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Abstract: We studied the effects of the Lorentz invariance violation on the rotation of neutron
stars (NSs) in the minimal gravitational Standard-Model Extension framework, and calculated the
quadrupole radiation generated by them. Aiming at testing Lorentz invariance with observations
of continuous gravitational waves (GWs) from rotating NSs in the future, we compared the GW
spectra of a rotating ellipsoidal NS under Lorentz-violating gravity with those of a Lorentz-invariant
one. The former were found to possess frequency components higher than the second harmonic,
which does not happen for the latter, indicating those higher frequency components to be potential
signatures of Lorentz violation in continuous GW spectra of rotating NSs.

Keywords: Lorentz violation; Standard-Model Extension

1. Introduction

The observation of gravitational waves (GWs) from the compact binary system
GW170817 initiates the era of multimessenger astronomy [1,2]. Gravitational theories,
including the renowned general relativity (GR), are being exposed to unprecedented tests
utilizing GW signals [3]. Lorentz invariance, incorporated locally in GR and many other
alternative gravitational theories, is certainly one of the fundamental principles subjected
to these tests [4–8]. By employing the Standard-Model Extension (SME) framework [9–13],
which is widely used to investigate consequences from possible violations of Lorentz
invariance in terrestrial experiments and astrophysical observations [14], stringent bounds
have been set for the coefficients for Lorentz violation in the gravitational sector of the SME
framework after analyzing the observed GW data [2,5–7].

Besides the coalescence of compact binary systems, GW sources of another type
are deformed rotating neutron stars (NSs). In particular, when the angular velocity of
a deformed NS is misaligned with its angular momentum, the star precesses about the
direction of the angular momentum, radiating out GWs continuously [15,16]. The search
for such continuous GW signals is ongoing [17–22]. Once detected, the continuous GW
signals will tell us a substantial piece of information on NS structure and deformability.
Furthermore, they will bring new tests for the laws of physics, among which lies Lorentz
invariance as one of the fundamental principles (see e.g., [8]).

To test Lorentz invariance, an investigation of the scenario where it is violated is
necessary. The effects of Lorentz violation on rotating spheroidal stars are studied in
detail in [23] under the minimal gravitational SME framework. The modification to the
free precession of a deformed star is depicted by the term "twofold precession," as briefly
speaking, Lorentz violation causes the angular momentum to precess about a fixed direction
while at the same time the star still precesses about the instantaneous direction of the
angular momentum. The correction in the quadrupole radiation due to the modification
of the rotation of the star was calculated in [23], and it was found that the quadrupole
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radiation from a spheroidal star affected by Lorentz violation has frequency components
over double the frequency of the fundamental one.

In this work, we extend the numerical results in [23] to ellipsoidal NSs. The charac-
teristically higher harmonics due to Lorentz violation remain in the GW spectra, as we
expected. More importantly, our numerical calculation for the quadrupole radiation from
an ellipsoidal NS in the absence of Lorentz violation indicates that though the nonaxisym-
metry of the star modulates the first and the second harmonics in the GW spectra, as
discussed in [16,24,25], it does not generate harmonics higher than the second for freely
precessing NSs. Therefore, harmonics higher than the second are indeed possible signatures
for Lorentz violation in the GW spectra of rotating solitary NSs.

We organize the paper as follows. In Section 2, we present the analytical equations
to construct the quadrupole radiation from a rotating ellipsoid under Lorentz-violating
gravity. Then in Section 3, numerical solutions to the rotation equations for ellipsoids with
uniform density are obtained and used to construct examples of the quadrupole radiation.
Subsequently, Fourier transformations are performed to extract the frequency components
of the quadrupole GWs, and we show that while the GW from an ellipsoid under the
twofold precession contains harmonics higher than the second, the GW from an ellipsoid
under free precession only has frequencies around the first and the second harmonics.
In the end, the conclusions are summarized in Section 4. For simplicity in writing equations,
we use the geometrized unit system where G = c = 1. However, standard units do appear
when numerical estimations are desired for realistic NSs.

