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(ABSTRACT)

In this thesis we consider foundational elements of quantum gravity as well as it possible ob-

servable astrophysical effects. In particular investigate a background independent formulation of

Matrix Theory. We discuss a background independent formulation of a holographic theory of quan-

tum gravity. The present thesis incorporates the necessary background material on geometry of

canonical quantum theory, holography and spacetime thermodynamics, Matrix theory, as well as

our specific proposal for a dynamical theory of geometric quantum mechanics, as applied to Matrix

theory. At the heart of this thesis is a new analysis of the conceptual problem of time and the

closely related and phenomenologically relevant problem of vacuum energy in quantum gravity. We

also present a discussion of some observational implications of this new viewpoint on the problem

of vacuum energy. as well as a novel solution to the low entropy and arrow of time puzzles of the

initial state of the Universe. Our approach derives from the physics of the specific generalization

of Matrix theory as the basis for a quantum theory of gravity considered here. The particular

dynamical state space of this theory, the infinite dimensional analogue of the Fubini-Study metric

over a complex non-linear Grassmannian, has recently been studied by Michor and Mumford. The

geodesic distance between any two points on this space is zero. Here we show that this mathemati-

cal result translates to a description of a hot, zero entropy state and an arrow of time after the Big

Bang. This is modeled as a far from equilibrium, large fluctuation driven, “freezing by heating”

metastable ordered phase transition of a non-linear dissipative dynamical system. We also consider

an evaporating black hole in the presence of an extra spatial dimension would undergo an explosive

phase of evaporation. We show that such an event, involving a primordial black hole, can produce

a detectable, distinguishable electromagnetic pulse, signaling the existence of an extra dimension

of size L ∼ 10−18 − 10−20 m. We derive a generic relationship between the Lorentz factor of a

pulse-producing ”fireball” and the TeV energy scale. For an ordinary toroidally compactified extra

dimension, transient radio-pulse searches probe the electroweak energy scale (∼0.1 TeV), enabling

comparison with the Large Hadron Collider.
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Chapter 1

Introduction

In this thesis we consider two monumental questions which must be confronted by any putative

theory of quantum gravity: How can we define a theory of quantum gravity in a non-perturbative

background independent fashion and what are the clear observable consequences of such a theory

or of theories of quantum gravity more generally? If we consider observed phenomena such as the

cosmological constant and the big bang we see that these two questions are not in fact distinct but

are of a common purpose.

1.1 The Problem of Quantum Gravity

While thinking about conceptual problems in fundamental physics, it is illuminating to begin with

a comparison of two fin de siècle periods: the end of the nineteenth/beginning of the twentieth

century and the end of the twentieth/beginning of the twenty-first century. The central puzzles of

the two epochs possess key parallels. We have (a) the black-body radiation problem exemplified in

the classical sum over the mean energy 1
2
kBT per degree of freedom, which led to the ultraviolet

catastrophe; and (a′) the vacuum energy problem exemplified in the sum over the quantum zero

point energy 1
2
~ω per oscillator degree of freedom, which leads to the still unresolved cosmological

constant catastrophe and the related question of the origin of “dark energy.” We have (b) the

fundamental (non)existence of the æther; and (b′) the fundamental (non)existence (or emergence)

of spacetime. Related to these are the origin of inertial frames and masses and the origin of

spacetime and inertial mass. We have also (c) the problem of missing mass: the “missing mass”

that explains the precession of Mercury’s perihelion; and (c′) the modern cosmological problem of

missing mass: the missing mass in galaxies and clusters of galaxies, the so-called “dark matter.”

Finally, there is (d) the need for a fundamental explanation of the periodic table of elements; and

(d′) the need for a fundamental explanation/derivation of around 30-35 dimensionless numbers that

go into the formulation of the Standard Model of particle physics (25 numbers) and the Standard

Model of cosmology (5-10 numbers).

The questions (a), (b), (c), and (d) had “unreasonable” answers from the point of view of
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late nineteenth century physics. The “unreasonable” answers were provided by revolutionary new

physics: the Special and General Theories of Relativity and the quantum theory. In light of this

historical metaphor (which is only meant as a motivational tool!), perhaps it is only natural to

expect that the true quantum theory of gravity and matter (for which string theory is a promising

theoretical candidate) will provide equally “unreasonable” and currently unforeseen answers to the

questions (a′), (b′), (c′) and (d′) as viewed through the lens of late twentieth century physics.1

At the moment there remains a deep conceptual problem in string theory after two sweeping rev-

olutions (1984/5, 1995): the problem of a non-perturbative, background independent formulation,2

which would answer the question “What is string theory?” and the related problem of dynamical

vacuum selection based on a fundamentally new formulation, which is necessary for understanding

how the real world fits within the framework of string theory. In particular, the current technology

of string theory, even in its most spectacular non-perturbative advancements such as the AdS/CFT

correspondence, still relies on many low-energy artifacts such as effective field theory techniques,

and, what is even more constraining, the requirement of specified asymptotic spacetime data. On

the other hand, there is a widespread conviction that the very notion of spacetime will need to be

dramatically revised in some more fundamental formulation.

In some respects the present formulation of string theory may be compared to Yang–Mills

theory in the 1950s. A beautiful mathematical structure made an “obvious” wrong prediction:

a massless color particle, together with an associated (non-existent) long distance force. Is the

analogous “obvious” wrong prediction of string theory the “eternal” asymptotically ten-dimensional

Minkowski vacuum that no known perturbative or non-perturbative device is able to eliminate in

favor of the observed four-dimensional apparently de Sitter (dS) asymptotic background?

This question, we feel, may be profitably phrased in a different manner. There are certainly

many consistent backgrounds for string propagation — consider, for example, a favorite Calabi–Yau

compactification of the heterotic string — and many perfectly respectable sigma-models (CFTs)

on the string worldsheet that have no interpretation in terms of a background spacetime. Thus, we

would argue that there is nothing inherently special about ten-dimensional Minkowski space that

makes it the central wrong prediction of string theory. Instead we believe that the analogous wrong

prediction of quantum gravity incorporating Standard Model-like matter is a cosmological constant

that scales neither as a power of the ultraviolet cutoff (as would be expected in a conventional field

theory) nor is exactly vanishing (as would be expected if it were protected by a deep symmetry).

Rather the measured vacuum energy is a small and positive dimensionful number. This is unnatural

(à la ’t Hooft [2]). Moreover, the cosmology in the Universe we see is dynamic rather than static,

1Many other puzzles can be easily enumerated (see, for example, the top ten list from the Strings 2000 conference [1]). We view these

as important problems: (1) What is string theory/quantum gravity? Is it a quantum mechanical theory, and if so, what are its degrees of

freedom and observable quantities, and if not, how does it go beyond the quantum? (2) Are dimensionful parameters/coupling constants

computable in principle or are they historical/quantum/statistical accidents? (3) Can string theory/quantum gravity explain the origin

of the Universe? (4) Can it explain/rationalize the Standard Model of particle physics? (5) Does it predict supersymmetry, if there is

supersymmetry, and the specific breaking of supersymmetry? Does it predict proton decay? Does it explain the hierarchy of scales? (6)

Does it explain why our Universe looks (3 + 1)-dimensional? (7) Does it explain/rationalize quantum mechanics? (This is Wheeler’s

“why the quantum?” question.)
2By background independence we mean that no a priori choice of a consistent background for string propagation is made. The usage

is as in string field theory.
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and currently we have little control over such situations in string theory. That is why in order to

understand de Sitter-like spaces, given the present conceptual foundations of string theory, one must

appeal to a KKLT-type of mechanism (see, for example, [3]) which treats de Sitter-like backgrounds

as metastable vacua and employs statistical analysis of string compactifications to explain small

numbers [4]. These ideas revise the traditional conception of naturalness. While this remains an

obviously fruitful and important avenue of research, the present understanding of string theory

does not allow us to answer difficult foundational questions involving the origins of space, time,

and matter. For this, we seemingly need to confront the hard question “What is string theory?”

head on. It is one of our aims in this thesis to review a novel approach to this question.

The historical development of Yang–Mills theory, from mathematically beautiful structures into

physical theories (i.e., phenomenologically relevant models for physics), came about with the de-

velopment of the new concepts of spontaneous symmetry breaking and confinement. The ultimate

outcome was the phenomenally successful structure of the Standard Model of elementary parti-

cle physics. A crucial question, arising from this particular historical comparison, is: What is

the non-perturbative formulation of string theory and what conceptually new insight does such a

formulation offer about the structure of the “vacuum,” provided this latter concept makes sense?

Considering the more foundational questions of string theory concerning the nature and origins of

space, time, and matter, a still more “revolutionary” point of view may be in order. This would treat

the current deepest understanding of string theory (as exemplified for the case of asymptotically

anti-de Sitter backgrounds by the remarkable AdS/CFT correspondence [5]) as a WKB-like version

(cf., old quantum theory) of some conceptually deeper theory (cf., quantum mechanics) in which the

very notions of space and, in particular, time would be drastically modified. That such a radically

new physics might be needed for the non-perturbative background independent formulation of

string theory has been advocated in our recent papers [6]. Of course, if this proposal has a bit of

truth in it, especially with regards to its essential claim that non-perturbative string theory is truly

a fundamentally new domain of physics, namely a generalized quantum theory, we are at the cusp

of something spectacular.

It is our goal in this thesis to expand upon the scenario presented in [6] and developed in our

more recent papers [7, 8]. In particular we wish to bring together the material presented over the

last years in one place and in a pedagogical form, so that the main logic of our argument can be

followed in detail. Because our proposal combines information from different fields of theoretical

physics (foundations of quantum theory, General Relativity, and string theory) and because we

wish to make this thesis understandable to physicists working in these different fields, we have

structured this article as follows. In Sec. 2 we present a self-contained review of a geometric

approach to canonical quantum theory. An interesting, and experimentally testable generalization

of canonical quantum theory, treated geometrically, is summarized in App. A. In App. B we

also discuss some foundational aspects of quantum theory. In Sec. 3 we review an approach to a

holographic description of classical Einstein gravity based on spacetime thermodynamics. In Sec.

4 we review what is known about Matrix theory: a holographic quantum theory of Minkowski

space. Finally, in Sec. 5 we put together the material from the preceding sections. These ideas
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are unified by a new physical principle: a quantum version of an equivalence principle, which then

leads us to an abstract formulation of a background independent Matrix theory. The astrophysical

implications of this abstract formulation as well as those of other models of quantum gravity are

discussed in Sec. 6. We consider the cosmological constant problem and the problem of the

initial cosmological singularity from a fundamentally new viewpoint as well the case of transient

pulses from an exploding primordial black hole in the presence of an extra dimension. This section

is accompanied by App. C at the end of the thesis. We summarize various avenues for future

research in the concluding Sec. 7 of this thesis.

Before we embark on the technical matters of the thesis, we would like to address what we think

is the fundamental conceptual question on the nature of quantum gravity as well considering the

motivation for looking to astrophysics for observable effects of quantum gravity.

1.2 Is Quantum Gravity a Canonical Quantum Theory?

One interesting theoretical aspect of fundamental physical theories is presented by the way their

mathematical structures get “deformed” in terms of new fundamental physical constants. One way

to summarize this is to consider the famous Planck cube (See Figure 5.2 in Sec. 5.3.) By glancing

at the Planck cube (defined by the fundamental constants c, ~, and GN), one sees at every corner

something radically different (either classical, or relativistic, or quantum, or gravitational physics,

and their respective combinations). This might näıvely suggest that the quantum theory of gravity

is a profoundly new theory. Nevertheless, the usual claim is that quantum gravity is a canonical

quantum theory. But within its architecture, there are any number of outstanding issues:

• The problem of time, or the problem of isolating a quantum evolution parameter in a back-

ground independent quantum theory of gravity.

• The problem of identifying observables (or “beables”) in a quantum theory of gravity consistent

with spacetime diffeomorphism invariance.

• The problem of defining the “vacuum” (and vacuum energy) in a background independent

theory in the quantum mechanical, and not the classical sense.

• The problem of recovering background dependent (that is, everyday) physics from a back-

ground independent formulation, by which we refer to the questions of the emergence of

spacetime background, the emergence of causal structure, the emergence of Standard Model-

like matter, the emergence of a realistic cosmology with dark energy and dark matter, and

the emergence of a successful low-energy description of physics via an effective quantum field

theory of matter and gravity.

• The problem of making sense of quantum cosmology: the specification of initial conditions,

the question of the universality of inflation, the resolution of the low entropy puzzle associated

with the initial state to account for the observed degrees of freedom in the Universe and the

associated “cosmological origin” of the arrow of time.
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• The resolution of “classic” quantum gravity puzzles: horizons and quantum physics, a mi-

croscopic explanation of gravitational entropy, the black hole information paradox, and the

resolution of cosmological and black hole singularities.

• The isolation of the true degrees of freedom of a quantum theory of gravitation consistent with

the principle of holography.

We think that this list collapses in its essence to the following two fundamental conceptual issues:

(a) the problem of time in a quantum theory of gravity. Associated to this is the problem of local

vs. global observables and the question of how to describe a local observer without appealing to

asymptotic spacetime data. The non-decoupling between ultraviolet and infrared physics is central

here.

(b) the related problem of vacuum energy (and the physical meaning of a vacuum in quantum

gravity). This is the familiar cosmological constant problem, and here, once again, we confront

the issue of non-decoupling between short-distance and long-distance physics. The persistence of

large-scale structure in the Universe as well demands an explanation. Why is the Universe not

Planckian? Why is it inflating? And why is it stable (long-lived)?

In both of these puzzles the crucial missing piece is how to incorporate time (and the associated

causal structure) in a purely quantum way and how to understand the dynamical evolution of the

Universe within quantum theory. What is the problem with time?3 Time is not an observable in

quantum theory in the sense that there is no associated “clock” operator. Time evolution, on the

other hand, is driven by the dynamics of the Hamiltonian operator Ĥ . In the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, (1.1)

time enters as a parameter. The energy-time uncertainty relation in quantum mechanics is intrin-

sically different in character than the position-momentum uncertainty relation. This conception

of the rôle of time as a Newtonian construct in a post-Newtonian theory persists even when we

promote quantum mechanics to relativistic quantum field theory and constrain field operators to

obey the causality condition,

[φ̂(X), φ̂(Y )] = 0, (1.2)

whenever the points X and Y are spacelike separated.

A theory of gravity must be diffeomorphism invariant. In such a theory, time and spatial position

are simply labels assigned to a point on the spacetime manifold that have no privileged meaning

of their own. Observables in General Relativity must also be diffeomorphism invariant, which

typically means they are non-local (integrals of curvature invariants over spacetime, for example).

In a quantum theory of gravity, however, the situation is considerably more subtle. As the spacetime

metric becomes subject to quantum fluctuations, notions such as whether X and Y are spacelike

separated become blurred. Indeed, Lorentzian metrics exist for almost all pairs of points on the

3See [9, 10] for detailed reviews.
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spacetime manifold such that the metric distance g(X, Y ) is not spacelike [11]. Clearly the notion

of time, even locally, becomes problematic in such situations.

In thinking about these deep and complex issues, the core idea that we advocate is to take the

structural lessons of General Relativity and emulate them in a quantum theoretic way in order to

construct a theory that transcends the above problems. In some sense, this is a repetition of what

happened with the advent of quantum theory in the 1920s: the structure of the classical theory

(say its Hamiltonian or Hamilton–Jacobi formulation) was kept intact, but the kinematics were

drastically altered. The new theory thus developed was deeper in ways that classical physicists

could not imagine. The generalization of the structure of the classical theory makes sense of the

success of the WKB limit in appropriate situations via the correspondence principle. We likewise

advocate making the quantum theory generally relativistic and constructing general backgrounds

of string theory from a fully holographic formulation of local Minkowski patches. Holography is a

crucial feature of non-perturbative string theory, as well as quantum field theory in fixed curved

spacetime backgrounds, that we retain. Minkowski space is fundamental in string theory, mainly

due to supersymmetry. In order to accomplish this synthesis, we must extend the usual framework

of quantum theory. This is the working point of view that we present throughout this thesis.

The natural uncertainty we must address at this point is whether there is any compelling the-

oretical (or even better, experimental) justification for such an outrageous proposal. We consider

the most compelling evidence to be the puzzle of “dark energy,” which, it seems, is nicely modeled

by a cosmological constant in an effective Lagrangian approach. (A purely theoretical test of our

approach to building general string backgrounds would be in trying to recover what is known about

asymptotically AdS backgrounds, or in other words to rederive the AdS/CFT correspondence as

a WKB-like limit of our general philosophy. We discuss this important ongoing project in the

conclusion to this thesis. In some sense, we would advocate that AdS space is like a “hydrogen

atom” of the Born–Sommerfeld old quantum theory. This means that for reasons of the symmetry

of this particular background, a deeper formulation has to reproduce the successes of the existing

AdS/CFT approach.)

Let us turn now to the central question. Is quantum gravity a canonical quantum theory?

By canonical quantum theory, we refer to one that is formulated using “canonical” tools: path

integrals, Hilbert spaces, etc., and whatever appropriate interpretation is necessary to address the

questions posed by quantum cosmology using the ordinary quantum theory. If it is not, why is it

not, and what kind of new theory then is quantum gravity? If quantum gravity is not an ordinary

quantum theory, this must be immensely important for the foundations of physics, and it must

have shattering observational consequences.4

4There are some historical precedents regarding the generalization of quantum theory within string theory:

1. some general ideas related to the issue of non-linear wave equation in string field theory [12] (See Vol. 1, Sec. 3.2);

2. the appearance of non-associative structures, which are seemingly incompatible with the canonical formulation of quantum theory

[13];

3. weaving the string background in the approaches based on abstract conformal field theory [14] and the general sigma-model/non-

perturbative renormalization group approaches to non-perturbative string theory [15], the non-perturbative renormalization group

looking like a non-linear wave equation [16];
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As we have stated, the crucial reason why we think quantum gravity is not an ordinary quantum

theory is precisely the way time is treated by ordinary quantum theory, and the way time is supposed

to “emerge” or be “quantized” in the beginning (at the Big Bang). Space is treated differently

from time in a very radical way within quantum theory, and this manifests in every approach to

quantum gravity based on the usual quantum mechanics, including string theory as it is currently

understood. This dichotomy is at the root of the problems of quantum gravity, and its explanation

ultimately communicates what string theory is. We will take the vacuum energy problem as a

springboard for our specific proposal regarding the formulation of the quantum theory of gravity

and matter as a general geometric quantum theory.

1.3 Vacuum Energy in Quantum Gravity

As is well known, recent cosmological observations suggest that we live in an accelerating Universe

[19, 20]. One possible engine for late time acceleration is an unseen “dark energy” that comprises

74% of the total energy density in the Universe. The leading candidate for dark energy is the energy

in the vacuum itself, and the data suggest a small, positive cosmological constant. This leads to a

two-fold cosmological constant problem [21]:

1. Why is the energy density in the vacuum so small compared to the expectation of effective

field theory?

2. Why are the energy densities of vacuum and matter comparable in the present epoch?

The first cosmological constant problem concerns both ultraviolet and infrared physics. In

quantum field theory, the cosmological constant counts the degrees of freedom in the vacuum.

Heuristically, we sum the zero-point energies of harmonic oscillators and write Evac =
∑

~k

(
1
2
~ω~k
)
.

The sum is manifestly divergent. Because quantum field theories are effective descriptions of

Nature, we expect their validity to break down beyond a certain regime and be subsumed by more

fundamental physics. We may introduce a high-energy cutoff to regulate the sum, but Evac will

then scale with the cutoff. The natural cutoff to impose on a quantum theory of gravity is the

Planck energy MPl. This prescription yields an ultraviolet enumeration of the zero-point energy.

In the infrared, the cosmological constant feeds into Einstein’s equations for gravity:

Rµν −
1

2
gµνR = 8πGN (−Λgµν + Tµν) . (1.3)

Present theories of quantum gravity are unable to deal with the cosmological constant problem.

Here we are concentrating on string theory, as the only known example of a consistent theory

of perturbative quantum gravity and Standard Model-like matter. In perturbative string theory,

4. third quantization and quantum cosmology [17]. This was motivated by both string field theory and Euclidean quantum cosmology

with topology change; more recently there has been discussion of the “multiverse” [18] in the landscape approach to the problem

of string vacua.
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the dynamics of the background spacetime are determined by the vanishing of the β-functional

associated to the Weyl invariance of the worldsheet quantum theory; the Einstein equation (1.3)

is then corrected in an α′ expansion. In either case, the vacuum is just any solution to these

equations. We compute the vacuum energy in quantum field theory, include it on the right hand

side of the gravitational field equation, and find that spacetime is not Minkowski. Although the

Einstein equations are local differential equations, the cosmological constant sets a global scale and

determines the overall dynamics of spacetime. Our Universe is approximately four-dimensional de

Sitter space with Λ ≈ 10−123M4
Pl.

Quantum theory (as presently understood) therefore grossly over-counts the number of vacuum

degrees of freedom. There is no obvious way to reconcile the generic prediction of effective field

theory that the vacuum energy density should be M4
Pl with the empirical observation that it spec-

tacularly is not. Note that the question of defining a vacuum in gravity is always tied to asymptotic

conditions. We are solving (1.3), which is a differential equation, and boundary conditions are an

input. This methodology is imported to quantum gravity. For example, in target space, string

theory is formulated as an S-matrix theory whose long wavelength behavior is consistent with an

effective field theory for gravity. But the effective field theory in the infrared, in all cases that

have been even partially understood, is particularly simple: infinity is asymptotically flat or it is

asymptotically anti-de Sitter space or it is a plane wave limit. The formulation of string theory as a

consistent theory of quantum gravity on de Sitter space [22], which the present second inflationary

phase of our Universe resembles, or in more general curved (time-dependent) backgrounds with (at

best) approximate isometries is not at all understood.

The vacuum energy problem can also be couched in the following way. In quantum field theory

in flat space the vacuum is clearly defined as in quantum mechanics. Vacuum energy is just the

expectation value of the Hamiltonian in its ground state. But what is the energy or Hamiltonian in

a quantum theory of gravity, and what is the vacuum or lowest energy state? Such concepts must

be defined without invoking asymptopia as inputs, for clearly as local observers in spacetime, we

cannot know what we are evolving towards. How then is vacuum energy to be determined when

there are no a priori fixed asymptotics and there is no Hamiltonian?

We find a clue in the equivalence principle. In the classical theory of gravity, the nearness of a

body’s inertial mass to its gravitational mass is explained because an observer cannot distinguish

between gravitation and acceleration. Spacetime is locally indistinguishable from flat space (zero

cosmological constant). Globally it can be any solution at all to Einstein’s equations. It is the

equivalence principle that is responsible for the dual nature of energy and the concept of a vacuum

(the actual geometry of spacetime). Because this is the root of the problem, we wish to implement

the equivalence principle at the quantum mechanical level and see what light this throws on the

vacuum energy problem.

In essence, we are turning the cosmological constant problem around, to argue that its natural

solution (i.e., natural adjustment to an almost zero value) requires a major shift in the foundations

of fundamental physics. The new fundamental postulate needed is a quantum equivalence principle

which demands a consistent gauging of the geometric structure of canonical quantum theory. This,

8



we believe, is the missing key element in present formulations of consistent quantum theory of

gravity and matter.

1.4 Astronomy & Quantum Gravity

Early advances in understanding fundamental natural laws are inextricably linked to astrophysical

observations. It is by no means a coincidence that three of the seminal figures in the early history of

physics, Galileo Galilei, Johannes Kepler, and Sir Isaac Newton were all astrophysicists. It would

seem that as physics matured as a science and terrestrial based experimentation became more

prevalent astronomical observation was relegated to one voice in a chorus of sources for empirical

data. However, upon more careful examination astronomical observations have continued to played

a unique and profound role in the investigation fundamental physics. We need only consider the

discovery of Hubbles law, or the detection of the cosmic microwave background to see the impact

astrophysical observation had on physics in the twentieth century. Even more recently the finding

of a nonzero neutrino mass from solar, cosmic ray, and supernova observations, and the discovery

of dark matter and dark energy have again reminded us of the central role of astrophysics in

fundamental physical inquiry. Perhaps then the relationship between astronomy and fundamental

physic extends to the realm of quantum gravity. Certainly black holes and the initial cosmological

singularity (the big bang) serve as the two primary physical phenomena that require a theory

of quantum gravity to fully describe. So we can ask whether there are extreme astrophysical

phenomena which provide evidence of quantum gravity.

A theory of quantum gravitation would deepen our understanding of spacetime, matter, and

the origin of the universe. However, it is crucial that any such theory be subject to experimental

and observational verification. Observable effects of quantum gravity are expected to manifest

themselves most directly at exceptionally high energies or in the presence of a spacetime singularity.

Thus, experimental tests of quantum gravity present a severe challenge. Particle accelerators have

long served as an indispensable tool for exploring new regimes of fundamental physics, but it may

be some time before they yield a discernible signature of quantum gravitation. Given the extreme

difficulties posed by the search for quantum gravitational effects, another source of data would be

of great value, and could provide a means of comparison with accelerator-based experiments.

While considering the best method to conduct an astrophysical search for quantum gravity

we must bear in mind that a radically different approach may be required. We begin by noting

that astronomical observations are often directed at a single target, and for as long as possible

to obtain high precision measurements. However, high energy events may occur in seemingly

random parts of the sky, over a short time scale, and could be missed if traditional astronomical

methods are employed. Such transients are just the type of phenomena that could be related

to quantum gravitational effects, and searches for these could provide a new arena in which to

probe this elusive area of inquiry. Observations of transient phenomena have already played a role

in astrophysical exploration. The discovery of pulsars and gamma-ray bursts (GRBs) are prime
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examples. Moreover, a recently observed radio pulse of extragalactic origin has been found. It

has further been argued that this pulse could have been produced by a superconducting cosmic

string, another phenomena which can provide evidence of quantum gravity. A possible quantum

gravitational source for GRBs has also been proposed. We should also look beyond electromagnetic

signals. Many explosive events that can produce short time scale electromagnetic pulses also

produce a gravitational wave signature (i.e. supernova, cosmic strings, compact object mergers,

etc.). Thus searches for coincident gravitational waves and electromagnetic pulses could prove very

profitable.
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Chapter 2

Geometric Quantum Mechanics

In this section we will review how standard quantum mechanics may be recast in a geometric

framework [23]. There are several excellent reviews on this topic [24, 25, 26, 27, 28], and in

particular we shall draw from [29]. The geometric formulation can be used to derive all standard

results without reference to the underlying linear structure and as we shall see lends itself much

more readily to generalization.

This section is organized as follows. We begin by discussing how a Hilbert space may be given a

phase space interpretation. We will then reduce this phase space in an appropriate fashion in order

to obey constraints provided by quantum mechanics. The classical and quantum mechanical aspects

of this reduced phase space are then outlined. We next analyze the kinematic structure of quantum

mechanics in this formalism, and finally we discuss possible generalizations of quantum mechanics

from a geometric perspective. The central aim of this section is to emphasize the quantum theoretic

concepts underlying the measurement of time intervals as opposed to spatial distances. This is

where the geometric structure of quantum theory ties with the geometry of spacetime physics. We

append to this section a discussion of an experimentally testable generalization of quantum theory

in geometric framework, as formulated by Weinberg (App. A), together with a discussion of what

the geometric framework means for the foundations of quantum theory (App. B).

