BLED WORKSHOPS A Proceedings to the 22nd Workshop

IN PHYSICS What Comes Beyond . .. (p.237)
VoL. 20, No. 2 A Bled, Slovenia, July 6-14, 2019

15 Local Temperature Distribution in the Vicinity of
Gravitationally Bound Objects in the Expanding
Universe *

P.M. Petriakova ** and S.G. Rubin ***

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
115409, Kashirskoe shosse 31, Moscow, Russia

Abstract. We consider a cluster of Primordial Black Holes which is decoupled from the
cosmological expansion (Hubble flow) and this region is heated as compared to the sur-
rounding matter. The increased temperature inside the region can be explained by several
mechanisms of Primordial Black Holes formation. We study the temperature dynamics of
the heated region of Primordial Black Holes cluster.

Povzetek. Avtorja obravnavata gruco prvotnih érnih lukenj, ki ni sklopljena s kozmolosko
Siritvijo (Hubblovim tokom) v obmocdju segretem glede na snov, ki obmogje obdaja. Povisano
temperaturo lahko pojasnita z ve¢ mehanizmi nastanka prvotnih ¢rnih lukenj. Obravnavata
gibanje temperature segretega obmocdja gruce prvotnih ¢rnih lukenj.

Introduction

The idea of the Primordial Black Holes (PBH) formation was predicted five decades
ago [1]. Although they have not yet been identified in observations but some
astrophysical effects can be attributed to PBH: supermassive black holes in early
quasars. Therefore till now, PBH give information about processes in the Early
Universe only in the form of restrictions on the primordial perturbations [2] and
on physical conditions at different epochs. It is important now to describe and
develop in detail models of PBH formation and their possible effects in cosmology
and astrophysics.

There are several models of PBH formation. PBH can be formed during the
collapses of adiabatic (curvature) density perturbations in relativistic fluid [3].
They could be formed as well at the early dust-like stages [4] and rather effectively
on stages of dominance of dissipative superheavy metastable particles owing to
a rapid evolution of star-like objects that such particles form [5]. There is also an
exciting model of PBH formation from the baryon charge fluctuations [6]. Another
set of models uses the mechanism of domain walls formation and evolution with
the subsequent collapse [7]. Quantum fluctuations of a scalar field near a potential
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maximum or saddle point during inflation lead to the formation of closed domain
walls [12]. After the inflation is finished, the walls could collapse into black holes in
the final state. There is a substantial amount of the inflationary models containing a
potential of appropriate shape. The most known examples are the natural inflation
[8] and the hybrid inflation [9] (and its supergravity realization [10]). The landscape
string theory provides us with a wide class of the potentials with saddle points,
see review [11] and references within. Heating of the surrounding matter is the
inherent property of the domain wall mechanism of PBH cluster formation. While
collapsing the domain wall partially transfers its kinetic energy to the ambient
matter. It would allow to distinguish different models by observations.

15.1 The first Chapman-Enskog approximation

According to the discussion above, PBH are gathering into the clusters with heated
media inside them. It is assumed that after decoupling from the cosmological
expansion the temperature of gas inside the cluster and its density is higher than
that around the cluster. These factors can ignite a new chain of nuclear reactions
changing chemical composition of the matter in given region. We are going to study
the rate of temperature spreading into surrounding space and the temperature
distribution within the cluster. The temperature dynamics is described by the
appropriate equations in the framework of the Chapman-Enskog procedure.
The Chapman-Enskog method [13] makes it possible to obtain a solution to
the transport equation and it can be applied to the relativistic transport equation
in general case. The applicability condition of this method: macroscopic wave-
lengths should be significantly greater than the mean free path. This excludes
the propagation velocity that is faster than the thermal velocity of particles [14].
Using this method, we can find linear laws for flows, thermodynamic forces and
expressions for transfer coefficients based on the solution of linearized transfer
equation. After that we apply this linear laws to continuity, energy and motion
equations. This leads to the relativistic Navier-Stokes equations which form a
closed system for hydrodynamic variables. In the first approximation various
irreversible flows are linearly related to non-uniformities present in the system. In
this case the relativistic generalization of the Fourier-law for the heat flux and the
linear expression for the viscous pressure tensor has the form (c = A =kg = 1)

.
I = ?\(V”T - ﬁv”p) (15.1)
Y = 20VR Uk + ny ARV ou® (15.2)