2. Theoretical Basics

To proceed with the calculation, we neglect relativistic corrections to the NS’s structure
and motion, and solve its motion from the rotation equations for rigid bodies.1 Assuming
that in the body frame x–y–z, the surface of the star is described by

x2

a2
x
+

y2

a2
y
+

z2

a2
z
= 1, (1)

with semi-axes ax, ay and az, then the Lagrangian for the rotation of the star can be writ-
ten as

L =
1
2

(
Ixx(Ωx)2 + Iyy(Ωy)2 + Izz(Ωz)2

)
− δU, (2)

where Ixx, Iyy and Izz are the eigenvalues of the moment of inertia tensor along the principal
axes, and Ωx, Ωy and Ωz are the components of the angular velocity of the star in the
x–y–z frame. The orientation-dependent self-energy δU is calculated from the anisotropic
correction δΦ to the Newtonian potential Φ in the minimal gravitational SME, namely [13],

δΦ = −1
2

s̄ij
∫

(xi − x′ i)(xj − x′ j)
|x− x′|3 ρ(x′)d3x′,

δU = −1
4

s̄ij
∫ (

xi − x′ i
)(

xj − x′ j
)

|x− x′|3 ρ(x)ρ(x′)d3x d3x′, (3)

where s̄ij, with i, j = x, y, z, are the coefficients for Lorentz violation in the body frame [12,13],
and ρ is the density of the star.

In the SME framework, the coefficients for Lorentz violation are assumed to be constant
in inertial frames. Therefore, as the star rotates, the coefficients s̄ij depend on the orientation
of the star according to

s̄ij = RiI RjJ s̄I J , (4)

1 Relativistic corrections are reasonably characterized by the compactness of the body, which is about 0.1 for a NS.
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where RiI represents the rotation matrix transforming an inertial frame X–Y–Z to the body
frame x–y–z. The capital indices run over X, Y and Z, and s̄I J are constant coefficients for
Lorentz violation. The orientation dependence of s̄ij, originated from the rotation matrix,
can be easily described by the Euler angles (α, β, γ) in Figure 1, as the rotation matrix in
terms of the Euler angles is

I−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

RiI = i
←−
−−
−−

 cos α cos γ− sin α cos β sin γ sin α cos γ + cos α cos β sin γ sin β sin γ
− cos α sin γ− sin α cos β cos γ − sin α sin γ + cos α cos β cos γ sin β cos γ

sin α sin β − cos α sin β cos β

.
(5)

Figure 1. Euler angles transforming the X–Y–Z inertial frame to the x–y–z body frame. First, rotate
the X–Y–Z frame about the Z axis with angle α so that the X-axis aligns with the intersection line
MN. Then, rotate the just obtained X–Y–Z frame about the line MN with angle β so that the Z-axis
aligns with the z-axis. Last, rotate the new X–Y–Z frame about the z-axis with angle γ so that it
overlaps with the x–y–z frame.

Together with the relations between the velocity components and the Euler angles [26],

Ωx = α̇ sin β sin γ + β̇ cos γ,

Ωy = α̇ sin β cos γ− β̇ sin γ,

Ωz = α̇ cos β + γ̇, (6)

where dots denote time derivatives, the Euler–Lagrange equations for the Euler angles can
be obtained from the Lagrangian (2). Given the shape and density of the star, the moment
of inertia tensor and the integrals in δU can be calculated, and then the Euler angles can be
solved to describe the rotation of the star.