2.1 From Hilbert Space to Kähler Space

We will begin by developing the idea of a Hilbert space as a Kähler space. The symplectic structure

and Riemannian metric associated with a Kähler space will allow us to more clearly elucidate the

relationship between classical mechanics and quantum mechanics. Consider the Hilbert space H.

We may choose to view H as a real vector space with a complex structure J . The Hermitian inner

product of two states may then be decomposed into its real and imaginary parts,

〈Ψ|Φ〉 =
1

2~
G(Ψ,Φ) +

i

2~
Ω(Ψ,Φ). (2.1)
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The real part G(Ψ,Φ) is the Riemannian metric. The imaginary part Ω is a non-degenerate

symplectic two-form. The two are related by

G(Ψ,Φ) = Ω(Ψ, JΦ). (2.2)

The triad (G,Ω, J) endows H the structure of a Kähler space.

Let us explore the consequences of this. First, the existence of the symplectic structure means

that H is a symplectic manifold, namely a phase space. Having already identified Ω(Ψ, JΦ) as a

symplectic two-form we may use it and its inverse Ωab to define a Poisson bracket

Ω(XA, XB) = {A,B} =
∂A

∂pa

∂B

∂qa
− ∂A

∂qa
∂B

∂pa
≡ Ωab ∂A

∂Xa

∂B

∂Xb
. (2.3)

In this and subsequent expressions A ≡ 〈Â〉 and B ≡ 〈B̂〉 and XA and XB are the Hamiltonian

vector fields generated by the expectation values of the operators. In addition Xa = (pa, q
a) are

a set of canonical coordinates with qa =
√

2~ReΨa and pa =
√

2~ImΨa. Defining the Poisson

bracket in this way is similar to the classical case except that instead of the observables being real

functions they can be thought of as vector fields. The Schrödinger equation may be expressed as

Ψ̇ = −1

~
JĤΨ, (2.4)

and we may associate a Schrödinger vector field with each observable [29],

WÂ(Ψ) = −1

~
JÂΨ. (2.5)

The Schrödinger vector field preserves both the metric and the two-form, and due to the linear

nature of H, it is locally and globally Hamiltonian. The Schrödinger vector field generated by

a given operator is equivalent to the Hamiltonian vector field which is generated by taking the

expectation value of that same operator. This implies that the time evolution of a quantum

mechanical system may be described by Hamilton’s equations, or put another way Schrödinger’s

equation is an alternative expression of Hamilton’s equations [29]. The Lie bracket of two operators

Â and B̂ likewise has a correspondence to the Poisson brackets of two expectation values,

{A,B} =

〈
1

i~
[Â, B̂]

〉
. (2.6)

It is important to note that this is not the correspondence between classical mechanics and quantum

mechanics in the ~ → 0 limit. This is an equivalent formulation of quantum mechanics in the

language of classical physics.

While analysis of the symplectic structure of the Kähler space emphasizes the similarities be-

tween quantum and classical mechanics, analysis of the Riemannian metric yields the differences.

The Riemannian metric is not present in classical phase space and as we shall see encodes purely

quantum mechanical properties such as uncertainty relations. We must first define what we will

call the Riemannian bracket in terms of the Riemannian metric,

{A,B}+ ≡ ~

2
G(XA, XB). (2.7)
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As with the symplectic structure there is a correspondence but now with the Jordan product as

opposed to the Lie bracket, 〈
1

2
[Â, B̂]+

〉
= {A,B}+. (2.8)

Now note that the uncertainty of an observable can be expressed as,

(∆Â)2 = 〈Â2〉 − 〈Â〉2 = {A,A}+ −A2. (2.9)

We may also write the uncertainty relation in a nice form involving both the Poisson and Rieman-

nian brackets [29]:

(∆Â)2(∆B̂)2 ≥
(

~

2
{A,B}

)2

+ ({A,B}+ − AB)2. (2.10)

Consideration of a Hilbert space as a Kähler space is the first step to a geometric reformulation

of quantum mechanics. The Kähler space has an associated symplectic structure that leads to

a phase space interpretation reminiscent of classical mechanics. It also has a Riemannian metric

which endows it with purely quantum mechanical properties.

2.2 Phase Space Reduction and Symplectic Structure

The prior discussion contains an important subtlety. In the Hilbert space H, a given state is defined

by more than one state vector. The true space of physical states in quantum mechanics is the space

of rays in the Hilbert space, or the projective Hilbert space P. This is the space of pure states.

Therefore, we must reduce the phase space in the appropriate way.

We begin by noting that P is also a Kähler space. This is true for the infinite dimensional case

but can be seen most clearly by considering finite dimension. For finite dimension H = C
n+1 and

P is the complex projective space Pn. This is clearly Kähler and in addition is the Hopf line bundle

of the sphere S2n+1 over Pn. The complex projective space is thus

P
n =

U(n + 1)

U(n) × U(1)
. (2.11)

In this expression U(1), the fiber, is the group of complex phases in quantum mechanics. We shall

see that the phase space reduction is directly related to the invariance under the choice of phase.

The geometric nature Pn can be seen more clearly by considering a specific quantum system. If we

simply considered a spin-1
2

particle this would correspond to taking n = 1 with P1 = S2. This is

the Bloch sphere which is the pure state space of a 1 qubit quantum register [30].

We wish to perform the phase space reduction for the infinite dimensional case. To do this we

must first deal with the ambiguous nature of the state vectors. We begin by implementing the

Born rule,

〈Ψ|Ψ〉 =
1

2~

∑

a

[(pa)2 + (qa)
2] = 1. (2.12)
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This implies that the states are normalized to unity and that Ψ and eiαΨ should be identified. We

may express this as the following constraint function,

c(Ψ) ≡ 〈Ψ|Ψ〉 − 1 =
1

2~
G(Ψ,Ψ) − 1 = 0. (2.13)

We may equally take the more geometric point of view and regard c(Ψ) as defining the constraint

surface S, which in this case is the unit sphere with regard to the Hermitian inner product. Thus

we are isolating as physically relevant only the portion of H constrained to S. The possible rôle of

the remaining portion of H shall be addressed in subsequent sections.

For each constraint function on a Hamiltonian system there must be a corresponding gauge

invariance. The associated gauge transformation translates to the flow along the Hamiltonian

vector field. We denote the generator of these transformations as

J = −Jab Ψb|S. (2.14)

This is the generator of phase rotations on S. Thus the gauge transformation in question corre-

sponds to phase invariance. This is exactly what we would expect based on our implementation of

the Born rule. The result of constraining our system in this way is to isolate the physical portion

of the phase space. We have done this by taking the quotient of our constraining surface with the

action of the gauge transformation. We are left with a gauge reduced phased space which is the

projective Hilbert Space, P. We label this as the quantum phase space. As in the case of the full

Hilbert space, we must also consider the geometric structure of the quantum phase space. We have

already established that it is Kähler and, as before, therefore endowed with a symplectic structure

and a Riemannian metric.

Recalling that the symplectic structure of the full Hilbert space H is encoded in the two-form

Ω, we constrain this to the unit sphere as Ω|S. We may then define a new symplectic two-form ω

whose pull-back is equivalent to Ω|S,
π∗ω = Ω|S (2.15)

where π is the projection mapping π : S → P. To define the Poisson bracket using ω, we must

first define the observables in the quantum phase space. We begin with an operator Â on H. We

will take the expectation value of this operator and as with the two-form constrain it to the unit

sphere as A|S. This is a gauge invariant function, and thus we may define a new observable a whose

pull-back is equivalent to A|S,
π∗a = A|S. (2.16)

Next we wish to obtain the relationship between Hamiltonian vector fields, XA on H and Xa on P.

Because A is gauge invariant, XA is constant along integral curves of J . Thus we may push-forward

the vector field at every point Ψ ∈ S and equate it to Xa at that point,

π∗XA|Ψ = Xa. (2.17)

Now we are ready to consider Poisson brackets defined by ω. We consider the expectations values

A and B on H and the expectations values a and b on P. Based on the results stated, we can
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derive a relationship to define a Poisson bracket for the reduced phase space:

π∗{a, b}ω = {A,B}Ω|S. (2.18)

There is a one-to-one mapping of the operators on H to the observable functions on P. The flow

on P generated by the Schrödinger vector field of Â on H is equal to the flow of the Hamiltonian

vector field determined by a on P [29]. We may, as previously indicated, express the Schrödinger

equation in the form of Hamilton’s equations,

dpa
dt

= {h, pa}ω,
dqa

dt
= {h, qa}ω. (2.19)

In this expression h = 〈Ĥ〉|S = 1
2

∑
a[(p

a)2 + (qa)
2]λa, where λa are the energy eigenvalues. An

observable o will then evolve as
do

dt
= {h, o}ω. (2.20)

Thus the symplectic structure is carried over to the quantum phase space.

It is worth noting that in adopting this framework we have already generalized quantum mechan-

ics in a certain sense. We considered our system in boarder terms before constraining it because of

physical considerations. Specifically, we have constrained the expectation values of the operators

on H to S. We could, however, extend those expectation values off S without disturbing the flow

on P. We will return to this point when attempting to construct a generalized dynamical structure.

2.3 Riemannian Geometry and Quantum Mechanics

As in the case of the full Hilbert space, P is endowed with an almost complex structure j and a

Riemannian metric g. These structures are inherited from the corresponding structures on the full

Hilbert space. We obtain the Riemannian metric on P by restricting the Riemannian metric on H
to the constraint surface. The metric obtained in this manner, however, is degenerate. In order to

correct this we must subtract off components in the direction of J [29],

g = [G− 1

2~
(Ψ ⊗ Ψ + J ⊗ J )]|S . (2.21)

Thus the metric will only be degenerate in that direction. This is the metric on the complex Hopf

bundle. By requiring that the projection map associated to this bundle be Riemannian, the form

of the metric can be determined. It is the Cayley–Fubini–Study metric, which we may express for

nearby states as

ds2
12 = 4(cos−1 |〈ψ1|ψ2〉|)2 = 4(1 − |〈ψ1|ψ2〉|2). (2.22)

Clearly, this vanishes for |ψ1〉 = |ψ2〉. Suppose that |ψ2〉 = |ψ1〉 + |dψ〉 and that both |ψi〉 are

canonically normalized so that 〈ψi|ψi〉 = 1. The infinitesimal distance between |ψ1〉 and |ψ2〉 in the

quantum configuration space is

ds2
12 = 4(〈dψ|dψ〉 − 〈dψ|ψ1〉〈ψ1|dψ〉). (2.23)
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Before we address the relationship of the Riemannian metric to quantum mechanics, let us

first consider the nature of observables on the quantum phase space. We have previously defined

observable functions in terms of self-adjoint operators on H. However, it is preferable to define

observables only in terms of P, without any reference to the underlying linear structure of the

Hilbert space. In order to do this consider the Hamiltonian vector field, XA. It preserves Ω and

G and is also a Killing vector field on (G,H). Now consider the corresponding observable function

a and the associated vector field, Xa. It is a Killing vector field as well, but on (g,P). It is this

property which we shall use to define a as an observable. A smooth function on P is an observable

if and only if its Hamiltonian vector field is also Killing [29].

Thus the space of observables is isomorphic to the space of functions whose Hamiltonian vector

fields are infinitesimal symmetries of the available structure. This is exactly the same as in classical

mechanics. However, now the structure is far richer. It contains not only the usual symplectic

structure but the Riemannian metric as well. In contrast to the classical case there is a small

subset of smooth functions on P which qualify as observables. These are Kählerian functions.

Using g we may define the connection Γabc on the bundle by requiring that the fiber be orthogonal

to the metric. By parallel transport around a closed curve, we may determine the geometric phase

factor. This is the Berry phase factor. A remarkable strength of this geometric approach to

quantum mechanics is the natural understanding of Berry’s phase that it provides. Also, with the

triad (j, ω, g), it is easy to confirm that P is a Kähler manifold.

We may define the bracket Riemannian for the quantum phase space in terms of the metric on

P without reference to the full phase space

(a, b) ≡ ~

2
g(Xa, Xb). (2.24)

This can, however, be related to the Riemannian bracket for the full Hilbert space,

{A,B}+ = π∗((a, b) + ab
)
. (2.25)

Note that unlike the symplectic bracket on P, we cannot simply equate the pull-back of the new

Riemannian bracket to the Riemannian bracket for full Hilbert space constrained on S. Thus, we

define a new bracket for which this is the case,

{a, b}+ ≡ (a, b) + ab. (2.26)

We will call this the symmetric bracket [29]. We may express the standard uncertainty relation in

terms of the Poisson bracket and the Riemannian bracket,

∆a∆b ≥
(

~

2
{a, b}ω

)2

+ (a, b)2. (2.27)

However we may use the Riemannian bracket alone to define the squared uncertainty for a given

state ψ [29],

(∆a)2(ψ) = (a, a)(ψ). (2.28)
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If we now consider the time evolution of a system, we see that it is related to the metrical structure.

The Schrödinger’s equation plays the rôle of a geodesic equation on Pn:

dua

ds
+ Γabcu

buc =
1

2∆E
Tr(HF a

b )ub (2.29)

for the Fubini–Study metric gFSab with the canonical curvature two-form Fab valued in the holonomy

gauge group U(n) × U(1). Also, ua = dψa

ds
= dza

ds
, where za denote the complex coordinates on Pn.

The affine parameter s is determined by the metric on Pn. This leads us directly to an important

result given by Anandan and Aharanov [27]. Consider the uncertainty of the observable function

associated with the Hamiltonian,

(∆h)2 =
~

2
g(Xh, Xh) = (∆E)2. (2.30)

The uncertainty in the energy is the length of the Hamiltonian vector field which generates the

time evolution. This can be interpreted as the speed with which the system moves through phase

space. In the above geodesic Schrödinger equation, the Hamiltonian appears as the “charge” of an

effective particle moving with a “velocity” ua in the background of the “Yang–Mills” field Fab. The

system passes quickly through the parts of phase space where the uncertainty is large and more

slowly through the parts where the uncertainty is small.

The main features of quantum mechanics are embodied in the geometry of Pn and in the evolution

equation. The superposition principle is tied to viewing Pn as a collection of complex lines passing

through the origin. Entanglement arises from the embeddings of the products of two complex

projective spaces within a higher dimensional one. The geometric phase stems from the symplectic

structure on Pn.

Next we address the issue of coherent states, which are natural to consider in this formalism as

they admit a straightforward phase space description. These type of quantum states are the closest

to being classical in nature in that they minimize the standard uncertainty relation between position

and momentum. In fact the space of coherent states may be thought of a classical phase space

embedded in a quantum phase space with each point in the classical phase space corresponding to

a to a coherent state. It is also worth noting that coherent states are complete in that any state

can be represented as a superposition of coherent states [30]. In configuration space a coherent

state has the form of a Gaussian displaced a distance from the origin, with origin being the vacuum

state,

ψl(x) ∼ exp

(
− (~x−~l)2

δl2

)
. (2.31)

We may calculate ds2 for two nearby coherent states making use of (2.22) and the convolution

property of Gaussian integrals which gives the overlap of the two states. Interestingly, this yields

the natural metric in the configuration space, namely

ds2 =
d~l2

δl2
. (2.32)
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So, wherever the configuration space coincides with space, the natural metric on P
n in the ~ → 0

limit gives a spatial metric [27]. We shall make use of this important insight when we attempt

to generalize to a background independent formulation of quantum mechanics. For a generalized

coherent state, the Fubini–Study metric reduces to the metric on the corresponding group manifold

[28].

In order to understand the measurement process in this new framework we require a better

understanding of the nature eigenstates in the quantum phase space, P. Consider an operator Â.

A state Ψ is an eigenstate provided ÂΨ = λΨ, where λ is real. Recalling our expression for the

Schrödinger vector field (2.5), we can deduce that the Hamiltonian vector field XA must be pure

gauge. Consider now the projection of Ψ on P which we denote ψ. In order for Xa to be pure

gauge the Hamiltonian vector field associated with the observable function a must vanish at ψ.

That is to say, ψ is an eigenstate of a if it is a critical point p ∈ P and the critical value λ is the

corresponding eigenvalue.

Now we wish to consider the measurement process from a geometric point of view. We begin by

investigating the probability distribution. Each point in P is a particular state. There is a geodesic

that passes between any two given points which relates the transition amplitude between those two

states. The transition amplitude function is given by,

|〈ψi|ψf 〉|2 = cos2

(
θ(pi, pf)√

2~

)
(2.33)

where θ is the minimal geodesic distance between points pi and pf , as measured by the Fubini–

Study metric. Thus the transition probability between two states is determine by the distance

between the two corresponding points in P. Next consider a generic measurement. Suppose a

system is initially in state ψ0 at point p0. Then an ideal measurement of an observable function a

is performed. The system will then collapse into one of the available eigenstates, ψf at point pf .

There is a geodesic that passes from p0 to each pf . Because the transition amplitude is governed by

the distance between the various states the system is more likely to collapse to a nearby eigenstate

than a more distant one.1

Armed with our newfound geometric view of probability, we return to the case of time evolu-

tion. We observe (as underscored by Aharonov and Anandan [27]), that time measurement in the

evolution of a given system should reduce to that of distance on Pn. In particular we may rephrase

our previous result as

~ ds = 2∆E dt. (2.34)

Such an expression naturally invokes a relational interpretation of time in quantum mechanics. Even

more striking is the fact that the geometric interpretation of probability as the geodesic distance on

Pn is directly related to the definition of the evolution parameter t! Moreover, the expression (2.34)

relating time intervals to intervals in the projective space of the quantum theory is exact. Now recall

(2.32) which is a relation between the spatial distances and geometric intervals. This is in fact the

1In the case of a degenerate eigenvalues, the eigenspace has an associated eigenmanifold. The system will return the degenerate

eigenvalue and collapse to the point in the eigenmanifold closest to p0 [29].
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most crucial difference between temporal and spatial geometry from the point of view of quantum

geometry. In essence the above exact relation underlies the way we build physical clocks based

on quantum theory. This is the crucial conceptual statement of quantum theory, as illuminated

by its geometric formulation, that has to be re-examined when thinking about the problem of time

in quantum gravity. For example, the gravitational redshift of weakly quantized quantum gravity,

immediately follows by changing the Hamiltonian in the above formula by adding the gravitational

potential. Note also that in a general relativistic context, spacetime measurements can be viewed

as measurements of time [31]. The tension between canonical quantum theory and background

independent classical spacetime physics is precisely in the way the two treat measurements of time

(and the corresponding canonically conjugate variable, energy).

It is now clear that the Riemannian metric enriches our phase space by providing it with quantum

mechanical structure. This includes reformulations of the standard uncertainty relations and the

quantum measurement process. We have recast the uncertainty relation in terms of the metrical

structure and presented a novel way of viewing measurement theory.

2.4 Geometric Quantum Kinematics

We now wish to investigate the kinematics structure of quantum mechanics from a geometric

perspective. With an eye towards generalization, we will consider an arbitrary Kähler manifold M.

We shall attempt to determine which characteristics impart the standard kinematics of quantum

mechanics to this manifold.

We have already established that in the case of standard quantum mechanics M should be a

projective Hilbert space. Thus we begin by considering some important properties of projective

Hilbert spaces. The Riemann curvature tensor for a projective Hilbert space is of the form,

Rαβγδ =
~

4

[
gγ[αgβ]δ + ωαβωδγ − ωγ[αωβ]δ

]
. (2.35)

Because our quantum phase space has this type of curvature tensor, it also has constant holomorphic

sectional curvature. Holomorphic curvature plays the same rôle for complex manifolds that scalar

curvature plays for real manifolds. In the case of real manifolds, the number of independent

Killing vectors is closely related to the form of the curvature tensor. Thus, one could also expect

the number of observables could also be related to the form of the curvature tensor. In fact,

as discussed by Ashtekar and Schilling in [29], a manifold with constant holomorphic sectional

curvature has a maximal number of observables. In addition we can only properly define a Lie

algebra on the observables if the manifold is of constant holomorphic sectional curvature. The

value of the constant holomorphic sectional curvature is equal to 2
~
. This is determined by the need

for the algebra of the observables to close under the previously defined symmetric bracket.

Now consider a finite dimensional complex projective space. We can determine the characteristics

that our manifold must have in order to possess standard quantum mechanical kinematics. A

theorem of Hawley [32] and Igusa [32] states that, for finite n, the projective spaces are up to
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isomorphism the only connected, simply connected, and complete Kähler manifolds of constant

and positive holomorphic sectional curvature. Thus they are isomorphic to Pn. Moreover, a more

recent result of Siu and Yau and of Mori [32] shows that the requirement of positive bisectional

curvature alone necessarily implies that the underlying manifold is Pn.

The infinite dimensional projective space is more problematic. It is an open question whether

the quoted theorem extends to the infinite dimensional case. However, this is strongly hinted

at by a theorem of Bessega [32], which suggests that every infinite dimensional Hilbert space is

diffeomorphic with its unit sphere. If so, there is no other infinite dimensional connected, simply

connected, homogeneous, and isotropic Kähler manifold except P∞. In sharp contrast to the

arbitrariness in the topology and geometry of the classical phase space and its symplectic structure,

is the striking universality of the Pn of quantum mechanics. The metric, symplectic and complex

structures are so closely interlocked that the only freedoms left are the values of n and ~.

We have determined to a certain extent what sets apart a given Kähler manifold from a manifold

endowed with standard quantum mechanical kinematics. As we shall see shortly this will allow us

to more clearly see a path toward a generalization of quantum mechanics.

2.5 Towards a Generalization of Quantum Mechanics

The framework which we have developed readily lends itself to a generalization of the dynamical

and kinematic structures.2 Generalizing the dynamics involves, as indicated at the end of Sec. (2.2),

extending the expectation values of an operators on H off the constraint surface S. Generalizing

the kinematics entails expanding the state space and/or the algebra of the observables. There are

direct extensions available for each of these. However, the difficulty is in extending each in such a

way as to create a self consistent generalization. The generalization we will advocate is tied to a

quantum equivalence principle.

We begin, however, by generalizing the dynamics. As is the case with classical mechanics the

dynamics preserve only the symplectic structure. Thus we may also require that the dynamical

flow preserve only the symplectic structure and not necessarily the Fubini–Study metric on the

configuration space. While the quantum phase space remains P, the dynamical flow we seek to

extend resides in H. This is because in terms of the quantum phase space the extension of the

dynamical flow in the Hilbert space is arbitrary.

In order to see this more clearly consider A the expectation value of an operator on H. We

have up until this point restricted such expectation value to the unit sphere. However, suppose

we extend off the unit sphere in some arbitrary way. We can construct a Hamiltonian vector field

generated by A extended in H, which we denote XA. As before, we project this vector field on to

P. The part of the restriction of XA on the unit sphere, which is orthogonal to J , is insensitive to

the extension in H. Thus we are free to choose any extension we wish, and we shall always arrive

2Generalizations of quantum mechanics have a long history [6, 25, 27, 33]. Most recently, such generalizations were discussed, for

example, in [33].

20



at the same Hamiltonian vector field in the reduced quantum phase space.

There are many extensions from which to choose, the most obvious of which is to extend A to

the full Hilbert space and simply define it as,

Aext(Ψ) ≡
〈
Ψ, ÂΨ

〉
. (2.36)

Extending A off of S in such a way we may recover the generalization of quantum mechanics given

by Weinberg [24]. Weinberg’s formalism and its connection to geometric quantum mechanics are

discussed in detail in App. A.

Turning now to constructing a generalized kinematic structure, we see immediately that several

possibilities present themselves. Recalling our previous analysis of the standard kinematic structure,

we could consider expanding the quantum phase space to include all Kähler manifolds. We might

also consider expanding the class of observable beyond Kähler functions to include all smooth, real

valued functions. However, we will present a somewhat novel generalization that is motivated by

our discussion concerning the nature of time in the geometric quantum framework as well as our

intuition from General Relativity.

We begin by focusing on the observation that the geometry of Pn is closely tied to the interplay

of the triadic structure (g, ω, j). The Riemannian metric has its generic holonomy or stabilizer

group O(2n). The symplectic structure has its stabilizer group Sp(4n,R), and the almost complex

structure j has its group GL(n,C). The intersection of the these three associated Lie groups

results in a subgroup of O(2n), the unitary group U(n,C). This implies the unitarity in quantum

mechanics, the Hermiticity of the observables and the Hermitian geometry of Pn. Note that any

two elements of this triad plus their mutual compatibility condition imply the third.

The physical underpinnings of the triadic interplay was addressed by Gibbons and Pohle [25].

They noted that observables in quantum mechanics play a dual rôle as providers of outcomes

of measurements and generators of canonical transformations. Specifically, the almost complex

structure j is dual to g in that it generates canonical transformations corresponding to this metric,

namely time evolution. Thus time in quantum mechanics is tied in a one-to-one manner to g as

well as j. We have already encountered this connection in (2.34), the uncertainty in the energy

(see [27]). As we previously noted, this linear relation between the metric and time shows the

probabilistic nature of time and time as a correlator between statistical distances measured by

different systems.

Now note that simply giving a manifold M a complex structure does not imply that M is com-

plex. The complex structure must be global. For this to be the case the almost complex structure

on a given manifold must be integrable. The necessary and sufficient condition for integrability is

given by the Newlander–Nirenberg theorem [34], which states that an almost complex structure

is integrable if the Nijenhuis torsion tensor vanishes. Now note that j is integrable on Pn for any

n. Thus standard quantum mechanics possesses absolute global time. However, our intuition from

General Relativity indicates a more provincial, local notion of time. Therefore, we choose a gen-

eralized framework in which j on a state space fails to be integrable. Our generalized quantum

mechanical structure would possess a local, relational time. As a result there is a relativity among

21



observers of the very notion of a quantum event.3

3This possibility was also discussed in [35].
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Chapter 3

How to View Spacetime

It is crucial to understand the microscopic degrees of freedom of quantum gravity. The semiclassical

limit, General Relativity, is one place to start addressing this question. In what follows, we empha-

size the thermodynamic nature of spacetime. Then, inspired by the geometric formalism outlined

above, we examine the quantum nature of spacetime. Specifically, we will focus on comparison of

the nature of observables and measurements in quantum field theory and General Relativity. This

will provide an entry point to a discussion of background independent quantum gravity. Note that

our crucial concern here is with a “quasi-local” (as opposed to global) understanding of holography

(as implied by the second law of black hole thermodynamics) from the underlying thermodynamic

nature of General Theory of Relativity.

3.1 Thermodynamics of Spacetime

We have explored a method to reformulate quantum mechanics in a geometric formalism. We have

also discussed a possible generalization of quantum mechanics guided by intuition gained from

General Relativity. Now we would like to review a method for analyzing General Relativity from

the perspective of thermodynamics. This method is due to Jacobson and was applied in [36] to

systems that possess local thermal equilibrium and extended to non-equilibrium systems in [37].

