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Abstract

This document describes the methods used by ALICE for the centrality determination. Specifically
it addresses the modifications implemented with respect to previous publications [1, 2], which stems
for:

– and a modification of the definition of the centrality classes, now defined according to the
simulated multiplicity distribution;

– an update of the cross-section values used for the Glauber-MC calculations;

– a modification in the parameterization of the nuclear density charge which uses a weigthed sum
of individual 2pF distributions for the proton and for the neutron;

– a uniform three-dimensional lattice to parameterize the minimum nodal separation between
nucleons;

– the total systematic uncertainty obtained by adding in quadrature the maximum/average of the
up and downward variations from all sources.
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1 Introduction

The centrality is defined as the percentile of the hadronic cross section corresponding to a particle mul-
tiplicity, or an energy deposited, measured in ALICE, above a given threshold (NT HR

ch )

c ≈
1
σAA

∫ ∞

NT HR
ch

dσ
dN′ch

dN′ch ≈
1
σAA

∫ ET HR
ZDC

0

dσ
dE′ZDC

dE′ZDC . (1)

The Glauber model is widely used to describe the dependence of Npart and Ncoll on b in p–A, d–A and
A–A collisions [3–6]. The purpose of Monte Carlo implementations of the Glauber model [7, 8] is to
compose two nuclei out of nucleons and simulate their collision process event-by-event. Geometrical
quantities are calculated by simulating many nucleus-nucleus collisions. Coupling the Glauber MC to a
model of particle production, one can calculate the produced particle multiplicity distribution that can be
compared to the experimentally measured one. Mean values of geometrical quantities are then calculated
for centrality classes defined by classifying the events according to their multiplicity.

This documents presents the ALICE methods for the centrality determination, focussing to the changes
introduced with respect to the past [1], i.e. a modification of the definition of the centrality classes, now
defined according to the simulated multiplicity distribution, an update of the cross-section values used
for the Glauber-MC calculations, as well as a modification in the parameterization of the nuclear density
charge which uses a weigthed sum of individual 2pF distributions for the proton and for the neutron, and
a uniform three-dimensional lattice to parameterize the minimum nodal separation between nucleons.
Finally the total systematic uncertainty obtained by adding in quadrature the maximum/average of the up
and downward variations from all sources. Section 2 summarizes the methods for the Glauber-MC and
the NBD-Glauber fot to the multiplicity distribution. Section 4 and Section 3 provide tables with calcu-
lated quantities for Pb–Pb collisions at

√
sNN = 2.76 and 5.02 TeV, and the differences with previously

used values. Section 5 provides the values for the Xe–Xe collisions at
√

sNN = 5.44 TeV.

2 The Glauber Monte Carlo

2.1 The nucelar charge distribution

Following [9], the first step in the Glauber Monte Carlo is to prepare a model of the two nuclei by defining
stochastically the position of the nucleons in each nucleus. The nucleon position in the 208Pb nucleus is
determined by the nuclear density function, modeled by the functional form (modified Woods-Saxon or
2-parameter Fermi distribution):

ρ(r) = ρ0
1 + w(r/R)2

1 + exp
(

r−R
a

) (2)

The parameters are based on data from low energy electron-nucleus scattering experiments [10]. Protons
and neutrons are assumed to have the same nuclear profile. The parameter ρ0 is the nucleon density,
which provides the overall normalization, not relevant for the Monte Carlo simulation, R is the radius
parameter of the 208Pb nucleus and a is the skin thickness of the nucleus, which indicates how quickly the
nuclear density falls off near the edge of the nucleus. The additional parameter w is needed to describe
nuclei whose maximum density is reached at radii r > 0 (w = 0 for Pb). According to [11] we used a
weigthed sum of individual 2pF distributions for the proton and for the neutron with Rp = 6.68± 0.02
and ap = 0.447± 0.01, Rn = 6.69± 0.03 and an = 0.560± 0.03. In the Monte Carlo procedure the radial
coordinate of a nucleon is randomly drawn from the distribution 4πr2ρ(r) and ρ0 is determined by the
overall normalization condition

∫
ρ(r)d3r = A. Instead of the hard-sphere exclusion distance previously

used (dmin = (0.4 ± 0.4) fm), we employ a uniform three-dimensional lattice with a minimum nodal
separation (dnode) equivalent to dmin. It is equivalently treated with a variation of 100%, dnode = (0.4±
0.4) fm.
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2.2 The nucleon-nucleon cross-section

The second step is to simulate a nuclear collision. The impact parameter b is randomly selected from
the geometrical distribution dP/db ∼ b up to a maximum bmax ' 20fm > 2RPb, large enough to simulate
collisions until the interaction probability becomes zero. The nucleus-nucleus collision is treated as
a sequence of independent binary nucleon-nucleon collisions, where the nucleons travel on straight-
line trajectories and the inelastic nucleon-nucleon cross section is assumed to be independent of the
number of collisions a nucleon underwent previously, i.e. the same cross section is used for all successive
collisions. Two nucleons from different nuclei are assumed to collide if the relative transverse distance
between centers is less than the distance corresponding to the inelastic nucleon-nucleon cross section

d <
√
σinel

NN/π.

The value of the cross-section σinel
NN is typically estimated by interpolation of pp data at different center-

of-mass energies and from cosmic rays, and subtracting the elastic scattering cross section from the total
cross section. According to [11], we decided to adopt:

–
√

sNN = 2.76 TeV: σinel
NN = 61.8 ± 0.9 mb.

–
√

sNN = 5.02 TeV: σinel
NN = 67.6 ± 0.6 mb.

–
√

sNN = 5.44 TeV: σinel
NN = 68.4 ± 0.5 mb.

–
√

sNN = 8.16 TeV: σinel
NN = 72.5 ± 0.5 mb.

in contrast to the previously used values:
√

sNN = 2.76 TeV: σinel
NN = 64 ± 5 mb [1];

√
sNN = 5.02 TeV:

σinel
NN = 70 ± 5 mb [2].

The number of collisions Ncoll and the number of participants Npart are determined by counting, respec-
tively, the binary nucleon collisions and the nucleons that experience at least one collision. Following
the notation in [3], the geometric nuclear overlap function TPbPb is then calculated as TPbPb = Ncoll/σ

inel
NN ,

and represents the effective nucleon luminosity in the collision process.

