non-minimally coupled to a Chern–Simons
gravity correction term [31–35]. In these models, sponta-
neous scalarization is induced by the geometry of space-
time. Alternatively, this mechanism can also be found in
the Einstein–Maxwell-scalar models where the scalar field
is non-minimally coupled to some Maxwell invariant terms.
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The non-minimally coupled part of Lagrangian density can
be generally expressed as

Lint = F (φ)I (Fab), (1)

in which φ is the scalar field, Fab is the electromagnetic
strength, and F (φ) is a coupling function. In Ref. [36], the
scalarization of a charged black holes in Einstein–Maxwell-
scalar models with an exponential coupling function and a
Maxwell invariant term I = FabFab are taken into consid-
eration, in which the fully non-linear evolution of sponta-
neous scalarization of a spherically symmetric black hole is
also presented. Later, spontaneous scalarization in Einstein–
Maxwell-scalar theories was extended to various situations,
such as the cases with other coupling functions [37–39],
reflecting stars without horizon [40], Einstein–Born–Infeld-
scalar theory [41], Einstein–Maxwell-scalar theory with
a quasitopological term [42], higher-dimensional scenario
[43], dyonic black hole with magnetic charges [44], and non-
asymptotically flat black holes [45–48]. Furthermore, the
linear stability and quasinormal modes of scalarized black
holes [49–53], analytic treatments of spontaneous scalariza-
tion [54–56], and dynamical scalarization [57–61] were also
widely discussed in Einstein–Maxwell-scalar theories.

For the Einstein–Maxwell-scalar theories mentioned above,
the Maxwell invariant term is chosen as FabFab, Fb

a F
c
b F

a
c

or their function. Apart from these Maxwell invariant
quantities, the electromagnetic Chern–Simons term ICS =
εabcd FabFcd is also a candidate as a Maxwell invariant cou-
pled to the scalar (pseudoscalar) field and this term will
violate the parity invariance. Usually the pseudoscalar field
is also called axion and it is widely applied in the cosmol-
ogy and astronomy to study the dark matter [62–67]. When
the coupling function is a constant, this term is just a pure
topological term and does not contribute to the equation of
motion. Moreover, different from FabFab, the electromag-
netic Chern–Simons term is nonvanishing only for the case
where both electric and magnetic charges are present. For
nonvanishing electric and magnetic charges, ICS shows a sim-
ilar feature as FabFab. Moreover, there are a lot of similari-
ties between this theory and the geometric Einstein–Chern–
Simons-Scalar theory, which can also induce the spontaneous
scalarization and violates the parity invariance. That is to
say, this flavor of Einstein–Maxwell-scalar theory can help
us build intuition about the scalarization in Chern–Simons
gravity in a much easier way because of its relatively simple
field equations. Then, it is natural to ask whether sponta-
neous scalarization can occur in this model. Therefore, in
this paper, we would like to consider the dyonic Reissner–
Nordstrom (RN) black holes in the Einstein–Maxwell-scalar
theory where the scalar field is coupled to an electromagnetic
Chern–Simons term and investigate whether the mixing of
electric and magnetic charges can reduce the spontaneous
scalarization.

The outline of this paper is as follows. In Sect. 2, we briefly
introduce the Einstein–Maxwell-scalar theory in which the
scalar field couples to an electromagnetic Chern–Simons
term and obtain the equations of motion in the static and
spherically symmetric configurations. In Sect. 3, we study
the stability of the dyonic RN black hole under the perturba-
tions and evaluate the perturbation scalar field satisfied the
asymptotic flatness condition, i.e., the bifurcation points of
the dyonic RN solution and scalarized black hole solution.
In Sect. 4, based on the shooting method, we calculate the
scalarized dyonic RN black hole solutions numerically and
discuss their properties. Finally, the conclusion and discus-
sion are presented in Sect. 5.