Once the rotation of the star is known, its gravitational quadrupole radiation can be
calculated via the metric perturbation

hI J = −2
r

Ï I J , (7)

where r is the distance from the distant star to the observer, and the double dots denote the
second time derivative. In [23], it is shown that Ï I J can be written as

Ï I J = RiI RjJ Aij, (8)
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with the body-frame quantities Aij being

Axx = 2
(

∆2(Ωy)2 − ∆3(Ωz)2
)

,

Ayy = 2
(

∆3(Ωz)2 − ∆1(Ωx)2
)

,

Azz = 2
(

∆1(Ωx)2 − ∆2(Ωy)2
)

,

Axy =

(
(∆3)

2

Izz + ∆1 − ∆2

)
ΩxΩy +

∆3

Izz Γz,

Axz =

(
(∆2)

2

Iyy + ∆3 − ∆1

)
ΩxΩz +

∆2

Iyy Γy,

Ayz =

(
(∆1)

2

Ixx + ∆2 − ∆3

)
ΩyΩz +

∆1

Ixx Γx, (9)

for any rigid body subjected to arbitrary rotations. The quantities ∆1, ∆2 and ∆3 are
defined as

∆1 = Iyy − Izz, ∆2 = Izz − Ixx, ∆3 = Ixx − Iyy, (10)

and the components of the torque, Γx, Γy and Γz, are calculated from the orientation-
dependent self-energy δU via

Γx = − sin γ

sin β
∂αδU − cos γ ∂βδU + cot β sin γ ∂γδU,

Γy = −cos γ

sin β
∂αδU + sin γ ∂βδU + cot β cos γ ∂γδU,

Γz = −∂γδU. (11)

Finally, the two physical degrees of freedom in the GW can be extracted from hI J by
defining the plus and the cross modes for an observer whose colatitude and azimuth are θo
and φo in the X–Y–Z frame [27],

h+ =
1
2

(
θ̂ I

o θ̂ J
o − φ̂I

o φ̂J
o

)
hI J = −1

r

(
θ̂ I

o θ̂ J
o − φ̂I

o φ̂J
o

)
Ï I J ,

h× =
1
2

(
θ̂ I

o φ̂J
o + φ̂I

o θ̂ J
o

)
hI J = −1

r

(
θ̂ I

o φ̂J
o + φ̂I

o θ̂ J
o

)
Ï I J , (12)

where θ̂ I
o and φ̂I

o are the XYZ-components of the transverse unit vectors

θ̂o = cos θo cos φo êX + cos θo sin φo êY − sin θo êZ,

φ̂o = − sin φo êX + cos φo êY. (13)

Note that êX, êY and êZ are the unit vectors of the X–Y–Z frame, and êx, êy and êz
will be used as the unit vectors of the x–y–z frame.

3. Numerical Examples

Now we can use the above equations to numerically calculate the GW spectra of a
rotating ellipsoidal NS affected by Lorentz violation. To simplify the calculation of δU,
we assume the density of the star to be constant. Extension to realistic nonuniform NSs is
straightforward. The advantage of using a constant density is that the angular parts of the
integrals in δU can be carried out analytically. Specifically speaking, define

Uij :=
1
2

∫ (
xi − x′ i

)(
xj − x′ j

)
|x− x′|3 ρ(x)ρ(x′)d3x d3x′; (14)
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then they are related to the Newtonian potential

Φ = −
∫

ρ(x′)
|x− x′|d

3x′, (15)

via

Uij =
∫

ρ(x)xi∂jΦd3x. (16)

The Newtonian potential of a uniform ellipsoid is known to be [27,28]

Φ = −πρ
(

A0 − Axx2 − Ayy2 − Azz2
)

, (17)

where

A0 = axayaz

∫ ∞

0

du√
(a2

x + u)(a2
y + u)(a2

z + u)
,

Ai = axayaz

∫ ∞

0

du

(a2
i + u)

√
(a2

x + u)(a2
y + u)(a2

z + u)
, (18)

with i = x, y, z. Consequently, the nonvanishing Uij are found to be

Uxx =
8π2

15
ρ2 Axa3

xayaz, Uyy =
8π2

15
ρ2 Ayaxa3

yaz, Uzz =
8π2

15
ρ2 Azaxaya3

z . (19)

For NSs, the density varies from the center to the surface. For our purposes, we take a
uniform density of 1015 g/cm3 in numerical calculations. As for the semi-axes, because NSs
are compact objects having tiny deformations if any, we can only say that they are all
about 10 km, roughly the radius of a spherical NS predicted by GR. The most often used
parameters to characterize NS deformation are the oblateness ε and the nonaxisymmetry δ.
They are defined as

