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Abstract

Quantum computing and deep learning have recently gained popularity across various
industries, promising revolutionary advancements. The authors introduce QC-PCSANN-
CHIO-FD, a novel approach that enhances fault detection in electrical power systems by
combining quantum computing, deep learning, and optimisation algorithms. The
network, based on a Pyramidal Convolution Shuffle Attention Neural Network
(PCSANN) optimised with the Coronavirus Herd Immunity Optimiser, shows promising
results. Initially, historical datasets are used for fault detection. Preprocessing, which in-
cludes handling missing data and outliers using Adaptive Variational Bayesian Filtering is
followed by Dual-Domain Feature Extraction to extract grayscale statistical features.
These features are processed by PCSANN to detect faults. The Coronavirus Herd Im-
munity Optimisation Algorithm is proposed to optimise PCSANN for precise fault
detection. Performance of the proposed QC-PCSANN-CHIO-FD approach attains
24.11%, 28.56% and 22.73% high specificity, 21.89%, 23.04% and 9.51% lower
computation Time, 25.289%, 15.35% and 19.91% higher ROC and 8.65%, 13.8%, and
7.15% higher Accuracy compared with existing methods, such as combining deep
learning based on quantum computing for electrical power system malfunction diagnosis
(QC-ANN-FD), electrical power system fault diagnostics using hybrid quantum-classical
deep learning (QC-CRBM-FD), applications of machine learning to the identification of
power system faults: Recent developments and future directions (QC-RF-FD).
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systems, such as rule-based techniques, have previously been
presented [2]. Due to their incapacity to learn from mistakes

An important component of electrical power systems is fault
analysis and diagnosis, which is crucial in managing serious
failures brought on by the cascade effects of defects. Critical
issues such as blackouts and unwelcome voltage and current
fluctuations can be prevented by implementing prompt pre-
ventative measures, which needs for quick and precise fault
identification techniques. This requirement drives the growth
of novel error identification and analysis techniques that
identify and locate potential irregularities in electrical power
systems to prevent performance deprivation [1]. For the put-
pose of diagnosing power system faults, a number of expert

and their difficulties consistently obtaining knowledge from
experts, these approaches do have some limits. Process history-
based defect diagnosis approaches do not require a description
of the underlying processes when creating a mapping from
inputs to appropriate outputs. When diagnosing power system
faults, these pattern recognition techniques are credited with
increased effectiveness and robustness to modelling flaws [3].
Quantum computing (QC) is ushering in new emerging
computational technology and has the ability to affect issues
on global scale. QC is subject to employ quantum mechanics
theories to resolve complicated issues in variety of areas,
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including computer optimisation, machine learning. QC has
received considerable attention from the scientific community
in recent years [4]. Therefore, a viable approach for defect
analysis and diagnosis involves utilising complementary char-
acteristics of quantum and classical computers to create hybrid
pattern recognition techniques and get over constraints.
However, it has the major problems associated to the following
factors difficult to understand, complex operations, time
consuming, and error results. Subsequently, in this work QC-
PCSANN-CHIO-FD is incorporated for getting better re-
sults in fault detection [5]. These motivate us to carry out this
research work.

The major contributions of this research work are sum-
marised below:

® In this research, QC-PCSANN-CHIO-FD is proposed.

® Develop an Adaptive variational Bayesian filtering based
preprocessing method for handling missing data, outliers,
and errors in the dataset.

® Propose a new variant of Coronavirus Herd Immunity
Optimisation algorithm (CHIO) to optimise the pyramidal
convolution shuffle attention neural network (PCSANN).

® QC-PCSANN-CHIO-FD model is implemented at MAT-
LAB and effectiveness examined with several performance
metrics.

® The proposed QC-PCSANN-CHIO-FD is implemented
using MATLAB. To detect electrical power system fault,
performance metrics like precision, accuracy, Fl-score,
Recall (Sensitivity), Specificity, Error rate, Computation time
and RoC are considered.

® The efficiency of the proposed model is analysed with the
existing methods, such as QC-ANN-FD, QC-CRBM-FD,
QC-RF-FD respectively.

Rest of these manuscripts is organised as follows: Section 2
reviews the literature survey, Section 3 is research gap analysis,
Section 4 describes the proposed methodology, Section 5
proves the results, and Section 6 concludes the manuscript.