The total Pb–Pb cross section is calculated as σPbPb = Nevt(Ncoll ≥ 1)/Nevt(Ncoll ≥ 0)× πb2
max, i.e. the

geometrical value corrected by the fraction of events with at least one nucleon-nucleon collision. It
amounts to

– σPbPb = (7.67±0.16(syst.)) b for Pb–Pb at 5.02 TeV,

– σPbPb = (7.55±0.12(syst.)) b for Pb–Pb at 2.76 TeV,

– σpPb = (2.10±0.055(syst.)) b for p–Pb at 5.02 TeV,

– σpPb = (2.12±0.047(syst.)) b for p–Pb at 8.16 TeV,

– σXeXe = (5.7±0.2(syst.)) b for Xe–Xe at 5.44 TeV.

2.3 The NBD-Glauber fit to the multiplicity distribution

To reproduce the experimental multiplicity distribution, the Glauber Monte Carlois coupled to a model
for particle production, based on a negative binomial distribution (NBD). This use of NBD is motivated
by the fact that in minimum bias pp and pp collisions at high energy, the charged particle multiplicity
dσ/dNch has been measured over a wide range of rapidity and is well described by a NBD [12, 13].

The Glauber Monte Carlo defines, for an event with a given impact parameter b, the corresponding Npart
and Ncoll. The particle multiplicity per nucleon-nucleon collision is parametrized by a NBD. To apply
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this model to any collision with a given Npart and Ncoll value we introduce the concept of “ancestors”,
i.e. independently emitting sources of particles. We assume that the number of ancestors Nancestors can
be parameterized by Nancestors = f · Npart + (1 − f ) · Ncoll. This is inspired by two-component models
[14, 15], which decompose nucleus–nucleus collisions into soft and hard interactions, where the soft
interactions produce particles with an average multiplicity proportional to Npart, and the probability for
hard interactions to occur is proportional to Ncoll.

To generate the number of particles produced per interaction, we use the negative binomial distribution

Pµ,k(n) =
Γ(n + k)

Γ(n + 1)Γ(k)
·

(µ/k)n

(µ/k + 1)n+k , (3)

which gives the probability of measuring n hits per ancestor, where µ is the mean multiplicity per ances-
tor and k controls the width. For every Glauber Monte Carlo event, the NBD is sampled Nancestors times
to obtain the averaged simulated VZERO amplitude for this event, which is proportional to the number
of particles hitting the hodoscopes. The VZERO amplitude distribution is simulated for an ensemble of
events and for various values of the NBD parameters µ, k, and the Nancestors parameter f . A minimiza-
tion procedure is applied to find the parameters which result in the smallest χ2. The fit is performed for
VZERO amplitudes large enough so that the purity of the event sample and the efficiency of the event
selection is 100%. That leaves a very broad range in the amplitude values that can be fitted to extract pa-
rameters f , µ and k directly from the data. The quality of the fit is good, as the χ2/NDF is approximately
unity for all fits. However we note that the high multiplicity tail, which is quite sensitive to fluctuations
and the detector resolution not implemented in the model, is not perfectly well described.

We can then calculate the mean number of participants 〈Npart〉 and collisions 〈Ncoll〉, and the mean nu-
clear thickness function 〈TPbPb〉 for centrality classes defined by sharp cuts in the simulated VZERO
distribution. This is different to what was done in the past, where centrality classes were defined by
cuts in the impact parameter. The root mean square (RMS) of these distributions is a measure for the
magnitude of the dispersion of the quantities.

The systematic uncertainties on the mean values are obtained by independently varying the parameters
of the Glauber model within their estimated uncertainties and repeating the fit for all the parameter vari-
ations. The total systematic uncertainty is obtained by adding in quadrature the maximum/average of the
up and downward variations from all sources. Figure 1 shows the resulting variations for Pb–Pb colli-
sions at

√
sNN= 5.02 TeV, for centrality classes defined by multiplicity or impact parameter, respectively.

3 Pb-Pb collisions at
√

sNN = 5.02 TeV

Figure 2 shows the distribution of V0 amplitudes for all triggered Pb–Pb collisions at
√

sNN = 5.02 TeV
with a vertex within 10 cm, fitted by a Glauber-NBD fit.

Table 1 shows the geometric properties (Npart, Ncoll, TPbPb) of Pb–Pb collisions at
√

sNN = 5.02 TeV for
centrality classes defined by sharp cuts in the V0M multiplicity distribution, simulated with an NBD-
Glauber fit. The mean values, the RMS, and the systematic uncertainties are obtained with a Glauber
Monte Carlo calculation.
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Fig. 1: Sensitivity of Npart, Ncoll, and TPbPbto variations of parameters in the Glauber Monte Carlo model of Pb–Pb
collisions at

√
sNN= 5.02 TeV for centrality classes defined by multiplicity (left) or impact parameter (right),

respectively. The gray band represents the RMS scaled by a factor 0.1 for visibility.
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Fig. 2: Distribution of the sum of amplitudes in the V0 scintillators for Pb–Pb collisions at
√

sNN5̄.02 TeV. The
distribution is fitted with the NBD-Glauber fit shown as a line. The inset shows a zoom of the most peripheral
region.
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Table 1: Geometric properties (Npart, Ncoll, TPbPb) of Pb–Pb collisions at
√

sNN = 5.02 TeV for centrality classes
defined by sharp cuts in the V0M multiplicity distribution, simulated with an NBD-Glauber fit. The mean values,
the RMS, and the systematic uncertainties are obtained with a Glauber Monte Carlo calculation.

Centrality 〈Npart〉 RMS (sys.) 〈Ncoll〉 RMS (sys.) 〈TPbPb〉 (1/mbarn) RMS (1/mbarn) (sys.) (1/mbarn)
0-1% 401.9 7.55 0.46 1949 87 21.1 28.83 1.29 0.177
1-2% 393.9 10.2 0.496 1844 81.3 20.1 27.28 1.2 0.171
2-3% 384.4 11.7 0.752 1755 80.8 20.3 25.96 1.19 0.2
3-4% 373.9 12.5 0.762 1673 79.9 18.8 24.75 1.18 0.18
4-5% 362.9 13 0.738 1593 77.6 17.8 23.57 1.15 0.178

0-2.5 % 395.7 11.1 0.481 1872 107 20.4 27.69 1.58 0.175
2.5-5 % 371.1 14.5 0.738 1654 95.4 18.5 24.46 1.41 0.18
5-7.5 % 344 14.9 0.927 1464 88.1 16.8 21.66 1.3 0.174
7.5-10% 318.4 14.7 1.15 1300 81.7 14.8 19.23 1.21 0.16

0-5 % 383.4 17.8 0.568 1763 149 19.4 26.08 2.21 0.176
5-10 % 331.2 19.6 1.03 1382 118 15.7 20.44 1.75 0.166