2 Einstein–Maxwell-scalar model with an
electromagnetic Chern–Simons term

In this paper, we would like to consider the Einstein–
Maxwell-scalar theory where the scalar or pseudoscalar field
is coupled to an electromagnetic Chern–Simons term. Noting
that the Chern–Simons term violates the parity invariance,
i.e., it is a pseudoscalar, then the coupling function F (ϕ)

should also be a pseudoscalar to ensure the theory is parity
invariant. With this in mind, most of the literature only con-
siders the linear coupling between the pseudoscalar field and
the electromagnetic Chern–Simons term [62–67]. Motivated
by the phenomenon of spontaneous scalarization widely dis-
cussed in the quadratic Einstein-scalar-Gauss–Bonnet grav-
ity [49–53], we want to consider the quadratic coupling func-
tion such that the theory admits both the dyonic Reissner–
Nordstrom black hole and scalarized black hole solutions.
In order to ensure that the theory is parity invariant and also
has a quadratic coupling function, we introduce a scalar and
a pseudoscalar field into the theory, in which the action is
given by

S = 1

16π

∫
d4x

√
g

[
R − 2∇aϕ1∇aϕ1 − 2∇aϕ2∇aϕ2

−FabF
ab + F (ϕ1, ϕ2)ICS

]
(2)

with the coupling function

F = λ2

2
ϕ1ϕ2 (3)

and the Chern–Simons term of the electromagnetic field

ICS = εabcd F
abFcd , (4)

where λ is a conpling constant, R is the Ricci scalar of the
spacetime metric gab, ϕ1 is a scalar field, ϕ2 is a pseudoscalar
field, Fab = ∇a Ab−∇b Aa with the vector potential Aa is the
electromagnetic strength. In this theory, the parity invariance
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is restored duce to the pseudoscalar field. For convenience,
we define

ϕ = 1√
2
(ϕ1 + ϕ2), ϕ̄ = 1√

2
(ϕ1 − ϕ2). (5)

Then, the coupling function becomes

F = λ2

2
(ϕ2 − ϕ̄2). (6)

By variation of the action, the equations of motion can be
obtained and it is given by

Rab − 1

2
Rgab = 2∇aϕ∇bϕ − gab∇cϕ∇cϕ + 2∇a ϕ̄∇bϕ̄

−gab∇cϕ̄∇cϕ̄ + 2FacF
c
b

−1

2
gabFcd F

cd ,

∇a F
ab = −εabcd Fcd∇aF ,

∇a∇aϕ = −λ2

4
ICSϕ,

∇a∇a ϕ̄ = λ2

4
ICSϕ̄, (7)

From the equation of motion, we can see that the Chern–
Simons term does not affect the gravitational part of the equa-
tions of motion, i.e., it does not contribute to the stress-energy
tensor of the scalar field and electromagnetic field. However,
it can influence the equation of motion of the scalar field,
and the Chern–Simons term can be regarded as the effective
potential of the scalar field, which makes the scalarization
possible in this theory.

In this paper, we focus on the static and spherically sym-
metric dyonic black hole solution in which the scalar field and
electromagnetic field have the same symmetries. We adopt
the following ansatz for the line element

ds2 = − f (r)dv2+2α(r)dvdr+r2(dθ2 + sin2 θdφ2).

(8)

For the dyonic solution, considering the symmetries of the
electromagnetic field and together with the Maxwell equation
in Eq. (7), the electromagnetic strength is obtained and it is
given by

F = −Qeα(r)

r2

(
1 + 2QmF

Qe

)
dt ∧ dr

+Qm sin θdθ ∧ dφ, (9)

where

Qe ≡ 1

4π

∫
∞

[�F − 2F F], Qm ≡ 1

4π

∫
∞

F (10)

are the electric charge and magnetic charge, separately. Using
the above results, the Chern–Simons term becomes

ICS = 8Qm

r4 [Qe + 2QmF ], (11)

which means the purely electric solution will reduce to the
Einstein–Maxwell-scalar theory without the Chern–Simons
corrections and the no-hear theorem will be valid. There-
fore, we only consider the dyonic solution with the magnetic
charge in this paper. From the field equations for the scalar
fields, we can see that the signs of the effective potential
for ϕ and ϕ̄ are opposite. That is to say, one of them has to
be stable under the dyonic Reissner–Nordstrom black hole
background, and only one scalar field can lead to spontaneous
quantization. In this paper, we only consider the scalarized
solution induced by ϕ and set ϕ̄ = 0 (The opposite case can
be obtained by changing the sign of QeQm). Then, using the
line element (8), the equations of motion reduce to

r3α f ′ + r2(α − 2rα′ + r2αϕ′2) f
+[Q2

e + Q2
m + 4QeQmF (ϕ)