A — the heat conductivity, n — the shear viscosity, 1, — the volume viscosity, V¥ =
AR, , AMY = g*v —utruY and this operator acts as a projector: A*Vu, = 0. They
are designed to select two hydrodynamic four—velocity expressions proposed by
Eckart and Landau-Lifshitz. We will use the definition of Eckart [15] which relates
the hydrodynamic four—velocity directly to the particle four—flow N*

N
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The relativistic equation of motion and equation of energy are given by [16]
hnDuM = V*p—ARV TV 4 (hn) TV, p— (15.4)
—(AYDIY + 15V uY + I;’VVu”)
nDe = —pV, uM + TT"Vyuy, — VI + 215 Duy,. (15.5)
After linearization, the energy equation is reduced to

DT 1

T ¢,

Vut — ;(VZT — lVzp)

= (15.6)

where we have taken into account the linear laws (15.1) and (15.2), V2 stands for
V2 =VH*V,and D = u*d,.

If the hydrodynamic four—velocity is constant and p = nT (we will see it in
the next section) the energy equations reduce to the relativistic heat-conduction
equation:

T
nc, DT = —A (VZT — hnvzp> . (15.7)

15.2 The thermodynamic values

The equilibrium distribution function with no external fields takes the form of the
Juttner distribution function

1 H—pHu,
f(p) = exp( > (15.8)
(2m)° !
It allows to calculate the particle four—flow in equilibrium
1 (dp H—phu
NH = 7J—p“ex (”) (15.9)
(2n) > p° P T

The Juttner distribution function outlines one direction in space-time. As a result,
it must be proportional to four—velocity, where the proportionally factor of this
relation is the particle density

1 (dp h—PpYuy
S i T 2r v
n (271)3 J 0 pru, exp( T ) (15.10)

The integral is a scalar and it can be calculated at selected u* = (1,0,0,0). This
result can be expressed in the modified Bessel function of the second kind

_47tm2TK m n 1511
n—W 2<T)exp(_l_). (15.11)
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We can obtain the equilibrium pressure following the same reasoning to calculate
the energy—-momentum tensor in equilibrium:

L. 1(dp

4tm?T? " (m) ( p) T
=— Ky = |exp| =) =nT.
(2n) 3 T T
Hence, if we identify T with the temperature of the system the standard scheme of
thermodynamics could be clearly seen.

Using recurrence relation for the modified Bessel function of the second kind
and taking into account particle density the expression has the form

__Kz(m/T)
e—mW—T. (15.13)

Considering the result of (15.12) for pressure we can find the enthalpy per particle

_ K3(m/T) K3 (m/T)
h=e+pn '=m_> "= -T+T=m_——"_. 15.14
P Ka(m/T) mm
The heat capacity per particle at constant volume by definition
¢y =0e/0T. (15.15)

We can get asymptotic behaviour of these values for large arguments of the mod-
ified Bessel function of the second kind (which corresponds to the case of low
temperatures) and for small arguments (which corresponds to the case of massless
particles). For small values of temperature we have the asymptotic ratio for large
arguments (w = m/T):

Ko (w) 1 T Mm?—1 (4n?2—1)(4n?-9) 1516
eV ow [T e T 218w (13.16)

It allows to obtain the enthalpy per particle:
. 5 T 15T 1517
=m-+ E + ? H + ... ( . )

and to derive the caloric equation of state of relativistic perfect gas (15.13) and the
heat capacity per particle at constant volume (15.15):

U N L (15.18)
e—m E ?H .o .

% 3 157 5.1
“Td T2 dm (1519)

Massless particles are essential in relativistic kinetic theory. For this purpose
we should expand our formulas in this special case. The results can be obtained
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by taking the limit in m — 0 with the asymptotic relation for the modified Bessel
function of the second kind:

limo WKy (W) =2 (n—1)! (15.20)
e=3T, h=4T, ¢, =3. (15.21)

In this case, with the caloric equation of state of relativistic gas and p = nT we can
obtain well-known expression for pressure for massless particles: p = en/3.