10-15 % 283 18.1 1.13 1090 97.3 12.3 16.12 1.44 0.135
15-20 % 241 16.6 1.22 857.3 83.1 10.5 12.68 1.23 0.118
20-25 % 204.1 15.1 1.33 668.8 70.7 9.21 9.894 1.05 0.11
25-30 % 171.7 13.6 1.36 516.6 59.8 7.32 7.641 0.884 0.0942
30-35 % 143.2 12.3 1.49 393 50.7 6.51 5.814 0.75 0.0917
35-40 % 118.4 11 1.2 294.6 42.1 5.12 4.358 0.624 0.073
40-45 % 96.58 9.76 1.08 216.1 34.9 3.83 3.197 0.516 0.0554
45-50 % 77.68 8.6 0.793 155.2 27.9 2.91 2.296 0.413 0.0427
50-55 % 61.28 7.49 0.9 108.6 21.8 2.61 1.607 0.323 0.0378
55-60 % 47.39 6.49 0.753 74.14 16.8 1.74 1.097 0.248 0.026
60-65 % 35.7 5.53 0.734 49.18 12.4 1.37 0.7275 0.184 0.0207
65-70 % 26.23 4.66 0.448 31.81 8.85 0.763 0.4706 0.131 0.012
70-75 % 18.63 3.9 0.329 20 6.27 0.502 0.2959 0.0927 0.0079
75-80 % 12.8 3.14 0.205 12.23 4.27 0.253 0.1808 0.0632 0.0041
80-85 % 8.481 2.45 0.171 7.198 2.81 0.236 0.1065 0.0416 0.0037
85-90 % 5.433 1.83 0.0625 4.104 1.84 0.0635 0.06071 0.0272 0.00126
90-95 % 3.309 1.22 0.0902 2.172 1.11 0.0844 0.03213 0.0165 0.00132
95-100 % 2.241 0.536 0.0441 1.228 0.497 0.0416 0.01816 0.00735 0.000673

0-10 % 357.3 32.1 0.753 1572 233 17.4 23.26 3.45 0.168
10-20 % 262 27.2 1.15 973.4 147 11.3 14.4 2.18 0.126
20-30 % 187.9 21.6 1.34 592.7 100 8.21 8.767 1.49 0.101
30-40 % 130.8 17 1.33 343.8 67.8 5.76 5.086 1 0.0814
40-50 % 87.14 13.2 0.928 185.7 43.9 3.33 2.747 0.649 0.0486
50-60 % 54.34 9.87 0.802 91.41 26 2.11 1.352 0.385 0.0309
60-70 % 30.97 6.97 0.57 40.5 13.9 1.03 0.5992 0.205 0.0158
70-80 % 15.72 4.58 0.241 16.12 6.62 0.341 0.2385 0.098 0.00552
80-90 % 6.973 2.64 0.0729 5.667 2.84 0.1 0.08383 0.042 0.00178
90-100 % 2.785 1.09 0.0497 1.708 0.986 0.0474 0.02527 0.0146 0.000777

0-20% 309.7 56.2 0.895 1273 357 14.1 18.83 5.29 0.142
20-40% 159.4 34.5 1.32 468.2 151 6.92 6.927 2.23 0.0909
40-60% 70.74 20.1 0.859 138.5 59.3 2.7 2.049 0.878 0.0394
60-80% 23.35 9.64 0.404 28.31 16.3 0.68 0.4188 0.241 0.0106
80-100% 4.883 2.91 0.0627 3.691 2.9 0.0761 0.0546 0.0429 0.00133
60-100% 14.12 11.7 0.255 16 17 0.409 0.2367 0.251 0.00637

0-30% 269.1 74.5 0.993 1046 437 11.7 15.48 6.47 0.121
30-50% 109 26.6 1.11 264.8 97.5 4.51 3.917 1.44 0.0645
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4 Pb-Pb collisions at
√

sNN = 2.76 TeV

Figure 4 shows the distribution of V0 amplitudes for all triggered Pb–Pb collisions at
√

sNN = 2.76 TeV
with a vertex within 10 cm, fitted by a Glauber-NBD fit.

Table 2 shows the geometric properties (Npart, Ncoll, TPbPb) of Pb–Pb collisions at
√

sNN = 2.76 TeV for
centrality classes defined by sharp cuts in the V0M multiplicity distribution.
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Fig. 4: Distribution of the sum of amplitudes in the V0 scintillators for Pb–Pb collisions at
√

sNN2̄.76 TeV. The
distribution is fitted with the NBD-Glauber fit shown as a line.
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Table 2: Geometric properties (Npart, Ncoll, TPbPb) of Pb–Pb collisions at
√

sNN = 2.76 TeV for centrality classes
defined by sharp cuts in the V0M multiplicity distribution, simulated with an NBD-Glauber fit. The mean values,
the RMS, and the systematic uncertainties are obtained with a Glauber Monte Carlo calculation.

Centrality 〈Npart〉 RMS (sys.) 〈Ncoll〉 RMS (sys.) 〈TPbPb〉 (1/mbarn) RMS (1/mbarn) (sys.) (1/mbarn)
0-1% 400.8 7.7 1.3 1788 79 32 28.94 1.3 0.29
1-2% 392.4 10 1.5 1694 76 32 27.42 1.2 0.26
2-3% 382.3 12 1.9 1614 76 32 26.11 1.2 0.29
3-4% 371.5 12 2.3 1537 73 33 24.86 1.2 0.31
4-5% 360.4 13 2.5 1464 72 31 23.68 1.2 0.27

0-2.5 % 394.2 11 1.2 1720 98 31 27.83 1.6 0.26
2.5-5 % 368.7 15 2.3 1519 88 32 24.58 1.4 0.29
5-7.5 % 341.2 15 2.6 1345 81 29 21.76 1.3 0.23
7.5-10% 314.5 15 3.5 1193 76 26 19.3 1.2 0.23
0-5 % 381.5 18 1.7 1619 1.4e+02 31 26.2 2.2 0.27