We will review and summarize both sets of results.

Black holes provide ideal laboratories for studying quantum gravity. In particular, black holes

are thermodynamic objects. The familiar laws of thermodynamics have analogues for black holes

[38, 39, 40]:

0. The surface gravity at the horizon of a stationary black hole is constant.

1. The infinitesimal change in mass is given by

dM =
κ

8πGN
dA+ Ω dJ + Φ dQ,
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where κ is the surface gravity, A is the area of the horizon, Ω is the angular velocity, J is the

angular momentum, Φ is the electrostatic potential, and Q is the electric charge.

2. The weak-energy condition implies that the surface area is a non-decreasing function in time:

dA ≥ 0.

3. It is not possible to have a black hole with zero surface gravity.

The surface gravity specifies a black hole temperature TH = ~κ/2π. There is as well a notion of

entropy associated to the area of the black hole horizon:

SBH =
A

4GN~
. (3.1)

This is a quantum mechanical entropy as evinced by the ~ in the denominator.

The discovery of black hole entropy [38] and the four laws of classical black hole mechanics

[39] therefore argue a connection between thermodynamics and gravitation. This connection was

put on a much firmer footing with the seminal work of Hawking [40] which established that black

holes emit thermal radiation at the temperature TH . These advances in understanding black hole

solutions were made by deriving thermodynamic quantities from gravitational considerations. We

now turn this method on its head and derive gravitational results from thermodynamic calculations.

Specifically, we will derive Einstein’s equations as an equation of state by locally applying the

Clausius relation, dS = δQ
T

in conjunction with the proportionality between the entropy of a

system and the area of a causal horizon.

In order to do this we must first formalize the nature of heat flow and temperature in this setting,

and we must also define exactly which type of causal horizon we are considering. In traditional

thermodynamics heat flow is the transfer of energy between microscopic degrees of freedom which

are unobservable at macroscopic scales. We can draw an analogy between this phenomena and heat

flow across a causal horizon. The gravitational field created by this heat flow can be felt, although

once across the horizon it can not be observed. This horizon need not be the event horizon of

a black hole. We may simply consider the past causal boundary of an observer as our horizon.

These type of boundaries conceal information, and it is this property that allows us to relate them

to entropy calculations [38]. We would like to consider equilibrium thermodynamics at each point

along the horizon. Consider a spacetime point p. By invoking the equivalence principle we can

consider the neighborhood about p to be flat spacetime. In addition consider a small spacelike

two-surface element P with its past directed null normal congruence to one side, which we will

define as inside. We require each spacetime point p along the horizon to be in equilibrium in the

sense there is no shearing σ or expansion θ of P and that Einstein’s equations hold. To this end we

restrict ourselves to considering a local Rindler horizon which is the boundary of a Rindler wedge.

Most of the information stored beyond the horizon is stored in the correlations between the vacuum

fluctuations just inside and outside the horizon [41]. We may also use the vacuum fluctuations at the

boundary to understand the system temperature. Due to the Unruh effect [42] these fluctuations

become a thermal bath from the reference frame of an uniformly accelerated observer. Thus we
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may define our system temperature as the Unruh temperature of a uniformly accelerated observer

just inside the horizon. Restricted to Rindler wedge the vacuum density matrix for a relativistic

quantum field theory has the form of a canonical ensemble (Gibbs state), ρ = Z−1 exp(−HB/T )

where HB is the boost Hamiltonian of the accelerated reference frame. In standard quantum field

theory the infinite number of infrared degrees of freedom near the horizon leads to a formally infinite

entanglement entropy. However, if we regulate our theory in the ultraviolet with a fundamental

cutoff length, the entropy becomes finite and is proportional to the horizon area.

We also measure energy flux which defines the heat flow from the same accelerated reference

frame. This will give different results depending on the acceleration of the observer and the accel-

eration becomes infinite as the observer’s worldline approaches the horizon. Thus the energy flux

and temperature diverge. However, the ratio of the two is kept finite. It is in this limit which we

shall consider the thermodynamics of the system.

Now consider a small neighborhood of P that is essentially flat with the usual associate Poincaré

symmetries. There is an approximate Killing field χa which generates boosts orthogonal to P and

vanishing at P. A boosted reference frame with acceleration a, possesses an Unruh temperature

T = a~

2π
. The heat flow can be determined by the boost-energy current of matter Tabχ

a where Tab
is the matter energy momentum tensor. Thus we find the heat flow past P to be

δQ =

∫

H
dΣb Tabχ

a. (3.2)

Here we are integrating over a pencil of generators of the inside past horizon H of P. Now let ka

be the tangent vector to the horizon generators for an affine parameter λ that vanishes at P and

is negative in the past. This implies χa = −aλka and dΣb = kbdλd2A. Thus we may rewrite our

expression for the heat flux as

δQ = −a
∫

H
dλd2AλTabk

akb. (3.3)

Recalling the result for the temperature we find the entropy change to be

δQ

T
= (2π/~)

∫
dλd2ATabk

akb(−λ). (3.4)

The entropy change is also given by the change in the area of the horizon

δS = α δA. (3.5)

Now recall the Raychaudhuri equation (see also App. C),

dθ

dλ
= −1

2
θ2 − σabσ

ab −Rabk
akb. (3.6)

Also recall that the expansion parameter, θ and the shear, σ vanish at p. This condition yields

θ = −λRabk
akb +O(λ2). (3.7)
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This implies that to lowest order in λ the entropy change is given by

δS = α

∫

H
dλd2ARabk

akb(−λ). (3.8)

If we now require that Clausius relation hold for each local Rindler horizon we find that the

integrands of the (3.4) and (3.8) are equivalent for all null vectors ka. Equating coefficients of λ

yields

Rab + Φgab = (2π/~α)Tab, (3.9)

where Φ is unknown function. To determine Φ we invoke the requirement of local matter energy

conservation. Now taking the divergence of both sides of (3.9) and applying the contracted Bianchi

identity Rab
;a = 1

2
R,b we find

Φ = −1

2
R− Λ (3.10)

where Λ is an undetermined constant. Inserting this into our previous expression yields

Rab −
1

2
Rgab − Λgab = 8πGNTab (3.11)

where GN = (4~α)−1 is Newton’s constant and Λ is the cosmological constant. Note that this

implies that the universal entropy density is α = (4GN~)−1 which is in full agreement with the

standard expression for Bekenstein–Hawking black hole entropy, and we are consistent with stan-

dard general relativistic results.

Now we wish to consider allowing for higher order curvature terms which we expect from the

effective field theory point of view [44]. One way to accomplish this is to allow the entropy density

to be dependent on the Ricci scalar

αf(R) = 1 +O(R). (3.12)

Then the entropy change becomes

δS = α

∫

H
dλd2A (θf + ḟ) (3.13)

where differentiation of f is with respect to λ. However, now if the Clausius relation is to hold θ

must be non-vanishing. Thus the area of the horizon is dynamic and this would seem to indicate

the equilibrium condition at p no longer holds. However, the rate at which the area changes

is exponentially vanishing with respect to the Killing time. So we may consider the system as

approaching equilibrium near p. However, the Clausius relation does not strictly hold. Instead we

have dS > δQ
T

. This implies the entropy balance relation,

dS = δQ/T + diS (3.14)

where diS is a contribution of to the entropy created internally due to the system being out of

equilibrium. In addition it was shown in [37] that in order to maintain local conservation of energy

the additional entropy term must be of the form

diS =

∫

H
dλd2Aσ (3.15)
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where σ = −3
2
αΦθ2λ. Now following a similar method used in the equilibrium case and defining L

by f = dL/dR we find the following equation of state,

fRab − f;ab + (2f − 1

2
L)gab = (2π/~α)Tab. (3.16)

This is the equation of motion given by the Lagrangian (~α/4π)L(R) for which the black hole

entropy density is αf(R) [43]. Thus the thermodynamic equation of state is consistent with the

Lagrangian field equation as in the case of pure General Relativity. The inclusion of higher or-

der curvature terms is indicative of the incorporation of quantum mechanical effects into General

Relativity [44]. When considering more traditional approaches to quantum gravity comparisons to

non-equilibrium thermodynamics may be fruitful. We will make use of this parallel in subsequent

discussions.

3.2 Gravitational Statistical Mechanics

Thermodynamics is a coarse-grained description of a microscopic theory of physics. Consider, for

example, the molecules of air in a room. The gas in the room is characterized by thermodynamic

variables, temperature, pressure, and the chemical potentials of the different types of molecules.

To describe the physics it is not necessary to know the precise configuration of the molecules in the

room. An extensive thermodynamic state function, the entropy, captures the observer’s ignorance

regarding the microscopic details, and properties of the gas are determined by the behavior of this

state function. The entropy enumerates the possible configurations of the molecules in the room.

Likewise, the entropy of a black hole SBH = A/4GN~ is expected to enumerate the microphysical

states of the black hole. There must be eSBH such microstates with the charges of the black hole

spacetime.1 Identifying the microscopic states has proved challenging because in General Relativity

the geometry of the spacetime, at least in four dimensions, is uniquely specified by conserved

charges, mass, angular momentum, and electric charge.2 General Relativity is expected to supply

an effective description of the physics of spacetime that breaks down at some fundamental scale, say

the Planck length. The semiclassical limit of this fundamental theory — i.e., the long-wavelength

description of gravity — cannot probe physics at the Planck scale. The individual microstates may

therefore be expected to be distinguished from each other at Planck distances.

A few remarks about entropy in quantum gravity may be in order. The entropy SBH scales

as the area of the black hole horizon and not the volume of the spacetime encompassed by the

horizon. This is unlike the scaling of degrees of freedom of quantum mechanical systems decoupled

from gravity for which entropy is extensive with the volume. Quantum gravity has a holographic

1Arguably, as horizon area is associated with entropy, geometries associated to these microstates cannot have horizons, for if they

did, we would have eSBH microstates each with their own entropy eSBH . This furthermore already suggests that black hole entropy in

classical gravity is a consequence of the thermodynamic limit, viz. an averaging or coarse-graining over the microstates.
2The discovery of black objects with non-spherical topologies — objects like the black ring [45] and the black Saturn [46] — in higher

dimensions indicates a violation of the uniqueness theorems. To distinguish these states from black holes it becomes necessary to specify

as well higher moments such as multipole charges, which are in general not conserved.
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character in that degrees of freedom are codimension one [47]. Any microscopic theory underlying

gravitational thermodynamics must explain this unexpected scaling behavior.

Suppose we consider pure states in quantum mechanics. Such states can collapse semiclassically

to form black hole. If the degrees of freedom that differentiate one microstate from another are

confined to a Planck sized region around the singularity which the horizon shields, this leads to

the so-called information paradox. Recall that the vacuum in a quantum field theory is dynamical.

Consider the pair production of particle modes near the black hole horizon. Hawking showed

that when one particle in a pair crosses the horizon and the other escapes to infinity, the black

hole’s mass is reduced [40]. The Hawking radiation is insensitive to the Planck scale structure of

spacetime near the singularity. Rather, it is determined by the thermodynamic properties of the

system. When the black hole has evaporated, the asymptotic observer at infinity is incapable of

deducing which pure state formed the black hole. If this information is in principle lost, this is a

violation of the unitarity of quantum mechanics! This cannot happen.

A resolution to these issues may lie in fundamental misconceptions regarding the nature of black

hole spacetimes. String theory has made progress in understanding the microscopic origin of black

hole entropy. In particular, for certain supersymmetric black holes, the Bekenstein–Hawking en-

tropy is reproduced by an enumeration of degenerate vacua of D-brane configurations [48, 49]. This

is not, however, enough to extrapolate the identity of the microstates in the strong coupling regime

where the semiclassical description of the spacetime as a black hole solution to General Relativity

applies. More recently, Mathur and his collaborators have argued that the characteristic features of

black hole spacetimes in General Relativity, namely the existence of horizons and singularities, are

associated to a thermodynamic coarse-graining, or averaging, over regular geometries [50]. There

is no information paradox because the geometry of spacetime is smooth.3 What is spectacular is

that in cases where the microstates are each associated to geometries, the spacetimes start to differ

from each other at the scale of the horizon of the semiclassical black hole. Mathur’s ideas rely

on the existence of powerful string dualities, and while this identification of microstates may be

compelling within these settings, it is difficult to see how to apply them to more general asymptopia

or to cosmological horizons. This would entail a radical reassessment of causal structure in General

Relativity. We do not pursue this program here.

3.3 Observables and Measurement in QFT and GR

Now we wish to discuss the nature of observables and measurement in quantum theory and Gen-

eral Relativity. This will aid us in attempting to uncover the general structure of a background

independent quantum theory of gravitation.

As Wigner pointed out, measurements are by nature different in quantum field theory and the

General Theory of Relativity [52]. The Special Theory of Relativity and quantum mechanics, as

3The information paradox may as well be resolved if almost all states have a typical character, and almost no probes are capable of

examining the deviations from typicality [51].
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well as their conflation, are formulated in terms of particle trajectories or wave functions or fields

that are functions (functionals) of positions or momenta. Such coordinates are auxiliary constructs

in the General Theory of Relativity. Consistent with diffeomorphism invariance, we can assign

almost any coordinates to label events in classical gravity and, by extension, in quantum gravity.

The coordinates are not in themselves meaningful. Moreover, gravity is non-local, as perhaps best

manifested in the concept of gravitational energy [31]. No local gauge invariant observables can

exist [53]. The decoupling of scales familiar to local quantum field theories is simply not possible.

The ultraviolet physics mixes inextricably with dynamics in the infrared.

Measurements in a theory of gravitation are founded upon the relational properties of space-

time events. Timelike separation of events is measured by clocks, whereas spacelike separation

is determined more indirectly.4 Within a quantum theory, events cannot themselves be localized

to arbitrary precision. Only for high-energies does it even make sense to speak of a local region

in spacetime where an interaction takes place. This is a simple consequence of the energy-time

uncertainty relation.

The measurements that a bulk observer makes within a quantum theory of gravity are neces-

sarily restricted, however. Experiments are performed in finite times and at finite scales. The

interactions accessed in the laboratory also take place in regions of low spacetime curvature. In

local quantum field theory, we operate successfully under the conceit that the light cone is rigid.

There is an approximate notion of an S-matrix that applies to in- and out-states with respect

to the vacuum in flat space. Computing scattering amplitudes in string theory proceeds through

analytic continuation of Lorentzian spacetimes into Euclidean spaces with fixed asymptopia. On

cosmological scales, this is of course a cheat. Light cones tilt. The causal structure, in particular,

is not static. We do not in general know the asymptotic behavior of the metric at late times. The

only data available about spacetime are events in an observer’s past light cone. Each observer has

a different past light cone consistent with the histories of all the other observers, and the future

causal structure is partially inferred from these data.

A manifold is constructed out of an atlas of local coordinate charts. A sufficiently small neigh-

borhood about any point is flat. To solve Einstein’s equations, the vacuum energy of empty Min-

kowski space vanishes exactly. Globally, the ratio of the vacuum energy density to the expectation

of Planck scale physics is extremely close to zero but does not identically vanish. We wish to regard

the measured, small cosmological constant as the consequence of patching together the physics of

locally flat spaces consistent with the existence of canonical gravitational quanta. Instead of work-

ing with the spacetime manifold, we employ a larger geometric structure whose tangent spaces

are the canonical Hilbert spaces of a consistent quantum mechanics of gravitons. The equivalence

principle we employ relies on the universality and consistency of quantum mechanics at each point.

In every small, local neighborhood of this larger structure, the notion of quantum mechanical mea-

surement is identical. In particular, local physics in the laboratory is decoupled from the global

physics. Nevertheless, as we will emphasize in what follows, there is a non-trivial non-decoupling

4There are subtleties regarding the interplay between a suitably microscopic clock and a macroscopic apparatus that records the

measurement [54].
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of local and global physics when one discusses the quantum origin of vacuum energy.
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Chapter 4

Matrix theory

4.1 M-theory

Quantizing General Relativity the way classical field theories are quantized leads to well-known

ultraviolet divergences. To renormalize the theory, an infinite number of counterterms are necessary.

It is possible that this signals an inappropriate use of the perturbative expansion and that the

quantum theory of gravitation is in fact finite when treated exactly. We do not, however, know of

the existence of an ultraviolet fixed point of the renormalization group (RG) that would render the

theory finite in this way. The leading candidate theory of quantum gravity consistent with what

we know about the Standard Model of particle physics is string theory.1 The exchange of closed

strings provides a mechanism for obtaining a quantum theory of gravity that is ultraviolet finite

and consistent with Poincaré invariance and general covariance. Moreover, string theory is a theory

without free parameters. The string moves self-consistently in the background spacetime that it

generates. The Polyakov action for the string (constant dilaton, antisymmetric tensor) is

S = − 1

4πα′

∫
d2σ

√−γ γab∂aXµ∂bX
νGµν , (4.1)

where Xµ(τ, σ) describes the embedding of the string in target space, γab is the worldsheet metric,

and Gµν is the spacetime metric. The renormalization group equation for the non-linear sigma-

model on the string worldsheet implies that

βµν =
dGµν

d log Λ
= α′Rµν +O(α′2) = 0. (4.2)

Thus the Einstein vacuum field equation for gravity is encoded in the quantum structure of the

conformal worldsheet theory. The algebraic structure of the quantum worldsheet theory is nicely

captured by the operator product expansion (OPE)

Oµ(u)Oν(v) = λρµν
Oρ

(u− v)#
+ . . . (4.3)

1For background on string theory, we refer the reader to the canonical textbooks [12, 55].
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specified by the stress-energy tensor T µν . The β-function equation may equivalently be couched as

a definition of the stress-energy tensor for the worldsheet theory:

βµν = T µν =
δΓeff

δGµν

, (4.4)

where

e−Γeff = exp

(∫
d2σ GµνT

µν

)
. (4.5)

Thus the worldsheet quantum theory knows about the spacetime physics. This remarkable connec-

tion can be extended in the context of stringy non-perturbative physics from a spacetime point of

view, via the holographic renormalization group as discussed in App. C.

Anomaly cancellation requires that the supersymmetric string (superstring) propagates in a

spacetime with a critical dimension D = 9 + 1. There are five known perturbative string theories

in ten dimensions. All of these string theories are in turn different perturbative limits of M-theory

[56, 57].

To date, little is known about M-theory itself beyond the following salient facts.

• The low-energy limit of M-theory is N = 1 supergravity in eleven dimensions.

• M-theory compactified on a small circle recovers type IIA string theory in ten dimensions. The

relation between the radius of the M-theory circle R11 and the string coupling gs and string

scale α′ is

R11 = gs
√
α′. (4.6)

The eleven-dimensional Planck length ℓPl = g
1/3
s

√
α′. The string coupling gs is determined

by the expectation value of the dilaton field, gs = e〈φ〉. The description in terms of type IIA

string theory is therefore appropriate at weak string coupling. At strong coupling the theory

grows an eleventh dimension.

• M-theory compactified on an interval bounded by Hořava–Witten domain walls gives heterotic

E8 × E8 string theory.

• The BPS spectrum of M-theory contains the M2-brane and its magnetic dual the M5-

brane. The AdS/CFT correspondence indicates that there is an exact duality between the

six-dimensional worldvolume N = (2, 0) gauge theory on a stack of N M5-branes with

M-theory on AdS7 × S4 with N units of four-form flux on S4 and radius of curvature

RAdS7 = 2RS4 = 2(πN)1/3ℓPl and another exact duality between the three-dimensional N = 8

gauge theory on a stack of N M2-branes with M-theory on AdS4 × S7 with N units of flux

dual to the four-form on S7 and radius of curvature 2RAdS4 = RS7 = (32π2N)1/6ℓPl.

The remaining perturbative string theories are implicated in the description of type IIA string

theory as a weak coupling limit of M-theory. There is a web of dualities that connects the various

perturbative string theories together and relates them to M-theory. Aspects of this web of dualities
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Figure 4.1: M-theory and her children.

are diagrammed in Figure 4.1. Using T-duality, which is a duality that leaves the coupling constant

invariant up to a radius dependent rescaling, and S-duality, a duality under which the coupling

changes non-trivially, as well as orbifold maps that involve the gauging of a discrete worldsheet

symmetry, we can map each of the perturbative string theories to any of the others.

Our capacity to explore M-theory is frustrated by the fact that the theory is strongly coupled

and there is no good perturbation theory to apply. M-theory nevertheless admits a microscopic

description as the supersymmetric quantum mechanics of matrix degrees of freedom. We are

led to this conclusion through two separate lines of investigation: from the quantization of the

supermembrane and from the Hamiltonian mechanics of N D0-branes in type IIA string theory

considered in light-cone frame [58]. Matrix theory thus formulated produces a non-perturbative

definition of M-theory within a fixed background. There are several outstanding reviews devoted

to this subject [59, 60, 61, 62]. In our brief synopsis, we shall draw in particular from [62].

4.2 From Membranes to Matrices

As in the case of quantizing the string, we must have a quantization procedure for membranes.

Quantization of the supermembrane, however, presents a formidable challenge. As we shall see, it

is in attempting to overcome these difficulties that we are led to Matrix theory.

We first consider the classical bosonic membrane in flat spacetime. Just as a particle traces out

a worldline as it propagates in spacetime and the string traces out a worldsheet, the membrane

traces out a worldvolume. We shall parameterize coordinates on the worldvolume with the variables

{τ, σ1, σ2}. The motion of the membrane in target space is given by Xµ(τ, σ1, σ2).

The action that describes the membrane’s motion is the membrane equivalent of the Nambu–

Goto action for the string:

S = −T
∫

d3σ
√−g. (4.7)

Here we are using the signature (−,+,+). The membrane tension is defined as T = 1/(2π)2ℓ3Pl,

and gαβ is the pull-back of the Minkowski metric on the worldvolume. We may rewrite this as the
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membrane equivalent of the Polyakov action,

S = −T
2

∫
d3σ

√−γ (γαβ∂αX
µ∂βXµ − 1). (4.8)

Here γαβ is the metric on the worldvolume. Now we are confronted with serious discrepancies

between the analysis of the bosonic membrane and that of the bosonic string. First, we take note

of the constant term in (4.8). It is absent in the Polyakov action for the bosonic string. Its presence

in the action of the membrane is indicative of the lack of conformal invariance. The action does

possess three diffeomorphism symmetries. However, unlike the worldsheet metric of the bosonic

string which contained three components, the worldvolume metric contains six components. Due

to the lack of conformal invariance and the increased number of components in γαβ, we are only

able to partially gauge fix the metric. We shall do this as follows,

γ00 = − 4

N2
det gab, γ0b = 0, (4.9)

where N is a constant that will be fixed when we come to the matrix regularization of the membrane.

Also note that for constant τ the Poisson bracket is defined

{f, g} ≡ ǫab∂af∂bg. (4.10)

Now we may rewrite the action in terms of the gauge fixed metric and the Poisson bracket [62],

S =
NT

4

∫
d3σ
(
ẊµẊµ −

2

N2
{Xµ, Xν}{Xµ, Xν}

)
. (4.11)

This action yields the following equations of motion

Ẍµ =
4

N2
{{Xµ, Xν}, Xν}, (4.12)

with the constraint equations

ẊµẊµ = − 2

N2
{Xµ, Xν}{Xµ, Xν}, (4.13)

and

Ẋµ∂aXµ = 0 ⇒ {Ẋµ, Xµ} = 0. (4.14)

This theory has manifest covariance but because of the non-linear nature of the equations of motion

and the constraint equations it is difficult to quantize.

Quantization of the bosonic string is simplified by going to light-cone gauge. In that spirit let

us consider the following light-cone coordinates,

X± =
1√
2
(X0 ±XD−1), (4.15)

and proceed to a light-cone gauge,

X+ = τ. (4.16)
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This allows us to solve the constraint equations

Ẋ− =
1

2
Ẋ iẊ i +

1

N2
{X i, Xj}{X i, Xj}, ∂aX

− = Ẋ i∂aX
−. (4.17)

(The indices i, j run from 1 to D−2.) If we now turn to the Hamiltonian formalism while remaining

in the light-cone gauge, we find

H =
NT

4

∫
d2σ
(
Ẋ iẊ i +

2

N2
{X i, Xj}{X i, Xj}

)
, (4.18)

with only remaining constraint on the transverse degrees of freedom being,

{Ẋ i, X i} = 0. (4.19)

Even with these simplifications quantization remains difficult because of the non-linearity of the

equations of motion.

In order to quantize this theory we must turn to the matrix regularization scheme originated in

[63] and [64]. In this regularization, we map functions on the membrane’s surface to N×N matrices.

We will assume the membrane surface to be the sphere S2. Thus at any fixed time we may describe

the membrane surface as a unit two-sphere with an associated SO(3)-invariant symplectic form.

We may describe a function on the sphere using functions of the Cartesian coordinates which we

denote q1, q2, q3 with the obvious constraint that
∑

i q
2
i = 1. The symplectic structure is encoded

in the Poisson bracket {qa, qb} = ǫabcqc. The Lie algebras of SU(2) and SO(3) are identical. The

algebra of SU(2) may be expressed in terms of the Lie bracket [Ja,Jb] = iǫabcJc. Thus we are

led to relate the coordinate functions on the membrane to matrices that are an N -dimensional

representation of the generators of SU(2)

qa →
2

N
Ja. (4.20)

All functions on the sphere can be expanded in terms of spherical harmonics

f(q1, q2, q3) =
∑

l,m

almYlm(q1, q2, q3), (4.21)

which are themselves functions of the coordinates on the sphere

Ylm(q1, q2, q3) =
∑

b(lm)
a1...al

qa . . . ql. (4.22)

Note that that because we are constrained to the unit sphere the coefficients b
(lm)
a1...al are symmetric

and traceless. Thus we may extend our correspondence to spherical harmonics for l < N ,

Ylm(q1, q2, q3) → Ylm =

(
2

N

)l∑
b(lm)
a1...al

Ja . . .Jl. (4.23)

We may only allow for spherical harmonics with l < N because the higher order monomials gener-

ated by Ja are not linearly independent matrices. This naturally leads to a matrix correspondence

for an arbitrary function,

f(q1, q2, q3) → F =
∑

l<N,m

almYlm. (4.24)

35



Likewise we define a correspondence between the Poisson bracket and the Lie bracket

{f, g} → −iN
2

[F,G]. (4.25)

There is also a relation between an integral of a function over the membrane and the trace of the

corresponding matrix,
1

4π

∫
d2σ f → 1

N
TrF. (4.26)

Applying this prescription to (4.18) yields the following regularized Hamiltonian

H =
1

2πℓ3Pl

Tr
(1

2
ẊiẊi − 1

4
[Ẋi, Ẋj][Ẋi, Ẋj]

)
. (4.27)

From this we may derive the equations of motion

Ẍi + [[Xi,Xj],Xj] = 0 (4.28)

and the constraint

[Ẋi,Xj] = 0. (4.29)

Even after instituting this procedure, we are left with a classical theory but quantization is now

straightforward.