We can find Fourier differential equation of the heat conduction in the non-
relativistic case. Following expression (15.17) in the case of low temperatures
(T < m) and considering the ratio p = nT we obtain

T
ne,DT = —A (VZT — mvzp) ~ —AV?T. (15.22)

In this case, the heat-conduction equation allows an infinite propagation velocity.
Although this feature is already present in the non-relativistic theory in the rela-
tivistic theory it becomes a paradox: the thermal disturbances can not propagate
faster than the speed of light. This paradox is easily resolved in the framework of
the Chapman-Enskog procedure. In fact the restriction inherent in the Chapman-
Enskog method (the macroscopic wave lengths has to be much greater than the
mean free path) prevents the existence of propagation velocities faster than the
thermal velocity of particles.

15.3 Thermal equilibrium

We should check the applicability of our results by estimating to what extent the
electron—proton—photon plasma is close to kinetic equilibrium before and during
recombination. All our previous calculations were made under the assumption
that the distribution functions have equilibrium form and all components have
the same temperature equal to the photon temperature. To make sure that the
temperature of electron-proton component coincides with the photon temperature
we have to study the following effect. The effective temperature of photons would
decrease in time slower than that of electrons and protons. Thus we have to check
that energy transfer from photons to electrons and protons is sufficiently fast.

Electrons get energy from photons via Compton scattering process that occurs
with Thomson cross section. The time between two subsequent collisions of a
given electron with photons is

1
T= (15.23)
n,oT

here o1 — the Compton cross section and n, — the number density of photons.
For energy transfer the time T¢ in which an electron obtains kinetic energy of the
same order of magnitude as temperature due to the Compton scattering should
be found. We note that the typical energy transfer in a collision of a slow electron
with a low energy photon is actually suppressed for estimation of this time. The
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estimation for number of scattering events needed to heat up a moving electron is
given by [17]

N — ’ == 15.24
“\Aag) T (1524)
We can obtain the time of electron heating [17]

Me

Te(T) ~ Nt(T) ~ o TorT
Y

(15.25)
At the moment of recombination Tg (Trec) =~ 6 yrs. It is much smaller than the
Hubble time and energy transfer from photons to electrons is efficient. Thus
electrons and protons have the photon temperature.

What about the heating of protons? Doing the same procedure (with m,
substituted for m. in (25)) we obtain that process of direct interaction of proton
with photons is irrelevant. Since the Thomson cross section is proportional to m 2

the time for protons is larger by a factor (m,,/ me)3 and this time is larger than
the Hubble time. Energy transfer to protons occurs due to elastic scattering of
electrons off protons. The energy transfer time [17] is

(T) Tel AN 15.26
e 167me(T)oc21n(6TrD/oc)(me) (15.26)

here rp = and during recombination Tg (Trec) ~ 10% s and this time is

TMe o

very small compared to the Hubble time at recombination. The estimation done for
protons is valid for electrons as well with m. substituted for m;, and numeric factor.
This means that electrons and protons have equilibrium distribution functions
with temperature equal to photon temperature.

15.4 Transport coefficients

The divergence of the collision integrals is the main difficulty encountered when
applying the transport equation to plasma. The many particle correlations which
provide the Debye shielding are not included in the transport equation due to the
long range nature of electromagnetic interaction. In the Standard Model of the
Universe Compton scattering between photons and electrons was the dominant
mechanism for energy and momentum transfer in the radiation-dominated era
(RD-stage). It seems worthy to present a quantitative description of the non-
equilibrium processes that can be expected in a hot photon gas coupled to plasma
by Compton scattering.

In case of low temperatures we have the following expression for heat con-
ductivity [16]

4%, 1

= —— 15.27
5%e 0T ( )
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here x; — the fraction of particles, o1 — the Compton cross section and the ratio
of electron and photon number densities through baryon-to—photon ratio with
electric neutrality of the Universe

ng _9
N = o 0.6107". (15.28)
Y

15.5 Dependence of the equation on the rate of expansion of
space

We should set the form of operators included in the equation (15.7). If the matter
of the surrounding space is stationary as a whole then the four-velocity takes the
form u, = (1,0,0,0) hence D = u*9d,, = 9.

We need to make the following substitution: V¥ = A¥Y9, — A*YD, in
order to take into account the expansion of space. For a scalar field covariant
differentiation is simply partial differentiation: D,, = 0,,, for a covariant vector we
have: D, A, =09,A, — M A« and for a contravariant vector: D,,AY = 9,,AY +
Iy, A%. The Christoffel symbols of the second kind: ', = ¢*°(0,.9vo + 0vguo —
doGuv)/2.