5-10 % 327.8 20 2.8 1269 1.1e+02 27 20.53 1.8 0.23
10-15 % 280.1 18 2.8 1004 89 24 16.25 1.4 0.23
15-20 % 238.5 16 2.6 791.1 76 19 12.8 1.2 0.18
20-25 % 202.1 15 2.5 622.3 64 16 10.07 1 0.16
25-30 % 170.8 13 2.6 485 56 14 7.848 0.91 0.19
30-35 % 142.7 12 2.7 370.7 47 10 5.998 0.76 0.15
35-40 % 117.6 11 1.9 279.4 40 9.2 4.521 0.65 0.14
40-45 % 96.09 9.5 2.3 204.7 32 6.5 3.313 0.52 0.088
45-50 % 77.27 8.4 1.8 148.4 26 5.7 2.401 0.42 0.082
50-55 % 61.08 7.3 1.8 104.4 21 4.2 1.69 0.33 0.06
55-60 % 47.47 6.3 2 71.98 16 3.8 1.165 0.25 0.056
60-65 % 35.76 5.5 1.5 48.15 12 2.9 0.7792 0.19 0.045
65-70 % 26.31 4.6 1.2 31.32 8.7 1.9 0.5067 0.14 0.031
70-75 % 18.67 3.8 0.79 19.69 6.1 0.97 0.3186 0.098 0.016
75-80 % 12.91 3.1 0.71 12.18 4.1 0.81 0.1972 0.066 0.013
80-85 % 8.588 2.4 0.49 7.244 2.8 0.48 0.1172 0.045 0.0078
85-90 % 5.438 1.8 0.17 4.075 1.8 0.16 0.06594 0.029 0.0028
90-95 % 3.315 1.2 0.13 2.173 1.1 0.11 0.03517 0.018 0.002

95-100 % 2.238 0.53 0.091 1.224 0.49 0.082 0.01981 0.008 0.0014
0-10 % 354.7 33 1.9 1444 2.1e+02 28 23.37 3.5 0.2
10-20 % 259.3 27 2.7 897.7 1.3e+02 21 14.53 2.2 0.2
20-30 % 186.5 21 2.4 553.7 91 14 8.96 1.5 0.17
30-40 % 130.1 17 2.2 325 63 9.7 5.259 1 0.14
40-50 % 86.69 13 2 176.6 41 6 2.857 0.66 0.084
50-60 % 54.28 9.6 1.9 88.21 24 4 1.427 0.4 0.058
60-70 % 31.04 6.9 1.3 39.74 13 2.4 0.6431 0.22 0.038
70-80 % 15.81 4.5 0.78 15.96 6.4 0.93 0.2582 0.1 0.015
80-90 % 7.011 2.6 0.33 5.657 2.8 0.31 0.09153 0.046 0.0051

90-100 % 2.788 1.1 0.12 1.709 0.97 0.099 0.02765 0.016 0.0018
0-20% 307 56 2.2 1171 3.3e+02 24 18.95 5.3 0.19

20-40% 158.3 34 2.2 439.3 1.4e+02 12 7.109 2.2 0.15
40-60% 70.49 20 2 132.4 55 4.9 2.143 0.9 0.07
60-80% 23.42 9.6 1 27.84 16 1.6 0.4505 0.26 0.026
80-100% 4.9 2.9 0.17 3.682 2.9 0.16 0.05959 0.047 0.0028
60-100% 14.17 12 0.55 15.78 17 0.85 0.2554 0.27 0.013

0-30% 266.8 74 2.1 965.2 4e+02 20 15.62 6.4 0.17
30-50% 108.4 26 2.1 250.8 91 7.7 4.058 1.5 0.11
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5 Xe-Xe collisions at
√

sNN = 5.44 TeV

In the Monte Carlo Glauber calculation, the nuclear density for 129Xe, is described by a Woods-Saxon
distribution for a deformed nucleus.

Figure 5 shows the distribution of V0 amplitudes for all triggered Xe–Xe collisions at
√

sNN = 5.44 TeV
with a vertex within 10 cm, fitted by a Glauber-NBD fit.

Table 3 shows the geometric properties (Npart, Ncoll, TXeXe) of Xe–Xe collisions at
√

sNN = 5.44 TeV for
centrality classes defined by sharp cuts in the V0M multiplicity distribution.

V0M amplitude (arb. units)
0 5000 10000 15000 20000 25000

E
v
e
n
ts

 (
a
rb

. 
u
n
it
s
)

5−10

4−10

3−10

 = 5.44 TeV
NN

sALICE Xe­Xe 
Data
NBD­Glauber fit

]
coll

 + (1­f)N
part

 x [f N,kµ
P

 = 53.7, k = 1.0µf = 0.802, 

0
­5

%

5
­1

0
%

1
0

­2
0

%

2
0

­3
0

%

3
0

­4
0

%

4
0

­5
0

%

5
0

­6
0

%

0 500 1000 1500
5−

10

4−10

3−
10

6
0

­7
0

%

7
0

­8
0

%

8
0

­9
0

%
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Table 3: Geometric properties (Npart, Ncoll, TPbPb) of Xe–Xe collisions at
√

sNN = 5.44 TeV for centrality classes
defined by sharp cuts in the V0M multiplicity distribution, simulated with an NBD-Glauber fit. The mean values,
the RMS, and the systematic uncertainties are obtained with a Glauber Monte Carlo calculation.

Centrality 〈Npart〉 RMS (sys.) 〈Ncoll〉 RMS (sys.) 〈TXeXe〉 (1/mbarn) RMS (1/mbarn) (sys.) (1/mbarn)
0-2.5 % 242.3 7.7 1.3 1012 75 57 14.79 1.1 0.85
2.5-5 % 229.2 10 1.7 885.9 63 50 12.95 0.92 0.71
5-7.5 % 214.1 11 2.0 782.8 59 48 11.44 0.86 0.70
7.5-10% 199.2 11 1.8 691.8 55 45 10.11 0.81 0.65

0-5% 235.8 11 1.5 948.9 93 53 13.87 1.4 0.78
5-10% 206.7 13 1.8 737.3 73 46 10.78 1.1 0.67

10-15 % 177.8 13 1.6 574.7 62 37 8.402 0.91 0.54
15-20 % 151.8 12 2.4 446.4 52 35 6.527 0.76 0.51
20-25 % 128.7 11 2.6 343.8 44 31 5.026 0.65 0.45
25-30 % 108.2 9.7 2.7 261.7 38 26 3.826 0.55 0.39
30-35 % 90.14 8.7 2.7 196.7 31 21 2.876 0.45 0.31
35-40 % 74.26 7.8 2.7 145.9 25 17 2.134 0.37 0.25
40-45 % 60.48 6.9 2.5 106.7 20 13 1.56 0.3 0.19
45-50 % 48.63 6.0 2.5 76.87 16 10 1.124 0.24 0.15
50-55 % 38.36 5.3 2.3 54.25 13 7.1 0.7932 0.18 0.11
55-60 % 29.77 4.6 2.0 37.85 9.6 5.2 0.5534 0.14 0.078
60-65 % 22.63 3.9 1.6 25.89 7.2 3.5 0.3785 0.1 0.052
65-70 % 16.83 3.4 1.3 17.44 5.2 2.3 0.255 0.077 0.035
70-75 % 12.25 2.8 1.0 11.54 3.8 1.5 0.1687 0.055 0.021
75-80 % 8.741 2.3 0.65 7.502 2.7 0.85 0.1097 0.04 0.013
80-85 % 6.121 1.8 0.42 4.775 1.9 0.47 0.06981 0.028 0.0069
85-90 % 4.143 1.4 0.23 2.91 1.3 0.16 0.04255 0.019 0.0035
90-95 % 2.814 0.94 0.12 1.744 0.85 0.11 0.0255 0.012 0.0016
95-100 % 2.155 0.42 0.033 1.148 0.4 0.033 0.01679 0.0058 0.00049