The result is a quantum theory whose fundamental degrees of freedom are N ×N matrices with

U(N) symmetry. Here we have assumed the membrane to have the topology of the two-sphere.

However, this regularization procedure can be generalized to membranes of arbitrary topology

[65, 66].

Now we turn to the case of a supersymmetric membrane. There is unfortunately no known

method to formulate the supermembrane with manifest worldvolume supersymmetry. That is to

say that there is no analogue of the NSR formalism that is applied to superstrings. We shall instead

follow the Green–Schwarz formalism with κ-symmetry present in the worldvolume.

Briefly, there are eleven bosonic degrees of freedom corresponding to the embedding of the

membrane. The reparameterization invariance of the worldvolume gauges away three of these so

that there are eight bosonic degrees of freedom at the end. The fermions start out as thirty-two

component spinors. The mass-shell condition and the κ-symmetry each halve the available degrees

of freedom. The bosonic and fermionic degrees of freedom are then organized as an N = 8 multiplet

of the three-dimensional worldvolume theory.

This procedure yields the following Hamiltonian [62],

H =
NT

4

∫
d2σ
(
Ẋ iẊ i +

2

N2
{X i, Xj}{X i, Xj} − 2

N
θTΓi{X i, θ}

)
. (4.30)

Here θ is a sixteen component Majorana spinor of Spin(9), and Γi are the Γ-matrices associated

to the Clifford algebra. As before we are working in light-cone gauge, and we have gauge fixed the
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κ-symmetry as follows: Γ+θ = 0. As in the bosonic case we implement the matrix regularization

which yields,

H =
1

2πℓ3Pl

Tr
(1

2
ẊiẊi − 1

4
[Ẋi, Ẋj][Ẋi, Ẋj] +

1

2
θTΓi[X

i, θ]
)
. (4.31)

However, as is the case with quantization of the superstring in the Green–Schwarz formalism,

Lorentz invariance is lost. Attempts at covariant membrane quantization were addressed in the

early work of [6] making use of Nambu brackets [67] in place of Poisson brackets,

{x, y, z} = ǫαβγ(∂αx)(∂βy)(∂γz). (4.32)

Unfortunately the membrane theory we have described in this section suffers from an apparent

pathological instability. Consider a bosonic membrane with constant tension. Because its energy

is proportional to its area, it can develop long, very thin, quills emanating from its surface because

these are energetically inexpensive. This renders the membrane highly delocalized. On the quantum

level this instability leads to a continuous spectrum. However, as we shall see, this difficulty is

resolved because the Matrix theory is a manifestly second quantized theory.

4.3 The BFSS Conjecture and Discrete Light Cone Quantization

Now we will explore another path to Matrix theory that has entirely different roots than mem-

brane quantization. To begin we consider M-theory compactified on a circle of radius R11. This

compactification provides the theory with an infrared cutoff and ensures that momentum is quan-

tized according to the Kaluza–Klein condition. We separate the momentum in the compactified

dimension, p11 = N/R11, from the momenta pi in the other ten dimensions to write the dispersion

relation as

E2 =
( N

R11

)2

+ p2 +m2. (4.33)

We work in the large-N limit, and the infinite momentum frame which corresponds to taking p11

to infinity. We shall at the end decompactify by sending R11 to infinity as well. Expanding our

previous result

E =
N

R11

+
1

2

R11

N
(p2 +m2) + O

(R11

N

)2

. (4.34)

In the infinite momentum frame, the partons are the D0-branes [58]. D-branes are non-perturbative

solitons (defects) upon which open strings end; their masses are proportional to 1/gs, and thus these

are precisely the states that become massless as we send gs → ∞ or equivalently decompactify the

M-theory circle. In the infinite momentum frame the dynamics are non-relativistic, and thus we

may describe physics using supersymmetric quantum mechanics [68, 69].

Let us explore the dynamics in this limit in more detail. We wish to find the low-energy

effective Lagrangian for a system of N D0-branes. To do this we begin with the Lagrangian for

ten-dimensional super-Yang–Mills theory in the low-energy limit and dimensionally reduce it to
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0 + 1 dimensions,

L =
1

2gsℓs
Tr
[
ẊaẊa +

1

2
[Xa,Xb]2 + θT (iθ̇ − Γa[X

a, θ])
]
. (4.35)

Here we have gauge fixed A0 = 0. The Yang–Mills coupling is expressed in terms of the string

coupling and the string length as

g2
YM ∝ gsℓ

−3
s . (4.36)

We choose to work in units where 2πℓs = 1, such that R11 = gsℓs = 2πℓ3Pl. Now we will rescale

X/g
1
3
s → X and put ℓPl = 1. This yields the Hamiltonian

H =
R11

2
Tr
(
ẊiẊi − 1

2
[Ẋi, Ẋj][Ẋi, Ẋj] + θTγi[X

i, θ]
)
. (4.37)

There are several striking things to notice about this Hamiltonian. First, it is equivalent to the

Hamiltonian arrived at by quantization of the supermembrane, (4.31). Remarkably, D0-branes

describe the M2-brane. Next, it is also composed of eleven-dimensional quantities although we

began with a ten-dimensional super-Yang–Mills theory. We are led to a conjecture due to Banks,

Fischler, Shenker, and Susskind [58].

BFSS Conjecture. The infinite momentum limit of M-theory is equivalent to the N → ∞ limit

of N coincident D0-branes, given by U(N) super-Yang–Mills theory.

Although the conjecture was made in the N → ∞ limit it was later suggested that for finite-

N , Matrix theory is equivalent to the discrete light-cone quantized (DLCQ) sector of M-theory.

There are several different points of view on this subject that come in the form of different limiting

procedures. Here we will review the limit due to Seiberg [70] and Sen [71], but other limiting

procedures were suggested in [72, 73]. The various limits were nicely reviewed by Polchinski in [74].

Following [70], we begin with M-theory compactified on a lightlike circle of radius R with mo-

mentum p− = N/R with the following identifications:

(
x

t

)
∼
(
x

t

)
+

( R√
2

− R√
2

)
. (4.38)

This is a particular limit of a compactification on a spacelike circle with the identification

(
x

t

)
∼
(
x

t

)
+

(√R2

2
+R2

s

− R√
2

)
≈
( R√

2
+ R2

s√
2R

− R√
2

)
(4.39)

with Rs ≪ R. We may rescale the value of R as well as the light-cone energy p+ by way of a

longitudinal boost. Consider the following boost parameter

β =
R√

R2 + 2R2
s

≈ 1 − R2
s

R2
. (4.40)
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If we boost (4.39) in this way we obtain greatly simplified identifications
(
x

t

)
∼
(
x

t

)
+

(
Rs

0

)
. (4.41)

Now in analogy with the N → ∞ case we consider a compactification on (4.41). This yields the

following string scale and coupling [70],

gs =

(
Rs

ℓPl

) 3
2

, α′ = ℓ2s =
ℓ3Pl

Rs
. (4.42)

As expected, in the limit Rs → 0 the string coupling vanishes, meaning that higher genus contri-

butions may be dropped. The string tension also vanishes in this limit as α′ → ∞. However, the

boost rescales p+ to be of the order of Rs/ℓ
2
Pl. In order to analyze more clearly the modes with this

energy we must rescale the parameters of the theory. We will replace the M-theory with Planck

scale MPl = ℓ−1
Pl compactified on a lightlike circle of radius R with M̃-theory with Planck scale M̃Pl

compactified on a spacelike circle of radius Rs. The transverse geometry of M̃-theory replaces that

of the original M-theory. The relationship between the parameters of the two theories is found by

taking Rs → 0, M̃Pl → ∞, and holding p+ ∼ RsM̃
2
Pl fixed. This yields the relation,

RsM̃
2
Pl = RsM

2
Pl. (4.43)

Also, because the boost does not affect the transverse direction, we may equate

MPlRi = M̃PlR̃i. (4.44)

Thus we find the following rescaled string tension and Planck scale

g̃s = (RsM̃Pl)
3
2 = R

3
4
s (RM2

Pl)
3
4

M̃2
s = RsM̃

3
Pl = R

− 1
2

s (RM2
Pl)

3
2 . (4.45)

The rescaled theory in the Rs → 0 limit has a vanishing string coupling and a large string tension.

We have mapped our original M-theory with momentum p− = N/R in the compactified direction

to a new M̃-theory with momentum p = N/Rs in the compactified direction. We have already

established that M-theory with this type compactification is dual to type IIA string theory, and its

dynamics are determined by D0-branes when the radius of compactification is small.

4.4 Matrix Theory and Second Quantization

It is important to note that because the dynamics of Matrix theory are governed by matrices the

theory is manifestly second quantized. To see this explicitly, consider the equations of motion of a

bosonic Matrix theory (4.30) with equations of motion (4.28). For block diagonal matrices

Xi =

(
Ai 0

0 Bi

)
,
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the equations of motion of each block are separable:

Äi + [[Ai,Aj],Aj] = 0, B̈i + [[Bi,Bj],Bj] = 0. (4.46)

Remarkably, we may consider each block as representing a different object with a different center

of mass. We could extend this type of analysis to include an arbitrary number of objects. Matrix

theory therefore describes the dynamics of multiple independent objects and is by its very nature

second quantized in target space. Moreover, this resolves the issues of the apparent instability

noted above. From a classical perspective we are faced with the problem of all of the energetically

inexpensive quills on the surface of the membrane. However, in the case of a multiple membrane

configuration these quills become tubes connecting the various membranes. The tubes in question

have a small radius and have a negligible effect on the dynamics of each independent membrane.

On the quantum level the D0-branes represent multiple graviton bound states with a single unit

of momentum. Thus we expect to find the continuous spectrum that was previously considered so

problematic.

4.5 Symmetries of Matrix Theory

Notice that we started with a theory in eleven-dimensions, namely M-theory. Going to light-cone

frame required that we isolate p+ as the generator of time translations. The subgroup of the

Lorentz group that acts invariantly upon the light-cone frame is the Galilean group, which is to

say that p− ≃ p11 = N/R11 is identified with a non-relativistic mass and pi with a non-relativistic

momentum. The pi transform under the Galilean group as follows:

pi 7→ pi + p−vi. (4.47)

The other Lorentz generators are a longitudinal boost, which oppositely rescales p±, and the rota-

tions of the null plane.

The Hamiltonian for Matrix theory is expressed in terms of N × N matrices Xi, i = 1, . . . , 9

that describe the transverse space to the light-cone. These matrices Xi are invariant under U(N)

(crucially this is not SU(N) × U(1)). Commuting matrices may be simultaneously diagonalized.

Their eigenvalues denote the classical positions of D0-branes. The D0-branes, however, interact

via open strings. These interactions are determined by off-diagonal entries in the matrices. Such

quantum fluctuations lead to a failure of matrix commutativity. Since the matrices are a description

of target space, the spacetime geometry becomes non-commutative once interactions are turned on.

Because D0-branes are themselves graviton bound states, the gravitational interaction and thus

the geometry of spacetime are contained in the open string dynamics, viz. the fluctuations of the

matrix degrees of freedom. Moreover, although it is not as transparent as in AdS/CFT, the Matrix

theory description of physics is holographic and exhibits the phenomenon of UV/IR mixing. The

theory also has the curious property that the density of states grows as we compactify on higher

dimensional tori.
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Bulk spacetime is as well an emergent feature of the Matrix theory construction. The transverse

space arises from the parameterization of the moduli space of the Yang–Mills theory on the N

D0-branes. The longitudinal direction is canonically conjugate to p−, which is specified by the

compactification scale (which acts an infrared cutoff on the theory) and the rank of the gauge

group.

This is a very appealing picture in which we have developed a non-perturbative, non-local

formulation of M-theory in a particular limit and understood both the origins and the dynamics

of the microscopic degrees of freedom. Indeed, calculations of scattering amplitudes in Matrix

theory correctly reproduce expected results in eleven-dimensional supergravity and vindicate this

paradigm [58]. One drawback in the formulation is that the construction is not manifestly covariant

as we work ab initio in an infinite momentum frame (or equivalently in light-cone gauge). As

well, in restricting to degrees of freedom with positive longitudinal momentum, we have forsaken

background independence. Adding states with zero longitudinal momentum corresponds to shifting

the background, for example by adding five-branes that wrap the light-cone directions [75]. In these

cases, the prescription for obtaining a Hamiltonian changes because there are new interactions

invoked (for instance, D4-brane dynamics from the point of view of the type IIA string theory).

To date, Matrix theory provides a holographic description of physics only in asymptotically flat

eleven-dimensional space. We insist upon Minkowski asymptopia because it is in this setting

that the particle description at infinity exactly applies, and we have an S-matrix theory at long

wavelengths. Clearly, such a description is unsatisfactory for cosmological spacetimes. Indeed,

although a number of attempts have been made in this direction [76], even for symmetric spacetimes

with a non-zero cosmological constant, there is no explicit Matrix theory formulation that captures

the bulk physics.

4.6 A Recapitulation

Matrix theory summarizes very nicely what we know about non-perturbative physics of string theory

in asymptotically flat spaces. Because it is a theory in which the configuration space involves (non-

commuting) degrees of freedom that can be related to spatial coordinates, it is of special interest

given the discussion about the purely quantum theoretic viewpoint on the measurements of time

intervals and spatial distances, as reviewed in Sec. 2. This is why we will take Matrix theory

as a candidate canonical quantum theory suitable for a generalized geometric formulation to be

discussed in the following section.

Finally we conclude this section by remarking that the explicit solution of Matrix theory

does not exist at present. Given the recent progress in understanding the the spectrum of non-

supersymmetric (bosonic) 2+1 Yang–Mills theory [77] using the method of wave-functionals, it is

tempting to think that the spectrum of Matrix theory can be understood along similar lines. This

would be important in view of the generalization presented below: the usual Hilbert space of Matrix

theory would provide a “coordinate basis” for understanding the general background independent
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formulation of Matrix theory, based on the background independent formulation of quantum theory

to which we now turn.
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Chapter 5

M-theory = Background Independent

Matrix Theory

In this section we put all the physics motivations and all the necessary background material together

to put forward a quantum background independent version of Matrix theory. This can be taken

as a proposal for a definition of M-theory, or a suggested answer to the question “What is string

theory?” The crucial physical element is a quantum version of the equivalence principle which

suggests a gauging of the unitary geometric structure of canonical quantum theory reviewed in

previous sections. The only extra element needed apart from this principle is the choice of a

quantum theory to be gauged, for which we take Matrix theory, as an example of a quantum

theory which encodes the quantum physics of asymptotically Minkowski space.

5.1 Background Independent Matrix Theory

We begin by recalling the given Riemannian structure of quantum mechanics and the observed

connection between the Fubini–Study and spatial metrics. It behooves us to inquire if a more general

Riemannian structure of space can be induced from a more flexible state space than Pn. We have

previously noted that the Fisher–Fubini–Study metric of the Gaussian coherent state recapitulates

the metric in configuration space. Instead of ψl(x), let us, for example, consider ψk(l)(x). The

corresponding expression for the spatial metric results from the overlap of two Gaussians ψk(l)(x) ∼
exp(− (x−k(l))2

δk(l)2
) which in turn follows from

∫
dx gψl,ψl+dl

ψ∗
l ψl+dl where the “quantum metric” reads

gψl,ψl+dl
≡ ψ∗

kψk+dk

ψ∗

l ψl+dl
. Clearly the transformation that takes ψl → ψk(l) is not in general unitary.

Thus, if we insist on the desired relation between the quantum metric and an arbitrary metric

on the classical configuration space, then the kinematics of the quantum theory must be altered.

Moreover, if the induced classical configuration space is to be the actual space of spacetime, only a

special quantum system will do. We are thus induced to make the state manifold suitably flexible

by doing General Relativity on it. The resultant metric on the Hilbert space is generally curved

with its distance function modified, an extended Born rule, and hence a new meaning is assigned
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to probabilities. By insisting on diffeomorphism invariance in the state space and on preserving

the desirable complex projective properties of Cartan’s rank one symmetric spaces such as Pn,

we apparently arrive at the ensuing coset state space Diff(n,C)/Diff(n − 1,C) × Diff(1,C) with

n → ∞ as the minimal phase space candidate for a background independent quantum mechanics.

By background independence, we mean that in the configuration space, no a priori choice of

asymptotics in made.

In summary, the axioms of standard geometric quantum mechanics are enlarged as follows.

1. The state space P∞ is extended to Diff(∞,C)/Diff(∞− 1,C) × Diff(1,C), deriving from the

generalized inner product

dS2 =
∑

hab[(dqa)
2 + (dpa)

2] ≡ hab dX
adXb, (5.1)

where hab is Hermitian. The “Born rule” now reads

1

2

∑

a,b

hab[(p
apb) + (qaqb)] = 1. (5.2)

These equations provide the metric relation on and the geometrical shape(s) of the new state

space, and implicitly defines ~. The probabilistic interpretation lies in the definition of geodesic

length on the new space of quantum states (events). The relation ~ ds = 2∆E dt gives meaning

to the “evolution parameter” t! Notably different metrics imply different “evolution param-

eters” with t relational and akin to the “multifinger time” of General Relativity [31]. Given

the X space, we can introduce a natural Diff(1,C) map, X → f(X). The Diff(1,C) identifi-

cation of the points on the submanifold determined by the “Born rule” defines the generalized

projective Hilbert manifold.

2. The observables are functions of the natural distance on the quantum phase space habX
aXb,

O = O(habX
aXb). They reduce to the usual ones when the Riemannian structure is canonical.

More explicitly

O =
∑

a,b

oahabX
aXb (5.3)

where the “eigenvalue” oa is given as (see [24])

dO

dXa
= oaωabX

b. (5.4)

Here the symplectic form ωab as well as O depend on the invariant combination habX
aXb.

3. The temporal evolution equation reads

dua

dτ
+ Γabcu

buc =
1

2∆E
Tr(HFa

b )u
b (5.5)

where now τ is given through the metric ~ dτ = 2∆E dt, as in the original work of Aharonov

and Anandan [27]. Note that ultimately we can generalize the line element so that the energy
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uncertainty is measured in terms of a fundamental energy scale, the Planck energy (EPl), so

that ~ dτ = 2EPl dt. Note that Γabc is the affine connection associated with this general metric

Gab and Fab is a general curvature two-form in Diff(∞ − 1,C) × Diff(1,C). (Here we have

adopted a stylized notation to indicate the specific generalization being considered.)

Next we reformulate geometric quantum mechanics in the above background independent setting.

Due to the Diff(∞,C) symmetry, “coordinates” za (i.e., quantum states themselves) make no

sense physically, only quantum events do, which is the quantum counterpart of the corresponding

statement on the meaning of spacetime events in General Relativity. Probability is generalized and

given by the notion of diffeomorphism invariant distance in the space of quantum configurations.

The dynamical equation is a geodesic equation on this space. Time, the evolution parameter in the

generalized Schrödinger equation, is not global and is given in terms of the invariant distance. Our

basic starting point of a background independent quantum mechanics is to notice that the evolution

equation (the generalized Schrödinger equation) as a geodesic equation, can be derived from an

Einstein-like equation with the energy-momentum tensor determined by the holonomic non-abelian

field strength Fab of the Diff(∞− 1,C)×Diff(1,C) type and the interpretation of the Hamiltonian

as a “charge”. Such an extrapolation is logical since Pn is an Einstein space; its metric obeying

Einstein’s equation with a positive cosmological constant given by ~: Rab − 1
2
GabR − λGab = 0.

The Ricci curvature of P
n is Rab ≡ n+1

~
Gab = 1

2
c(n + 1)Gab, where c is the constant holomorphic

sectional curvature of Pn given by c = 2
~
.

The geodesic equation follows from the conservation of the energy-momentum tensor ∇aT ab = 0

with Tab = Tr(FacGcdF cb− 1
4
GabFcdF cd+ 1

2∆E
Huaub) by way of the usual argument in General Rel-

ativity (see e.g., [31], chapter 20). With quantum gravity in mind, we set ∆E to the Planck energy

EPl, the proper deformation parameter. When EPl → ∞ we recover the usual flat metric on the

Hilbert space or the Fubini–Study metric on the projective Hilbert space. Since both the metrical

and symplectic data are also contained in H , we have here the advertised non-linear “bootstrap”

between the space of quantum events and the dynamics. The diffeomorphism invariance of the new

phase space suggests the following dynamical scheme for the background independent quantum

mechanics:

Rab −
1

2
GabR− λGab = Tab (5.6)

with Tab given as above (as determined by Fab and the Hamiltonian (“charge”) H). Furthermore

∇aFab =
1

2∆E
Hub. (5.7)

The last two equations imply via the Bianchi identity a conserved energy-momentum tensor,

∇aT ab = 0. The latter, taken together with the conserved “current” jb ≡ 1
2∆E

Hub, i.e., ∇aj
a = 0,

implies the generalized geodesic Schrödinger equation. So (5.6) and (5.7), being a closed system

of equations for the metric and symplectic form on the space of events, define our background

independent quantum mechanics. We emphasize once again that in the limit EPl → ∞ we recover

the usual structure of linear quantum mechanics. Moreover this limit does not affect the geodesic
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equation dua

dτ
+ Γabcu

buc = 1
2∆E

Tr(HFa
b )u

b due to the relation ~ dτ = 2∆E dt. As such our formula-

tion offers a tantalizing non-linear linkage between the metric and symplectic data embodied in H

and the quantum metric and symplectic data. The space of quantum events is dynamical parallel-

ing the dynamical rôle of spacetime in General Relativity, as opposed to the rigid, absolute state

space of standard quantum mechanics. This is then, in our view, the price of quantum background

independence. To draw more concrete consequences of this kinematics made dynamical, we next

specify a quantum system with its H . The configuration space of the quantum metric defines a

new form of “superspace” (as in canonical General Relativity [78]) and the dynamics on it presum-

ably select a particular background. Note that this formulation of general background independent

geometric quantum theory essentially repeats the lesson of General Relativity, as a gauged theory

of the Lorentz group, so we indeed end up with a gauged quantum theory, where now the unitary

group of canonical quantum theory is being gauged. Thus problems with violations of unitarity are

avoided in this very general formulation of background independent quantum theory.

We now demand that the configuration space metric be the actual physical spatial metric. The

suitable quantum system must then have a very special configuration space and should describe

a quantum theory of gravity. Specifically, we seek a canonical quantum mechanics of a non-

perturbative form of quantum gravity in a fixed background, with a well defined perturbative limit

and a configuration space being the actual space. The only example we know fulfilling these criteria

is Matrix theory [58]. (The latter is also “holographic” [47], in the sense of mean-field theory.1) As

with other roads to quantum gravity, Matrix theory which leaves quantum mechanics intact suffers

from the problem of background dependence [80, 81].2

In implementing our scheme, we assume that the metric on the transverse space is encoded in the

metric on the quantum state space. Then we take the Matrix theory Hamiltonian in an arbitrary

background and insert it into the defining equations of the above background independent quantum

mechanics. The evolution of our system then reads dua

dτ
+ Γabcu

buc = 1
2EPl

HMFa
b u

b where HM is the

Matrix Hamiltonian (i, j denote the transverse space indices (i = 1, ..., 9), and R11 is the extent of

the longitudinal eleventh direction):

HM = R11Tr(
1

2
P iP jGij(Y ) +

1

4
[Y i, Y l][Y k, Y j ]Gij(Y )Glk(Y )) + fermions. (5.8)

Here P i is the conjugate momentum to Y i (N ×N Hermitian matrices) given a symplectic form ω.

(We adopt the symmetric ordering of matrices, see [81].) Given this expression for HM , the general

equations (5.6) and (5.7) then define a background independent Matrix theory. Note that in (5.6)

and (5.7) a, b denote the indices on the quantum space of states, whose span is determined by the

dimension of the Hilbert space of Matrix theory, given in terms of N .

The time coordinate of background independent Matrix theory is manifestly not global, but is

defined by the invariant distance on the space of quantum events. The light-front (light-cone) SO(9)

symmetry is only “local” (in the sense of the generalized quantum phase space). Supersymmetry

1The relationship between holography, unitarity, and diffeomorphism invariance was explored in [79].
2We should mention here that different arguments for revising quantum mechanics in the framework of quantum gravity have been

advanced for example in [82, 83, 84].
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is generally broken since generically the background will not admit globally defined supercharges.

Only “locally” (again in the sense of the generalized quantum space) may we talk about the

correspondence between the moduli space of the Matrix theory supersymmetric quantum mechanics

and the transverse space [58].

The longitudinal coordinate, and longitudinal momentum specified in terms of the ratio N/R11

[58] can be made dynamical in our proposal. The rank N of the matrices implicitly defines the size

of the Hilbert space, which is seemingly fixed (the dimension of the index space is fixed). On the

other hand, one of the fundamental features of Matrix theory is that of being automatically second

quantized; it encodes the Fock space {nk} in terms of block diagonal nk× nk matrices [58]. Taking

a cue from this defining feature, we promote the points on the quantum phase space into Hermitian

matrices. This is the final ingredient in our proposal. In practice, the uas appear as Hermitian

matrices in the defining equations (5.6) and (5.7). So the rank of matrix-valued non-commuting

transverse coordinates Y i (N) is made dynamical by turning the “coordinates” za of our background

independent quantum phase space into non-commutative objects. The asymptotic causal structure

(and thus a covariant background independent structure) only emerges in the Matrix theory limit

[58], N → ∞, R → ∞ while keeping N/R fixed. The above defining dynamical equations (5.6)

and (5.7) can also be cast in the context of Connes’ non-commutative geometry [85].

The gist of our proposal lies in the non-linear interconnection between the metric (Gij) and sym-

plectic data (Ωij) contained in the Hamiltonian H and the quantum metric (Gab) and symplectic

data (ωab, or equivalently, Fab). This non-linear connection may well explain how (a) different de-

grees of freedom are associated to different backgrounds, and (b) how the observed four-dimensional

spacetime background dynamically emerges in Matrix theory, the pre-geometry being the dynam-

ical stochastic geometry of the space of events. Furthermore we can’t but ponder the fascinating

possibility that the very form of the Matrix theory Hamiltonian HM is already encoded in the non-

trivial topological structure of the space of quantum events. This may be so if the latter manifold

is non-simply connected and is non-commutative.3

5.2 Global Structure and Gr(Cn)

We may recast standard quantum mechanics in the language of complex geometry by way of only

two compatible postulates. The latter show that, just as thermodynamics, Special Relativity, and

General Relativity, quantum mechanics, in spite of its appearance, belongs in Einstein’s categoriza-

tion to “theories of principles” [87]. These two postulates to be stated below form a physically more

intuitive rendition of the mathematical axioms of Landsman [88]. They make manifest the very

rigid structure of the underlying state space (the space of quantum events), the complex projective

space Pn. As such they also underscore the relational [89] and information theoretic nature of

quantum theory [90]. Most importantly, this perspective points to a possible extension of quantum

mechanics along the line discussed in [6], one relevant to a background independent formulation of

3This in complete analogy with the concept of “charge without charge” of the Einstein–Maxwell system of equations in vacuum, as

discussed by Misner and Wheeler [86].
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quantum gravity. Such a generalization is achieved, in analogy to what is done with the spacetime

structure in General Relativity, in a two-fold way: firstly, by relaxing the integrable complex struc-

ture of the space of events, and secondly, by making this very space of events (that is, its metric

and symplectic and therefore its almost complex structure), the arena of quantum dynamics, into

a dynamical entity in its own right. One of the byproducts of such an extended quantum theory

is the notion of an intrinsic, probabilistic local time. This quantum time is rooted in the strictly

almost Kähler geometry of a dynamically evolving, diffeomorphism invariant state space of events.

