

A NEW METHOD FOR DETECTING BARYON ACOUSTIC OSCILLATIONS

A. LABATIE, J.-L. STARCK and M. LACHIEZE-REY

Laboratoire AIM (UMR 7158), CEA/DSM-CNRS-Université Paris Diderot, IRFU, SEDI- SAP, Service d'Astrophysique, Centre de Saclay, F-91191 Gif-Sur-Yvette cedex, France.

Baryon Acoustic Oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift $z \approx 1000$ and the existence of dark energy. Besides, BAOs provide a standard ruler for studying cosmic expansion. We study BAO detection methods using the correlation function measurement $\hat{\xi}$ which can be formulated as an hypothesis test between \mathcal{H}_0 (no-BAO hypothesis) and \mathcal{H}_1 (BAO hypothesis). We describe problems with the classical method based on the $\Delta\chi^2$ statistic and we propose a new method, the Δl method, to overcome these difficulties.

1 BAOs in the correlation function

BAOs are relic of acoustic waves which traveled in the plasma before recombination. They stopped to propagate around the time of recombination, leaving a small excess of power at the sound horizon scale ($r_s \approx 150$ Mpc) in the matter distribution. As a consequence, BAOs can be detected as a peak around 150 Mpc in the correlation function of the galaxy distribution. Note that the BAO peak in the correlation function and its whole shape has a dependence on cosmological parameters. It is also possible to construct correlation functions without BAOs, by artificially erasing the BAO peak using a 'no wiggles' form² or setting a baryon density $\Omega_b h^2 = 0$. In order to estimate the correlation function we will use the Landy-Szalay⁵ estimator $\hat{\xi}$.

2 A new method for BAO detection

BAO detection can be formulated as an hypothesis test

$$\mathcal{H}_0 : \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}(\xi_{noBAO,\theta}, C_{noBAO,\theta}) \quad (1)$$

$$\mathcal{H}_1 : \exists \theta \in \Theta \text{ s.t. } \hat{\xi} \sim \mathcal{N}(\xi_{BAO,\theta}, C_{BAO,\theta}) \quad (2)$$

The classical BAO detection method makes the assumption that covariance matrices are constant ($C_{noBAO,\theta} = C_{BAO,\theta} = C$). It is based on the $\Delta\chi^2$ statistic, which can be thought as a generalized likelihood ratio (the optimal statistic to test between simple hypotheses is the likelihood ratio according to the Neyman-Pearson lemma)

$$\Delta\chi^2 = \min_{\theta} \chi^2_{noBAO,\theta}(\hat{\xi}) - \min_{\theta} \chi^2_{BAO,\theta}(\hat{\xi}) \quad (3)$$

$$= -2 \log \left[\frac{\max_{\theta} \mathcal{L}_{noBAO,\theta}(\hat{\xi})}{\max_{\theta} \mathcal{L}_{BAO,\theta}(\hat{\xi})} \right] \quad (4)$$

Table 1: Expected significance averaged over all \mathcal{H}_1 models in the two different cases of constant C and model-dependent C_θ .

	Classical $\sqrt{\Delta\chi^2}\sigma$ (wrong)	$\Delta\chi^2$ with correct significance using Eq. 5	Δl method
Constant C	2.21σ	2.0σ	2.0σ
Model-dependent C_θ	2.32σ	1.59σ	1.96σ

Given some regularity assumptions, one can show⁴ that the BAO detection significance (i.e. the rejection of the \mathcal{H}_0 hypothesis) can be estimated as $\sqrt{\Delta\chi^2}\sigma$. However these assumptions are usually wrong, so that the classical method can overestimate the detection significance. Another problem is that it only works for hypotheses with a constant covariance matrix which can be a poor estimation of the real hypotheses \mathcal{H}_0 and \mathcal{H}_1 of Eq. (1) and (2).

For these reasons we propose a new method, that we call the Δl method. First we modify the procedure to obtain the significance of the BAO detection, in order to make it rigorous. For a constant covariance matrix, the significance of the detection as a p -value $p(x)$ is computed as the p -value of $\Delta\chi^2 = x$ in the 'worst-case' \mathcal{H}_0 model

$$p(x) = \max_{\theta \in \Theta} P(\Delta\chi^2 \geq x \mid \mathcal{H}_0, \theta) \quad (5)$$

The second modification that we propose is to extend the statistic $\Delta\chi^2$ in the case of varying covariance matrices $C_{noBAO,\theta}$ and $C_{BAO,\theta}$ in (1) and (2). We call the new statistic the Δl statistic, as it is a difference of generalized log-likelihoods

$$\Delta l = -2 \left[\max_{\theta} \log \mathcal{L}_{noBAO,\theta}(\hat{\xi}) - \max_{\theta} \log \mathcal{L}_{BAO,\theta}(\hat{\xi}) \right] \quad (6)$$

3 Results

We test our new method and compare it to the classical method using lognormal simulations of the Luminous Red Galaxies sample of the Sloan Digital Sky Survey Data Release 7⁴. We estimate a covariance matrix C from 2000 simulations with realistic parameters. As a toy example we only take into account a model-dependent covariance matrix of the form $C_\theta = b^4 C$ (i.e. we only take into account an approximate dependence on b).

We show in Table 1 the average significances under \mathcal{H}_1 in the 2 different cases of constant C and model-dependent C_θ for different methods.

We obtain the following results:

- $\sqrt{\Delta\chi^2}\sigma$ slightly overestimates the significance for hypotheses with constant C
- $\sqrt{\Delta\chi^2}\sigma$ grossly overestimates the significance for hypotheses with model-dependent C_θ
- Δl largely outperforms $\Delta\chi^2$ for hypotheses with model-dependent C_θ

References

1. C. Blake *et al*, MNRAS **415**, 2892 (2011).
2. D.J. Eisenstein and W. Hu, ApJ **496**, 605 (1998).
3. D.J. Eisenstein *et al*, ApJ **633**, 560 (2005).
4. A. Labatie *et al*, ApJ **746**, 172 (2012)
5. S.D. Landy and A.S. Szalay, ApJ **412**, 64 (1993).