2 | LITERATURE SURVEY

Several works were suggested in the literature related to deep
learning and quantum computing-based fault identification,
few recent works are divulged here. In 2021, Ajagekar and You
[6] have presented combining deep learning based on quantum
computing for electrical power system malfunction diagnosis.
The research presents a hybrid conditional restricted Boltz-
mann machine-based deep learning structure for fault identi-
fication of electrical power systems that combines feature
extraction capabilities of that machine with an effective deep
network categorisation. Quantum Computation (QC)-based
training approaches harness the complementary strengths of
quantum assisted learning and conventional training methods
to solve computational hurdles resulting from complexity of
deep learning techniques. It provides high accuracy and has
higher error rate.

In 2021, Ajagekar et al. [7] have presented electrical power
system fault diagnostics using hybrid quantum-classical deep
learning, Here, we develop a hybrid conditional restricted
Boltzmann machine (CRBM)-based deep learning methods for
fault identification of electrical power systems that extract the
right features from time-series data. Using traditional learning
techniques, the CRBM network training was computationally
demanding. As a result, we use learning technique that was
supported by quantum computer to train CRBM network,
which results in better-quality ideal model parameters. It pro-
vides high precision and has high computation time.

In 2021, Vaish et al. [8] have presented applications of
machine learning to the identification of power system faults:
Recent developments and future directions. Here, the begin-
ning, attempts were made to enumerate the problems with
traditional fault detection, which made ML approaches popular.
Also, given is a basic architecture and procedure for MI.-based
problem diagnostics. The several unsupervised and supervised
learning strategies that have been applied by numerous re-
searchers for defect diagnosis have then been examined indi-
vidually. The presentation is reinforced throughout with
tabulated information for how fault localisation, classification,
and approaches function with various simulation tools and
application systems. It provides high recall and has low
accuracy.

In 2022, Ullah et al. [9] have presented applications for
quantum computing in smart grid. This report describes the
current research being done on smart grids already employed
QC methodologies, as well as providing recommendations for
employing QC in power and energy system applications in the
future. The presented method covers the theoretical un-
derpinnings of quantum computation, comparative de-
scriptions of several quantum techniques and state of current
research in quantum hardware and software tools. The pre-
sented method provides high specificity and has low precision.

In 2022, Zhou and Zhang [10] have presented quantum
machine learning that is noise-resistant for evaluating the sta-
bility of power systems. The presented paper combines ma-
chine learning, data science, and quantum computing to
possibly handle the power system TSA problem. Three con-
tributions are as follows: for accurate and noise-resistant TSA,
high expressibility, low-depth quantum circuit (HELD) was
created, quantum natural gradient descent algorithm is devised,
and a systematic examination of QTSA's performance under
various quantum variables performed. QTSA supports ana-
Iytics for power grid stability enabled by quantum machine
learning, It provides high F1 score and has low recall.

3 | RESEARCH GAP AND NOVELTY

3.1 | Quantum computing

3.1.1 | Novelty

Large-scale parallel data processing and unmatched computa-
tional capability are two features of quantum computing,
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3.1.2 | Integration

Fault detection algorithms can handle the complex and high-
dimensional data present in electrical power systems by utilis-
ing quantum computing, which makes analysis and decision-
making more effective.

3.2 | Pyramidal Convolution Shuffle
Attention Neural Network

3.2.1 | Novelty

This neural network architecture improves feature extraction

and pattern recognition by combining shuffle attention
methods with pyramidal convolutional layers.

3.2.2 | Integration

Fault detection systems can improve accuracy and reliability
by capturing complex data patterns and anomalies that indicate
problems, thanks to the advanced neural network design.

3.3 | Cotonavitus herd immunity optimiser

3.3.1 | Novelty

This optimiser attempts to improve defect detection algo-
rithms by imitating the collective immunity notion, which is
based on epidemiological concepts.

3.3.2 | Integration
Introducing a novel method to enhance system resilience and
adaptability is the integration of herd immunity principles into
fault detection algorithms. The system can better withstand
and recover from errors by optimising fault detection based on
collective immunity concepts, which lowers the likelihood of
extensive disruptions.

The integration of these components addresses existing
challenges in fault detection by

Preprocessing using
Adaptive Variational
Bayesian Filter

Historical dataset

Dual-Domain Feature
Extraction

® Quantum computing will improve scalability and computa-
tional efficiency.