+4Q2
mF (ϕ)2 − r2]α3 = 0,

2α3 − 2 f
(

2r2αϕ′2 − 3rα′ + α
)
r2 f ′α′

+r2 f ′α′ − rα
(
r f ′′ + 4 f ′) = 0,

r3α
[
r f ′ϕ′ + f

(
rϕ′′ + 2ϕ′)] − r4 f α′ϕ′

+2Qmα3F ′(ϕ)[Qe + 2QmF (ϕ)] = 0. (12)

When the scalar field is vanishing, i.e., ϕ = 0, this theory
admits the dyonic Reissner–Nordstrom black hole solution
in which

f (r) = 1 − 2M

r
+ Q2

e + Q2
m

r2 , α(r) = 1,

F = −Qe

r2 dt ∧ dr + Qm sin θdθ ∧ dφ, (13)

in which M is the mass of the black hole. The event horizon
exists if M2 ≥ Q2

e + Q2
m and the radius of horizon is given

by r = rh with

rh = M +
√
M2 − Q2

e − Q2
m . (14)

3 Stability and perturbation of dyonic
Reissner–Nordstrom black hole

The scalarized black hole solution may appear in the regions
of the parameteric space in which the corresponding solu-
tion becomes unstable. Next, we consider the perturbations
of the scalar field, electromagnetic field, and metric for the
dyonic Reissner–Nordstrom black hole. From the equations
of motion (7), it is not hard to see that the scalar field pertur-
bation δϕ is decoupled to the perturbations δgab and δAa of
the metric and electromagnetic field, which means that the
stability is only determined by the scalar field perturbation.
The perturbation equation of the scalar field is given by

∇a∇aδϕ + λ2

4
ICSδϕ = 0, (15)
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in which the covariant derivative ∇a and the Chern–Simons
term ICS are evaluated in the dyonic Reissner–Nordstrom
geometry (13). Since the background geometry considered is
a static and spherically symmetric black hole, we can perform
a spherical harmonics decomposition of the scalar field

δϕ = u(r)

r
Ylm(θ, φ)e−iωt , (16)

in which t ≡ v − r∗ with the tortoise coordinate r∗(r) =∫
f (r)−1dr , and ω is the frequency of the quasinormal

modes (QNM). Then, the perturbation equation becomes

d2u

dr2∗
+ [ω2 −U (r)]u = 0 (17)

with the effective potential

U (r) = f (r)

(
l(l + 1)

r2 + 2M

r3 − 2Q2
tot

r4 − 2λ2QeQm

r4

)
,

(18)

in which Qtot denotes the total charge defined by

Q2
tot = Q2

e + Q2
m . (19)

With some physical limitations [69], we require that there
is only the ingoing wave near the event horizon and only the
outgoing wave at asymptotic infinity, i.e.,

δϕ ∼ e−iωr∗ , r → r+,

δϕ ∼ eiωr∗ , r → ∞. (20)

From the above setups, the unstable QNM frequencies should
have negative imaginary part, which means that the boundary
conditions for the unstable modes are vanishing at the event
horizon and asymptotic infinity.

It has been showed in Ref. [68] that if the potential satisfies
the condition∫ ∞

rH

U (r)

f (r)
dr < 0, (21)

there will exist an unstable mode for the perturbation scalar
field. Since we only consider the spherically symmetric solu-
tion, we set l = 0. As mentioned above, the scalarization
can only appear for the case with a nonvanishing magnetic
charge, also with the nonvanishing total charge. Therefore,
in the following, we normalize the electric, magnetic charges
and mass to the total charge Qtot, i.e., Q̃e = Qe/Qtot,
Q̃m = Qm/Qtot and M̃ = M/Qtot. From the perturbation
field equation (15), we can see that the solution is only depen-
dent on the reduced mass M̃ as well as the quantity Q̃e Q̃mλ2.
To simplify, we introduce the notation

ζ = 2Q̃e Q̃mλ2. (22)

Using the identity Q2
tot = Q2

e + Q2
m ≥ 2QeQm , we have

2Q̃e Q̃m ≤ 1 and therefore λ2 ≥ ζ . With these setups, the
unstability condition (21) gives

Fig. 1 Unstable regions of the parametric space for the perturbation
scalar field based on the condition (21) from integral of the potential

ζ > 3M̃2 − 2 + 3M̃2
√
M̃2 − 1. (23)

Note that the right-hand side of this inequality is always pos-
itive and the minimum value is one. Then, a necessary con-
dition for the validity of the above inequality is