In physical terms, this non-integrable almost complex structure implies a relaxation of the absolute

global time of quantum mechanics to an intrinsic, relative, local time. This novel feature is, in our

view, the key missing conceptual ingredient in the usual approaches to the background independent

formulation of quantum gravity. The main technical thrust of the present thesis is contained in

a set of very recent mathematical results of Haller and Vizman [91] concerning the category of

infinite dimensional almost Kähler manifolds which, in our view, naturally replaces the category of

complex projective spaces of standard quantum mechanics. These results enable us to significantly

sharpen the geometric formulation of our previous more heuristic proposal [6].

First we recall that, among their many available formulations, the axioms of standard quantum

mechanics [92] can take a very elegant, simple C∗-algebraic form [88]. The Landsman formulation

offers an unified view of both quantum and classical mechanics thereby suggesting its structural

closeness to geometric quantum mechanics [25]. We recall that in the latter setting, a quantum

system is described by an infinite classical Hamiltonian system, albeit one with very specific Kähler

constraints. Here, we seize on this formal closeness by providing the physical, geometric counter-

parts of these Landsman axioms. Paraphrasing [88], the first axiom states that the space of pure

states is a Poisson space with a transition probability. More precisely the definition of the Poisson

bracket is exactly that of geometric quantum mechanics [25]. Then, as detailed in Landsman’s

book [88], the first axiom says that the essential physical information is carried by a well defined

symplectic (i.e., a non-degenerate symplectic two-form) and metrical structures on the space of

states. The second axiom further specifies the transition probability to be that of standard quan-

tum mechanics, namely the metric information of the Cayley–Fubini–Study type [25], the natural,

unique metric on Pn. (The third axiom deals with superselection sectors, which, for simplicity we

do not concern ourselves with here.). It suffices to say that Landsman’s axioms can be shown [88]

to imply the usual geometric structure of quantum mechanics, in particular the uniqueness of Pn

as the space of pure states.

Moreover the Landsman axioms as translated above can be understood in the following physically

more intuitive manner. To do so, we first recall Bohr’s dictum that “(quantum) physical phenomena

are observed relative to different experimental setups” [93]. This statement closely parallels the rôle

that inertial reference frames play in relativity theory. More accurately, as paraphrased by Jammer

[93], this viewpoint reads: “just as the choice of a different frame of reference in relativity affects

the result of a particular measurement, so also in quantum mechanics the choice of a different

experimental setup has its effect on measurements, for it determines what is measurable.” Thus

while the observer does choose what to observe by way of a particular experimental setup, he or
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she cannot influence quantitatively the measured value of a particular observable. Thus in analogy

with the postulates of Special Relativity and in the place of Landsman’s axioms, we propose the

following two quantum postulates:

(I.) The laws of physics are invariant under the choice of the experimental set up. Mathematically,

we thus prescribe that, as in classical mechanics, there is a well-defined symplectic structure which

stands for the classical kinematical features of the measurement process.

To expand on this Postulate I, we should first note that, in a broader setting, it actually allows

for a general Poisson structure. However, by confining for simplicity, to a theory with no selection

rules, we thus restrict ourselves to a symplectic structure. Now the classical symplectic structure is

an inherent property that comes with the measurement device whose readings are then statistically

analyzed in the sense of statistical inference theory. That a measurement device always comes

together with a symplectic structure can be seen as follows. Take a system on which we perform

physical measurements. It is described by a certain Hamiltonian (or Lagrangian) so that the classi-

cal dynamics can be well defined. Consider a coupling of this system to another one, a measurement

device, so that both the interaction Hamiltonian and the Hamiltonian of the measurement device

are in principle known. (This is the classic setup considered for example in the literature on deco-

herence [94].) The measurement process is then in principle described by the interaction part of

the total Hamiltonian. Knowing the Hamiltonian assumes knowledge of a well-defined symplectic

structure. Thus the existence of a symplectic structure is an intrinsic property that comes with a

measuring setup. So the first postulate asserts the existence of a natural classical closed symplectic

two-form Ω, dΩ = 0, as well as the associated canonical Hamiltonian flow (i.e., dynamical equations

of motion). Namely, the state space is an even dimensional symplectic Poisson manifold. This is

the mathematical rendition of Postulate I.

Next we make a principle out of another dictum of Bohr and his school on the existence of

primary probabilities in Nature:

(II.) Every quantum observation (reading of a given measurement device) or quantum event, is

irreducibly statistical in nature. These events, being distinguishable by measurements, form points

of a statistical (informational) metric space. There is then a natural, unique (maximally symmetric)

statistical distance function on this space of quantum events, the famous Fisher distance [90] of

statistical inference theory [95].

More precisely, from the seminal work of Wootters [90], a natural statistical distance on the

space of quantum events is uniquely determined by the size of statistical fluctuations occurring

in measurements performed to tell one event from another. This distance between two statistical

events is given in terms of the number of distinguishable events, thus forming a space with the asso-

ciated Riemannian metric ds2 ≡∑i
dp2i
pi

=
∑
dX2

i , where pi ≡ X2
i denote individual probabilities.

This distance in the probability space is nothing but the celebrated Fisher distance of information

theory and can be rewritten as [90]

ds12 = cos−1(
∑

i

√
p1i

√
p2i). (5.9)

49



This is the mathematical content of our Postulate II.

Our principles (I) and (II) as stated above clearly display quantum theory as what might be

called a Special Theory of Quantum Relativity. It is then only natural to take the next logical step,

to go beyond this and formulate a General Theory of Quantum Relativity as well. This extension

is accomplished by allowing both the metric and symplectic form on the space of quantum events

to be no longer rigid but fully dynamical entities. In this process, just as in the case of spacetime in

General Relativity, the space of quantum events becomes dynamical and only individual quantum

events make sense observationally.

Specifically, we do so by relaxing our Postulate II to allow for any statistical (information)

metric all the while insisting on the compatibility of this metric with the symplectic structure

underlying our Postulate I. Physics is therefore required to be diffeomorphism invariant in the

sense of information geometry [95] such that the information geometric and symplectic structures

remain compatible, requiring only a strictly (i.e., non-integrable) almost complex structure J . Once

we relax Postulate II, so that any information metric is allowed, the relativity of canonical quantum

mechanical experiments (such as the double-slit experiment) becomes possible and would provide

an experimental test of our proposal.

Our extended framework readily implies that the wave functions labeling the event space, while

still unobservable, are no longer relevant. They are in fact as meaningless as coordinates in Gen-

eral Relativity. There are no longer issues related to reductions of wave packets and associated

measurement problems. At the basic level of our scheme, there are only dynamical correlations of

quantum events. From the previous analysis and in the spirit of constructing an ab initio quantum

theory of matter and gravity, we can enumerate the main structural features one may want in such

a scheme for the space of quantum events:

• it must have a symplectic structure;

• it must be strictly almost Kähler;

• it must be the base space of a U(1) bundle; and

• it must be diffeomorphism invariant.

We recall that the state space P∞ is a linear Grassmannian manifold, Pn being the space of complex

lines in Cn+1 passing through the origin. We seek a coset of Diff(Cn+1) such that locally looks like

P
n and allows for a compatibility of the metric and symplectic structures, expressed in the existence

of a (generally non-integrable) almost complex structure.

The following non-linear Grassmannian

Gr(Cn+1) = Diff(Cn+1)/Diff(Cn+1,Cn × {0}), (5.10)

with n = ∞ satisfies the above requirements, thus sharpening the geometrical information of the

näıve proposal (concerning the coset state space Diff(n,C)/Diff(n−1,C)×Diff(1,C)) made in the

beginning of this section!
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Indeed this infinite (even for finite n) dimensional space Gr(Cn+1) is modeled on a Frechet space.

Very recently, its study was initiated by Haller and Vizman [91]. Firstly it is a non-linear analog

of a complex Grassmannian since it is the space of (real) co-dimension two submanifolds, namely a

hyperplane Cn× [0] passing through the origin in Cn+1. Its holonomy group Diff(Cn+1,Cn×{0}) is

the group of diffeomorphisms preserving the hyperplane Cn×{0} in Cn+1. Just as Pn is a coadjoint

orbit of U(n+ 1), Gr(Cn+1) is a coadjoint orbit of the group of volume preserving diffeomorphisms

of Cn+1. As such it is a symplectic manifold with a canonical Kirillov–Kostant–Souriau symplectic

two form Ω which is closed (dΩ = 0) but not exact. Indeed the latter two-form integrated over

the submanifold is non-zero; its de Rham cohomology class is integral. This means that there is a

principal one-sphere, a U(1) or line bundle over Gr(Cn+1) with curvature Ω. This is the counterpart

of the U(1)-bundle of S2n+1 over Pn of quantum mechanics. It is also known that there is an almost

complex structure given by a 90◦ rotation in the two-dimensional normal bundle to the submanifold.

While Pn has an integrable almost complex structure and is therefore a complex manifold, in fact

a Kähler manifold, this is not the case with Gr(Cn+1). Its almost complex structure J is by a

theorem of Lempert [96] strictly not integrable in spite of its formally vanishing Nijenhius tensor.

While the vanishing of the latter implies integrability in the finite dimensional case, one can no

longer draw such a conclusion in the infinite dimensional Frechet space setting. However what we

do have in Gr(Cn+1) is a strictly (i.e., non-Kähler) almost Kähler manifold [97] since there is by

way of the almost complex structure J a compatibility between the closed symplectic two-form Ω

and the Riemannian metric g which locally is given by g−1Ω = J .4

Next, just as in standard geometric quantum mechanics, the probabilistic interpretation lies in

the definition of geodesic length on the new space of quantum states (events) as we have emphasized

before [6, 25]. Notably since Gr(Cn+1) is only strictly almost complex, i.e., its J is only locally

complex. This fact translates into the existence of only local time and local metric on the space of

quantum events. These local dynamical equations are precisely the ones one of us has proposed in

a previous paper [6]. The fact that the space of quantum events should be Gr(Cn+1) sharpens the

global geometric structure of our proposal. As in General Relativity it will be crucial to understand

the global features of various solutions to the above dynamical equations.

Finally, we have argued above, that the form ofH (the Matrix theory Hamiltonian in an arbitrary

background), viewed as a “charge” may be determined in a quantum theory of gravity by being

encoded in the non-trivial topology of the space of quantum events. This may well be the case here

with our non linear Grassmannian which is non-simply connected [91]. However definite answers

to this and many other more concrete questions must wait until greater details are known on

the topology and differential geometry (e.g., invariants, curvatures, geodesics) of Gr(Cn+1). In

the meantime we hope to have laid down here the conceptual and mathematical foundations of

what may be called a General Theory of Quantum Relativity in which its fundamental kinematical

structure follows from its dynamical structure.

4It would be very interesting to understand how unique is the structure of Gr(Cn+1).
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5.3 A Comprehensive View

We now consider the issue of quantum gravity in a broader context. Our goal in doing this is

two-fold. We wish to demonstrate that there is a natural and consistent way of relating different

views of spacetime. Also taking a more global viewpoint can provide greater insight into the nature

of the difficulties quantum gravity presents. As we shall see the proposal in this thesis offers viable

and perhaps compelling answers to these open questions.

Quantum
Mechanics/QFT

Equilibrium
Statistical
Mechanics

Thermostatics

General
Relativity

Special
Relativity

Thermodynamics
Non-equilibrium

Statistical
Mechanics

Generalized
Quantum

Theory

Figure 5.1: Toward a generalized quantum theory.

A schematic overview of how we view spacetime is contained in Figure 5.1. The corners of

the bottom face of the cube provide generalizations of the top face. Special Relativity provides a

unifying framework of spacetime by applying the principle of relativity to inertial frames. General

Relativity renders this dynamical by invoking the principle of equivalence. Spacetime in Special

Relativity is globally Minkowski space whereas General Relativity, which invokes the mathematics

of differential geometry, only requires flat space locally. Thus transitioning from Special Relativity

to General Relativity entails gauging the Lorentz group SO(3, 1) to the general diffeomorphism

group Diff(M). Just as we generalize Special Relativity to General Relativity via the gauge prin-

ciple, so too do we generalize quantum mechanics by treating it geometrically. We may transition

from classical mechanics to quantum mechanics by defining a quantum phase space. Classical phase

space carries the standard symplectic structure while quantum phase space possesses a Riemannian

metric as well as a symplectic structure. The progression from canonical quantum mechanics to

generalized quantum mechanics parallels the transition from Special to General Relativity. As we
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have stressed, the generalization of quantum mechanics is accomplished by means of a quantum

version of the equivalence principle. We have established that the space of quantum events in

standard quantum mechanics is Pn. In transitioning to generalized quantum mechanics Pn mirrors

the rôle of Minkowski space. As previously discussed Gr(Cn+1) is locally Pn in the n → ∞ limit,

and thus we choose this as our generalized space of quantum events. Moreover, we may gauge the

unitary group U(n + 1) in analogy with the gauging of the Lorentz group in Special Relativity in

order to properly generalize quantum mechanics.

We have seen that the Einstein equation emerges as an equation of state upon application of

the laws of black hole thermodynamics and the Raychaudhuri (focusing) equation. Thermostatics

describes the thermodynamics of systems in exact equilibrium. It is essentially a theory of only

the first law (conservation of energy and the conversion of one form of energy to another). The

dynamics is introduced when we invoke the second law as well. Thus thermostatics is the analogue

of Special Relativity, while thermodynamics is the analogue of General Relativity.

The connection between quantum mechanics and equilibrium statistical mechanics has long been

understood as they are both fundamentally statistical theories. There is a direct correspondence

between quantum field theory and equilibrium statistical mechanics with a Gibbsian measure.

This can be seen most clearly by considering the generating functional of correlation functions in

quantum field theory and the partition function in equilibrium statistical mechanics. We begin

with the generating functional of correlation functions,

Z[J ] =

∫
Dφ exp

[
i

∫
d4x (L + Jφ)

]
. (5.11)

Now we Euclideanize it through a Wick rotation t→ −ix0. This yields an expression equivalent to

the partition function describing the equilibrium statistical mechanics of a macroscopic system,

Z[J ] =

∫
Dφ exp

[
−
∫
d4xE (LE + Jφ)

]
. (5.12)

Here the subscript indicates the transition to Euclidean space, and J , which is a source in the

setting of quantum field theory and is an external field in the context of statistical mechanics. (For

further discussion, see, for example, [98].)

Now we consider the transition to non-equilibrium statistical mechanics. As indicated in [37]

inclusion of quantum gravitational corrections necessitates the use of non-equilibrium thermody-

namics. Correspondingly, this has a profound implication from the quantum mechanical perspec-

tive. The gauging of the unitary group means that in general we do not have path integrals, and

the aforementioned analogy between quantum field theory and equilibrium statistical mechanics

with a Gibbsian measure implies that the generalized quantum theory should be of non-equilibrium

type. There is no real meaning assigned to the states (wave functions), but there is nevertheless a

general dynamical statistical geometry of quantum theory.

Thus each of the view points on spacetime can be related in a fundamental way to the others.

In addition certain aspects of the internal structure of each perspective are similar. Each of the
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formalisms contain a highly constrained theory which may be generalized such that the constrained

theory holds only locally. Thus we are left with a more cohesive picture of how the various views

of spacetime explored in this thesis are related, and we may draw on the relationships between the

various formalisms in order to come to a more complete understanding of each one individually.

The gauge principle explains how the “static” situations that arise along the top face of the cube

to the “dynamic” condition that underlies this physics. In going from the top face to the bottom

face, the conception of spacetime is dramatically altered.
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Figure 5.2: What is string theory?

We claim an identification between string theory as the fundamental theory of quantum gravity

and the generalized quantum mechanics necessary to reconcile the dynamical nature of spacetime

geometry with the low-energy description of Nature as a quantum field theory. The path to string

theory is defined in Figure 5.2.

We recall that the Planck length that defines the fundamental physical scale in Nature is ℓPl =√
~GN/c3. We can imagine turning on the parameters GN , 1/c, and ~ individually. Finite values

of these deformation parameters give rise to Newtonian gravity, the Special Theory of Relativity,

and quantum mechanics, respectively. With both c and ~ present, we have a synthesis of quantum

mechanics and Special Relativity, namely quantum field theory. Likewise, by adding to Special

Relativity the principle of equivalence, that there is no way to distinguish locally between gravity

and acceleration, we have a theory with c and GN turned on, which is couched in the language
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of differential geometry; this is of course the General Theory of Relativity. Presumably, there is a

theory with the speed of light infinite that has only GN and ~ turned on. This is a non-relativistic,

or Newtonian, theory of quantum gravity. The theory of quantum gravity with finite values of GN ,

c, and ~ should be identified with non-perturbative string theory, defined by the proposal discussed

in this thesis.

Rab-½Rgab+Λgab = 8πGNTab

?

Figure 5.3: Equations of motion.

Though familiar four-dimensional quantum field theories are low-energy theories associated to

compactifications of string theory and the Einstein equations emerge as a characterization of the

background on which the string consistently propagates, there is no string equation of motion in

the sense that it exists for General Relativity and quantum mechanics. As Figure 5.3 illustrates,

string theory is by nature a different type of theory than the General Theory of Relativity, even

though we have argued that it should be understood as a quantum background independent Matrix

theory, constructed by emulating the structure of General Relativity.

String theory is as well only understood in a perturbative regime, where the string coupling gs is

small and the string scale 1/
√
α′, which characterizes the mass of the tower of string excitations, is

large. In this thesis we have provided hints at what the non-perturbative theory (M-theory) is, but

we have given no detailed understanding of the strong coupling regime where gs ≫ 1 and α′ ≫ 1.

Figure 5.4 highlights our technical ignorance of these matters.

In this thesis we have argued that the formulation of string theory consistent with general, a pri-
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ori unspecified spacetime asymptopia and dynamical causal structure demands that we generalize

the canonical framework of quantum mechanics, which is absolutely rigid. The hallmarks of string

theory — holography, the UV/IR correspondence, the absence of free parameters — must be incor-

porated into the generalized theory of quantum mechanics. This we accomplish by insisting that

the physics at any point is Matrix theory, which supplies a non-perturbative definition of M-theory

(string theory). The dynamics emerge in patching together the physics at local neighborhoods

about points in spacetime. The kinematical structure of the theory is determined by its dynamics,

and space, time, and matter appear as emergent concepts.

α’

gs

α’< 1  
gs < 1

 α’ ~O(1) 
gs ~O(1)

Perturbative String Theory 
Regime

?

Figure 5.4: Beyond perturbation theory.

As we have observed, the various views of spacetime outlined in this thesis crystallize into

a cohesive picture. This provides a way to more clearly understand the problems inherent in

developing a theory of quantum gravity. We believe in light of this analysis perhaps a novel

approach to this issue is not simply reasonable but required. We believe that we have presented

such an approach which offers natural solutions to each of the questions raised. In the next section

we ask whether our rather abstract proposal has any observational implications.
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Chapter 6

Astrophysical Implications of Quantum

Gravity

Now we turn to observable astrophysical effects of quantum gravitation. We will consider the

vacuum energy and the initial cosmological singularity in the context of the background independent

formulation of Matrix Theory explored above. We also consider the case of transient electromagnetic

pulse production in the presence of an extra dimension.

6.1 The Cosmological Constant

The most important physical implication of the background independent Matrix theory is in one of

its fundamental motivations mentioned in the introduction of this thesis — the problem of vacuum

energy, i.e., the cosmological constant problem. Recently we have presented a new viewpoint on the

cosmological constant problem based upon the background independent Matrix quantum theory.

This argument also has ramifications for the possibly observable spectrum of dark energy, both of

which we review in this section.

The new viewpoint on the cosmological constant problem runs as follows:

1. First, from the quantum diffeomorphism invariance the expectation value of the vacuum energy

is zero. This is to be compared with the red-shift formula in General Relativity which follows

from the diffeomorphism invariance of the theory. Starting from E = hν, the red-shift due to

a mass M gives

Ecorrected = hν(1 −M/R) (6.1)

as the photon climbs out of a potential well of characteristic size R. For a closed universe

Ecorrected = 0. This is a statement of the familiar equivalence principle. We argue that

diffeomorphism invariance in the space of quantum configurations of the system leads to a

red-shift of the zero-point energy. This quantum diffeomorphism invariance, captured by a
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quantum equivalence principle, means that Evacuum =
∑

1
2
~ω is “red-shifted” as

Evacuum =
∑ 1

2
~ω(1 −MPl/R). (6.2)

For a closed universe Evacuum = 0.

2. In general our extended background independent geometric quantum theory is non-linear

(because the metric is dynamical, not fixed, unlike the usual canonical quantum theory) and

non-local (as Matrix theory uses non-commuting matrices). It is difficult to compute in the

framework of a non-linear, non-local, probabilistic theory. To a first approximation we expand

around the standard Fisher–Fubini–Study metric of complex projective spaces. Non-linear

corrections to the Schrödinger equation are written as a geodesic equation in the configuration

space. We may interpret this non-linear Schrödinger equation from the point of view of third

quantization and view it as a non-linear Wheeler–de-Witt equation. Vacuum energy is a

dynamical variable from the context of ordinary quantization. The relevant coupling constant

that becomes third quantized is Λ or the vacuum energy density in the canonical quantum

theory limit.

3. The vacuum energy density Λ is dynamical and fluctuates around zero (because this value

is fixed by quantum diffeomorphism invariance). We use the large volume approximation of

the non-linear Wheeler–de-Witt equation with Λ non-zero; Λ and the volume of spacetime are

here conjugate quantities and realize an uncertainty relation:

∆Λ ∆V ∼ ~. (6.3)

Here, Λ is an “energy”, while the observed volume of spacetime is “time.” This point is

elaborated upon in more detail in App. C. (For work in a similar spirit, see [99, 100, 101].)

The notion of conjugation is well-defined, but approximate in our scheme, as implied by the

expansion about the static Fubini–Study metric.

4. While it is true that the uncertainty relation ∆Λ ∆V ∼ ~ is consistent with the observed

vacuum energy of our Universe, there is a problem with this approximate conjugate relation:

what fixes the volume? The smallness of the measured cosmological constant relies on the

largeness of the observed spacetime. (This is also a problem with unimodular gravity and

related approaches [99], in which there is no a priori explanation for why the Universe is big.)

We motivate the largeness of observed V through a gravitational see-saw as follows. The

scale of the vacuum energy is set by the balancing of the scale of cosmological supersymmetry

breaking with the Planck scale. The UV/IR correspondence inherent to this argument depends

crucially on the spacetime uncertainty relations of Matrix theory [102]. In perturbative string

theory, modular invariance on the worldsheet translates in target space to the spacetime

uncertainty relation:

∆T ∆Xtr ∼ ℓ2s ∼ α′. (6.4)
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Here, T is a timelike direction, and Xtr is a spacelike direction transverse to the light-cone. In

Matrix theory this becomes a cubic relation

∆T ∆Xtr ∆Xlong ∼ ℓ3Pl, (6.5)

where Xlong is the longitudinal direction. After using one of the defining relations of the gauged

quantum theory,

~ ∆s ∼MPl ∆T, (6.6)

and an estimate that the line element on the space of probabilities scales as ds ∼ e−Seff , where

Seff denotes a hard-to-compute-from-first-principles low-energy (Euclidean) effective action for

the matter degrees of freedom propagating in an emergent (fixed) spacetime background, we

get a gravitational see-saw formula

∆Xtr ∆Xlong ∼ eSeff ℓ2Pl. (6.7)

The product of the ultraviolet cutoff (the maximal uncertainty in the transverse coordinate)

and the infrared cutoff (the maximal uncertainty in the longitudinal coordinate) is thus expo-

nentially suppressed compared to the Planck scale. The mid-energy scale should be naturally

related to a supersymmetry breaking scale, supersymmetry being broken “cosmologically.”

5. Even though, the breaking of supersymmetry is crucial for the stability of local regions of the

global spacetime manifold, in Minkowski space the cosmological constant vanishes identically.

Locally, physics is described by Matrix theory, which is a supersymmetric theory of quantum

mechanics. The fluctuations in Λ which account for the measured vacuum energy arise as a

consequence of the tension between local and global physics (UV and IR). This is a statement

about the failure of decoupling in quantum gravity. Effective field theory, which is extraordi-

narily successful in its domain of validity, relies on the separation of scales, which we do not

have.

We expect that the fluctuation about the zero value is biased towards the positive sign by

the cosmological breaking of supersymmetry. It is therefore our generic expectation that the

vacuum energy ought to scale as m8
susy/M

4
Pl, which is consistent with the cosmology of the

present de Sitter epoch.1 The considerations presented here are, however, thermodynamic in

nature. As well, a more refined statistical analysis is necessary in order for us to explore the

fluctuations about Λ = 0 and their possible observation.

The coincidence problem — why ΩΛ ≈ Ωmatter today — is considerably more subtle. Wein-

berg’s classic argument based on the Bayesian distribution of the cosmological constant and

observer bias [104, 105] may perhaps be replaced by a bias towards a certain set of observables

in the proposed background independent quantum theory of gravity. These observables would

be relevant for describing the low-energy physics in which the supersymmetry breaking scale

is related to the cosmological scale by the gravitational see-saw.

1See also [103].
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6.2 Fine Structure of Dark Energy

As mentioned in the introduction, there exists an illuminating analogy to be drawn between the

problem of vacuum energy with the problem of black-body radiation (and the related problem of

specific heats) in pre-quantum physics. This deep analogy enables us to think about a possible

observable fine structure of dark energy.

First we review the analogy between black-body radiation puzzle and the vacuum energy puzzle.

In the case of the black-body there is a 1
2
kBT contribution to the energy for each independent degree

of freedom:

dE =
∑

n

(
1

2
kBT

)
, (6.8)

where n is an abstract index that labels the degrees of freedoms. This should be compared to the

cosmological constant which counts degrees of freedom in the vacuum. Heuristically, we sum the

zero-point energies of harmonic oscillators and write

Evac =
∑

~k

(
1

2
~ω~k

)
, (6.9)

where, unlike the fixed temperature T , ω~k =

√
|~k|2 +m2. The divergence of the blackbody dE is

the ultraviolet catastrophe that the Planck distribution remedies. Quantum mechanics resolves the

over counting. In asking why the vacuum energy is so small, we seek to learn how quantum gravity

resolves the over counting of the degrees of freedom in the ultraviolet.2

This analogy between blackbody and the vacuum energy problems extends even further:

• The total radiation density of a blackbody at a temperature T is given by the Stefan–

Boltzmann law:

u(T ) = σT 4. (6.10)

This is to be compared with the quartic divergence of the vacuum energy,

Evac ∼ E4
0 , (6.11)

E0 being the characteristic energy cut-off, for bosons, or fermions separately, up to a sign

difference. We disregard, for the moment, the cancellation that happens in supersymmetric

theories which leads to a quadratic divergence.

