
August 30, 2017 17:5 ws-procs961x669 MG-14 – Proceedings (Part C) C264 page 2290

2290

On the Green and Wald formalism

Jan J. Ostrowski1,2,† and Boudewijn F. Roukema1,2
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Backreaction in the cosmological context is a longstanding problem that is especially
important in the present era of precise cosmology. The standard model of a homogeneous
background plus density perturbations is most probably oversimplified and is expected
to fail to fully account for the near-future observations of sub-percent precision. From a
theoretical point of view, the problem of backreaction is very complicated and deserves
careful examination. Recently, Green and Wald claimed in a series of papers to have
developed a formalism to properly describe the influence of density inhomogeneities on
average properties of the Universe, i.e., the backreaction effect. A brief discussion of this
framework is presented, focussing on its drawbacks and on misconceptions that have
arisen during the “backreaction debate”.
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1. A brief history of the “backreaction debate”

The subject of backreaction in cosmology has quite a long history, given that modern

cosmology itself is a young discipline. In general, backreaction can be understood

as the influence of density inhomogeneities on average properties of the Universe

that are usually described by the Friedman–Lemâıtre–Robertson–Walker (FLRW)

metric, and in turn, their influence on light propagation and observables. Several

approaches have been developed to estimate the magnitude of backreaction, with

a wide range of results, depending on the method used. The smallest effects are

found in the perturbative regime, and the biggest for scalar averaging and for exact

solutions. Disregarding the issue of the magnitude of backreaction, most of the

methods show that this effect may act like dark energy, i.e., produce an effective

large-scale expansion in addition to that of a strictly FLRW model.

Here, we focus on a particular framework proposed to address the problem of

backreaction, the Green and Wald formalism, which reaches the opposite conclu-

sions, i.e., that backreaction is trace-free and cannot mimic a dark energy com-

ponent. This claim contradicts the results obtained by several different methods,

and thus became a subject of debate which we refer to here as the “backreaction

debate”.

Key “backreaction debate” articles, for (+) and against (−) backreaction poten-

tially being able to mimic dark energy, include the following:

− Ishibashi and Wald: “Can the acceleration of our Universe be explained by

the effects of inhomogeneities?”1—the authors claim that backreaction is

∗BFR: during invited lectureship; JJO: during long-term visit.
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negligible based on the smallness of the derivatives of metric deviations.

− The Green and Wald formalism: “New framework for analyzing the ef-

fects of small scale inhomogeneities in cosmology”2—the authors claim to

have developed a formalism for a mathematically rigorous treatment of

backreaction, with surprising results: the only effect that the density in-

homogeneities can have on the background dynamics is via gravitational

radiation.

− Examples by Green and Wald: “Examples of backreaction of small-scale

inhomogeneities in cosmology”3—the authors present two examples of their

framework: a vacuum space–time, and a metric with an associated stress–

energy tensor that violates the weak energy condition.

+ Rebuttal by Buchert et al.: “Is there proof that backreaction of inhomo-

geneities is irrelevant in cosmology?”4—this paper presents a critical anal-

ysis of the Green and Wald formalism;

− Response to the rebuttal, by Green and Wald: “Comments on Backreac-

tion”5—the authors reassert their main results from previous articlesa.

There is an important difference between the first and second of these articles.

In Ref. 1, the authors use the arguments from standard perturbation theory, i.e.,

that not only does the metric of the real Universe barely deviate from the FLRW

metric, but its derivatives are also small. The same applies to stress–energy tensor

perturbations, and the perturbed Einstein equation reads

δGab = 8πδTab . (1)

This formulation has as an obvious limitation in describing our Universe—we know

that density perturbations are much greater than one in amplitude at recent epochs,

on length scales well above those of “black holes and neutron stars”,2 implying—

through the Einstein equation—the importance of curvature (i.e., second derivatives

of the metric). In addition, as noted by Green and Wald in Ref. 2, there is no

particular reason why the metric derivatives should also be small. In Ref. 2, the

metric first derivatives are allowed to be large but finite, and no constraints are

placed on the second derivatives (in practice, however, for the formalism to give

a non-zero result, specific constraints have to be put on the second derivatives4).

Furthermore, no constraints are made on the stress-energy tensor. All of these are

desired features of a good backreaction model; Green and Wald’s effort to take these

into account deserves credit. Unfortunately, in our opinion, the authors failed to

provide a physically valid general statement, as we outline below.