0-10% 221.2 19 1.5 843.1 140 49 12.33 2 0.71
10-20 % 164.8 18 2.0 510.6 86 26 7.465 1.3 0.52
20-30 % 118.4 14 2.7 302.8 58 28 4.426 0.85 0.42
30-40 % 82.21 11 2.8 171.3 38 19 2.505 0.56 0.28
40-50 % 54.56 8.8 2.5 91.81 24 11 1.342 0.35 0.17
50-60 % 34.06 6.5 2.1 46.04 14 6.2 0.6731 0.2 0.091
60-70 % 19.72 4.7 1.5 21.65 7.6 2.9 0.3166 0.11 0.043
70-80 % 10.5 3.1 0.78 9.515 3.9 1.1 0.1391 0.056 0.017
80-90 % 5.127 1.9 0.33 3.838 1.9 0.35 0.05611 0.028 0.0052
90-100 % 2.488 0.8 0.085 1.449 0.73 0.071 0.02118 0.011 0.0011

0–20% 193 34 1.8 676.9 2e+02 42 9.896 2.9 0.62
20–90% 46.42 39 1.8 92.51 1.1e+02 10 1.352 1.5 0.14
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6 p-Pb collisions at
√

sNN = 8.16 TeV

Figure 6 shows the distribution of V0A amplitudes for all triggered p–Pb collisions with a vertex within
10 cm, fitted by a Glauber-NBD fit.
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Fig. 6: Distribution of the sum of amplitudes in the V0A scintillators for p–Pb collisions at
√

sNN8̄.16 TeV. The
distribution is fitted with the NBD-Glauber fit shown as a line. The inset shows a zoom of the most peripheral
region.

Table 4 shows the geometric properties (Npart, Ncoll, TpPb) of p–Pb collisions at
√

sNN = 8.16 TeV for
centrality classes defined by sharp cuts in the V0A, V0M or CL1 multiplicity distribution, simulated with
an NBD-Glauber fit. The mean values, the RMS, and the systematic uncertainties are obtained with a
Glauber Monte Carlo calculation.

As describedd in [2], the hybrid method aims to provide an unbiased centrality estimator. It is based on
two assumptions, the first is that the event selection based on the energy deposited in the ZDC is free from
the biases due to a multiplicity selection. The second assumption is that some observables scale linearly
with Ncoll and Npart, allowing one to establish a relationship to the collision geometry. Two sets of 〈Ncoll〉

are calculated: 〈Nmult
coll 〉 and 〈NPb−side

coll 〉 for each centrality bin i estimated using the energy deposited in
the neutron calorimeter on the Pb-going side (ZN). The first set is computed assuming that the charged-
particle multiplicity at mid-rapidity is proportional to the Npart. The second set is calculated using the
Pb-side multiplicity. A comparison of the Ncoll values obtained for the various estimators is reported
in the table. The two different sets are consistent among each other and with the values calculated for
Pb–p. The systematic uncertainties come from the uncertainty on the Ncoll for 0–100% summed with the
maximum difference between the 〈Nmult

coll 〉 and 〈NPb−side
coll 〉.

Figure 7 shows the distribution of the energy deposited in the Pb-going side (ZNA) calorimeter.

Table 5 reports the mean values of 〈Nmult
coll 〉 and 〈NPb−side

coll 〉, the maximum difference among the two, and
the total systematic uncertainty.

The TpPb values in Tab. 6 are calculated by dividing the Ncoll values by the cross-section σinel
NN . The

uncertainty is given by the quadrature sum of the maximum difference among the values calculated with
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Fig. 7: Distribution of the energy deposited in the ZNA calorimeter.

different assumptions on the particle production mechanism, plus the uncerainty on the TpPb for 0–100%.
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Table 4: Geometric properties (Npart, Ncoll, TpPb) of p–Pb collisions at
√

sNN = 8.16 TeV. The mean values, the
RMS, and the systematic uncertainties are obtained with a Glauber Monte Carlo calculation.

Centrality 〈Npart〉 RMS (sys.) 〈Ncoll〉 RMS (sys.) 〈TpPb〉 (1/mbarn) RMS (1/mbarn) (sys.) (1/mbarn)
0–100% 8.118 4.8 0.12 7.118 4.8 0.12 0.09818 0.071 0.002

V0A
0–5% 16.21 3.86 0.208 15.21 3.86 0.208 0.2098 0.0532 0.00243

5–10% 14.43 3.78 0.172 13.43 3.78 0.172 0.1853 0.0521 0.00198
10–20% 12.98 3.85 0.159 11.98 3.85 0.159 0.1653 0.0531 0.002
20–40% 10.67 3.93 0.16 9.675 3.93 0.16 0.1334 0.0541 0.00218
40–60% 7.673 3.64 0.162 6.673 3.64 0.162 0.09204 0.0503 0.00226
60–80% 4.908 2.74 0.0902 3.908 2.74 0.0902 0.0539 0.0378 0.00116
80–100% 2.935 1.41 0.0431 1.935 1.41 0.0431 0.02669 0.0195 0.000548

0–20% 14.16 4.05 0.151 13.16 4.05 0.151 0.1814 0.0559 0.00177
60–100% 3.927 2.39 0.0523 2.927 2.39 0.0523 0.04037 0.033 0.000694

0–10% 15.32 3.92 0.179 14.32 3.92 0.179 0.1975 0.0541 0.002
10–20% 12.98 3.85 0.159 11.98 3.85 0.159 0.1653 0.0531 0.002
20–30% 11.42 3.87 0.164 10.42 3.87 0.164 0.1437 0.0534 0.0021
30–40% 9.941 3.84 0.147 8.941 3.84 0.147 0.1233 0.053 0.00198
40–50% 8.426 3.71 0.153 7.426 3.71 0.153 0.1024 0.0512 0.00216
50–60% 6.911 3.41 0.153 5.911 3.41 0.153 0.08153 0.0471 0.00211
60–70% 5.49 2.95 0.115 4.49 2.95 0.115 0.06194 0.0407 0.00155
70–80% 4.279 2.33 0.0672 3.279 2.33 0.0672 0.04522 0.0322 0.000843
80–90% 3.288 1.64 0.0412 2.288 1.64 0.0412 0.03155 0.0226 0.00049
90–100% 2.517 0.93 0.0195 1.517 0.93 0.0195 0.02093 0.0128 0.000278