• From adiabaticity, we obtain the Wien displacement law:

ωR = constant,
ω

T
= constant, (6.12)

2Similarly, in the infrared, the proper formulation of quantum theory of gravity should resolve the stability problem (“Why doesn’t

the Universe have a Planckian size?”), once again in analogy with the resolution of the problem of atomic stability offered by quantum

mechanics.
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where R is the size of the blackbody cavity and ω the angular frequency. This is to be compared

with the uncertainty relation (6.3), which tells us that ∆Λ ∆V ∼ ~.

More precisely, fluctuations in the volume of spacetime are fixed by statistical fluctuations

in the number of degrees of freedom of the gauged quantum mechanics. In Matrix theory,

the eigenvalues of the matrices denote the positions of D0-branes which give rise to coherent

states in gravity. Off-diagonal terms in Matrix theory break the permutation symmetry and

render the D0-branes distinguishable. Therefore, to enumerate the degrees of freedom, we

employ the statistics of distinguishable particles (which will be of central importance in what

follows). The fluctuation is given by a Poisson distribution, which is typical for coherent

states. The fluctuation of relevance for us is in the number of Planck sized cells that fill

up the configuration space (the space in which quantum events transpire), that is to say in

four-dimensional spacetime:

Ncells ∼
V

ℓ4Pl

=⇒ ∆Ncells ∼
√

Ncells =⇒ ∆V ∼
√
V ℓ2Pl, (6.13)

and thus

∆Λ
√
V GN ∼ 1, (6.14)

where V is the observed spacetime volume and GN is the four-dimensional Newton constant.3

The Stefan–Boltzmann law and Wien’s law are implicated in the derivation of the Planck dis-

tribution for blackbody radiation. If the analogy holds, what does this say for vacuum energy? A

natural question to ask here is whether there is a universal energy distribution for dark energy. If

so, what is its nature and what are the observational consequences? Here we will start with an

assumption that there is such a distribution, which is natural from the point of view of the new

physics advocated in the previous section. Given our proposal for a background independent quan-

tum theory of gravity, we investigate the nature of such a distribution and consider its observational

consequences.

We should note that an important consequence of this analogy is that one should compare the

temperature of the cosmic microwave background radiation (CMBR) we see now, Tγ = 2.7 K, to

the cosmological constant we observe now! The spectral distribution of dark energy should then

be a function of energy for the fixed present value of the cosmological constant, corresponding to

the energy scale of 10−3 eV, in analogy with the CMBR spectral distribution. The question of why

this scale is so low (why the Universe is so big), the proposed answer to which has been outlined

above, is thus analogous to the question why the background CMBR temperature is so close to the

absolute zero.

According to the proposal discussed in this thesis M-theory is background independent Matrix

theory. The infinite momentum limit of M-theory is equivalent to the N → ∞ limit of coinci-
3In D spacetime dimensions, (6.3) informs us that

∆Λ ∼ ~

∆V
∼ ~(D−4)/2(D−2)

√
V G

D/2(D−2)
D

.
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dent D0-branes given by U(N) super-Yang–Mills gauge theory [58]. In particular, Matrix theory

gravitons are bound states of D0-branes and the gravitational interaction, and thus the geometry

of spacetime, is contained in the open string dynamics, viz. the quantum fluctuations of matrix

degrees of freedom. D0-branes obey U(∞) statistics. Infinite statistics [106, 107, 108, 109] can be

obtained from the q = 0 deformation of the Heisenberg algebra

aia
†
j − qa†jai = δij , ai|0〉 = 0. (6.15)

(The cases q = ±1 correspond to Bose and Fermi statistics; q = 0 is the so called Cuntz algebra

[110] corresponding to infinite statistics.) In particular, the inner product of two N -particle states

is

〈0|aiN · · ·ai1a†j1 · · ·a
†
jN
|0〉 = δi1j1 · · · δiN jN . (6.16)

Thus any two states obtained from acting with the same creation and annihilation operators in a

different order are mutually orthogonal. The partition function is

Z =
∑

states

e−βH . (6.17)

The D0-branes are distinguishable. Thus there is no Gibbs factor. Therefore, we can argue that

the spectral distribution of dark energy that follows from infinite statistics is the familiar Wien

distribution.

ρDE(E,E0) = AE3e
−B E

E0 (6.18)

which implies that

ρvac =

∫ E0

0

dE ρDE(E,E0) ∼
6A

B4
E4

0 , (6.19)

with A,B universal constants, and E0 ∼ 10−3 eV, which corresponds to the observed cosmological

constant. The integrated energy density is proportional to E4
0 , as it must be. This Wien-like

spectral distribution for dark energy is thus the central prediction of a detailed analogy between

the blackbody radiation and dark energy. This in turn is rooted in our new viewpoint on the

cosmological constant problem as summarized in the introduction to this section. The constants A

and B are in principle computable in the framework of the background independent Matrix theory,

but that computation is forbidding at the moment. We will therefore only concentrate on global

features of this viewpoint on the fine structure of dark energy. Also, the precise dispersion relation

of the dark energy quanta (ultimately determined by the degrees of freedom of Matrix theory within

the framework of the generalized quantum theory that we have proposed) is not relevant for the

general statistical discussion of possible observational signatures presented below.

Vacuum energy (i.e.,
∑

~k
1
2
~ω~k) has negative effective pressure. The Wien and Planck distribu-

tion share a common prefactor, which is the reason why we argue that at low energies our proposal

is consistent with the positive cosmological constant, the dark energy being modeled as vacuum

energy. From the effective Lagrangian point of view, the positive cosmological constant accounts for

the accelerated expansion. At short distances, we have a radically different situation. The pressure

in this scenario is positive and set by the scale of E0. The proposed dark energy quanta that are
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physically responsible for such an effective view of the cosmological constant have a strange statis-

tics fixed by symmetry requirements, and which has certain parameters that should be bounded

by observation.4

To summarize, in accordance with our view of the cosmological constant problem, we think of

dark energy as vacuum energy. Just as in the case of a photon gas, the Wien distribution for

vacuum energy exhibits both a classical and a quantum nature. In Matrix theory the degrees of

freedom, in the infinite momentum frame, are non-relativistic and distinguishable D0-branes whose

dynamics are obtained from a matrix quantum mechanics. The UV/IR correspondence at the

heart of Matrix theory (and holographic theories in general) encodes the essential dualism of the

cosmological constant problem: vacuum degrees of freedom determine the large-scale structure of

spacetime.

Direct observation of the Wien distribution for dark energy from calorimetry, i.e., the analogue

of measurements of the CMBR, is probably impossible, given the gravitational nature of Matrix

theory degrees of freedom. We mention some more practical tests that one might be able to make

of our proposal.

• Recently, a possibility for a direct observation of dark energy in the laboratory has been

discussed in the literature [111, 112]. The idea is simple and fascinating. One simply relies on

identifying dark energy as the quantum noise of the vacuum, as governed by the fluctuation-

dissipation theorem. For example, by assuming that vacuum fluctuations are electromagnetic

in nature, the zero point energy density is given by the phase space factor of the Planck

distribution (the same as the one discussed above in the case of the Wien distribution). The

integrated expression, which formally diverges, if cut-off by the observed value of dark energy,

E0, would correspond to the cut-off frequency

νDE ∼ 1.7 × 1012 Hz. (6.20)

The present experimental bound [111, 112] is around νmax ∼ 6 × 1012 Hz.

If our proposal is correct, and the dark energy is endowed with its own spectral distribution of

the Wien type, then there is a window around the νDE determined by the fluctuations δE0 of

dark energy around E0. The right way to look at this is that the present maximum frequency

sets a bound on the possible fluctuation δE0. The theoretical value of this fluctuation is tied

to the precise value of the parameters in the Wien distribution, which are determined by the

underlying new physics.

The fluctuation in the dark energy distribution (6.18) is

δρDE

ρDE

=
BE

E2
0

δE0. (6.21)

4A useful comparison is the following. For photons in the CMBR there exists a vacuum contribution and then the usual Planck

distribution. Ours is a completely analogous claim: we have the vacuum part and the distribution of the quanta which constitute the

vacuum. The only difference here is that the quanta are unusual and the distribution is unusual due to the infinite statistics invoked.
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We have as well

δE2 = 〈E2〉 − 〈E〉2 =
4E2

0

B2
, (6.22)

where

〈Ea〉 =

∫∞
0
dE Ea ρDE(E,E0)∫∞

0
dE ρDE(E,E0)

. (6.23)

The observed vacuum energy is given as
∫ νDE

0

dν ρν =
πh

c3
ν4

DE. (6.24)

Now, we identify δE with the fluctuation of the vacuum energy around E0. The energy density

corresponding to the maximum observed frequency should bound the fluctuation of E0. This

implies

δE = δE0 =
2E0

B
≤ E0

(
1 − νmax

νDE

)
. (6.25)

Inserting the current observational bound, νmax and the values for E0 and νDE noted above,

yields the following bound on the vacuum energy fluctuation

δE0 . 6.47 × 10−4 eV, (6.26)

which in turn implies

B & 3.1 . (6.27)

• The Greisen–Zatsepin–Kuzmin (GZK) bound provides a theoretical upper limit on the energy

of cosmic rays from distant sources [113]. In the usual GZK setup a CMBR photon is scat-

tered off a proton producing positively charged or neutral pions (plus a neutron or a proton),

thus degrading the incoming proton’s energy. The rough estimate of the energy cutoff is the

threshold when the final products are both at rest. Neglecting the split between proton and

neutron masses one gets from simple kinematics

Ethreshold ∼ (mp +mπ)
2 −m2

p

4Eγ
∼ 5 × 1019 eV. (6.28)

Note, Eγ ∼ 6.4 × 10−4 eV, from the temperature of Tγ = 2.7 K, and there are on average in

one cm3 400 CMBR photons. This depletion occurs on distances of O(10) Mpc. Recently, the

GZK cutoff was observed by the Pierre Auger Observatory [114] which found a suppression in

the cosmic ray spectrum above 1019.6 eV at six sigma confidence.

We now consider the interaction of high energy cosmic rays with the proposed dark energy

distribution for which there should be an analogous GZK effect. Although the coupling for

the interaction responsible for this effect would be quite small, over cosmological distances the

effect could be observable. In our case the modification of the corresponding GZK formula,

comes from a simple replacement of Eγ by E0 + δE, which implies

Ethreshold ≃ 1

4E0

[
(mp +mπ)

2 −m2
p −

δE

E0

(
(mp +mπ)

2 −m2
p

)]
. (6.29)
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If the fluctuation in the dark energy distribution is too great the analogous GZK cutoff consid-

ered here would fall below that of the standard cutoff and would be observed as an unexplained

suppression in the cosmic ray spectrum. No such suppression has been detected. Thus we may

use the observed cosmic ray spectrum to further constrain the fluctuation in the dark energy

distribution. Taking as our lower bound the observed standard GZK cutoff and making use

of (6.29) we find

δE . 4.37 × 10−4 eV. (6.30)

This is a similar but more stringent bound than the one provided by quantum noise measure-

ments, (6.26). It is worth noting that these two bounds were derived from unrelated physical

phenomena but are of the same order of magnitude. This suggests a level of consistency in

the proposal for dark energy quanta presented above.

6.3 The Big Bang

The observed expansion of the Universe together with measurements of the cosmic microwave

background radiation vindicate the paradigm of a hot Big Bang. Standard cosmological models

propose an initial spacelike singularity. Such a state signals the breakdown of spacetime and

geometry as effective descriptions of Nature. Understanding the physics of the singularity and the

dynamical evolution of the Universe at the earliest times remains one of the long standing and

unrealized ambitions of any putative quantum theory of gravity.

The initial state of the Universe has a very low entropy. In fact, from the point of view of

the Wheeler–DeWitt equation, the entropy should be zero as the wavefunction of the Universe is

unique. The present entropy of the observed Universe can be estimated by the degrees of freedom

associated holographically to the causal horizon:

S ≃
(
RH

ℓP

)2

≃ 10123 , (6.31)

where RH is the Hubble radius and ℓP the Planck length. The number of microstates is then given

by Boltzmann’s formula Ω = eS ≃ e10
123

, and the probability associated with the Big Bang is

P ∼ 1

Ω
≃ e−10123

. (6.32)

The Big Bang therefore appears to be an exceptionally special point in phase space, as finely tuned

as the cosmological constant [134].

In this letter, we advance the idea that a low entropy initial state, indeed one with zero entropy,

is not only natural but compulsory. We address the origin of the Universe in the context of

a new approach to quantum gravity rooted in a quantum equivalence principle that renders the

state space of a generalized quantum mechanics fully dynamical [135]. This indicates that the

state space is an infinite dimensional complex non-linear Grassmannian that is a diffeomorphism

invariant generalization of Pn, the complex projective phase space of quantum mechanics [136, 137].
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Subsequent to the proposal that this non-linear Grassmannian should play a central role in a

theory of quantum gravity, new properties of this space were brought to light that make it uniquely

suited for application to the physics of the Big Bang. According to a remarkable theorem of

Michor and Mumford [138], the geodesic distance between any two points on this Grassmannian,

as measured by the exact analogue of the Fubini–Study (FS) metric on Pn, vanishes. On the

strength of this theorem, the everywhere high curvature properties of the metric, and in concert with

parallels found in the geometric and topological approach to Hamiltonian dynamics and statistical

mechanics of condensed matter systems and in non-equilibrium, dissipative systems, we conclude

the following: (1) That our probabilistic scheme is endowed with a Big Bang event, and because the

quantum phase space is comprised of a single microstate this occurs with probability one, implying

that S = 0; (2) That the Big Bang corresponds to a far from equilibrium collective state, a large

fluctuation inducing “freezing by heating” metastable phase transition that yields a cosmological

arrow of time.

6.3.1 Geometry of Gr(Cn+1)

As the space Gr(Cn+1) is the central focus of the proposal for BIMT, and for comparison to Pn,

we list its main features. It is a compact, homogeneous but non-symmetric, multiply-connected,

infinite dimensional complex Riemannian space. It is a projective strictly almost Kähler manifold, a

coadjoint orbit, hence a symplectic coset space of the volume preserving diffeomorphism group [142].

It is also the base manifold of a circle bundle over Gr(Cn+1), where the U(1) holonomy provides a

Berry phase.

Crucial for our purposes, non-linear Grassmannians are Fréchet spaces. As generalizations of

Banach and Hilbert spaces, Fréchet spaces are locally convex and complete topological vector

spaces. (Typical examples are spaces of infinitely differentiable functions encountered in functional

analysis.) Defined either through a translationally invariant metric or by a countable family of

semi-norms, the lack of a true norm makes their topological structures more complicated. The

metric, not the norm, defines the topology. Moreover, there is generally no natural notion of

distance between two points so that many different metrics may induce the same topology. In

sharp contrast to Pn, the allowed metrical structures are much richer and more elastic, thereby

allowing novel probabilistic and dynamical applications. Thus Gr(Cn+1) has in principle an infinite

number of metrics, a subset of which form the solution set to the Einstein–Yang–Mills plus Matrix

model equations we associate with the space. For example, in [138], an infinite one-parameter

family of non-zero geodesic distance metrics are found.

Since Gr(Cn+1) is the diffeomorphism invariant counterpart of Pn, the simplest and most natural

topological metric to consider is the analogue of the FS metric. This weak metric was analyzed

by Michor and Mumford [138], who obtained the striking result, henceforth called their vanishing

theorem. The theorem states that the generalized FS metric induces on Gr(Cn+1) a vanishing

geodesic distance. Such a paradoxical phenomenon is due to the curvatures being unbounded and

positive in certain directions causing the space to curl up so tightly on itself that the infinitum of

66



path lengths between any two points collapses to zero.

6.3.2 A Universe of zero size

The crucial point of this work is to take seriously this most unusual mathematical property of

Gr(Cn+1) and to interpret it in physical terms. Taking this as the space of states out of which

spacetime emerges, we see that the vanishing theorem naturally describes an initial state in which

the Universe exists at single point, the cosmological singularity.

Moreover, viewed through this lens, a statistical notion of time may apply close to the cosmo-

logical singularity. We observe that in both the standard geometric quantum mechanics and its

extension, the Riemannian structure encodes the statistical structure of the theory. The geodesic

distance is a measure of change in the system, for example through Hamiltonian time evolution.

By way of the FS metric and the energy dispersion ∆E , the infinitesimal distance in phase space

is

ds =
2

~
∆E dt . (6.33)

Through this relation, time reveals its statistical, quantum nature. It also suggests that dynamics

in time relate to the behavior of the metric on the configuration space.

As Wootters [143] showed, what the geodesic distance ds on Pn measures is the optimal distin-

guishability of nearby pure states: if the states are hard to resolve experimentally, then they are

close to each other in the metrical sense. Statistical distance is therefore completely fixed by the

size of fluctuations. A telling measure of the uncertainty between two neighboring states or points

in the state space is given by computing the volume of a spherical ball B of radius r as r → 0

around a point p of a d-dimensional manifold M. This is given by

Vol(Bp(r))

Vol(Be(1))
= rd

(
1 − R(p)

6(d+ 1)
r2 + o(r2)

)
, (6.34)

where the left hand side is normalized by Vol(Be(1)), the volume of the d-dimensional unit sphere.

R(p), the scalar curvature of M at p, can be interpreted as the average statistical uncertainty of

any point p in the state space [144]. As 2/~ is the sectional curvature of Pn, ~ can be seen as

the mean measure of quantum fluctuations. Eq. (6.34) indicates that, depending on the signs and

values of the curvature, the metric distance gets enlarged or shortened and may even vanish.

The vanishing geodesic distance under the weak FS metric on Gr(Cn+1) is completely an effect

of extremely high curvatures [138]. Because the space is extremely folded onto itself, any two points

are indistinguishable (i.e. the distance between them is zero). This is an exceptional locus in the

Fréchet space of all metrics on Gr(Cn+1). This is a purely infinite dimensional phenomenon, and

one that does not occur with the Pn of the canonical quantum theory.
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6.3.3 The low entropy puzzle

From the foregoing discussion, the low entropy problem tied to the initial conditions of the Universe

is naturally resolved. In the language of statistical geometry and quantum distinguishability, the

generalized FS metric having vanishing geodesic distance between any two of its points means that

none of the states of our non-linear Grassmannian phase space can be differentiated from each other.

Due to the large fluctuations in curvatures everywhere, the whole phase space is comprised of a

single, unique microstate. Since the state space is the model for quantum cosmology, if its metric is

the weak Michor–Mumford FS metric, the Universe is in a fixed configuration with probability one.

As we shall see, this is a non-equilibrium setting, but we may nevertheless infer via Boltzmann’s

formula [145] that the entropy of the Universe is identically zero.

6.3.4 The Big Bang as the ultimate traffic jam

What could the physics behind a low (zero) entropy, yet high temperature state of the Big Bang be?

We suggest that the paradoxical zero distance, everywhere high curvature property of Gr(Cn+1) with

the FS metric finds an equally paradoxical physical realization in the context of our model. This

is to be found in a class of far from equilibrium collective phase transitions, the so called “freezing

by heating” transitions. From many studies [146] it has been established that high curvatures in

the phase or configuration manifold of a physical system precisely reflect large fluctuations of the

relevant physical observables at a phase transition point. This correspondence means equating

the high curvatures of the FS metric on Gr(Cn+1) with large fluctuations in our system at a phase

transition. The vanishing geodesic distance can be interpreted as the signature, or order parameter,

of a strong fluctuation (or “heat”) induced zero entropy and hence highly ordered state.

While from an equilibrium physics perspective such a state seems nonsensical, it occurs in

certain far from equilibrium environments. Specifically, we point to a representative continuum

model [147, 148] where such an unexpected state was first discovered. Here, one has a system of

particles interacting, not only through frictional forces and short range repulsive forces, but also

and most importantly via strong driving fluctuations (e.g., noise, heat, etc.). As the amplitude of

the fluctuations (e.g., temperature) goes from weak to strong to extremely strong and as its total

energy increases, such a system shows a thermodynamically counterintuitive evolution from a fluid

to a solid and then to a gas. At and beyond the onset of strong fluctuations, it first goes to a

highly ordered, low entropy, indeed a crystalline state, which is a phase transition like-state if both

particle number and fluctuations are sufficiently large. This collective state, being energetically

metastable then goes into a third disordered, higher entropy gaseous state under extremely strong

fluctuations.

While our model’s dynamics are mathematically far more intricate than the above models for

phenomena such as traffic jams and the flocking of birds, it does have the requisite combination

of the proper kind of forces to achieve these “freezing by heating” transitions. The system being

considered is far from equilibrium with low entropy, high temperature, and negative specific heat. In
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addition we have non-linear, attractive, and repulsive Yang–Mills forces, short range repulsive forces

of D0-branes in the Matrix theory, repulsive forces from a positive “cosmological” term, and most

importantly large gravitational fluctuations induced by the large curvatures. Moreover it is known

that geometric quantum mechanics can be seen as a classical Hamiltonian system, one with a Kähler

phase space. Its complete integrability in the classical sense [149] derives from this Kähler property

which returns hermiticity of all observables in their operatorial representations. The extended

quantum theory is similarly viewed in terms of classical non-linear field and particle dynamics over

a strictly almost complex phase space. This last property implies that corresponding operators are

non-hermitian, and hence this is a dissipative system [150]. Moreover, classical Einstein–Yang–Mills

systems are non-integrable and chaotic [151].

6.3.5 Time’s arrow

From the relation between geodesic distance and time, we also have the emergence of a cosmological

arrow of time. While the system has entropy S = 0, the very high curvatures in Gr(Cn+1) signal

a non-equilibrium condition of dynamical instability. Because of its non-linear dissipative and

chaotic dynamics, our system will flow toward differentiation, which thereby yields, through entropy

production, distinguishable states in the state space. This instability is further evidenced by the

above mentioned existence of a whole family of non-zero geodesic distance metrics, of which the

zero entropy metric is a special case [138]. The dynamical evolution according to the second law

is toward some higher entropy but stable state. During this evolution, spacetime, and canonical

quantum mechanics emerge.

Furthermore, the model we have presented is a generalized quantum dissipative system, i.e.

one with frictional forces at work. Because the fluctuations of linear quantum mechanics and its

associated equilibrium statistical mechanics are incapable of driving a system such as our Universe

to a hot yet low entropy state and of generating a cosmological arrow of time [152], a non-linear,

non-equilibrium, strong fluctuation driven quantum theory such as the one presented here becomes

necessary. Time irreversibility is of course a hallmark of non-equilibrium systems; this cosmological

model naturally produces both an arrow and an origin of time. Moreover, in this approach the

relationship of canonical quantum theory and equilibrium statistical mechanics is extended to an

analogy of generalized quantum theory and non-equilibrium statistical mechanics.

An interesting avenue of further investigation is the possible extrapolation of the results con-

cerning Gr(Cn+1) to the study of black hole singularities.

6.4 Transient Pulses as a Signature of an Extra Dimension

A new generation of radio telescopes will search for transient pulses from the universe [153, 154, 155,

156, 157]. Such searches, using pre-existing data, have recently found surprising pulses of galactic

and extragalactic origin [158, 159, 160]. While the results will be of obvious astrophysical impor-
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tance, they could also answer basic questions in physics which are difficult to address. In particular,

as we will discuss here, searches for transient pulses from exploding primordial black holes (PBHs)

can yield evidence of the existence of an extra spatial dimension, and explore electroweak-scale

physics.5 The potential impact could be timely and cut across many areas of investigation. For

example, the Large Hadron Collider (LHC) is poised to investigate electroweak-scale physics, and

may also yield evidence of the existence of extra spatial dimensions. Also, intensive work on the

unification of quantum mechanics and gravitation has yielded insightful theoretical advances, often

requiring extra spatial dimensions [162], yet there is little experimental observation which gives

feedback on this proposed phenomenon. Furthermore, mapping of the anisotropies in the cosmic

microwave background radiation has enabled “precision cosmology,” yet searches for PBHs, which

would explore smaller scale primordial irregularities (a source of PBHs), would be valuable [163].

Searches for transient pulses from exploding primordial black holes can provide information im-

pacting all of these areas of investigation, which at first glance appear unrelated, but are intimately

connected.

The defining relation governing the Hawking evaporation of a black hole [164] is

T =
~c3

8πGk

1

M
, (6.35)

for mass M and temperature T . The power emitted by the black hole is

P ∝ α(T )

M2
, (6.36)

where α(T ) is the number of particle modes available. Equations (6.35) and (6.36), along with an

increase in the number of particle modes available at high temperature, leads to the possibility of

an explosive outburst as the black hole evaporates its remaining mass in an emission of radiation

and particles.6 PBHs of sufficiently low mass would be reaching this late stage now [163]. Searches

for these explosive outbursts have traditionally focused on γ-ray detection [166]. However, Rees

noted that exploding primordial black holes could provide an observable coherent radio pulse that

would be easier to detect [167].

Rees [167] and Blandford [168] describe the production of a coherent electromagnetic pulse by

an explosive event in which the entire mass of the black hole is emitted. If significant numbers

of electron-positron pairs are produced in the event, the relativistically expanding shell of these

particles (a “fireball” of Lorentz factor γf) acts as a perfect conductor, reflecting and boosting

the virtual photons of the interstellar magnetic field. An electromagnetic pulse results only for

γf ∼ 105 to 107, for typical interstellar magnetic flux densities and free electron densities. Below

γf ∼ 105 the energy emitted by the PBH goes primarily into sweeping up the ambient interstellar

plasma, and not into an electromagnetic pulse; above γf ∼ 107 the number of electron-positron

pairs is insufficient to carry the fireball surface current necessary to expel the interstellar magnetic
5The existence of primordial black holes is an open question. However, there exist models of the early universe which produce large

numbers of primordial black holes and are consistent with all current observational data (see, for example [161]).
6The behavior of the evaporation process, as the Planck mass is reached, is not certain [165]. However, the details of this late stage

of evaporation will not alter the analysis presented here.
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flux density. The energy of the electron-positron pairs is

kT ≈ γf
105

0.1 TeV. (6.37)

Thus the energy associated with γf ∼ 105 corresponds roughly to the electroweak scale.

6.4.1 Exploding primordial black holes and the TeV scale

There is a remarkable, heretofore unrecognized, relationship between the range of pulse-producing

Lorentz factors for the emitted particles, and the TeV scale. Since γf ∝ T at the time of the

explosive burst, equation (1) yields
γf
105

≈ 10−19 m

Rs
, (6.38)

where Rs is the Schwarzschild radius. Thus, the allowed range of Lorentz factors implies length

scales Rs ∼ 10−19 − 10−21 m. Taking these as Compton wavelengths we find the associated energy

scales to be

(Rs/~c)
−1 ∼ 1 − 100 TeV. (6.39)

This relationship suggests that the production of an electromagnetic pulse by PBHs might be

used to probe TeV-scale physics. To make use of this interesting, but fairly generic observation, a

specific phenomenologically relevant explosive process is required. One such process, which connects

quantum gravitational phenomena and the TeV scale, makes use of the possible existence of an

extra dimension.