2. The Green and Wald formalism

In this section we briefly describe the Green and Wald formalism (see Ref. 2 for

details). The formalism is based on the existence of a λ-dependent family of metrics

gab(λ, x) on an arbitrary background manifold (M) that are close to a background

aCommented on in the final version of the rebuttal paper.
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metric gab(0, x), and which converge to the latter point-wise as the scalar parameter

λ approaches zero. This assumption is followed by another four concerning the

behaviour of the metric and its derivatives:

(i) For all λ > 0 the metric gab(λ, x) satisfies:

Gab(g(λ, x)) + Λgab(λ, x) = 8πTab(λ), (2)

where Tab(λ) obeys the weak energy condition.

(ii) There exists a smooth function C1(x) on (M, g(0)) such that:

|hab(λ, x)| ≤ λC1(x) ; hab(λ, x) = gab(λ, x)− gab(0, x). (3)

(iii) There exists a smooth function C2(x) on (M, g(0)) such that |∇chab(λ, x)| ≤
C2(x), i.e. the derivatives do not have to be small.

(iv) There exists a smooth tensor field μabcdef on (M, g(0)) such thatb:

w–lim
λ↘0

[∇ahcd(λ, x)∇bhef (λ, x)] = μabcdef . (4)

The last assumption uses the notion of the weak limit, w–lim: we say

that an arbitrary tensor field Aa1...an(λ) converges weakly to Ba1...an , i.e.,

w–limλ↘0 Aa1...an(λ) = Ba1...an , if ∀ fa1...an of compact support,

lim
λ↘0

∫
fa1...anAa1...an(λ) =

∫
fa1...anBa1...an . (5)

The integration is performed over a 4D region of space–time fixed in the background

manifold. With these five assumptions, the Einstein equation for the background

metric is derived by comparing and manipulating the curvature terms. The Green

and Wald equations for the background metric gab(0, x) then read:

w–lim
λ↘0

[Gab (gab(0, x))] + Λgab(0, x) = 8πw–lim
λ↘0

[Tab(λ) + tab(λ)] , (6)

where:

tab(λ) := 2∇[aC
e
e]b − 2Cf

b[aC
e
e]f − gab(λ)g

cd(λ)∇[cC
e
e]d + gab(λ)g

cd(λ)Cf
d[cC

e
e]f ,

(7)

and

Cc
ab =

1

2
gcd(λ) [∇agbd(λ) +∇bgad(λ)−∇dgab(λ)] .

We can now give names to the terms in (6):

Gab(g
(0)) + Λg

(0)
ab = 8πT

(0)
ab + 8πt

(0)
ab , (8)

where according to Green and Wald, T
(0)
ab , defined

w–lim
λ↘0

Tab(λ) = T
(0)
ab , (9)

bEq. (9) of Buchert et al.4 has a typo here: | · | should read [·].
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represents a stress–energy tensor averaged over small-scale inhomogeneities. Green

and Wald examined an “effective” stress-energy tensor t
(0)
ab , inferring that:

• t
(0)
ab is trace-less, i.e. t(0)aa = 0 ;

• t
(0)
ab obeys the weak energy condition i.e. t

(0)
ab t

atb ≥ 0 .

To put it in words: t
(0)
ab cannot mimic dark energy.

3. Discussion

This eventually led to the rebuttal paper by Buchert et al.4 Shortly after this

appeared on the ArXiv preprint server, Green and Wald published a response in

which they uphold their previous statements. Additionally, they clarify the domain

of applicability of their formalism in relation to popular approaches to backreaction.

In particular, Green andWald state that their formalism does not apply to situations

when:

• the actual metric (e.g., at recent epochs) is far from FLRW; or

• one wishes to construct an effective metric (or other effective quantities) through

some averaging procedure

This, in principle, ends the debate about whether backreaction has been ex-

cluded as a dark energy candidate: the Green and Wald formalism does not apply

to the main body of backreaction research; backreaction remains a viable dark

energy candidate. We briefly outline some characteristics that the formalism lacks.

3.1. Backreaction without backreaction

Let us introduce a more precise definition of backreaction (setting Λ = 0 for simplic-

ity). Assume that we know the inhomogeneous metric describing the real Universe

and that we want to derive its averaged dynamical behaviour on a certain scale.