® Improving accuracy and robustness in pattern recognition
and anomaly detection through advanced neural network
architectures.

® Incorporating principles from epidemiology to optimise
fault detection strategies, thereby enhancing system resil-
ience and adaptability.

4 | PROPOSED METHODOLOGY

In this paper, an innovative approach that leverages the ca-
pabilities of quantum computing, deep learning, and advanced
optimisation algorithms to significantly enhance the accuracy
of fault detection in electrical power systems is proposed.
The proposed network, termed QC-PCSANN-CHIO-FD,
integrates several cutting-edge technologies to achieve this
goal.

® Quantum computing is utilised to perform complex com-
putations at unprecedented speeds, which is crucial
for processing the vast amounts of data generated by
modern power systems. By using quantum algorithms, opti-
misation problems is solved more efficiently than classical
methods.

® Deep learning component of the system is based on a py-
ramidal convolution shuffle attention neural network
(PCSANN). This atchitecture enhances the model's ability
to focus on the most relevant features of the data,
improving its ability to detect and classify faults accurately.
The pyramidal structure allows the network to capture hi-
erarchical features, while the shuffle attention mechanism
helps in prioritising important information.

® The optimisation algorithm employed is the coronavirus
herd immunity optimiser. Inspired by the concept of herd
immunity, this optimiser mimics the way populations
develop immunity to viruses, enhancing the network's pet-
formance through adaptive learning strategies. CHIO ad-
justs the parameters of the neural network to find the
optimal configuration for fault detection.

Thus, the detailed description about QC-PCSANN-
CHIO-FD is shown in Figure 1.

Electrical Power System Fault
Detection using Pyramidal
Convolution Shuffle Attention
Neural Network

Coronavirus Herd
Immunity
Optimization

Normal | Fault |

FIGURE 1 Block diagram of the proposed QC-PCSANN-CHIO-FD fault Detection system.

85U8017 SUOWWIOD dA IR0 3(eotdde 8y} Aq peusenob are sapiie VO ‘SN Jo S8|ni 10} Ariqi8UIIUO A8]IA UO (SUONIPUOD-pUR-SWLBH O™ A8 |IM" AReIq 1 Ul jUO//SdNY) SUORIPUOD PUe swiie | 8L} 88S *[G202/T0/S0] Uo Areiqi8uliuo A8|1M ‘90TZT Zowb/6v0T OT/I0p/LL00 A8 M Aeiq 1 [Bul UO"YoJessa e 1//:SdnY WOl papeojumod 't *¥20 ‘52682892



SWORNA KOKILA ET AL.

| 343

4.1 | Data acquisition

Input data’s are received from historical dataset [11]. Simulated
measurement data that includes normal and fault operations is
normalised using the values of smallest and greatest observa-
tions collected during normal operation. This dataset is pro-
cessed to provide observed and historical sets in order to train
the network.

4.2 | Pre-processing using Adaptive
Variational Bayesian Filtering

In this step, Adaptive Variational Bayesian Filtering (AVBF)
performs the data pre-processing [12] which is utilised for
handling missing data, outliers, and errors in the dataset. The
data pre-processing converts nominal types of data into
consistent data types and it is given in Equation (1)

(Riis) ™" = Vi VL, (1)

where 7 denotes the discrete time index, V denotes the
informative matrix, R denotes the inverse of informative
matrix, R;_j;—1 denotes the assessed information matrix at
time i—1, denotes the inverse of VHVZ»T_l. Aj denotes the
sampling point, and the state prediction is expressed in the
below Equation (2)

Aji = g(A)i1) (2)

In Equation (2), g denotes the state transition function.
Then, the forecasted information is expressed in Equation (3)

~—1

Rz‘\i—1 = Qi\m (3)

In time updating stage variational Bayesian point sampling
and the measurement equation propagation are same. The
associated information matrix J(e + 1)i and information state
j(e + 1) contributions are given in Equation (4)

=3 (@

i

whete J denotes the associated information mattix, j denotes
the information matrix, B is the measurement function, S and
D are the covariance matrixes. Hence, the estimated infor-
mation matrix R(e + 1)i|z and information vector (e + 1)i|z
in the eth iteration expressed in Equations (5), (6)

REE‘H) :Ri\i—l +]Ee+l) (5)

(e+1) (e41) (6)

Tiyi = Tii-1 tJ;

Here, R(e + 1)i|i denotes the estimated information ma-
trix and 7(e 4 1)i|i denotes the information vector. AVBF

handling the missing data, outliers and errors in dataset.
Then, the preprocessed data is given to feature extraction
phase.