6.4.2 Explosive primordial black hole evaporation due to the presence of an extra

dimension

Spatial dimensions in addition to the observed 3+1 dimensional spacetime have a long tradition in

gravitational models that goes back to the work of Kaluza and Klein [169, 170]. Extra dimensions

are also required in string/M-theory for the consistency of the theory [162]. It was traditionally

assumed, in these approaches, that the extra dimensions are Planck length in size. However, various

phenomenologically-motivated models were recently developed with extra dimensions much larger

than the Planck length, which could have observable implications for electroweak-scale physics

[171, 172, 173, 174, 175].

Black holes in four dimensions are uniquely defined by charge, mass, and angular momentum.

However, with the addition of an extra spatial dimension, black holes could exist in different phases

and undergo phase transitions. For one toroidally compactified extra dimension, two possible

phases are a black string wrapping the compactified extra dimension, and a 5-dimensional black

hole smaller than the extra dimension. A topological phase transition from the black string to the

black hole is of first order [176, 177, 178], and results in a significant release of energy equivalent

to a substantial increase in the luminosity of Hawking radiation [179].
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Following the analysis of Kol [180], to parametrize the phase of the black hole we define a

dimensionless order parameter µ = GM/Lc2, where L is the size of the extra dimension with

coordinate z identified with z + L. For large values of µ the black string phase is dominant,

while for small values of µ the 5-D black hole phase is favored. PBHs evaporating in the current

epoch would lose mass through evaporation causing µ to decrease until a metrical instability, the

Gregory-Laflamme point [181, 182] (µ ≈ 0.07) is reached, at which time the first-order phase

transition occurs [180, 176].7 The Schwarzschild radius is related to L as Rs = 2GM/c2 = 2µL.

Thus, the energy emitted at the topological phase transition is

E = ηMc2 = η
Rsc

4

2G
= ηµL

c4

G
, (6.40)

equivalent to a Planck power (reduced by ηµ) emitted during a time scale L/c. The factor η is

an efficiency parameter, estimated by Kol to be a few percent in analogy with black hole collision

simulations [183].

6.4.3 Transient pulse production

The analysis of Rees [167] and Blandford [168] can be adapted to the topological phase transition

scenario. For a coherent electromagnetic pulse to result, the time scale of the energy release must

be L/c ≪ λ/c, where λ is the characteristic wavelength of the pulse. This requirement is well

satisfied for the size of extra dimension considered here. Since γf ∝ T and a fraction η of the

object’s mass-energy is released, the inverse relationship between temperature and mass for the

Hawking process, equation (6.35), implies γf is inversely related to the energy of the fireball.

Determining the emitted particle spectrum would require a full theory of quantum gravity.

Lacking such a theory, we make the simple assumption that 50% of the ejected energy is in the

form of electron-positron pairs (the same assumption used in [167, 168]).8 Thus, the energy ejected

in electron-positron pairs, and ultimately emitted in the electromagnetic pulse (if γf is in the

appropriate range) is

Epulse ≈ Ee+e− ≈ η01 γ
−1
f5 1023 J (6.41)

where η01 = η/0.01 and γf5 = γf/105 represent nominal values for these parameters.9 The bounds

on the Lorentz factor for pulse production in the topological phase transition scenario are of the

same order as for the scenario considered by Rees and Blandford, γf ∼ 105 to 107. The size of the

extra dimension corresponding to a specific fireball Lorentz factor is

L ≈ µ−1
07 γ−1

f5 10−18 m (6.42)

7While the final state resulting from the topological phase transition is not entirely understood, such details will not significantly

alter the analysis presented here.
8The emitted particle spectrum (and decay chain) for the event considered by Rees and Blandford, taking into account possible details

of the QCD phase transition, has been investigated [184, 185]. However, the topological phase transition scenario considered here is of

a fundamentally different nature making this analysis inapplicable.
9The nominal value for η of 0.01, appearing here and in subsequent equations, reflects both the few percent efficiency of the topological

phase transition, and the assumption that 50% of the released energy is carried away by electron-positron pairs.
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where µ07 = µ/0.07.

The characteristic frequency of the pulse is

νc ≈ η
−1/3
01 γ3

f5 b
2/3 5.1 GHz (6.43)

where b is the interstellar magnetic flux in units of 0.5 nT. Pulses for low γf are best observed in the

radio spectrum. The maximum radius attained by the shell is ≈ R⊙η
1/3
01 γ

−1
f5 b

−2/3. The interstellar

magnetic field is expected to be essentially uniform on this length scale. Thus a pulse should be

nearly 100 percent linearly polarized, which will help to distinguish pulses from PBHs from those

produced by other sources.

Following Blandford [168], the pulse energy spectrum is

IνΩ ≈ 1.4 × 1012 η
4/3
01 γ−4

f5 b−2/3

∣∣∣∣F
(
ν

νc

)∣∣∣∣
2

J Hz−1 sr−1 (6.44)

where the limiting forms of |F (x)|2 are

|F (x)|2 ≈
{

0.615 x−4/7 if x≪ 1

x−4 if x≫ 1.
(6.45)

Equations (6.44) and (6.45) imply that for a chosen observing frequency ν, in GHz, the observed

pulse energy sharply peaks at a specific Lorentz factor,

γf5 ≈ 0.5 η
1/9
01 b−2/9 ν

1/3
GHz. (6.46)

By varying the observing frequency, one can search for potential phase-transition pulses asso-

ciated with different γf , and thus different sizes of the extra dimension. The corresponding extra

dimension that is tested for using a particular search frequency has the size

L ≈ µ−1
07 η

−1/9
01 b2/9 ν

−1/3
GHz 2 × 10−18 m. (6.47)

The strength of the typical interstellar magnetic field varies around the nominal value we use by

about an order of magnitude [186]. For the weak dependence of L on b shown in equation (6.47)

the resulting error in a determination of L is less than a factor of 2. However, given the idealized

nature of the Blandford model it is likely that the observations we suggest can only determine the

size of an extra dimension to an order of magnitude.

Frequencies between ∼ 1 GHz and 1015 Hz (γf ∼ 105 to 107) sample possible extra dimensions

between L ∼ 10−18−10−20 m. These length scales correspond to energies of (L/~c)−1 ∼ 0.1−10 TeV.

The electroweak scale is ∼0.1 TeV, and thus, radio observations at ν ∼ 1 GHz may be most

significant.

The observed polarization, dispersion measure, and energy of a radio pulse would provide a

means for distinguishing a PBH explosion from other possible sources. As noted above, an elec-

tromagnetic pulse produced by an exploding PBH would be nearly completely linearly polarized,

helping to distinguish it from other possible sources. In addition, the dispersion measure of a radio
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Figure 6.1: Electromagnetic-pulse energy spectrum for a topological phase transition

pulse can be used to estimate the distance to the source of the pulse. This distance, in combination

with the observed pulse energy, can yield an emitted pulse energy per Hz, at observing frequency

ν, that can be compared to the expected model results shown in Fig. 1.

The efficiency η differs by two orders of magnitude for the PBH explosion scenario considered

by Rees and the topological phase transition scenario. Therefore, the emitted pulse energy derived

from observations, for the Lorentz factor probed, would distinguish between these two scenarios.

Thus, as Fig. 1 shows, given a chosen observing frequency, one can distinguish between the cases

of η ≈ 1 (all the mass is emitted in a final explosive burst) and η ≈ 0.01 (for the topological phase

transition).

6.4.4 Transient pulse searches

Searches for transient radio pulses from PBH explosions, cf. [187, 188], can probe for the existence

of PBHs well below the limits established by observations of the diffuse γ-ray background [189, 166].

To date, these radio searches have utilized data collected for other purposes, or for limited times,

all with negative results. A new generation of instruments, designed to operate at low radio

frequencies, may be able to conduct extended searches for radio transients over wide fields of view

(∼ 1 steradian): the Long Wavelength Array (LWA) [153], Murchison Widefield Array (MWA)

[154], and the Low Frequency Array (LOFAR) [155].

A continuous wide-field low-frequency radio transient search already underway uses the Eight-
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meter-wavelength Transient Array (ETA) [156, 157] which operates at 38 MHz using 10 dual-

polarization dipole antennas. ETA observations are most sensitive to γf ≈ 104 to 105 (L ≈ 10−17 m

to 10−18 m). A second array (ETA2) is under construction at a different site. Comparing the

signals received at both sites will help mitigate radio interference — a technique that distinguishes

all searches with distributed antenna arrays from single-antenna searches. This procedure enables

the theoretical sensitivity to be attained. The sensitivity of a radio telescope to a pulse-producing

source is dependent on the temporal broadening of an observed pulse due to interstellar scattering

and due to dispersion across the finite-width frequency channels utilized in the observations. Taking

account of these effects, the ETA is sensitive to transient pulses produced by black-string/black-hole

phase transitions out to distances of about 300 pc.

It is natural to ask if gamma-ray satellites should have already detected an event of the sort we

are considering. The Energetic Gamma-Ray Experiment Telescope (EGRET) set an upper limit

on PBH explosions of < 0.05 pc−3 y−1 [190]. This result assumes that PBH explosions are of

the “standard” variety: η ≈ 1, and occurring with γf ∼ 102, producing a gamma-ray spectrum

peaking at about 250 MeV, as discussed by Page and Hawking [189]. Given these assumptions,

EGRET is sensitive to such events out to distances of about 100 pc [190]. If instead one considers

outbursts due to topological phase transitions with an efficiency of η ≈ 0.01, and at γf ∼ 102,

the EGRET sensitivity would only be sufficient to observe events out to about 10 pc, assuming

the same partitioning of output energy into gamma-rays and particles. Furthermore, if one is

interested in searching for topological phase transition events at the TeV-scale, where an extra

dimension is more plausible, the outburst energy (proportional to the mass of the black hole) is an

additional factor of 103 smaller, and so the distance is reduced to 0.3 pc. Moreover, the associated

gamma-ray spectrum peaks at this much larger energy scale, and outside the energy range of

EGRET. Therefore, EGRET was not the most suitable instrument for finding the topological

phase transition events we are considering.

The Fermi Gamma-Ray Space Telescope (formerly GLAST), will observe photons of energies

up to about 300 GeV, encompassing energies that would be produced by a topological phase

transition at 0.1 TeV. However, while Fermi is more than an order of magnitude more sensitive

than was EGRET [191, 192], it will be sensitive to these events out to only ∼1 pc.

6.4.5 Implications

Although we have considered a process involving an extra dimension, we have kept our analysis

general in the sense that we have not specified any particular extra dimension model. We now

consider the above proposal in the context of several specific extra dimension scenarios.

In the case of TeV-scale compactification models in which all gauge fields propagate in a single,

circular, extra dimension [171], the current bound on the compactification scale is (L/π~c)−1 &

6.8 TeV [193]. The Large Hadron Collider (LHC) will probe these models up to an energy scale

of ∼ 16 TeV. If both gauge fields and fermions propagate in the extra dimension [172] the current

bound is (L/π~c)−1 & 300 − 500 GeV with the LHC probing to ∼ 1.5 TeV [193]. Detection of
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a transient pulse would imply, as noted above, an extra dimension with L ∼ 10−18 − 10−20 m,

corresponding to an energy of ∼ 0.1−10 TeV. Thus constructive comparison of the pulse detection

results and LHC results would be possible.

In the context of the braneworld scenario proposed by Randall and Sundrum [174, 175] it has

been argued that evaporating black holes will reach a Gregory-Laflamme instability as the radius

of the black hole approaches the AdS radius [194, 195]. More specifically, in the Randall-Sundrum

I scenario a nominal value of this radius is 10 TeV−1 [196] placing it within the appropriate range

for transient pulse production.

For large extra dimension models [173] the effective fundamental energy scale is much higher

than the energy scale of the large extra dimension (L/~c)−1. For a single large extra dimension of

size L ∼ 10−18−10−20 m the effective fundamental energy scale is ∼ 1010 TeV — much higher than

the electroweak scale. Thus, searches for pulses from topological phase transitions would probe, for

these models, energies inaccessible to accelerator-based approaches for the foreseeable future.

While a positive pulse detection would signal the existence of an extra dimension, a null detec-

tion would serve to constrain the possible size of an extra dimension in particular models. Such

a constraint presupposes, of course, the existence of PBHs in abundant enough numbers to be

detectable. These constraints could be strengthened through consideration of other experimen-

tal data, e.g., other types of searches for PBHs, or cosmological data which further constrain the

spectral index for primordial density irregularities on the appropriate scales, or accelerator-based

searches.
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Chapter 7

Outlook

In this thesis we have collected various aspects of our recent proposal for a background independent

formulation of a holographic theory of quantum gravity. We have included the necessary background

material on geometry of canonical quantum theory, holography and spacetime thermodynamics,

Matrix theory, as well as our specific abstract proposal for a dynamical theory of geometric quantum

theory, as applied to Matrix theory. We have placed particular emphasis on the conceptual problem

of time. We have also summarized our recent discussion of astrophysical observational implications

of quanutm gravity including problem of vacuum energy, the big bang, and transient pulses from

an exploding primoridal black holes in the presence of an extra dimension.

Obviously we have only explored the surface. There are many technical developments needed

for full exploration of the consequences of our proposal. There are many open questions. Here we

collect a few perhaps more obvious open issues. Much of this constitutes present research that will

appear in future publications.

• The gauging of the unitary group of quantum mechanics led us to the infinite dimensional

Grassmannian Gr(Cn+1) = Diff(Cn+1)/Diff(Cn+1,Cn × {0}), with n = ∞. This is the config-

uration space of the generalized quantum theory. We do not, however, know the topology and

geometry of this space.

• We wish to know how to recover in detail the gravitational physics of asymptotically flat space-

times. This is the background of much of ordinary low-energy physics, and it is crucial for

some of the outstanding problems in General Relativity and quantum field theory in curved

spacetime. In particular, in asymptotically flat spaces, the S-matrix encodes n-point interac-

tions. This is a correspondence limit of the gauged quantum theory that we have proposed.

We would like to make this explicit.

• The sharpest non-perturbative formulations of string theory is in asymptotically AdS back-

grounds, as provided by AdS/CFT duality with its manifold ramifications. How do we compare

to the AdS/CFT intuition and results? Here we can offer some general comments: Based on

general symmetry considerations, the gauged Matrix theory is compatible with other non-
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perturbative formulations of string theory in curved backgrounds. The dual CFT, in the case

of 16 supercharges, is reducible (upon dimensional reduction to 0 + 1 dimensions) to Matrix

theory. The Matrix theory must capture the physics of local flat regions of the AdS space,

which according to the principle of equivalence, are physically independent from the AdS

asymptotics. Thus there is no conflict between gauged Matrix theory and AdS/CFT from the

global point of view, but the gauged Matrix theory offers a more general formulation of string

theory, because it can in principle be applied to other backgrounds, such as time-dependent

cosmological situations, in which case it is not necessarily physically meaningful to adhere to

the notions of fixed asymptopia, or global holographic screens, or S-matrix observables, or

dual CFTs.

As we mentioned in the introduction a useful analogy to draw here is to compare the Bohr hy-

drogen atom of old quantum theory to AdS/CFT (”static” holography) and ask about hologra-

phy, viz. the structure of quantum gravity, in more general (cosmological) backgrounds. String

theory anywhere except AdS, especially on time-dependent backgrounds, or backgrounds in

which knowledge of future causal and asymptotic structure is not an a priori given, is analogous

to the helium atom for which the techniques of the Bohr atom are insufficient.

Obviously, we will need to reconsider the contents of the black hole information paradox

from our point of view and compare to the perspective offered by the gauge theory/gravity

duality. In particular, it may well be the case that horizons and singularities are artifacts of

the semiclassical (or thermodynamic) limit. The emergence of the causal structure of these

spacetimes is therefore mysterious, and something we should explore.

• A gauge theory dual to flat spacetimes can be considered by taking the infinite radius of curva-

ture limit of AdS spacetimes. Consider, for example, the outstanding challenge of formulating

a dual to four-dimensional Minkowski space. To do this, we consider the infinite radius limit

of AdS4 × S7. Recall that on a p-brane the gauge theory coupling is specified as

g2
YM = (2π)p−2gs(α

′)(p−3)/2 = constant (7.1)

as α′ → 0. The infinite radius limit we wish to take sends

RAdS4

(α′)1/2
=

1

2

RS7

(α′)1/2
= g1/3

s

(
π2

2
N

)1/6

−→ ∞. (7.2)

In this limit AdS4 × S7 becomes M4 × [R7
⋃{pt.}]. The supergravity approximation, valid

for energies smaller than R−1
AdS4

, appears to break down completely in the RAdS4 → ∞ limit.

The S7, also of infinite size, is threaded by N units of flux, where we have sent N → ∞. The

isometry group of S7 is SO(8). Common to the Penrose diagrams of an infinite radius AdS4

and four-dimensional Minkowski space is i0. This is where the dual gauge theory should live.

The gauge theory dual is N = 8 super-Yang–Mills in three dimensions. This theory has

eight scalars in the adjoint representation and eight fermions. The R-symmetry is SO(8).

This theory itself is not conformal, but flows under the renormalization group to a three-

dimensional CFT. We can write the N = 8 super-Yang–Mills theory as a (2 + 1)-dimensional
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Matrix model. When we reduce this theory to (0 + 1) dimensions, we obtain an N = 16

super-Yang–Mills theory with nine scalars and 16 fermions. This Matrix theory should teach

about physics in Minkowski space. We can then in principle patch together the Matrix theory

on different Minkowski spaces to construct a gauged quantum mechanics applicable to general

backgrounds with unspecified future asymptopia.

• Can we say something precise about asymptotically de Sitter backgrounds and more general

cosmological backgrounds? What is, in particular, the rôle of “quasi-local” holography we

have tried to emphasize in the background independent formulation of quantum theory of

gravity discussed in this thesis, in the context of cosmological backgrounds? Here we wish

to offer a comment about the tension between local and global notions of holography which

is one of the crucial elements of gauge theory/gravity duality: It is well known that global

holography provides heuristic support for a cosmological constant far smaller than the exag-

gerated expectations of effective field theory. According to holography, the degrees of freedom

of gravity in D spacetime dimensions are captured by equivalent non-gravitational physics in

D − 1 dimensions [47]. For example, the relation between holography and the cosmological

constant was explored in [103, 116, 117].

To be precise [118], suppose there are D spacetime dimensions, each with a characteristic scale

R. The holographic bound demands that the entropy (the number of degrees of freedom Ndof)

scales as the area. This is a (D−2)-dimensional surface, so Ndof ≤ RD−2

4GD~
. From the uncertainty

principle, the energy of each independent degree of freedom scales as E ∼ ~

R
. All the degrees

of freedom contribute equally to the vacuum energy density: Λ ∼ Ndof
E

RD−1 ∼ 1
R2GD

. The

dependence on ~ has cancelled in the last expression, so this vacuum energy density should

survive the semiclassical (~ → 0) limit. Here, the cosmological constant Λ is a prescribed, fixed

number. It is determined by the size R of the regularized “box.” Note that this is somewhat

näıve, because the characteristic sizes of spatial and temporal directions do not have to be the

same.

We notice that the fluctuation ∆Λ that we promoted above matches this scaling, but only

when D = 4. A Poisson fluctuation in the holographic degrees of freedom Ndof will not recover

the holographic scaling of the cosmological constant. The fluctuation we have considered is

in the volume of the quantum mechanical configuration space rather than in a codimension

one structure. The reason that this is consistent is that we have applied the principle of

equivalence at each point in spacetime. In the scheme that we have proposed, holography

enters in the choice of the quantum theory compatible with having Minkowski space as a local

solution, namely through Matrix theory. Holography is “local,” in the sense of the equivalence

principle. Therefore there does seem to be some tension with global holography, which might

be a useful concept only for certain physics questions.

• In a related vein, because the future causal structure of spacetime is unknown, a global S-

matrix description of our Universe is unavailable. From the viewpoint of the generalized

quantum theory, a wave functional approach à la Wheeler–de-Witt [119] seems poorly formu-
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lated. In the general quantum theory we can have dynamical statistical correlations between

the past and today. The observables of quantum gravity are these dynamical correlations in

the configuration space of the quantum theory. A functional approach to quantum gravity is to

consider a canonical theory of quantum mechanics (Matrix theory) at every point in spacetime,

where spacetime is here regarded as a semiclassical geometry that arises from identifying the

configuration space with the physical space in the ~ → 0 limit. This is an application of the

correspondence principle that ensures that at long wavelengths we recover General Relativity.

• In gauging quantum mechanics to lift the ten-dimensional (or eleven-dimensional) vacuum, we

obtain a vacuum energy that corresponds to the cosmological scale of supersymmetry breaking.

The second cosmological constant problem nevertheless persists: why is ΩΛ ≈ Ωmatter today?

This could be an accident of living in the present epoch [104]. We would, in view of the

main point of this thesis, prefer to view the cosmic concordance problem through a different

dynamical lens, one might want to term “the Universe as an attractor.”

The classic reference [105] considers linear perturbation theory in a Friedmann–Robertson–

Walker (FRW) background for a certain density of matter and a certain vacuum energy and

then deduces an a priori probability for the vacuum energy so that (1) gravitational bound

states appear at large scales; (2) the fundamental constants are held fixed; and (3) the proba-

bility distribution is independent of a bare vacuum energy, which permits the use of Bayesian

statistics.

It is in holding the constants fixed that considerations based on observer bias, i.e., anthropic

selection, takes place. We may be able to apply a similar reasoning with generalized quantum

mechanics, but without resorting to anthropic selection. In the framework of gauged quan-

tum mechanics, non-Gibbsian quantum probability distributions are dynamically possible, for

example as perturbations of the usual path integral, around the Fisher metric. Anthropic

reasoning is evaded because we have an Seff that can in principle be obtained directly and

exactly from Matrix theory. Thus a dynamical resolution of the coincidence problem might

be possible in this more general “non-equilibrium” quantum theoretic approach.

• Our discussion of the vacuum energy seems to imply that dark energy has a fine structure

embodied in a very particular energy distribution of a Wien type. This distribution is com-

patible with the statistics of the underlying quantum gravitational degrees of freedom we have

argued are relevant for a new viewpoint on the cosmological constant problem. This new

point of view offers other possible theoretical perspectives. For example, in view of some in-

triguing phenomenological scaling relations found in studies of dark matter [120, 121], which

are apparently sensitive to the vacuum parameters, such as the cosmological constant, it is

natural to ask whether within our discussion one can get both dark energy and dark matter

in one go. In Matrix theory, the open string degrees of freedom (without which we would not

have infinite statistics) could thus be responsible for dark energy, and the D0-brane quanta

attached to the open strings could provide natural seeds of large-scale structure, i.e., dark

matter, especially when treated as non-relativistic degrees of freedom fixed to a background.
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This would also imply that infinite statistics is relevant for dark matter as well! It is intriguing

that in the formal studies of infinite statistics one finds non-local expressions for the canoni-

cal fermion and boson operators in terms of Cuntz algebra (i.e., infinite statistics) operators.

Could this mean that the standard model matter is just a collective excitation around the

dark matter condensate? Such a collective “condensed matter” view of the emergence of the

Standard Model would be radically different from the usual compactification based approaches

to particle physics phenomenology in the framework of string theory.

• An important avenue for future investigation is the effect more than one extra dimension would

have on transient pulse production. The nature of this type of topological phase transition

for more than one compact extra dimension is currently under investigation [197]. Also, the

efficiency parameter η, whose value was estimated above, can be better determined numerically,

which would help to make this analysis more precise. We have considered a particular explosive

event in the evaporation process of a PBH involving an extra dimension. However, given the

generic relationships noted above, equations (6.37) and (6.38), we believe that a connection

between transient pulse production by PBHs and electroweak-scale physics is robust beyond

the specific analysis present here, and is worthy of further investigation.

• We have considered only one among a number of possible distinct transient events which

could reveal new physics. The analysis considered here can potentially be extended to stellar-

mass black holes, regardless of their origin, when quantum gravitational effects are taken

into account, as discussed in. Another candidate for producing an observable transient pulse,

which is intimately dependent on quantum gravitational effects, is the spark from a cusp

of a superconducting cosmic string [160]. Given the connection between highly energetic

astrophysical events and the production of transient pulses, it is likely that searches for these

signals will open a new observational avenue to the heart of quantum gravity.
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Chapter 8

Appendices

8.1 Appendix A: Weinberg’s Non-linear Quantum Mechanics

We will now review the proposed non-linear generalization of quantum mechanics due to Weinberg

[24]. This generalization is not an attempt to create the most general framework in which to

formulate quantum mechanics. It is instead an attempt to generalize quantum mechanics in a way

which motivates experimental tests of the linearity of the theory. Indeed it is surprising how few

direct tests of quantum mechanics have been performed over the years. Every test of a particular

quantum field theory (i.e., QED) is in a sense a test of quantum mechanics, but a high precision

test of quantum mechanics that is independent of any particular theory is of obvious interest.

Weinberg’s non-linear generalization was conceived with this goal in mind. We will summarize the

formalism of Weinberg as originally devised. We shall also summarize the results of experiments

inspired by his work. We will also address some interesting questions that have arisen regarding

this formalism and the Einstein–Podolsky–Rosen (EPR) paradox [122]. Finally, as previously noted

Weinberg’s generalization can be found within the geometric quantum mechanical framework. We

will detail how one can arrive at Weinberg’s formalism by choosing a particular generalization of

the dynamical structure in the geometric framework. Note though, that this generalization is very

restricted, compared to the general geometric formulation of quantum theory discussed in the main

body of the thesis.

Basic Formalism

One direct approach to endowing quantum mechanics with non-linear structure is to simply add

non-linear terms to the Schrödinger equation. However, it is difficult to do this in such a way as to

yield physically reasonable results. Weinberg’s formalism is conservative in the sense that it focuses

on the elements that seem to be a requirement of non-linearity.

We begin with the wave function. As in standard quantum mechanics, the states ψ and Zψ

are identified where Z is an arbitrary complex number. For clarity in this appendix we will use
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natural units and consider ψ to be a function of the discrete variable, k. We may now define

observables. In standard quantum mechanics observables are represented by a Hermitian matrix,

Aij or equivalently the bilinear function, ψ∗
iAijψj . Let us generalize this to a non-bilinear function,

a(ψ, ψ∗). In order to maintain the identification of ψ with Zψ we require that the observables be

homogeneous of degree one both in ψ and ψ∗

ψk
∂a

∂ψk
= ψ∗

k

∂a

∂ψ∗
k

= a. (8.1)

We may define the sum of observable functions as follows,

(a+ b)(ψ, ψ∗) = a(ψ, ψ∗) + b(ψ, ψ∗). (8.2)

However, we must be careful in defining the product of observable functions. In order to do this

we must generalize the matrix multiplication of standard quantum mechanics

a ∗ b =
∂a

∂ψk

∂b

∂ψ∗
k

. (8.3)

We make note of a particular function, the norm

d = ψ∗
kψk, (8.4)

which is the unit element of the previously defined product. Most of the differences between

classical physics and standard quantum mechanics can be traced to the fact that the product of

observables becomes non-commutative. Now note that the product of observables in this formalism

is neither commutative nor associative. In analogy with classical physics and commutativity, the

lack of associativity is the source of most of the discrepancies between Weinberg’s formalism and

standard quantum mechanics.