We do this by applying a procedure such that by smoothing over larger and larger

scales of inhomogeneities, we end up with a background metric (on a scale that we

accept as homogeneous). However, to construct the Einstein tensor, and thus to

describe the averaged dynamics, we need not only the metric but also the metric

derivatives and products of derivatives. In general, averaging and differentiating

or taking products of derivatives are non-commuting operations.6 Thus, while it

is trivially true that, provided that an averaging procedure 〈.〉 is properly defined,

〈Gab(gab)〉 = 8π〈Tab〉, we cannot expect that

Gab(〈gab〉) = 8π〈Tab〉. (10)

Backreaction (τab) is then the term compensating the discrepancies coming from

this non-commutativity:

Gab(〈gab〉) = 8π (〈Tab〉+ τab) . (11)

This term should, in principle, be present at each intermediate scale between a small

scale and the homogeneous scale.
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Let us take a look at (2), i.e. Green and Wald’s assumption (i), which becomes

Gab(g(λ, x)) = 8πTab(λ), (12)

which we can treat, from the lack of any other options, as a definition of the λ-

dependent family of stress–energy tensors. Suppose that for some λ > 0, Tab(λ) is

smoother than the inhomogeneous, unsmoothed stress-energy tensor Tab(1), thanks

to an averaging procedure. Then a backreaction term τab(λ) must appear in the λ-

dependent Einstein equation, due to the non-commutativity of averaging (11). But

this contradicts (12). Hence, in the Green and Wald formalism, the only averaging

allowed for λ > 0 is exactly commutative averaging (τab(λ) = 0 ∀λ > 0), and a

backreaction term tab(0) suddenly blips on at λ = 0, discontinuously.4 Thus, it is

difficult to find a physically meaningful interpretation of this limiting procedure.

3.2. Averaging without averaging

There is no overall agreement on a physically meaningful way to average the Einstein

equation. One can quite quickly run into conceptual problems trying to perform

averaging of fields on manifolds in a unique and gauge-independent way. In their

formalism, Green and Wald bypass these difficulties by being very general, and yet

they are able to extract some crucial features of averaged equations. The role of

the averaging operator is played by the weak limit specified up to some arbitrary

well-behaving test tensor field used to contract the averaged quantities. According

to Green and Wald, the action of the weak limit can be interpreted as follows:2

“Roughly speaking, the weak limit performs a local space-time average of Aa1...an(λ)

before letting λ → 0”, where Aa1...an(λ) is a one-parameter family of tensor fields.

For this to be non-trivial, the limit operator and the integral cannot commute:

limλ→0

∫ 	= ∫ limλ→0, since otherwise, the averaging would be performed on the

background value of the tensor field and the integration would become redundant

for the homogeneous background.
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Fig. 1. Schematic illustration of density ρ := λ−1

sin(x/λ) = d2/dx2 h, where h := −λ sin(x/λ). As
λ ↘ 0, h approaches zero pointwise, but ρ is point-
wise unbounded.

However, for a fixed domain of in-

tegration, fulfilling this requirement

of non-commutativity requires break-

ing one of the dominant convergence

theorem assumptions (e.g., Figure 1).

Indeed, in the examples provided by

Green and Wald, the derivatives and

the products of derivatives, while be-

ing continuous in the space–time coor-

dinates, do not have pointwise limits

as λ ↘ 0.

Figure 1 shows the behaviour of a

toy model ρ(x) = d2/dx2 h(x) (analogous to the usual density ρ that relates to the

second derivatives of the metric via the Einstein equation), where h approaches zero

pointwise, while ρ is λ-discontinuous (it does not have a pointwise limit). Instead
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of successive coarse-graining, the density profile approaches homogeneity by a fine-

graining process, which is the opposite of what we would expect from an averaging

procedure. (In contrast, GW’s procedure does have features likely to be relevant to

gravitational radiation.)

Moreover, integrating by parts, we have (e.g. for Aa1...an := hab):

lim
λ→0

∫
(∇bAa1...an(λ))f

b,a1...an =

lim
λ→0

Aa1...an(λ)f
b,a1...an −

∫
lim
λ→0

Aa1...an(λ)∇bf
b,a1...an = 0. (13)

Thus, the apparently non-local integration of derivatives in GW’s procedure reduces

to pointwise operations; it misses generic features of averaging: non-locality and

scale-dependence.

Conclusions

The Green and Wald formalism is not mathematically general—see Ref. 4 for the

hidden assumptions—and its physical interpretation is far from obvious. An un-

aware reader might be tempted to think that mathematically general arguments

against common approaches to backreaction (e.g., exact inhomogeneous cosmolog-

ical solutions or the Buchert equations) were presented, but this is not the case.
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