V0M
0–5% 17.49 3.32 0.226 16.49 3.32 0.226 0.2275 0.0458 0.00271

5–10% 15.31 3.03 0.152 14.31 3.03 0.152 0.1974 0.0418 0.00173
10–20% 13.61 3.02 0.164 12.61 3.02 0.164 0.1739 0.0417 0.00199
20–40% 10.96 3.07 0.136 9.957 3.07 0.136 0.1373 0.0424 0.00183
40–60% 7.465 2.84 0.0833 6.465 2.84 0.0833 0.08917 0.0392 0.00128
60–80% 4.354 2.04 0.0683 3.354 2.04 0.0683 0.04626 0.0282 0.000952
80–100% 2.619 0.986 0.0153 1.619 0.986 0.0153 0.02233 0.0136 0.000239

0–20% 15.01 3.49 0.161 14.01 3.49 0.161 0.1932 0.0481 0.00187
60–100% 3.481 1.82 0.0396 2.481 1.82 0.0396 0.03422 0.0251 0.000535

0–10% 16.41 3.36 0.186 15.41 3.36 0.186 0.2126 0.0464 0.00217
10–20% 13.61 3.02 0.164 12.61 3.02 0.164 0.1739 0.0417 0.00199
20–30% 11.8 2.98 0.15 10.8 2.98 0.15 0.149 0.0411 0.00196
30–40% 10.11 2.93 0.119 9.106 2.93 0.119 0.1256 0.0404 0.00169
40–50% 8.338 2.82 0.116 7.338 2.82 0.116 0.1012 0.0389 0.00175
50–60% 6.588 2.58 0.102 5.588 2.58 0.102 0.07707 0.0356 0.00155
60–70% 4.971 2.19 0.0965 3.971 2.19 0.0965 0.05478 0.0302 0.00134
70–80% 3.73 1.67 0.0417 2.73 1.67 0.0417 0.03766 0.023 0.00059
80–90% 2.898 1.15 0.029 1.898 1.15 0.029 0.02618 0.0159 0.000442
90–100% 2.324 0.654 0.0193 1.324 0.654 0.0193 0.01827 0.00903 0.000285

CL1
0–5% 17 3.54 0.353 16 3.54 0.353 0.2207 0.0489 0.00471

5–10% 15.01 3.32 0.282 14.01 3.32 0.282 0.1932 0.0459 0.00371
10–20% 13.38 3.36 0.187 12.38 3.36 0.187 0.1708 0.0463 0.00209
20–40% 10.81 3.44 0.166 9.813 3.44 0.166 0.1353 0.0475 0.00211
40–60% 7.475 3.18 0.191 6.475 3.18 0.191 0.08931 0.0439 0.00259
60–80% 4.495 2.31 0.143 3.495 2.31 0.143 0.04821 0.0319 0.00197
80–100% 2.709 1.12 0.113 1.709 1.12 0.113 0.02358 0.0154 0.00158

0–20% 14.7 3.71 0.24 13.7 3.71 0.24 0.1889 0.0511 0.0029
60–100% 3.636 2.04 0.0784 2.636 2.04 0.0784 0.03636 0.0281 0.00103
0–10% 16.02 3.58 0.349 15.02 3.58 0.349 0.2072 0.0493 0.00457

10–20% 13.38 3.36 0.187 12.38 3.36 0.187 0.1708 0.0463 0.00209
20–30% 11.66 3.35 0.101 10.66 3.35 0.101 0.147 0.0462 0.000995
30–40% 9.982 3.33 0.159 8.982 3.33 0.159 0.1239 0.0459 0.00229
40–50% 8.301 3.22 0.195 7.301 3.22 0.195 0.1007 0.0444 0.00263
50–60% 6.693 2.95 0.177 5.693 2.95 0.177 0.07853 0.0408 0.00233
60–70% 5.153 2.52 0.113 4.153 2.52 0.113 0.05728 0.0347 0.00147
70–80% 3.887 1.92 0.152 2.887 1.92 0.152 0.03981 0.0264 0.00209
80–90% 2.995 1.31 0.189 1.995 1.31 0.189 0.02752 0.018 0.00263
90–100% 2.388 0.749 0.104 1.388 0.749 0.104 0.01914 0.0103 0.00145
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Table 5: 〈Ncoll〉 values of p–Pb collisions at
√

sNN = 8.16 TeV obtained with the hybrid method.

Centrality Nmult
coll NPb−side

coll max diff (%) tot sys (%)
0–5% 13.4 14.2 6.0 6.2

5–10% 12.5 12.9 3.2 3.6
10–20% 11.5 11.8 2.5 3.1
20–40% 9.81 9.77 0.4 1.7
40–60% 7.09 6.83 3.7 4.1
60–80% 4.28 4.09 4.3 4.6

80–100% 2.05 2.10 2.4 2.9
0–10% 12.9 13.6 5.4 5.7
10–20% 11.5 11.8 2.5 3.0
20–30% 10.4 10.5 1.0 1.8
30–40% 9.21 9.09 1.3 2.0
40–50% 7.82 7.58 3.1 3.4
50–60% 6.37 6.09 4.4 4.6
60–70% 4.93 4.69 4.9 5.1
70–80% 3.63 3.48 4.1 4.4
80–90% 2.53 2.51 0.8 1.7

90–100% 1.58 1.70 7.6 7.7
0–2% 13.9 14.7 5.4 5.6

2–10% 12.7 13.3 4.5 4.8
0–20% 12.2 12.7 3.9 4.3

60-100% 3.17 3.10 2.2 2.8
80–90% 2.53 2.51 0.8 1.9
0–90% 7.71 7.70 0.1 1.7

Table 6: 〈TpPb〉 values of p–Pb collisions at
√

sNN = 8.16 TeV obtained with the hybrid method.