λ2 ≥ ζ > 1, (24)

which also gives Q̃e Q̃m ≥ 0, i.e., the electric charge and
magnetic charge have the same signature. Without loss of
generality, we set Qe > 0 and Qm > 0. If the inequality (23)
is satisfied, the dyonic Reissner–Nordstrom black hole will
become unstable. In Fig. 1, we showed the unstable regions
of the parametric space. This figure shows that as Q̃e Q̃m

or λ becomes larger and larger, the perturbation scalar field
becomes more and more unstable. The coupling parameter
λ presents the interaction strength between the scalar field
and the electromagnetic field, and the quantity Q̃e Q̃m gives
how large the Chern–Simons term is. It means that stronger
interaction from the electromagnetic field can destabilize the
perturbation scalar field.

Next, we would like to solve the static and spherically
symmetric solution of the perturbation equation (15) by
demanding that the scalar field is regular on the horizon and
vanishing at infinity, which comes from the requirement for
asymptotic flatness at infinity. These perturbation solutions
are the bifurcation points of dyonic RN solution and scalar-
ized black hole solution, which also represents the onset
of scalarization and instability. It is worth mentioning that
this boundary condition is not inconsistent with the bound-
ary condition (20) for the unstable mode since the QNMs
considered here are the onset of the instability and their fre-
quencies should have vanishing negative imaginary parts.

For the static and spherical scalar field, the field equation
(15) becomes

f δϕ′′ +
(
f ′ + 2 f

r

)
δϕ′ + 2λ2QeQm

r4 δϕ = 0, (25)
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Fig. 2 The left two panels show the asymptotic value δϕ|r→∞ of the
perturbation scalar field as a function of the parameter ζ = 2Q̃e Q̃mλ2

for different reduced mass M̃ = M/Qtot. The top right panel shows the
parameters (ζ, M̃) of the first six bifurcations (the perturbation solutions

of the scalar field satisfying the asymptotic flatness condition) from the
dyonic RN black hole, and the bottom right panel shows its behavior
near the extremal black holes (i.e., M̃ � 1)

in which δϕ is only a function of r and f (r) is the blackening
factor given by Eq. (13). For this field equation, one can find
an exact solution

δϕ(r) = c1Py(x) + c2Qy(x), (26)

where

y = −1 + √
1 − 4ζ

2
, x = 1 − M̃r̃

r̃
√
M̃2 − 1

. (27)

Here r̃ = r/Qtot is the reduced radius coordinate, Py(x)
and Qy(x) are the Legendre function of the first and second
kinds separately. Considering the regularity of the scalar field
on the horizon, i.e., the perturbation scalar field is finite at
r = rh , we can fix the undetermined coefficients and the
solution is given by

δϕ(r) ∝ cos(πy)Py(x) − 2 sin(πy)

π
Qy(x), (28)

in which we can simply set δϕ(rh) = 1 since the field equa-
tion is linear. Then, getting the bifurcation points from a
dyonic RN black hole is equivalent to finding the appro-
priate parameters such that its linear solution satisfies the
asymptotic flatness condition δϕ|r→∞ = 0. That is to say,
δϕ|r→∞ should be regarded as a function of the paramet-
ric space and we need to study the zeros of this function. In

the top left panel of Fig. 2, we show the asymptotic value
δϕ|r→∞ of the perturbation scalar field as a function of ζ for
M̃ = 1.5, M̃ = 2 and M̃ = 2.5. This figure shows that there
exist some discrete parameters ζ such that their correspond-
ing solutions satisfy the asymptotic flatness condition. These
parameters are the bifurcation points of the dyonic RN solu-
tion and scalarized black hole solution. We show the first six
bifurcations in the top right panel of Fig. 2. There are more
bifurcations that we have not shown in the figure and they are
located on the left side near the extremal parameters M̃ = 1.
This figure also shows that for a given ζ , the first bifurcations
give the largest reduced mass M̃ . In the bottom two panels
of Fig. 2, we illustrate the behaviors near the extremal black
holes (i.e., M̃ � 1). From these figures, one can note that as
M̃ → 1, each bifurcation gets closer and closer to each other
and eventually approaches 1/4. That is to say, the existence
of the bifurcation requires ζ above a minimal value 1/4, i.e.,
ζ ≥ 1/4, which also implies that λ2 ≥ 1/4. This shows
a lower bound than the previous one (24) from the stabil-
ity analysis, which is also showed. However, it is reasonable
since the performed stability analysis provides only a suf-
ficient condition for instability and does not mean that the
scalarization cannot occur outside this condition, see Fig. 3,
which also implies that the actual unstable region should be
larger than that given by Eq. (21).
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Fig. 3 The red line shows the first bifurcations of the scalar field and
the shaded region presents the unstable regions based on the condition
(21) from integral of the potential