4.3 | Feature extraction using Dual-Domain
Feature Extraction

Following preprocessing, a method called feature extraction is
used to extract a number of Grayscale statistic features. After
preprocessing, the different types of features are extracted
from the preprocessed output through Dual-Domain Feature
Extraction (DDFE) [13]. It helps to extract Grayscale statistic
features like standard deviation, mean, kurtosis, skewness. A
quaternion formula, which is a development of the idea of
complex numbers, is designated as the hyper complex input. It
is expressed in Equation (7)

t(x,y) =z + ue + vf + ws (7)

where les signifies the imaginary points, x,y signifies the
quaternion variables, and ¢ signifies the hyper complex input.
This feature calculates the inner region's average and means
absolute difference and compares them to the same di-
mensions in nearby background area. This is expressed in
Equation (8),

Pin(eaf) _Pout(eaf)

Xin Xout

Pls= (8)

where PJ sy represents the grey level value, Pj,(ef) signifies
the input neighbourhood ef, and P,,(ef) represents the
output neighbourhood e,f. Hyper complex IR representation is
used to relate features. It is expressed in Equation (9),

t(x7y) = hl L+ /921’26 + 173I3f + /941'45 (9)

where by,h,,h3,h, denotes the weight matrices and #y,65,63,L4
denotes the motion features. By this, the Grayscale statistic
features are extracted using DDFE. The grayscale features,
such as standard deviation, mean, kurtosis, and skewness. They
are discussed below.

Equation (10) is used to calculate the mean of Grayscale
statistic features.

V Z/:znzip (10)

X = M

where y is the mean.
The standard deviation of the dermoscopic image feature
can be expressed in Equation (11)

A

SD = (B(a) - 2)? (11)

SN

a=1
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The Kurtosis of dermoscopic image feature may be
expressed by using Equation (12)

C(Bla) - 2)*

Kur = 5

(12)

whete C() represents the expected values of the signal samples.
Equation (13) used to calculate skewness of Grayscale
statistic features.

S(i,a) zl%ZZW(m -7 —Mng)]  (13)

S m neq

where # represents the Inverse Difference Normalised image,
m represents the Informative Measure of Correlations and g
indicates the spatial relationship of pixels. Then, these extrac-
ted features are given into Quantum computing-based
PCSANN to effectively detect fault in the Electrical Power
Systems.

4.4 | Fault detection in electrical power
system using quantum computing based

Pyramidal Convolution Shuffle Attention

Neural Network

In this section, the Fault Detection in Electrical Power System
using Quantum Computing-based PCSANN [14] is discussed.
To capture more complex features without raising the
computing cost, a pyramidal convolution incorporates a series
of convolution kernels at different scales with varied spatial
resolution and depth. Furthermore, pyramidal convolution
recognises spatial feature correlations in multiple levels,
allowing the convolution layer to classify detailed information.
The features are split into groups expressed in Equation (14)

A=Ay, Ag..... A (14)

whete A represents the feature map and N represents the
number of groups. Then, the function efficiency is enhanced
by the use of the linear function. Finally, the extracted features
are introduced through embedding with the original assets,
after its activation sigmoid function to obtain a class repre-
sentation, and it is given in Equation (15)

Ag = alhy(@)Aa = alsiqi + k).Aa (15)

where b, denotes the function linear, @ denotes the activation
sigmoid function, ¢; denotes the average pooled function, and
s1,k1 is obtained from network training. Spatial perception can
be preserved attention improvement. Finally, global informa-
tion is embedded through multiplying the asset's value utilising
sigmoid function and spatial attention function is given in
Equation (16)

Ap =a(sHR(Ap) + k) — Au (16)

Here, HR indicates the groupnorm normalisation function
and ¢, denotes the normalised feature. Return to the original
dimension by merging the grouped blocks again. Following
completion of attention learning and feature recalibration, the
2 branches are spliced in Equation (17)

Aaz = [Aal,Aﬂz} xSxT (17)