ε =
Izz − Ixx

Ixx , δ =
Iyy − Ixx

Izz − Ixx , (20)

with an assumption that Izz is the largest eigenvalue of the moment of inertia tensor. NS
models have suggested that ε is less than 10−7 [29], while the magnitude of δ is hardly
known. For demonstration, we take 0.1 for both ε and δ in the following numerical
examples. In addition, we use 10 km for az, and then the values of ax and ay are determined
by noticing

Ixx =
4π

15
ρaxayaz(a2

y + a2
z), Iyy =

4π

15
ρaxayaz(a2

x + a2
z), Izz =

4π

15
ρaxayaz(a2

x + a2
y), (21)

for uniform ellipsoids.
Then to compute δU as a function of the Euler angles, we take numerical values

s̄XX = 0.02, s̄YY = 0.01, s̄ZZ = −0.04 and s̄XY = s̄XZ = s̄YZ = 0 for the coefficients for
Lorentz violation in the inertial frame. This means that the axes of the inertial frame are
the principal axes of the s̄ij tensor. Note that this is a theoretical inertial frame fixed by
the coefficients for Lorentz violation. It generally does not coincide with the widely used
experimental inertial frame, namely, the Sun-centered celestial-equatorial frame defined
in [11].

All the parameters in the Lagrangian (2) have been set now. Numerical solutions for
the Euler angles can be obtained once initial values are given. For numerical calculations,
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a dimensionless parametrization for the angular velocities is helpful. This can be achieved
by employing a time unit. To be consistent with the choice in [23], it is taken to be

tc :=

√
2Ixx

Uyy −Uzz . (22)

For a uniform ellipsoid, while keeping only the leading contributions from ε and δ, it is

tc =

√√√√ a2
y + a2

z

πρ
(

Aya2
y − Aza2

z

) ≈ √ 15
4πρε(1− δ)

∼ 10−3 s, (23)

where the magnitude estimation is made for ρ = 1015 g/cm3 and ε = δ = 0.1. Therefore,
a dimensionless angular velocity at order unity in our numerical results corresponds to
about 1000 rad/s.

Figure 2 shows the trajectories of the tail of the unit vector êz in the inertial frame to
intuitively illustrate the rotations of the star for a certain set of initial values. Our examples
consist of two solutions: the plot on the left shows a twofold precession with s̄I J taking the
above values, and the plot on the right shows a free precession without Lorentz violation
for comparison. The distinction is also reflected by the trajectories of the tail of the angular
momentum unit vector: in the left plot, there is a nontrivial trajectory for the angular
momentum unit vector, and in the right plot the angular momentum unit vector does not
change with time.

X

−0.5
0.0

0.5

Y−0.5

0.0

0.5

Z

0.2

0.4

0.6

0.8

X

−0.5
0.0

0.5

Y−0.5

0.0

0.5
Z

0.2

0.4

0.6

0.8

Figure 2. Illustrations for an example of the Lorentz-violating twofold precession (left) and an example of the Lorentz-
invariant free precession (right). The green trajectories trace the tail of the body-frame unit vector êz in the inertial frame,
while the blue trajectory in the left plot traces the tail of the angular momentum unit vector in the inertial frame. The red
arrows are the body-frame unit vectors êx, êy and êz at t = 0, while the blue arrows indicate the angular momentum
unit vector at t = 0. The angular momentum is conserved in free precessions so the blue arrow in the right plot remains
unchanged with time. The initial values for both solutions are α|t=0 = 0, β|t=0 ≈ 0.762, γ|t=0 = π/2, α̇|t=0 ≈ 1.26,
β̇|t=0 = 0.5 and γ̇|t=0 ≈ 0.0449. Time and time derivatives are dimensionless under the time unit tc given by Equation (23).