4 Scalarization of dyonic RN black hole

In this section, we would like to evaluate the scalarized
black hole solutions bifurcating from the dyonic RN solution
of the field equations (12) using a shooting method. These
black hole solutions are required to be regular on the black
hole horizon and satisfy the asymptotic flatness condition.
Asymptotic flatness condition demands

f |r→∞ = α2∞, and ϕ|r→∞ = 0. (29)

with α∞ = α|r→∞. This condition implies that the asymp-
totic line element can be expressed as

ds2|r→∞ � −du2 + 2dudr + r2(dθ2 + sin2 θdφ2) (30)

with u = α∞v, which describes a flat geometry at infinity.
Then, we can expand these functions to infinity, i.e.,

f (r) = α2∞ − 2Mα2∞
r

+ O(1/r2),

ϕ(r) = D

r
+ O(1/r2) (31)

at r → ∞. Here M and D are the mass of the black hole
and the charge of the scalar field individually. Considering
the regularity condition and together with f (rh) = 0, we can
expand the metric function and scalar field at r = rh ,

f (r) = (r − rh) f
′(rh) + O((r − rh)

2),

α(r) = αh + (r − rh)α
′(rh) + O((r − rh)

2),

ϕ(r) = ϕh + (r − rh)ϕ
′(rh) + O((r − rh)

2), (32)

in which we denote ϕh = ϕ(rh) and αh = α(rh). Using the
equation of motion (12), we can further obtain

f ′(rh) = −α2
h(Q

2
tot − r2

h + 2λ2QmQeϕ
2
h + λ4Q2

mϕ4
h)

r3
h

,

ϕ′(rh) = 2ϕh(λ2QeQm + λ4Q2
mϕ4

h)

rh(Q2
tot − r2

h + 2λ2QmQeϕ
2
h + λ4Q2

mϕ4
h)

,

α′(rh) = − 4αhϕ2
h(λ2QeQm + λ4Q2

mϕ4
h)2

3rh(Q
2
tot − r2

h + 2λ2QmQeϕ
2
h + λ4Q2

mϕ4
h)2

.

(33)

For a black hole solution, we need f ′(rh) ≥ 0, which leads
to

ϕ2
h ≤ r2

h − Q2
tot

λ2Qm

(√
r2
h − Q2

m + Qe

) .
(34)

The existence of a scalarized black hole solution demands
that the right-hand side of the above inequality is positive,
i.e.,

rh ≥ |Qtot|. (35)

Without loss of generality, we can set αh = 1 by changing
the coordinate v → v/α(rh). For the fixed coupling constant
λ, electric charge Qe and magnetic charge Qm , the above dis-
cussion implies that all the series coefficients for the function
f (r), ϕ(r) and ϕ(r) can be calculated in terms of ϕh and rh .
Then, we can use the series expansions to evaluate values
of the functions near the event horizon and perform them as
initial values to solve the field equations. Same to the per-
turbation cases, getting the scalarized dyonic RN black hole
reduces to finding the appropriate initial values ϕh and rh
such that its solution satisfies the asymptotic flatness con-
ditions (29). From the field equations (12), we can see that
the first condition of Eq. (29) is automatically satisfied at
infinity. Therefore, we only need to find the initial parame-
ters which meet the condition ϕ|∞ = ϕ|r→∞ = 0. In Fig. 4,
we illustrate the asymptotic value ϕ∞ of the scalar field as a
function of horizon radius rh for fixed λ = 3, Q̃m = 0.5
and for fixed λ = 6, Q̃m = 0.5 with different values
ϕh = 0.03, 0.06, 0.09. These figures show that there exist
some discrete zero-points of ϕ∞ which give the scalarized
dyonic RN solutions and these discrete solutions can give the
discrete branches of scalarized solution. Then, we present the
metric functions f (r), α(r) and scalar field ϕ(r) as a func-
tion of r/rh with some fixed λ, Q̃m and ϕh for the first three
solutions of dyonic RN black holes in Fig. 5, where we rank
these solutions by the distance between their horizon radius
and the extremal radius

r ext
h =

√
Q2

tot + 2λ2QmQeϕ
2
h + λ4Q2

mϕ4
h, (36)

which leads to f ′(r ext
h ) = 0. From these figures, we can

note that there does not exist a zero-point for the scalar field
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Fig. 4 Plots show the asymptotic value ϕ∞ of the scalar field as a function of horizon radius rh for fixed coupling constant λ, reduced magnetic

charge Q̃m and horizon-value ϕh of the scalar field. Here we denote the extremal horizon radius r ext
h =