Here, S,T denotes the sub features. Then, every sub functions
are grouped. Finally, channel grouping procedure is carried
out. PCSANN is made up of a fully connected layer, an average
pooling layer, and a total of four residual blocks. The
completely connected layer's output vector moves forward
through a sigmoid layer, and this is expressed in Equation (18),

I(wl]) = 1/(1 + exp( = th(w])))) (18)

Here, J denotes the input image, Z(w[]) denotes the
probability score, and the global branching is given in
Equation (19)

S(C) = ‘—Wl isw tog(I(wn)) + (1 - sotog (1 ~ Il
(19)

where s, tepresents the true label, @w and W represents the
number of faults categorised as normal and fault. Finally,
PCSANN detects the power system fault as normal and fault.
Because of its convenience, pertinence, and inclusive belve-
dere, the artificial intelligence-based optimisation strategy is
taken into account in PCSANN classifier. In this research
study, the Coronavirus Herd Immunity Optimisation Algo-
rithm (CHIOA) is exploited for optimising the optimum
parameter @ of PCSANN. Here, CHIOA is employed for
tuning the weight and bias parameter of PCSANN.

4.5 | Optimisation using Coronavirus Herd
Immunity Optimisation Algorithm

The weights parameter @ of the proposed PCSANN is opti-
mised using the proposed Coronavirus Herd Immunity Opti-
misation Algorithm (CHIOA) [15]. In this section, the nature-
inspired optimisation algorithm approach, CHIOA using
human-based behaviours is expressed.

451 | Stepwise procedure of CHIOA
Here, step-by-step procedure is defined to get ideal value of
PCSANN based on CHIOA. Initially, CHIOA makes the equally

distributing populace to optimise the optimum parameter @ of
PCSANN.
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Step 1: Initialisation

At first populace to create herd immunity, CHIO produces a set
of examples equal to population size at random. The generated
cases are stored in the herd immunity population as a two-
dimensional matrix of size 7 as calculated in Equation (20)

c, C, .. C|
c; G .. C

C= (20)
chocy ..o

whete C signifies the population of immunity, 7 signifies the
population members, and N signifies the problem variables.

Step 2: Random generation

Input parameters generated at random after initialisation. Best
fitness value selection is depending upon their explicit hyper
parameter condition.

Step 3: Fitness function estimation

The initialised evaluations are used to generate a random so-
lution. Fitness function is assessed with parameter optimisation
value for optimising weight parameter a of the classifier. This
is calculated in Equation (21),

fitness function = optimizing () (21)

Step 4: Exploration phase

Evolution of herd immunity to coronavirus the primary CHIO
loop for improvement is this one. According to three rules
based on the gene, cither stays the same or is impacted by
social distance is computed in Equation (22)

yf(f) q21L,
M(y6) q<% XLy

K +1) < , (22)
2((h) a<3xL,
B(yf(/f)) q<L,

where L implies the random number, yf(f ) signifies the gene
and M signifies the initial random.

Step 5: Exploitation phase for optimising a

Based on the herd immune threshold, which applies the
following equation, the status vector is updated for each case.
It is given in Equation (23)

W+ 1) =L(4) (23)

where L is the random number, yf(f ) is the gene, and M is the
initial random.

Step 6: Termination condition

The weight parameter values of generator @ from PCSANN
are optimised using CHIO, which will iteratively repeat step 3
until fulfil halting critetia C = C + 1. Then, QC-PCSANN-
CHIO-FD detects fault with higher accuracy by lessening
computational time with error.

Principles from epidemiology, particularly herd immunity,
are applied to improve fault detection in electrical power systems
by drawing parallels between the expansion of fault and the
propagation of faults. This integration involves adapting con-
cepts, such as immunity and contagion to the context of power
systems. Engineers leverage these principles to design more
resilient and reliable power infrastructure. The rationale behind
this integration lies in the similarities between the expansion of
faults and the propagation of faults in power systems. In both
cases, there is a risk of cascading effects leading to widespread
disruptions. By understanding how fault expansion is carried
out, the proposed system can develop strategies to detect, isolate,
and mitigate faults in power systems. This approach offers a
fresh perspective on enhancing the resilience and dependability
of power infrastructure, ultimately leading to more robust sys-
tems capable of withstanding various challenges.