Now we address the issue of symmetries in this formalism. Initially this may seem problematic

because of the lack of associativity. However, we shall see that Lie algebras still play a vital rôle.

We begin by noting that a linear transformation in quantum mechanics may be expressed as

δψk = −iǫAklψl. (8.5)

In order to generalize this we consider the change in the wave function with regard to an infinitesimal

function, ǫa(ψ, ψ∗)

ǫδaψk ≡ −iǫ a
ψk
. (8.6)

This implies the change in a function b with respect to ǫa is given by

δab = −iǫ
[
∂b

∂ψk

∂a

∂ψ∗
k

− ∂b

∂ψ∗
k

∂a

∂ψk

]
,

which may be rewritten as

δab = i[a, b] ≡ i(a ∗ b− b ∗ a). (8.7)
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The commutator is antisymmetric, and the Jacobi identity is satisfied. Thus as in standard quantum

mechanics we are able to make use of Lie algebras of the symmetry transformations. Thus we

require,

[ξi, ξj] = iCijkξk. (8.8)

Here Cijk is the structure constant of a given Lie algebra. Now we consider, in particular, the

symmetry of time translation generated by the Hamiltonian function h(ψ, ψ∗). We define the time

dependence of the wave function as,

ψk(t+ ǫ) = ψk(t) + δkǫψk(t) (8.9)

which yields the time dependent non-linear Schrödinger equation,

dψk
dt

= −i ∂h
∂ψ∗

k

. (8.10)

As in standard quantum mechanics we may establish a direct correspondence between the Poisson

bracket and the commutator. We use this correspondence to define the time dependence of any

function a(ψ, ψ∗) where ψ is a function of t

da

dt
= −i[a, h]. (8.11)

Note that we can immediately establish two conserved functions. The Hamiltonian which of course

commutes with itself and the norm which commutes with all observables by its definition as the unit

element. However, note that because of the lack of associativity, a product of conserved functions

is not necessarily a conserved function.

This leads to an important distinction between standard quantum mechanics and the non-

linear generalization considered here. The wave functions in standard quantum mechanics display

quasiperiodic behavior. Now consider the class of non-linear Hamiltonian that is integrable. The

wave functions associated with theses systems are guaranteed to be quasiperiodic on the n-torus.

In order for the Hamiltonian to be integrable there must be no independent quantities, an(ψ, ψ
∗),

that commute with themselves as well as h(ψ, ψ∗). As previously noted in Weinberg’s formalism

there are only two guaranteed commuting observable d and h. Thus in this formalism systems

are not generically integrable for n > 2 components. Thus the quasiperiodic behavior of the wave

function may be replaced by chaotic behavior. However, consider Hamiltonians of the form

h = h0 + hi. (8.12)

Here h0 is integrable and hi is not. If hi is small compared to h0 the averaged equations of motion

will be the same as if the Hamiltonian function had been integrable. This implies that if the

deviation from standard quantum mechanics is small the time dependent Schrödinger equation will

be integrable.

We would also like to address the issue of combining two isolated systems in this formalism.

Consider two isolated states ψI and ψII and their combined wave function ψIII . Also consider their
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associated Hamiltonians hI and hII . In standard quantum mechanics both Hamiltonians would be

bilinear. Thus there sum hIII would be bilinear with a matrix coefficient being given by the direct

sum of hI and hII . If we generalize this sum for non-bilinear functions we arrive at the following

expression for the new Hamiltonian,

hIII(ψIII , ψ
∗
III) =

∑

n

hI(ψ
(n)
I , ψ

(n)∗
I ) +

∑

m

hII(ψ
(m)
II , ψ

(m)∗
II ). (8.13)

Note that any additive observable for such combined system would be constructed in a similar way

and would be of this form.

Eigenvalues and Expectation Values

Next we will address the issue of eigenvalues in this formalism. In standard quantum mechanics

the wave function will give a definitive value, λ for an observable represented by a matrix if it

is an eigenvector of that matrix. Thus λ is an eigenvalue. However, in accordance with our new

definition of observables we will generalize this notion. Thus we consider observables represented

by a non-bilinear function, a(ψ, ψ∗). This implies the wave function will give a definitive value only

if
∂a

∂ψ∗
k

= λψk (8.14)

and
∂a

∂ψk
= λψ∗

k. (8.15)

As in standard quantum mechanics we may use the variational principle to define eigenvectors.

Thus we may define the eigenvectors of the observable function a(ψ, ψ∗) as the stationary points

of the following equation,

Λ(ψ, ψ∗) =
a(ψ, ψ∗)

d(ψ, ψ∗)
. (8.16)

The eigenvalues are then the values of Λ at those stationary points. These can be obtained by

means of differentiating (8.16) with respect to ψ and ψ∗. This yields the following equations,

∂Λ

∂ψ∗
k

=
1

d

∂a

∂ψ∗
k

− a

d2
ψk

∂Λ

∂ψk
=

1

d

∂a

∂ψk
− a

d2
ψ∗
k. (8.17)

Thus if both of these equations vanish ψ is an eigenvector of a(ψ, ψ∗) with an eigenvalue of a/d.

Now note that because ψ is identified with Zψ, Λ is invariant under such a transformation.

Λ(Zψ,Zψ∗) = Λ(ψ, ψ∗). (8.18)

Thus an n + 1 component wave function ψk is defined on the projective space P
n. It is important

to note that if we assume a small departure from linear quantum mechanics we may observe a shift
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in a given eigenvalue. This shift is similar to the first Born approximation in standard quantum

mechanics.

We must also try to make sense of the expectation value in this formalism. In standard quantum

mechanics we may define the expectation value of an observable A in state ψk as

〈Â〉ψ =
ψ∗
kAklψl
ψ∗
kψl

. (8.19)

In analogy we generalize the expectation value of an observable function a of state ψ to

〈a〉ψ =
a(ψ, ψ∗)

d(ψ, ψ∗)
. (8.20)

Note that this is identical to (8.16).

In standard quantum mechanics we may use the expectation value to define the probability

distribution for values of any observable in a given state. This is because a given observable

commutes with itself to all orders. Thus it may be measured simultaneously to all orders. However

this is not the case in Weinberg’s formalism. As before this discrepancy can be traced back to the

lack of associativity among observables. Thus there is no unique way to determine a probability

distribution from the expectation value of an observable function to arbitrary order.

There are, however, some observables in this formalism that do commute with themselves to all

orders. These observables have an associated symmetry principle that requires that they be bilinear

functions. Observables such as momentum and angular momentum belong to this class. We can

use these observables to determine the probability distribution for an arbitrary observable. This

can be accomplished by allowing the observable in question to interact with one of the observables

which is represented by a bilinear function.

Experimental Tests of Linearity

It was Weinberg’s purpose to discover a precise way of directly testing the linearity of quantum

mechanics. In order to see how this may be accomplished we consider a small non-linear pertur-

bation added to a given observable. This will shift the eigenvalue associated with that observable

while still leaving the system integrable. More specifically consider a particle with a given spin in

a weak uniform magnetic field. It is possible to coherently observe the oscillating particle over long

periods of time and thus to measure its characteristic frequencies extremely precisely. This would

allow a shift in the frequencies due to non-linear perturbations to be observed.

Subsequent to the introduction of Weinberg’s formalism several such experiments were performed

[123, 124, 125]. These experiments used spin-3
2

nuclei. For such nuclei the shift in the characteristic

frequencies is given in action angle variables by

δωn =
∂〈hi〉
∂Jn

, (8.21)

where hi is a small non-bilinear term added to the unperturbed Hamiltonian which is averaged

to ensure integrability [24]. From the measurement of characteristic frequencies we may calculate
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the size of corrections to the energy eigenvalues, ǫ or place an upper bound on it. This parameter

is indicative of the level of non-linearity present in the system. The best current upper bound is

|ǫ| < 6.2 × 10−21 eV given by Chupp and Hoare [123] using freely precessing 21Ne.

The EPR Paradox

It was noted by Polchinski in [126] that there were potential difficulties with Weinberg’s non-linear

quantum mechanics involving the EPR paradox. It was shown for a given non-linear generalization

of quantum mechanics, if there is to be no EPR type communication among isolated systems, the

observables of a given system (I) must be defined as follows,

a
(P )
I (ψ, ψ∗) = hI

(∑

n

ψ
(n)
i ψ

(n)∗
j

)
. (8.22)

However, if we recall (8.13) we see that we would express an observable for an isolated system as

a
(W )
I (ψ, ψ∗) =

∑

n

hI(ψ
(n)
i , ψ

(n)∗
j ). (8.23)

Thus there must be EPR type communication which is permitted in Weinberg’s formalism. Even

if observables were of the form of (8.22) Polchinski went on to show there is still the potential

for a special type of communication between the branches of the wave function. This type of

communication is a realization of an Everett phone, which might be of interest in thinking about

the multiverse and the string landscape. It was conjectured that these forms of superluminal

communication may be isolated to Weinberg’s formalism. This, however, was challenged by Mielnik

in [127] where it was claimed that this was generic attribute of non-linear models. Once again, we

want to emphasize that this particular generalization is very restrictive and is very different from

the background independent, or gauged, quantum theory we have discussed in the main text of the

thesis.

Connection to Geometric Quantum Mechanics

It was alluded to earlier that Weinberg’s formalism may be arrive at by considering a particular type

of generalization of quantum mechanics in the geometric framework. Now that we have explored

both formalisms we seek to understand the connection between the two. This connection was

lucidly explained in [29]. We begin by considering a generalized class of Hamiltonians CH . This

will consist of densely defined functions on the projective Hilbert space P. They must be functions

which are smooth on their domain of definition and whose associated Hamiltonian vector fields set

up a flow on P.

Now recall our previous consideration of generalized dynamics. We lifted the dynamical flows

from P to the full Hilbert space H on the constraining surface S. Thus we will also lift the class of

Hamiltonians under consideration and denote this by C
′

H . As suggested by our previous analysis we
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may extend the elements of C
′

H off of S in whichever way we like, but we will choose the extension

suggested in (2.36). This extension may be reformulated as

Aext(Ψ) =‖ Ψ ‖2 A(Ψ/ ‖ Ψ ‖). (8.24)

We may use this equation to extend all of the elements of C
′

H to all of the Hilbert space defined

by H′

= H − {0}. Note that (8.24) implies the elements of CH and the smooth gauge invariant

functions on H′

which are homogeneous of degree two are in a one-to-one correspondence. If we

view H as the vector space over complex numbers, this is equivalent to homogeneity of degree one

in both ψ and ψ∗. This is exactly the class of Hamiltonians which were considered in Weinberg’s

formalism. Note that the homogeneity requirement restricts the freedom to extend functions on

H′

. Also, as previously stated, because ψ is equivalent to Zψ, Weinberg’s space of physical states

is Pn. This is the quantum phase space P considered in the geometric quantum framework. It is

this essential fact that permits the connection between the two formalisms.

8.2 Appendix B: Foundations of Quantum Theory Redux

Here we collect a streamlined version of the fundamental structure of quantum theory from the

geometric axiomatic point of view. This material is already present in the main body of the thesis,

but here we assemble it all in one place, as a relatively simple way to rationalize quantum theory

from first principles, as well as offer a natural route to its generalization, as discussed in this thesis.

We reason as follows: Assume that individual observable events are statistical and statistically

distinguishable (Axiom I). (This of course is a huge conceptual jump in comparison to classical

physics, but it is absolutely crucial for the structure of QM. This leap is centrally connected with

the seemingly counter-intuitive view on the concept of “physical states” or “physical reality” in

canonical quantum theory.) On the space of probability distributions there is a natural metric,

called Fisher metric, which provides a geometric measure of statistical distinguishability [90]

ds2 =
∑

i

dp2
i

pi
,
∑

i

pi = 1, pi ≥ 0. (8.25)

(This distance can be reasoned out as follows: to estimate probabilities pi from frequencies fi, given

N samples, when N is large, use the central limit theorem which says that the probability for the

frequencies is given by the Gaussian distribution

exp(−N
2

(pi − fi)
2

pi
). (8.26)

Thus a probability distribution p1
i can be distinguished from a given probability distribution p2

i

provided the Gaussian exp(−N
2

(p
(1)
i −pi)2

pi
) is small. Hence it follows that the quadratic form

(p
(1)
i −pi)2

pi
,

or its infinitesimal form
∑

i
dp2i
pi

, the Fisher distance, is a natural measure of distinguishability.) Now,
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change variables pi = x2
i , to make pi manifestly non-negative. The Fisher distance is then

ds2 =
∑

i

dx2
i ,

∑

i

x2
i = 1 (8.27)

Therefore the Fisher distance in the probability space is nothing but the shortest distance along

this unit sphere [90] ds12 = cos−1(
∑

i

√
p1i

√
p2i).

Next, we demand that on this metrical space of probabilities one can define a canonical Hamilto-

nian flow (Axiom II). This is where the correspondence principle with the canonical classical theory

resides. Note that the two postulates do seem to be incompatible and the resolution of incompati-

bility is quantum theory. There is here a similarity with the axiomatic approach to Special Theory

of Relativity, except that in the present case the we have a radical departure with regards to what

is meant by “physical reality”.

To be able to implement Axiom II, the space of xi has to be even dimensional (hence,
∑
x2
i =

1 defines an odd-dimensional sphere). Then the Hamiltonian flow is given (locally) as df(xi)
dt

=

ωij
∂h(xi)
∂xi

∂f(xi)
∂xj

≡ {h, f}, where ω is a closed non-degenerate two-form. The compatibility of the

symplectic form ω and the metric g allows for the introduction of an almost complex structure (in

matrix notation)

J ≡ ωg−1 (8.28)

Now, it follows that

J2 = −1 (8.29)

because the compatibility between the metric and symplectic structures demands

ωijg
jkωkl = gil. (8.30)

Given this constant complex structure introduce complex coordinates on this even dimensional

space ψa (and their conjugates ψ∗
a), so that

∑

i

x2
i ≡

∑

a

ψ∗
aψa = 1, (8.31)

and thus pa = ψ∗
aψa. This statistical distance is invariant under

ψ → eJαψ, (8.32)

J being the above integrable almost complex structure. Thus ψ can be identified with eJαψ. It is

a fact that an odd dimensional sphere can be viewed as a U(1) fibration of a complex projective

space Pn which is a coset space U(n+1)
U(n)×U(1)

. A Pn is a homogeneous, isotropic and simply connected

Kähler manifold with a constant holomorphic sectional curvature. The canonical metric on Pn is the

Fubini–Study metric (which is nothing but the above statistical Fisher metric up to a multiplicative

constant, the Planck constant ~), which reads, in the canonical Dirac notation and the derived Born

rule, pa = ψ∗
aψa): ds

2
12 = 4(cos−1 |〈ψ1|ψ2〉|)2 = 4(1−|〈ψ1|ψ2〉|2) ≡ 4(〈dψ|dψ〉−〈dψ|ψ〉〈ψ|dψ〉). Thus

Pn is the underlying manifold of statistical events on which we have a well defined Hamiltonian
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flow and as such provides a kinematical background on which a Hamiltonian dynamics is defined.

The only Hamiltonian flow compatible with the isometries of Pn (which are the unitaries U(n+1))

is given by a quadratic function of xi or, alternatively, a quadratic form in the pair qa ≡ Re(ψ) and

pa ≡ Im(ψ)), h = 1
2

∑
a[(p

a)2+(qa)
2]ωa, or in the usual notation, h = 〈Ĥ〉, ωa being the eigenvalues

of Ĥ . The Hamiltonian equation for the ψ and its conjugate becomes therefore the linear evolution

equation (Schrodinger equation), dpa

dt
= {h, pa}, dqa

dt
= {h, qa}, that is J d|ψ〉

dt
= H|ψ〉. (In this

formulation both the Heisenberg and the Schrodinger picture have a canonical Hamiltonian form!)

Any observable, consistent with the isometries of the underlying space of statistical events, is given

as a quadratic function in the qa, pa. These are just the usual expectation values of linear operators.

Note that this compact approach is rather close to other axiomatic systems invented to make

quantum theory more palatable, in particular, such as the one advocated by Hardy [128] and

Aharonov [129]. Also, the geometric formulation of quantum theory based on above axioms natu-

rally lends itself to the generalization discussed in the main body of the text, which in turn sheds

new light on the fundamental structure of canonical quantum theory, in a way very much analogous

to the relationship between the General and Special Theories of Relativity.

8.3 Appendix C: Λ vs. V and UV vs. IR

Here we make some comments about the canonical Wheeler–de-Witt (WdW) equation (which

should be a limit of some more general non-linear and non-local Wheeler–de-Witt-like equation

of the background independent Matrix theory) with the cosmological constant, and the relation

between the cosmological constant and the spacetime volume. Furthermore, we review the relation

between the Wheeler–de-Witt equation and the holographic renormalization group, as a hallmark

of the UV/IR correspondence.

WdW and Λ vs. V

We start from the usual Wheeler–de-Witt equation

HΨΛ = 0 (8.33)

on a spacetime with cosmological constant Λ. Let’s explore what this means.

We can write the spacetime metric in a local neighborhood in the ADM form:

ds2 = gµν dx
µdxν = −N2dt2 + hij(dx

i −N idt)(dxj −N jdt). (8.34)

We find that the extrinsic curvature Kij is

Kij = − 1

2N
(∂thij + ∇iNj + ∇jNi) , (8.35)

which can obviously be rewritten as the evolution equation

∂thij = −2NKij −∇iNj −∇jNi. (8.36)
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We also have the Hamiltonian and momentum constraints

H = R(3) +K2 −KijK
ij − 2Λ = 0, (8.37)

Mi = ∇jK
j
i −∇iK = 0, (8.38)

and a second evolution equation

∂tKij = NR
(3)
ij +NKKij−2NKikK

k
j −∇i∇jN−∇iN

kKkj−∇jN
kKki−Nk∇kKij−NΛhij , (8.39)

where K = hijKij and R
(3)
ij and R(3) are the Ricci and scalar curvatures of the spatial metric hij .

The Schrödinger equation then is

1

2

(
R(3) +K2 −KijK

ij
)
ΨΛ = ΛΨΛ. (8.40)

It is convenient to rewrite this in a slightly different form. Following Brown and York and Unruh

[130], define

Gijkl =
1

2
√
h

(hikhjl + hilhjk − hijhkl). (8.41)

Define the conjugate momentum to the spatial metric hij as

πijh := −i~ 1√
h

δ

δhij
. (8.42)

We will restore powers of ~ and put κ = 8πGN = ~M−2
P l . Dimensional analysis tells us that πijh has

units ML−2. The functional Schrödinger equation is the Wheeler–de-Witt equation
(
−2κ~

2 1√
h
Gijkl

δ

δhij

δ

δhkl
− 1

2κ
R(3) +

1

κ
Λ

)
ΨΛ[h] = 0. (8.43)

Quantization maps
Λ

κ
7→ −i~ δ

δτ
=: πτ . (8.44)

(The dimensions of τ and πτ are L and ML−3, respectively.) In this sense τ and Λ/κ = M2
P lΛ/~

are conjugate variables. The solution to the time-dependent Wheeler–de-Witt equation
(

2κ
√
hGijklπ

ij
h π

kl
h − 1

2κ
R(3) − i~

δ

δτ

)
ΨΛ[h, τ ] = 0 (8.45)

is a rotation of the τ -independent solution:

ΨΛ[h, τ ] = exp

{
i

~

∫
d3x τ

Λ

κ

}
ΨΛ[h], (8.46)

and the wave function defines the probability measure for the spatial three-geometry defined by hij
to be found with spacetime volume V in the region of superspace with volume element dµ[h]:

dP = |ΨΛ[h, τ ]|2dµ[h]. (8.47)
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The spacetime volume is determined by τ =: τ 0. We have

Vol =

∫
d4x

√−g =

∫
d4x ∂µτ

µ. (8.48)

Defining the spatial average

VΣ =

∫

Σ

d3x τ, (8.49)

the spacetime volume is nothing but the difference of V on the initial and final hypersurface:

Vol =

∫
d4x ∂µτ

µ =

∫

Σf

d3x τ −
∫

Σi

d3x τ = Vf − Vi. (8.50)

Note that τ is a timelike direction. We can only employ this prescription when we have a spatial

slicing, i.e. on a local neighborhood.

Now, let’s explore the effect of fluctuations in V . A small fluctuation can be defined by a shift

in τ for fixed hij :

τ 7→ τ ′ = τ + ǫ. (8.51)

This means that

πτ ′ = −i~ δ

δ(τ + ǫ)
= −i~ 1

1 + dǫ
dτ

δ

δτ
=

(
1 − dǫ

dτ
+ . . .

)
πτ . (8.52)

We have chosen ǫ(τ, xi) such that

δV =

(∫

Σf

d3x τ ′ −
∫

Σi

d3x τ ′

)
−
(∫

Σf

d3x τ −
∫

Σi

d3x τ

)
=

(∫

Σf

d3x ǫ−
∫

Σi

d3x ǫ

)
. (8.53)

We do not know whether the choice of ǫ is unique (up to boundary terms), but some such ǫ must

exist. We will work to leading order in ǫ. We are interested in what the shift in τ does to dP .

If the configuration space (the space of quantum events) is space, then the fluctuations in the

probability measure dP induced by the fluctuation δV should also describe fluctuations in the

space of quantum events. The fluctuations in the space of quantum events are the fluctuations

of the almost complex structure on the infinite dimensional Grassmannian that are compatible

with metric and symplectic structure. The dynamics of these fluctuations must be described by

the Einstein–Yang–Mills equation on the space of quantum events, but we cannot be more precise

without knowing what the metric and symplectic structures on this space are.

Let’s do a quick calculation. We have the analogue of the usual energy-time uncertainty relation

for Λ/κ and τ : (
∆Λ

κ

)(∫
d3x∆τ

)
=

(
∆Λ

κ

)
δV ≃ ~. (8.54)

This implies that

Λ′ = Λ +
~κ

δV
. (8.55)
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Now,

ΨΛ′[h, τ ′] = exp

{
i

~

∫
d3x τ ′

Λ′

κ

}
ΨΛ[h] = exp

{
i

~

∫
d3x

[
(τ + ǫ)

(
Λ

κ
+

~

δV

)]}
ΨΛ[h]

= exp

{
i

~

∫
d3x

[
ǫ
Λ

κ
+

~(τ + ǫ)

δV

]}
ΨΛ[h, τ ] = exp

{
i

~

Λ

κ
δV + i

V ′

δV

}
ΨΛ[h, τ ].

(8.56)

We have rotated by a pure phase! This implies that the measure

dP ′ = |ΨΛ′[h, τ ′]|2dµ[h] = |ΨΛ[h, τ ]|2dµ[h] = dP (8.57)

is invariant.

WdW and Holographic RG

In this subsection we review the relationship between the holographic renormalization group and

the Wheeler–de-Witt equation. In fact, the holographic renormalization group is nothing but the

Wheeler–de-Witt equation rewritten for a particular slicing of spacetime. This works for general

backgrounds including cosmology. The formalism is crucially based on the existence of asymptotic

spacetime data and is in some sense a WKB-like version of some more general non-linear and

non-local formulation implied by the abstract structure of background independent Matrix theory.

Nevertheless, the following formulation summarizes some crucial points in the current thinking

about gauge theory/gravity duality and one of its trademarks: the UV/IR correspondence.

This formalism runs as follows [84, 131, 132]. First we fix the gauge so that the bulk metric can

be written as

ds2 = dr2 + gijdx
idxj . (8.58)

This is just the ADM gauge discussed above: the shift vector is set to zero and the lapse to

one. Usually one envisions and holographic dual (of a non-gravitational nature, as in AdS/CFT

correspondence, i.e., gauge theory/gravity duality) where the ultraviolet rescaling in that dual

corresponds to the rescaling in the size of the extra dimension in the bulk spacetime, which in

the chosen gauge is nothing but the natural evolution parameter. Given the fact that the bulk

gravity theory is reparameterization invariant, the local ultraviolet rescaling in the gauge theory is

encapsulated in the infrared by the four-dimensional Hamiltonian constraint

H = 0. (8.59)

More explicitly

H = (πijπij −
1

2
πiiπ

j
j ) +

1

2
πIG

IJπJ + L. (8.60)

Here πij and πI are the canonical momenta conjugate to gij and φI

πij =
1√−g

δS

δgij
, πI =

1√−g
δS

δφI
. (8.61)
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Here φI denotes some background matter fields coupled to (3 + 1)-dimensional gravity — for

example, the Standard model fields; L is a local Lagrangian density, and GIJ denotes the metric

on the space of background matter fields.

As in the context of the AdS/CFT duality [84, 131, 132], the Hamiltonian constraint can be

formally rewritten as a renormalization group equation for the dual renormalization group flow

[131]. In the Hamiltonian constraint

1√−g

(
1

2

(
gij

δS

δgij

)2

− δS

δgij
δS

δgij
− 1

2
GIJ δS

δφI
δS

δφJ

)
=

√−g L, (8.62)

assume that the local four-dimensional action S can be separated into a local and a non-local piece

S(g, φ) = Sloc(g, φ) + Γ(g, φ). (8.63)

Given this rewriting of the four-dimensional action, the Hamiltonian constraint can be formally

rewritten as a Callan–Symanzik renormalization group equation for the effective action [131] Γ of

the ultraviolet theory at the scale Λ

1√−g

(
gij

δ

δgij
− βI

δ

δφI

)
Γ = HO, (8.64)

where HO denotes higher derivative terms of the expression for the four-dimensional conformal

anomaly. Here the “β-function” is defined (in analogy with the AdS situation) to be βI = ∂Λφ
I ,

where Λ denotes the cut-off of the defining ultraviolet theory.

In the context of the holographic renormalization group formalism developed in the AdS/CFT

correspondence, it is also possible to introduce a holographic “c-function” which measures the

number of accessible degrees of freedom and which decreases during renormalization group flow.

When the spacetime is four-dimensional, one has [84, 131, 132]

c ∼ 1

Gθ2
, (8.65)

where θ is the trace of the extrinsic curvature of the boundary surface. The trace of the quasi-local

Brown–York stress [133] tensor turns out to be

〈T ii 〉 ∼ θ (8.66)

up to some terms constructed from local intrinsic curvature invariants of the boundary. Therefore

the renormalization group equation of the defining ultraviolet theory is given by

〈T ii 〉 = βI
∂Γ

∂φI
. (8.67)

Finally, in the context of the AdS/CFT correspondence the Raychauduri equation (discussed in

Sec. 3), that is, gravitational focusing, implies monotonicity of the holographic “c-function”

dθ

dt
≤ 0, (8.68)

as long as a form of the weak positive energy condition is satisfied by the background test matter

fields.
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