Thus our operator V? is explicitly dependent on the metric

V2 = VMV, = Vg, VY = AMVD, g, AVF0y. (15.29)

The rate of temperature spreading into the surrounding space will be calculated
with respect to the Friedmann-Lemaitre—Robertson-Walker metric. The metric
tensor in this case has the form

guv = diag(1, —a?(t), —a?(t)r?, —a?(t)r? sin’ 0) . (15.30)
The scale factor a(t) can be found from Friedmann equations
2
a 8m dp p
—] ==Gp, — =_3&— (15.31)
a 3 da a

here £ =4/3 (1) for RD-stage (MD-stage).
Finally we get the following dependence for scale factor

% 8mGpo
2 3

(t—to)

2/3¢
} (15.32)

a(t) = [1 +

obtained under the conditions a(tg) = 1, p(to) = 0.53 - 107> GeV/cm3, to =~
14 - 107 yrs— the age of Universe.

15.6 Final statement of the problem and result of calculation

We consider spherical symmetry for simplicity. The heat-conduction equation

(15.7) with expression (15.12) for pressure and in case of stationary matter takes

the form

T(rt)
n

ny 0 (T0r,0) =—v2T(r, 0+

_ 2
N ot vonT(r,t) (15.33)
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with boundary conditions

0

o' ™Y —o > (15.34)
Tout

T(r)t”r:oo = a(t)

here the dependence for scale factor a(t) is taken from (15.32).
The initial condition is

T(r,0) = Tin exp(—12/73) + Tout (15.35)

here Tin and Ty — temperatures of matter inside cluster and the surrounding
space respectively, To— temperature distribution parameter.

In general the obtained expressions can also be used in calculations at the
RD-stage (stage of radiation dominance) and the MD-stage (stage of the matter
domination). For this purpose the expression for the scale factor (15.32) should be
taken at different £ and with modified heat conductivity. Presumably the cluster
of primordial black holes virializes at the end of the RD-stage. It makes sense to
estimate its cooling before the end of this stage. We need to choose specific values
of the following parameters:

- temperature distribution parameter ro = 1 pc;

- temperature inside the area Ty, = 100 keV;

- temperature of the surrounding space Tyt = 1 keV;

- dependence a(t) in boundary condition is selected for RD-stage;

- for enthalpy and heat capacity we should select forms in case of

low temperatures (15.17) and (15.19) accordingly.

Using numerical simulation in MAPLE by the BackwardEuler method with the
interval of spatial points on a discrete grid 1/60 we have Fig.15.1. As can be
seen from the figure, the gravitationally bound region almost completely retains
temperature which was obtained during the formation at the RD—stage. The next
step is to determine what happens with this heated region at the MD-stage.

15.7 Estimation for MD-stage

We will be interested in the internal temperature of the gravitationally bound
region during the MD-stage. At the end of the RD-stage we have a region with
higher temperature. It is possible to ignite a new chain of nuclear reactions chang-
ing chemical composition of the matter in given region. The temperature inside the
cluster can be calculated in Minkowski space and we can find the dependence of
the thermal conductivity on temperature in the non-relativistic case. The thermal
diffusivity by definition is given by !

A TeTe 3.16 s/
X = —3.16 = T/ (15.36)
TeCy MeCy  2v27/Meq2Zn(T) In(6Trp/«)

! Here the values are expressed in the CGS system and the temperature in eV
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oo [pet)
The thermal diffusivity in | —| is
year

o 2300
XU =)

The calculated value allows to retain the increased temperature inside the cluster
until the recombination starts. The heat is conserved within a region starting from
the moment of its formation. Thus, there are significant prerequisites for anomalies
in the chemical composition of this region which makes sense to consider in future.

(15.37)

Conclusion

We investigated the temperature dynamics of the heated region around the primor-
dial black holes cluster. For this purpose the relativistic heat-conduction equation
(without convective terms) was considered taking into account the expansion
of space in the framework of the Chapman-Enskog relativistic procedure. The
numerical solution was found with the corresponding initial and boundary con-
ditions. According to our calculations, the gravitationally bound region almost
completely retains temperature which was obtained during the formation. At the
MD-stage the increased temperature inside the cluster is conserved until then
recombination will start. Thus, there are significant prerequisites for anomalies
in the chemical composition of this region. In prospect, we are going to study
possible anomalies in the chemical content of the region with comparison to the
observed data.
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