The fault detection system may efficiently identify, isolate,
and mitigate faults in electrical power systems by combining
several technologies, so enhancing efficiency, resilience, and
dependability. This ambitious integration has the potential to
transform the field and guarantee the ongoing stability of the
power infrastructure. It marks a revolutionary improvement in
fault detection approaches.

5 | RESULT WITH DISCUSSION

The experimental outcomes of the suggested method are dis-
cussed in this section. The simulations are run on a PC with an
Intel Core i5 processor running at 2.50 GHz, 8 GB of RAM,
and Windows 7. The suggested method is then simulated in
MATLAB using the mentioned performance indicators. The
proposed QC-PCSANN-CHIO-FD approach is implemented
in MATLAB using historical dataset. The obtained outcome of
the proposed QC-PCSANN-CHIO-FD approach is analysed
with existing systems like (QC-ANN-FD) [6], (QC-CRBM-
FD) [7], (QC-RF-FD) [8] respectively.

51 | Performance measures

This is a crucial step for choosing the optimal classifier. Per-
formance measures are assessed to assess performance,
including accuracy, ROC.

51.1 | Accuracy

Accuracy measures the proportion of samples (positives and
negatives) besides total samples and it is given by
Equation (24),
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TP + TN
TP + TN + FN + FP

(24)

accuracy =

512 | ROC

It is the ratio of false negative to the true positive area and it is
given by Equation (25)

(25)

TP TN
ROC = 0.5 x +
TP +FN TN+ FP

5.2 | Performance analysis
Figures 2 and 3 depicts the simulation results of the proposed
QC-PCSANN-CHIO-FD method. Then, the proposed QC-
PCSANN-CHIO-FD method is likened with existing QC-
ANN-FD, QC-CRBM-FD and QC-RF-FD methods
respectively.

Figure 2 displays the accuracy analysis. Here, QC-PCSANN-
CHIO-FDattains 29.82%, 21.32%, and 27.85% better accuracy

100
80 |
X
; 60
%)
©
i
=
Y
< 40
50 [ QC-ANN-FD
[ QC-CRBM-FD
[ QC-RF-FD
EEN QC-PCSANN-CHIO-FD(Proposed)
o 1 L 1

Normal Fault

FIGURE 2 Performance analysis of accuracy.

1.0 Roc
0.8
[
-
©
4
0 0.6
2
et
‘@
)
2 0.4
o
2
= QC-ANN-FD (Area-0.878)
0.2 QC-CRBM-FD (Area-0.905)
—— QC-RF-FD (Area-0.978)
—— QC-PCSANN-CHIO-FD(Proposed) (Area-0.999)
0'%.0 0.2 0.4 0.6 0.8 1.0

False Negative Rate

FIGURE 3 Performance analysis of ROC.

for normal; 26.01%, 25.15%, and 24.31% better accuracy for
fault estimated with existing QC-ANN-FD, QC-CRBM-FD and
QC-RF-FDmethods.

Figure 3 depicts the analysis of RoC. The proposed QC-
PCSANN-CHIO-FD technique then provides a higher ROC
in 13.49%, 6.95% and 9.78% than the existing QC-ANN-FD,
QC-CRBM-FD, QC-RF-FD methods.

The proposed algorithm can be integrated with existing
power monitoring systems to provide real time detection and
response to faults. By using historical data and sensors and
SCADA system, the proposed system will be able to monitor
the power system fault.

To determine faults, the proposed method can make power
systems more dependable. Instantaneous and accurate detec-
tion of failure points reduces the downtime and prevents large-
scale blackouts. Detecting the fault before its occurring will
also help systems work at their best by saving energy and using
all available resources.

Developing accurate and reliable models that effectively
mimic the dynamics of herd immunity within power systems
may pose technical challenges. Incorporating real-time data and
adapting to dynamic changes in the power grid's topology and
operating conditions could be complex. Ensuring the scal-
ability and applicability of the model across different types of
power systems and network configurations may require careful
validation and testing,

6 | CLARIFICATION AND
CONTEXTUALISATION OF PROPOSED
SYSTEM

Quantum computing:

® (larification: Quantum computing offers unparallelled
computational power and can potentially transform fault
detection algorithms by processing huge data set and per-
forming complex calculations simultaneously.