Centrality T mult
pPb T Pb−side

pPb max diff (%) tot sys (%)
0–5% 0.185 0.195 6.0 6.4

5–10% 0.172 0.178 3.2 3.8
10–20% 0.159 0.163 2.5 3.3
20–40% 0.135 0.135 0.4 2.1
40–60% 0.0978 0.0942 3.7 4.2
60–80% 0.0590 0.0564 4.3 4.8

80–100% 0.0287 0.0294 2.4 3.1
0–10% 0.178 0.188 5.4 5.8
10–20% 0.159 0.163 2.5 3.2
20–30% 0.143 0.145 1.0 2.2
30–40% 0.127 0.125 1.3 2.4
40–50% 0.108 0.105 3.1 3.7
50–60% 0.0879 0.0834 4.4 4.8
60–70% 0.0680 0.0647 4.9 5.3
70–80% 0.0501 0.0480 4.1 4.6
80–90% 0.0349 0.0346 0.8 2.1

90–100% 0.0218 0.0234 7.6 7.8
0–2% 0.192 0.203 5.4 5.6

2–10% 0.175 0.183 4.5 4.8
0–20% 0.168 0.175 3.9 4.4

60-100% 0.0437 0.0427 2.2 3.0
80–90% 0.0349 0.0346 0.8 1.9
0–90% 0.106 0.106 0.1 1.7
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7 p-Pb collisions at
√

sNN = 5.02 TeV

Table 7 shows the geometric properties (Npart, Ncoll, TpPb) of p–Pb collisions at
√

sNN = 5.02 TeV for
centrality classes defined by sharp cuts in the V0A, V0M or CL1 multiplicity distribution.

For the calculations with the hybrid method we use another assumption on particle production, namely
that the yield of charged high-ptparticles at mid-rapidity is proportional to the number of binary NN
collisions (Ncoll), in order to calculate the set of Nhigh−pt

coll , restricted however only to the classes with the
pt-spectra were calculated, or those which can be derived with weigthed average.
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Table 7: Geometric properties (Npart, Ncoll, TpPb) of p–Pb collisions at
√

sNN = 5.02 TeV. The mean values, the
RMS, and the systematic uncertainties are obtained with a Glauber Monte Carlo calculation.

Centrality 〈Npart〉 RMS (sys.) 〈Ncoll〉 RMS (sys.) 〈TpPb〉 (1/mbarn) RMS (1/mbarn) (sys.) (1/mbarn)
0–100% 7.708 4.8 0.11 6.708 4.8 0.11 0.09923 0.071 0.0017

V0A
0–5% 15.1 3.77 0.747 14.1 3.77 0.747 0.2085 0.0557 0.00997
5–10% 13.47 3.7 0.687 12.47 3.7 0.687 0.1845 0.0547 0.00919

10–20% 12.18 3.78 0.612 11.18 3.78 0.612 0.1654 0.0559 0.00813
20–40% 10.09 3.84 0.472 9.089 3.84 0.472 0.1345 0.0568 0.00624
40–60% 7.42 3.57 0.272 6.42 3.57 0.272 0.09496 0.0529 0.00357
60–80% 4.884 2.73 0.0974 3.884 2.73 0.0974 0.05745 0.0404 0.00127

80–100% 2.982 1.47 0.0331 1.982 1.47 0.0331 0.02932 0.0217 0.000468
0–20% 13.23 3.94 0.673 12.23 3.94 0.673 0.181 0.0583 0.00898

60–100% 3.93 2.38 0.1 2.93 2.38 0.1 0.04334 0.0353 0.00138
0–10% 14.29 3.82 0.712 13.29 3.82 0.712 0.1966 0.0565 0.0095

10–20% 12.18 3.78 0.612 11.18 3.78 0.612 0.1654 0.0559 0.00813
20–30% 10.76 3.8 0.542 9.759 3.8 0.542 0.1444 0.0562 0.00715
30–40% 9.451 3.77 0.391 8.451 3.77 0.391 0.125 0.0557 0.00508
40–50% 8.075 3.64 0.333 7.075 3.64 0.333 0.1047 0.0538 0.00441
50–60% 6.755 3.38 0.222 5.755 3.38 0.222 0.08513 0.05 0.0029
60–70% 5.437 2.93 0.186 4.437 2.93 0.186 0.06564 0.0434 0.00258
70–80% 4.306 2.37 0.0731 3.306 2.37 0.0731 0.04891 0.035 0.00105
80–90% 3.365 1.72 0.0628 2.365 1.72 0.0628 0.03499 0.0254 0.000889

90–100% 2.571 0.995 0.0287 1.571 0.995 0.0287 0.02324 0.0147 0.00038
V0M

0–5% 16.51 3.2 0.804 15.51 3.2 0.804 0.2294 0.0473 0.0107
5–10% 14.44 2.94 0.695 13.44 2.94 0.695 0.1989 0.0435 0.00922

10–20% 12.87 2.91 0.626 11.87 2.91 0.626 0.1757 0.043 0.00825
20–40% 10.4 2.95 0.474 9.396 2.95 0.474 0.139 0.0437 0.00623
40–60% 7.169 2.76 0.251 6.169 2.76 0.251 0.09125 0.0408 0.00327
60–80% 4.253 1.98 0.112 3.253 1.98 0.112 0.04812 0.0294 0.00151

80–100% 2.6 0.968 0.0373 1.6 0.968 0.0373 0.02367 0.0143 0.000552
0–20% 14.18 3.34 0.69 13.18 3.34 0.69 0.1949 0.0494 0.00913

60–100% 3.434 1.77 0.0639 2.434 1.77 0.0639 0.03601 0.0262 0.00082
0–10% 15.47 3.24 0.749 14.47 3.24 0.749 0.2141 0.0479 0.00997

10–20% 12.87 2.91 0.626 11.87 2.91 0.626 0.1757 0.043 0.00825
20–30% 11.18 2.87 0.546 10.18 2.87 0.546 0.1506 0.0425 0.00723
30–40% 9.613 2.83 0.417 8.613 2.83 0.417 0.1274 0.0418 0.00545
40–50% 7.994 2.74 0.288 6.994 2.74 0.288 0.1035 0.0406 0.00373
50–60% 6.325 2.51 0.214 5.325 2.51 0.214 0.07878 0.0372 0.00284
60–70% 4.85 2.13 0.137 3.85 2.13 0.137 0.05696 0.0316 0.00177
70–80% 3.682 1.64 0.0682 2.682 1.64 0.0682 0.03968 0.0243 0.000846
80–90% 2.876 1.14 0.0607 1.876 1.14 0.0607 0.02775 0.0168 0.000879

90–100% 2.323 0.653 0.0248 1.323 0.653 0.0248 0.01957 0.00966 0.000344
CL1

0–5% 15.97 3.41 0.856 14.97 3.41 0.856 0.2214 0.0505 0.0118
5–10% 14.05 3.25 0.743 13.05 3.25 0.743 0.193 0.048 0.0102

10–20% 12.62 3.27 0.607 11.62 3.27 0.607 0.1719 0.0483 0.00815
20–40% 10.31 3.33 0.458 9.312 3.33 0.458 0.1377 0.0492 0.00599
40–60% 7.273 3.13 0.28 6.273 3.13 0.28 0.0928 0.0462 0.0037
60–80% 4.485 2.29 0.187 3.485 2.29 0.187 0.05156 0.0339 0.00255