With the two solutions, we calculated the GWs according to Equation (12) for an
observer at θo = 0.8 rad and φo = 0. The results are presented in Figure 3. Their Fourier
transformations are shown in Figure 4; only the plus mode is shown, as the cross mode has
very much the same spectra. The spectrum of the free precession shows a fundamental
angular frequency at about 1.4/tc, and peaks around the second harmonic at about 2.9/tc.
We know that if the star is axisymmetric, free precessions generate GWs having exactly
two frequencies, with one being twice the other. The nonaxisymmetry here modulates
both the fundamental frequency and the second harmonic. This has been discussed in
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references [16,24,25]. What we are showing in the left plot of Figure 4 tells us that the
twofold precession, namely, the rotation of an otherwise freely precessing NS under
Lorentz-violating gravity, generates similar GW frequency components. However, more
interestingly, in the enlarged plot on the right, we clearly see the distinction that while the
twofold precession generates frequency components around the third harmonic, the free
precession has no component of the third harmonic at all. Higher frequency components
exist in the spectra of the Lorentz-violating twofold precession, but they can easily be
missed as they are too small.

−0.5

0.0

0.5

rh
+

[t
c]

twofold precession

0 50 100 150
t [tc]

−0.5

0.0

0.5

rh
×

[t
c]

−0.5

0.0

0.5

rh
+

[t
c]

free precession

0 50 100 150
t [tc]

−0.5

0.0

0.5

rh
×

[t
c]

Figure 3. GWs from a rigid body undergoing the rotations in Figure 2. The observer receiving the waves has colatitude
θo = 0.8 rad and azimuth φo = 0 in the X–Y–Z frame. The geometrized unit of time and distance is the time unit tc given by
Equation (23).
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0 2 4 6 8
Angular Frequency [1/tc]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
(r
h

+
)

[t
c]

twofold precession

free precession

4.35 4.40 4.45 4.50
Angular Frequency [1/tc]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
twofold precession

free precession

Figure 4. Fourier transformations of the rh+ waves in Figure 3. The two noticeable peaks at about 1.4 and 2.9 in the
left plot are the first and the second harmonics for both twofold precession and free precession. The modulation due to
nonaxisymmetry is clearly represented by the adjacent peak at about 2.7 close to the second harmonic for both kinds of
motion. However, the barely visible tiny peaks, reflecting modulations due to Lorentz violation, only exist for twofold
precession. The right plot, which zooms in on the tiny peak between 4 and 5, demonstrates the point. Note that in the plots
the geometrized unit of Fourier amplitude is tc, and the geometrized unit of angular frequency is 1/tc.

4. Conclusions

We have presented the analytical formulae to calculate the rotation of NSs under
Lorentz-violating gravity in the minimal gravitational SME framework, and to construct
the quadrupole GWs emitted from these NSs. Numerical examples were plotted to demon-
strate our conclusion that while freely precessing NSs in the Lorentz-invariant gravity do
not emit quadrupole GWs at frequencies higher than the second harmonic, NSs undergoing
the twofold precession due to Lorentz violation do. Therefore, harmonics higher than the
second in the spectra of continuous GWs are appealing signatures of Lorentz violation.
Once continuous GWs from rotating NSs are detected, a potential test of Lorentz invariance
can be performed by examining harmonics higher than the second in the spectra. However,
we do notice a possible difficulty in this test: there might be conventional torques, such as
the electromagnetic spin-down torque [30–33], acting on the NS to cause similar twofold
precession motions and to generate higher harmonics in the GW spectra. Although the
questions of whether the twofold precession caused by Lorentz violation can be distin-
guished from rotations of NSs under the electromagnetic spin-down torque and whether
the GW spectra of the latter have frequency components higher than the second harmonic
lie beyond the scope of this work, they are certainly worth being investigated further.
Furthermore, a statistical study of continuous GWs from an ensemble of NSs might have
the potential to distinguish between the two scenarios, as the Lorentz violation is universal
for all NSs, and the astrophysical torques are different for different systems.
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