√
Q2

tot + 2λ2QmQeϕ
2
h + λ4Q2

mϕ4
h and we

have rh ≥ rext
h

Fig. 5 Plots show the behaviors of metric functions and scalar field as a function of r/rh with the fixed λ, Q̃m and ϕh for the first three solutions
of scalarized dyonic RN black hole

ϕ(r) of the first solution, while the second and third solutions
have one and two zero-points, separately. Similar features can
also be captured for the other scalarized solution and these
imply that the number of zero-points of ϕ(r) increases as the
solution gets closer to the extreme for fixed λ, Q̃m and ϕh .

After giving λ and Q̃m , a fixed ϕh can determine the dis-
crete scalarized solutions with some rh . By varying ϕh , we
can obtain the discrete branches of scalarized solution in
the parametric space (ϕh, rh). For a given scalarized solu-
tion, using Eq. (31), we can obtain its corresponding mass
M and scalar charge D. In Fig. 6, we show the behavior of
the reduced scalar charge D̃ = D/Qtot as a function of the
reduced black hole mass M̃ with series values of the cou-
pling constant λ and reduced magnetic charge Q̃m for the first
three branches of scalarized dyonic RN black hole. When
D̃ and ϕ̃h approach zero, the solutions (bifurcations) can be
described by the results from perturbation analysis. In Table
1, we show the difference between the first three bifurcations
calculated by solving the nonlinear equations and the per-

turbation equation respectively. As a result, we can see that
R = M̃1/M̃2 = 1 + O(ϕ̃h) for small ϕ̃h , in which M̃1 is the
reduced mass for small ϕ̃h from the nonlinear calculations
and M̃2 is the reduced mass from the perturbation analy-
sis. That is to say, all the branches of the scalarized solution
bifurcate with the GR branch of the dyonic RN black hole and
the bifurcation points can be determined by the perturbation
scalarized solutions given by Sect. 3. For the GR branch,
the existence of the black hole demands that M̃ ≥ 1, i.e.,
M2 ≥ Q2

tot. However, the reduced mass M̃ of the scalar-
ized branches can be less than one or even approach zero,
i.e., the scalarized dyonic black hole can be overcharged.
This means that the scalarized dyonic RN solution enlarges
the range of mass in GR. One can also note from Fig. 6 that
the absolute value of the black hole scalar charge smoothly
decreases with the mass and the maximal value is reached
when the black hole mass approaches zero. Moreover, these
figures also illustrate that the absolute value of scalar charge
increases as λ or QeQm increase when we fixed the black
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Fig. 6 Plots show the reduced scalar charge D̃ of black holes as a function of its reduced mass M̃ with different values of the coupling constant λ

and reduced magnetic charge Q̃m for the first three branches of scalarized dyonic RN black hole

hole reduced mass M̃ . From Eq. (11), we can see that the
larger λ and QeQm indicate stronger interaction between
the electromagnetic field and scalar field. That is to say, the
stronger interaction can lead to larger scalar hair and also
enlarge the parametric region of the scalarized solution.

With a similar consideration as Ref. [18], to have an indi-
cator for the stability, it is illustrated in Fig. 7 that the behav-
ior of the reduced black hole entropy Ãh/4 = π r̃2

h of the
first three scalarized branches as a function of its reduced
mass M̃ for some given λ and Q̃m . We see that all scalar-
ized branches start from a bifurcation point at the GR branch
and the entropy for all scalarized solutions exceeds the coun-
terpart of dyonic RN solution with the same reduced mass
M̃ . This indicates that the scalarized configurations might be
thermodynamically more stable compared to the GR config-
uration. For different scalarized branches, one can see that the
entropy of the second and third branches is lower than the first
branch, which implies that the first scalarized branch is the
most stable one. Moreover, we can also note from Fig. 7 that

the entropy of scalarized solutions increases as λ and QeQm

increase, which means that the stronger interaction can make
the scalarized configuration more stable. Together with the
result indicated in Fig. 6, these imply that the scalarization
might be more likely to appear in situations with stronger
interaction between the scalar field and electromagnetic field.