80–100% 2.744 1.16 0.0863 1.744 1.16 0.0863 0.02579 0.0172 0.00116
0–20% 13.85 3.57 0.678 12.85 3.57 0.678 0.1901 0.0528 0.00913

60–100% 3.624 2.01 0.128 2.624 2.01 0.128 0.03881 0.0298 0.00181
0–10% 15.01 3.46 0.773 14.01 3.46 0.773 0.2073 0.0512 0.0106

10–20% 12.62 3.27 0.607 11.62 3.27 0.607 0.1719 0.0483 0.00815
20–30% 11.03 3.26 0.529 10.03 3.26 0.529 0.1483 0.0483 0.00707
30–40% 9.54 3.23 0.42 8.54 3.23 0.42 0.1263 0.0478 0.00551
40–50% 7.998 3.16 0.324 6.998 3.16 0.324 0.1035 0.0467 0.00426
50–60% 6.476 2.89 0.241 5.476 2.89 0.241 0.081 0.0428 0.00329
60–70% 5.077 2.47 0.249 4.077 2.47 0.249 0.06031 0.0366 0.00353
70–80% 3.914 1.94 0.208 2.914 1.94 0.208 0.04311 0.0287 0.00291
80–90% 3.077 1.38 0.157 2.077 1.38 0.157 0.03073 0.0204 0.00224

90–100% 2.441 0.821 0.105 1.441 0.821 0.105 0.02132 0.0121 0.00154
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Table 8: 〈Ncoll〉 values of p–Pb collisions at
√

sNN = 5.02 TeV obtained with the hybrid method.

Centrality Nmult
coll Nhigh−pt

coll NPb−side
coll max diff (%) tot sys (%)

0–5% 11.9 12.2 12.9 8.4 8.6
5–10% 11.3 11.8 11.9 5.3 5.5

10–20% 10.7 11.0 11.1 3.7 4.1
20–40% 9.29 9.45 9.32 1.7 2.4
40–60% 6.87 6.62 6.54 4.8 5.1
60–80% 4.17 3.93 3.89 6.9 7.1
80–100% 2.03 1.97 2.00 2.9 3.3

0–10% 11.6 12.0 12.4 6.9 7.1
10–20% 10.7 11.0 11.1 3.7 4.1
20–30% 9.82 - 9.94 1.2 2.0
30–40% 8.76 - 8.69 0.8 1.8
40–50% 7.57 - 7.29 3.7 4.0
50–60% 6.17 - 5.80 6.0 6.2
60–70% 4.80 - 4.45 7.3 7.5
70–80% 3.55 - 3.30 7.0 7.2
80–90% 2.39 - 2.37 0.8 1.8
90–100% 1.58 - 1.63 3.2 3.6

0–2% 12.4 - 13.2 6.4 6.6
2–10% 11.4 - 12.2 7.0 7.2
0–20% 11.1 11.5 11.7 5.4 5.6

60-100% 3.10 2.95 2.94 5.2 5.4
80–90% 2.09 - 1.98 5.3 5.5
0–90% 6.50 - 6.50 0.0 1.6

Table 9: 〈TpPb〉 values of p–Pb collisions at
√

sNN = 5.02 TeV obtained with the hybrid method.

Centrality T mult
pPb T high−pt

pPb T Pb−side
pPb max diff (%) tot sys (%)

0–5% 0.176 0.180 0.191 8.4 8.6
5–10% 0.167 0.174 0.176 5.3 5.6
10–20% 0.158 0.163 0.164 3.7 4.1
20–40% 0.137 0.140 0.138 1.7 2.4
40–60% 0.102 0.0979 0.0967 4.8 5.1
60–80% 0.0617 0.0581 0.0575 6.9 7.1

80–100% 0.0300 0.0291 0.0296 2.9 3.4
0–10% 0.172 0.178 0.183 6.9 7.1
10–20% 0.158 0.163 0.164 3.7 4.1
20–30% 0.145 - 0.147 1.2 2.1
30–40% 0.130 - 0.129 0.8 1.9
40–50% 0.112 - 0.108 3.7 4.1
50–60% 0.0913 - 0.0858 6.0 6.2
60–70% 0.0710 - 0.0658 7.3 7.5
70–80% 0.0525 - 0.0488 7.0 7.2
80–90% 0.0353 - 0.0351 0.8 1.9

90–100% 0.0234 - 0.0241 3.2 3.6
0–2% 0.183 - 0.195 6.4 6.6

2–10% 0.169 - 0.180 7.0 7.2
0–20% 0.164 0.170 0.173 5.4 5.7

60-100% 0.0459 0.0436 0.0435 5.2 5.4
80–90% 0.0309 - 0.0293 5.3 5.5
0–90% 0.0961 - 0.0961 0.0 1.6
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M. Angeletti35, V. Anguelov106, T. Antičić110, F. Antinori58, P. Antonioli55, N. Apadula81,
L. Aphecetche117, H. Appelshäuser69, S. Arcelli26, R. Arnaldi60, M. Arratia81, I.C. Arsene20,
M. Arslandok147,106, A. Augustinus35, R. Averbeck109, S. Aziz79, M.D. Azmi16, A. Badalà57,
Y.W. Baek42, X. Bai109, R. Bailhache69, R. Bala103, A. Balbino31, A. Baldisseri139, M. Ball44,
D. Banerjee4, R. Barbera27, L. Barioglio25, M. Barlou86, G.G. Barnaföldi146, L.S. Barnby96,
V. Barret136, C. Bartels129, K. Barth35, E. Bartsch69, F. Baruffaldi28, N. Bastid136, S. Basu82,144,
G. Batigne117, B. Batyunya76, D. Bauri50, J.L. Bazo Alba114, I.G. Bearden91, C. Beattie147,
I. Belikov138, A.D.C. Bell Hechavarria145, F. Bellini35, R. Bellwied127, S. Belokurova115, V. Belyaev95,
G. Bencedi70,146, S. Beole25, A. Bercuci49, Y. Berdnikov100, A. Berdnikova106, D. Berenyi146,
L. Bergmann106, M.G. Besoiu68, L. Betev35, P.P. Bhaduri142, A. Bhasin103, I.R. Bhat103, M.A. Bhat4,
B. Bhattacharjee43, P. Bhattacharya23, A. Bianchi25, L. Bianchi25, N. Bianchi53, J. Bielčík38,
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V. Petráček38, M. Petrovici49, R.P. Pezzi71, S. Piano61, M. Pikna13, P. Pillot117, O. Pinazza55,35,
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