® Contextualisation: The application of quantum algorithms
and computing presents a novel opportunity to overcome
the computational challenges associated with fault detection
in large-scale electrical power networks. By using parallel
processing, complexity management capabilities, and
advanced data analysis techniques, quantum-based fault
detection systems can significantly increase the efficiency
and accuracy of fault detection operations. In the end, this
will increase the electricity infrastructure's resilience and

dependability.
Pyramidal convolution shuffle attention neural network:

® (larification: The architecture that combines pyramidal
convolutional layers with shuffle attention mechanisms for
feature extraction and pattern recognition.

® Contextualisation: Neural networks and other deep
learning approaches are advantageous because of their
versatility, scalability, generalisation ability, end-to-end
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learning approach, and non-linearity. Because of these fea-
tures, neural networks are better able to detect tiny anom-
alies that may be signs of a malfunction and interpret
complicated data patterns seen in electrical power systems,
which ultimately increases the resilience and dependability
of the power infrastructure.

Coronavirus herd immunity optimiser:

® (larification: This optimiser uses the concepts of herd im-
munity found in epidemiology to improve defect detection
methods. It seeks to improve the fault detection strategies'
resilience by imitating the idea of collective immunity.

® Contextualisation: Power systems become more flexible and
resilient when herd immunity concepts are incorporated
into fault detection algorithms, as this lowers the likelihood
of cascading failures. When fault detection systems learn
from naturally occurring systems that exhibit collective
immunity, they can withstand external threats more suc-
cessfully and dynamically adapt to changing fault settings. In
the end, this makes the electrical infrastructure more stable

and dependable.
Espoused fault detection in electrical power systems:

® (larification: This indicates the primary focus of the
research, which is on fault detection within electrical power
systems.

® Contextualisation: For electrical power systems to be
dependable, stable, and resilient, fault detection is essential.
Operators can contribute to the effective and dependable
operation of electrical infrastructure by preventing in-
terruptions, safeguarding assets, maintaining grid resilience,
and improving customer satisfaction by quickly identifying
and resolving defects.

Utilising technology such as advanced analytics and ma-
chine learning, advanced fault detection approaches are
essential for improving electrical power system speed, accuracy,
and dependability. These techniques reduce risks, avert in-
terruptions, and guarantee the continuous dependability and
resilience of the electrical system by quickly and accurately
identifying issues.

7 | CONCLUSION

Quantum Computing-based PCSANN optimised with the
Coronavirus Herd Immunity Optimiser (QC-PCSANN-CHIO-
FD) has been successfully implemented for fault detection in
electrical power systems. This innovative approach, QC-
PCSANN-CHIO-FD, has been applied using MATLAB,
leveraging a historical dataset to evaluate its performance.

The performance of the proposed QC-PCSANN-CHIO-
FD approach was compared against three existing methods:
QC-ANN-FD, QC-CRBM-FD, and QC-RF-FD. The evalua-
tion metrics included precision, 1 score, error rate, and recall.

The results demonstrated significant improvements in fault
detection accuracy and reliability:

® Precision: QC-PCSANN-CHIO-FD achieved high preci-
sion rates of 25.9%, 14.64%, and 23.6% compared to the
existing methods. This indicates a substantial increase in the
correctness of the fault detections made by the proposed
approach.

® F1 Score: The Il scores, which balance precision and
recall, were also higher with QC-PCSANN-CHIO-FD,
showing improvements of 28.14%, 20.78%, and 12.7%.
This reflects the model's enhanced ability to accurately
identify faults while minimising both false positives and
false negatives.

® Error Rate: The proposed approach showed a significantly
lower error rate of 14.223%, 15.85%, and 16.29% compared
to the existing methods. A lower error rate indicates more
reliable fault detection with fewer misclassifications.

® Recall: QC-PCSANN-CHIO-FD demonstrated high recall
rates of 9.98%, 10.98%, and 5.65%. High recall signifies the
model's effectiveness in identifying the majority of actual
faults, ensuring comprehensive fault coverage.

QC-PCSANN-CHIO-FD approach has proven to be a
significant advancement in fault detection for electrical power
systems. By integrating quantum computing, deep learning,
and an innovative optimisation algorithm, this method achieves
higher precision, better F1 scores, lower error rates, and
improved recall compared to existing methods. This
improvement underscores the potential of QC-PCSANN-
CHIO-FD in enhancing the reliability and efficiency of po-
wer system fault detection, which is crucial for maintaining the
integrity of vital infrastructure.
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