In Fig. 8, we show the behavior of the reduced black hole
temperature T̃ = f ′(rh)/4π as a function of its reduce mass
M with different values of λ and Q̃e for the first three scalar-
ized branches and GR branches. These figures show that the
scalarized dyonic RN black hole solutions cannot reach the
extremal limit T = 0 different from the GR branch where
the zero-temperature can be obtained for M̃ = 1. This is
because the scalarized branches are ended at the point where
the spacetime mass vanishes. Moreover, from these figures,
we can also see that different from the entropy of the scalar-
ized black holes, the maximal temperature is not always given
by the first branch and is determined by the relative position
of the scalarized branches for the fixed λ and Q̃m .
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Fig. 7 Plots show the reduced entropy Ãh/4 of black holes as a function of its reduced mass M̃ with different values of the coupling constant λ

and reduced magnetic charge Q̃m for the first three branches of scalarized dyonic RN black hole

5 Conclusion and discussion

In the current paper, we considered the Einstein–Maxwell-
scalar theory where the scalar field is coupled to an elec-
tromagnetic Chern–Simons term, and studied the scalariza-
tion of the static and spherically symmetric dyonic RN black
holes in this theory. The Chern–Simons term is nonvanish-
ing only if neither the electric charge nor magnetic charge of
black holes is zero. That is to say, the scalarized black hole
solution can only appear in cases with nonvanishing electric
and magnetic charges. The gravity part of the field equations
is not affected by the electromagnetic Chern–Simons term
and it only provides an effective potential to the equation of
motion for the scalar field. When we pick the coupling con-
stant, electric charge, and magnetic charge appropriately, the
dyonic RN black hole will become unstable and there will
exist scalarized black hole solutions.

First of all, we investigated the perturbation of the dyonic
RN black holes and get the perturbation solutions of the
scalar field satisfied the asymptotic flatness condition, which

is just the bifurcation points of dyonic RN solution and
scalarized solution in nonlinear cases. Our result shows that
the bifurcation points only appear if the parameters satisfy
ζ = 2QeQmλ2 > Q2

tot/4, which also leads to λ2 > 1/4.
Then, by employing the shooting method, we calculated the
scalarized black hole solutions bifurcating from the dyonic
RN black hole solution. As a result, there exist some dis-
crete branches of the scalarized solutions and all scalarized
branches bifurcate with the GR branch. Different from the
dyonic RN black holes, the scalarized dyonic RN black holes
can be overcharged (i.e., M2 < Q2

tot) and their mass could
even approach zero. This means that the scalarized solu-
tion enlarges the range of mass in GR. By analyzing the
scalarized configurations with different coupling constant λ

and reduced magnetic charge Q̃m , we can conclude that the
stronger interaction can lead to larger scalar hair. Moreover,
we studied the entropy and temperature of the scalarized
dyonic RN black holes as well. The results show that the
entropy for all scalarized black holes exceeds the counter-
part of dyonic RN black holes and the first scalarized branch
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Fig. 8 Plots show the reduced temperature T̃ of black holes as a function of its reduced mass M̃ with different values of the coupling constant λ

and reduced magnetic charge Q̃m for the first three branches of scalarized dyonic RN black hole

captures the largest entropy, which means that the scalarized
configurations might be thermodynamically more stable than
GR configurations. By comparing the results of different λ

and Q̃m , we also found that the stronger interaction can make
the scalarized configuration has a larger entropy. These imply
that the scalarization might be more likely to appear in situ-
ations with stronger interaction between the scalar field and
the electromagnetic field. From the analysis of black hole
temperature, we found that the extremal limit T = 0 cannot
be reached in the scalarized branches because these branches
are ended at the point where the black hole mass vanishes.

In this paper, we only discussed the black hole entropy
of the scalarized solutions. However, this does not indicate
that the scalarized black holes are dynamically stable. It is
also necessary to consider the dynamical stability of these
scalarized black holes obtained in this paper and this will be
left for our future work. Moreover, it is also interesting to
extend the discussion into the dynamical situation to study
the scalarization or into the spinning cases to consider the
spin-induced scalarization.
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